WorldWideScience

Sample records for ground test program

  1. Overview of the solar dynamic ground test demonstration program

    Science.gov (United States)

    Shaltens, Richard K.; Boyle, Robert V.

    1993-01-01

    The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the availability of SD technologies in a simulated space environment at the NASA Lewis Research Center (LeRC) vacuum facility. An aerospace industry/ government team is working together to design, fabricate, build, and test a complete SD system. This paper reviews the goals and status of the SD GTD program. A description of the SD system includes key design features of the system, subsystems, and components as reported at the Critical Design Review (CDR).

  2. Isotope Brayton ground demonstration testing and flight qualification program. Volume 1. Technical program

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-09

    A proposal for the demonstration, development and production of the Isotope Brayton Flight System for space vehicles is presented with details on the technical requirements for designing and testing a ground demonstration system and on the program organization and personnel. (LCL)

  3. X-51A Scramjet Demonstrator Program: Waverider Ground and Flight Test

    Science.gov (United States)

    2013-11-01

    USAF) WaveRider program. The overall test objective of the X-51A program was to demonstrate a scramjet engine using endothermic hydrocarbon fuel...Hypersonic Technology (HyTech) scramjet engine , integrated into the vehicle, used endothermic hydrocarbon fuel (JP-7). The X-51A was designed to be...unlimited, 412TW-PA-13417 X-51A SCRAMJET DEMONSTRATOR PROGRAM: WAVERIDER GROUND AND FLIGHT TEST Maj Christopher M. Rondeau Chief Flight Test Engineer

  4. Update of the 2 Kw Solar Dynamic Ground Test Demonstration Program

    Science.gov (United States)

    Shaltens, Richard K.; Boyle, Robert V.

    1994-01-01

    The Solar Dynamic (SD) Ground Test Demonstration (GTD) program demonstrates the operation of a complete 2 kW, SD system in a simulated space environment at a NASA Lewis Research Center (LeRC) thermal-vacuum facility. This paper reviews the goals and status of the SD GTD program. A brief description of the SD system identifying key design features of the system, subsystems, and components is included. An aerospace industry/government team is working together to design, fabricate, assemble, and test a complete SD system.

  5. Ground test program for a full-size solar dynamic heat receiver

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  6. NASA solar dynamic ground test demonstration (GTD) program and its application to space nuclear power

    Science.gov (United States)

    Harper, William B.; Shaltens, Richard K.

    1993-01-01

    Closed Brayton cycle power conversion systems are readily adaptable to any heat source contemplated for space application. The inert gas working fluid can be used directly in gas-cooled reactors and coupled to a variety of heat sources (reactor, isotope or solar) by a heat exchanger. This point is demonstrated by the incorporation in the NASA 2 kWe Solar Dynamic (SD) Space Power Ground Test Demonstration (GTD) Program of the turboalternator-compressor and recuperator from the Brayton Isotope Power System (BIPS) program. This paper will review the goals and status of the SD GTD Program, initiated in April 1992. The performance of the BIPS isotope-heated system will be compared to the solar-heated GTD system incorporating the BIPS components and the applicability of the GTD test bed to dynamics space nuclear power R&D will be discussed.

  7. Isotope Brayton ground demonstration testing and flight qualification. Volume 1. Technical program

    Energy Technology Data Exchange (ETDEWEB)

    1974-12-09

    A program is proposed for the ground demonstration, development, and flight qualification of a radioisotope nuclear heated dynamic power system for use on space missions beginning in the 1980's. This type of electrical power system is based upon and combines two aerospace technologies currently under intense development; namely, the MHW isotope heat source and the closed Brayton cycle gas turbine. This power system represents the next generation of reliable, efficient economic electrical power equipment for space, and will be capable of providing 0.5 to 2.0 kW of electric power to a wide variety of spacecraft for earth orbital and interplanetary missions. The immediate design will be based upon the requirements for the Air Force SURVSATCOM mission. The proposal is presented in three volumes plus an Executive Summary. This volume describes the tasks in the technical program.

  8. Microbiological Testing Results of Boneless and Ground Beef Purchased for the National School Lunch Program, 2011 to 2014.

    Science.gov (United States)

    Doerscher, Darin R; Lutz, Terry L; Whisenant, Stephen J; Smith, Kerry R; Morris, Craig A; Schroeder, Carl M

    2015-09-01

    The Agricultural Marketing Service (AMS) purchases boneless and ground beef for distribution to recipients through federal nutrition assistance programs, including the National School Lunch Program, which represents 93% of the overall volume. Approximately every 2,000 lb (ca. 907 kg) of boneless beef and 10,000 lb (ca. 4,535 kg) of ground beef are designated a "lot" and tested for Escherichia coli O157:H7, Salmonella, standard plate count organisms (SPCs), E. coli, and coliforms. Any lot of beef positive for E. coli O157:H7 or for Salmonella, or any beef with concentrations of organisms exceeding critical limits for SPCs (100,000 CFU g(-1)), E. coli (500 CFU g(-1)), or coliforms (1,000 CFU g(-1)) is rejected for purchase by AMS and must be diverted from federal nutrition assistance programs. From July 2011 through June 2014, 537,478,212 lb (ca. 243,795,996 kg) of boneless beef and 428,130,984 lb (ca. 194,196,932 kg) of ground beef were produced for federal nutrition assistance programs. Of the 230,359 boneless beef samples collected over this period, 82 (0.04%) were positive for E. coli O157:H7, 924 (0.40%) were positive for Salmonella, 222 (0.10%) exceeded the critical limit for SPCs, 69 (0.03%) exceeded the critical limit for E. coli, and 123 (0.05%) exceeded the critical limit for coliforms. Of the 46,527 ground beef samples collected over this period, 30 (0.06%) were positive for E. coli O157:H7, 360 (0.77%) were positive for Salmonella, 20 (0.04%) exceeded the critical limit for SPCs, 22 (0.05%) exceeded the critical limit for E. coli, and 17 (0.04%) exceeded the critical limit for coliforms. Cumulatively, these data suggest beef produced for the AMS National School Lunch Program is done so under an adequate food safety system, as indicated by the low percentage of lots that were pathogen positive or exceeded critical limits for indicator organisms.

  9. Inverter Ground Fault Overvoltage Testing

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, Andy [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nelson, Austin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chakraborty, Sudipta [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chebahtah, Justin [SolarCity Corporation, San Mateo, CA (United States); Wang, Trudie [SolarCity Corporation, San Mateo, CA (United States); McCarty, Michael [SolarCity Corporation, San Mateo, CA (United States)

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  10. 49 CFR 234.249 - Ground tests.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ground tests. 234.249 Section 234.249 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Inspections and Tests § 234.249 Ground tests. A test for grounds on each energy...

  11. 49 CFR 236.107 - Ground tests.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ground tests. 236.107 Section 236.107...: All Systems Inspections and Tests; All Systems § 236.107 Ground tests. (a) Except as provided in paragraph (b) of this section, a test for grounds on each energy bus furnishing power to circuits,...

  12. 2011 Ground Testing Highlights Article

    Science.gov (United States)

    Ross, James C.; Buchholz, Steven J.

    2011-01-01

    Two tests supporting development of the launch abort system for the Orion MultiPurpose Crew Vehicle were run in the NASA Ames Unitary Plan wind tunnel last year. The first test used a fully metric model to examine the stability and controllability of the Launch Abort Vehicle during potential abort scenarios for Mach numbers ranging from 0.3 to 2.5. The aerodynamic effects of the Abort Motor and Attitude Control Motor plumes were simulated using high-pressure air flowing through independent paths. The aerodynamic effects of the proximity to the launch vehicle during the early moments of an abort were simulated with a remotely actuated Service Module that allowed the position relative to the Crew Module to be varied appropriately. The second test simulated the acoustic environment around the Launch Abort Vehicle caused by the plumes from the 400,000-pound thrust, solid-fueled Abort Motor. To obtain the proper acoustic characteristics of the hot rocket plumes for the flight vehicle, heated Helium was used. A custom Helium supply system was developed for the test consisting of 2 jumbo high-pressure Helium trailers, a twelve-tube accumulator, and a 13MW gas-fired heater borrowed from the Propulsion Simulation Laboratory at NASA Glenn Research Center. The test provided fluctuating surface pressure measurements at over 200 points on the vehicle surface that have now been used to define the ground-testing requirements for the Orion Launch Abort Vehicle.

  13. Test and Evaluation of Autonomous Ground Vehicles

    OpenAIRE

    Yang Sun; Guangming Xiong; Weilong Song; Jianwei Gong; Huiyan Chen

    2014-01-01

    A preestablished test and evaluation system will benefit the development of autonomous ground vehicles. This paper proposes a design method for a scientific and comprehensive test and evaluation system for autonomous ground vehicles competitions. It can better guide and regulate the development of China’s autonomous ground vehicles. The test and evaluation system includes the test contents, the test environment, the test methods, and the evaluation methods. Using a hierarchical design approac...

  14. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  15. Large Payload Ground Transportation and Test Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2016-01-01

    Many spacecraft concepts under consideration by the National Aeronautics and Space Administration’s (NASA’s) Evolvable Mars Campaign take advantage of a Space Launch System payload shroud that may be 8 to 10 meters in diameter. Large payloads can theoretically save cost by reducing the number of launches needed--but only if it is possible to build, test, and transport a large payload to the launch site in the first place. Analysis performed previously for the Altair project identified several transportation and test issues with an 8.973 meters diameter payload. Although the entire Constellation Program—including Altair—has since been canceled, these issues serve as important lessons learned for spacecraft designers and program managers considering large payloads for future programs. A transportation feasibility study found that, even broken up into an Ascent and Descent Module, the Altair spacecraft would not fit inside available aircraft. Ground transportation of such large payloads over extended distances is not generally permitted, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 67 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA’s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels

  16. Nuclear Thermal Propulsion Ground Test History

    Science.gov (United States)

    Gerrish, Harold P.

    2014-01-01

    -ups in May-June 1966 with 30.75 minutes accumulative operating time at or above 1GW. The NRX-A6 was tested in December 1969 and ran for 62 minutes at 1100 MW. Each engine had post-test examination and found various structure anomalies which were identified for correction and the fuel element corrosion rate was reduced. The Phoebus series of research reactors began testing at test cell C, in June 1965 with Phoebus 1A. Phoebus 1A operated for 10.5 minutes at 1100 MW before unexpected loss of propellant and leading to an engine breakdown. Phoebus 1B ran for 30 minutes in February of 1967. Phoebus 2A was the highest steady state reactor built at 5GW. Phoebus 2A ran for 12 minutes at 4100 MW demonstrating sufficient power is available. The Peewee test bed reactor was tested November- December 1968 in test cell C for 40 minutes at 500MW with overall performance close to pre-run predictions. The XE' engine was the only engine tested with close to a flight configuration and fired downward into a diffuser at the Engine Test Stand (ETS) in 1969. The XE' was 1100 MW and had 28 start-ups. The nuclear furnace NF-1 was operated at 44 MW with multiple test runs at 90 minutes in the summer of 1972. The NF-1 was the last NTP reactor tested. The Rover/NERVA program was cancelled in 1973. However, before cancellation, a lot of other engineering work was conducted by Aerojet on a 75, 000 lbf prototype flight engine and by Los Alamos on a 16,000 lbf "Small Engine" nuclear rocket design. The ground test history of NTP at the NRDS also offers many lessons learned on how best to setup, operate, emergency shutdown, and post-test examine NTP engines. The reactor and engine maintenance and disassembly facilities were used for assembly and inspection of radioactive engines after testing. Most reactor/ engines were run at test cell A or test cell C with open air exhaust. The Rover/NERVA program became aware of a new environmental regulation that would restrict the amount of radioactive particulates

  17. Test and Evaluation of Autonomous Ground Vehicles

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2014-01-01

    Full Text Available A preestablished test and evaluation system will benefit the development of autonomous ground vehicles. This paper proposes a design method for a scientific and comprehensive test and evaluation system for autonomous ground vehicles competitions. It can better guide and regulate the development of China's autonomous ground vehicles. The test and evaluation system includes the test contents, the test environment, the test methods, and the evaluation methods. Using a hierarchical design approach, the test content is designed to be stage by stage, moving from simplicity to complexity and from individual modules to the entire vehicle. The hierarchical test environment is established according to the levels of test content. The test method based on multilevel platforms and sensors is put forward to ensure the accuracy of test results. A fuzzy comprehensive evaluation method combined with analytic hierarchy process (AHP is used for the comprehensive evaluation which can quantitatively evaluate the individual module and the overall technical performance of autonomous ground vehicles. The proposed test and evaluation system has been successfully applied to real autonomous ground vehicle competitions.

  18. An Assessment of Testing Requirement Impacts on Nuclear Thermal Propulsion Ground Test Facility Design

    Science.gov (United States)

    Shipers, Larry R.; Ottinger, Cathy A.; Sanchez, Lawrence C.

    1994-07-01

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed.

  19. An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design

    Energy Technology Data Exchange (ETDEWEB)

    Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

    1993-10-25

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed.

  20. Advanced Testing Method for Ground Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [ORNL; Clemenzi, Rick [Geothermal Design Center Inc.; Liu, Su [University of Tennessee (UT)

    2017-04-01

    A new method is developed that can quickly and more accurately determine the effective ground thermal conductivity (GTC) based on thermal response test (TRT) results. Ground thermal conductivity is an important parameter for sizing ground heat exchangers (GHEXs) used by geothermal heat pump systems. The conventional GTC test method usually requires a TRT for 48 hours with a very stable electric power supply throughout the entire test. In contrast, the new method reduces the required test time by 40%–60% or more, and it can determine GTC even with an unstable or intermittent power supply. Consequently, it can significantly reduce the cost of GTC testing and increase its use, which will enable optimal design of geothermal heat pump systems. Further, this new method provides more information about the thermal properties of the GHEX and the ground than previous techniques. It can verify the installation quality of GHEXs and has the potential, if developed, to characterize the heterogeneous thermal properties of the ground formation surrounding the GHEXs.

  1. Test-driven programming

    Science.gov (United States)

    Georgiev, Bozhidar; Georgieva, Adriana

    2013-12-01

    In this paper, are presented some possibilities concerning the implementation of a test-driven development as a programming method. Here is offered a different point of view for creation of advanced programming techniques (build tests before programming source with all necessary software tools and modules respectively). Therefore, this nontraditional approach for easier programmer's work through building tests at first is preferable way of software development. This approach allows comparatively simple programming (applied with different object-oriented programming languages as for example JAVA, XML, PYTHON etc.). It is predictable way to develop software tools and to provide help about creating better software that is also easier to maintain. Test-driven programming is able to replace more complicated casual paradigms, used by many programmers.

  2. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development

    Science.gov (United States)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony

    2015-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  3. Ground test for vibration control demonstrator

    Science.gov (United States)

    Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.

    2016-09-01

    In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.

  4. Constellation Program Electrical Ground Support Equipment Research and Development

    Science.gov (United States)

    McCoy, Keegan S.

    2010-01-01

    At the Kennedy Space Center, I engaged in the research and development of electrical ground support equipment for NASA's Constellation Program. Timing characteristics playa crucial role in ground support communications. Latency and jitter are two problems that must be understood so that communications are timely and consistent within the Kennedy Ground Control System (KGCS). I conducted latency and jitter tests using Alien-Bradley programmable logic controllers (PLCs) so that these two intrinsic network properties can be reduced. Time stamping and clock synchronization also play significant roles in launch processing and operations. Using RSLogix 5000 project files and Wireshark network protocol analyzing software, I verified master/slave PLC Ethernet module clock synchronization, master/slave IEEE 1588 communications, and time stamping capabilities. All of the timing and synchronization test results are useful in assessing the current KGCS operational level and determining improvements for the future.

  5. Advanced stellar compass deep space navigation, ground testing results

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn

    2006-01-01

    Deep space exploration is in the agenda of the major space agencies worldwide and at least the European Space Agency (SMART & Aurora Programs) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the ris...... to determine the orbit of a spacecraft autonomously, on-board and without any a priori knowledge of any kind. The solution is robust, elegant and fast. This paper presents the preliminary performances obtained during the ground tests. The results are very positive and encouraging....

  6. On Testing Constraint Programs

    CERN Document Server

    Lazaar, Nadjib; Yahia, Lebbah

    2010-01-01

    The success of several constraint-based modeling languages such as OPL, ZINC, or COMET, appeals for better software engineering practices, particularly in the testing phase. This paper introduces a testing framework enabling automated test case generation for constraint programming. We propose a general framework of constraint program development which supposes that a first declarative and simple constraint model is available from the problem specifications analysis. Then, this model is refined using classical techniques such as constraint reformulation, surrogate and global constraint addition, or symmetry-breaking to form an improved constraint model that must be thoroughly tested before being used to address real-sized problems. We think that most of the faults are introduced in this refinement step and propose a process which takes the first declarative model as an oracle for detecting non-conformities. We derive practical test purposes from this process to generate automatically test data that exhibit no...

  7. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    Science.gov (United States)

    Allen, G. C.; Beck, D. F.; Harmon, C. D.; Shipers, L. R.

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program.

  8. Seismic Safety Program: Ground motion and structural response

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    In 1964, John A. Blume & Associates Research Division (Blume) began a broad-range structural response program to assist the Nevada Operations Office of the US Atomic Energy Commission (AEC) in ensuring the continued safe conduct of underground nuclear detonation testing at the Nevada Test Site (NTS) and elsewhere. Blume`s long experience in earthquake engineering provided a general basis for the program, but much more specialized knowledge was required for the AEC`s purposes. Over the next 24 years Blume conducted a major research program to provide essential understanding of the detailed nature of the response of structures to dynamic loads such as those imposed by seismic wave propagation. The program`s results have been embodied in a prediction technology which has served to provide reliable advanced knowledge of the probable effects of seismic ground motion on all kinds of structures, for use in earthquake engineering and in building codes as well as for the continuing needs of the US Department of Energy`s Nevada Operations Office (DOE/NV). This report is primarily an accounting of the Blume work, beginning with the setting in 1964 and the perception of the program needs as envisioned by Dr. John A. Blume. Subsequent chapters describe the structural response program in detail and the structural prediction procedures which resulted; the intensive data acquisition program which, as is discussed at some length, relied heavily on the contributions of other consultant-contractors in the DOE/NV Seismic Safety Support Program; laboratory and field studies to provide data on building elements and structures subjected to dynamic loads from sources ranging from testing machines to earthquakes; structural response activities undertaken for testing at the NTS and for off-NTS underground nuclear detonations; and concluding with an account of corollary studies including effects of natural forces and of related studies on building response.

  9. NASA Boeing 757 HIRF test series low power on-the-ground tests

    Energy Technology Data Exchange (ETDEWEB)

    Poggio, A.J.; Pennock, S.T.; Zacharias, R.A.; Avalle, C.A.; Carney, H.L. [National Aeronautics and Space Administration, Langley AFB, VA (United States). Langley Research Center

    1996-08-01

    The data acquisition phase of a program intended to provide data for the validation of computational, analytical, and experimental techniques for the assessment of electromagnetic effects in commercial transports; for the checkout of instrumentation for following test programs; and for the support of protection engineering of airborne systems has been completed. Funded by the NASA Fly-By-Light/ Power-By-Wire Program, the initial phase involved on-the-ground electromagnetic measurements using the NASA Boeing 757 and was executed in the LESLI Facility at the USAF Phillips Laboratory. The major participants in this project were LLNL, NASA Langley Research Center, Phillips Laboratory, and UIE, Inc. The tests were performed over a five week period during September through November, 1994. Measurements were made of the fields coupled into the aircraft interior and signals induced in select structures and equipment under controlled illumination by RF fields. A characterization of the ground was also performed to permit ground effects to be included in forthcoming validation exercises. This report and the associated test plan that is included as an appendix represent a definition of the overall on-the-ground test program. They include descriptions of the test rationale, test layout, and samples of the data. In this report, a detailed description of each executed test is provided, as is the data identification (data id) relating the specific test with its relevant data files. Samples of some inferences from the data that will be useful in protection engineering and EM effects mitigation are also presented. The test plan which guided the execution of the tests, a test report by UIE Inc., and the report describing the concrete pad characterization are included as appendices.

  10. Review of Nuclear Thermal Propulsion Ground Test Options

    Science.gov (United States)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  11. CELT site testing program

    Science.gov (United States)

    Schoeck, Matthias; Erasmus, D. Andre; Djorgovski, S. George; Chanan, Gary A.; Nelson, Jerry E.

    2003-01-01

    The California Extremely Large Telescope, CELT, is a proposed 30-m telescope. Choosing the best possible site for CELT is essential in order to extract the best science from the observations and to reduce the complexity of the telescope. Site selection is therefore currently one of the most critical pacing items of the CELT project. In this paper, we first present selected results from a survey of the atmospheric transparency at optical and infrared wavelengths over the southwestern USA and northern Mexico using satellite data. Results of a similar study of South America have been reported elsewhere. These studies will serve as the pre-selection criterion of the sites at which we will perform on-site testing. We then describe the current status of on-site turbulence evaluation efforts and the future plans of the CELT site testing program.

  12. Heat pipe testing program test plan

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, W.B.

    1980-03-14

    A test plan is given which describes the tests to be conducted on several typical solar receiver heat pipes. The hardware to be used, test fixtures and rationale of the test program are discussed. The program objective is to perform life testing under simulated receiver conditions, and to conduct performance tests with selected heat pipes to further map their performance, particularly with regard to their transient behavior. Performance requirements are defined. Test fixtures designed for the program are described in detail, and their capabilities for simulating the receiver conditions and their limitations are discussed. The heat pipe design is given. (LEW)

  13. Subscale Validation of the Subsurface Active Filtration of Exhaust (SAFE) Approach to the NTP Ground Testing

    Science.gov (United States)

    Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.

    2015-01-01

    Nuclear thermal propulsion (NTP) has been recognized as an enabling technology for missions to Mars and beyond. However, one of the key challenges of developing a nuclear thermal rocket is conducting verification and development tests on the ground. A number of ground test options are presented, with the Sub-surface Active Filtration of Exhaust (SAFE) method identified as a preferred path forward for the NTP program. The SAFE concept utilizes the natural soil characteristics present at the Nevada National Security Site to provide a natural filter for nuclear rocket exhaust during ground testing. A validation method of the SAFE concept is presented, utilizing a non-nuclear sub-scale hydrogen/oxygen rocket seeded with detectible radioisotopes. Additionally, some alternative ground test concepts, based upon the SAFE concept, are presented. Finally, an overview of the ongoing discussions of developing a ground test campaign are presented.

  14. Multicultural Ground Teams in Space Programs

    Science.gov (United States)

    Maier, M.

    2012-01-01

    In the early years of space flight only two countries had access to space. In the last twenty years, there have been major changes in how we conduct space business. With the fall of the iron curtain and the growing of the European Union, more and more players were able to join the space business and space science. By end of the last century, numerous countries, agencies and companies earned the right to be equal partners in space projects. This paper investigates the impact of multicultural teams in the space arena. Fortunately, in manned spaceflight, especially for long duration missions, there are several studies and simulations reporting on multicultural team impact. These data have not been as well explored on the team interactions within the ground crews. The focus of this paper are the teams working on the ISS project. Hypotheses will be drawn from the results of space crew research to determine parallels and differences for this vital segment of success in space missions. The key source of the data will be drawn from structured interviews with managers and other ground crews on the ISS project.

  15. Static tests of excess ground attenuation at Wallops Flight Center

    Science.gov (United States)

    Sutherland, L. C.; Brown, R.

    1981-01-01

    An extensive experimental measurement program which evaluated the attenuation of sound for close to horizontal propagation over the ground was designed to replicate, under static conditions, results of the flight measurements carried out earlier by NASA at the same site (Wallops Flight Center). The program consisted of a total of 41 measurement runs of attenuation, in excess of spreading and air absorption losses, for one third octave bands over a frequency range of 50 to 4000 Hz. Each run consisted of measurements at 10 locations up to 675 m, from a source located at nominal elevations of 2.5, or 10 m over either a grassy surface or an adjacent asphalt concrete runway surface. The tests provided a total of over 8100 measurements of attenuation under conditions of low wind speed averaging about 1 m/s and, for most of the tests, a slightly positive temperature gradient, averaging about 0.3 C/m from 1.2 to 7 m. The results of the measurements are expected to provide useful experimental background for the further development of prediction models of near grazing incidence sound propagation losses.

  16. Static tests of excess ground attenuation at Wallops Flight Center

    Science.gov (United States)

    Sutherland, L. C.; Brown, R.

    1981-06-01

    An extensive experimental measurement program which evaluated the attenuation of sound for close to horizontal propagation over the ground was designed to replicate, under static conditions, results of the flight measurements carried out earlier by NASA at the same site (Wallops Flight Center). The program consisted of a total of 41 measurement runs of attenuation, in excess of spreading and air absorption losses, for one third octave bands over a frequency range of 50 to 4000 Hz. Each run consisted of measurements at 10 locations up to 675 m, from a source located at nominal elevations of 2.5, or 10 m over either a grassy surface or an adjacent asphalt concrete runway surface. The tests provided a total of over 8100 measurements of attenuation under conditions of low wind speed averaging about 1 m/s and, for most of the tests, a slightly positive temperature gradient, averaging about 0.3 C/m from 1.2 to 7 m. The results of the measurements are expected to provide useful experimental background for the further development of prediction models of near grazing incidence sound propagation losses.

  17. DOE HEPA filter test program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    This standard establishes essential elements of a Department of Energy (DOE) program for testing HEPA filters to be installed in DOE nuclear facilities or used in DOE-contracted activities. A key element is the testing of HEPA filters for performance at a DOE Filter Test Facility (FTF) prior to installation. Other key elements are (1) providing for a DOE HEPA filter procurement program, and (2) verifying that HEPA filters to be installed in nuclear facilities appear on a Qualified Products List (QPL).

  18. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to develop a ground flutter testing system without wind tunnel, called the...

  19. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to further develop the ground flutter testing system in place of a wind...

  20. Ground vibration test and flutter analysis of air sampling probe

    Science.gov (United States)

    Ellison, J. F.

    1986-01-01

    The Dryden Flight Research Facility of NASA Ames Research Center conducted a ground vibration test and a flutter analysis of an air sampling probe that was to be mounted on a Convair 990 airplane. The probe was a steel, wing-shaped structure used to gather atmospheric data. The ground vibration test was conducted to update the finite-element model used in the flutter analysis. The analysis predicted flutter speeds well outside the operating flight envelope of the Convair 990 airplane.

  1. Test Program Set (TPS) Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC TPS Laboratory provides an organic Test Program Set (TPS) development, maintenance, and life cycle management capability for DoD LCMC materiel developers....

  2. NPR Physics Startup Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, C.E.

    1962-04-25

    The New Production Reactor, as compared to existing Hanford reactors, employs new and unique design concepts. To properly evaluate these design concepts and their effects on reactor operations, nuclear safety, and reactor life, a comprehensive testing program is planned; this program, with its objectives and restrictions, is discussed in this report. It has been developed along the same line as the C and K Reactors test, programs, and is expected to require a total time of 6--8 weeks of round-the-clock testing. This estimate includes fuel loading time, but does not include time allotments for engineering acceptance tests prior to power operation nor does it include any of the time necessary for engineering and physics tests during the extensive power ascension program. The main body of this report is presented in three parts. The first section describes startup hazards and restrictions, reactor and component safety provisions prior to loading, and the itemized listing of quantities to be measured. The second includes preliminary material and plant conditions and a brief description of the individual tests. The third section (the Appendix), written in procedure language, comprises a rather detailed description of each individual test on a tentative basis; final test details and procedures, which will lie within the boundaries authorized by this document wil1 be established through joint efforts of Operational Physics and NPR Operations sub-section personnel.

  3. Advanced stellar compass deep space navigation, ground testing results

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn

    2006-01-01

    Deep space exploration is in the agenda of the major space agencies worldwide and at least the European Space Agency (SMART & Aurora Programs) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the risks...... and the costs of the deep space missions. Navigation is the Achilles' heel of deep space. Being performed on ground, it imposes considerable constraints on the system and the operations, it is very expensive to execute, especially when the mission lasts several years and, above all, it is not failure tolerant....... Nevertheless, up to now, ground navigation has been the only possible solution. The technological breakthrough of advanced star trackers, like the micro-advanced stellar compass (mu ASC) might change this situation. Indeed, exploiting the capabilities of this instrument, the authors have devised a method...

  4. Strategies for Ground Based Testing of Manned Lunar Surface Systems

    Science.gov (United States)

    Beyer, Jeff; Peacock, Mike; Gill, Tracy

    2009-01-01

    Integrated testing (such as Multi-Element Integrated Test (MEIT)) is critical to reducing risks and minimizing problems encountered during assembly, activation, and on-orbit operation of large, complex manned spacecraft. Provides the best implementation of "Test Like You Fly:. Planning for integrated testing needs to begin at the earliest stages of Program definition. Program leadership needs to fully understand and buy in to what integrated testing is and why it needs to be performed. As Program evolves and design and schedules mature, continually look for suitable opportunities to perform testing where enough components are together in one place at one time. The benefits to be gained are well worth the costs.

  5. GSA's Green Proving Ground: Identifying, Testing and Evaluating Innovative Technologies (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, A.; Lowell, M.

    2012-05-01

    GSA's Green Proving Ground (GPG) program utilizes GSA's real estate portfolio to test and evaluate innovative and underutilized sustainable building technologies and practices. Findings are used to support the development of GSA performance specifications and inform decision making within GSA, other federal agencies, and the real estate industry. The program aims to drive innovation in environmental performance in federal buildings and help lead market transformation through deployment of new technologies.

  6. Orion Pad Abort 1 Flight Test - Ground and Flight Operations

    Science.gov (United States)

    Hackenbergy, Davis L.; Hicks, Wayne

    2011-01-01

    This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.

  7. Hunter standoff killer team (HSKT) ground and flight test results

    Science.gov (United States)

    Moreland, Balinda; Ennis, Mark; Yeates, Robert; Condon, Timothy

    2007-04-01

    Since the inception of powered flight, manned aerial vehicles have been a force multiplier on the battlefield. With the emergence of new technology, the structure of the military battlefield is changing. One such technology, the Unmanned Aerial Vehicle (UAV) has emerged as a valuable asset for today's war fighter. UAVs have traditionally been operated by ground control stations, yet minimum research has been targeted towards UAV connectivity. Airborne Manned Unmanned System Technology Baseline (AMUST-Baseline) was a concept that demonstrated the battlefield synergy gained by Manned and Unmanned Vehicle teaming. AMUST-Baseline allowed an Apache Longbow's (AH-64D) co-pilot gunner (CPG) to have Level IV control of a Hunter fixed wing UAV. Level IV control of a UAV includes payload control, flight control and direct data receipt. With the success of AMUST-Baseline, AATD, Lockheed Martin, Northrop Grumman, and the Boeing Company worked towards enhanced Manned and Unmanned connectivity through a technology investment agreement. This effort named Airborne Manned Unmanned System Technology Demonstration (AMUST-D) focused on the connectivity between two manned platforms, Apache Longbow (AH-64D) and Command and Control (C2) Blackhawk, and Hunter UAV. It allows robust communication from the UAV to each platform through the Tactical Common Data Link (TCDL). AMUST-D used decision aiding technology developed under the Rotorcraft Pilots Associate (RPA) Advanced Technology Demonstration (ATD) as to assist in control of the Hunter UAV, as well as assist the pilot in regularly performed duties. Through the use of decision aiding and UAV control, the pilot and commander were better informed of potential threats and targets, thus increasing his situational awareness. The potential benefits of improved situational awareness are increased pilot survivability, increased lethality, and increased operational effectiveness. Two products were developed under the AMUST-D program, the

  8. NASA's mobile satellite communications program; ground and space segment technologies

    Science.gov (United States)

    Naderi, F.; Weber, W. J.; Knouse, G. H.

    1984-10-01

    This paper describes the Mobile Satellite Communications Program of the United States National Aeronautics and Space Administration (NASA). The program's objectives are to facilitate the deployment of the first generation commercial mobile satellite by the private sector, and to technologically enable future generations by developing advanced and high risk ground and space segment technologies. These technologies are aimed at mitigating severe shortages of spectrum, orbital slot, and spacecraft EIRP which are expected to plague the high capacity mobile satellite systems of the future. After a brief introduction of the concept of mobile satellite systems and their expected evolution, this paper outlines the critical ground and space segment technologies. Next, the Mobile Satellite Experiment (MSAT-X) is described. MSAT-X is the framework through which NASA will develop advanced ground segment technologies. An approach is outlined for the development of conformal vehicle antennas, spectrum and power-efficient speech codecs, and modulation techniques for use in the non-linear faded channels and efficient multiple access schemes. Finally, the paper concludes with a description of the current and planned NASA activities aimed at developing complex large multibeam spacecraft antennas needed for future generation mobile satellite systems.

  9. NASA's mobile satellite communications program; ground and space segment technologies

    Science.gov (United States)

    Naderi, F.; Weber, W. J.; Knouse, G. H.

    1984-01-01

    This paper describes the Mobile Satellite Communications Program of the United States National Aeronautics and Space Administration (NASA). The program's objectives are to facilitate the deployment of the first generation commercial mobile satellite by the private sector, and to technologically enable future generations by developing advanced and high risk ground and space segment technologies. These technologies are aimed at mitigating severe shortages of spectrum, orbital slot, and spacecraft EIRP which are expected to plague the high capacity mobile satellite systems of the future. After a brief introduction of the concept of mobile satellite systems and their expected evolution, this paper outlines the critical ground and space segment technologies. Next, the Mobile Satellite Experiment (MSAT-X) is described. MSAT-X is the framework through which NASA will develop advanced ground segment technologies. An approach is outlined for the development of conformal vehicle antennas, spectrum and power-efficient speech codecs, and modulation techniques for use in the non-linear faded channels and efficient multiple access schemes. Finally, the paper concludes with a description of the current and planned NASA activities aimed at developing complex large multibeam spacecraft antennas needed for future generation mobile satellite systems.

  10. Ground-source heat pump case studies and utility programs

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Boyd, T.L.; Rogers, R.L.

    1995-04-01

    Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The case studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.

  11. Human Machine Interface Programming and Testing

    Science.gov (United States)

    Foster, Thomas Garrison

    2013-01-01

    Human Machine Interface (HMI) Programming and Testing is about creating graphical displays to mimic mission critical ground control systems in order to provide NASA engineers with the ability to monitor the health management of these systems in real time. The Health Management System (HMS) is an online interactive human machine interface system that monitors all Kennedy Ground Control Subsystem (KGCS) hardware in the field. The Health Management System is essential to NASA engineers because it allows remote control and monitoring of the health management systems of all the Programmable Logic Controllers (PLC) and associated field devices. KGCS will have equipment installed at the launch pad, Vehicle Assembly Building, Mobile Launcher, as well as the Multi-Purpose Processing Facility. I am designing graphical displays to monitor and control new modules that will be integrated into the HMS. The design of the display screen will closely mimic the appearance and functionality of the actual modules. There are many different field devices used to monitor health management and each device has its own unique set of health management related data, therefore each display must also have its own unique way to display this data. Once the displays are created, the RSLogix5000 application is used to write software that maps all the required data read from the hardware to the graphical display. Once this data is mapped to its corresponding display item, the graphical display and hardware device will be connected through the same network in order to test all possible scenarios and types of data the graphical display was designed to receive. Test Procedures will be written to thoroughly test out the displays and ensure that they are working correctly before being deployed to the field. Additionally, the Kennedy Ground Controls Subsystem's user manual will be updated to explain to the NASA engineers how to use the new module displays.

  12. PUMA test program for SBWR

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, M.; Revankar, S.T.; Dowlati, R. [Purdue Univ., West Lafayette, IN (United States)] [and others

    1996-03-01

    The objective of the PUMA integral test program is to obtain confirmatory test data for the SBWR Developed by the General Electric-Nuclear Energy Company. The program was initiated in July 1993 under the sponsorship of the NRC. The SBWR has a simplified coolant circulation system and a passive emergency cooling system. The engineered safety systems and safety-grade systems in the SBWR are: (1) the Automatic Depressurization System (ADS), (2) the Gravity-Driven Cooling System (GDCS), (3) the Passive Containment Cooling System (PCCS), (4) the Isolation Condenser Systems (ICS), and (5) the Pressure Suppression Pool (SP). The GDCS and PCCS are new designs unique to the SBWR and do not exist in operating BWRs. The ICS is similar to those in some operating BWRs. The PCCS is designed for low-pressure operation for the containment cooling, but the ICS is capable of high pressure operation as well to cool the reactor pressure vessel. The PUMA design was completed based on an extensive scaling analysis. The PUMA facility having 1/4 height and 1/400 volume scales is constructed. Various facility characterization tests and instrumentation and data acquisition system checks are performed presently. The facility acceptance test will be performed in November and integral tests will be initiated.

  13. Cryogenic actuator testing for the SAFARI ground calibration setup

    Science.gov (United States)

    de Jonge, C.; Eggens, M.; Nieuwenhuizen, A. C. T.; Detrain, A.; Smit, H.; Dieleman, P.

    2012-09-01

    For the on-ground calibration setup of the SAFARI instrument cryogenic mechanisms are being developed at SRON Netherlands Institute for Space Research, including a filter wheel, XYZ-scanner and a flipmirror mechanism. Due to the extremely low background radiation requirement of the SAFARI instrument, all of these mechanisms will have to perform their work at 4.5 Kelvin and low-dissipative cryogenic actuators are required to drive these mechanisms. In this paper, the performance of stepper motors, piezoelectric actuators and brushless DC-motors as cryogenic actuators are compared. We tested stepper motor mechanical performance and electrical dissipation at 4K. The actuator requirements, test setup and test results are presented. Furthermore, design considerations and early performance tests of the flipmirror mechanism are discussed. This flipmirror features a 102 x 72 mm aluminum mirror that can be rotated 45°. A Phytron stepper motor with reduction gearbox has been chosen to drive the flipmirror. Testing showed that this motor has a dissipation of 49mW at 4K with a torque of 60Nmm at 100rpm. Thermal modeling of the flipmirror mechanism predicts that with proper thermal strapping the peak temperature of the flipmirror after a single action will be within the background level requirements of the SAFARI instrument. Early tests confirm this result. For low-duty cycle operations commercial stepper motors appear suitable as actuators for test equipment in the SAFARI on ground calibration setup.

  14. Considerations for fault current testing of optical ground wire

    Energy Technology Data Exchange (ETDEWEB)

    Madge, R.C.; Barrett, J.S.; Maruice, C.G. (Ontario Hydro, Toronto, ON (Canada). Research Div.)

    1992-10-01

    Optical Ground Wires (OPGW) are being used more frequently by utilities. However, fault current testing of OPGW has not been fully examined. In this paper, peak component temperatures are measured for both 10 m and 60 m spans. The cable temperature decay time is measured, and is compared against a numerical model of convection and conduction losses. A numerical model is developed to predict the peak cable tension following a hit. This model can be used to establish appropriate initial cable tensions to simulate full-span faults. The issue of dynamic stresses in the form of cable whipping is reviewed. Lastly, various cable termination procedures are tested.

  15. CRYogenic Orbital TEstbed Ground Test Article Thermal Analysis

    Science.gov (United States)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to CRYOTE ground test data. The CRYOTE ground test artide was jointly developed by Innovative Engineering Solutions, United Launch Alliance and NASA KSC. The test article was constructed out of a titanium alloy tank, Sapphire 77 composite skin (similar to G10), an external secondary payload adapter ring, thermal vent system, multi layer insulation and various data acquisition instrumentation. In efforts to understand heat loads throughout this system, the GTA (filled with liquid nitrogen for safety purposes) was subjected to a series of tests in a vacuum chamber at Marshall Space Flight Center. By anchoring analytical models against test data, higher fidelity thermal environment predictions can be made for future flight articles which would eventually demonstrate critical cryogenic fluid management technologies such as system chilldown, transfer, pressure control and long term storage. Significant factors that influenced heat loads included radiative environments, multi-layer insulation performance, tank fill levels and pressures and even contact conductance coefficients. This report demonstrates how analytical thermal/fluid networks were established and includes supporting rationale for specific thermal responses.

  16. ISTAR: Project Status and Ground Test Engine Design

    Science.gov (United States)

    Quinn, Jason Eugene

    2003-01-01

    Review of the current technical and programmatic status of the Integrated System Test of an Airbreathing Rocket (ISTAR) project. November 2002 completed Phase 1 of this project: which worked the conceptual design of the X-43B demonstrator vehicle and Flight Test Engine (FTE) order to develop realistic requirements for the Ground Test Engine (GTE). The latest conceptual FTE and X-43B configuration is briefly reviewed. The project plan is to reduce risk to the GTE and FTE concepts through several tests: thruster, fuel endothermic characterization, engine structure/heat exchanger, injection characterization rig, and full scale direct connect combustion rig. Each of these will be discussed along with the project schedule. This discussion is limited due to ITAR restrictions on open literature papers.

  17. Initial results from the Solar Dynamic (SD) Ground Test Demonstration (GTD) project at NASA Lewis

    Science.gov (United States)

    Shaltens, Richard K.; Boyle, Robert V.

    1995-01-01

    A government/industry team designed, built, and tested a 2 kWe solar dynamic space power system in a large thermal/vacuum facility with a simulated sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum, and solar flux as encountered in low earth orbit. This paper reviews the goals and status of the Solar Dynamic (SD) Ground Test Demonstration (GTD) program and describes the initial testing, including both operational and performance data. This SD technology has the potential as a future power source for the International Space Station Alpha.

  18. Quiet Spike Build-Up Ground Vibration Testing Approach

    Science.gov (United States)

    Spivey, Natalie D.; Herrera, Claudia Y.; Truax, Roger; Pak, Chan-gi; Freund, Donald

    2007-01-01

    NASA's Dryden Flight Research Center uses a modified F-15B (836) aircraft as a testbed for a variety of flight research:experiments mounted underneath the aircraft fuselage. The F-15B was selected to fly Gulfstream Aerospace Corporation's (GAC)QuietSpike(TM)(QS) project; however, this experiment is very unique and unlike any of the previous testbed experiments flown on the F-15B. It involves the addition of a relatively long quiet spike boom attached to the radar bulkhead of the aircraft. This QS experiment is a stepping stone to airframe structural morphing technologies designed to mitigate sonic born strength of business jets over land. The QS boom is a concept in Which an aircraft's front-end would be extended prior to supersonic acceleration. This morphing would effectively lengthen the aircraft, reducing peak sonic boom amplitude, but is also expected to partition the otherwise strong bow shock into a series of reduced-strength, non-coalescing shocklets. Prior to flying the Quietspike(TM) experiment on the F-15B aircraft several ground vibration tests (GVT) were required in order to understand the QS modal characteristics and coupling effects with the F-15B. However, due to the project's late hardware delivery of the QS and the intense schedule, a "traditional" GVT of the mated F-1513 Quietspike(tm) ready-for-flight configuration would not have left sufficient time available for the finite element model update and flutter analyses before flight testing. Therefore, a "nontraditional" ground vibration testing approach was taken. The objective of the QuietSpike (TM) build-up ground testing approach was to ultimately obtain confidence in the F-15B Quietspike(TM) finite element model (FEM) to be used for the flutter analysis. In order to obtain the F15B QS FEM with reliable foundation stiffness between the QS and the F-15B radar bulkhead as well as QS modal characteristics, several different GVT configurations were performed. EAch of the four GVT's performed had a

  19. Orbit-to-ground Wireless Power Transfer test mission

    Science.gov (United States)

    Bergsrud, C.; Noghanian, S.; Straub, J.; Whalen, D.; Fevig, R.

    Since the 1970s the concept of transferring power from orbit for use on Earth has had a great deal of consideration for future energy and environmental sustainability here on Earth. The cost, size and complexity of a production-grade system are extremely large, and have many environmental considerations. There has never been a publicly disclosed orbit-to-ground power transfer test mission. A proposed project provides an opportunity to test the conceptual operation of such a system, albeit at a much lower power level than the `grand' or `real scale' system. During this test, a small Solar Powered (SP) 6-U CubSat will be deployed into Low-Earth Orbit (LEO) (225 or 325 km) to collect and store 1 KW of power from solar energy as the satellite is orbiting. The goal is to transmit 1 KW of wireless power at a microwave frequency of 5.8 or 10 GHz to a ground antenna array system. This paper presents the architecture for the proposed mission and discusses the regulatory, legal, and environmental issues that such a mission poses. Furthermore, the gain of the transmitter is analyzed at 20 and 30 dB as well as the gain of the receiver is analyzed at 30, 40, and 50 dB. A SP 6-U CubeSat will have a Lithium Ion (LIon) battery capable of storing enough energy for 83.33 Whr charge to run the satellites controls, and 1 KW necessary for a 5-minute demonstration and test (in addition to power required for its own operational requirements). Once charged, the satellite will use highly accurate position and attitude knowledge provided by an onboard star-tracker, Global Positioning Satellite (GPS) and inertial measurement unit to determine the proper orientation for the power transfer test. The onboard Attitude Determination and Control (ADCS) will be utilized to achieve and maintain this orientation during the test period. A cold-gas propulsion system will be available to de-spin the reaction wheels to ensure that sufficient ADCS capabilities exist for attitude-stabilization use during

  20. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This document is the third volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of appendices C through U of the report

  1. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.

  2. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This document is the third volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of appendices C through U of the report

  3. An innovative approach for testing bioinformatics programs using metamorphic testing

    Directory of Open Access Journals (Sweden)

    Liu Huai

    2009-01-01

    Full Text Available Abstract Background Recent advances in experimental and computational technologies have fueled the development of many sophisticated bioinformatics programs. The correctness of such programs is crucial as incorrectly computed results may lead to wrong biological conclusion or misguide downstream experimentation. Common software testing procedures involve executing the target program with a set of test inputs and then verifying the correctness of the test outputs. However, due to the complexity of many bioinformatics programs, it is often difficult to verify the correctness of the test outputs. Therefore our ability to perform systematic software testing is greatly hindered. Results We propose to use a novel software testing technique, metamorphic testing (MT, to test a range of bioinformatics programs. Instead of requiring a mechanism to verify whether an individual test output is correct, the MT technique verifies whether a pair of test outputs conform to a set of domain specific properties, called metamorphic relations (MRs, thus greatly increases the number and variety of test cases that can be applied. To demonstrate how MT is used in practice, we applied MT to test two open-source bioinformatics programs, namely GNLab and SeqMap. In particular we show that MT is simple to implement, and is effective in detecting faults in a real-life program and some artificially fault-seeded programs. Further, we discuss how MT can be applied to test programs from various domains of bioinformatics. Conclusion This paper describes the application of a simple, effective and automated technique to systematically test a range of bioinformatics programs. We show how MT can be implemented in practice through two real-life case studies. Since many bioinformatics programs, particularly those for large scale simulation and data analysis, are hard to test systematically, their developers may benefit from using MT as part of the testing strategy. Therefore our work

  4. A Dutch Achievement Testing Program for Guidance and Program Evaluation.

    Science.gov (United States)

    Wijnstra, Johan M.

    1984-01-01

    The Eindtoets Basisonderwijs (final primary school test) is a Dutch national achievement test taken annually by 90,000 pupils. This article overviews the Dutch educational system and describes this testing program, emphasizing test equating methods. Evaluation findings from 1980 and resulting changes in test content and evaluation reports are also…

  5. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This document is the second volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of failure modes and effects analysis; accident analysis; operational safety requirements; quality assurance program; ES&H management program; environmental, safety, and health systems critical to safety; summary of waste-management program; environmental monitoring program; facility expansion, decontamination, and decommissioning; summary of emergency response plan; summary plan for employee training; summary plan for operating procedures; glossary; and appendices A and B.

  6. Solar Array at Very High Temperatures: Ground Tests

    Science.gov (United States)

    Vayner, Boris

    2016-01-01

    Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 volts) or to operate at higher voltages with encapsulation of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between the coverglass and the conductive spacecraft body in a kilovolt range. In such a case, the weakly conductive layer over coverglass, indium tin oxide (ITO) is one of the possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of minus150 degrees Centigrade to plus 1100 degrees Centigrade. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside a shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to the Sun. The conductive layer over coverglass causes a sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating (Room Temperature Vulcanizing (RTV) material; radiative heating of a coupon in vacuum chamber becomes practically impossible above 1500 degrees Centigrade; conductivities of glass and adhesive go up with temperature that decrease array efficiency; and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 2000 degrees

  7. Motor sport in France: testing-ground for the world.

    Science.gov (United States)

    Cofaigh, Eamon O

    2011-01-01

    The birth of the automobile in the late nineteenth century was greeted with a mixture of awe, scepticism and sometimes even disdain from sections of the European public. In this article, the steps taken in France to pioneer and promote this new invention are examined. Unreliable and noisy, the early automobile owes a debt of gratitude to the French aristocracy who organised and codified motor racing in an effort to test these new inventions while at the same time introduce them to a wider public. City-to-city races demonstrated the potential of the automobile before the initiative of Gordon Bennett proved to be the catalyst for the birth of international motor sport as we recognise it today. Finally this article looks at the special connection between Le Mans and the automobile. Le Mans has, through its 24-hour race, maintained a strong link with the development of everyday automobile tourism and offers the enthusiast an alternative to the machines that reach incredible speeds on modern-day closed circuits. This article examines how French roads were veritable testing grounds for the earliest cars and how the public roads of Le Mans maintain the tradition to this day.

  8. Ground vibration tests of a helicopter structure using OMA techniques

    Science.gov (United States)

    Ameri, N.; Grappasonni, C.; Coppotelli, G.; Ewins, D. J.

    2013-02-01

    This paper is focused on an assessment of the state-of-the-art of operational modal analysis (OMA) methodologies in estimating modal parameters from output responses on helicopter structures. For this purpose, a ground vibration test was performed on a real helicopter airframe. In the following stages, several OMA techniques were applied to the measured data and compared with the results from typical input-output approach. The results presented are part of a more general research activity carried out in the Group of Aeronautical Research and Technology in Europe (GARTEUR) Action Group 19, helicopter technical activity, whose overall objective is the improvement of the structural dynamic finite element models using in-flight test data. The structure considered is a medium-size helicopter, a time-expired Lynx Mk7 (XZ649) airframe. In order to have a comprehensive analysis, the behaviour of both frequency- and time-domain-based OMA techniques are considered for the modal parameter estimates. An accuracy index and the reliability of the OMA methods with respect to the standard EMA procedures, together with the evaluation of the influence of the experimental setup on the estimate of the modal parameters, will be presented in the paper.

  9. Inertial Upper Stage Thermal Test Program

    Science.gov (United States)

    1989-04-12

    REPORT SD-TR-89-26 Inertial Upper Stage Thermal Test Program D. J. SPENCER and H. A. BIXLER Aerophysics Laboratory Laboratory Operations The...TITLE (Include Security Classification) Inertial Upper Stage Thermal Test Program 12. PERSONAL AUTHOR(S) Spencer, Donald J., and Bixler, Henry A. 13a...by the laboratory thermal test program under consideration here. Details of the IUS launch vehicle characteristics and corrective action taken in

  10. Embracing Safe Ground Test Facility Operations and Maintenance

    Science.gov (United States)

    Dunn, Steven C.; Green, Donald R.

    2010-01-01

    Conducting integrated operations and maintenance in wind tunnel ground test facilities requires a balance of meeting due dates, efficient operation, responsiveness to the test customer, data quality, effective maintenance (relating to readiness and reliability), and personnel and facility safety. Safety is non-negotiable, so the balance must be an "and" with other requirements and needs. Pressure to deliver services faster at increasing levels of quality in under-maintained facilities is typical. A challenge for management is to balance the "need for speed" with safety and quality. It s especially important to communicate this balance across the organization - workers, with a desire to perform, can be tempted to cut corners on defined processes to increase speed. Having a lean staff can extend the time required for pre-test preparations, so providing a safe work environment for facility personnel and providing good stewardship for expensive National capabilities can be put at risk by one well-intending person using at-risk behavior. This paper documents a specific, though typical, operational environment and cites management and worker safety initiatives and tools used to provide a safe work environment. Results are presented and clearly show that the work environment is a relatively safe one, though still not good enough to keep from preventing injury. So, the journey to a zero injury work environment - both in measured reality and in the minds of each employee - continues. The intent of this paper is to provide a benchmark for others with operational environments and stimulate additional sharing and discussion on having and keeping a safe work environment.

  11. Department of Health application for approval of construction SP-100 Ground Engineering System Test Site

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    The following Application For Approval of Construction is being submitted by the US Department of Energy-Richland Operations Office, for the SP-100 Ground Engineering System Test Site, which will provide a new source of radioactive emissions to the atmosphere. The US Department of Energy, the National Aeronautics and Space Administration, and the US Department of Defense have entered into an agreement to jointly develop space nuclear reactor power system technology. A ground test of a reactor is necessary to demonstrate technology readiness of this major subsystem before proceeding with the flight system development and demonstration. It is proposed that the SP-100 test reactor be tested in the existing decommissioned Plutonium Recycle Test Reactor containment building (309 Building). The reactor will be operated for at least three months and up to 2 yr. Following the test, the 309 Building will be decontaminated for potential use in other programs. It is projected this new source of emissions will contribute approximately 0.05 mrem/yr dose to the maximally exposed offsite individual. This application is being submitted in response to those projected emissions that would provide the described offsite dose. 28 refs., 9 figs., 7 tabs.

  12. System tests and applications photovoltaic program

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    A summary of all the photovoltaic system tests and application experiments that have been initiated since the start of the US DOE Photovoltaics Program in 1975 is presented. They are organized in the following manner for ease of reference: (1) application experiments: these are independently designed and constructed projects which are funded by DOE; (2) system field tests: projects designed and monitored by the national laboratories involved in the photovoltaic program; (3) exhibits: designed to acquaint the general public to photovoltaics; (4) component field tests: real time endurance testing conducted to monitor module reliability under actual environmental conditions; and (5) test facilities: descriptions of the four national laboratories involved in the photovoltaic program.

  13. French Flight Test Program LEA Status

    Science.gov (United States)

    2010-09-01

    reusable . French Flight Test Program LEA Status RTO-EN-AVT-185 17 - 5 Figure 4: CAD view of LEA vehicle. The test principle consists in...Figure 8: CLEA model under test at ONERA test facility. Some parametric studies related to forebody have been carried out in order to determine a...PROPULSION: ENGINE DESIGN – INTEGRATION AND THERMAL MANAGEMENT” is focused on the French flight experiment program called “LEA”. French R&T effort

  14. A Hydrogen Containment Process For Nuclear Thermal Engine Ground Testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric; Canabal, Francisco

    2016-01-01

    A hydrogen containment process was proposed for ground testing of a nuclear thermal engine. The hydrogen exhaust from the engine is contained in two unit operations: an oxygen-rich burner and a tubular heat exchanger. The burner burns off the majority of the hydrogen, and the remaining hydrogen is removed in the tubular heat exchanger through the species recombination mechanism. A multi-dimensional, pressure-based multiphase computational fluid dynamics methodology was used to conceptually sizing the oxygen-rich burner, while a one-dimensional thermal analysis methodology was used to conceptually sizing the heat exchanger. Subsequently, a steady-state operation of the entire hydrogen containment process, from pressure vessel, through nozzle, diffuser, burner and heat exchanger, was simulated numerically, with the afore-mentioned computational fluid dynamics methodology. The computational results show that 99% of hydrogen reduction is achieved at the end of the burner, and the rest of the hydrogen is removed to a trivial level in the heat exchanger. The computed flammability at the exit of the heat exchanger is less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  15. Active Thermal Control Experiments for LISA Ground Verification Testing

    Science.gov (United States)

    Higuchi, Sei; DeBra, Daniel B.

    2006-11-01

    The primary mission goal of LISA is detecting gravitational waves. LISA uses laser metrology to measure the distance between proof masses in three identical spacecrafts. The total acceleration disturbance to each proof mass is required to be below 3 × 10-15 m/s2√Hz . Optical path length variations on each optical bench must be kept below 40 pm/√Hz over 1 Hz to 0.1 mHz. Thermal variations due to, for example, solar radiation or temperature gradients across the proof mass housing will distort the spacecraft causing changes in the mass attraction and sensor location. We have developed a thermal control system developed for the LISA gravitational reference sensor (GRS) ground verification testing which provides thermal stability better than 1 mK/√Hz to f control for the LISA spacecraft to compensate solar irradiation. Thermally stable environment is very demanded for LISA performance verification. In a lab environment specifications can be met with considerable amount of insulation and thermal mass. For spacecraft, the very limited thermal mass calls for an active control system which can meet disturbance rejection and stability requirements simultaneously in the presence of long time delay. A simple proportional plus integral control law presently provides approximately 1 mK/√Hz of thermal stability for over 80 hours. Continuing development of a model predictive feed-forward algorithm will extend performance to below 1 mK/√Hz at f < 1 mHz and lower.

  16. Ground Testing A 20-Meter Inflation Deployed Solar Sail

    Science.gov (United States)

    Mann, Troy; Behun, Vaughn; Lichodziejewski, David; Derbes, Billy; Sleight, David

    2006-01-01

    Solar sails have been proposed for a variety of future space exploration missions and provide a cost effective source of propellantless propulsion. Solar sails span very large areas to capture and reflect photons from the Sun and are propelled through space by the transfer of momentum from the photons to the solar sail. The thrust of a solar sail, though small, is continuous and acts for the life of the mission without the need for propellant. Recent advances in materials and ultra-low mass gossamer structures have enabled a host of useful space exploration missions utilizing solar sail propulsion. The team of L Garde, NASA Jet Propulsion Laboratory (JPL), Ball Aerospace, and NASA Langley Research Center, under the direction of the NASA In-Space Propulsion Office (ISP), has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. The 100-m baseline solar sail concept was optimized around the one astronomical unit (AU) Geostorm mission, and features a Mylar sail membrane with a striped-net sail suspension architecture with inflation-deployed sail support beams consisting of inflatable sub-Tg (glass transition temperature) rigidizable semi-monocoque booms and a spreader system. The solar sail has vanes integrated onto the tips of the support beams to provide full 3-axis control of the solar sail. This same structural concept can be scaled to meet the requirements of a number of other NASA missions. Static and dynamic testing of a 20m scaled version of this solar sail concept have been completed in the Space Power Facility (SPF) at the NASA Glenn Plum Brook facility under vacuum and thermal conditions simulating the operation of a solar sail in space. This paper details the lessons learned from these and other similar ground based tests of gossamer structures during the three year solar sail project.

  17. Current Ground Test Options for Nuclear Thermal Propulsion (NTP)

    Science.gov (United States)

    Gerrish, Harold P., Jr.

    2014-01-01

    About 20 different NTP engines/ reactors were tested from 1959 to 1972 as part of the Rover and Nuclear Engine for Rocket Vehicle Application (NERVA) program. Most were tested in open air at test cell A or test cell C, at the Nevada Test Site (NTS). Even after serious engine breakdowns of the reactor (e.g., Phoebus 1A), the test cells were cleaned up for other engine tests. The engine test stand (ETS) was made for high altitude (approximately 1 psia) testing of an NTP engine with a flight configuration, but still had the exhaust released to open air. The Rover/NERVA program became aware of new environmental regulations which would prohibit the release of any significant quantity of radioactive particulates and noble gases into the open air. The nuclear furnace (NF-1) was the last reactor tested before the program was cancelled in 1973, but successfully demonstrated a scrubber concept on how to filter the NTP exhaust. The NF-1 was demonstrated in the summer of 1972. The NF-1 used a 44MW reactor and operated each run for approximately 90 minutes. The system cooled the hot hydrogen exhaust from the engine with a water spray before entering a particle filter. The exhaust then passed through a series of heat exchangers and water separators to help remove water from the exhaust and further reduce the exhaust temperatures. The exhaust was next prepared for the charcoal trap by passing through a dryer and effluent cooler to bring exhaust temperatures close to liquid nitrogen. At those low temperatures, most of the noble gases (e.g., Xe and Kr made from fission products) get captured in the charcoal trap. The filtered hydrogen is finally passed through a flare stack and released to the air. The concept was overall successful but did show a La plating on some surfaces and had multiple recommendations for improvement. The most recent detailed study on the NTP scrubber concept was performed by the ARES Corporation in 2006. The concept is based on a 50,000 lbf thrust engine

  18. GSA's Green Proving Ground: Identifying, Testing and Evaluating Innovative Technologies; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, A.; Lowell, M.

    2012-05-01

    This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. The federal government's General Services Administration's (GSA) Public Buildings Service (PBS) acquires space on behalf of the federal government through new construction and leasing, and acts as a caretaker for federal properties across the country. PBS owns or leases 9,624 assets and maintains an inventory of more than 370.2 million square feet of workspace, and as such has enormous potential for implementing energy efficient and renewable energy technologies to reduce energy and water use and associated emissions. The Green Proving Ground (GPG) program utilizes GSA's real estate portfolio to test and evaluate innovative and underutilized sustainable building technologies and practices. Findings are used to support the development of GSA performance specifications and inform decision making within GSA, other federal agencies, and the real estate industry. The program aims to drive innovation in environmental performance in federal buildings and help lead market transformation through deployment of new technologies. In 2011, the GPG program selected 16 technologies or practices for rigorous testing and evaluation. Evaluations are currently being performed in collaboration with the Department of Energy's National Laboratories, and a steady stream of results will be forthcoming throughout 2012. This paper will provide an overview of the GPG program and its objectives as well as a summary and status update of the 16 technologies selected for enhanced testing and evaluation in 2011. Lastly, it provides a general overview of the 2012 program.

  19. Crashworthy Troop Seat Testing Program

    Science.gov (United States)

    1977-11-01

    the strut. The wire ends were clamped in the test machine for the tests. A method for terminating the wires had not been determined at the time of...transmitted from sled-borne transducers to track- side signal conditioners through an umbilical cable attached at one end of the sled and which...wherever they are suitable for the purpose. 3.4.8 Resti-int construction. 3.4.8.1 Stitch pattern and cord size. Stitch pattern and cord size shall

  20. In-situ thermal testing program strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    In the past year the Yucca Mountain Site Characterization Project has implemented a new Program Approach to the licensing process. The Program Approach suggests a step-wise approach to licensing in which the early phases will require less site information than previously planned and necessitate a lesser degree of confidence in the longer-term performance of the repository. Under the Program Approach, the thermal test program is divided into two principal phases: (1) short-term in situ tests (in the 1996 to 2000 time period) and laboratory thermal tests to obtain preclosure information, parameters, and data along with bounding information for postclosure performance; and (2) longer-term in situ tests to obtain additional data regarding postclosure performance. This effort necessitates a rethinking of the testing program because the amount of information needed for the initial licensing phase is less than previously planned. This document proposes a revised and consolidated in situ thermal test program (including supporting laboratory tests) that is structured to meet the needs of the Program Approach. A customer-supplier model is used to define the Project data needs. These data needs, along with other requirements, were then used to define a set of conceptual experiments that will provide the required data within the constraints of the Program Approach schedule. The conceptual thermal tests presented in this document represent a consolidation and update of previously defined tests that should result in a more efficient use of Project resources. This document focuses on defining the requirements and tests needed to satisfy the goal of a successful license application in 2001, should the site be found suitable.

  1. AMS Ground Truth Measurements: Calibration and Test Lines

    Energy Technology Data Exchange (ETDEWEB)

    Wasiolek, P. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2013-11-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima nuclear power plant (NPP) accident in March-May 2011. To map ground contamination a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count rate data expressed in counts per second (cps) needs to be converted to the terrestrial component of the exposure rate 1 m above ground, or surface activity of isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, as the production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish very early into the event a common calibration line. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements. This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  2. The development and testing of pulsed detonation engine ground demonstrators

    Science.gov (United States)

    Panicker, Philip Koshy

    2008-10-01

    The successful implementation of a PDE running on fuel and air mixtures will require fast-acting fuel-air injection and mixing techniques, detonation initiation techniques such as DDT enhancing devices or a pre-detonator, an effective ignition system that can sustain repeated firing at high rates and a fast and capable, closed-loop control system. The control system requires high-speed transducers for real-time monitoring of the PDE and the detection of the detonation wave speed. It is widely accepted that the detonation properties predicted by C-J detonation relations are fairly accurate in comparison to experimental values. The post-detonation flow properties can also be expressed as a function of wave speed or Mach number. Therefore, the PDE control system can use C-J relations to predict the post-detonation flow properties based on measured initial conditions and compare the values with those obtained from using the wave speed. The controller can then vary the initial conditions within the combustor for the subsequent cycle, by modulating the frequency and duty cycle of the valves, to obtain optimum air and fuel flow rates, as well as modulate the energy and timing of the ignition to achieve the required detonation properties. Five different PDE ground demonstrators were designed, built and tested to study a number of the required sub-systems. This work presents a review of all the systems that were tested, along with suggestions for their improvement. The PDE setups, ranged from a compact PDE with a 19 mm (3/4 in.) i.d., to two 25 mm (1 in.) i.d. setups, to a 101 mm (4 in.) i.d. dual-stage PDE setup with a pre-detonator. Propane-oxygen mixtures were used in the smaller PDEs. In the dual-stage PDE, propane-oxygen was used in the pre-detonator, while propane-air mixtures were used in the main combustor. Both rotary valves and solenoid valve injectors were studied. The rotary valves setups were tested at 10 Hz, while the solenoid valves were tested at up to 30 Hz

  3. TEST COVERAGE ANALYSIS BASED ON PROGRAM SLICING

    Institute of Scientific and Technical Information of China (English)

    Chen Zhenqiang; Xu Baowen; Guanjie

    2003-01-01

    Coverage analysis is a structural testing technique that helps to eliminate gaps in atest suite and determines when to stop testing. To compute test coverage, this letter proposes anew concept coverage about variables, based on program slicing. By adding powers accordingto their importance, the users can focus on the important variables to obtain higher test coverage.The letter presents methods to compute basic coverage based on program structure graphs. Inmost cases, the coverage obtained in the letter is bigger than that obtained by a traditionalmeasure, because the coverage about a variable takes only the related codes into account.

  4. Regression Test Selection for C# Programs

    Directory of Open Access Journals (Sweden)

    Nashat Mansour

    2009-01-01

    Full Text Available We present a regression test selection technique for C# programs. C# is fairly new and is often used within the Microsoft .Net framework to give programmers a solid base to develop a variety of applications. Regression testing is done after modifying a program. Regression test selection refers to selecting a suitable subset of test cases from the original test suite in order to be rerun. It aims to provide confidence that the modifications are correct and did not affect other unmodified parts of the program. The regression test selection technique presented in this paper accounts for C#.Net specific features. Our technique is based on three phases; the first phase builds an Affected Class Diagram consisting of classes that are affected by the change in the source code. The second phase builds a C# Interclass Graph (CIG from the affected class diagram based on C# specific features. In this phase, we reduce the number of selected test cases. The third phase involves further reduction and a new metric for assigning weights to test cases for prioritizing the selected test cases. We have empirically validated the proposed technique by using case studies. The empirical results show the usefulness of the proposed regression testing technique for C#.Net programs.

  5. Maximum Likelihood Program for Sequential Testing Documentation

    Science.gov (United States)

    1983-03-01

    Research Laboratory AREA 6 WORK UNIT NUMBERS ,ATITN: DRDAR-BLB Aberdeen Proving Ground. MD 21005 RDT&E 1L162618AH80 It. CONTROLLING OFFICE No,,4E...Availability Codes ist~ Special,-----vail and/or Jo I. INTRODUCTION The Army has used sensitivity testing for many years, especially in the areas of...response distribucion when the data do not meet the requirements for the DiDonato and Jarnagin procedure. Examples are provided for each of these

  6. Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site Readiness Ground Motion

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A

    2008-01-16

    In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.

  7. Sagittal Plane Knee Biomechanics and Vertical Ground Reaction Forces Are Modified Following ACL Injury Prevention Programs

    Science.gov (United States)

    Padua, Darin A.; DiStefano, Lindsay J.

    2009-01-01

    Context: Injuries to the anterior cruciate ligament (ACL) occur because of excessive loading on the knee. ACL injury prevention programs can influence sagittal plane ACL loading factors and vertical ground reaction force (VGRF). Objective: To determine the influence of ACL injury prevention programs on sagittal plane knee biomechanics (anterior tibial shear force, knee flexion angle/moments) and VGRF. Data Sources: The PubMed database was searched for studies published between January 1988 and June 2008. Reference lists of selected articles were also reviewed. Study Selection: Studies were included that evaluated healthy participants for knee flexion angle, sagittal plane knee kinetics, or VGRF after performing a multisession training program. Two individuals reviewed all articles and determined which articles met the selection criteria. Approximately 4% of the articles fulfilled the selection criteria. Data Extraction: Data were extracted regarding each program’s duration, frequency, exercise type, population, supervision, and testing procedures. Means and variability measures were recorded to calculate effect sizes. One reviewer extracted all data and assessed study quality using PEDro (Physiotherapy Evidence Database). A second reviewer (blinded) verified all information. Results: There is moderate evidence to indicate that knee flexion angle, external knee flexion moment, and VGRF can be successfully modified by an ACL injury prevention program. Programs utilizing multiple exercises (ie, integrated training) appear to produce the most improvement, in comparison to that of single-exercise programs. Knee flexion angle was improved following integrated training (combined balance and strength exercises or combined plyometric and strength exercises). Similarly, external knee flexion moment was improved following integrated training consisting of balance, plyometric, and strength exercises. VGRF was improved when incorporating supervision with instruction and

  8. Eurobot Ground Prototype Control System Overview & Tests Results

    Science.gov (United States)

    Merlo, Andrea; Martelli, Andrea; Pensavalle, Emanuele; Ferraris, Simona; Didot, Frederic

    2010-08-01

    In the planned missions on Moon and Mars, robotics can play a key role, as robots can both assist astronauts and, above all, relieve them of dangerous or too difficult tasks. To this aim, both cooperative capabilities and a great level of autonomy are needed: the robotic crew assistant must be able to work on its own, without supervision by humans, and to help astronauts to accomplish tasks otherwise unfeasible for them. Within this context, a project named Eurobot Ground Prototype, conducted in conjunction with ESA and Thales Alenia Space, is presented. EGP is a dual-arm mobile manipulator and exploits both stereo cameras and force/torque sensors in order to rely on visual and force feedback. This paper provides an overview of the performed and on going activities within the Eurobot Ground Prototype project.

  9. Propulsion Induced Effects (PIE) Test Program

    Science.gov (United States)

    Cappuccio, Gelsomina; Won, Mark J.

    1999-01-01

    The Propulsion Induced Effects (PIE) test program is being lead by NASA Ames for Configuration Aerodynamics (CA). Representatives from CA, Technology Integration (TI), Inlet, and the Nozzle ITD's are working with Ames in defining and executing this test program. The objective of the CA 4-14 milestone is to assess the propulsion/airframe integration characteristics of the Technology Concept Airplane (TCA) and design variations using computational and experimental methods. The experimental aspect includes static calibrations, transonic and supersonic wind tunnel testing. The test program will generate a comprehensive database that will include all appropriate wind tunnel corrections, with emphasis placed on establishing the propulsion induced effects on the flight performance of the TCA.

  10. Timing-Sequence Testing of Parallel Programs

    Institute of Scientific and Technical Information of China (English)

    LIANG Yu; LI Shu; ZHANG Hui; HAN Chengde

    2000-01-01

    Testing of parallel programs involves two parts-testing of controlflow within the processes and testing of timing-sequence.This paper focuses on the latter, particularly on the timing-sequence of message-passing paradigms.Firstly the coarse-grained SYN-sequence model is built up to describe the execution of distributed programs. All of the topics discussed in this paper are based on it. The most direct way to test a program is to run it. A fault-free parallel program should be of both correct computing results and proper SYN-sequence. In order to analyze the validity of observed SYN-sequence, this paper presents the formal specification (Backus Normal Form) of the valid SYN-sequence. Till now there is little work about the testing coverage for distributed programs. Calculating the number of the valid SYN-sequences is the key to coverage problem, while the number of the valid SYN-sequences is terribly large and it is very hard to obtain the combination law among SYN-events. In order to resolve this problem, this paper proposes an efficient testing strategy-atomic SYN-event testing, which is to linearize the SYN-sequence (making it only consist of serial atomic SYN-events) first and then test each atomic SYN-event independently. This paper particularly provides the calculating formula about the number of the valid SYN-sequences for tree-topology atomic SYN-event (broadcast and combine). Furthermore,the number of valid SYN-sequences also,to some degree, mirrors the testability of parallel programs. Taking tree-topology atomic SYN-event as an example, this paper demonstrates the testability and communication speed of the tree-topology atomic SYN-event under different numbers of branches in order to achieve a more satisfactory tradeoff between testability and communication efficiency.

  11. Peach Bottom test element program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, J.J.; Holzgraf, J.F.; MIller, C.M.; Myers, B.F.; Wallroth, C.F.

    1982-11-01

    Thirty-three test elements were irradiated in the Peach Bottom high-temperature gas-cooled reactor (HTGR) as part of the testing program for advanced HTGRs. Extensive postirradiation examinations and evaluations of 21 of these irradiation experiments were performed. The test element irradiations were simulated using HTGR design codes and data. Calculated fuel burnups, power profiles, fast neutron fluences, and temperatures were verified via destructive burnup measurements, gamma scanning, and in-pile thermocouple readings corrected for decalibration effects. Analytical techniques were developed to improve the quality of temperature predictions through feedback of nuclear measurements into thermal calculations. Dimensional measurements, pressure burst tests, diametral compression tests, ring-cutting tests, strip-cutting tests, and four-point bend tests were performed to measure residual stress, strain, and strength distributions in H-327 graphite structures irradiated in the test elements.

  12. Development of Methods to Predict the Effects of Test Media in Ground-Based Propulsion Testing

    Science.gov (United States)

    Drummond, J. Philip; Danehy, Paul M.; Gaffney, Richard L., Jr.; Parker, Peter A.; Tedder, Sarah A.; Chelliah, Harsha K.; Cutler, Andrew D.; Bivolaru, Daniel; Givi, Peyman; Hassan, Hassan A.

    2009-01-01

    This report discusses work that began in mid-2004 sponsored by the Office of the Secretary of Defense (OSD) Test & Evaluation/Science & Technology (T&E/S&T) Program. The work was undertaken to improve the state of the art of CFD capabilities for predicting the effects of the test media on the flameholding characteristics in scramjet engines. The program had several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. This report provides details of the completed work, involving the development of phenomenological models for Reynolds averaged Navier-Stokes codes, large-eddy simulation techniques and reduced-kinetics models. Experiments that provided data for the modeling efforts are also described, along with with the associated nonintrusive diagnostics used to collect the data.

  13. MEASUREMENT OF AERODYNAMIC CHARACTERISTICS OF A HANG-GLIDER-WING BY GROUND RUN TESTS USING A TEST VEHICLE

    OpenAIRE

    Hozumi, Koki; KOMODA, Masaki; Ono, Takatsugu; TSUKANO, Yukichi; 穂積, 弘毅; 古茂田, 真幸; 小野, 孝次; 塚野, 雄吉

    1987-01-01

    In order to investigate longitudinal force and moment characteristics of a hang-glider-wing, ground run tests were conducted using a test vehicle. A hang-glider-wing was installed on a test vehicle using a six-components-balance for wind tunnel use. Aerodynamic force and moment were measrued during the vehicle run at various constant speeds. Geometrical twist distribution along the wing span was recorded as well. Measured force and moment data were corrected for possible ground effect and upw...

  14. Safety/relief-valve test program

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, J.A.

    1982-01-01

    In response to the NRC's Task 2.1.2 following the TMI-2 accident, government and industry programs were formulated to address the performance of safety and relief valve systems for pressurized and boiling water reactors. Objective is to demonstrate by testing and analysis that safety and relief valve systems in the reactor coolant system are qualified for the anticipated full range of reactor operating and accident conditions. The EPRI PWR program tested PWR safety valves and power operated relief valves (PORVs) under steam, liquid, and steam/liquid transition conditions. The program also tested PWR PORV block valves under steam conditions. The GE BWR program tested BWR relief and safety/relief valves under high pressure steam and low pressure liquid conditions. EG and G Idaho recent activities have focused on the evaluation of the industry test data, evaluation and modification of analytical codes for safety/relief valve system analysis, and initial evaluation of utility responses to US NRC program requirements.

  15. Intelligent Agents for Improved Ground-Test Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposal outlines a research program for developing a novel soft-computing technology composed of an Artificial Immune System and Bayesian Belief Networks for...

  16. Space Shuttle Damper System for Ground Wind Load Tests

    Science.gov (United States)

    Robinson, G. D.; Holt, J. R.; Chang, C. S.

    1973-01-01

    An active damper system which was originally developed for a 5.5% Saturn IB/Skylab Ground Winds Model was modified and used for similar purposes in a Space Shuttle model. A second damper system which was originally used in a 3% Saturn V/Dry Workshop model was also modified and made compatible with the Space Shuttle model to serve as a back-up system. Included in this final report are descriptions of the modified damper systems and the associated control and instrumentation.

  17. A FORTRAN program for calculating nonlinear seismic ground response

    Science.gov (United States)

    Joyner, William B.

    1977-01-01

    The program described here was designed for calculating the nonlinear seismic response of a system of horizontal soil layers underlain by a semi-infinite elastic medium representing bedrock. Excitation is a vertically incident shear wave in the underlying medium. The nonlinear hysteretic behavior of the soil is represented by a model consisting of simple linear springs and Coulomb friction elements arranged as shown. A boundary condition is used which takes account of finite rigidity in the elastic substratum. The computations are performed by an explicit finite-difference scheme that proceeds step by step in space and time. A brief program description is provided here with instructions for preparing the input and a source listing. A more detailed discussion of the method is presented elsewhere as is the description of a different program employing implicit integration.

  18. A Grounded Theory of Connectivity and Persistence in a Limited Residency Doctoral Program

    Science.gov (United States)

    Terrell, Steven R.; Snyder, Martha M.; Dringus, Laurie P.; Maddrey, Elizabeth

    2012-01-01

    Limited-residency and online doctoral programs have an attrition rate significantly higher than traditional programs. This grounded-theory study focused on issues pertaining to communication between students, their peers and faculty and how interpersonal communication may affect persistence. Data were collected from 17 students actively working on…

  19. Construction Management Program Builds Financial Development from the Ground up

    Science.gov (United States)

    Nobe, Michael D.; Shuler, Scott; Grosse, Larry

    2007-01-01

    Recent economic and legislative changes have hit higher education hard and threaten the financial viability of many educational programs nationwide. With state support dwindling to less than 10 percent in some cases, institutions across the nation face a financial crisis. Many strategies have been explored and implemented, from campaigns to…

  20. Middle Level Advisory Programs: From the Ground Up.

    Science.gov (United States)

    Hertzog, C. Jay

    1992-01-01

    Because of changes in the family and other institutions, schools must fill the void created by students' lack of affective development before genuine learning can occur. This article provides guidelines for developing and implementing an advisory program for middle school students that successfully combines the elementary school's child-centered…

  1. HBCUs Break New Ground with Hospitality and Tourism Programs.

    Science.gov (United States)

    Nichols, Leland L.; And Others

    1992-01-01

    The perceptions of representatives of 16 historically black colleges and universities (HBCUs) concerning the future of hospitality and tourism education in those institutions are summarized. Comments address leadership, instruction, research, perceptions by other disciplines, ingredients for program success, industry-academe relationship, and…

  2. A refined computer program for the transient simulation of ground coupled heat pump systems

    Science.gov (United States)

    Andrews, J. W.; Metz, P. D.; Saunders, J. H.

    1983-04-01

    The use of the earth as a heat source/sink or storage medium for various heat pump based space conditioning systems were investigated. A computer program ground coupled system (GROCS) was developed to model the behavior of ground coupling devices. The GROCS was integrated with TRNSYS, the solar system simulation program, to permit the simulation of complete ground coupled heat pump systems. Experimental results were compared to GROCS simulation results for model validation. It is found that the model has considerable validity. A refined version of the GROCS-TRNSYS program developed to model vertical or horizontal earth coil systems, which considers system cycling is described. The design of the program and its interaction with TRNSYS are discussed.

  3. Plans of a test bed for ionospheric modelling based on Fennoscandian ground-based instrumentation

    Science.gov (United States)

    Kauristie, Kirsti; Kero, Antti; Verronen, Pekka T.; Aikio, Anita; Vierinen, Juha; Lehtinen, Markku; Turunen, Esa; Pulkkinen, Tuija; Virtanen, Ilkka; Norberg, Johannes; Vanhamäki, Heikki; Kallio, Esa; Kestilä, Antti; Partamies, Noora; Syrjäsuo, Mikko

    2016-07-01

    One of the recommendations for teaming among research groups in the COSPAR/ILWS roadmap is about building test beds in which coordinated observing supports model development. In the presentation we will describe a test bed initiative supporting research on ionosphere-thermosphere-magnetosphere interactions. The EISCAT incoherent scatter radars with their future extension, EISCAT3D, form the backbone of the proposed system. The EISCAT radars are surrounded by versatile and dense arrays of ground-based instrumentation: magnetometers and auroral cameras (the MIRACLE and IMAGE networks), ionospheric tomography receivers (the TomoScand network) and other novel technology for upper atmospheric probing with radio waves (e.g. the KAIRA facility, riometers and the ionosonde maintained by the Sodankylä Geophysical Observatory). As a new opening, close coordination with the Finnish national cubesat program is planned. We will investigate opportunities to establish a cost efficient nanosatellite program which would support the ground-based observations in a systematic and persistent manner. First experiences will be gathered with the Aalto-1 and Aalto-2 satellites, latter of which will be the Finnish contribution to the international QB50 mission. We envisage close collaboration also in the development of data analysis tools with the goal to integrate routines and models from different research groups to one system, where the different elements support each other. In the longer run we are aiming for a modelling framework with observational guidance which gives a holistic description on ionosphere-thermosphere processes and this way enables reliable forecasts on upper atmospheric space weather activity.

  4. Software Development and Test Methodology for a Distributed Ground System

    Science.gov (United States)

    Ritter, George; Guillebeau, Pat; McNair, Ann R. (Technical Monitor)

    2002-01-01

    The Marshall Space Flight Center's (MSFC) Payload Operations Center (POC) ground system has evolved over a period of about 10 years. During this time the software processes have migrated from more traditional to more contemporary development processes in an effort to minimize unnecessary overhead while maximizing process benefits. The Software processes that have evolved still emphasize requirements capture, software configuration management, design documenting, and making sure the products that have been developed are accountable to initial requirements. This paper will give an overview of how the Software Processes have evolved, highlighting the positives as well as the negatives. In addition, we will mention the COTS tools that have been integrated into the processes and how the COTS have provided value to the project.

  5. CCDs at ESO: A Systematic Testing Program

    Science.gov (United States)

    Abbott, T. M. C.; Warmels, R. H.

    ESO currently offers a stable of 12 CCDs for use by visiting astronomers. It is incumbent upon ESO to ensure that these devices perform according to their advertised specifications (Abbott 1994). We describe a systematic, regular testing program for CCDs which is now being applied at La Silla. These tests are designed to expose failures which may not have catastrophic effects but which may compromise observations. The results of these tests are stored in an archive, accessible to visiting astronomers, and will be subject to trend analysis. The test are integrated in the CCD reduction package of the Munich Image Data Analysis System (ESO-MIDAS).

  6. Determination of pedestrian displacement velocity for ground exploration programs

    Directory of Open Access Journals (Sweden)

    Luis Hernán Ochoa Gutierrez

    2017-05-01

    Full Text Available In Engineering and Geophysics field exploration, uncertainty for determination of the velocity of ground data acquisition due to extreme topographic conditions has been underestimated in the calculation of the displacement time between stations or sampling points. This lack of reliable models, negatively affects the determination of costs and planning of fieldwork activities. Known models of times and routes of displacement determination such as the “Smaller Cost Routes” are based on the effect of the type of land and the slope. However, these models consider the effect of the slope by means of subjective impedance values which has no a clear physical meaning. Furthermore, the upslope or downslope displacement is not considered to affect the reliability of velocity estimation. In this paper, a model of displacement velocity is proposed taking into account the upslope/downslope factor. The model was determined using real data from a topographical survey along a pipeline of 880 Km extended along terrains with changing climatic and topographic conditions. As a result, the proposed model improves the selection of optimal routes for a reliable time and cost estimation.

  7. Redox accountability test program: Initial results

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, R.A.; Bray, L.A.

    1958-11-25

    This report details initial results of a large scale accountability test program which was recently carried out in the Redox Facility. The test, as originally planned which was to consist of the complete processing (no inventory-clean plant basis) of about 55 tons of selected metal in conjunction with an extensive analytical, sampling, and volume measurement program. With the exception of two incidents, the processing requirements (minimum inventory and measurement of all material) necessary to the success of the test, were met. The two incidents which increase the uncertainties associated with some of the material balance values obtained were: the discharge of an estimated 700 pounds of uranium to the floor in a transfer from F-5 to F-4 due tot he improper installation of the F-5 to F-4 transfer line (jumper) and the discovery of a large accumulation of plutonium ({approximately} 15 kg) in the L-2 stripping tower after completion of the test run.

  8. Cooperative field test program for wind systems

    Energy Technology Data Exchange (ETDEWEB)

    Bollmeier, W.S. II; Dodge, D.M.

    1992-03-01

    The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

  9. United States Ski Team Fitness Testing Program.

    Science.gov (United States)

    Gettman, Larry R.

    Presented is a fitness profile designed to identify the individual athlete's strengths and weaknesses. Specifically, the areas of fitness examined are a) muscular strength; b) cardiovascular respiratory function; c) body composition; and d) motor abilities, agility, and speed. The procedures in the testing program involve the following: a) the…

  10. Single-shell tank riser resistance to ground test plan

    Energy Technology Data Exchange (ETDEWEB)

    Kiewert, L.R.

    1996-03-11

    This Test Procedure provides the general directions for conducting Single-Shell Tank Riser to Earth Measurements which will be used by engineering as a step towards providing closure for the Lightning Hazard Issue.

  11. Enhanced ground-based vibration testing for aerodynamic environments

    Science.gov (United States)

    Daborn, P. M.; Ind, P. R.; Ewins, D. J.

    2014-12-01

    Typical methods of replicating aerodynamic environments in the laboratory are generally poor. A structure which flies "freely" in its normal operating environment, excited over its entire external surface by aerodynamic forces and in all directions simultaneously, is then subjected to a vibration test in the laboratory whilst rigidly attached to a high impedance shaker and excited by forces applied through a few attachment points and in one direction only. The two environments could hardly be more different. The majority of vibration testing is carried out at commercial establishments and it is understandable that little has been published which demonstrates the limitations with the status quo. The primary objective of this research is to do just that with a view to identifying significant improvements in vibration testing in light of modern technology. In this paper, case studies are presented which highlight some of the limitations with typical vibration tests showing that they can lead to significant overtests, sometimes by many orders of magnitude, with the level of overtest varying considerably across a wide range of frequencies. This research shows that substantial benefits can be gained by "freely" suspending the structure in the laboratory and exciting it with a relatively small number of electrodynamic shakers using Multi-Input-Multi-Output (MIMO) control technology. The shaker configuration can be designed to excite the modes within the bandwidth utilising the inherent amplification of the resonances to achieve the desired response levels. This free-free MIMO vibration test approach is shown to result in substantial benefits that include extremely good replication of the aerodynamic environment and significant savings in time as all axes are excited simultaneously instead of the sequential X, Y and Z testing required with traditional vibration tests. In addition, substantial cost savings can be achieved by replacing some expensive large shaker systems

  12. Fatigue Sensor Evaluation Program Laboratory Test Report.

    Science.gov (United States)

    1975-10-01

    Evaluation Program - laboratory Test Report, " by John Y. Kaufman, Design Engineer, and it was prepared for publication by Sue Bardsley, Technical Aid ...fatigue sensor as an aid to this purpose. The laboratory test effort was based on collection of data from six types of tests and thirty-three...34 ’: « •IIIS ......... li : « rtrtintr : •* M» c f M i H ::::::;:• ;:« ...j . .... ..:. •f’ ::.::::: ^::|:::: n» VH ft;; ** ViH ! * 1 - •• •-•• ; i

  13. 14 CFR 120.117 - Implementing a drug testing program.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Implementing a drug testing program. 120... AND ALCOHOL TESTING PROGRAM Drug Testing Program Requirements § 120.117 Implementing a drug testing.... (4) A part 145 certificate holder who has your own drug testing program Obtain an Antidrug and...

  14. Guidelines of the Design of Electropyrotechnic Firing Circuit for Unmanned Flight and Ground Test Projects

    Science.gov (United States)

    Gonzalez, Guillermo A.; Lucy, Melvin H.; Massie, Jeffrey J.

    2013-01-01

    The NASA Langley Research Center, Engineering Directorate, Electronic System Branch, is responsible for providing pyrotechnic support capabilities to Langley Research Center unmanned flight and ground test projects. These capabilities include device selection, procurement, testing, problem solving, firing system design, fabrication and testing; ground support equipment design, fabrication and testing; checkout procedures and procedure?s training to pyro technicians. This technical memorandum will serve as a guideline for the design, fabrication and testing of electropyrotechnic firing systems. The guidelines will discuss the entire process beginning with requirements definition and ending with development and execution.

  15. Joint ACE ground penetrating radar antenna test facility at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter; Sarri, A.;

    2005-01-01

    A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented.......A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented....

  16. Static tests of the propulsion system. [Propfan Test Assessment program

    Science.gov (United States)

    Withers, C. C.; Bartel, H. W.; Turnberg, J. E.; Graber, E. J.

    1987-01-01

    Advanced, highly-loaded, high-speed propellers, called propfans, are promising to revolutionize the transport aircraft industry by offering a 15- to 30-percent fuel savings over the most advanced turbofans without sacrificing passenger comfort or violating community noise standards. NASA Lewis Research Center and industry have been working jointly to develop the needed propfan technology. The NASA-funded Propfan Test Assessment (PTA) Program represents a key element of this joint program. In PTA, Lockheed-Georgia, working in concert with Hamilton Standard, Rohr Industries, Gulfstream Aerospace, and Allison, is developing a propfan propulsion system which will be mounted on the left wing of a modified Gulfstream GII aircraft and flight tested to verify the in-flight characteristics of a 9-foot diameter, single-rotation propfan. The propfan, called SR-7L, was designed and fabricated by Hamilton Standard under a separate NASA contract. Prior to flight testing, the PTA propulsion system was static tested at the Rohr Brown Field facility. In this test, propulsion system operational capability was verified and data was obtained on propfan structural response, system acoustic characteristics, and system performance. This paper reports on the results of the static tests.

  17. Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article

    Science.gov (United States)

    Hedayat, A

    2013-01-01

    To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.

  18. Guidance on the Stand Down, Mothball, and Reactivation of Ground Test Facilities

    Science.gov (United States)

    Volkman, Gregrey T.; Dunn, Steven C.

    2013-01-01

    The development of aerospace and aeronautics products typically requires three distinct types of testing resources across research, development, test, and evaluation: experimental ground testing, computational "testing" and development, and flight testing. Over the last twenty plus years, computational methods have replaced some physical experiments and this trend is continuing. The result is decreased utilization of ground test capabilities and, along with market forces, industry consolidation, and other factors, has resulted in the stand down and oftentimes closure of many ground test facilities. Ground test capabilities are (and very likely will continue to be for many years) required to verify computational results and to provide information for regimes where computational methods remain immature. Ground test capabilities are very costly to build and to maintain, so once constructed and operational it may be desirable to retain access to those capabilities even if not currently needed. One means of doing this while reducing ongoing sustainment costs is to stand down the facility into a "mothball" status - keeping it alive to bring it back when needed. Both NASA and the US Department of Defense have policies to accomplish the mothball of a facility, but with little detail. This paper offers a generic process to follow that can be tailored based on the needs of the owner and the applicable facility.

  19. Nevada Test Site Radiation Protection Program

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  20. The XRS Low Temperature Cryogenic System: Ground Performance Test Results

    Science.gov (United States)

    Breon, Susan; Sirron, Peter; Boyle, Robert; Canavan, Ed; DiPirro, Michael; Serlemitsos, Aristides; Tuttle, James; Whitehouse, Paul

    1998-01-01

    The X-Ray Spectrometer (XRS) instrument is part of the Astro-E mission scheduled to launch early in 2000. Its cryogenic system is required to cool a 32-element square array of x-ray microcalorimeters to 60-65 mK over a mission lifetime of at least 2 years. This is accomplished using an adiabatic demagnetization refrigerator (ADR) contained within a two-stage superfluid helium/solid neon cooler. Goddard Space Flight Center is providing the ADR and helium dewar. The flight system was assembled in Sept. 1997 and subjected to extensive thermal performance tests. This paper presents test results at both the system and component levels. In addition, results of the low temperature topoff performed in Japan with the engineering unit neon and helium dewars are discussed.

  1. Artificial intelligence techniques for ground test monitoring of rocket engines

    Science.gov (United States)

    Ali, Moonis; Gupta, U. K.

    1990-01-01

    An expert system is being developed which can detect anomalies in Space Shuttle Main Engine (SSME) sensor data significantly earlier than the redline algorithm currently in use. The training of such an expert system focuses on two approaches which are based on low frequency and high frequency analyses of sensor data. Both approaches are being tested on data from SSME tests and their results compared with the findings of NASA and Rocketdyne experts. Prototype implementations have detected the presence of anomalies earlier than the redline algorithms that are in use currently. It therefore appears that these approaches have the potential of detecting anomalies early eneough to shut down the engine or take other corrective action before severe damage to the engine occurs.

  2. Erroneous HIV test isn't grounds for recovering damages.

    Science.gov (United States)

    1995-04-21

    The Florida Supreme Court ruled that a Florida man cannot recover damages for the mental anguish he suffered for nineteen months after being misdiagnosed as HIV-positive. The court refused to drop the state's impact rule, which limits awards for mental anguish in negligence lawsuits to cases with underlying physical injuries or willful misconduct. The plaintiff, known as [name removed], filed suit against Humana Hospital-Lucerne in [name removed], where he received the test; [name removed] Clinical Laboratories, which performed the test and analysis; and the doctor, [name removed]. Although the court rejected [name removed]'s arguments, they gave him leave to file an amended complaint if he could demonstrate that the medical treatment he underwent as a result of his HIV diagnosis caused him physical injury.

  3. Ground-Water Recharge in Humid Areas of the United States--A Summary of Ground-Water Resources Program Studies, 2003-2006

    Science.gov (United States)

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  4. A Hydrogen Containment Process for Nuclear Thermal Engine Ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric; Canabal, Francisco

    2016-01-01

    The objective of this study is to propose a new total hydrogen containment process to enable the testing required for NTP engine development. This H2 removal process comprises of two unit operations: an oxygen-rich burner and a shell-and-tube type of heat exchanger. This new process is demonstrated by simulation of the steady state operation of the engine firing at nominal conditions.

  5. Development of a Ground Test and Analysis Protocol to Support NASA's NextSTEP Phase 2 Habitation Concepts

    Science.gov (United States)

    Beaton, Kara H.; Chappell, Steven P.; Bekdash, Omar S.; Gernhardt, Michael L.

    2018-01-01

    The NASA Next Space Technologies for Exploration Partnerships (NextSTEP) program is a public-private partnership model that seeks commercial development of deep space exploration capabilities to support extensive human spaceflight missions around and beyond cislunar space. NASA first issued the Phase 1 NextSTEP Broad Agency Announcement to U.S. industries in 2014, which called for innovative cislunar habitation concepts that leveraged commercialization plans for low Earth orbit. These habitats will be part of the Deep Space Gateway (DSG), the cislunar space station planned by NASA for construction in the 2020s. In 2016, Phase 2 of the NextSTEP program selected five commercial partners to develop ground prototypes. A team of NASA research engineers and subject matter experts have been tasked with developing the ground test protocol that will serve as the primary means by which these Phase 2 prototype habitats will be evaluated. Since 2008, this core test team has successfully conducted multiple spaceflight analog mission evaluations utilizing a consistent set of operational products, tools, methods, and metrics to enable the iterative development, testing, analysis, and validation of evolving exploration architectures, operations concepts, and vehicle designs. The purpose of implementing a similar evaluation process for the NextSTEP Phase 2 Habitation Concepts is to consistently evaluate the different commercial partner ground prototypes to provide data-driven, actionable recommendations for Phase 3.

  6. Development and Testing of Techniques for In-Ground Stabilization, Size Reduction and Safe Removal of Radioactive Wastes Stored in Large Containments in Burial Grounds - 13591

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, Stephen [VJ Technologies Inc, 89 Carlough Road, Bohemia, NY (United States)

    2013-07-01

    Radioactive waste materials, including Transuranic (TRU) wastes from laboratories have been stored below ground in large containments at a number of sites in the US DOE Complex, and at nuclear sites in Europe. These containments are generally referred to as caissons or shafts. The containments are in a range of sizes and depths below grade. The caissons at the DOE's Hanford site are cylindrical, of the order of 2,500 mm in diameter, 3,050 mm in height and are buried about 6,000 mm below grade. One type of caisson is made out of corrugated pipe, whereas others are made of concrete with standard re-bar. However, the larger shafts in the UK are of the order of 4,600 mm in diameter, 53,500 mm deep, and 12,000 below grade. This paper describes the R and D work and testing activities performed to date to evaluate the concept of in-ground size reduction and stabilization of the contents of large containments similar to those at Hanford. In practice, the height of the Test Facility provided for a test cell that was approximately 22' deep. That prevented a 'full scale mockup' test in the sense that the Hanford Caisson configuration would be an identical replication. Therefore, the project was conducted in two phases. The first phase tested a simulated Caisson with surrogate contents, and part of a Chute section, and the second phase tested a full chute section. These tests were performed at VJ Technologies Test Facility located in East Haven, CT, as part of the Proof of Design Concept program for studying the feasibility of an in-situ grout/grind/mix/stabilize technology for the remediation of four caissons at the 618-11 Burial Ground at US Department of Energy Hanford Site. The test site was constructed such that multiple testing areas were provided for the evaluation of various tools, equipment and procedures under conditions that simulated the Hanford site, with representative soils and layout dimensions. (authors)

  7. Ground Truth Studies - A hands-on environmental science program for students, grades K-12

    Science.gov (United States)

    Katzenberger, John; Chappell, Charles R.

    1992-01-01

    The paper discusses the background and the objectives of the Ground Truth Studies (GTSs), an activity-based teaching program which integrates local environmental studies with global change topics, utilizing remotely sensed earth imagery. Special attention is given to the five key concepts around which the GTS programs are organized, the pilot program, the initial pilot study evaluation, and the GTS Handbook. The GTS Handbook contains a primer on global change and remote sensing, aerial and satellite images, student activities, glossary, and an appendix of reference material. Also described is a K-12 teacher training model. International participation in the program is to be initiated during the 1992-1993 school year.

  8. Ground Handling of Batteries at Test and Launch-site Facilities

    Science.gov (United States)

    Jeevarajan, Judith A.; Hohl, Alan R.

    2008-01-01

    Ground handling of flight as well as engineering batteries at test facilities and launch-site facilities is a safety critical process. Test equipment interfacing with the batteries should have the required controls to prevent a hazardous failure of the batteries. Test equipment failures should not induce catastrophic failures on the batteries. Transportation requirements for batteries should also be taken into consideration for safe transportation. This viewgraph presentation includes information on the safe handling of batteries for ground processing at test facilities as well as launch-site facilities.

  9. Mars Exploration Rover thermal test program overview

    Science.gov (United States)

    Pauken, Michael T.; Kinsella, Gary; Novak, Keith; Tsuyuki, Glenn

    2004-01-01

    In January 2004, two Mars Exploration Rovers (MER) landed on the surface of Mars to begin their mission as robotic geologists. A year prior to these historic landings, both rovers and the spacecraft that delivered them to Mars, were completing a series of environmental tests in facilities at the Jet Propulsion Laboratory. This paper describes the test program undertaken to validate the thermal design and verify the workmanship integrity of both rovers and the spacecraft. The spacecraft, which contained the rover within the aeroshell, were tested in a 7.5 m diameter thermal vacuum chamber. Thermal balance was performed for the near earth (hot case) condition and for the near Mars (cold case) condition. A solar simulator was used to provide the solar boundary condition on the solar array. IR lamps were used to simulate the solar heat load on the aeroshell for the off-sun attitudes experienced by the spacecraft during its cruise to Mars. Each rover was tested separately in a 3.0 m diameter thermal vacuum chamber over conditions simulating the warmest and coldest expected Mars diurnal temperature cycles. The environmental tests were conducted in a quiescent nitrogen atmosphere at a pressure of 8 to 10 Torr. In addition to thermal balance testing, the science instruments on board the rovers were tested successfully in the extreme environmental conditions anticipated for the mission. A solar simulator was not used in these tests.

  10. Designing a respirator fit testing program.

    Science.gov (United States)

    Murphy, D C

    1992-11-01

    The requirements for adequate respiratory protection for the employees of this agency vary. Therefore, accurate, updated job descriptions are a critical piece of information. Although the agency has made an effort to establish a respiratory protection program, a number of limitations exist when compared to the program components defined in ANSI, NIOSH, and OSHA guidance documents. In response to a request from the agency, the nurse consultant evaluated the existing respiratory protection program and made specific recommendations for improvement. At this time, the agency has signed a formal agreement with the Division of Federal Occupational Health to request continued assistance with "overhauling" their program. Top management has begun assigning responsibilities for the program to specific individuals, and a centralized database is being set up. The agency has implemented two new DFOH developed forms to improve the testing process, and the nurse consultant has revised the educational/training session to more adequately meet the needs of the work force. The Agency and DFOH are collaborating on reassessment of employees to correctly assign them to appropriate respiratory risk categories. This will, in turn, affect the medical monitoring needs as well as the educational needs of each individual.

  11. Developing Uncertainty Models for Robust Flutter Analysis Using Ground Vibration Test Data

    Science.gov (United States)

    Potter, Starr; Lind, Rick; Kehoe, Michael W. (Technical Monitor)

    2001-01-01

    A ground vibration test can be used to obtain information about structural dynamics that is important for flutter analysis. Traditionally, this information#such as natural frequencies of modes#is used to update analytical models used to predict flutter speeds. The ground vibration test can also be used to obtain uncertainty models, such as natural frequencies and their associated variations, that can update analytical models for the purpose of predicting robust flutter speeds. Analyzing test data using the -norm, rather than the traditional 2-norm, is shown to lead to a minimum-size uncertainty description and, consequently, a least-conservative robust flutter speed. This approach is demonstrated using ground vibration test data for the Aerostructures Test Wing. Different norms are used to formulate uncertainty models and their associated robust flutter speeds to evaluate which norm is least conservative.

  12. How Robotics Programs Influence Young Women's Career Choices: A Grounded Theory Model

    Science.gov (United States)

    Craig, Cecilia Dosh-Bluhm

    2014-01-01

    The fields of engineering, computer science, and physics have a paucity of women despite decades of intervention by universities and organizations. Women's graduation rates in these fields continue to stagnate, posing a critical problem for society. This qualitative grounded theory (GT) study sought to understand how robotics programs influenced…

  13. How Robotics Programs Influence Young Women's Career Choices: A Grounded Theory Model

    Science.gov (United States)

    Craig, Cecilia Dosh-Bluhm

    2014-01-01

    The fields of engineering, computer science, and physics have a paucity of women despite decades of intervention by universities and organizations. Women's graduation rates in these fields continue to stagnate, posing a critical problem for society. This qualitative grounded theory (GT) study sought to understand how robotics programs influenced…

  14. Identifying Barriers in Implementing Outcomes-Based Assessment Program Review: A Grounded Theory Analysis

    Science.gov (United States)

    Bresciani, Marilee J.

    2011-01-01

    The purpose of this grounded theory study was to identify the typical barriers encountered by faculty and administrators when implementing outcomes-based assessment program review. An analysis of interviews with faculty and administrators at nine institutions revealed a theory that faculty and administrators' promotion, tenure (if applicable),…

  15. Operational Phase Life Cycle Assessment of Select NASA Ground Test Facilities

    Science.gov (United States)

    Sydnor, George H.; Marshall, Timothy J.; McGinnis, Sean

    2011-01-01

    NASA's Aeronautics Test Program (ATP) is responsible for many large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. In order to accomplish these national objectives, significant energy and resources are consumed. A select group of facilities was analyzed using life-cycle assessment (LCA) to determine carbon footprint and environmental impacts. Most of these impacts stem from electricity and natural gas consumption, used directly at the facility and to generate support processes such as compressed air and steam. Other activities were analyzed but determined to be smaller in scale and frequency with relatively negligible environmental impacts. More specialized facilities use R-134a, R-14, jet fuels, or nitrogen gas, and these unique inputs can have a considerable effect on a facility s overall environmental impact. The results of this LCA will be useful to ATP and NASA as the nation looks to identify its top energy consumers and NASA looks to maximize research output and minimize environmental impact. Keywords: NASA, Aeronautics, Wind tunnel, Keyword 4, Keyword 5

  16. How My Program Passed the Turing Test

    Science.gov (United States)

    Humphrys, Mark

    In 1989, the author put an ELIZA-like chatbot on the Internet. The conversations this program had can be seen - depending on how one defines the rules (and how seriously one takes the idea of the test itself) - as a passing of the Turing Test. This is the first time this event has been properly written. This chatbot succeeded due to profanity, relentless aggression, prurient queries about the user, and implying that they were a liar when they responded. The element of surprise was also crucial. Most chatbots exist in an environment where people expectto find some bots among the humans. Not this one. What was also novel was the onlineelement. This was certainly one of the first AI programs online. It seems to have been the first (a) AI real-time chat program, which (b) had the element of surprise, and (c) was on the Internet. We conclude with some speculation that the future of all of AI is on the Internet, and a description of the "World- Wide-Mind" project that aims to bring this about.

  17. Hardware and software for ground tests of onboard charged particle spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Batischev, A. G., E-mail: Alexey-Batischev@mail.ru; Galper, A. M. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Grishin, S. A. [Academy of Sciences of Belarus, Stepanov Institute of Physics, National (Belarus); Naumov, P. Yu. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Niadvetski, N. S. [Academy of Sciences of Belarus, Stepanov Institute of Physics, National (Belarus)

    2015-12-15

    The article presents a hardware and software complex for ground tests of onboard charged particle spectrometers that are designed at the National Research Nuclear University MEPhI for monitoring of nuclear-physical factors of space weather and can be installed in a wide class of satellites. The structural scheme and operating principles of component parts are discussed. The main algorithm and software features are presented. The technique of ground spectrometer tests and calibrations in various measurement modes at atmospheric cosmic particle flows, both in autonomous laboratories and in interface tests as part of a satellite, is also described.

  18. Demonstration of the Military Ecological Risk Assessment Framework (MERAF): Apache Longbow - Hell Missile Test at Yuma Proving Ground

    Energy Technology Data Exchange (ETDEWEB)

    Efroymson, R.A.

    2002-05-09

    This ecological risk assessment for a testing program at Yuma Proving Ground, Arizona, is a demonstration of the Military Ecological Risk Assessment Framework (MERAF; Suter et al. 2001). The demonstration is intended to illustrate how risk assessment guidance concerning-generic military training and testing activities and guidance concerning a specific type of activity (e.g., low-altitude aircraft overflights) may be implemented at a military installation. MERAF was developed with funding from the Strategic Research and Development Program (SERDP) of the Department of Defense. Novel aspects of MERAF include: (1) the assessment of risks from physical stressors using an ecological risk assessment framework, (2) the consideration of contingent or indirect effects of stressors (e.g., population-level effects that are derived from habitat or hydrological changes), (3) the integration of risks associated with different component activities or stressors, (4) the emphasis on quantitative risk estimates and estimates of uncertainty, and (5) the modularity of design, permitting components of the framework to be used in various military risk assessments that include similar activities. The particular subject of this report is the assessment of ecological risks associated with a testing program at Cibola Range of Yuma Proving Ground, Arizona. The program involves an Apache Longbow helicopter firing Hellfire missiles at moving targets, i.e., M60-A1 tanks. Thus, the three component activities of the Apache-Hellfire test were: (1) helicopter overflight, (2) missile firing, and (3) tracked vehicle movement. The demonstration was limited, to two ecological endpoint entities (i.e., potentially susceptible and valued populations or communities): woody desert wash communities and mule deer populations. The core assessment area is composed of about 126 km{sup 2} between the Chocolate and Middle Mountains. The core time of the program is a three-week period, including fourteen days of

  19. Thermal and Fluid Modeling of the CRYogenic Orbital TEstbed (CRYOTE) Ground Test Article (GTA)

    Science.gov (United States)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to data acquired from a ground test article (GTA) for the CRYogenic Orbital TEstbed - CRYOTE. To accomplish this analysis, it was broken into four primary tasks. These included model development, pre-test predictions, testing support at Marshall Space Flight Center (MSFC} and post-test correlations. Information from MSFC facilitated the task of refining and correlating the initial models. The primary goal of the modeling/testing/correlating efforts was to characterize heat loads throughout the ground test article. Significant factors impacting the heat loads included radiative environments, multi-layer insulation (MLI) performance, tank fill levels, tank pressures, and even contact conductance coefficients. This paper demonstrates how analytical thermal/fluid networks were established, and it includes supporting rationale for specific thermal responses seen during testing.

  20. Objectives and Progress on Integrated Vehicle Ground Vibration Testing for the Ares Launch Vehicles

    Science.gov (United States)

    Tuma, Margaret L.; Asloms. Brice R.

    2009-01-01

    As NASA begins design and development of the Ares launch vehicles to replace the Space Shuttle and explore beyond low Earth orbit, Integrated Vehicle Ground Vibration Testing (IVGVT) will be a vital component of ensuring that those vehicles can perform the missions assigned to them. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. This data is then used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. The Ares Flight & Integrated Test Office (FITO) will be conducting IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2011 to 2012 using the venerable Test Stand (TS) 4550, which supported similar tests for the Saturn V and Space Shuttle vehicle stacks.

  1. Finite Volume Based Computer Program for Ground Source Heat Pump System

    Energy Technology Data Exchange (ETDEWEB)

    Menart, James A. [Wright State University

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump

  2. Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems

    Energy Technology Data Exchange (ETDEWEB)

    James A Menart, Professor

    2013-02-22

    This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled Finite Volume Based Computer Program for Ground Source Heat Pump Systems. The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The

  3. Aerothermal Ground Testing of Flexible Thermal Protection Systems for Hypersonic Inflatable Aerodynamic Decelerators

    Science.gov (United States)

    Bruce, Walter E., III; Mesick, Nathaniel J.; Ferlemann, Paul G.; Siemers, Paul M., III; DelCorso, Joseph A.; Hughes, Stephen J.; Tobin, Steven A.; Kardell, Matthew P.

    2012-01-01

    Flexible TPS development involves ground testing and analysis necessary to characterize performance of the FTPS candidates prior to flight testing. This paper provides an overview of the analysis and ground testing efforts performed over the last year at the NASA Langley Research Center and in the Boeing Large-Core Arc Tunnel (LCAT). In the LCAT test series, material layups were subjected to aerothermal loads commensurate with peak re-entry conditions enveloping a range of HIAD mission trajectories. The FTPS layups were tested over a heat flux range from 20 to 50 W/cm with associated surface pressures of 3 to 8 kPa. To support the testing effort a significant redesign of the existing shear (wedge) model holder from previous testing efforts was undertaken to develop a new test technique for supporting and evaluating the FTPS in the high-temperature, arc jet flow. Since the FTPS test samples typically experience a geometry change during testing, computational fluid dynamic (CFD) models of the arc jet flow field and test model were developed to support the testing effort. The CFD results were used to help determine the test conditions experienced by the test samples as the surface geometry changes. This paper includes an overview of the Boeing LCAT facility, the general approach for testing FTPS, CFD analysis methodology and results, model holder design and test methodology, and selected thermal results of several FTPS layups.

  4. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02

    Directory of Open Access Journals (Sweden)

    Ruihang Yu

    2015-09-01

    Full Text Available In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter—SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS, a Global Navigation Satellite System (GNSS remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising.

  5. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02.

    Science.gov (United States)

    Yu, Ruihang; Cai, Shaokun; Wu, Meiping; Cao, Juliang; Zhang, Kaidong

    2015-09-16

    In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter-SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS), a Global Navigation Satellite System (GNSS) remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS) of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising.

  6. Quiet Spike(TradeMark) Build-up Ground Vibration Testing Approach

    Science.gov (United States)

    Spivey, Natalie D.; Herrera, Claudia Y.; Truax, Roger; Pak, Chan-gi; Freund, Donald

    2007-01-01

    Flight tests of the Gulfstream Aerospace Corporation s Quiet Spike(TradeMark) hardware were recently completed on the National Aeronautics and Space Administration Dryden Flight Research Center F-15B airplane. NASA Dryden uses a modified F-15B (836) airplane as a testbed aircraft to cost-effectively fly flight research experiments that are typically mounted underneath the airplane, along the fuselage centerline. For the Quiet Spike(TradeMark) experiment, instead of a centerline mounting, a forward-pointing boom was attached to the radar bulkhead of the airplane. The Quiet Spike(TradeMark) experiment is a stepping-stone to airframe structural morphing technologies designed to mitigate the sonic-boom strength of business jets flying over land. Prior to flying the Quiet Spike(TradeMark) experiment on the F-15B airplane several ground vibration tests were required to understand the Quiet Spike(TradeMark) modal characteristics and coupling effects with the F-15B airplane. Because of flight hardware availability and compressed schedule requirements, a "traditional" ground vibration test of the mated F-15B Quiet Spike(TradeMark) ready-for-flight configuration did not leave sufficient time available for the finite element model update and flutter analyses before flight-testing. Therefore, a "nontraditional" ground vibration testing approach was taken. This report provides an overview of each phase of the "nontraditional" ground vibration testing completed for the Quiet Spike(TradeMark) project.

  7. Expert System for Test Program Set Fault Candidate Selection

    Science.gov (United States)

    1989-09-01

    This report describes an application of expert system technology to test program set (TPS) verification and validation. The goals of this project are...Keywords: Expert system , Artificial intelligence, Automatic test equipment (ATE), Test program set (TPS), Automatic test program generation (ATPG), Fault inspection, Verification and validation, TPS acceptance tool.

  8. A Program Recognition and Auto-Testing Approach

    Directory of Open Access Journals (Sweden)

    Wen C. Pai

    2003-06-01

    Full Text Available The goals of the software testing are to assess and improve the quality of the software. An important problem in software testing is to determine whether a program has been tested enough with a testing criterion. To raise a technology to reconstruct the program structure and generating test data automatically will help software developers to improve software quality efficiently. Program recognition and transformation is a technology that can help maintainers to recover the programs' structure and consequently make software testing properly. In this paper, a methodology to follow the logic of a program and transform to the original program graph is proposed. An approach to derive testing paths automatically for a program to test every blocks of the program is provided. A real example is presented to illustrate and prove that the methodology is practicable. The proposed methodology allows developers to recover the programs' design and makes software maintenance properly.

  9. Geographic Information System technology applications to Ground-Water Management Program, EPA Region 3. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Clibanoff, A.

    1989-01-01

    The report is part of the National Network for Environmental Management Studies under the auspices of the Office of Cooperative Environmental Management of the U.S. Environmental Protection Agency. GIS technology is a computer informational system that stores, analyzes, and manipulates both spatial and non-spatial data. Base map information for the GIS has come primarily from the USGS. Data for the entire Region at the 1:2,000,000 scale and for some of the Region at the 1:100,000 scale is currently being used. Data from GIRAS, a land use Database, at the 1:250,000 also exists for much of the Region. Information is contributed to the GIS from various sources including but not limited to RCRA, CERCLA, UIC, and UST programs. The WHP program is also being tapped to identify locations of public water supply wells. Region III is interested in any data that accurately describes the ground water condition in a given area. In Regional pilot studies being conducted, GIS is being employed at both the regional and county level. The goals of the pilot studies include the identification of areas of ground water susceptibility and major sources of ground water contamination, and prioritizing the Region's ground water supplies in terms of vulnerability to pollution and risk to the population.

  10. Technology benefits and ground test facilities for high-speed civil transport development

    Science.gov (United States)

    Winston, Matthew M.; Shields, Elwood M.; Morris, Shelby J., Jr.

    1992-01-01

    The advanced technology base necessary for successful twenty-first century High-Speed Civil Transport (HSCT) aircraft will require extensive ground testing in aerodynamics, propulsion, acoustics, structures, materials, and other disciplines. This paper analyzes the benefits of advanced technology application to HSCT concepts, addresses the adequacy of existing groundbased test facilities, and explores the need for new facilities required to support HSCT development. A substantial amount of HSCT-related ground testing can be accomplished in existing facilities. The HSCT development effort could also benefit significantly from some new facilities initially conceived for testing in other aeronautical research areas. A new structures testing facility is identified as critically needed to insure timely technology maturation.

  11. A study on the nondestructive test optimum design for a ground tracked combat vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kim Byeong Ho; Seo, Jae Hyun; Gil, Hyeon Jun [Defence Agency for Technology and Quality, Seoul (Korea, Republic of); Kim, Seon Hyeong [Hanwha Techwin Co.,Ltd., Changwon (Korea, Republic of); Seo, Sang Chul [Changwon National University, Changwon (Korea, Republic of)

    2015-10-15

    In this study, a nondestructive test (NDT) is performed to inspect the optimal design of a ground tracked combat vehicle for self-propelled artillery, tank, and armored vehicles. The minimum qualification required for personnel performing the NDT of a ground tracked combat vehicle was initially established in US military standards, and then applied to the Korean defense specifications to develop a ground tracked combat vehicle. However, the qualification standards of an NDT inspector have been integrated into NAS410 through the military and commercial specifications unification project that were applied in the existing aerospace/defense industry public standard. The design method for this study was verified by applying the optimal design to the liquid penetrant testing Al forging used in self-propelled artillery. This confirmed the reliability and soundness of the product.

  12. Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities

    Science.gov (United States)

    Sydnor, George Honeycutt

    2012-01-01

    In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.

  13. Ground vibration test results for Drones for Aerodynamic and Structural Testing (DAST)/Aeroelastic Research Wing (ARW-1R) aircraft

    Science.gov (United States)

    Cox, T. H.; Gilyard, G. B.

    1986-01-01

    The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.

  14. Ground Radar and Guided Munitions: Increased Oversight and Cooperation Can Help Avoid Duplication among the Services’ Programs

    Science.gov (United States)

    2014-12-01

    mandatory . GAO believes the recommendation remains valid as discussed in its report. DOD agreed with the second recommendation. What GAO Found...designation mandatory for all new ground radar programs. Hence, we still believe without this designation for all new ground radar programs, the JROC and...Obtaining Copies of GAO Reports and Testimony Order by Phone Connect with GAO To Report Fraud, Waste, and Abuse in Federal Programs Congressional Relations Public Affairs Please Print on Recycled Paper.

  15. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  16. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  17. Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space. 73 refs., 19 figs., 7 tabs.

  18. Characterization of Vacuum Facility Background Gas Through Simulation and Considerations for Electric Propulsion Ground Testing

    Science.gov (United States)

    Yim, John T.; Burt, Jonathan M.

    2015-01-01

    The background gas in a vacuum facility for electric propulsion ground testing is examined in detail through a series of cold flow simulations using a direct simulation Monte Carlo (DSMC) code. The focus here is on the background gas itself, its structure and characteristics, rather than assessing its interaction and impact on thruster operation. The background gas, which is often incorrectly characterized as uniform, is found to have a notable velocity within a test facility. The gas velocity has an impact on the proper measurement of pressure and the calculation of ingestion flux to a thruster. There are also considerations for best practices for tests that involve the introduction of supplemental gas flows to artificially increase the background pressure. All of these effects need to be accounted for to properly characterize the operation of electric propulsion thrusters across different ground test vacuum facilities.

  19. Spacecraft Testing Programs: Adding Value to the Systems Engineering Process

    Science.gov (United States)

    Britton, Keith J.; Schaible, Dawn M.

    2011-01-01

    Testing has long been recognized as a critical component of spacecraft development activities - yet many major systems failures may have been prevented with more rigorous testing programs. The question is why is more testing not being conducted? Given unlimited resources, more testing would likely be included in a spacecraft development program. Striking the right balance between too much testing and not enough has been a long-term challenge for many industries. The objective of this paper is to discuss some of the barriers, enablers, and best practices for developing and sustaining a strong test program and testing team. This paper will also explore the testing decision factors used by managers; the varying attitudes toward testing; methods to develop strong test engineers; and the influence of behavior, culture and processes on testing programs. KEY WORDS: Risk, Integration and Test, Validation, Verification, Test Program Development

  20. An Overview of the NASA Aeronautics Test Program Strategic Plan

    Science.gov (United States)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD), however an overarching strategy for management of these national assets was needed. Therefore, in Fiscal Year (FY) 2006 NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD Test Resources Management Center (TRMC), stewards of the DoD test and evaluation infrastructure. Since then, approximately seventy percent of the ATP budget has been directed to underpin fixed and variable costs of facility operations within its portfolio and the balance towards strategic investments in its test facilities, including maintenance and capability upgrades. Also, a strong guiding coalition was established through the National Partnership for Aeronautics Testing (NPAT), with governance by the senior leadership of NASA s Aeronautics Research Mission Directorate (ARMD) and the DoD's TRMC. As part of its strategic planning, ATP has performed or participated in many studies and analyses, including assessments of major NASA and DoD aeronautics test capabilities, test facility condition evaluations and market research. The ATP strategy has also benefitted from unpublished RAND research and analysis by Ant n et al. (2009). Together, these various studies, reports and assessments serve as a foundation for a new, five year strategic plan that will guide ATP through FY 2014. Our vision for the future is a balanced

  1. The Design of Ground Test Equipment on Special Computer%某计算机地面检测设备的设计

    Institute of Scientific and Technical Information of China (English)

    田琨

    2001-01-01

    机载电子设备的研制和开发,需要功能完备的地面检测设备。本文简要介绍了某计算机基于微程序的地面检测设备的软硬件设计及其实施途径。%The research of equipment on airplane need ground test equipment which have maturity functions. This paper introduces design of hardware, software of the ground test equipment of the some airplane computer based micro-program, and the method how to carry into execution.

  2. 49 CFR 219.601 - Railroad random drug testing programs.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Railroad random drug testing programs. 219.601... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION CONTROL OF ALCOHOL AND DRUG USE Random Alcohol and Drug Testing Programs § 219.601 Railroad random drug testing programs. (a) Submission. Each railroad must submit for FRA...

  3. 16 CFR 1209.33 - Reasonable testing program.

    Science.gov (United States)

    2010-01-01

    ... INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION Certification § 1209.33 Reasonable testing program. (a... insulation. (b) Requirements of testing program. A reasonable testing program for cellulose insulation is one... samples of the manufacturer's cellulose insulation to demonstrate that the product is capable of passing...

  4. Cesium chloride compatibility testing program: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, G.H.

    1989-11-01

    The US Department of Energy is considering the geologic disposal of the doubly encapsulated cesium chloride (CsCl) produced at the Waste Encapsulation and Storage Facility (WESF). Reliable estimates of long-term corrosion of the inner capsule material by the CsCl under repository storage conditions are needed to assess the hazards associated with geologic disposal of the fission product Cs. The Cesium Chloride Compatibility Program was carried out at PNL to obtain the short-term corrosion data required to accurately estimate long-term attack. In the compatibility tests six standard WESF CsCl capsules were placed vertically in individual insulated containers and allowed to self-heat to a nominal maximum 316L SS/CsCl interface temperature of 450{degree}C. The capsules were held at temperature for times ranging from 0.25 to 6 years. When a test was completed, the capsule was removed from the container and sectioned. Four samples were cut from the inner capsule at prescribed locations and subjected to metallographic examination. Corrosion was determined from photomicrographs of the samples. 16 refs., 41 figs., 16 tabs.

  5. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, William [Brooks Engineering, Vacaville, CA (United States); Basso, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coddington, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  6. Data Mining for Understanding and Impriving Decision-Making Affecting Ground Delay Programs

    Science.gov (United States)

    Kulkarni, Deepak; Wang, Yao Xun; Sridhar, Banavar

    2013-01-01

    The continuous growth in the demand for air transportation results in an imbalance between airspace capacity and traffic demand. The airspace capacity of a region depends on the ability of the system to maintain safe separation between aircraft in the region. In addition to growing demand, the airspace capacity is severely limited by convective weather. During such conditions, traffic managers at the FAA's Air Traffic Control System Command Center (ATCSCC) and dispatchers at various Airlines' Operations Center (AOC) collaborate to mitigate the demand-capacity imbalance caused by weather. The end result is the implementation of a set of Traffic Flow Management (TFM) initiatives such as ground delay programs, reroute advisories, flow metering, and ground stops. Data Mining is the automated process of analyzing large sets of data and then extracting patterns in the data. Data mining tools are capable of predicting behaviors and future trends, allowing an organization to benefit from past experience in making knowledge-driven decisions. The work reported in this paper is focused on ground delay programs. Data mining algorithms have the potential to develop associations between weather patterns and the corresponding ground delay program responses. If successful, they can be used to improve and standardize TFM decision resulting in better predictability of traffic flows on days with reliable weather forecasts. The approach here seeks to develop a set of data mining and machine learning models and apply them to historical archives of weather observations and forecasts and TFM initiatives to determine the extent to which the theory can predict and explain the observed traffic flow behaviors.

  7. Ground Test of the Urine Processing Assembly for Accelerations and Transfer Functions

    Science.gov (United States)

    Houston, Janice; Almond, Deborah F. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of the ground test of the urine processing assembly for accelerations and transfer functions. Details are given on the test setup, test data, data analysis, analytical results, and microgravity assessment. The conclusions of the tests include the following: (1) the single input/multiple output method is useful if the data is acquired by tri-axial accelerometers and inputs can be considered uncorrelated; (2) tying coherence with the matrix yields higher confidence in results; (3) the WRS#2 rack ORUs need to be isolated; (4) and future work includes a plan for characterizing performance of isolation materials.

  8. On the Testing of Ground--Motion Prediction Equations against Small--Magnitude Data

    CERN Document Server

    Beauval, Céline; Laurendeau, Aurore; Delavaud, Elise; Cotton, Fabrice; Guéguen, Philippe; Kuehn, Nicolas; 10.1785/0120110271

    2012-01-01

    Ground-motion prediction equations (GMPE) are essential in probabilistic seismic hazard studies for estimating the ground motions generated by the seismic sources. In low seismicity regions, only weak motions are available in the lifetime of accelerometric networks, and the equations selected for the probabilistic studies are usually models established from foreign data. Although most ground-motion prediction equations have been developed for magnitudes 5 and above, the minimum magnitude often used in probabilistic studies in low seismicity regions is smaller. Desaggregations have shown that, at return periods of engineering interest, magnitudes lower than 5 can be contributing to the hazard. This paper presents the testing of several GMPEs selected in current international and national probabilistic projects against weak motions recorded in France (191 recordings with source-site distances up to 300km, 3.8\\leqMw\\leq4.5). The method is based on the loglikelihood value proposed by Scherbaum et al. (2009). The ...

  9. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    Science.gov (United States)

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative effluent containment system (ECS) that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal.

  10. Ground test results and analysis advancements for the AFRL airborne CO2 DIAL system

    Science.gov (United States)

    Senft, Daniel C.; Fox, Marsha J.; Hamilton, Carla M.; Richter, Dale A.; Higdon, N. S.; Kelly, Brian T.; Babnick, Robert D.; Pierrottet, Diego F.

    1999-10-01

    The Air Force Research Laboratory (AFRL) Active Remote Sensing Branch has developed the Laser Airborne Remote Sensing (LARS) system for chemical detection using the differential absorption lidar technique. The system is based on a high-power CO2 laser which can use either the standard 12C16O2 or the 13C16O2 carbon dioxide isotopes as the lasing medium, and has output energies of up to 5 J on the stronger laser transitions. The lidar system is mounted on a flight-qualified optical breadboard designed for installation into the AFRL Argus C- 135E optical testbed aircraft. The Phase I ground tests were conducted at Kirtland AFB in 1997, prior to the LARS flight tests performed in September 1997 at Kirtland AFB and the Idaho National Engineering and Environmental Laboratory. The Phase II ground tests were conducted in 1998 to determine the optimum performance of the LARS systems, after the incorporation of modifications and improvements suggested by the flight test results. This paper will present some of the chemical detection and radiometric results obtained during the Phase II ground tests. Following the presentation of the direct detection results, a summary of current work on a heterodyne DIAL system is given.

  11. Performance characterization and ground testing of an airborne CO2 differential absorption lidar system (phase II)

    Science.gov (United States)

    Senft, Daniel C.; Fox, Marsha J.; Hamilton, Carla M.; Richter, Dale A.; Higdon, N. S.; Kelly, Brian T.

    1999-05-01

    The Air Force Research Laboratory (AFRL) Active Remote Sensing Branch has developed the Laser Airborne Remote Sensing (LARS) system for chemical detection using the differential absorption lidar (DIAL) technique. The system is based on a high-power CO2 laser which can use either the standard 12C16O2 or the 13C16O2 carbon dioxide isotopes as the lasing medium, and has output energies of up to 5 J on the stronger laser transitions. The lidar system is mounted on a flight-qualified optical breadboard designed for installation into the AFRL Argus C- 135E optical testbed aircraft. The Phase I ground tests were conducted at Kirtland AFB in 1997, prior to the LARS flight tests performed in September 1997 at Kirtland AFB and the Idaho National Engineering and Environmental Laboratory (INEEL). The Phase II ground tests were conducted in 1998 to determine the optimum performance of the LARS system, after the incorporation of modification and improvements suggested by the flight test results. This paper will present some of the chemical detection and radiometric results obtained during the Phase II ground tests.

  12. Partial Nucleate Pool Boiling at Low Heat Flux: Preliminary Ground Test for SOBER-SJ10

    Science.gov (United States)

    Wu, Ke; Li, Zhen-Dong; Zhao, Jian-Fu; Li, Hui-Xiong; Li, Kai

    2016-05-01

    Focusing on partial nucleate pool boiling at low heat flux, SOBER-SJ10, one of 27 experiments of the program SJ-10, has been proposed to study local convection and heat transfer around an isolated growing vapor bubble during nucleate pool boiling on a well characterized flat surface in microgravity. An integrated micro heater has been developed. By using a local pulse overheating method in the experimental mode of single bubble boiling, a bubble nucleus can be excited with accurate spatial and temporal positioning on the top-side of a quartz glass substrate with a thickness of 2 mm and an effective heating area of 4.5 mm in diameter, and then grows under an approximate constant heat input provided by the main heater on the back-side of the substrate. Ten thin film micro-RTDs are used for local temperature measurements on the heating surface underneath the growing bubble. Normal pool boiling experiments can also be carried out with step-by-step increase of heating voltage. A series of ground test of the flight module of SOBER-SJ10 have been conducted. Good agreement of the measured data of single phase natural convection with the common-used empirical correlation warrants reasonable confidence in the data. It is found that the values of the incipience superheat of pool boiling at different subcooling are consistent with each others, verifying that the influence of subcooling on boiling incipience can be neglected. Pool boiling curves are also obtained, which shows great influence of subcooling on heat transfer of partial nucleate pool boiling, particularly in lower heat flux.

  13. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Ning Xianwen

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  14. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Institute of Scientific and Technical Information of China (English)

    Ning Xianwen; Wang Yuying; Zhang Jiaxun; Liu Dongxiao

    2015-01-01

    Thermal vacuum test is widely used for the ground validation of spacecraft thermal con-trol system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the nor-mal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC) array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indi-cate that the proposed equivalent ground thermal test method can simulate the heat rejection per-formance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 ?C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large space-craft which employs single-phase fluid loop radiator as thermal control approach.

  15. A Coding Scheme Development Methodology Using Grounded Theory For Qualitative Analysis Of Pair Programming

    Directory of Open Access Journals (Sweden)

    Stephan Salinger

    2008-01-01

    Full Text Available A number of quantitative studies of pair programming (the practice of two programmers working together using just one computer have partially conflicting results. Qualitative studies are needed to explain what is really going on. We support such studies by taking a grounded theory (GT approach for deriving a coding scheme for the objective conceptual description of specific pair programming sessions independent of a particular research goal. The present article explains why our initial attempts at using GT failed and describes how to avoid these difficulties by a predetermined perspective on the data, concept naming rules, an analysis results metamodel, and pair coding. These practices may be helpful in all GT situations, particularly those involving very rich data such as video data. We illustrate the operation and usefulness of these practices by real examples derived from our coding work and present a few preliminary hypotheses regarding pair programming that have surfaced.

  16. Motivation for a High Explosive Testing Program in South Africa

    Science.gov (United States)

    2015-12-04

    1~7JJ!i 5a. DATE: 6a. DATE: 7a. DATE: 8. TITLE: Motivation for a High Explosive Testing Program in South Africa 9. CONTRACT NUMBER: 10...00-00-2015 4. TITLE AND SUBTITLE Motivation for a High Explosive Testing Program in South Africa 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...600 Raleigh, NC 27605 Contract Number: HDTRA2-11-D-0001 Motivation for a High Explosive Testing Program in South Africa 4

  17. Hypersonic ground test capabilities for T and E testing above mach 8 ''a case where S and T meets T and E''

    Energy Technology Data Exchange (ETDEWEB)

    Constantino, M; Miles, R; Brown, G; Laster, M; Nelson, G

    1999-10-05

    Simulation of hypersonic flight in ground test and evaluation (T and E) facilities is a challenging and formidable task, especially to fully duplicate the flight environment above approximately Mach 8 for most all hypersonic flight systems that have been developed, conceived, or envisioned. Basically, and for many years, the enabling technology to build such a ground test wind tunnel facility has been severely limited in the area of high-temperature, high-strength materials and thermal protection approaches. To circumvent the problems, various approaches have been used, including partial simulation and use of similarity laws and reduced test time. These approaches often are not satisfactory, i.e. operability and durability testing for air-breathing propulsion development and thermal protection development of many flight systems. Thus, there is a strong need for science and technology (S and T) community involvement in technology development to address these problems. This paper discusses a specific case where this need exists and where significant S and T involvement has made and continues to make significant contributions. The case discussed will be an Air Force research program currently underway to develop enabling technologies for a Mach 8-15 hypersonic true temperature wind tunnel with relatively long run time. The research is based on a concept proposed by princeton University using radiant or beamed energy into the supersonic nozzle flow.

  18. Data Mining for Understanding and Improving Decision-making Affecting Ground Delay Programs

    Science.gov (United States)

    Kulkarni, Deepak; Wang, Yao; Sridhar, Banavar

    2013-01-01

    The continuous growth in the demand for air transportation results in an imbalance between airspace capacity and traffic demand. The airspace capacity of a region depends on the ability of the system to maintain safe separation between aircraft in the region. In addition to growing demand, the airspace capacity is severely limited by convective weather. During such conditions, traffic managers at the FAA's Air Traffic Control System Command Center (ATCSCC) and dispatchers at various Airlines' Operations Center (AOC) collaborate to mitigate the demand-capacity imbalance caused by weather. The end result is the implementation of a set of Traffic Flow Management (TFM) initiatives such as ground delay programs, reroute advisories, flow metering, and ground stops. Data Mining is the automated process of analyzing large sets of data and then extracting patterns in the data. Data mining tools are capable of predicting behaviors and future trends, allowing an organization to benefit from past experience in making knowledge-driven decisions.

  19. Evaluation of Nevada Test Site Ground Motion and Rock Property Data to Bound Ground Motions at the Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L H; Foxall, W; Rambo, J; Wagoner, J L

    2005-03-09

    Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintain such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.

  20. Evaluation of Nevada Test Site Ground Motion and Rock Property Data to Bound Ground Motions at the Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L J; Foxall, W; Rambo, J; Wagoner, J L

    2005-02-14

    Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintain such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.

  1. Interior noise control ground test studies for advanced turboprop aircraft applications

    Science.gov (United States)

    Simpson, Myles A.; Cannon, Mark R.; Burge, Paul L.; Boyd, Robert P.

    1989-01-01

    The measurement and analysis procedures are documented, and the results of interior noise control ground tests conducted on a DC-9 aircraft test section are summarized. The objectives of these tests were to study the fuselage response characteristics of treated and untreated aircraft with aft-mount advanced turboprop engines and to analyze the effectiveness of selected noise control treatments in reducing passenger cabin noise on these aircraft. The results of fuselage structural mode surveys, cabin cavity surveys and sound intensity surveys are presented. The performance of various structural and cabin sidewall treatments is assessed, based on measurements of the resulting interior noise levels under simulated advanced turboprop excitation.

  2. Ground tests with active neutron instrumentation for the planetary science missions

    Energy Technology Data Exchange (ETDEWEB)

    Litvak, M.L., E-mail: litvak@mx.iki.rssi.ru [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Mitrofanov, I.G.; Sanin, A.B. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Jun, I. [Jet Propulsion Laboratory, Pasadena, CA USA (United States); Kozyrev, A.S. [Space Research Institute, RAS, Moscow 117997 (Russian Federation); Krylov, A.; Shvetsov, V.N.; Timoshenko, G.N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Starr, R. [Catholic University of America, Washington DC (United States); Zontikov, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2015-07-11

    We present results of experimental work performed with a spare flight model of the DAN/MSL instrument in a newly built ground test facility at the Joint Institute for Nuclear Research. This instrument was selected for the tests as a flight prototype of an active neutron spectrometer applicable for future landed missions to various solid solar system bodies. In our experiment we have fabricated simplified samples of planetary material and tested the capability of neutron activation methods to detect thin layers of water/water ice lying on top of planetary dry regolith or buried within a dry regolith at different depths.

  3. A novel intelligent adaptive control of laser-based ground thermal test

    Directory of Open Access Journals (Sweden)

    Gan Zhengtao

    2016-08-01

    Full Text Available Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion–integration–differentiation (PID type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO algorithm. A validating system has been established in the laboratory. The performance of the proposed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance. The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID controller and the conventional PID type fuzzy (F-PID controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test.

  4. A novel intelligent adaptive control of laser-based ground thermal test

    Institute of Scientific and Technical Information of China (English)

    Gan Zhengtao; Yu Gang; Li Shaoxia; He Xiuli; Chen Ru; Zheng Caiyun; Ning Weijian

    2016-01-01

    Laser heating technology is a type of potential and attractive space heat flux simulation technology, which is characterized by high heating rate, controlled spatial intensity distribution and rapid response. However, the controlled plant is nonlinear, time-varying and uncertainty when implementing the laser-based heat flux simulation. In this paper, a novel intelligent adaptive controller based on proportion–integration–differentiation (PID) type fuzzy logic is proposed to improve the performance of laser-based ground thermal test. The temperature range of thermal cycles is more than 200 K in many instances. In order to improve the adaptability of controller, output scaling factors are real time adjusted while the thermal test is underway. The initial values of scaling factors are optimized using a stochastic hybrid particle swarm optimization (H-PSO) algorithm. A validating system has been established in the laboratory. The performance of the pro-posed controller is evaluated through extensive experiments under different operating conditions (reference and load disturbance). The results show that the proposed adaptive controller performs remarkably better compared to the conventional PID (PID) controller and the conventional PID type fuzzy (F-PID) controller considering performance indicators of overshoot, settling time and steady state error for laser-based ground thermal test. It is a reliable tool for effective temperature control of laser-based ground thermal test.

  5. From the ground up: building a minimally invasive aortic valve surgery program.

    Science.gov (United States)

    Nguyen, Tom C; Lamelas, Joseph

    2015-03-01

    Minimally invasive aortic valve replacement (MIAVR) is associated with numerous advantages including improved patient satisfaction, cosmesis, decreased transfusion requirements, and cost-effectiveness. Despite these advantages, little information exists on how to build a MIAVR program from the ground up. The steps to build a MIAVR program include compiling a multi-disciplinary team composed of surgeons, cardiologists, anesthesiologists, perfusionists, operating room (OR) technicians, and nurses. Once assembled, this team can then approach hospital administrators to present a cost-benefit analysis of MIAVR, emphasizing the importance of reduced resource utilization in the long-term to offset the initial financial investment that will be required. With hospital approval, training can commence to provide surgeons and other staff with the necessary knowledge and skills in MIAVR procedures and outcomes. Marketing and advertising of the program through the use of social media, educational conferences, grand rounds, and printed media will attract the initial patients. A dedicated website for the program can function as a "virtual lobby" for patients wanting to learn more. Initially, conservative selection criteria of cases that qualify for MIAVR will set the program up for success by avoiding complex co-morbidities and surgical techniques. During the learning curve phase of the program, patient safety should be a priority.

  6. Towards a Theory for Testing Non-terminating Programs

    DEFF Research Database (Denmark)

    Gotlieb, Arnaud; Petit, Matthieu

    2009-01-01

    Non-terminating programs are programs that legally perform unbounded computations. Though they are ubiquitous in real-world applications, testing these programs requires new theoretic developments as usual definitions of test data adequacy criteria ignore infinite paths. This paper develops...... a theory of program-based structural testing based on operational semantics. Reasoning at the program semantics level permits to cope with infinite paths (and non-feasible paths) when defining test data adequacy criteria. As a result, our criteria respect the first Weyuker’s property on finite...

  7. Direction and Integration of Experimental Ground Test Capabilities and Computational Methods

    Science.gov (United States)

    Dunn, Steven C.

    2016-01-01

    This paper groups and summarizes the salient points and findings from two AIAA conference panels targeted at defining the direction, with associated key issues and recommendations, for the integration of experimental ground testing and computational methods. Each panel session utilized rapporteurs to capture comments from both the panel members and the audience. Additionally, a virtual panel of several experts were consulted between the two sessions and their comments were also captured. The information is organized into three time-based groupings, as well as by subject area. These panel sessions were designed to provide guidance to both researchers/developers and experimental/computational service providers in defining the future of ground testing, which will be inextricably integrated with the advancement of computational tools.

  8. High-stability temperature control for ST-7/LISA Pathfinder gravitational reference sensor ground verification testing

    Science.gov (United States)

    Higuchi, S.; Allen, G.; Bencze, W.; Byer, R.; Dang, A.; DeBra, D. B.; Lauben, D.; Dorlybounxou, S.; Hanson, J.; Ho, L.; Huffman, G.; Sabur, F.; Sun, K.; Tavernetti, R.; Rolih, L.; Van Patten, R.; Wallace, J.; Williams, S.

    2006-03-01

    This article demonstrates experimental results of a thermal control system developed for ST-7 gravitational reference sensor (GRS) ground verification testing which provides thermal stability δT control of the LISA spacecraft to compensate solar irradiate 1/f fluctuations. Although for ground testing these specifications can be met fairly readily with sufficient insulation and thermal mass, in contrast, for spacecraft the very limited thermal mass calls for an active control system which can simultaneously meet disturbance rejection and stability requirements in the presence of long time delay; a considerable design challenge. Simple control laws presently provide ~ 1mK/surdHz for >24 hours. Continuing development of a model predictive feedforward control algorithm will extend performance to <1 mK/surdHz at f < 0.01 mHz and possibly lower, extending LISA coverage of super massive black hole mergers.

  9. User Guide and Documentation for Five MODFLOW Ground-Water Modeling Utility Programs

    Science.gov (United States)

    Banta, Edward R.; Paschke, Suzanne S.; Litke, David W.

    2008-01-01

    This report documents five utility programs designed for use in conjunction with ground-water flow models developed with the U.S. Geological Survey's MODFLOW ground-water modeling program. One program extracts calculated flow values from one model for use as input to another model. The other four programs extract model input or output arrays from one model and make them available in a form that can be used to generate an ArcGIS raster data set. The resulting raster data sets may be useful for visual display of the data or for further geographic data processing. The utility program GRID2GRIDFLOW reads a MODFLOW binary output file of cell-by-cell flow terms for one (source) model grid and converts the flow values to input flow values for a different (target) model grid. The spatial and temporal discretization of the two models may differ. The four other utilities extract selected 2-dimensional data arrays in MODFLOW input and output files and write them to text files that can be imported into an ArcGIS geographic information system raster format. These four utilities require that the model cells be square and aligned with the projected coordinate system in which the model grid is defined. The four raster-conversion utilities are * CBC2RASTER, which extracts selected stress-package flow data from a MODFLOW binary output file of cell-by-cell flows; * DIS2RASTER, which extracts cell-elevation data from a MODFLOW Discretization file; * MFBIN2RASTER, which extracts array data from a MODFLOW binary output file of head or drawdown; and * MULT2RASTER, which extracts array data from a MODFLOW Multiplier file.

  10. Using Virtual ATE Model to Migrate Test Programs

    Institute of Scientific and Technical Information of China (English)

    王晓明; 杨乔林

    1995-01-01

    Bacause of high development costs of IC (Integrated Circuit)test programs,recycling existing test programs from one kind of ATE (Automatic Test Equipment) to another or generating directly from CAD simulation modules to ATE is more and more valuable.In this paper,a new approach to migrating test programs is presented.A virtual ATE model based on object-oriented paradigm is developed;it runs Test C++ (an intermediate test control language) programs and TeIF(Test Inftermediate Format-an intermediate pattern),migrates test programs among three kinds of ATE (Ando DIC8032,Schlumberger S15 and GenRad 1732) and generates test patterns from two kinds of CAD 9Daisy and Panda) automatically.

  11. Contrast validation test for retrieval method of high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    WANG Hailong; GUO Peifang; HAN Shuzong; XIE Qiang; ZHOU Liangming

    2005-01-01

    In this paper, on the basis of the working principles of high frequency ground wave radar for retrieval of ocean wave and sea wind elements were used to systematically study the data obtained from contrast validation test in Zhoushan sea area of Zhejiang Province on Oct. 2000, to validate the accuracy of OSMAR2000for wave and wind parameters, and to analyze the possible error caused when using OSMAR2000 to retrieve ocean parameters.

  12. Prototype of space-borne LTT module and its ground tests

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to develop the technique of Laser Time Transfer(LTT) ,Shanghai Astronomical Observatory has built a prototype of space-borne LTT module. The performance of the LTT module and the results of ground tests are discussed in the paper. The average precision of time difference between two rubidium clocks measured by laser pulses is 196 ps,and the uncertainty of measurement for the relative frequency differences is 1.2×10-13/2800 s.

  13. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Reiner

    2007-08-07

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000–2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  14. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006

    Science.gov (United States)

    Reiner, Steven R.

    2007-01-01

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000-2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  15. Extreme Ground-Motion Rockfall Deposits on the Nevada Test Site

    Science.gov (United States)

    Whitney, J. W.; Buckingham, S. E.; Magner, J. E.; Finkel, R. C.; Brune, J. N.; von Seggern, D.; Honke, J. S.

    2007-12-01

    In order to detect the evidence of extreme ground motion in the past, we have begun to catalog geomorphic characteristics that distinguish slope deposits strongly influenced by extreme ground motion from deposits primarily influenced by climate processes. Underground nuclear explosions (UNEs) of yields between 200 kilotons and 1.3 megatons were conducted under Pahute Mesa at the Nevada Test site from 1962 to 1992. The primary surface effects from these tests were surface cracks, triggered earthquakes, offsets on pre-existing faults, and changes in land surface topography. Rockfall and rock spall were observed along cliffs after a few nuclear tests; however, few observations of accumulations of shattered rock were documented. A large volume of rockfall located along a 1.5-km¬-long cliff of welded ash-flow tuff resulted from extreme ground motions from two nearby UNEs. In 1968 UNE Rickey released maximum ground motions of 500 cm/s peak ground velocity (PGV) at the closest cliff face and PGV decreased to about 300 cm/s at the north end of the cliff. Large boulders with 1-3-m average diameters were shaken loose from fracture planes and cooling joints to form a stack of jumbled boulders at the base of the cliff. Very few large boulders rolled to the base of the hillslope. Subsequently, in 1976, UNE Pool induced 300-350 cm/s PGV along the same cliff. A significant volume of rock, also released along fractures and joints, was added to the coarse boulder colluvium shaken loose in 1968. Ground motion from Pool also rearranged the hillslope boulders from UNE Rickey, but did not cause many boulders to roll downslope. Extreme ground motions from these two UNEs resulted in 1.5-3.0 m of physical erosion to the cliff face. Rockfall from less welded ash-flow tuff units situated above and below the cliff produced significantly less boulder colluvium. Our observations indicate that boulder size and rockfall volume from a cliff or ridge crest due to extreme ground motion are

  16. 76 FR 23914 - National Organic Program; Periodic Residue Testing

    Science.gov (United States)

    2011-04-29

    ...; ] DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 205 RIN 0581-AD10 National Organic Program; Periodic Residue Testing AGENCY: Agricultural Marketing Service, USDA. ACTION: Proposed rule.... Department of Agriculture, Agricultural Marketing Service, Pesticide Data Program Annual Summary,...

  17. Qualitative data analysis using the n Vivo programe and the application of the methodology of grounded theory procedures

    Directory of Open Access Journals (Sweden)

    Niedbalski Jakub

    2012-02-01

    Full Text Available The main aim of the article is to identify the capabilities and constraints of using CAQDAS (Computer-Assisted Qualitative Data Analysis Software programs in qualitative data analysis. Our considerations are based on the personal experiences gained while conducting the research projects using the methodology of grounded theory (GT and the NVivo 8 program. In presented article we focusedon relations between the methodological principles of grounded theory and the technical possibilities of NVivo 8. The paper presents our opinion about the most important options available in NVivo 8 and their application in the studies based on the methodology of grounded theory.

  18. Ground-based testing of the dynamics of flexible space structures using band mechanisms

    Science.gov (United States)

    Yang, L. F.; Chew, Meng-Sang

    1991-01-01

    A suspension system based on a band mechanism is studied to provide the free-free conditions for ground based validation testing of flexible space structures. The band mechanism consists of a noncircular disk with a convex profile, preloaded by torsional springs at its center of rotation so that static equilibrium of the test structure is maintained at any vertical location; the gravitational force will be directly counteracted during dynamic testing of the space structure. This noncircular disk within the suspension system can be configured to remain unchanged for test articles with the different weights as long as the torsional spring is replaced to maintain the originally designed frequency ratio of W/k sub s. Simulations of test articles which are modeled as lumped parameter as well as continuous parameter systems, are also presented.

  19. 76 FR 59574 - Procedures for Transportation Workplace Drug and Alcohol Testing Programs: Federal Drug Testing...

    Science.gov (United States)

    2011-09-27

    ... Alcohol Testing Programs: Federal Drug Testing Custody and Control Form; Technical Amendment AGENCY... of a new Federal Drug Testing Custody and Control Form (CCF) in its drug testing program. Use of the... amendment to its drug testing procedures by amending a provision of the rule which was inadvertently omitted...

  20. Development of a sine-dwell ground vibration test (GVT) system

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H

    2006-02-27

    Full Text Available stream_source_info VanZyl_2006.pdf.txt stream_content_type text/plain stream_size 9765 Content-Encoding UTF-8 stream_name VanZyl_2006.pdf.txt Content-Type text/plain; charset=UTF-8 Development of a Sine-Dwell Ground... vibration testing? • Basics of sine-dwell testing Getting the structure to vibrate in phase, and what then? • Excitation hardware Exciters are similar to speakers • Measurement system Force and response as complex numbers • Excitation control...

  1. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  2. Ground-Based Tests of Spacecraft Polymeric Materials under OXY-GEN Plasma-Beam

    Science.gov (United States)

    Chernik, Vladimir; Novikov, Lev; Gaidar, Anna

    2016-07-01

    Spacecraft LEO mission is accompanied by destruction of polymeric material surface under influence of atomic oxygen flow. Sources of molecular, plasma and ion beams are used for the accelerated ground-based tests of spacecraft materials. In the work application of oxygen plasma accelerator of a duoplasmatron type is described. Plasma particles have been accelerated up to average speed of 13-16 km/s. Influence of such beam on materials leads to more intensive destruction of polymers than in LEO. This fact allows to execute tests in the accelerated time scale by a method of an effective fluence. Special measures were given to decrease a concentration of both gaseous and electrode material impurities in the oxygen beam. In the work the results of simulative tests of spacecraft materials and experiments on LEO are considered. Comparison of plasma beam simulation with LEO data has shown conformity for structures of a number of polymeric materials. The relative erosion yields (normalized with respect to polyimide) of the tested materials are shown practically equal to those in LEO. The obtained results give grounds for using the plasma-generation mode with ion energies of 20-30 eV to accelerated testing of spacecraft materials for long -term LEO missions.

  3. Prevention of significant deterioration application for approval to construct SP-100 Ground Engineering System Test Site

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    The following application is being submitted by the US Department of Energy, Richland Operations Office, P.O. Box 550, Richland, Washington 99352, pursuant to WAC 173-403-080, and in compliance with the Department of Ecology Guide to Processing a Prevention of Significant Deterioration (PSD) Permit'' for a new source of airborne radionuclide emissions at the Hanford Site in Washington State. The new source, the SP-100 Ground Engineering System (GES) Test Site, will be located in the 309 Building of the 300 Area. The US Department of Energy (DOE), the National Aeronautics and Space Administration (NASA), and the US Department of Defense (DOD) have entered into an agreement to jointly develop space nuclear reactor power system technology. The DOE has primary responsibility for developing and ground testing the nuclear subsystem. A ground test of a reactor is necessary to demonstrate technology readiness of this major subsystem before proceeding with the flight system development and demonstration. The SP-100 GES Test Site will provide a location for the operation and testing of a prototype space-based, liquid metal-cooled, fast flux nuclear reactor in an environment closely simulating the vacuum and temperature conditions of space operations. The purpose of the GES is to develop safe, compact, light-weight and durable space reactor power system technology. This technology will be used to provide electric power, in the range of tens to hundreds of kilowatts, for a variety of potential future civilian and military space missions requiring long-term, high-power level sources of energy. 20 refs., 8 figs., 7 tabs.

  4. Centrifuge model test on earthquake-induced differential settlement of foundation on cohesive ground

    Institute of Scientific and Technical Information of China (English)

    SHAMOTO; Yasuhiro; HOTTA; Hiroyuki

    2009-01-01

    Dynamic centrifuge model test was conducted to study the earthquake-induced differential settlement of foundation on cohesive ground, and the influence of asymmetry of building was investigated. During the experiment, the overconsolidated kaolin clay ground with a three-dimensional asymmetrical structure model was shaken by a basically balanced input motion, and bender elements were used to measure shear wave velocities of model ground to reveal the soil fabric evolution during and after shaking. The test results show that, the total seismic settlement of foundation is composed of instantaneous and long-term post-earthquake settlements, and most of the differential settlement occurs immediately after the earthquake while the post-earthquake settlement is relatively uniform despite its large amplitude. The asymmetry of building affects the settlement behavior considerably. Compared with 1-or 2-dimensional structures, more evident differential settlement occurs under threedimensional asymmetrical building during shaking, which accounts for one-half of the total seismic settlements and results in complex spatial tilting effects of foundation.

  5. Centrifuge model test on earthquake-induced differential settlement of foundation on cohesive ground

    Institute of Scientific and Technical Information of China (English)

    ZHOU YanGuo; CHEN YunMin; SHAMOTO Yasuhiro; HOTTA Hiroyuki

    2009-01-01

    Dynamic centrifuge model test was conducted to study the earthquake-induced differential settlement of foundation on cohesive ground, and the influence of asymmetry of building was investigated. During the experiment, the overconsolidated kaolin clay ground with a three-dimensional asymmetrical structure model was shaken by a basically balanced input motion, and bender elements were used to measure shear wave velocities of model ground to reveal the soil fabric evolution during and after shaking. The test results show that, the total seismic settlement of foundation is composed of instantaneous and long-term post-earthquake settlements, and most of the differential settlement occurs immediately after the earthquake while the post-earthquake settlement is relatively uniform despite its large amplitude. The asymmetry of building affects the settlement behavior considerably. Compared with 1- or 2-dimensional structures, more evident differential settlement occurs under three-dimensional asymmetrical building during shaking, which accounts for one-half of the total seismic settlements and results in complex spatial tilting effects of foundation.

  6. Analysis of test results of a ground demonstration of a Pluto/Express power generator

    Energy Technology Data Exchange (ETDEWEB)

    Tournier, J.-M.; El-Genk, M.S. [University of New Mexico, Dept. of Chemical and Nuclear Engineering, Albuquerque, NM (United States)

    1999-07-01

    Results of recent tests of a Pluto/Express electric power generator ground demonstration were analysed. The performance parameters of each of the eight ground demonstrations vapour anode, multitube alkali-metal thermal-to-electric conversion (AMTEC) cells, designated PX-3G, were analysed and compared. The ground demonstration cells produced a total peak electric power of 27 W{sub e} at a load voltage of 16 V when tested at hot and cold side temperatures of 1123 K and 553 K, respectively. The electric power output and terminal voltage of the individual cells, however, differed by as much as 25%, from 2.94 to 3.76 W{sub e}, and from 1.73 to 2.21 V, respectively. These variations were attributed to differences among the cells in the values of: (a) the contact resistance of the BASE/electrode and of the electrode/current collector; (b) the leakage current between the anode and cathode electrodes through the metal-ceramic braze joint between the BASE tubes and the metal support plate; and (c) the charge-exchange polarisation losses. Analysis of results suggested the existence of large electrical leakage currents in some of the PX-3G cells. The performance of the PX-3G cells was below that needed for meeting the Pluto/Express mission's electric power requirement. (Author)

  7. Detailed Test Plan Redundant Sensor Strapdown IMU Evaluation Program

    Science.gov (United States)

    Hartwell, T.; Miyatake, Y.; Wedekind, D. E.

    1971-01-01

    The test plan for a redundant sensor strapdown inertial measuring unit evaluation program is presented. The subjects discussed are: (1) test philosophy and limitations, (2) test sequence, (3) equipment specifications, (4) general operating procedures, (5) calibration procedures, (6) alignment test phase, and (7) navigation test phase. The data and analysis requirements are analyzed.

  8. A test program for solar collectors

    Science.gov (United States)

    1980-01-01

    Rigorous environmental and performance tests qualify solar collector for use in residential solar-energy systems. Testing over 7 month period examined pressurized effects, wind and snow loading, hail damage, solar and thermal degradation, effects of pollutants, efficiency, and outgassing. Test procedures and results are summarized in tables, graphs, and text.

  9. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    Science.gov (United States)

    Montgomery, Edward E.; Young, Roy M.; Adams, Charles L.

    2007-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 separate, independent system design and development hardware demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L'Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter ground demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators. Descriptions of the system designs for both the ATK and L'Garde systems will be presented. Changes, additions and evolution of the system designs will be highlighted. A description of the modeling and analyses activities performed by both teams, as well as testing conducted to raise the TRL of solar sail technology will be presented. A summary of the results of model correlation activities will be presented. Finally, technology gaps identified during the assessment and gap closure plans will be presented, along with "lessons learned", subsequent planning activities and validation flight opportunities for solar sail propulsion technology.

  10. Updating the Finite Element Model of the Aerostructures Test Wing using Ground Vibration Test Data

    Science.gov (United States)

    Lung, Shun-fat; Pak, Chan-gi

    2009-01-01

    Improved and/or accelerated decision making is a crucial step during flutter certification processes. Unfortunately, most finite element structural dynamics models have uncertainties associated with model validity. Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. The model tuning process requires not only satisfactory correlations between analytical and experimental results, but also the retention of the mass and stiffness properties of the structures. Minimizing the difference between analytical and experimental results is a type of optimization problem. By utilizing the multidisciplinary design, analysis, and optimization (MDAO) tool in order to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes can be matched to the target data to retain the mass matrix orthogonality. This approach has been applied to minimize the model uncertainties for the structural dynamics model of the Aerostructures Test Wing (ATW), which was designed and tested at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) (Edwards, California). This study has shown that natural frequencies and corresponding mode shapes from the updated finite element model have excellent agreement with corresponding measured data.

  11. Experimental Results of Thin-Film Photovoltaic Cells in a Low Density LEO Plasma Environment: Ground Tests

    Science.gov (United States)

    Galofaro, Joel T.; Vayner, Boris V.

    2006-01-01

    Plasma ground testing results, conducted at the Glenn Research Center (GRC) National Plasma Interaction (N-PI) Facility, are presented for a number of thin-film photovoltaic cells. The cells represent a mix of promising new technologies identified by the Air Force Research Laboratory (AFRL) under the CYGNUS Space Science Technology Experiment (SSTE-4) Program. The current ground tests are aimed at characterizing the performance and survivability of thin film technologies in the harsh low earth orbital space environment where they will be flown. Measurements of parasitic current loss, charging/dielectric breakdown of cover-slide coatings and arcing threshold tests are performed for each individual cell. These measurements are followed by a series of experiments designed to test for catastrophic arc failure mechanisms. A special type of power supply, called a solar array simulator (SAS) with adjustable voltage and current limits on the supply s output, is employed to bias two adjacent cells at a predetermined voltage and current. The bias voltage is incrementally ramped up until a sustained arc results. Sustained arcs are precursors to catastrophic arc failure where the arc current rises to a maximum value for long timescales often ranging between 30 to 100 sec times. Normal arcs by comparison, are short lived events with a timescale between 10 to 30 sec. Sustained arcs lead to pyrolization with extreme cell damage and have been shown to cause the loss of entire array strings in solar arrays. The collected data will be used to evaluate the suitability of thin-film photovoltaic technologies for future space operations.

  12. HEAVY METALS IN THE ECOSYSTEM COMPONENTS AT "DEGELEN" TESTING GROUND OF THE FORMER SEMIPALATINSK TEST SITE

    Directory of Open Access Journals (Sweden)

    A.B. Yankauskas

    2012-06-01

    Full Text Available The ecological situation in the former Semipalatinsk test site is characterized by a combination of both radiative and "nonradiative" factors. There were investigated near-portal areas of the tunnels with water seepage at "Degelen" site. All the tunnel waters are characterized by higher concentrations of uranium, beryllium, and molybdenum. The watercourse of the tunnel # 504 is unique for its elemental composition, in particular, the content of rare earth elements, whose concentration in the water is in the range n*10-5 – n*10-7 %. Of all the rare earth elements in the samples were found 13, the concentrations of aluminum, manganese, zinc are comparable to the concentrations of macro-components. Concentration of 238U in the studied waters lie in the range of n*10-4 – n*10-6 %, which suggests the influence of uranium, not only as a toxic element, but its significance as the radiation factor.

  13. Subscale Validation of the Subsurface Active Filtration of Exhaust (SAFE) Approach to NTP Ground Testing

    Science.gov (United States)

    Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.

    2015-01-01

    Brief History of NTP: Project Rover Began in 1950s by Los Alamos Scientific Labs (now Los Alamos National Labs) and ran until 1970s Tested a series of nuclear reactor engines of varying size at Nevada Test Site (now Nevada National Security Site) Ranged in scale from 111 kN (25 klbf) to 1.1 MN (250 klbf) Included Nuclear Furnace-1 tests Demonstrated the viability and capability of a nuclear rocket engine test program One of Kennedys 4 goals during famous moon speech to Congress Nuclear Engines for Rocket Vehicle Applications (NERVA) Atomic Energy Commission and NASA joint venture started in 1964 Parallel effort to Project Rover was focused on technology demonstration Tested XE engine, a 245-kN (55-klbf) engine to demonstrate startup shutdown sequencing. Hot-hydrogen stream is passed directly through fuel elements potential for radioactive material to be eroded into gaseous fuel flow as identified in previous programs NERVA and Project Rover (1950s-70s) were able to test in open atmosphere similar to conventional rocket engine test stands today Nuclear Furance-1 tests employed a full scrubber system Increased government and environmental regulations prohibit the modern testing in open atmosphere. Since the 1960s, there has been an increasing cessation on open air testing of nuclear material Political and national security concerns further compound the regulatory environment

  14. Design and analysis of a natural-gradient ground-water tracer test in a freshwater tidal wetland, West Branch Canal Creek, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Olsen, Lisa D.; Tenbus, Frederick J.

    2005-01-01

    A natural-gradient ground-water tracer test was designed and conducted in a tidal freshwater wetland at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The objectives of the test were to characterize solute transport at the site, obtain data to more accurately determine the ground-water velocity in the upper wetland sediments, and to compare a conservative, ionic tracer (bromide) to a volatile tracer (sulfur hexafluoride) to ascertain whether volatilization could be an important process in attenuating volatile organic compounds in the ground water. The tracer test was conducted within the upper peat unit of a layer of wetland sediments that also includes a lower clayey unit; the combined layer overlies an aquifer. The area selected for the test was thought to have an above-average rate of ground-water discharge based on ground-water head distributions and near-surface detections of volatile organic compounds measured in previous studies. Because ground-water velocities in the wetland sediments were expected to be slow compared to the underlying aquifer, the test was designed to be conducted on a small scale. Ninety-seven ?-inch-diameter inverted-screen stainless-steel piezometers were installed in a cylindrical array within approximately 25 cubic feet (2.3 cubic meters) of wetland sediments, in an area with a vertically upward hydraulic gradient. Fluorescein dye was used to qualitatively evaluate the hydrologic integrity of the tracer array before the start of the tracer test, including verifying the absence of hydraulic short-circuiting due to nonnatural vertical conduits potentially created during piezometer installation. Bromide and sulfur hexafluoride tracers (0.139 liter of solution containing 100,000 milligrams per liter of bromide ion and 23.3 milligrams per liter of sulfur hexafluoride) were co-injected and monitored to generate a dataset that could be used to evaluate solute transport in three dimensions. Piezometers were sampled 2 to 15 times

  15. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    Science.gov (United States)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  16. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    Science.gov (United States)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  17. Torsion pendulum facility for ground testing of gravitational sensors for LISA

    CERN Document Server

    Hüller, M; Dolesi, R; Vitale, S; Weber, W J

    2002-01-01

    We report here on a torsion pendulum facility for ground-based testing of the Laser Interferometer Space Antenna (LISA) gravitational sensors. We aim to measure weak forces exerted by a capacitive position sensor on a lightweight version of the LISA test mass, suspended from a thin torsion fibre. This facility will permit measurement of the residual, springlike coupling between the test mass and the sensor and characterization of other stray forces relevant to LISA drag-free control. The expected force sensitivity of the proposed torsion pendulum is limited by the intrinsic thermal noise at approx 3x10 sup - sup 1 sup 3 N Hz sup - sup 1 sup / sup 2 at 1 mHz. We briefly describe the design and implementation of the apparatus, its expected performance and preliminary experimental data.

  18. SSE software test management STM capability: Using STM in the Ground Systems Development Environment (GSDE)

    Science.gov (United States)

    Church, Victor E.; Long, D.; Hartenstein, Ray; Perez-Davila, Alfredo

    1992-01-01

    This report is one of a series discussing configuration management (CM) topics for Space Station ground systems software development. It provides a description of the Software Support Environment (SSE)-developed Software Test Management (STM) capability, and discusses the possible use of this capability for management of developed software during testing performed on target platforms. This is intended to supplement the formal documentation of STM provided by the SEE Project. How STM can be used to integrate contractor CM and formal CM for software before delivery to operations is described. STM provides a level of control that is flexible enough to support integration and debugging, but sufficiently rigorous to insure the integrity of the testing process.

  19. Self contamination effects in the TAUVEX UV Telescope: Ground testing and computer simulation

    Science.gov (United States)

    Lifshitz, Y.; Noter, Y.; Grossman, E.; Genkin, L.; Murat, M.; Saar, N.; Blasberger, A.

    1994-01-01

    The contamination effects due to outgassing from construction materials of the TAUVEX (Tel Aviv University UV Telescope) were evaluated using a combination of ground testing and computer simulations. Tests were performed from the material level of the system level including: (1) High sensitivity CVCM(10(exp -3 percent) measurements of critical materials. (2) Optical degradation measurements of samples specially contaminated by outgassing products at different contamination levels. (3) FTIR studies of chemical composition of outgassed products on above samples. (4) High resolution AFM studies of surface morphology of contaminated surfaces. The expected degradation of TAUVEX performance in mission was evaluated applying a computer simulation code using input parameters determined experimentally in the above tests. The results have served as guidelines for the proper selection of materials, cleanliness requirements, determination of the thermal conditions of the system and bakeout processes.

  20. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly

    Science.gov (United States)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron

    2014-01-01

    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  1. Objectives and Progress on Ground Vibration Testing for the Ares Projects

    Science.gov (United States)

    Tuma, Margaret L.; Chenevert, Donald J.

    2010-01-01

    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA s next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be conducting the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO will perform the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orion/lander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. The current plan is to test six configurations in three unique test positions inside TS 4550. Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Position 1 represents the entire launch stack at lift-off (using inert first stage segments). Because of long disuse, TS 4550 is being repaired and modified for reactivation to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. Two new cranes will help move test articles at the test stand and at the

  2. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    Science.gov (United States)

    Young, Roy M.; Adams, Charles L.

    2010-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.

  3. 78 FR 41999 - Combined Drug and Alcohol Testing Programs

    Science.gov (United States)

    2013-07-15

    ... or on-demand operators that also conduct commercial air tour operations to combine the drug and... operators to conduct separate testing programs for their commercial air tour operations. This results in an..., an operator's drug and alcohol testing program covered its commercial air tour operations. In...

  4. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  5. CHANG'E-3 Active Particle-induced X-ray Spectrometer: ground verification test

    Science.gov (United States)

    Guo, Dongya; Peng, Wenxi; Cui, XingZhu; Wang, Huanyu

    The Active Particle-induced X-ray Spectrometer (APXS) is one of the payloads of Chang’E-3 rover Yutu, with which the major elemental composition of lunar soils and rocks can be measured on site. In order to assess the instrument performance and the accuracy of determination, ground verification test was carried out with two blind samples(basaltic rock, powder). Details of the experiments and data analysis method are discussed. The results show that the accuracy of quantitative analysis for major elements(Mg,Al,Si,K,Ca,Ti,Fe) is better than 15%.

  6. Demonstration of the Military Ecological Risk Assessment Framework (MERAF): Apache Longbow - Hellfire Missile Test at Yuma Proving Ground

    Science.gov (United States)

    2001-11-01

    Associates, Yuma Proving Ground Office Sergio Obregon David Mcintyre BiuceGoff Yuma Proving Ground Aviation and Airdrop Systems Rick Douglas Bert Evans...on relatively narrow gullies, relative to the wide, braded channels of the wash test area. The Glass (2000) study area was dominated by pavement

  7. Helping Students Test Programs That Have Graphical User Interfaces

    Directory of Open Access Journals (Sweden)

    Matthew Thornton

    2008-08-01

    Full Text Available Within computer science education, many educators are incorporating software testing activities into regular programming assignments. Tools like JUnit and its relatives make software testing tasks much easier, bringing them into the realm of even introductory students. At the same time, many introductory programming courses are now including graphical interfaces as part of student assignments to improve student interest and engagement. Unfortunately, writing software tests for programs that have significant graphical user interfaces is beyond the skills of typical students (and many educators. This paper presents initial work at combining educationally oriented and open-source tools to create an infrastructure for writing tests for Java programs that have graphical user interfaces. Critically, these tools are intended to be appropriate for introductory (CS1/CS2 student use, and to dovetail with current teaching approaches that incorporate software testing in programming assignments. We also include in our findings our proposed approach to evaluating our techniques.

  8. Climatological Processing and Product Development for the TRMM Ground Validation Program

    Science.gov (United States)

    Marks, D. A.; Kulie, M. S.; Robinson, M.; Silberstein, D. S.; Wolff, D. B.; Ferrier, B. S.; Amitai, E.; Fisher, B.; Wang, J.; Augustine, D.; Thiele, O.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Tropical Rainfall Measuring Mission (TRMM) satellite was successfully launched in November 1997.The main purpose of TRMM is to sample tropical rainfall using the first active spaceborne precipitation radar. To validate TRMM satellite observations, a comprehensive Ground Validation (GV) Program has been implemented. The primary goal of TRMM GV is to provide basic validation of satellite-derived precipitation measurements over monthly climatologies for the following primary sites: Melbourne, FL; Houston, TX; Darwin, Australia- and Kwajalein Atoll, RMI As part of the TRMM GV effort, research analysts at NASA Goddard Space Flight Center (GSFC) generate standardized rainfall products using quality-controlled ground-based radar data from the four primary GV sites. This presentation will provide an overview of TRMM GV climatological processing and product generation. A description of the data flow between the primary GV sites, NASA GSFC, and the TRMM Science and Data Information System (TSDIS) will be presented. The radar quality control algorithm, which features eight adjustable height and reflectivity parameters, and its effect on monthly rainfall maps, will be described. The methodology used to create monthly, gauge-adjusted rainfall products for each primary site will also be summarized. The standardized monthly rainfall products are developed in discrete, modular steps with distinct intermediate products. A summary of recently reprocessed official GV rainfall products available for TRMM science users will be presented. Updated basic standardized product results involving monthly accumulation, Z-R relationship, and gauge statistics for each primary GV site will also be displayed.

  9. Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites

    Science.gov (United States)

    Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.

    2015-12-01

    Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.

  10. Improved Performance Band Track Program: Test Report

    Science.gov (United States)

    1985-04-01

    capabilities of the test setup. Since the hubodometer mounted to the idler wheel on the test setup Is calibrated to read one mile every 973 wheel...PENNIMAN & 3ROWNE, INc. -"------ov STAPIPC H -M I STS -tNO IN Er R -IN SPECTO RS 6"’L up N . A ,, 0 2 2 F A L L S R O A D C .6L A00m g, , AL"tN W

  11. Automatic Test Case Generation of C Program Using CFG

    Directory of Open Access Journals (Sweden)

    Sangeeta Tanwer

    2010-07-01

    Full Text Available Software quality and assurance in a software company is the only way to gain the customer confidence by removing all possible errors. It can be done by automatic test case generation. Taking popularly C programs as tests object, this paper explores how to create CFG of a C program and generate automatic Test Cases. It explores the feasibility and nonfeasibility of path basis upon no. of iteration. First C is code converted to instrumented code. Then test cases are generated by using Symbolic Testing and random Testing. System is developed by using C#.net in Visual Studio 2008. In addition some future research directions are also explored.

  12. Unit cell sparger test program and analysis of test results

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Kyung; Song, C. H.; Cho, S.; Yoon, Y. J

    2003-11-01

    This report presents the results of test data from CPT-3 test and the effect of important parameters on the IRWST load. The object of CPT-3 test is to determine the influence of air mass in the piping on the IRWST (In-containment Refueling Water Storage Tank) boundary during an operation of Safety Depressurization and Vent System (SDVS). The test was conducted from an initial system pressure of 15.2 MPa, a steam temperature of 343.3 .deg. C, and an air mass of 3.34 lb. Following valve actuation, the pressure within the discharge line underwent pressure transient due to high pressure steam from the pressurizer and the discharged high pressure air formed air bubbles, which expanded and compressed periodically in the simulated IRWST. Air bubble oscillation was terminated within 2 s into the test. The magnitude of the pressure wave during the air clearing period was inversely proportional to the distance and very abrupt pressure spikes were observed in case the distance from the sparger holes to the submerged structure was less than 0.9 m. After the isolation valves were closed, the water in the simulated IRWST was considered to rise up to the 2.4m from the water surface in the quench tank. The amount of air mass in the piping, water temperature in the simulated IRWST, air temperature in the piping had not significant effect on the pressure loading during an air clearing period. However, the opening time of the isolation valve, steam mass flow rate, and submergence of an sparger have been shown to have great effects on the pressure loading during an air clearing period. 2 % of sparger flow area seems to be sufficient for the vacuum breaker area to mitigate the water hammering caused by abrupt water level rising during valve closure.

  13. Testing alternative ground water models using cross-validation and other methods

    Science.gov (United States)

    Foglia, L.; Mehl, S.W.; Hill, M.C.; Perona, P.; Burlando, P.

    2007-01-01

    Many methods can be used to test alternative ground water models. Of concern in this work are methods able to (1) rank alternative models (also called model discrimination) and (2) identify observations important to parameter estimates and predictions (equivalent to the purpose served by some types of sensitivity analysis). Some of the measures investigated are computationally efficient; others are computationally demanding. The latter are generally needed to account for model nonlinearity. The efficient model discrimination methods investigated include the information criteria: the corrected Akaike information criterion, Bayesian information criterion, and generalized cross-validation. The efficient sensitivity analysis measures used are dimensionless scaled sensitivity (DSS), composite scaled sensitivity, and parameter correlation coefficient (PCC); the other statistics are DFBETAS, Cook's D, and observation-prediction statistic. Acronyms are explained in the introduction. Cross-validation (CV) is a computationally intensive nonlinear method that is used for both model discrimination and sensitivity analysis. The methods are tested using up to five alternative parsimoniously constructed models of the ground water system of the Maggia Valley in southern Switzerland. The alternative models differ in their representation of hydraulic conductivity. A new method for graphically representing CV and sensitivity analysis results for complex models is presented and used to evaluate the utility of the efficient statistics. The results indicate that for model selection, the information criteria produce similar results at much smaller computational cost than CV. For identifying important observations, the only obviously inferior linear measure is DSS; the poor performance was expected because DSS does not include the effects of parameter correlation and PCC reveals large parameter correlations. ?? 2007 National Ground Water Association.

  14. Ground Tests of Einstein's Equivalence Principle: From Lab-based to 10-m Atomic Fountains

    CERN Document Server

    Schlippert, D; Richardson, L L; Nath, D; Heine, H; Meiners, C; Wodey, É; Billon, A; Hartwig, J; Schubert, C; Gaaloul, N; Ertmer, W; Rasel, E M

    2015-01-01

    To date, no framework combining quantum field theory and general relativity and hence unifying all four fundamental interactions, exists. Violations of the Einstein's equivalence principle (EEP), being the foundation of general relativity, may hold the key to a theory of quantum gravity. The universality of free fall (UFF), which is one of the three pillars of the EEP, has been extensively tested with classical bodies. Quantum tests of the UFF, e.g. by exploiting matter wave interferometry, allow for complementary sets of test masses, orders of magnitude larger test mass coherence lengths and investigation of spin-gravity coupling. We review our recent work towards highly sensitive matter wave tests of the UFF on ground. In this scope, the first quantum test of the UFF utilizing two different chemical elements, Rb-87 and K-39, yielding an E\\"otv\\"os ratio $\\eta_{\\,\\text{Rb,K}}=(0.3\\pm 5.4)\\times 10^{-7}$ has been performed. We assess systematic effects currently limiting the measurement at a level of parts in...

  15. Ongoing Capabilities and Developments of Re-Entry Plasma Ground Tests at EADS-ASTRIUM

    Science.gov (United States)

    Jullien, Pierre

    2008-01-01

    During re-entry, spacecrafts are subjected to extreme thermal loads. On mars, they may go through dust storms. These external heat loads are leading the design of re-entry vehicles or are affecting it for spacecraft facing solid propellant jet stream. Sizing the Thermal Protection System require a good knowledge of such solicitations and means to model and reproduce them on earth. Through its work on European projects, ASTRIUM has developed the full range of competences to deal with such issues. For instance, we have designed and tested the heat-shield of the Huygens probe which landed on Titan. In particular, our plasma generators aim to reproduce a wide variety of re-entry conditions. Heat loads are generated by the huge speed of the probes. Such conditions cannot be fully reproduced. Ground tests focus on reproducing local aerothermal loads by using slower but hotter flows. Our inductive plasma torch enables to test little samples at low TRL. Amongst the arc-jets, one was design to test architecture design of ISS crew return system and others fit more severe re-entry such as sample returns or Venus re-entry. The last developments aimed in testing samples in seeded flows. First step was to design and test the seeding device. Special diagnostics characterizing the resulting flow enabled us to fit it to the requirements.

  16. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    Energy Technology Data Exchange (ETDEWEB)

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  17. Ground test challenges in the development of the Space Shuttle orbiter auxiliary power unit

    Science.gov (United States)

    Chaffee, N. H.; Lance, R. J.; Weary, D. P.

    1984-01-01

    A conventional aircraft hydraulic system design approach was selected to provide fluid power for the Space Shuttle Orbiter. Developing the power unit, known as the Auxiliary Power Unit (APU), to drive the hydraulic pumps presented a major technological challenge. A small, high speed turbine drive unit powered by catalytically decomposed hydrazine and operating in the pulse mode was selected to meet the requirement. Because of limitations of vendor test facilities, significant portions of the development, flight qualification, and postflight anomaly testing of the Orbiter APU were accomplished at the Johnson Space Center (JSC) test facilities. This paper discusses the unique requirements of attitude, gravity forces, pressure profiles, and thermal environments which had to be satisfied by the APU, and presents the unique test facility and simulation techniques employed to meet the ground test requirements. In particular, the development of the zero-g lubrication system, the development of necessary APU thermal control techniques, the accomplishment of integrated systems tests, and the postflight investigation of the APU lube oil cooler behavior are discussed.

  18. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  19. A study of ground-structure interaction in dynamic plate load testing

    Science.gov (United States)

    Guzina, Bojan B.; Nintcheu Fata, Sylvain

    2002-10-01

    A mathematical treatment is presented for the forced vertical vibration of a padded annular footing on a layered viscoelastic half-space. On assuming a depth-independent stress distribution for the interfacial buffer, the set of triple integral equations stemming from the problem is reduced to a Fredholm integral equation of the second kind. The solution method, which is tailored to capture the stress concentrations beneath footing edges, is highlighted. To cater to small-scale geophysical applications, the model is used to investigate the near-field effects of ground-loading system interaction in dynamic geotechnical and pavement testing. Numerical results indicate that the uniform-pressure assumption for the contact load between the composite disc and the ground which is customary in dynamic plate load testing may lead to significant errors in the diagnosis of subsurface soil and pavement conditions. Beyond its direct application to non-intrusive site characterization, the proposed solution can be used in the seismic analysis of a variety of structures involving annular foundation geometries.

  20. GSDO Program Hexavalent Chrome Alternatives: Final Pretreatments Test Report

    Science.gov (United States)

    Kessel, Kurt

    2013-01-01

    Hexavalent chrome free pretreatments should be considered for use on Ground Support Equipment (OSE) and Electrical Ground Support Equipment (EOSE). Both of the hexavalent chrome free pretreatments (Metalast TCP HF and SurTec 650C) evaluated by this project met, and in some instances exceeded, the requirements ofMIL-DTL-5541 "Chemical Conversion Coatings on Aluminum and Aluminum Alloys". For DC resistance measurements, both Metalast TCP HF and SurTec (!50C met initial requirements following assembly and in many cases continued to maintain passing readings for the duration of testing.

  1. The Use of Tailored Testing with Instructional Programs.

    Science.gov (United States)

    1986-03-01

    logistic models ( 3PL ). The first stage of the study used real data, while the second stage used simulated data. In the first stage, response data for 3000...developed during the project was for " the adaptive administration of the course tests. This program was based on *i the one-parameter logistic (Rasch... logistic tailored testing procedures for use with small item pools. (Research Report ONR 83-1). Iowa City, Iowa: The American College Testing Program. Z

  2. Testing sea-level markers observed in ground-penetrating radar data from Feddet, south-eastern Denmark

    DEFF Research Database (Denmark)

    Hede, Mikkel Ulfeldt; Nielsen, Lars; Clemmensen, Lars B;

    2012-01-01

    Ground-penetrating radar (GPR) data have been collected across the modern part (test identification of sea-level markers in GPR data from microtidal depositional environments. Nielsen and Clemmensen (2009) showed...

  3. Development of Neural Network Model for Predicting Peak Ground Acceleration Based on Microtremor Measurement and Soil Boring Test Data

    National Research Council Canada - National Science Library

    Kerh, T; Lin, J. S; Gunaratnam, D

    2012-01-01

    .... This paper is therefore aimed at developing a neural network model, based on available microtremor measurement and on-site soil boring test data, for predicting peak ground acceleration at a site...

  4. Gravity-Off-loading System for Large-Displacement Ground Testing of Spacecraft Mechanisms

    Science.gov (United States)

    Han, Olyvia; Kienholz, David; Janzen, Paul; Kidney, Scott

    2010-01-01

    Gravity-off-loading of deployable spacecraft mechanisms during ground testing is a long-standing problem. Deployable structures which are usually too weak to support their own weight under gravity require a means of gravity-off-loading as they unfurl. Conventional solutions to this problem have been helium-filled balloons or mechanical pulley/counterweight systems. These approaches, however, suffer from the deleterious effects of added inertia or friction forces. The changing form factor of the deployable structure itself and the need to track the trajectory of the center of gravity also pose a challenge to these conventional technologies. This paper presents a novel testing apparatus for high-fidelity zero-gravity simulation for special application to deployable space structures such as solar arrays, magnetometer booms, and robotic arms in class 100,000 clean room environments

  5. Next Generation Drivetrain Development and Test Program

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jonathan; Erdman, Bill; Blodgett, Doug; Halse, Chris; Grider, Dave

    2015-11-03

    This presentation was given at the Wind Energy IQ conference in Bremen, Germany, November 30 through December 2, 2105. It focused on the next-generation drivetrain architecture and drivetrain technology development and testing (including gearbox and inverter software and medium-voltage inverter modules.

  6. Fully Fueled TACOM Vehicle Storage Test Program.

    Science.gov (United States)

    1981-12-01

    AFLRL with a water bottom were tested as control samples. This fuel sample had been previously innoculated with a culture of Cladosporium resinae and was...turbid, light pink color * Containing active growth of Cladosporium resinae ** Sample was shaken and allowed to stand for 24 hours prior to obtaining

  7. New Testing Standard For European Programs

    Science.gov (United States)

    Giordano, P.

    2004-08-01

    Standardization is a key aspect of the production business committed to the optimization of the product development and cost. In the Space field, American industries and Government organizations have developed since several decades Space standards like the MIL series, deriving them from the aircraft and military fields, or the NASA standards. The same happened later in other countries like Russia, Japan and China. In the last years most of those standards were revised to cope with the emerging needs of the market. In Europe, the Space activities were generally managed by a set of ESA standards, the PSS, which covered some aspects of these activities and reflected the up-to-date approaches and common practices. But, in the last years an initiative was also promoted by ESA, National Agencies and Space Organizations, named ECSS (European Cooperation for Space Standardization), with the aim to develop a coherent, single set of user-friendly standards for use in all European space activities. European industries supported this initiative, including a deep involvement of Alenia Spazio and, sometime through a suitable revision of the old PSS documents, new standards were defined, as for the "Testing" (ECSS-E-10-03A, now published). The ECSS-E-10-03A provides standard environmental and performance test requirements for space products (systems and their constituents) which are generally applicable to all projects. Scope of this paper is to present the status of the worldwide initiatives in the testing standardization, the major contents of the European ECSS Testing standard and the possibilities for tailoring. Differences in requirement definition with other international testing standards and proposals for further ECSS optimization are presented on the basis of Alenia Spazio experience in supporting the above initiatives.

  8. Test holes drilled in support of ground-water investigations, Project Gnome, Eddy County, New Mexico

    Science.gov (United States)

    Cooper, J.B.

    1962-01-01

    Project Gnome is a proposed underground nuclear shot to be detonated within a massive salt bed in Eddy County, N. Mex. Potable and neat potable ground water is present in rocks above the salt and is being studied in relation to this nuclear event. This report presents details of two test holes which were drilled to determine ground-water conditions in the near vicinity of the shot point. A well-defined aquifer is present at the site of USGS test hole 1, about 1,000 feet south of the access shaft to the underground shot point. Water with 75 feet of artesian pressure head is contained in the Culebra dolomite member of the Rustler formation. The dolomite aquifer is 32 feet thick and its top lies at a depth of 517 feet below land surface. The aquifer yielded 100 gpm (gallons per minute) with a drawdown of 40 feet during a pumping period of 24 hours. Water was not found in rocks above or below the Culebra dolomite. At the site of USGS test hole 2, about 2 miles southwest of the access shaft no distinctive aquifer exists. About one-half gpm was yielded to the well from the rocks between the Culebra dolomite and the top of the salt. Water could not be detected in the Culebra dolomite or overlying rocks. The report contains drawdown and recovery curves of yield tests, drilling-time charts, and electric logs. The data are given in tables; they include summaries of hole construction, sample description logs, water measurements, drilling-time logs, and water analyses.

  9. Active suspension design for a Large Space Structure ground test facility

    Science.gov (United States)

    Lange, Thomas J. H.; Schlegel, Clemens

    1993-01-01

    The expected future high performance requirements for Large Space Structures (LSS) enforce technology innovations such as active vibration damping techniques e.g., by means of structure sensors and actuators. The implementation of new technologies like that requires an interactive and integrated structural and control design with an increased effort in hardware validation by ground testing. During the technology development phase generic system tests will be most important covering verification and validation aspects up to the preparation and definition of relevant space experiments. For many applications using advanced designs it is deemed necessary to improve existing testing technology by further reducing disturbances and gravity coupling effects while maintaining high performance reliability. A key issue in this context is the improvement of suspension techniques. The ideal ground test facility satisfying these requirements completely will never be found. The highest degree of reliability will always be obtained by passive suspension methods taking into account severe performance limitations such as non-zero rigid body modes, restriction of degrees of freedom of motion and frequency response limitations. Passive compensation mechanisms, e.g., zero-spring-rate mechanisms, either require large moving masses or they are limited with respect to low-frequency performance by friction, stiction or other non-linear effects. With active suspensions these limitations can be removed to a large extent thereby increasing the range of applications. Despite an additional complexity which is associated with a potential risk in reliability their development is considered promising due to the amazing improvement of real-time control technology which is still continuing.

  10. Initial Mirror Coalignment (IOT test program)

    Science.gov (United States)

    Friedman, Scott

    A series of 25 arcsec slews is executed in a spiral pattern about the LWRS aperture to try to find light in all four channels for the first time. This will be done as a single time-tag exposure. The primary data source is the detector counters. The default detector mask must be loaded prior to executing this program. This is followed by a one day interval to calculate the mirror movements required to co-align the channels to an accuracy of 25 arcsec. Finally, the target is recentered in the LWRS aperture. Then two series of linear slews are done, first in the X direction then in the Y direction. Each of these consists of 7 dwells separated by six slews, with each slew 5 arcsec in size. This will locate the edge of the slit to an accuracy of about 5 arcsec. A separate time-tag exposure will be taken during each of these linear slew sequences.

  11. Directed Beam Alignment System Testing Program.

    Science.gov (United States)

    1979-06-04

    4 2.1.1 Handover Based on DBAS Alignment ........... 7 2.2 Conceptoal Implementation of DBAS .... ........... 8 3.0 Breadboard...Sequence Timing Diagrams ........... 70 Figure 29. Level Sensor ...... .................. 72 Figure 30. Recommended DBAS Development Schedule ...... .76...D.B.A.S. Sensor Geometric Measurements ..... .32 Table 6. Summary of DBAS Radiometric Measurements . . .. 34 Table 7. R6 Parking Lot Test Summary

  12. Ground testing and flight demonstration of charge management of insulated test masses using UV-LED electron photoemission

    Science.gov (United States)

    Saraf, Shailendhar; Buchman, Sasha; Balakrishnan, Karthik; Lui, Chin Yang; Soulage, Michael; Faied, Dohy; Hanson, John; Ling, Kuok; Jaroux, Belgacem; Suwaidan, Badr Al; AlRashed, Abdullah; Al-Nassban, Badr; Alaqeel, Faisal; Harbi, Mohammed Al; Salamah, Badr Bin; Othman, Mohammed Bin; Qasim, Bandar Bin; Alfauwaz, Abdulrahman; Al-Majed, Mohammed; DeBra, Daniel; Byer, Robert

    2016-12-01

    The UV-LED mission demonstrates the precise control of the potential of electrically isolated test masses. Test mass charge control is essential for the operation of space accelerometers and drag-free sensors which are at the core of geodesy, aeronomy and precision navigation missions as well as gravitational wave experiments and observatories. Charge management using photoelectrons generated by the 254 nm UV line of Hg was first demonstrated on Gravity Probe B and is presently part of the LISA Pathfinder technology demonstration. The UV-LED mission and prior ground testing demonstrates that AlGaN UVLEDs operating at 255 nm are superior to Hg lamps because of their smaller size, lower power draw, higher dynamic range, and higher control authority. We show laboratory data demonstrating the effectiveness and survivability of the UV-LED devices and performance of the charge management system. We also show flight data from a small satellite experiment that was one of the payloads on KACST’s SaudiSat-4 mission that demonstrates ‘AC charge control’ (UV-LEDs and bias are AC modulated with adjustable relative phase) between a spherical test mass and its housing. The result of the mission brings the UV-LED device Technology Readiness Level (TRL) to TRL-9 and the charge management system to TRL-7. We demonstrate the ability to control the test mass potential on an 89 mm diameter spherical test mass over a 20 mm gap in a drag-free system configuration, with potential measured using an ultra-high impedance contact probe. Finally, the key electrical and optical characteristics of the UV-LEDs showed less than 7.5% change in performance after 12 months in orbit.

  13. Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing

    Science.gov (United States)

    Tuma, M. L.; Chenevert, D. J.

    2010-01-01

    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA's next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be leading the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO is responsible for performing the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orionilander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. For the Ares IVGVT, the current plan is to test six configurations in three unique test positions inside TS 4550. Position 1 represents the entire launch stack at liftoff (using inert first stage segments). Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Because of long disuse, TS 4550 is being repaired and reactivated to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. The electrical power distribution system for TS 4550 was

  14. The Apache Longbow-Hellfire Missile Test at Yuma Proving Ground: Ecological Risk Assessment for Helicopter Overflight

    Energy Technology Data Exchange (ETDEWEB)

    Efroymson, Rebecca Ann [ORNL; Hargrove, William Walter [ORNL; Suter, Glenn [U.S. Environmental Protection Agency

    2008-01-01

    A multi-stressor risk assessment was conducted at Yuma Proving Ground, Arizona, as a demonstration of the Military Ecological Risk Assessment Framework. The focus of the assessment was a testing program at Cibola Range, which involved an Apache Longbow helicopter firing Hellfire missiles at moving targets, M60-A1 tanks. This paper focuses on the wildlife risk assessment for the helicopter overflight. The primary stressors were sound and the view of the aircraft. Exposure to desert mule deer (Odocoileus hemionus crooki) was quantified using Air Force sound contour programs NOISEMAP and MR_NMAP, which gave very different results. Slant distance from helicopters to deer was also used as a measure of exposure that integrated risk from sound and view of the aircraft. Exposure-response models for the characterization of effects consisted of behavioral thresholds in sound exposure level or maximum sound level units or slant distance. Available sound thresholds were limited for desert mule deer, but a distribution of slant-distance thresholds was available for ungulates. The risk characterization used a weight-of-evidence approach and concluded that risk to mule deer behavior from the Apache overflight is uncertain, but that no risk to mule deer abundance and reproduction is expected.

  15. The Apache Longbow-Hellfire Missile Test at Yuma Proving Ground: Ecological Risk Assessment for Missile Firing

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Daniel Steven [ORNL; Efroymson, Rebecca Ann [ORNL; Hargrove, William Walter [ORNL; Suter, Glenn [U.S. Environmental Protection Agency; Pater, Larry [ERDC-CERL

    2008-01-01

    A multiple stressor risk assessment was conducted at Yuma Proving Ground, Arizona, as a demonstration of the Military Ecological Risk Assessment Framework. The focus was a testing program at Cibola Range, which involved an Apache Longbow helicopter firing Hellfire missiles at moving targets, M60- A1 tanks. This paper describes the ecological risk assessment for the missile launch and detonation. The primary stressor associated with this activity was sound. Other minor stressors included the detonation impact, shrapnel, and fire. Exposure to desert mule deer (Odocoileus hemionus crooki) was quantified using the Army sound contour program BNOISE2, as well as distances from the explosion to deer. Few effects data were available from related studies. Exposure-response models for the characterization of effects consisted of human "disturbance" and hearing damage thresholds in units of C-weighted decibels (sound exposure level) and a distance-based No Observed Adverse Effects Level for moose and cannonfire. The risk characterization used a weight-of-evidence approach and concluded that risk to mule deer behavior from the missile firing was likely for a negligible number of deer, but that no risk to mule deer abundance and reproduction is expected.

  16. Ground Testing and Flight Demonstration of Charge Management of Insulated Test Masses Using UV LED Electron Photoemission

    CERN Document Server

    Saraf, Shailendhar; Balakrishnan, Karthik; Lui, Chin Yang; Soulage, Michael; Faied, Dohy; Hanson, John; Ling, Kuok; Jaroux, Belgacem; AlRashed, Abdullah; Nassban, Badr Al; Suwaidan, Badr Al; Harbi, Mohammed Al; Salamah, Badr Bin; Othman, Mohammed Bin; Qasim, Bandar Bin; DeBra, Daniel; Byer, Robert

    2016-01-01

    The UV LED mission demonstrates the precise control of the potential of electrically isolated test masses that is essential for the operation of space accelerometers and drag free sensors. Accelerometers and drag free sensors were and remain at the core of geodesy, aeronomy, and precision navigation missions as well as gravitational science experiments and gravitational wave observatories. Charge management using photoelectrons generated by the 254 nm UV line of Hg was first demonstrated on Gravity Probe B and is presently part of the LISA Pathfinder technology demonstration. The UV LED mission and prior ground testing demonstrates that AlGaN UV LEDs operating at 255 nm are superior to Mercury vapor lamps because of their smaller size, lower draw, higher dynamic range, and higher control authority. We show flight data from a small satellite mission on a Saudi Satellite that demonstrates AC charge control (UV LEDs and bias are AC modulated with adjustable relative phase) between a spherical test mass and its h...

  17. DOE Field Operations Program EV and HEV Testing

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, James Edward; Slezak, L. A.

    2001-10-01

    The United States Department of Energy’s (DOE) Field Operations Program tests advanced technology vehicles (ATVs) and disseminates the testing results to provide fleet managers and other potential ATV users with accurate and unbiased information on vehicle performance. The ATVs (including electric, hybrid, and other alternative fuel vehicles) are tested using one or more methods - Baseline Performance Testing (EVAmerica and Pomona Loop), Accelerated Reliability Testing, and Fleet Testing. The Program (http://ev.inel.gov/sop) and its nine industry testing partners have tested over 30 full-size electric vehicle (EV) models and they have accumulated over 4 million miles of EV testing experience since 1994. In conjunction with several original equipment manufacturers, the Program has developed testing procedures for the new classes of hybrid, urban, and neighborhood EVs. The testing of these vehicles started during 2001. The EVS 18 presentation will include (1) EV and hybrid electric vehicle (HEV) test results, (2) operating experience with and performance trends of various EV and HEV models, and (3) experience with operating hydrogen-fueled vehicles. Data presented for EVs will include vehicle efficiency (km/kWh), average distance driven per charge, and range testing results. The HEV data will include operating considerations, fuel use rates, and range testing results.

  18. ARMA models for earthquake ground motions. Seismic safety margins research program

    Energy Technology Data Exchange (ETDEWEB)

    Chang, M. K.; Kwiatkowski, J. W.; Nau, R. F.; Oliver, R. M.; Pister, K. S.

    1981-02-01

    Four major California earthquake records were analyzed by use of a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It was possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters, and test the residuals generated by these models. It was also possible to show the connections, similarities, and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum-likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed is suitable for simulating earthquake ground motions in the time domain, and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. 60 references, 19 figures, 9 tables.

  19. Small UAV Automatic Ground Collision Avoidance System Design Considerations and Flight Test Results

    Science.gov (United States)

    Sorokowski, Paul; Skoog, Mark; Burrows, Scott; Thomas, SaraKatie

    2015-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Small Unmanned Aerial Vehicle (SUAV) Automatic Ground Collision Avoidance System (Auto GCAS) project demonstrated several important collision avoidance technologies. First, the SUAV Auto GCAS design included capabilities to take advantage of terrain avoidance maneuvers flying turns to either side as well as straight over terrain. Second, the design also included innovative digital elevation model (DEM) scanning methods. The combination of multi-trajectory options and new scanning methods demonstrated the ability to reduce the nuisance potential of the SUAV while maintaining robust terrain avoidance. Third, the Auto GCAS algorithms were hosted on the processor inside a smartphone, providing a lightweight hardware configuration for use in either the ground control station or on board the test aircraft. Finally, compression of DEM data for the entire Earth and successful hosting of that data on the smartphone was demonstrated. The SUAV Auto GCAS project demonstrated that together these methods and technologies have the potential to dramatically reduce the number of controlled flight into terrain mishaps across a wide range of aviation platforms with similar capabilities including UAVs, general aviation aircraft, helicopters, and model aircraft.

  20. Ground and surface water for drinking: a laboratory study on genotoxicity using plant tests

    Directory of Open Access Journals (Sweden)

    Donatella Feretti

    2012-02-01

    Full Text Available Surface waters are increasingly utilized for drinking water because groundwater sources are often polluted. Several monitoring studies have detected the presence of mutagenicity in drinking water, especially from surface sources due to the reaction of natural organic matter with disinfectant. The study aimed to investigate the genotoxic potential of the products of reaction between humic substances, which are naturally present in surface water, and three disinfectants: chlorine dioxide, sodium hypochlorite and peracetic acid. Commercial humic acids dissolved in distilled water at different total organic carbon (TOC concentrations were studied in order to simulate natural conditions of both ground water (TOC=2.5 mg/L and surface water (TOC=7.5 mg/L. These solutions were treated with the biocides at a 1:1 molar ratio of C:disinfectant and tested for genotoxicity using the anaphase chromosomal aberration and micronucleus tests in Allium cepa, and the Vicia faba and Tradescantia micronucleus tests. The tests were carried out after different times and with different modes of exposure, and at 1:1 and 1:10 dilutions of disinfected and undisinfected humic acid solutions. A genotoxic effect was found for sodium hypochlorite in all plant tests, at both TOCs considered, while chlorine dioxide gave positive results only with the A.cepa tests. Some positive effects were also detected for PAA (A.cepa and Tradescantia. No relevant differences were found in samples with different TOC values. The significant increase in all genotoxicity end-points induced by all tested disinfectants indicates that a genotoxic potential is exerted even in the presence of organic substances at similar concentrations to those frequently present in drinking water.

  1. Prescribed differences in exercise intensity based on the TCAR test over sandy ground and grass.

    Directory of Open Access Journals (Sweden)

    Juliano Fernandes da Silva

    2010-01-01

    Full Text Available The intensity of training might be influenced by exercise mode and type of terrain. Thus, the objective of this study was a to compare the physiological indices determined in the TCAR test carried out on natural grass (NG and sandy ground (SG, and b to analyze heart rate (HR and blood lactate responses during constant exercise on SG and NG. Ten soccer players (15.11 ± 1.1 years, 168 ± 4.0 cm, 60 ± 4.0 kg were submitted to the TCAR test to determine peak velocity (PV and the intensity corresponding to 80.4% PV (V80.4 on NG and SG. The second evaluation consisted of two constant load tests (CLT (80.4% PV on NG and SG with a duration of 27 min. The paired Student t-test was used to compare the tests carried out on NG and SG. ANOVA (two-way, complemented by the Tukey test, was used to compare lactate concentrations [La] at 9, 18 and 27 min between the two types of terrain. A p value <0.05 was adopted. PV and V80.4 (15.3±1.0 and 12.3±0.6 km/h were significantly higher on grass than on sand (14.3±1.0 and 11.5±0.4 km/h. Lactate concentration during the CLT [LaV80.4] was significantly higher on sand (4.1±0.9 mmol/L than on grass (2.8±0.7 mmol/L. In the CLT, no significant difference in mean HR was observed between the two terrains, whereas there was a difference in [La]. In conclusion, the type of terrain interferes with indicators associated with aerobic power and capacity obtained by the TCAR test.

  2. Ground and surface water for drinking: a laboratory study on genotoxicity using plant tests.

    Science.gov (United States)

    Feretti, Donatella; Ceretti, Elisabetta; Gustavino, Bianca; Zerbini, Llaria; Zani, Claudia; Monarca, Silvano; Rizzoni, Marco

    2012-02-17

    Surface waters are increasingly utilized for drinking water because groundwater sources are often polluted. Several monitoring studies have detected the presence of mutagenicity in drinking water, especially from surface sources due to the reaction of natural organic matter with disinfectant. The study aimed to investigate the genotoxic potential of the products of reaction between humic substances, which are naturally present in surface water, and three disinfectants: chlorine dioxide, sodium hypochlorite and peracetic acid. Commercial humic acids dissolved in distilled water at different total organic carbon (TOC) concentrations were studied in order to simulate natural conditions of both ground water (TOC=2.5 mg/L) and surface water (TOC=7.5 mg/L). These solutions were treated with the biocides at a 1:1 molar ratio of C:disinfectant and tested for genotoxicity using the anaphase chromosomal aberration and micronucleus tests in Allium cepa, and the Vicia faba and Tradescantia micronucleus tests. The tests were carried out after different times and with different modes of exposure, and at 1:1 and 1:10 dilutions of disinfected and undisinfected humic acid solutions. A genotoxic effect was found for sodium hypochlorite in all plant tests, at both TOCs considered, while chlorine dioxide gave positive results only with the A.cepa tests. Some positive effects were also detected for PAA (A.cepa and Tradescantia). No relevant differences were found in samples with different TOC values. The significant increase in all genotoxicity end-points induced by all tested disinfectants indicates that a genotoxic potential is exerted even in the presence of organic substances at similar concentrations to those frequently present in drinking water.

  3. Radiological safety studies on ground disposal of low-level radioactive wastes. Environmental simulation test

    Energy Technology Data Exchange (ETDEWEB)

    Wadachi, Yoshiki; Yamamoto, Tadatoshi; Takebe, Shinichi; Ohnuki, Toshihiko; Washio, Masakazu (Japan Atomic Energy Research Inst., Tokai, Ibaraki. Tokai Research Establishment)

    1982-03-01

    As the method of disposing low level radioactive wastes on land, the underground disposal method disposing the wastes in the structures constructed underground near the ground surface has been investigated as a feasible method. In order to contribute to the environmental safety assessment for this underground disposal method, environmental simulation test is planned at present, in which earth is sampled in the undisturbed state, and the behavior of radioactive nuclides is examined. The testing facilities are to be constructed in Japan Atomic Energy Research Institute from fiscal 1981. First, the research made so far concerning the movement of radioactive nuclides in airing layer and aquifer which compose natural barrier is outlined. As for the environmental simulation test, the necessity and method of the test, earth sampling, the underground simulation facility and the contribution to environmental safety assessment are explained. By examining the movement of radioactive nuclides through natural barrier and making the effective mddel for the underground movement of radioactive nuclides, the environmental safety assessment for the disposal can be performed to obtain the national consensus.

  4. Possibilities of ground penetrating radar usage within acceptance tests of rigid pavements

    Science.gov (United States)

    Stryk, Josef; Matula, Radek; Pospisil, Karel

    2013-10-01

    Within the road pavement acceptance tests, destructive as well as non-destructive tests of individual road layers are performed to verify the standard requirements. The article describes a method for providing quick, effective and sufficiently accurate measurements of both dowel and tie bar positions in concrete pavements, using a two-channel ground penetrating radar (GPR). Measurements were carried out in laboratory and in-situ conditions. A special hand cart for field measurements, set for the testing requirements, was designed. It was verified that following the correct measuring and assessment method, it is possible to reach accuracy of determining the in-built rebar up to 1 cm in vertical direction and up to 1.5 cm per 11.5 m of measured length in horizontal direction. In the in-situ tests, GPR identification of possible anomalies due to the phase of concrete pavement laying was presented. In the conclusion, a measurement report is mentioned. The standard requirements for the position of dowels and tie bars cover maximum possible deviation of the rebar position from the project documentation in vertical and horizontal direction, maximum deflection of rebar ends to each other, and maximum translation of rebar in the direction of its longitudinal axis.

  5. Yucca Mountain site characterization: The field testing program

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.R.; Matthusen, A.C.

    1994-12-31

    The Yucca Mountain area was first considered as a site for possible characterization as a high level waste repository in 1977. Since that time preliminary field testing and Congressional directive recommended continued testing and determined in 1987 that Yucca Mountain would be the only site characterized. Following environmental assessment, the development of a site characterization plan, and litigation with the State of Nevada testing from both surface-based perspective and underground in the Exploratory Studies Facility is underway. Data and analyses from the comprehensive testing program will be evaluated on a periodic basis of two year cycles to provide direction to the testing program. The entire testing program will culminate in a determination of site suitability near the end of the twentieth century.

  6. NCAA Drug-Testing Program 2010-11

    Science.gov (United States)

    National Collegiate Athletic Association (NJ1), 2010

    2010-01-01

    The National Collegiate Athletic Association (NCAA) Drug-Testing Program was created to protect the health and safety of student-athletes and to ensure that no one participant might have an artificially induced advantage or be pressured to use chemical substances. This publication describes this program in the following chapters: (1) NCAA…

  7. Psychological Testing: Trends in Masters Level Counseling Training Programs.

    Science.gov (United States)

    Keller, John W.; Piotrowski, Chris

    Masters level counseling graduates often provide clinical services in applied settings. To investigate the status of psychodiagnostic testing in masters level counseling (terminal) programs in the United States, all 48 masters level counseling training programs (excluding those with doctoral level training) received a one page questionnaire.…

  8. Zirconium pressure tube testing: Test procedures, Production Assurance Program (Project H-700)

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.; Lewis, M. [Pacific Northwest Lab., Richland, WA (United States)

    1986-06-01

    UNC Nuclear Industries (UNC) has initiated a plan for the fabrication of zirconium alloy pressure tubes required for the future operation of N-Reactor. As part of this plan, UNC is establishing a program to qualify and develop a process capable of fabricating these pressure tubes to the requirements of UNC specification HWS 6502, REV. 4, Amendment 1. The objective of the Pressure Tube Testing Task is to support the UNC program-by performing physical, mechanical and chemical testing on prototype tube sections produced during FY-1986, 1987 and 1988 and to test samples from production runs after 1988 as may be required. The types of tests included in the Zirconium Pressure Tube Testing Program will be as follows: tensile tests; burst tests; fracture toughness tests; corrosion tests; chemical composition analyses; grain structure evaluations. The purpose of this document is to define the procedures that will be used in each type of test included in this task.

  9. Dish stirling solar receiver combustor test program

    Science.gov (United States)

    Bankston, C. P.; Back, L. H.

    1981-01-01

    The operational and energy transfer characteristics of the Dish Stirling Solar Receiver (DSSR) combustor/heat exchanger system was evaluated. The DSSR is designed to operate with fossil fuel augmentation utilizing a swirl combustor and cross flow heat exchanger consisting of a single row of 4 closely spaced tubes that are curved into a conical shape. The performance of the combustor/heat exchanger system without a Stirling engine was studied over a range of operating conditions and output levels using water as the working fluid. Results show that the combustor may be started under cold conditions, controlled safety, and operated at a constant air/fuel ratio (10 percent excess air) over the required range of firing rates. Furthermore, nondimensional heat transfer coefficients based on total heat transfer are plotted versus Reynolds number and compared with literature data taken for single rows of closely spaced tubes perpendicular to cross flow. The data show enhanced heat transfer for the present geometry and test conditions. Analysis of the results shows that the present system meets specified thermal requirements, thus verifying the feasibility of the DSSR combustor design for final prototype fabrication.

  10. Automatic Test Case Generation in Object Oriented Programming

    Directory of Open Access Journals (Sweden)

    Tarun Dhar Diwan

    2012-06-01

    Full Text Available This paper presents a new methodology to select test cases from regression test suites. The selection strategy is based on analyzing the dynamic behavior of the applications that written in any programming language. Methods based on dynamic analysis are more safe and efficient. We design a technique that combine the code based technique and model based technique, to allow comparing the object oriented of an application that written in any programming language. We have developed a prototype tool that detect changes and select test cases from test suite.

  11. Testing Automation of Context-Oriented Programs Using Separation Logic

    Directory of Open Access Journals (Sweden)

    Mohamed A. El-Zawawy

    2014-01-01

    Full Text Available A new approach for programming that enables switching among contexts of commands during program execution is context-oriented programming (COP. This technique is more structured and modular than object-oriented and aspect-oriented programming and hence more flexible. For context-oriented programming, as implemented in COP languages such as ContextJ* and ContextL, this paper introduces accurate operational semantics. The language model of this paper uses Java concepts and is equipped with layer techniques for activation/deactivation of layer contexts. This paper also presents a logical system for COP programs. This logic is necessary for the automation of testing, developing, and validating of partial correctness specifications for COP programs and is an extension of separation logic. A mathematical soundness proof for the logical system against the proposed operational semantics is presented in the paper.

  12. U.S. field testing programs and results

    Energy Technology Data Exchange (ETDEWEB)

    Wicks, G.G.

    2000-06-09

    The United States has been active in four major international in-situ or field testing programs over the past two decades, involving the burial of simulated high-level waste forms and package components. These programs are designed to supplement laboratory testing studies in order to obtain the most complete and realistic picture possible of waste glass behavior under realistic repository-relevant conditions.

  13. General test plan redundant sensor strapdown IMU evaluation program

    Science.gov (United States)

    Hartwell, T.; Irwin, H. A.; Miyatake, Y.; Wedekind, D. E.

    1971-01-01

    The general test plan for a redundant sensor strapdown inertial measuring unit evaluation program is presented. The inertial unit contains six gyros and three orthogonal accelerometers. The software incorporates failure detection and correction logic and a land vehicle navigation program. The principal objective of the test is a demonstration of the practicability, reliability, and performance of the inertial measuring unit with failure detection and correction in operational environments.

  14. On-ground tests of LISA PathFinder thermal diagnostics system

    CERN Document Server

    Lobo, A; Ramos-Castro, J; Sanjuan, J; Lobo, Alberto; Nofrarias, Miquel; Ramos-Castro, Juan; Sanjuan, Josep

    2006-01-01

    Thermal conditions in the LTP, the LISA Technology Package, are required to be very stable, and in such environment precision temperature measurements are also required for various diagnostics objectives. A sensitive temperature gauging system for the LTP is being developed at IEEC, which includes a set of thermistors and associated electronics. In this paper we discuss the derived requirements applying to the temperature sensing system, and address the problem of how to create in the laboratory a thermally quiet environment, suitable to perform meaningful on-ground tests of the system. The concept is a two layer spherical body, with a central aluminium core for sensor implantation surrounded by a layer of polyurethane. We construct the insulator transfer function, which relates the temperature at the core with the laboratory ambient temperature, and evaluate the losses caused by heat leakage through connecting wires. The results of the analysis indicate that, in spite of the very demanding stability conditio...

  15. Radiative Heating in MSL Entry: Comparison of Flight Heating Discrepancy to Ground Test and Predictive Models

    Science.gov (United States)

    Cruden, Brett A.; Brandis, Aaron M.; White, Todd R.; Mahzari, Milad; Bose, Deepak

    2014-01-01

    During the recent entry of the Mars Science Laboratory (MSL), the heat shield was equipped with thermocouple stacks to measure in-depth heating of the thermal protection system (TPS). When only convective heating was considered, the derived heat flux from gauges in the stagnation region was found to be underpredicted by as much as 17 W/sq cm, which is significant compared to the peak heating of 32 W/sq cm. In order to quantify the contribution of radiative heating phenomena to the discrepancy, ground tests and predictive simulations that replicated the MSL entry trajectory were performed. An analysis is carried through to assess the quality of the radiation model and the impact to stagnation line heating. The impact is shown to be significant, but does not fully explain the heating discrepancy.

  16. Analysis of the Effects of Vitiates on Surface Heat Flux in Ground Tests of Hypersonic Vehicles

    Science.gov (United States)

    Cuda, Vincent; Gaffney, Richard L

    2008-01-01

    To achieve the high enthalpy conditions associated with hypersonic flight, many ground test facilities burn fuel in the air upstream of the test chamber. Unfortunately, the products of combustion contaminate the test gas and alter gas properties and the heat fluxes associated with aerodynamic heating. The difference in the heating rates between clean air and a vitiated test medium needs to be understood so that the thermal management system for hypersonic vehicles can be properly designed. This is particularly important for advanced hypersonic vehicle concepts powered by air-breathing propulsion systems that couple cooling requirements, fuel flow rates, and combustor performance by flowing fuel through sub-surface cooling passages to cool engine components and preheat the fuel prior to combustion. An analytical investigation was performed comparing clean air to a gas vitiated with methane/oxygen combustion products to determine if variations in gas properties contributed to changes in predicted heat flux. This investigation started with simple relationships, evolved into writing an engineering-level code, and ended with running a series of CFD cases. It was noted that it is not possible to simultaneously match all of the gas properties between clean and vitiated test gases. A study was then conducted selecting various combinations of freestream properties for a vitiated test gas that matched clean air values to determine which combination of parameters affected the computed heat transfer the least. The best combination of properties to match was the free-stream total sensible enthalpy, dynamic pressure, and either the velocity or Mach number. This combination yielded only a 2% difference in heating. Other combinations showed departures of up to 10% in the heat flux estimate.

  17. SPSS and SAS programming for the testing of mediation models.

    Science.gov (United States)

    Dudley, William N; Benuzillo, Jose G; Carrico, Mineh S

    2004-01-01

    Mediation modeling can explain the nature of the relation among three or more variables. In addition, it can be used to show how a variable mediates the relation between levels of intervention and outcome. The Sobel test, developed in 1990, provides a statistical method for determining the influence of a mediator on an intervention or outcome. Although interactive Web-based and stand-alone methods exist for computing the Sobel test, SPSS and SAS programs that automatically run the required regression analyses and computations increase the accessibility of mediation modeling to nursing researchers. To illustrate the utility of the Sobel test and to make this programming available to the Nursing Research audience in both SAS and SPSS. The history, logic, and technical aspects of mediation testing are introduced. The syntax files sobel.sps and sobel.sas, created to automate the computation of the regression analysis and test statistic, are available from the corresponding author. The reported programming allows the user to complete mediation testing with the user's own data in a single-step fashion. A technical manual included with the programming provides instruction on program use and interpretation of the output. Mediation modeling is a useful tool for describing the relation between three or more variables. Programming and manuals for using this model are made available.

  18. Cope and Grow: A Grounded Theory Approach to Early College Entrants' Lived Experiences and Changes in a STEM Program

    Science.gov (United States)

    Dai, David Yun; Steenbergen-Hu, Saiying; Zhou, Yehan

    2015-01-01

    In this grounded theory qualitative study, we interviewed 34 graduates from one cohort of 51 students from a prestigious early college entrance program in China. Based on the interview data, we identified distinct convergent and divergent patterns of lived experiences and changes. We found several dominant themes, including peers' mutual…

  19. The optical performance of the PILOT instrument from ground end-to-end tests

    Science.gov (United States)

    Misawa, R.; Bernard, J.-Ph.; Longval, Y.; Ristorcelli, I.; Ade, P.; Alina, D.; André, Y.; Aumont, J.; Bautista, L.; de Bernardis, P.; Boulade, O.; Bousqet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Chaigneau, M.; Charra, M.; Crane, B.; Douchin, F.; Doumayrou, E.; Dubois, J. P.; Engel, C.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P.; Hughes, A.; Laureijs, R.; Leriche, B.; Maestre, S.; Maffei, B.; Marty, C.; Marty, W.; Masi, S.; Montel, J.; Montier, L.; Mot, B.; Narbonne, J.; Pajot, F.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tauber, J.; Tucker, C.

    2017-06-01

    The Polarized Instrument for Long-wavelength Observation of the Tenuous interstellar medium ( PILOT) is a balloon-borne astronomy experiment designed to study the linear polarization of thermal dust emission in two photometric bands centred at wavelengths 240 μm (1.2 THz) and 550 μm (545 GHz), with an angular resolution of a few arcminutes. Several end-to-end tests of the instrument were performed on the ground between 2012 and 2014, in order to prepare for the first scientific flight of the experiment that took place in September 2015 from Timmins, Ontario, Canada. This paper presents the results of those tests, focussing on an evaluation of the instrument's optical performance. We quantify image quality across the extent of the focal plane, and describe the tests that we conducted to determine the focal plane geometry, the optimal focus position, and sources of internal straylight. We present estimates of the detector response, obtained using an internal calibration source, and estimates of the background intensity and background polarization.

  20. Theoretical foundations for on-ground tests of LISA PathFinder thermal diagnostics

    CERN Document Server

    Lobo, A; Ramos-Castro, J; Sanjuan, J; Lobo, Alberto; Nofrarias, Miquel; Ramos-Castro, Juan; Sanjuan, Josep

    2006-01-01

    This paper reports on the methods and results of a theoretical analysis to design an insulator which must provide a thermally quiet environment to test on ground delicate temperature sensors and associated electronics. These will fly on board ESA's LISA PathFinder (LPF) mission as part of the thermal diagnostics subsystem of the LISA Test-flight Package (LTP). We evaluate the heat transfer function (in frequency domain) of a central body of good thermal conductivity surrounded by a layer of a very poorly conducting substrate. This is applied to assess the materials and dimensions necessary to meet temperature stability requirements in the metal core, where sensors will be implanted for test. The analysis is extended to evaluate the losses caused by heat leakage through connecting wires, linking the sensors with the electronics in a box outside the insulator. The results indicate that, in spite of the very demanding stability conditions, a sphere of outer diameter of the order one metre is sufficient.

  1. Dynamic Time Warping Distance Method for Similarity Test of Multipoint Ground Motion Field

    Directory of Open Access Journals (Sweden)

    Yingmin Li

    2010-01-01

    Full Text Available The reasonability of artificial multi-point ground motions and the identification of abnormal records in seismic array observations, are two important issues in application and analysis of multi-point ground motion fields. Based on the dynamic time warping (DTW distance method, this paper discusses the application of similarity measurement in the similarity analysis of simulated multi-point ground motions and the actual seismic array records. Analysis results show that the DTW distance method not only can quantitatively reflect the similarity of simulated ground motion field, but also offers advantages in clustering analysis and singularity recognition of actual multi-point ground motion field.

  2. (abstract) JPL Cryocooler Development and Test Program Overview

    Science.gov (United States)

    Ross, R. G.

    1994-01-01

    Many near-term and future space-instrument programs within NASA and the Ballistic Missile Defense Organization (BMDO) depend on the successful development of long-life, low-vibration space cryocoolers. The most demanding near-term programs include a number of science instruments selected for NASA's Earth Observing System (Eos) program, and a number of space reconnaissance instruments associated with the BMDO's Brilliant Eyes program; both of these programs require delivery of similar types of flight coolers in the next few years. To help ensure the success of these cooler commitments, JPL has implemented an extensive cryocooler program in support of the NASA/JPL AIRS project, the Air Force Phillips Laboratory (AFPL), and the Air Force Space and Missiles Systems Division (SMC). This program is directed at assisting industry in developing advanced cryocoolers that successfully address the broad array of complex performance requirements needed for NASA and BMDO long-life space instruments. The JPL cryocooler program includes extensive characterization and life testing of industry-developed cryocoolers, development and flight testing of advanced sorption cooler systems for detector cooling to 10 K , development of mechanical cryocooler enhancement technologies, and flight tests of advanced low-vibration Stirling-cooler systems.

  3. Integrated Data Collection Analysis (IDCA) Program - SSST Testing Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Sorensen, Daniel N. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Whinnery, LeRoy L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Phillips, Jason J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Shelley, Timothy J. [Bureau of Alcohol, Tobacco and Firearms (ATF), Huntsville, AL (United States); Reyes, Jose A. [Applied Research Associates, Tyndall AFB, FL (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-03-25

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the methods used for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis during the IDCA program. These methods changed throughout the Proficiency Test and the reasons for these changes are documented in this report. The most significant modifications in standard testing methods are: 1) including one specified sandpaper in impact testing among all the participants, 2) diversifying liquid test methods for selected participants, and 3) including sealed sample holders for thermal testing by at least one participant. This effort, funded by the Department of Homeland Security (DHS), is putting the issues of safe handling of these materials in perspective with standard military explosives. The study is adding SSST testing results for a broad suite of different HMEs to the literature. Ultimately the study will suggest new guidelines and methods and possibly establish the SSST testing accuracies needed to develop safe handling practices for HMEs. Each participating testing laboratory uses identical test materials and preparation methods wherever possible. The testing performers involved are Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Indian Head Division, Naval Surface Warfare Center, (NSWC IHD), Sandia National Laboratories (SNL), and Air Force Research Laboratory (AFRL/RXQL). These tests are conducted as a proficiency study in order to establish some consistency in test protocols, procedures, and experiments and to compare results when these testing variables cannot be made consistent.

  4. Psychodiagnostic Testing in APA-Approved Clinical Psychology Programs.

    Science.gov (United States)

    Piotrowski, Chris; Keller, John W.

    The utility and popularity of psychodiagnostic testing has been investigated in applied clinical settings, but little data exist concerning academicians' attitudes toward psychological testing. To assess attitudes toward psychodiagnostic training in doctoral, clinical psychology programs, all fully APA-approved (American Psychological Association)…

  5. TESTING GROUND BASED GEOPHYSICAL TECHNIQUES TO REFINE ELECTROMAGNETIC SURVEYS NORTH OF THE 300 AREA HANFORD WASHINGTON

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2010-12-02

    Airborne electromagnetic (AEM) surveys were flown during fiscal year (FY) 2008 within the 600 Area in an attempt to characterize the underlying subsurface and to aid in the closure and remediation design study goals for the 200-PO-1 Groundwater Operable Unit (OU). The rationale for using the AEM surveys was that airborne surveys can cover large areas rapidly at relatively low costs with minimal cultural impact, and observed geo-electrical anomalies could be correlated with important subsurface geologic and hydrogeologic features. Initial interpretation of the AEM surveys indicated a tenuous correlation with the underlying geology, from which several anomalous zones likely associated with channels/erosional features incised into the Ringold units were identified near the River Corridor. Preliminary modeling resulted in a slightly improved correlation but revealed that more information was required to constrain the modeling (SGW-39674, Airborne Electromagnetic Survey Report, 200-PO-1 Groundwater Operable Unit, 600 Area, Hanford Site). Both time-and frequency domain AEM surveys were collected with the densest coverage occurring adjacent to the Columbia River Corridor. Time domain surveys targeted deeper subsurface features (e.g., top-of-basalt) and were acquired using the HeliGEOTEM{reg_sign} system along north-south flight lines with a nominal 400 m (1,312 ft) spacing. The frequency domain RESOLVE system acquired electromagnetic (EM) data along tighter spaced (100 m [328 ft] and 200 m [656 ft]) north-south profiles in the eastern fifth of the 200-PO-1 Groundwater OU (immediately adjacent to the River Corridor). The overall goal of this study is to provide further quantification of the AEM survey results, using ground based geophysical methods, and to link results to the underlying geology and/or hydrogeology. Specific goals of this project are as follows: (1) Test ground based geophysical techniques for the efficacy in delineating underlying geology; (2) Use ground

  6. Space-based LH 2 propellant storage system: subscale ground testing results

    Science.gov (United States)

    Liggett, M. W.

    An orbital cryogenic liquid storage facility will be one of the essential elements of the US Space Program to realize the benefits of space-based cryogenic propulsion vehicles such as NASA's space transfer vehicle (STV) for transporting personnel and scientific packages from a space station in low earth orbit (LEO) to geosynchronous orbit (GEO), the moon and beyond. Long-term thermal control of LH 2 and LO 2 storage cryotanks is a key technical objective for many NASA and SDI programmes. Improved retention using refrigeration, boil-off vapour-cooled shields (VCSs), multilayer superinsulation (MLI) and para-ortho (P-O) hydrogen conversion are the required state-of-the-art techniques. The cryotank system level development testing (CSLDT) programme has supported the development of these technologies. Under the programme, trade studies and analyses were followed by the design and construction of a subscale LH 2 storage facility test article for steady-state and transient thermal tests. A two-stage gaseous helium (GHe) refrigerator was integrated with the test article and used to reduce boil-off and/or decrease the time required between passive test configuration steady-state conditions. The LH 2 tank, mounted in a vacuum chamber, was thermally shielded from the chamber wall by MLI blankets and two VCSs. The VCSs were cooled with either LH 2 boil-off gas (through an optional P-O converter) or refrigerated GHe. The CSLDT test article design, assembly and results from 400 hours of thermal tests are presented along with important conclusions. A comparison of predicted and measured steady-state boil-off rates is provided for 10 test configurations, and the system time constant is addressed. Also presented are some of the unique issues and challenges encountered during these tests that are related to instrumentation and control.

  7. Using Fuzzy Logic in Test Case Prioritization for Regression Testing Programs with Assertions

    Directory of Open Access Journals (Sweden)

    Ali M. Alakeel

    2014-01-01

    Full Text Available Program assertions have been recognized as a supporting tool during software development, testing, and maintenance. Therefore, software developers place assertions within their code in positions that are considered to be error prone or that have the potential to lead to a software crash or failure. Similar to any other software, programs with assertions must be maintained. Depending on the type of modification applied to the modified program, assertions also might have to undergo some modifications. New assertions may also be introduced in the new version of the program, while some assertions can be kept the same. This paper presents a novel approach for test case prioritization during regression testing of programs that have assertions using fuzzy logic. The main objective of this approach is to prioritize the test cases according to their estimated potential in violating a given program assertion. To develop the proposed approach, we utilize fuzzy logic techniques to estimate the effectiveness of a given test case in violating an assertion based on the history of the test cases in previous testing operations. We have conducted a case study in which the proposed approach is applied to various programs, and the results are promising compared to untreated and randomly ordered test cases.

  8. Using fuzzy logic in test case prioritization for regression testing programs with assertions.

    Science.gov (United States)

    Alakeel, Ali M

    2014-01-01

    Program assertions have been recognized as a supporting tool during software development, testing, and maintenance. Therefore, software developers place assertions within their code in positions that are considered to be error prone or that have the potential to lead to a software crash or failure. Similar to any other software, programs with assertions must be maintained. Depending on the type of modification applied to the modified program, assertions also might have to undergo some modifications. New assertions may also be introduced in the new version of the program, while some assertions can be kept the same. This paper presents a novel approach for test case prioritization during regression testing of programs that have assertions using fuzzy logic. The main objective of this approach is to prioritize the test cases according to their estimated potential in violating a given program assertion. To develop the proposed approach, we utilize fuzzy logic techniques to estimate the effectiveness of a given test case in violating an assertion based on the history of the test cases in previous testing operations. We have conducted a case study in which the proposed approach is applied to various programs, and the results are promising compared to untreated and randomly ordered test cases.

  9. Instrumentation program for rock mechanics and spent fuel tests at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, H.R.; Hustrulid, W.H.; Simonson, R.

    1978-08-01

    This report contains a discussion of an instrumentation and rock mechanics program recommended for consideration as part of the overall Lawrence Livermore nuclear waste storage program at NTS. It includes a discussion of (1) rationale for the heater tests, spent fuel facility evaluation, heated room tests, (2) recommended instrumentation types together with estimated delivery schedules, (3) recommended instrumentation layouts, (4) other proposed rock mechanics tests both laboratory and in situ, and (5) data acquisition and reduction requirements.

  10. Trust Testing in Care Pathways for Neurodevelopmental Disorders: A Grounded Theory Study

    Directory of Open Access Journals (Sweden)

    Gustaf Waxegard

    2016-06-01

    Full Text Available Building care pathways for the expansive, heterogeneous, and complex field of neurodevelopmental disorders (ND is challenging. This classic grounded theory study conceptualizes problems encountered and resolved by professionals in the unpacking—diagnosis and work up—of ND. A care pathway for ND in children and adolescents was observed for six years. Data include interviews, documentation of a dialogue-conference devoted to the ND care pathway, 100+ hours of participant observations, and coding of stakeholder actions. Trust testing explores whether professional unpacking collaboration can occur without being “stuck with the buck” and if other professionals can be approached to solve own unpacking priorities. ND complexity, scarce resources, and diverging stakeholder interests undermine the ability to make selfless collaborative professional choices in the care pathway. ND professionals and managers should pay as much attention to trust issues as they do to structures and patient flows. The trust testing theory may improve the understanding of ND care pathways further as a modified social dilemma framework.

  11. A detailed numerical simulation of a liquid-propellant rocket engine ground test experiment

    Science.gov (United States)

    Lankford, D. W.; Simmons, M. A.; Heikkinen, B. D.

    1992-07-01

    A computational simulation of a Liquid Rocket Engine (LRE) ground test experiment was performed using two modeling approaches. The results of the models were compared with selected data to assess the validity of state-of-the-art computational tools for predicting the flowfield and radiative transfer in complex flow environments. The data used for comparison consisted of in-band station radiation measurements obtained in the near-field portion of the plume exhaust. The test article was a subscale LRE with an afterbody, resulting in a large base region. The flight conditions were such that afterburning regions were observed in the plume flowfield. A conventional standard modeling approach underpredicted the extent of afterburning and the associated radiation levels. These results were attributed to the absence of the base flow region which is not accounted for in this model. To assess the effects of the base region a Navier-Stokes model was applied. The results of this calculation indicate that the base recirculation effects are dominant features in the immediate expansion region and resulted in a much improved comparison. However, the downstream in-band station radiation data remained underpredicted by this model.

  12. The First Development of Human Factors Engineering Requirements for Application to Ground Task Design for a NASA Flight Program

    Science.gov (United States)

    Dischinger, H. Charles, Jr.; Stambolian, Damon B.; Miller, Darcy H.

    2008-01-01

    The National Aeronautics and Space Administration has long applied standards-derived human engineering requirements to the development of hardware and software for use by astronauts while in flight. The most important source of these requirements has been NASA-STD-3000. While there have been several ground systems human engineering requirements documents, none has been applicable to the flight system as handled at NASA's launch facility at Kennedy Space Center. At the time of the development of previous human launch systems, there were other considerations that were deemed more important than developing worksites for ground crews; e.g., hardware development schedule and vehicle performance. However, experience with these systems has shown that failure to design for ground tasks has resulted in launch schedule delays, ground operations that are more costly than they might be, and threats to flight safety. As the Agency begins the development of new systems to return humans to the moon, the new Constellation Program is addressing this issue with a new set of human engineering requirements. Among these requirements is a subset that will apply to the design of the flight components and that is intended to assure ground crew success in vehicle assembly and maintenance tasks. These requirements address worksite design for usability and for ground crew safety.

  13. Surrogate/spent fuel sabotage : aerosol ratio test program and Phase 2 test results.

    Energy Technology Data Exchange (ETDEWEB)

    Borek, Theodore Thaddeus III; Thompson, N. Slater (U.S. Department of Energy); Sorenson, Ken Bryce; Hibbs, R.S. (U.S. Department of Energy); Nolte, Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno (Institut de Radioprotection et de Surete Nucleaire, France); Young, F. I. (U.S. Nuclear Regulatory Commission); Koch, Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Brochard, Didier (Institut de Radioprotection et de Surete Nucleaire, France); Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Lange, Florentin (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany)

    2004-05-01

    A multinational test program is in progress to quantify the aerosol particulates produced when a high energy density device, HEDD, impacts surrogate material and actual spent fuel test rodlets. This program provides needed data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments; the program also provides significant political benefits in international cooperation. We are quantifying the spent fuel ratio, SFR, the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are crucial for predicting radiological impacts. This document includes a thorough description of the test program, including the current, detailed test plan, concept and design, plus a description of all test components, and requirements for future components and related nuclear facility needs. It also serves as a program status report as of the end of FY 2003. All available test results, observations, and analyses - primarily for surrogate material Phase 2 tests using cerium oxide sintered ceramic pellets are included. This spent fuel sabotage - aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC, and supported by both the U.S. Department of Energy and Nuclear Regulatory Commission.

  14. Self Diagnostic Accelerometer Ground Testing on a C-17 Aircraft Engine

    Science.gov (United States)

    Tokars, Roger P.; Lekki, John D.

    2013-01-01

    The self diagnostic accelerometer (SDA) developed by the NASA Glenn Research Center was tested for the first time in an aircraft engine environment as part of the Vehicle Integrated Propulsion Research (VIPR) program. The VIPR program includes testing multiple critical flight sensor technologies. One such sensor, the accelerometer, measures vibrations to detect faults in the engine. In order to rely upon the accelerometer, the health of the accelerometer must be ensured. Sensor system malfunction is a significant contributor to propulsion in flight shutdowns (IFSD) which can lead to aircraft accidents when the issue is compounded with an inappropriate crew response. The development of the SDA is important for both reducing the IFSD rate, and hence reducing the rate at which this component failure type can put an aircraft in jeopardy, and also as a critical enabling technology for future automated malfunction diagnostic systems. The SDA is a sensor system designed to actively determine the accelerometer structural health and attachment condition, in addition to making vibration measurements. The SDA uses a signal conditioning unit that sends an electrical chirp to the accelerometer and recognizes changes in the response due to changes in the accelerometer health and attachment condition. In an effort toward demonstrating the SDAs flight worthiness and robustness, multiple SDAs were mounted and tested on a C-17 aircraft engine. The engine test conditions varied from engine off, to idle, to maximum power. The two SDA attachment conditions used were fully tight and loose. The newly developed SDA health algorithm described herein uses cross correlation pattern recognition to discriminate a healthy from a faulty SDA. The VIPR test results demonstrate for the first time the robustness of the SDA in an engine environment characterized by high vibration levels.

  15. Calibration and Recovery of Nuclear Test Seismic Ground-Motion Data from the Leo Brady Seismic Network

    Science.gov (United States)

    Young, B.; Abbott, R. E.

    2016-12-01

    In 1960, Sandia National Laboratories established a small seismic network with stations in Nevada, Utah, and California with the mission to monitor underground nuclear tests (UGTs) at the Nevada National Security Site (NNSS, formerly known as the Nevada Test Site). Over time, this seismic network came to be known as the Leo Brady Seismic Network (LBSN). The LBSN recorded approximately 800 UGTs at the NNSS from its inception through the end of testing in 1992. These irreplaceable data, mostly archived on analog, frequency-modulated magnetic tapes and stored in vaults, are now being digitized. This necessitated a calibration method to take the data from analog FM to digital counts to ground-motion units. Complicating the issue, the seismic system setup, telemetering, instrumentation, and calibration methods changed several times over the course of the LBSN's service life, and much of the documentation and knowledge of the system has been lost to time. The information necessary to understand, interpret, and ultimately calibrate these data was therefore collected from many disparate sources, each of which contains bits and pieces of relevant information. Contradictory information was often the rule rather than the exception. Where necessary (due to a lack of direct information) we made educated guesses as to the exact system, setup, and methodologies used. Ultimately, we documented the evolution and configuration of the seismic network, and determined both empirical and analytical approaches to calibrating these data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Guidelines for selecting codes for ground-water transport modeling of low-level waste burial sites. Volume 2. Special test cases

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, C.S.; Cole, C.R.

    1985-08-01

    This document was written for the National Low-Level Waste Management Program to provide guidance for managers and site operators who need to select ground-water transport codes for assessing shallow-land burial site performance. The guidance given in this report also serves the needs of applications-oriented users who work under the direction of a manager or site operator. The guidelines are published in two volumes designed to support the needs of users having different technical backgrounds. An executive summary, published separately, gives managers and site operators an overview of the main guideline report. Volume 1, titled ''Guideline Approach,'' consists of Chapters 1 through 5 and a glossary. Chapters 2 through 5 provide the more detailed discussions about the code selection approach. This volume, Volume 2, consists of four appendices reporting on the technical evaluation test cases designed to help verify the accuracy of ground-water transport codes. 20 refs.

  17. Design of aging intervention studies: the NIA interventions testing program.

    Science.gov (United States)

    Nadon, N L; Strong, R; Miller, R A; Nelson, J; Javors, M; Sharp, Z D; Peralba, J M; Harrison, D E

    2008-12-01

    The field of biogerontology has made great strides towards understanding the biological processes underlying aging, and the time is ripe to look towards applying this knowledge to the pursuit of aging interventions. Identification of safe, inexpensive, and non-invasive interventions that slow the aging process and promote healthy aging could have a significant impact on quality of life and health care expenditures for the aged. While there is a plethora of supplements and interventions on the market that purport to slow aging, the evidence to validate such claims is generally lacking. Here we describe the development of an aging interventions testing program funded by the National Institute on Aging (NIA) to test candidate interventions in a model system. The development of this program highlights the challenges of long-term intervention studies and provides approaches to cope with the stringent requirements of a multi-site testing program.

  18. A compliance testing program for diagnostic X-ray equipment

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.E.; Cobb, B.J.; Jacob, C.S

    1999-01-01

    Compliance testing is nominally that part of a quality assurance program dealing with those aspects of X-ray equipment performance that are subject to radiation control legislation. Quality assurance programs for medical X-ray equipment should be an integral part of the quality culture in health care. However while major hospitals and individual medical centers may implement such programs with some diligence, much X-ray equipment can remain unappraised unless there is a comprehensive regulatory inspection program or some form of compulsion on the equipment owner to implement a testing program. Since the late 1950s all X-ray equipment in the State of Western Australia has been inspected by authorized officers acting on behalf of the Radiological Council, the regulatory authority responsible for administration of the State's Radiation Safety Act. However, economic constraints, coupled with increasing X-ray equipment numbers and a geographically large State have significantly affected the inspection rate. Data available from inspections demonstrate that regular compliance and performance checks are essential in order to ensure proper performance and to minimize unnecessary patient and operator dose. To ensure that diagnostic X-ray equipment complies with accepted standards and performance criteria, the regulatory authority introduced a compulsory compliance testing program for all medical, dental and chiropractic diagnostic X-ray equipment effective from 1 January 1997.

  19. Interpreter to test a program written in pseudocode

    OpenAIRE

    Huari Evangelista, Felix; Universidad Nacional Mayor de San Marcos; José Novara, Pablo; Universidad Nacional del Litoral

    2014-01-01

    The purpose of this article is to acquaint the student community that begins in troubleshooting programmatically using the program called PSeInt. This is a program that allows to represent algorithms using pseudocode, chart N-S, flowchart, and then make the respective test. The obvious trend is that the student does not need to know any programming language to use this tool. El objetivo del presente artículo es dar a conocer a la comunidad estudiantil que se inicia en la solución de proble...

  20. Density and fledging success of ground-nesting passerines in Conservation Reserve Program fields in the northeastern Great Plains

    Science.gov (United States)

    Koford, Rolf R.

    1999-01-01

    The Conservation Reserve Program, initiated in 1985, was designed primarily to reduce soil erosion and crop surpluses. A secondary benefit was the provision of habitat for wildlife. Grassland bird populations, many of which declined in the decades prior to the Conservation Reserve Program, may have benefited from the Conservation Reserve Program if reproduction in this newly available habitat has been at least as high as it would have been in the absence of the Conservation Reserve Program. On study areas in North Dakota and Minnesota, I examined breeding densities and fledging success of grassland birds in Conservation Reserve Program fields and in an alternative habitat of similar structure, idle grassland fields on federal Waterfowl Production Areas. Fields were 10 to 25 hectares in size. The avifaunas of these two habitats were similar, although brush-dependent species were more abundant on Waterfowl Protection Areas. The common species in these habitats included ones whose continental populations have declined, such as Grasshopper Sparrow (Ammodramus savannarum), Savannah Sparrow (Passerculus sandwichensis), and Bobolink (Dolichonyx oryzivorus). These ground-nesting species were pooled with other ground nesters in an analysis of fledging success, which revealed no significant differences between habitats, between states, or among years (1991-1993). Predation was the primary cause of nest failure. I concluded that Conservation Reserve Program fields in this region were suitable breeding habitat for several species whose populations had declined prior to the Conservation Reserve Program era. This habitat appeared to be as secure for nests of ground-nesting birds as another suitable habitat in North Dakota and Minnesota.

  1. Ground Tests and In-Orbit Performance of Variable Emittance Device Based on Manganese Oxide

    Science.gov (United States)

    Tachikawa, Sumitaka; Ohnishi, Akira; Nakamura, Yasuyuki; Okamoto, Akira

    A new thermal control material named the Smart Radiation Device (SRD) has shown improvement in development. The SRD can be used as a variable emittance radiator that controls the heat radiated into deep space without assistances of any electrical instruments or mechanical parts. Its total hemispherical emittance changes from low to high as the temperature increases. This new device reduces the energy consumption of the on-board heater, and decreases the weight and the cost of the thermal control system (TCS). Space environmental simulation tests on the ground were performed, and the first generation of the SRD has been demonstrating success on the MUSES-C ‘HAYABUSA’ spacecraft that was launched in May 2003. During its cruise on the orbit, the distance from the spacecraft to the sun varied from 0.86AU to 1.70AU. As the spacecraft experienced solar intensity variation by a factor 4, it was effective to use the variable emittance radiator for decreasing the heater power. In-orbit temperature indicated that the SRD had successfully minimized component temperature variation and saved heater power, as expected. With the opportunity to validate the SRD in space, this lightweight and low cost thermal control device offers a possibility for flexible thermal control on future spacecrafts.

  2. HV Test of the CTS Edgeless Silicon Detector in Vacuum and Close to a Grounded Plate

    CERN Document Server

    Eremin, Vladimir; Ruggiero, Gennaro

    2007-01-01

    The TOTEM Roman Pot Silicon sensors will be operated in vacuum to minimise the mechanical stress of the thin metal window which separates the detector package from the ultra high vacuum of the beam. To approach the beam axis as close as possible the detectors will be mounted with their edge at a distance of the order 100 - 200 um from the thin metal window. As the detectors will be run in overdepletion mode to allow the full charge collection within the shaping time of the readout electronics, there will be a potential drop of more than 100 V across their edge. Moreover this potential drop might need to be further increased with the accumulated radiation dose. The main goals of the tests described in this note are: - Characterisation of the voltage-current characteristics when the detector edge is in the direct vicinity of a grounded metal plate which simulates the above mentioned vacuum window; - Demonstration of the detector operation in vacuum at different pressures.

  3. Model-based automated testing of critical PLC programs.

    CERN Document Server

    Fernández Adiego, B; Tournier, J-C; González Suárez, V M; Bliudze, S

    2014-01-01

    Testing of critical PLC (Programmable Logic Controller) programs remains a challenging task for control system engineers as it can rarely be automated. This paper proposes a model based approach which uses the BIP (Behavior, Interactions and Priorities) framework to perform automated testing of PLC programs developed with the UNICOS (UNified Industrial COntrol System) framework. This paper defines the translation procedure and rules from UNICOS to BIP which can be fully automated in order to hide the complexity of the underlying model from the control engineers. The approach is illustrated and validated through the study of a water treatment process.

  4. Two-dimensional models as testing ground for principles and concepts of local quantum physics

    Science.gov (United States)

    Schroer, Bert

    2006-02-01

    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g., chiral models, factorizing models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work, I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff( S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL (2, Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular "Euclideanization" is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J.A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an "Encyclopedia of Mathematical Physics" contribution hep-th/0502125.

  5. Two-dimensional models as testing ground for principles and concepts of local quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [FU Berlin (Germany). Institut fuer Theoretische Physik

    2005-04-15

    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factoring models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: (1) a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime and (2) a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) for rational chiral theories. The SL(2,Z) modular Verlinde relation is a special case of this thermal duality and (within the family of rational models) the matrix S appearing in the thermal duality relation becomes identified with the statistics character matrix S. The relevant angular 'Euclideanization' is done in the setting of the Tomita-Takesaki modular formalism of operator algebras. I find it appropriate to dedicate this work to the memory of J. A. Swieca with whom I shared the interest in two-dimensional models as a testing ground for QFT for more than one decade. This is a significantly extended version of an 'Encyclopedia of Mathematical Physics' contribution hep-th/0502125. (author)

  6. CERCA LEU fuel assemblies testing in Maria Reactor - safety analysis summary and testing program scope.

    Energy Technology Data Exchange (ETDEWEB)

    Pytel, K.; Mieleszczenko, W.; Lechniak, J.; Moldysz, A.; Andrzejewski, K.; Kulikowska, T.; Marcinkowska, A.; Garner, P. L.; Hanan, N. A.; Nuclear Engineering Division; Institute of Atomic Energy (Poland)

    2010-03-01

    The presented paper contains neutronic and thermal-hydraulic (for steady and unsteady states) calculation results prepared to support annex to Safety Analysis Report for MARIA reactor in order to obtain approval for program of testing low-enriched uranium (LEU) lead test fuel assemblies (LTFA) manufactured by CERCA. This includes presentation of the limits and operational constraints to be in effect during the fuel testing investigations. Also, the scope of testing program (which began in August 2009), including additional measurements and monitoring procedures, is described.

  7. Passive Orbital Disconnect Strut (PODS 3), structural and thermal test program

    Science.gov (United States)

    Parmley, R. T.

    1983-01-01

    A test program is undertaken to verify that the lifetime of a shuttle launchable dewar can be increased by using passive orbital disconnect struts (PODS). A detailed design is performed on the cold end (PODS-III) portion of the strut. Structural analysis of the thin-wall fiberglass tube allows selection of the optimum winding angle and tube dimensions. Structural tests on the thin-wall fiberglass tube measure both the tension and compression modulus at ambient and LN2 temperatures, the radial deflection versus side load, and the ultimate compression strength of the tube at LN2 temperature. The thermal expansion of the fiberglass tube plus Invar is also measured down to 78 K. The axial gap at the wedge portion of the stem is set based on these data. The PODS-III test article parts are fabricated and assembled using a detailed assembly procedure. The thermal conductants in the orbital configuration was measured for body temperatures between 5 and 40 K. This temperature range covers the predicted ground hold and orbit temperatures for vapor-cooled supports. The test results are then compared with heat leak values predicted before the test began. Side load, axial compression load, and tension load tests conclude the test program.

  8. 78 FR 66039 - Modification of National Customs Automation Program Test Concerning Automated Commercial...

    Science.gov (United States)

    2013-11-04

    ... SECURITY U.S. Customs and Border Protection Modification of National Customs Automation Program Test... National Customs Automation Program (NCAP) test concerning the Simplified Entry functionality in the...'s (CBP's) National Customs Automation Program (NCAP) test concerning Automated...

  9. Cooperative field test program for wind systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bollmeier, W.S. II; Dodge, D.M.

    1992-03-01

    The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

  10. Thermionic Fuel Element performance: TFE Verification Program. Final test report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The program objective is to demonstrate the technology readiness of a Thermionic Fuel Element (TFE) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full power life of 7 years. A TFE was designed that met the reliability and lifetime requirements for a 2 MW(e) conceptual reactor design. Analysis showed that this TFE could be used over the range of 0.5 to 5 megawatts. This was used as the basis for designing components for test and evaluation. The demonstration of a 7-year component lifetime capability was through the combined use of analytical models and accelerated, confirmatory tests in a fast test reactor. Iterative testing was performed in which the results of one test series led to evolutionary improvements in the next test specimens. The TFE components underwent screening and initial development testing in ex-reactor tests. Several design and materials options were considered for each component. As screening tests permitted, down selection occurred to very specific designs and materials. In parallel with ex-reactor testing, and fast reactor component testing, components were integrated into a TFE and tested in the TRIGA test reactor at GA. Realtime testing of partial length TFEs was used to test support, alignment and interconnective TFE components, and to verify TFE performance in-reactor with integral cesium reservoirs. Realtime testing was also used to verify the relation between TFE performance and fueled emitter swelling, to test the durability of intercell insulation, to check temperature distributions, and to verify the adequacy over time of the fission gas venting channels. Predictions of TFE lifetime rested primarily on the accelerated component testing results, as correlated and extended to realtime by the use of analytical models.

  11. Ground penetrating radar for determining volumetric soil water content ; results of comparative measurements at two test sites

    NARCIS (Netherlands)

    Overmeeren, R.A. van; Sariowan, S.V.; Gehrels, J.C.

    1997-01-01

    Ground penetrating radar (GPR) can provide information on the soil water content of the unsaturated zone in sandy deposits via measurements from the surface, and so avoids drilling. Proof of this was found from measurements of radar wave velocities carried out ten times over 13 months at two test si

  12. Psychological Testing: Trends in Masters-Level Counseling Psychology Programs.

    Science.gov (United States)

    Piotrowski, Chris; Keller, John W.

    1984-01-01

    A survey that investigated the status of psychodiagnostic testing in masters level counseling (terminal) programs showed that whereas the majority of respondents felt that masters graduates should be familiar with projective techniques such as the Rorschach and TAT, few advocated projectives personality asessment as part of the required…

  13. Mathematical-programming approaches to test item pool design

    NARCIS (Netherlands)

    Veldkamp, Bernard P.; van der Linden, Willem J.; Ariel, A.

    2002-01-01

    This paper presents an approach to item pool design that has the potential to improve on the quality of current item pools in educational and psychological testing andhence to increase both measurement precision and validity. The approach consists of the application of mathematical programming

  14. 78 FR 54510 - New Entrant Safety Assurance Program Operational Test

    Science.gov (United States)

    2013-09-04

    ... demonstrating basic safety management controls in the areas of driver qualifications, hours of service, vehicle... Agency to better utilize its resources for on-site safety audits of higher-risk (e.g., passenger and HM... TRANSPORTATION Federal Motor Carrier Safety Administration New Entrant Safety Assurance Program Operational Test...

  15. Ground Testing of the EMCS Seed Cassette for Biocompatibility with the Tardigrade, Hypsibius dujardini

    Science.gov (United States)

    Reinsch, Sigrid; Myers, Zachary Alan; DeSimone, Julia Carol; Freeman, John L.; Steele, Marianne K.; Sun, Gwo-Shing; Heathcote, David

    2014-01-01

    The European Modular Cultivation System, EMCS, was developed by ESA for plant experiments. We performed ground testing to determine whether ARC EMCS seed cassettes could be adapted for use with tardigrades for future spaceflight experiments. Tardigrades (water bears) are small invertebrates that enter the tun state in response to desiccation or other environmental stresses. Tardigrade tuns have suspended metabolism and have been shown to be survive exposure to space vacuum, high pressure, temperature and other stresses. For spaceflight experiments using the EMCS, the organisms ideally must be able to survive desiccation and storage in the cassette at ambient temperature for several weeks prior to the initiation of the experiment by the infusion of water to the cassette during spaceflight. The ability of tardigrades to survive extremes by entering the tun state make them ideal candidates for growth experiments in the EMCS cassettes. The growth substratum in the cassettes is a gridded polyether sulfone (PES) membrane. A blotter beneath the PES membrane contains dried growth medium. The goals of our study were to (1) determine whether tardigrades survive and reproduce on PES membranes, (2) develop a consistent method for dehydration of the tardigrades with high recovery rates upon rehydration, (3) to determine an appropriate food source for the tardigrades that can also be dehydrated/rehydrated and (4) successful mock rehydration experiment in cassettes with appropriate food source. We present results that show successful multigenerational growth of tardigrades on PES membranes with a variety of wet food sources. We have successfully performed a mock rehydration with tardigrades and at least one candidate food, protonema of the moss Polytrichum, that supports multigenerational growth and whose spores germinate quickly enough to match tardigrade feeding patterns post rehydration. Our results indicate that experiments on the ISS using the tardigrade, Hypsibius dujardini

  16. Spent fuel sabotage aerosol test program :FY 2005-06 testing and aerosol data summary.

    Energy Technology Data Exchange (ETDEWEB)

    Gregson, Michael Warren; Brockmann, John E.; Nolte, O. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Loiseau, O. (Institut de radioprotection et de Surete Nucleaire, France); Koch, W. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno (Institut de radioprotection et de Surete Nucleaire, France); Pretzsch, Gunter Guido (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Billone, M. C. (Argonne National Laboratory, USA); Lucero, Daniel A.; Burtseva, T. (Argonne National Laboratory, USA); Brucher, W (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

    2006-10-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides source-term data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This document focuses on an updated description of the test program and test components for all work and plans made, or revised, primarily during FY 2005 and about the first two-thirds of FY 2006. It also serves as a program status report as of the end of May 2006. We provide details on the significant findings on aerosol results and observations from the recently completed Phase 2 surrogate material tests using cerium oxide ceramic pellets in test rodlets plus non-radioactive fission product dopants. Results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; status on determination of the spent fuel ratio, SFR (the ratio of respirable particles from real spent fuel/respirables from surrogate spent fuel, measured under closely matched test conditions, in a contained test chamber); and, measurements of enhanced volatile fission product species sorption onto respirable particles. We discuss progress and results for the first three, recently performed Phase 3 tests using depleted uranium oxide, DUO{sub 2}, test rodlets. We will also review the status of preparations and the final Phase 4 tests in this program, using short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. These data plus testing results and design are tailored to support and guide, follow-on computer modeling of aerosol dispersal hazards and radiological consequence

  17. Using Cost-Effectiveness Tests to Design CHP Incentive Programs

    Energy Technology Data Exchange (ETDEWEB)

    Tidball, Rick [ICF International, Fairfax, VA (United States)

    2014-11-01

    This paper examines the structure of cost-effectiveness tests to illustrate how they can accurately reflect the costs and benefits of CHP systems. This paper begins with a general background discussion on cost-effectiveness analysis of DER and then describes how cost-effectiveness tests can be applied to CHP. Cost-effectiveness results are then calculated and analyzed for CHP projects in five states: Arkansas, Colorado, Iowa, Maryland, and North Carolina. Based on the results obtained for these five states, this paper offers four considerations to inform regulators in the application of cost-effectiveness tests in developing CHP programs.

  18. Mobile Energy Laboratory energy-efficiency testing programs

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G.B.; Currie, J.W.

    1991-09-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the first and second quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semiannual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semiannually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  19. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards: November 2012 - October 2013

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, W.

    2015-02-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  20. Testing sea-level markers observed in ground-penetrating radar data from Feddet, south-eastern Denmark

    DEFF Research Database (Denmark)

    Hede, Mikkel Ulfeldt; Nielsen, Lars; Clemmensen, Lars B

    2012-01-01

    Ground-penetrating radar (GPR) data have been collected across the modern part (test identification of sea-level markers in GPR data from microtidal depositional environments. Nielsen and Clemmensen (2009) showed that iden......Ground-penetrating radar (GPR) data have been collected across the modern part (... that identified downlap points in GPR data from Anholt (an island in the Kattegat Sea, Denmark) can be interpreted to mark sea level at the time of deposition. The data presented here support this hypothesis. The GPR reflection data have been acquired with shielded 250 MHz Sensors & Software antennae along...

  1. Ground test equipment for neutral atom imaging system-high%中性原子成像仪地检电子系统的研制

    Institute of Scientific and Technical Information of China (English)

    明晨曦; 余庆龙; 梁金宝; 张焕新; 荆涛

    2016-01-01

    This paper introduces the structure and working principle of the Neutral Atom Imaging System-High (NAIS-H) which is in the MIT project. Based on the testing needs of the instrument, we have designed ground test equipment, including the circuit system and the host computer system. In this paper, we show the structure and working principle of the ground test for NAIS-H, and tell structure and java programming of the sub modules of the host computer system in detail, such as API communicating system, data analyzing system and data saving system. At last, we test the equipment, and the result shows the ground test system has good performance and achieves the design requirement.%本文介绍了MIT卫星计划中性原子成像仪(NAIS-H)的基本结构以及工作原理,通过分析MIT卫星NAIS-H的工作原理及测试需求,设计并实现了基于该成像仪的地面检测,包括硬件电路系统及上位机软件系统.本文分别从通讯、数据处理等方面,描述了地检系统的主要结构设计以及工作流程,并详述了上位机系统中串口通讯、数据解包、图像处理等各软件模块设计以及java代码编写.最后,对地检系统进行测试,得到的结果显示该系统具有良好的性能,达到了设计要求.

  2. Development of an integrated aeroservoelastic analysis program and correlation with test data

    Science.gov (United States)

    Gupta, K. K.; Brenner, M. J.; Voelker, L. S.

    1991-01-01

    The details and results are presented of the general-purpose finite element STructural Analysis RoutineS (STARS) to perform a complete linear aeroelastic and aeroservoelastic analysis. The earlier version of the STARS computer program enabled effective finite element modeling as well as static, vibration, buckling, and dynamic response of damped and undamped systems, including those with pre-stressed and spinning structures. Additions to the STARS program include aeroelastic modeling for flutter and divergence solutions, and hybrid control system augmentation for aeroservoelastic analysis. Numerical results of the X-29A aircraft pertaining to vibration, flutter-divergence, and open- and closed-loop aeroservoelastic controls analysis are compared to ground vibration, wind-tunnel, and flight-test results. The open- and closed-loop aeroservoelastic control analyses are based on a hybrid formulation representing the interaction of structural, aerodynamic, and flight-control dynamics.

  3. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. Therefore, empirically based approaches that are used for other regions, such as Western North America, are not appropriate for Eastern North America. Moreover, recent advances in science and technology have now made it possible to combine theoretical and empirical methods to develop new procedures and models for estimating ground motion. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. Specifically considered are magnitudes M from 5 to 8, distances from 0 to 500 km, and frequencies from 1 to 35 Hz.

  4. Investigation of difficult component effects on finite element model vibration prediction for the Bell AH-1G helicopter. Volume 1: Ground vibration test results

    Science.gov (United States)

    Dompka, R. V.

    1989-01-01

    Under the NASA-sponsored Design Analysis Methods for VIBrationS (DAMVIBS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AH-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, fuel, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the ground vibration testing are presented.

  5. Ground-Water Quality Data in the Coastal Los Angeles Basin Study Unit, 2006: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Land, Michael; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 860 square-mile Coastal Los Angeles Basin study unit (CLAB) was investigated from June to November of 2006 as part of the Statewide Basin Assessment Project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment was developed in response to the Ground-Water Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Coastal Los Angeles Basin study was designed to provide a spatially unbiased assessment of raw ground-water quality within CLAB, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 69 wells in Los Angeles and Orange Counties. Fifty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (?grid wells?). Fourteen additional wells were selected to evaluate changes in ground-water chemistry or to gain a greater understanding of the ground-water quality within a specific portion of the Coastal Los Angeles Basin study unit ('understanding wells'). Ground-water samples were analyzed for: a large number of synthetic organic constituents [volatile organic compounds (VOCs), gasoline oxygenates and their degradates, pesticides, polar pesticides, and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicators]; constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), 1,4-dioxane, and 1,2,3-trichloropropane (1,2,3-TCP)]; inorganic constituents that can occur naturally [nutrients, major and minor ions, and trace elements]; radioactive constituents [gross-alpha and gross-beta radiation, radium isotopes, and radon-222]; and microbial indicators. Naturally occurring isotopes [stable isotopic ratios of hydrogen and oxygen, and activities of tritium and carbon-14

  6. Ground-Water Quality Data in the Santa Clara River Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Montrella, Joseph; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 460-square-mile Santa Clara River Valley study unit (SCRV) was investigated from April to June 2007 as part of the statewide Priority Basin project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw ground water used for public water supplies within SCRV, and to facilitate a statistically consistent basis for comparing water quality throughout California. Fifty-seven ground-water samples were collected from 53 wells in Ventura and Los Angeles Counties. Forty-two wells were selected using a randomized grid-based method to provide statistical representation of the study area (grid wells). Eleven wells (understanding wells) were selected to further evaluate water chemistry in particular parts of the study area, and four depth-dependent ground-water samples were collected from one of the eleven understanding wells to help understand the relation between water chemistry and depth. The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, potential wastewater-indicator compounds, and pharmaceutical compounds), a constituent of special interest (perchlorate), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial constituents. Naturally occurring isotopes (tritium, carbon-13, carbon-14 [abundance], stable isotopes of hydrogen and oxygen in water, stable isotopes of nitrogen and oxygen in nitrate, chlorine-37, and bromine-81), and dissolved noble gases also were measured to help identify the source

  7. Cost estimate for a proposed GDF Suez LNG testing program

    Energy Technology Data Exchange (ETDEWEB)

    Blanchat, Thomas K.; Brady, Patrick Dennis; Jernigan, Dann A.; Luketa, Anay Josephine; Nissen, Mark R.; Lopez, Carlos; Vermillion, Nancy; Hightower, Marion Michael

    2014-02-01

    At the request of GDF Suez, a Rough Order of Magnitude (ROM) cost estimate was prepared for the design, construction, testing, and data analysis for an experimental series of large-scale (Liquefied Natural Gas) LNG spills on land and water that would result in the largest pool fires and vapor dispersion events ever conducted. Due to the expected cost of this large, multi-year program, the authors utilized Sandia's structured cost estimating methodology. This methodology insures that the efforts identified can be performed for the cost proposed at a plus or minus 30 percent confidence. The scale of the LNG spill, fire, and vapor dispersion tests proposed by GDF could produce hazard distances and testing safety issues that need to be fully explored. Based on our evaluations, Sandia can utilize much of our existing fire testing infrastructure for the large fire tests and some small dispersion tests (with some modifications) in Albuquerque, but we propose to develop a new dispersion testing site at our remote test area in Nevada because of the large hazard distances. While this might impact some testing logistics, the safety aspects warrant this approach. In addition, we have included a proposal to study cryogenic liquid spills on water and subsequent vaporization in the presence of waves. Sandia is working with DOE on applications that provide infrastructure pertinent to wave production. We present an approach to conduct repeatable wave/spill interaction testing that could utilize such infrastructure.

  8. A Dynamic Programming-Based Heuristic for the Shift Design Problem in Airport Ground Handling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    We consider the heterogeneous shift design problem for a workforce with multiple skills, where work shifts are created to cover a given demand as well as possible while minimizing cost and satisfying a flexible set of constraints. We focus mainly on applications within airport ground handling where...... the demand can be highly irregular and specified on time intervals as short as five minutes. Ground handling operations are subject to a high degree of cooperation and specialization that require workers with different qualifications to be planned together. Different labor regulations or organizational rules...... can apply to different ground handling operations, so the rules and restrictions can be numerous and vary significantly. This is modeled using flexible volume constraints that limit the creation of certain shifts. We present a fast heuristic for the heterogeneous shift design problem based on dynamic...

  9. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-18

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is a stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.

  10. Aquifer tests and simulation of ground-water flow in Triassic sedimentary rocks near Colmar, Bucks and Montgomery Counties, Pennsylvania

    Science.gov (United States)

    Risser, Dennis W.; Bird, Philip H.

    2003-01-01

    This report presents the results of a study by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to evaluate ground-water flow in Triassic sedimentary rocks near Colmar, in Bucks and Montgomery Counties, Pa. The study was conducted to help the U.S. Environmental Protection Agency evaluate remediation alternatives at the North Penn Area 5 Superfund Site near Colmar, where ground water has been contaminated by volatile organic solvents (primarily trichloroethene). The investigation focused on determining the (1) drawdown caused by separately pumping North PennWater Authority wells NP?21 and NP?87, (2) probable paths of groundwater movement under present-day (2000) conditions (with NP?21 discontinued), and (3) areas contributing recharge to wells if pumping from wells NP-21 or NP?87 were restarted and new recovery wells were installed. Drawdown was calculated from water levels measured in observation wells during aquifer tests of NP?21 and NP?87. The direction of ground-water flow was estimated by use of a three-dimensional ground-water-flow model. Aquifer tests were conducted by pumping NP?21 for about 7 days at 257 gallons per minute in June 2000 and NP?87 for 3 days at 402 gallons per minute in May 2002. Drawdown was measured in 45 observation wells during the NP?21 test and 35 observation wells during the NP?87 test. Drawdown in observation wells ranged from 0 to 6.8 feet at the end of the NP?21 test and 0.5 to 12 feet at the end of the NP?87 test. The aquifer tests showed that ground-water levels declined mostly in observation wells that were completed in the geologic units penetrated by the pumped wells. Because the geologic units dip about 27 degrees to the northwest, shallow wells up dip to the southeast of the pumped well showed a good hydraulic connection to the geologic units stressed by pumping. Most observation wells down dip from the pumping well penetrated units higher in the stratigraphic section that were not well

  11. Getting Clean in a Drug Rehabilitation Program in Prison: A Grounded Theory Analysis

    Science.gov (United States)

    Smith, Sharon; Ferguson, Neil

    2005-01-01

    High-risk drug use is prevalent among UK prison populations (Lipton, 1995) while recovery in prison is both complex and variable. Grounded theory methodology was employed to gain a greater understanding of the perceptions and conceptualisations of "risk," "need" and "motivation" in relation to prisoner drug abusing practices, criminal practices,…

  12. Ground-Water Quality Data in the Southern Sacramento Valley, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Milby Dawson, Barbara J.; Bennett, George L.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 2,100 square-mile Southern Sacramento Valley study unit (SSACV) was investigated from March to June 2005 as part of the Statewide Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. This study was designed to provide a spatially unbiased assessment of raw ground-water quality within SSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 83 wells in Placer, Sacramento, Solano, Sutter, and Yolo Counties. Sixty-seven of the wells were selected using a randomized grid-based method to provide statistical representation of the study area. Sixteen of the wells were sampled to evaluate changes in water chemistry along ground-water flow paths. Four additional samples were collected at one of the wells to evaluate water-quality changes with depth. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator constituents), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, matrix spikes

  13. Ground-Water Quality Data in the Southeast San Joaquin Valley, 2005-2006 - Results from the California GAMA Program

    Science.gov (United States)

    Burton, Carmen A.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,800 square-mile Southeast San Joaquin Valley study unit (SESJ) was investigated from October 2005 through February 2006 as part of the Priority Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The SESJ study was designed to provide a spatially unbiased assessment of raw ground-water quality within SESJ, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 99 wells in Fresno, Tulare, and Kings Counties, 83 of which were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 16 of which were sampled to evaluate changes in water chemistry along ground-water flow paths or across alluvial fans (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine, and 1,2,3-trichloropropane), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected at approximately 10 percent of the wells, and the results

  14. Ground-Water Quality Data in the Coachella Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 820 square-mile Coachella Valley Study Unit (COA) was investigated during February and March 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of raw ground water used for public-water supplies within the Coachella Valley, and to facilitate statistically consistent comparisons of ground-water quality throughout California. Samples were collected from 35 wells in Riverside County. Nineteen of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Sixteen additional wells were sampled to evaluate changes in water chemistry along selected ground-water flow paths, examine land use effects on ground-water quality, and to collect water-quality data in areas where little exists. These wells were referred to as 'understanding wells'. The ground-water samples were analyzed for a large number of organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (uranium, tritium, carbon-14, and stable isotopes of hydrogen, oxygen, and boron), and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory) also were measured to help identify the source and age of the sampled

  15. Ground-Water Quality Data in the Middle Sacramento Valley Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Schmitt, Stephen J.; Fram, Miranda S.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,340 square mile Middle Sacramento Valley study unit (MSACV) was investigated from June through September, 2006, as part of the California Groundwater Ambient Monitoring and Assessment (GAMA) program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Middle Sacramento Valley study was designed to provide a spatially unbiased assessment of raw ground-water quality within MSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 108 wells in Butte, Colusa, Glenn, Sutter, Tehama, Yolo, and Yuba Counties. Seventy-one wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells), 15 wells were selected to evaluate changes in water chemistry along ground-water flow paths (flow-path wells), and 22 were shallow monitoring wells selected to assess the effects of rice agriculture, a major land use in the study unit, on ground-water chemistry (RICE wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. Quality-control samples (blanks

  16. Ground-Water Quality Data in the Central Sierra Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Ferrari, Matthew J.; Fram, Miranda S.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 950 square kilometer (370 square mile) Central Sierra study unit (CENSIE) was investigated in May 2006 as part of the Priority Basin Assessment project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). This study was designed to provide a spatially unbiased assessment of the quality of raw ground water used for drinking-water supplies within CENSIE, and to facilitate statistically consistent comparisons of ground-water quality throughout California. Samples were collected from thirty wells in Madera County. Twenty-seven of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and three were selected to aid in evaluation of specific water-quality issues (understanding wells). Ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates), constituents of special interest (N-nitrosodimethylamine, perchlorate, and 1,2,3-trichloropropane), naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon], and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. In total, over 250 constituents and water-quality indicators were investigated. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected at approximately one-sixth of the wells, and

  17. Ground-Water Quality Data in the Kern County Subbasin Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Shelton, Jennifer L.; Pimentel, Isabel; Fram, Miranda S.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,000 square-mile Kern County Subbasin study unit (KERN) was investigated from January to March, 2006, as part of the Priority Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The Kern County Subbasin study was designed to provide a spatially unbiased assessment of raw (untreated) ground-water quality within KERN, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 50 wells within the San Joaquin Valley portion of Kern County. Forty-seven of the wells were selected using a randomized grid-based method to provide a statistical representation of the ground-water resources within the study unit. Three additional wells were sampled to aid in the evaluation of changes in water chemistry along regional ground-water flow paths. The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides, and pesticide degradates), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon) and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, and laboratory matrix spikes) were collected and analyzed at approximately 10 percent of

  18. Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors

    Science.gov (United States)

    Vitale, Salvatore

    2016-07-01

    With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.

  19. Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors.

    Science.gov (United States)

    Vitale, Salvatore

    2016-07-29

    With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.

  20. FY11 Facility Assessment Study for Aeronautics Test Program

    Science.gov (United States)

    Loboda, John A.; Sydnor, George H.

    2013-01-01

    This paper presents the approach and results for the Aeronautics Test Program (ATP) FY11 Facility Assessment Project. ATP commissioned assessments in FY07 and FY11 to aid in the understanding of the current condition and reliability of its facilities and their ability to meet current and future (five year horizon) test requirements. The principle output of the assessment was a database of facility unique, prioritized investments projects with budgetary cost estimates. This database was also used to identify trends for the condition of facility systems.

  1. An Assessment of the USAFE School Board Test Program

    Science.gov (United States)

    2002-07-01

    quality of education and student achievement and greater parental involvement . For 2 years, USAFE military leaders, parents, and educators have...Influence School System Decisions Increase Parental Involvement Figure III-1. USAFE School Board Test Program Considerations III-2 A. PARENTS’ ABILITY... parental involvement through membership on the school board. An IAC is located at every installation that has two or more schools. The IAC is composed of

  2. Test Program for the Performance Analysis of DNS64 Servers

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2015-09-01

    Full Text Available In our earlier research papers, bash shell scripts using the host Linux command were applied for testing the performance and stability of different DNS64 server imple­mentations. Because of their inefficiency, a small multi-threaded C/C++ program (named dns64perf was written which can directly send DNS AAAA record queries. After the introduction to the essential theoretical background about the structure of DNS messages and TCP/IP socket interface programming, the design decisions and implementation details of our DNS64 performance test program are disclosed. The efficiency of dns64perf is compared to that of the old method using bash shell scripts. The result is convincing: dns64perf can send at least 95 times more DNS AAAA record queries per second. The source code of dns64perf is published under the GNU GPLv3 license to support the work of other researchers in the field of testing the performance of DNS64 servers.

  3. 77 FR 48527 - National Customs Automation Program (NCAP) Test Concerning Automated Commercial Environment (ACE...

    Science.gov (United States)

    2012-08-14

    ... SECURITY U.S. Customs and Border Protection National Customs Automation Program (NCAP) Test Concerning...: General notice. SUMMARY: This notice announces modifications to the National Customs Automation Program...) National Customs Automation Program (NCAP) test concerning Automated Commercial Environment...

  4. Vessel grounding in entrance channels: case studies and physical model tests

    CSIR Research Space (South Africa)

    Tulsi, K

    2014-05-01

    Full Text Available Physical model studies were conducted of a 250K DWT fully laden iron ore vessel grounding on the side slopes of the outbound channel at a major Australian port. A key deliverable of the study was to estimate the tug force required to pull the vessel...

  5. Status of coal ash corrosion resistant materials test program

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, D.K.; Meisenhelter, D.K.; Sikka, V.K.

    1999-07-01

    In November of 1998, Babcock and Wilcox (B and W) began development of a system to permit testing of several advanced tube materials at metal temperatures typical of advanced supercritical steam conditions of 1100 F and higher in a boiler exhibiting coal ash corrosive conditions. The U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B and W, and First Energy's Ohio Edison jointly fund the project. CONSOL Energy Company is also participating as an advisor. Several materials producers including Oak Ridge National Laboratory (ORNL) contributed advanced materials to the project. The coal-ash corrosion resistant materials test program will provide full scale, in-situ testing of recently developed boiler superheater and reheater tube materials. These newer materials may be capable of operating at higher steam temperatures while resisting external/fire-side corrosion. For high sulfur coal applications, this is a key issue for advanced cycle pulverized coal-fired plants. Fireside corrosion is also a critical issue for many existing plants. Previous testing of high temperature materials in the United States has been based primarily on using laboratory test coupons. The test coupons did not operate at conditions representative of a high sulfur coal-fired boiler. Testing outside of the United States has been with low sulfur coal or natural gas firing and has not addressed corrosion issues. This test program takes place in an actual operating boiler and is expected to confirm the performance of these materials with high sulfur coal. The system consists of three identical sections, each containing multiple pieces of twelve different materials. They are cooled by reheater steam, and are located just above the furnace exit in Ohio Edison's Niles Unit No.1, a 110 MWe unit firing high sulfur Ohio coal. After one year of operation, the first section will be removed for thorough metallurgical evaluation. The second and third sections will operate for

  6. Sensory submodalities testing in neurolinguistic programming, part of mental training

    Directory of Open Access Journals (Sweden)

    Vlad Teodor GROSU

    2017-03-01

    Full Text Available Introduction: this study is part of a larger work, which involves increasing sporting performance by applying mental training techniques – special techniques of neurolinguistic programming. In this case we will discuss some aspects of the test application Jacobson S. (2011. Purpose of study and hypothesis: In neurolinguistic programming (NLP we have studied the relationship between sensory submodalities, in accordance with the Jacobson test (2011. We wanted to check the degree of significance of the mean difference parameters studied and if the materiality result falls within the objective parameters. If ideomotor representations of athletes are completed with multiple sensations of all sensory submodalities such as visual, auditory, kinesthetic, olfactory and gustatory, the possibility of applying the techniques of NLP (neurolinguistic programming will have more effective results. Methods and material: two records were made by using two tests, test1 and test2 on master students of the University “Babes-Bolyai” Cluj-Napoca, from FEFS from APS department (training and sports performance. The statistical indicators were calculated on elements of descriptive statistics and the data is presented using indicators of centrality, location and distribution. Statistical analysis of non-parametric Wilcoxon test was used for sample pairs (data uneven distribution/rank. Materiality tests used was α=0.05 (5%, α=0.01 (1% or α=0.001. Results and deliberations: to detect the correlation between the two variables we used the Spearman rank correlation coefficient (ρ. Statistical analysis was performed using the correlation coefficients Colton’s rule. It was found that no statistically significant differences were observed (p>0.05 in the statistical analysis of sample pairs Jacobson test values (times T1-T2. This is a result of the short timeframe – just one month – for objectives reasons. However, many of them appear in a good and a very good

  7. Ground tests with prototype of CeBr3 active gamma ray spectrometer proposed for future venus surface missions

    Science.gov (United States)

    Litvak, M. L.; Sanin, A. B.; Golovin, D. V.; Jun, I.; Mitrofanov, I. G.; Shvetsov, V. N.; Timoshenko, G. N.; Vostrukhin, A. A.

    2017-03-01

    The results of a series of ground tests with a prototype of an active gamma-ray spectrometer based on a new generation of scintillation crystal (CeBr3) are presented together with a consideration to its applicability to future Venus landing missions. We evaluated the instrument's capability to distinguish the subsurface elemental composition of primary rock forming elements such as O, Na, Mg, Al, Si, K and Fe. Our study uses heritage from previous ground and field tests and applies to the analysis of gamma lines from activation reaction products generated by a pulsed neutron generator. We have estimated that the expected accuracies achieved in this approach could be as high as 1-10% for the particular chemical element being studied.

  8. EPRI PWR Safety and Relief Value Test Program: safety and relief valve test report

    Energy Technology Data Exchange (ETDEWEB)

    1982-12-01

    A safety and relief valve test program was conducted by EPRI for a group of participating PWR utilities to respond to the USNRC recommendations documented in NUREG 0578 Section 2.1.2, and as clarified in NUREG 0737 Item II.D.1.A. Seventeen safety and relief valves representative of those utilized in or planned for use in participating domestic PWR's were tested under the full range of selected test conditions. This report contains a listing of the selected test valves and the corresponding as tested test matrices, valve performance data and principal observations for the tested safety and relief valves. The information contained in this report may be used by the participating utilities in developing their response to the above mentioned USNRC recommendations.

  9. Shuttle Ground Support Equipment (GSE) T-0 Umbilical to Space Shuttle Program (SSP) Flight Elements Consultation

    Science.gov (United States)

    Wilson, Timmy R.; Kichak, Robert A.; McManamen, John P.; Kramer-White, Julie; Raju, Ivatury S.; Beil, Robert J.; Weeks, John F.; Elliott, Kenny B.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) was tasked with assessing the validity of an alternate opinion that surfaced during the investigation of recurrent failures at the Space Shuttle T-0 umbilical interface. The most visible problem occurred during the Space Transportation System (STS)-112 launch when pyrotechnics used to separate Solid Rocket Booster (SRB) Hold-Down Post (HDP) frangible nuts failed to fire. Subsequent investigations recommended several improvements to the Ground Support Equipment (GSE) and processing changes were implemented, including replacement of ground-half cables and connectors between flights, along with wiring modifications to make critical circuits quad-redundant across the interface. The alternate opinions maintained that insufficient data existed to exonerate the design, that additional data needed to be gathered under launch conditions, and that the interface should be further modified to ensure additional margin existed to preclude failure. The results of the assessment are contained in this report.

  10. Integrated experimental test program on waterhammer pressure pulses and associated structural responses within a feedwater sparger

    Energy Technology Data Exchange (ETDEWEB)

    Nurkkala, P.; Hoikkanen, J. [Imatran Voima Oy, Vantaa (Finland)

    1997-12-31

    This paper describes the methods and systems as utilized in an integrated experimental thermohydraulic/mechanics analysis test program on waterhammer pressure pulses within a revised feedwater sparger of a Loviisa generation VVER-440-type reactor. This program was carried out in two stages: (1) measurements with a strictly limited set of operating parameters at Loviisa NPP, and (2) measurements with the full set of operating parameters on a test article simulating the revised feedwater sparger. The experiments at Loviisa NPS served as an invaluable source of information on the nature of waterhammer pressure pulses and structural responses. These tests thus helped to set the objectives and formulate the concept for series of tests on a test article to study the water hammer phenomena. The heavily instrumented full size test article of a steam generator feedwater sparger was placed within a pressure vessel simulating the steam generator. The feedwater sparger was subjected to the full range of operating parameters which were to result in waterhammer pressure pulse trains of various magnitudes and duration. Two different designs of revised feedwater sparger were investigated (i.e. `grounded` and `with goose neck`). The following objects were to be met within this program: (1) establish the thermohydraulic parameters that facilitate the occurrence of water hammer pressure pulses, (2) provide a database for further analysis of the pressure pulse phenomena, (3) establish location and severity of these water hammer pressure pulses, (4) establish the structural response due to these pressure pulses, (5) provide input data for structural integrity analysis. (orig.). 3 refs.

  11. Direct imaging of extrasolar planets: overview of ground and space programs

    OpenAIRE

    Anthony, Boccaletti

    2009-01-01

    With the ever-growing number of exoplanets detected, the issue of characterization is becoming more and more relevant. Direct imaging is certainly the most efficient but the most challenging tool to probe the atmosphere of exoplanets and hence in turns determine the physical properties and refine models of exoplanets. A number of instruments optimized for exoplanets imaging are now operating or planned for the short and long term both on the ground and in space. This paper reviews these instr...

  12. Considerations for Use of the Rora Program to Estimate Ground-Water Recharge From Streamflow Records

    Science.gov (United States)

    2000-01-01

    inch per year (in/yr) 25.4 millimeter per year foot (ft) 0.3048 meter square mile (mi2) 2.590 square kilometer cubic foot per second (ft3...designates those parts of the record that represent ground-water discharge. In extremely flat areas, the time period of surface runoff may not be...by several hydrologists (Gerhart, 1986; Hall and Risser , 1993; Meinzer and Stearns, 1929; Rasmussen and Andreasen, 1959). To isolate the rise caused

  13. Review of the ATLAS B0 model coil test program

    CERN Document Server

    Dolgetta, N; Acerbi, E; Berriaud, C; Boxman, H; Broggi, F; Cataneo, F; Daël, A; Delruelle, N; Dudarev, A; Foussat, A; Haug, F; ten Kate, H H J; Mayri, C; Paccalini, A; Pengo, R; Rivoltella, G; Sbrissa, E

    2004-01-01

    The ATLAS B0 model coil has been extensively tested, reproducing the operational conditions of the final ATLAS Barrel Toroid coils. Two test campaigns have taken place on B0, at the CERN facility where the individual BT coils are about to be tested. The first campaign aimed to test the cool-down, warm-up phases and to commission the coil up to its nominal current of 20.5 kA, reproducing Lorentz forces similar to the ones on the BT coil. The second campaign aimed to evaluate the margins above the nominal conditions. The B0 was tested up to 24 kA and specific tests were performed to assess: the coil temperature margin with respect to the design value, the performance of the double pancake internal joints, static and dynamic heat loads, behavior of the coil under quench conditions. The paper reviews the overall test program with emphasis on second campaign results not covered before. 10 Refs.

  14. High speed wind tunnel tests of the PTA aircraft. [Propfan Test Assessment Program

    Science.gov (United States)

    Aljabri, A. S.; Little, B. H., Jr.

    1986-01-01

    Propfans, advanced highly-loaded propellers, are proposed to power transport aircraft that cruise at high subsonic speeds, giving significant fuel savings over the equivalent turbofan-powered aircraft. NASA is currently sponsoring the Propfan Test Assessment Program (PTA) to provide basic data on the structural integrity and acoustic performance of the propfan. The program involves installation design, wind-tunnel tests, and flight tests of the Hamilton Standard SR-7 propfan in a wing-mount tractor installation on the Gulfstream II aircraft. This paper reports on the high-speed wind-tunnel tests and presents the computational aerodynamic methods that were employed in the analyses, design, and evaluation of the configuration. In spite of the complexity of the configuration, these methods provide aerodynamic predictions which are in excellent agreement with wind-tunnel data.

  15. Development of methodology and computer programs for the ground response spectrum and the probabilistic seismic hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Kyoung [Semyung Univ., Research Institute of Industrial Science and Technol , Jecheon (Korea, Republic of)

    1996-12-15

    Objective of this study is to investigate and develop the methodologies and corresponding computer codes, compatible to the domestic seismological and geological environments, for estimating ground response spectrum and probabilistic seismic hazard. Using the PSHA computer program, the Cumulative Probability Functions(CPDF) and Probability Functions (PDF) of the annual exceedence have been investigated for the analysis of the uncertainty space of the annual probability at ten interested seismic hazard levels (0.1 g to 0.99 g). The cumulative provability functions and provability functions of the annual exceedence have been also compared to those results from the different input parameter spaces.

  16. A novel approach for simulating the optical misalignment caused by satellite platform vibration in the ground test of satellite optical communication systems.

    Science.gov (United States)

    Wang, Qiang; Tan, Liying; Ma, Jing; Yu, Siyuan; Jiang, Yijun

    2012-01-16

    Satellite platform vibration causes the misalignment between incident direction of the beacon and optical axis of the satellite optical communication system, which also leads to the instability of the laser link and reduces the precision of the system. So how to simulate the satellite platform vibration is a very important work in the ground test of satellite optical communication systems. In general, a vibration device is used for simulating the satellite platform vibration, but the simulation effect is not ideal because of the limited randomness. An approach is reasonable, which uses a natural random process for simulating the satellite platform vibration. In this paper, we discuss feasibility of the concept that the effect of angle of arrival fluctuation is taken as an effective simulation of satellite platform vibration in the ground test of the satellite optical communication system. Spectrum characteristic of satellite platform vibration is introduced, referring to the model used by the European Space Agency (ESA) in the SILEX program and that given by National Aeronautics and Space Development Agency (NASDA) of Japan. Spectrum characteristic of angle of arrival fluctuation is analyzed based on the measured data from an 11.16km bi-directional free space laser transmission experiment. Spectrum characteristic of these two effects is compared. The results show that spectra of these two effects have similar variation trend with the variation of frequency and feasibility of the concept is proved by the comparison results. At last the procedure of this method is proposed, which uses the power spectra of angle of arrival fluctuation to simulate that of the satellite platform vibration. The new approach is good for the ground test of satellite optical communication systems.

  17. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    Energy Technology Data Exchange (ETDEWEB)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  18. Advanced Utility Mercury-Sorbent Field-Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was

  19. The US Army Foreign Comparative Test fuel cell program

    Science.gov (United States)

    Bostic, Elizabeth; Sifer, Nicholas; Bolton, Christopher; Ritter, Uli; Dubois, Terry

    The US Army RDECOM initiated a Foreign Comparative Test (FCT) Program to acquire lightweight, high-energy dense fuel cell systems from across the globe for evaluation as portable power sources in military applications. Five foreign companies, including NovArs, Smart Fuel Cell, Intelligent Energy, Ballard Power Systems, and Hydrogenics, Inc., were awarded competitive contracts under the RDECOM effort. This paper will report on the status of the program as well as the experimental results obtained from one of the units. The US Army has interests in evaluating and deploying a variety of fuel cell systems, where these systems show added value when compared to current power sources in use. For low-power applications, fuel cells utilizing high-energy dense fuels offer significant weight savings over current battery technologies. This helps reduce the load a solider must carry for longer missions. For high-power applications, the low operating signatures (acoustic and thermal) of fuel cell systems make them ideal power generators in stealth operations. Recent testing has been completed on the Smart Fuel Cell A25 system that was procured through the FCT program. The "A-25" is a direct methanol fuel cell hybrid and was evaluated as a potential candidate for soldier and sensor power applications.

  20. Ground-Water Quality Data in the Southern Sierra Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2007-01-01

    Ground-water quality in the approximately 1,800 square-mile Southern Sierra study unit (SOSA) was investigated in June 2006 as part of the Statewide Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Southern Sierra study was designed to provide a spatially unbiased assessment of raw ground-water quality within SOSA, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from fifty wells in Kern and Tulare Counties. Thirty-five of the wells were selected using a randomized grid-based method to provide statistical representation of the study area, and fifteen were selected to evaluate changes in water chemistry along ground-water flow paths. The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator compounds], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3-trichloropropane (1,2,3-TCP)], naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water], and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected for approximately one-eighth of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the

  1. Ground-Water Quality Data in the San Francisco Bay Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Ray, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 620-square-mile San Francisco Bay study unit (SFBAY) was investigated from April through June 2007 as part of the Priority Basin project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of raw ground-water quality, as well as a statistically consistent basis for comparing water quality throughout California. Samples in SFBAY were collected from 79 wells in San Francisco, San Mateo, Santa Clara, Alameda, and Contra Costa Counties. Forty-three of the wells sampled were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Thirty-six wells were sampled to aid in evaluation of specific water-quality issues (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, trace elements, chloride and bromide isotopes, and uranium and strontium isotopes), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14 isotopes, and stable isotopes of hydrogen, oxygen, nitrogen, boron, and carbon), and dissolved noble gases (noble gases were analyzed in collaboration with Lawrence Livermore National Laboratory) also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blank samples

  2. Ground-Water Quality Data in the Central Eastside San Joaquin Basin 2006: Results from the California GAMA Program

    Science.gov (United States)

    Landon, Matthew K.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 1,695-square-mile Central Eastside study unit (CESJO) was investigated from March through June 2006 as part of the Statewide Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The study was designed to provide a spatially unbiased assessment of raw ground-water quality within CESJO, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 78 wells in Merced and Stanislaus Counties. Fifty-eight of the 78 wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells). Twenty of the wells were selected to evaluate changes in water chemistry along selected lateral or vertical ground-water flow paths in the aquifer (flow-path wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), gasoline oxygenates and their degradates, pesticides and pesticide degradates], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3-trichloropropane (1,2,3-TCP)], inorganic constituents that can occur naturally [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, carbon-14, and uranium isotopes and stable isotopes of hydrogen, oxygen, nitrogen, sulfur, and carbon], and dissolved noble and other gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected

  3. Test Operations Procedure (TOP) 02-2-546 Teleoperated Unmanned Ground Vehicle (UGV) Latency Measurements

    Science.gov (United States)

    2017-01-11

    A. Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Defense Technical Information Center (DTIC), AD No.: 14. ABSTRACT...discrete system components or measurements of latency in autonomous systems. 15. SUBJECT TERMS Unmanned Ground Vehicles, Basic Video Latency, End -to... End System Latency, Command-to-Action Latency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 23 19a

  4. Construction and Testing of Broadband High Impedance Ground Planes (HIGPS) for Surface Mount Antennas

    Science.gov (United States)

    2008-03-01

    mushrooms (with side lengths of 7.6mm). Larger mushrooms (with side lengths of 16mm) were located to the edges of the substrate . The resulting...thickness and substrate permittivity are two of the main design parameters. But these parameters have production constraints, since they are ordered off...plane designs as a meta- substrate for a broadband bow-tie antenna were presented. Consequently, the high impedance ground plane provided a suitable

  5. The BNL Accelerator Test Facility and experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (Brookhaven National Lab., Upton, NY (United States) State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics)

    1991-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high power laser pulses synchronized to the electron beam, suitable for studies of new methods of high gradient acceleration and state of the art free electron lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 to 100 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps Nd:YAG laser and a 100 mJ, 10 ps CO{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various acceleration schemes, Free-Electron Laser experiments and a program on the development of high brightness electron beams. The AFT's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the High power laser will begin operation this year. 28 refs., 4 figs.

  6. The BNL Accelerator Test Facility and experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics

    1992-09-01

    The Accelerator Test Facility (ATF) at BNL is a users` facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF`s experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year.

  7. The BNL Accelerator Test Facility and experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, I. (Brookhaven National Lab., Upton, NY (United States) State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics)

    1992-01-01

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high-power laser pulses synchronized to the electron beam, suitable for studies of new methods of high-gradient acceleration and state-of-the-art Free-Electron Lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps ND:YAG laser and a 500 mJ, 10 to 100 ps C0{sub 2} laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various laser acceleration schemes, Free-Electron Laser experiments and a program on the development of high-brightness electron beams. The ATF's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the high-power laser will begin operation this year.

  8. A portable Ka-band front-end test package for beam-waveguide antenna performance evaluation. Part 1: Design and ground tests

    Science.gov (United States)

    Otoshi, T. Y.; Stewart, S. R.; Franco, M. M.

    1991-01-01

    A unique experimental method was used to test the beam waveguide (BWG) antenna at Deep Space Station (DDS) 13 in the Goldstone Deep Space Communications Complex near Barstow, California. The methodology involved the use of portable test packages to make measurements of operating noise temperatures and antenna efficiencies (as functions of antenna pointing angles) at the Cassegrain focal point and the final focal point located in a subterranean pedestal room. Degradations caused by the BWG mirror systems were determined by making comparisons of the measured parameters at the two focal points of the antenna. Previous articles were concerned with the design, performance characteristics, and test results obtained with an X-band test package operating at 32 GHz. Noise temperature measurement results are presented for the Ka-band test package in an on-the-ground test configuration.

  9. US DOE Regional Test Centers Program - 2016 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    The US Department of Energy’s Regional Test Center (RTC) program provides outdoor validation and bankability data for innovative solar technologies at five sites across the US representing a range of climate conditions. Data helps get new technologies to market faster and improves US industry competitiveness. Managed by Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), the RTC program partners with US manufacturers of photovoltaic (PV) technologies, including modules, inverters, and balance-of-system equipment. The study is collaborative, with manufacturers (also known as RTC industry partners) and the national labs working together on a system design and validation strategy that meets a clearly defined set of performance and reliability objectives.

  10. Ground-based tests of JEM-EUSO components at the Telescope Array site, "EUSO-TA"

    Science.gov (United States)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    We are conducting tests of optical and electronics components of JEMEUSO at the Telescope Array site in Utah with a ground-based "EUSO-TA" detector. The tests will include an engineering validation of the detector, cross-calibration of EUSO-TA with the TA fluorescence detector and observations of air shower events. Also, the proximity of the TA's Electron Light Source will allow for convenient use of this calibration device. In this paper, we report initial results obtained with the EUSO-TA telescope.

  11. Hypergravity Facilities in the ESA Ground-Based Facility Program - Current Research Activities and Future Tasks

    Science.gov (United States)

    Frett, Timo; Petrat, Guido; W. A. van Loon, Jack J.; Hemmersbach, Ruth; Anken, Ralf

    2016-06-01

    Research on Artificial Gravity (AG) created by linear acceleration or centrifugation has a long history and could significantly contribute to realize long-term human spaceflight in the future. Employing centrifuges plays a prominent role in human physiology and gravitational biology. This article gives a short review about the background of Artificial Gravity with respect to hypergravity (including partial gravity) and provides information about actual ESA ground-based facilities for research on a variety of biosystems such as cells, plants, animals or, particularly, humans.

  12. Seismic II over I Drop Test Program results and interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B.

    1993-03-01

    The consequences of non-seismically qualified (Category 2) objects falling and striking essential seismically qualified (Category 1) objects has always been a significant, yet analytically difficult problem, particularly in evaluating the potential damage to equipment that may result from earthquakes. Analytical solutions for impact problems are conservative and available for mostly simple configurations. In a nuclear facility, the [open quotes]sources[close quotes] and [open quotes]targets[close quotes] requiring evaluation are frequently irregular in shape and configuration, making calculations and computer modeling difficult. Few industry or regulatory rules are available on this topic even though it is a source of considerable construction upgrade costs. A drop test program was recently conducted to develop a more accurate understanding of the consequences of seismic interactions. The resulting data can be used as a means to improve the judgment of seismic qualification engineers performing interaction evaluations and to develop realistic design criteria for seismic interactions. Impact tests on various combinations of sources and targets commonly found in one Savannah River Site (SRS) nuclear facility were performed by dropping the sources from various heights onto the targets. This report summarizes results of the Drop Test Program. Force and acceleration time history data are presented as well as general observations on the overall ruggedness of various targets when subjected to impacts from different types of sources.

  13. Seismic II over I Drop Test Program results and interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B.

    1993-03-01

    The consequences of non-seismically qualified (Category 2) objects falling and striking essential seismically qualified (Category 1) objects has always been a significant, yet analytically difficult problem, particularly in evaluating the potential damage to equipment that may result from earthquakes. Analytical solutions for impact problems are conservative and available for mostly simple configurations. In a nuclear facility, the {open_quotes}sources{close_quotes} and {open_quotes}targets{close_quotes} requiring evaluation are frequently irregular in shape and configuration, making calculations and computer modeling difficult. Few industry or regulatory rules are available on this topic even though it is a source of considerable construction upgrade costs. A drop test program was recently conducted to develop a more accurate understanding of the consequences of seismic interactions. The resulting data can be used as a means to improve the judgment of seismic qualification engineers performing interaction evaluations and to develop realistic design criteria for seismic interactions. Impact tests on various combinations of sources and targets commonly found in one Savannah River Site (SRS) nuclear facility were performed by dropping the sources from various heights onto the targets. This report summarizes results of the Drop Test Program. Force and acceleration time history data are presented as well as general observations on the overall ruggedness of various targets when subjected to impacts from different types of sources.

  14. Thermionic Technology Program: A, Insulator test and evaluation: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, J.C.; Witt, T.

    1987-11-30

    The Thermionic Technology Program (TTP) consisted of two major efforts, evaluation of insulators and evaluation of thermionic converters. This report details the work performed on the insulator phase of the program. Efforts were made to better understand the mechanisms involved in the electrochemistry of insulators at elevated temperatures by modelling the ionic transport through the various layers of the insulator package. Although rigorous analytic solutions could not be obtained owing to a lack of detailed data, a simplified model indicated that alumina should not fail by depletion of aluminum for thousands of years, whereas calculations for yttria revealed a far more rapid depletion of oxygen and consequently earlier failure. Methods for microscopic and electrical testing of cylindrical insulator samples were developed, and an improved test oven design was initiated. Testing of alumina/niobium cermet samples revealed rapid failure contrary to the theoretical predictions for alumina. Large discrepancies in the initial conduction activation energy among the various samples suggested that different mechanisms could have controlled the conduction and hence the failure in different samples, although all had undergone nominally identical processing. The short lifetimes reveal how rapidly ambient conditions in thermionic power conversion can degrade the performance of insulating oxides. It was concluded that minor dopants could have been responsible for the early breakdowns. Thus, high purity materials with precise quality control will be necessary for trilayer package development. 35 refs., 28 figs., 5 tabs.

  15. Material testing facilities and programs for plasma-facing component testing

    Science.gov (United States)

    Linsmeier, Ch.; Unterberg, B.; Coenen, J. W.; Doerner, R. P.; Greuner, H.; Kreter, A.; Linke, J.; Maier, H.

    2017-09-01

    Component development for operation in a large-scale fusion device requires thorough testing and qualification for the intended operational conditions. In particular environments are necessary which are comparable to the real operation conditions, allowing at the same time for in situ/in vacuo diagnostics and flexible operation, even beyond design limits during the testing. Various electron and neutral particle devices provide the capabilities for high heat load tests, suited for material samples and components from lab-scale dimensions up to full-size parts, containing toxic materials like beryllium, and being activated by neutron irradiation. To simulate the conditions specific to a fusion plasma both at the first wall and in the divertor of fusion devices, linear plasma devices allow for a test of erosion and hydrogen isotope recycling behavior under well-defined and controlled conditions. Finally, the complex conditions in a fusion device (including the effects caused by magnetic fields) are exploited for component and material tests by exposing test mock-ups or material samples to a fusion plasma by manipulator systems. They allow for easy exchange of test pieces in a tokamak or stellarator device, without opening the vessel. Such a chain of test devices and qualification procedures is required for the development of plasma-facing components which then can be successfully operated in future fusion power devices. The various available as well as newly planned devices and test stands, together with their specific capabilities, are presented in this manuscript. Results from experimental programs on test facilities illustrate their significance for the qualification of plasma-facing materials and components. An extended set of references provides access to the current status of material and component testing capabilities in the international fusion programs.

  16. Implementing ground surface deformation tools to characterize field-scale properties of a fractured aquifer during a short hydraulic test

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Boudin, Frédérick; Durand, Stéphane

    2016-04-01

    In naturally fractured reservoirs, fluid flow is governed by the structural and hydromechanical properties of fracture networks or conductive fault zones. In order to ensure a sustained exploitation of resources or to assess the safety of underground storage, it is necessary to evaluate these properties. As they generally form highly heterogeneous and anisotropic reservoirs, fractured media may be well characterized by means of several complementary experimental methods or sounding techniques. In this framework, the observation of ground deformation has been proved useful to gain insight of a fractured reservoir's geometry and hydraulic properties. Commonly, large conductive structures like faults can be studied from surface deformation from satellite methods at monthly time scales, whereas meter scale fractures have to be examined under short-term in situ experiments using high accuracy intruments like tiltmeters or extensometers installed in boreholes or at the ground's surface. To the best of our knowledge, the feasability of a field scale (~ 100 m) characterization of a fractured reservoir with geodetic tools in a short term experiment has not yet been addressed. In the present study, we implement two complementary ground surface geodetic tools, namely tiltmetry and optical leveling, to monitor the deformation induced by a hydraulic recovery test at the Ploemeur hydrological observatory (France). Employing a simple purely elastic modeling approach, we show that the joint use of time constraining data (tilt) and spatially constraining data (vertical displacement) makes it possible to evaluate the geometry (dip, root depth and lateral extent) and the storativity of a hydraulically active fault zone, in good agreement with previous studies. Hence we demonstrate that the adequate use of two complementary ground surface deformation methods offer a rich insight of large conductive structure's properties using a single short term hydraulic load. Ground surface

  17. 77 FR 11367 - Defense Federal Acquisition Regulation Supplement; Extension of the Test Program for Negotiation...

    Science.gov (United States)

    2012-02-24

    ... Regulation Supplement; Extension of the Test Program for Negotiation of Comprehensive Small Business... Acquisition Regulation Supplement to extend the program period for the DoD Test Program for Negotiation of...). Section 866 amends the DoD Test Program for Negotiation of Comprehensive Small Business...

  18. Ground Plane and Near-Surface Thermal Analysis for NASA's Constellation Program

    Science.gov (United States)

    Gasbarre, Joseph F.; Amundsen, Ruth M.; Scola, Salvatore; Leahy, Frank F.; Sharp, John R.

    2008-01-01

    Most spacecraft thermal analysis tools assume that the spacecraft is in orbit around a planet and are designed to calculate solar and planetary fluxes, as well as radiation to space. On NASA Constellation projects, thermal analysts are also building models of vehicles in their pre-launch condition on the surface of a planet. This process entails making some modifications in the building and execution of a thermal model such that the radiation from the planet, both reflected albedo and infrared, is calculated correctly. Also important in the calculation of pre-launch vehicle temperatures are the natural environments at the vehicle site, including air and ground temperatures, sky radiative background temperature, solar flux, and optical properties of the ground around the vehicle. A group of Constellation projects have collaborated on developing a cohesive, integrated set of natural environments that accurately capture worst-case thermal scenarios for the pre-launch and launch phases of these vehicles. The paper will discuss the standardization of methods for local planet modeling across Constellation projects, as well as the collection and consolidation of natural environments for launch sites. Methods for Earth as well as lunar sites will be discussed.

  19. Development of Neural Network Model for Predicting Peak Ground Acceleration Based on Microtremor Measurement and Soil Boring Test Data

    Directory of Open Access Journals (Sweden)

    T. Kerh

    2012-01-01

    Full Text Available It may not be possible to collect adequate records of strong ground motions in a short period of time; hence microtremor survey is frequently conducted to reveal the stratum structure and earthquake characteristics at a specified construction site. This paper is therefore aimed at developing a neural network model, based on available microtremor measurement and on-site soil boring test data, for predicting peak ground acceleration at a site, in a science park of Taiwan. The four key parameters used as inputs for the model are soil values of the standard penetration test, the medium grain size, the safety factor against liquefaction, and the distance between soil depth and measuring station. The results show that a neural network model with four neurons in the hidden layer can achieve better performance than other models presently available. Also, a weight-based neural network model is developed to provide reliable prediction of peak ground acceleration at an unmeasured site based on data at three nearby measuring stations. The method employed in this paper provides a new way to treat this type of seismic-related problem, and it may be applicable to other areas of interest around the world.

  20. Nuclear thermal rocket nozzle testing and evaluation program

    Science.gov (United States)

    Davidian, Kenneth O.; Kacynski, Kenneth J.

    1993-01-01

    Performance characteristics of the Nuclear Thermal Rocket can be enhanced through the use of unconventional nozzles as part of the propulsion system. The Nuclear Thermal Rocket nozzle testing and evaluation program being conducted at the NASA Lewis is outlined and the advantages of a plug nozzle are described. A facility description, experimental designs and schematics are given. Results of pretest performance analyses show that high nozzle performance can be attained despite substantial nozzle length reduction through the use of plug nozzles as compared to a convergent-divergent nozzle. Pretest measurement uncertainty analyses indicate that specific impulse values are expected to be within + or - 1.17 pct.

  1. Quantitative kHz to MHz Frame Rate Flow Diagnostics for Aerodynamic Ground Test Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I SBIR program will study the feasibility of building next-generation burst-mode laser diagnostics that will enable unparalleled planar imaging...

  2. Experimental Program for the CLIC test facility 3 test beam line

    CERN Document Server

    Adli, E; Dobert, S; Olvegaard, M; Schulte, D; Syratchev, I; Lillestol, Reidar

    2010-01-01

    The CLIC Test Facility 3 Test Beam Line is the first prototype for the CLIC drive beam decelerator. Stable transport of the drive beam under deceleration is a mandatory component in the CLIC two-beam scheme. In the Test Beam Line more than 50% of the total energy will be extracted from a 150 MeV, 28 A electron drive beam, by the use of 16 power extraction and transfer structures. A number of experiments are foreseen to investigate the drive beam characteristics under deceleration in the Test Beam Line, including beam stability, beam blow up and the efficiency of the power extraction. General benchmarking of decelerator simulation and theory studies will also be performed. Specially designed instrumentation including precision BPMs, loss monitors and a time-resolved spectrometer dump will be used for the experiments. This paper describes the experimental program foreseen for the Test Beam Line, including the relevance of the results for the CLIC decelerator studies.

  3. Ground tests of the Dynamic Albedo of Neutron instrument operation in the passive mode with a Martian soil model

    Science.gov (United States)

    Shvetsov, V. N.; Dubasov, P. V.; Golovin, D. V.; Kozyrev, A. S.; Krylov, A. R.; Krylov, V. A.; Litvak, M. L.; Malakhov, A. V.; Mitrofanov, I. G.; Mokrousov, M. I.; Sanin, A. B.; Timoshenko, G. N.; Vostrukhin, A. A.; Zontikov, A. O.

    2017-07-01

    The results of the Dynamic Albedo of Neutrons (DAN) instrument ground tests in the passive mode of operation are presented in comparison with the numerical calculations. These test series were conducted to support the current surface measurements of DAN onboard the MSL Curiosity rover. The instrument sensitivity to detect thin subsurface layers of water ice buried at different depths in the analog of Martian soil has been evaluated during these tests. The experiments have been done with a radioisotope Pu-Be neutron source (analog of the MMRTG neutron source onboard the Curiosity rover) and the Martian soil model assembled from silicon-rich window glass pane. Water ice layers were simulated with polyethylene sheets. All experiments have been performed at the test facility built at the Joint Institute for Nuclear Research (Dubna, Russia).

  4. The program structure designing and optimizing tests of GRAPES physics

    Institute of Scientific and Technical Information of China (English)

    XU GuoQiang; WANG ShiYu; CHEN DeHui; XUE JiShan; SUN Jian; SHEN XueShun; SHEN YuanFang; HUANG LiPing; WU XiangJun; ZHANG HongLiang

    2008-01-01

    According to the modularization and standardization of program structure in Global/Regional Assimi-lation and Prediction System (GRAPES), the plug-compatible and transplantable regional meso-scale and global middle-range physics software package is established, The package's component integrality is comparative with the other advanced models physics. A three-level structure of connecting GRAPES physics and dynamic frame has been constructed. The friendly interface is designed for users to plug in their own physics packages. Phenomenon of grid-point storm rainfall in numerical prediction is analyzed with the numerical tests. The scheme of air vertical velocity calculation is improved. Opti-mizing tests of physics schemes are performed with the correlative parameters adjusting. The results show that the false grid-point storm rainfall is removed by precipitation scheme improving. Then the score of precipitation forecast is enhanced.

  5. The Long-Term Inflow and Structural Test Program

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,HERBERT J; JONES,PERRY L.; NEAL,BYRON A.

    2000-10-17

    The Long-term Inflow and Structural Test (LIST) program is collecting long-term, continuous inflow and structural response data to characterize the extreme loads on wind turbines. A heavily instrumented Micon 65/13M turbine with SERI 8-m blades is being used as the first test turbine for this test program. This turbine and its two sister turbines are located in Bushland, TX a test site that exposes the turbines to a wind regime that is representative of a Great Plains commercial site. The turbines and their inflow are being characterized with 60 measurements: 34 to characterize the inflow, 19 to characterize structural response, and 7 to characterize the time-varying state of the turbine. The primary characterization of the inflow into the LIST turbine relies upon an array of five sonic anemometers. These three-axis anemometers are placed approximately 2-diameters upstream of the turbine in a pattern designed to describe the inflow. Primary characterization of the structural response of the turbine uses several sets of strain gauges to measure bending loads on the blades and the tower and two accelerometers to measure the motion of the nacelle. Data from the various instruments are sampled at a rate of 30 Hz using a newly developed data acquisition system that features a time-synchronized continuous data stream that is telemetered from the turbine rotor. The data, taken continuously, are automatically divided into 10-minute segments and archived for analysis. Preliminary data are presented to illustrate the operation of the turbine and the data acquisition and analysis system.

  6. Overview and Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program

    Science.gov (United States)

    Fritts, D. C.

    2015-12-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements spanning a longer interval. The NSF/NCAR GV employed standard flight-level measurements and new airborne lidar and imaging measurements of gravity waves (GWs) from sources at lower altitudes throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-105 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) and two IR "wing" cameras imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar measuring radial winds below the Falcon. DEEPWAVE also included extensive ground-based measurements in New Zealand, Tasmania, and Southern Ocean Islands. DEEPWAVE performed 26 GV flights and 13 Falcon flights, and ground-based measurements occurred whether or not the aircraft were flying. Collectively, many diverse cases of GW forcing, propagation, refraction, and dissipation spanning altitudes of 0-100 km were observed. Examples include strong mountain wave (MW) forcing and breaking in the lower and middle stratosphere, weak MW forcing yielding MW penetration into the MLT having very large amplitudes and momentum fluxes, MW scales at higher altitudes ranging from ~10-250 km, large-scale trailing waves from orography refracting into the polar vortex and extending to high altitudes, GW generation by deep convection, large-scale GWs arising from jet stream sources, and strong MWs in the MLT arising from strong surface flow over a small island. DEEPWAVE yielded a number of surprises, among

  7. Nevada Test Site Radiation Protection Program - Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Radiological Control Managers' Council

    2008-06-01

    Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection,' establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration off-site projects. This NTS RPP promulgates the radiation protection standards, limits, and program requirements for occupational exposure to ionizing radiation resulting from NNSA/NSO activities at the NTS and other operational areas as stated in 10 CFR 835.1(a). NNSA/NSO activities (including design, construction, operation, and decommissioning) within the scope of this RPP may result in occupational exposures to radiation or radioactive material. Therefore, a system of control is implemented through specific references to the site-specific NV/YMP RCM. This system of control is intended to ensure that the following criteria are met: (1) occupational exposures are maintained as low as reasonably achievable (ALARA), (2) DOE's limiting values are not exceeded, (3) employees are aware of and are prepared to cope with emergency conditions, and (4) employees are not inadvertently exposed to radiation or radioactive material.

  8. Test of ground-based lidar instrument WLS7-159

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report presents the result of the test performed for the given Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. The test aims at establishing a relation between the reference wind measurements and corresponding lidar wind indications, and evaluating a set of quality...

  9. Test of ground-based Lidar instrument WLS200S-10

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula

    This report presents the result of the test performed for the given Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. The test aims at establishing a relation between the reference wind measurements and corresponding lidar wind indications, and evaluating a set of quality...

  10. Stochastic Modeling of Structural Uncertainty/Variability from Ground Vibration Modal Test Data (Postprint)

    Science.gov (United States)

    2012-07-01

    inclusion of a nonlinear bend–twist couple without permanent deformation of the test article. For modal testing, a Polytec PSV-400-3D scanning laser...scanned using the Polytec PSV-400-3D scanning LDV. The joined-wing test article was excited with an autoping hammer with a force sensor mounted to the

  11. F-4 Beryllium Rudders; A Precis of the Design, Fabrication, Ground and Flight Test Demonstrations

    Science.gov (United States)

    1975-05-01

    Stress concentration factor KIPS (1000 pounds) per square inch Applied moment (usually a Ending moment) Cycles to failure in fatigue; number...Beryllium rudder assembly. A- TEST 2- RUDDER ULTIMATE STATIC TEST WITH MAXIMUM AIRLOAD AT W„ THORn The objective of this test was to demonstrate

  12. Test of ground-based Lidar instrument WLS200S-11

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula

    This report presents the result of the test performed for the given Windcube at DTU’s test site for large wind turbine at Høvsøre, Denmark. The test aims at establishing a relation between the reference wind measurements and corresponding lidar wind indications, and evaluating a set of quality...

  13. Status of the Correlation Process of the V-HAB Simulation with Ground Tests and ISS Telemetry Data

    Science.gov (United States)

    Ploetner, Peter; Anderson, Molly S.; Czupalla, Markus; Ewert, Micahel K.; Roth, Christof Martin; Zhulov, Anton

    2012-01-01

    The Virtual Habitat (V-HAB) is a dynamic Life Support System (LSS) simulation, created to investigate future human spaceflight missions. V-HAB provides the capability to optimize LSS during early design phases. Furthermore, it allows simulation of worst case scenarios which cannot be tested in reality. In a nutshell, the tool allows the testing of LSS robustness by means of computer simulations. V-HAB is a modular simulation consisting of a: 1. Closed Environment Module 2. Crew Module 3. Biological Module 4. Physio-Chemical Module The focus of the paper will be the correlation and validation of V-HAB against ground test and flight data. The ECLSS technologies (CDRA, CCAA, OGA, etc.) are correlated one by one against available ground test data, which is briefly described in this paper. The technology models in V-HAB are merged to simulate the ISS ECLSS. This simulation is correlated against telemetry data from the ISS, including the water recovery system and the air revitalization system. Finally, an analysis of the results is included in this paper.

  14. The Apache Longbow-Hellfire Missile Test at Yuma Proving Ground: Ecological Risk Assessment for Tracked Vehicle Movement across Desert Pavement

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Mark J [ORNL; Efroymson, Rebecca Ann [ORNL; Hargrove, William Walter [ORNL

    2008-01-01

    A multiple stressor risk assessment was conducted at Yuma Proving Ground, Arizona, as a demonstration of the Military Ecological Risk Assessment Framework. The focus was a testing program at Cibola Range, which involved an Apache Longbow helicopter firing Hellfire missiles at moving targets, M60-A1 tanks. This paper describes the ecological risk assessment for the tracked vehicle movement component of the testing program. The principal stressor associated with tracked vehicle movement was soil disturbance, and a resulting, secondary stressor was hydrological change. Water loss to washes and wash vegetation was expected to result from increased infiltration and/or evaporation associated with disturbances to desert pavement. The simulated exposure of wash vegetation to water loss was quantified using estimates of exposed land area from a digital ortho quarter quad aerial photo and field observations, a 30 30 m digital elevation model, the flow accumulation feature of ESRI ArcInfo, and a two-step process in which runoff was estimated from direct precipitation to a land area and from water that flowed from upgradient to a land area. In all simulated scenarios, absolute water loss decreased with distance from the disturbance, downgradient in the washes; however, percentage water loss was greatest in land areas immediately downgradient of a disturbance. Potential effects on growth and survival of wash trees were quantified by using an empirical relationship derived from a local unpublished study of water infiltration rates. The risk characterization concluded that neither risk to wash vegetation growth or survival nor risk to mule deer abundance and reproduction was expected. The risk characterization was negative for both the incremental risk of the test program and the combination of the test and pretest disturbances.

  15. Results of the quality assurance testing program for radiopharmaceuticals, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Baldas, J.; Bonnyman, J.; Ivanov, Z.; Lauder, R

    1995-08-01

    The Australian Radiation Laboratory conducts a Radiopharmaceutical Quality Assurance Test Program in which radiopharmaceuticals used in nuclear medicine in Australia are tested for compliance with specifications. Where the radiopharmaceutical is the subject of a monograph in the British Pharmacopoeia or the European Pharmacopoeia, then the specifications given in the Pharmacopoeia are adopted. In other cases the specifications quoted have been adopted by this Laboratory and have no legal status. It should be noted that unless stated otherwise, the specifications listed apply at all times up to product expiry. Radionuclidic purity has been determined at the calibration time, except for Thallous [{sup 201}Tl] Chloride injection where the highest impurity level up to product expiry is quoted. Samples for testing were obtained through commercial channels. All technetium-99m cold kits were reconstituted according to the directions in the package insert using Sodium Pertechnetate[{sup 99m}Tc] Injection. Methods used for testing are described in the report ARL/TR093 24 tabs.

  16. APALS program status: preproduction flight test results and production implementation

    Science.gov (United States)

    Hvizd, James J.; Dieffenbach, Otto W.

    1996-05-01

    The APALS system is a precision approach and landing system designed to enable low visibility landings at many more airports than now possible. Engineering development of the APALS system began October 1992 culminating in the pre- production Advanced Development Model (ADM) system currently undergoing flight testing. The paper focuses on the Cat III accuracy and integrity requirements defined by ICAO, Annex 10 and the required navigation performance (RNP) tunnel concept. The resulting ADM architecture developed to meet them is described. The primary measurement is made with the aircraft's weather radar and provides range and range rate information to the ADM necessary to update the precision navigation state vector. The system uses stored terrain map data as references for map matching with synthetic aperture radar with synthetic aperture radar maps. A description of the pre-production flight test program is included. Testing is being conducted at six different airports around the country demonstrating system performance in various environmental conditions (precipitation, heavy foliage, sparse terrain, over water and turbulence). ADM flight test results of 131 successful CAT II hand-flown approaches at ALbuquerque, NM and Richmond, VA are presented. Detailed statistical analysis of these results indicate that the APALS system meets the RNP for Cat III.

  17. Recovery Act: Tennessee Energy Efficient Schools Initiative Ground Source Heat Pump Program

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Terry [Townsend Engineering, Inc., Davenport, IA (United States); Slusher, Scott [Townsend Engineering, Inc., Davenport, IA (United States)

    2017-04-24

    The Tennessee Energy Efficient Schools Initiative (EESI) Hybrid-Water Source Heat Pump (HY-GSHP) Program sought to provide installation costs and operation costs for different Hybrid water source heat pump systems’ configurations so that other State of Tennessee School Districts will have a resource for comparison purposes if considering a geothermal system.

  18. Gaining Ground: The Labor Market Progress of Sectoral Employment Development Programs. SEDLP Research Report.

    Science.gov (United States)

    Zandniapour, Lily; Conway, Maureen

    The Sectoral Employment Development Learning Project conducted a longitudinal survey of participants of industry-based workforce development programs about two years after completing training. Outcomes for unemployed and underemployed workers--77 percent of the sample--indicated increased hours worked and increased earnings per hour produced…

  19. Safeguarding Self-Governance: A Grounded Theory of Older Patients’ Pattern of Behavior in Relation to their Relatives in Fast-track Programs

    DEFF Research Database (Denmark)

    Berthelsen, Connie B.; Frederiksen, Kirsten; Lindhardt Damsgaard, Tove

    2014-01-01

    Abstract The aim of this study was to generate a grounded theory of older patients’ pattern of behavior in relation to their relatives’ involvement in fast-track programs during total joint replacement. Sixteen patients were recruited in orthopedic wards. Data collection included 11 interviews......-governance emerged in the analysis as the core category of our theory and pattern of behavior of the older patients in relation to their relatives. The older patients’ main concern was to complete the fast-track program while maintaining autonomy, which they resolved through four strategies of actions: embracing......, shielding, distancing, and masking. Keywords: Fast-track program, grounded theory, older patients, relatives, total joint replacement....

  20. Mechanical test results from the EU testing program for potential ITER insulation material

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, A.J.; Butt, S.; Smith, K.D. [Oxford Instruments, Witney (United Kingdom)] [and others

    1997-06-01

    Insulation systems will be a key element in the future construction and impregnation of the coils for the ITER device. Candidate materials must survive prolonged irradiation (2.5 x 10{sup 21} - 2.5 x 10{sup 22} neutrons/m{sup 2} - September 1994) simultaneous high compressive and shear stresses (up to 300 MPa and 50 MPa respectively), and have high electrical reliability (30 year service life). The materials chosen are intended to meet the demands of full scale coil manufacture. Mechanical properties, including shear / compression and compression at cryogenic temperatures of several different insulation systems are reported. The mechanically acceptable systems will be irradiation tested at a future date, although only materials believed to withstand high irradiation doses have been selected. The final results of this program are presented and compared with a pass / fail criterion based on results from a benchmark testing program (insulation system based on anhydride cured DGEBA resin and S2 glass).

  1. Bubble motion in a rotating liquid body. [ground based tests for space shuttle experiments

    Science.gov (United States)

    Annamalai, P.; Subramanian, R. S.; Cole, R.

    1982-01-01

    The behavior of a single gas bubble inside a rotating liquid-filled sphere has been investigated analytically and experimentally as part of ground-based investigations aimed at aiding in the design and interpretation of Shuttle experiments. In the analysis, a quasi-static description of the motion of a bubble was developed in the limit of small values of the Taylor number. A series of rotation experiments using air bubbles and silicone oils were designed to match the conditions specified in the analysis, i.e., the bubble size, sphere rotation rate, and liquid kinematic viscosity were chosen such that the Taylor number was much less than unity. The analytical description predicts the bubble velocity and its asymptotic location. It is shown that the asymptotic position is removed from the axis of rotation.

  2. Long-term ground-water monitoring program and performance-evaluation plan for the extraction system at the former Nike Missile Battery Site, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Senus, Michael P.; Tenbus, Frederick J.

    2000-01-01

    This report presents lithologic and ground-water-quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and ground-water sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  3. FORTRAN programs for calculating nonlinear seismic ground response in two dimensions

    Science.gov (United States)

    Joyner, W.B.

    1978-01-01

    The programs described here were designed for calculating the nonlinear seismic response of a two-dimensional configuration of soil underlain by a semi-infinite elastic medium representing bedrock. There are two programs. One is for plane strain motions, that is, motions in the plane perpendicular to the long axis of the structure, and the other is for antiplane strain motions, that is motions parallel to the axis. The seismic input is provided by specifying what the motion of the rock-soil boundary would be if the soil were absent and the boundary were a free surface. This may be done by supplying a magnetic tape containing the values of particle velocity for every boundary point at every instant of time. Alternatively, a punch card deck may be supplied giving acceleration values at every instant of time. In the plane strain program it is assumed that the acceleration values apply simultaneously to every point on the boundary; in the antiplane strain program it is assumed that the acceleration values characterize a plane shear wave propagating upward in the underlying elastic medium at a specified angle with the vertical. The nonlinear hysteretic behavior of the soil is represented by a three-dimensional rheological model. A boundary condition is used which takes account of finite rigidity in the elastic substratum. The computations are performed by an explicit finite-difference scheme that proceeds step by step in space and time. Computations are done in terms of stress departures from an unspecified initial state. Source listings are provided here along with instructions for preparing the input. A more detailed discussion of the method is presented elsewhere.

  4. A Test of a Strong Ground Motion Prediction Methodology for the 7 September 1999, Mw=6.0 Athens Earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L; Ioannidou, E; Voulgaris, N; Kalogeras, I; Savy, J; Foxall, W; Stavrakakis, G

    2004-08-06

    We test a methodology to predict the range of ground-motion hazard for a fixed magnitude earthquake along a specific fault or within a specific source volume, and we demonstrate how to incorporate this into probabilistic seismic hazard analyses (PSHA). We modeled ground motion with empirical Green's functions. We tested our methodology with the 7 September 1999, Mw=6.0 Athens earthquake, we: (1) developed constraints on rupture parameters based on prior knowledge of earthquake rupture processes and sources in the region; (2) generated impulsive point shear source empirical Green's functions by deconvolving out the source contribution of M < 4.0 aftershocks; (3) used aftershocks that occurred throughout the area and not necessarily along the fault to be modeled; (4) ran a sufficient number of scenario earthquakes to span the full variability of ground motion possible; (5) found that our distribution of synthesized ground motions span what actually occurred and their distribution is realistically narrow; (6) determined that one of our source models generates records that match observed time histories well; (7) found that certain combinations of rupture parameters produced ''extreme'' ground motions at some stations; (8) identified that the ''best fitting'' rupture models occurred in the vicinity of 38.05{sup o} N 23.60{sup o} W with center of rupture near 12 km, and near unilateral rupture towards the areas of high damage, and this is consistent with independent investigations; and (9) synthesized strong motion records in high damage areas for which records from the earthquake were not recorded. We then developed a demonstration PSHA for a source region near Athens utilizing synthesized ground motion rather that traditional attenuation. We synthesized 500 earthquakes distributed throughout the source zone likely to have Mw=6.0 earthquakes near Athens. We assumed an average return period of 1000 years for this

  5. Studying the learning of programming using grounded theory to support activity theory

    Directory of Open Access Journals (Sweden)

    Graham Alsop

    2011-02-01

    Full Text Available Teaching programming to first year undergraduates in large numbers is challenging. Currently, online supported learning is becoming more dominant, even on face-to-face courses, and this trend will increase in the future. This paper uses activity theory (AT to analyse the use of tools to support learning. Data collection took place during 2008-2010 at Kingston University and involves over one hundred responses. This has been analysed into activity systems offering a detailed analysis of the use of a number of tools being used (in AT these include physical tools, such as technologies including books, and non-physical tools, such as conversation. When teaching programming to large numbers of students it is difficult to offer one-to-one attention and the reliance on such tools becomes more important. For example, in student responses a good integrated development environment (IDE is shown to make learning easier and more enjoyable, whereas a bad IDE makes the learning experience poor. Teaching materials, and access to these, were often mentioned positively. These included online communication, discussion boards and video lectures. Using AT offers sufficiently rich detail to identify key interventions and aids the redesign of the learning process. For example, the choice of an IDE for a specific language can have a larger impact than is initially apparent. This paper will report on the data collected to show where simple improvements to the use of tools may have a large impact on students' abilities to learn programming.

  6. California GAMA Program: Ground-Water Quality Data in the Northern San Joaquin Basin Study Unit, 2005

    Science.gov (United States)

    Bennett, George L.; Belitz, Kenneth; Milby Dawson, Barbara J.

    2006-01-01

    Growing concern over the closure of public-supply wells because of ground-water contamination has led the State Water Board to establish the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. With the aid of the U.S. Geological Survey (USGS) and Lawrence Livermore National Laboratory, the program goals are to enhance understanding and provide a current assessment of ground-water quality in areas where ground water is an important source of drinking water. The Northern San Joaquin Basin GAMA study unit covers an area of approximately 2,079 square miles (mi2) across four hydrologic study areas in the San Joaquin Valley. The four study areas are the California Department of Water Resources (CADWR) defined Tracy subbasin, the CADWR-defined Eastern San Joaquin subbasin, the CADWR-defined Cosumnes subbasin, and the sedimentologically distinct USGS-defined Uplands study area, which includes portions of both the Cosumnes and Eastern San Joaquin subbasins. Seventy ground-water samples were collected from 64 public-supply, irrigation, domestic, and monitoring wells within the Northern San Joaquin Basin GAMA study unit. Thirty-two of these samples were collected in the Eastern San Joaquin Basin study area, 17 in the Tracy Basin study area, 10 in the Cosumnes Basin study area, and 11 in the Uplands Basin study area. Of the 32 samples collected in the Eastern San Joaquin Basin, 6 were collected using a depth-dependent sampling pump. This pump allows for the collection of samples from discrete depths within the pumping well. Two wells were chosen for depth-dependent sampling and three samples were collected at varying depths within each well. Over 350 water-quality field parameters, chemical constituents, and microbial constituents were analyzed and are reported as concentrations and as detection frequencies, by compound classification as well as for individual constituents, for the Northern San Joaquin Basin study unit as a whole and for each individual study area

  7. Aerodynamic Drag Analysis of 3-DOF Flex-Gimbal GyroWheel System in the Sense of Ground Test

    Directory of Open Access Journals (Sweden)

    Xin Huo

    2016-12-01

    Full Text Available GyroWheel is an innovative device that combines the actuating capabilities of a control moment gyro with the rate sensing capabilities of a tuned rotor gyro by using a spinning flex-gimbal system. However, in the process of the ground test, the existence of aerodynamic disturbance is inevitable, which hinders the improvement of the specification performance and control accuracy. A vacuum tank test is a possible candidate but is sometimes unrealistic due to the substantial increase in costs and complexity involved. In this paper, the aerodynamic drag problem with respect to the 3-DOF flex-gimbal GyroWheel system is investigated by simulation analysis and experimental verification. Concretely, the angular momentum envelope property of the spinning rotor system is studied and its integral dynamical model is deduced based on the physical configuration of the GyroWheel system with an appropriately defined coordinate system. In the sequel, the fluid numerical model is established and the model geometries are checked with FLUENT software. According to the diversity and time-varying properties of the rotor motions in three-dimensions, the airflow field around the GyroWheel rotor is analyzed by simulation with respect to its varying angular velocity and tilt angle. The IPC-based experimental platform is introduced, and the properties of aerodynamic drag in the ground test condition are obtained through comparing the simulation with experimental results.

  8. Testing New Programming Paradigms with NAS Parallel Benchmarks

    Science.gov (United States)

    Jin, H.; Frumkin, M.; Schultz, M.; Yan, J.

    2000-01-01

    Over the past decade, high performance computing has evolved rapidly, not only in hardware architectures but also with increasing complexity of real applications. Technologies have been developing to aim at scaling up to thousands of processors on both distributed and shared memory systems. Development of parallel programs on these computers is always a challenging task. Today, writing parallel programs with message passing (e.g. MPI) is the most popular way of achieving scalability and high performance. However, writing message passing programs is difficult and error prone. Recent years new effort has been made in defining new parallel programming paradigms. The best examples are: HPF (based on data parallelism) and OpenMP (based on shared memory parallelism). Both provide simple and clear extensions to sequential programs, thus greatly simplify the tedious tasks encountered in writing message passing programs. HPF is independent of memory hierarchy, however, due to the immaturity of compiler technology its performance is still questionable. Although use of parallel compiler directives is not new, OpenMP offers a portable solution in the shared-memory domain. Another important development involves the tremendous progress in the internet and its associated technology. Although still in its infancy, Java promisses portability in a heterogeneous environment and offers possibility to "compile once and run anywhere." In light of testing these new technologies, we implemented new parallel versions of the NAS Parallel Benchmarks (NPBs) with HPF and OpenMP directives, and extended the work with Java and Java-threads. The purpose of this study is to examine the effectiveness of alternative programming paradigms. NPBs consist of five kernels and three simulated applications that mimic the computation and data movement of large scale computational fluid dynamics (CFD) applications. We started with the serial version included in NPB2.3. Optimization of memory and cache usage

  9. Aviation System Capacity Program Terminal Area Productivity Project: Ground and Airborne Technologies

    Science.gov (United States)

    Giulianetti, Demo J.

    2001-01-01

    Ground and airborne technologies were developed in the Terminal Area Productivity (TAP) project for increasing throughput at major airports by safely maintaining good-weather operating capacity during bad weather. Methods were demonstrated for accurately predicting vortices to prevent wake-turbulence encounters and to reduce in-trail separation requirements for aircraft approaching the same runway for landing. Technology was demonstrated that safely enabled independent simultaneous approaches in poor weather conditions to parallel runways spaced less than 3,400 ft apart. Guidance, control, and situation-awareness systems were developed to reduce congestion in airport surface operations resulting from the increased throughput, particularly during night and instrument meteorological conditions (IMC). These systems decreased runway occupancy time by safely and smoothly decelerating the aircraft, increasing taxi speed, and safely steering the aircraft off the runway. Simulations were performed in which optimal trajectories were determined by air traffic control (ATC) and communicated to flight crews by means of Center TRACON Automation System/Flight Management System (CTASFMS) automation to reduce flight delays, increase throughput, and ensure flight safety.

  10. Cyber Security Testing and Training Programs for Industrial Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Noyes

    2012-03-01

    Service providers rely on industrial control systems (ICS) to manage the flow of water at dams, open breakers on power grids, control ventilation and cooling in nuclear power plants, and more. In today's interconnected environment, this can present a serious cyber security challenge. To combat this growing challenge, government, private industry, and academia are working together to reduce cyber risks. The Idaho National Laboratory (INL) is a key contributor to the Department of Energy National SCADA Test Bed (NSTB) and the Department of Homeland Security (DHS) Control Systems Security Program (CSSP), both of which focus on improving the overall security posture of ICS in the national critical infrastructure. In support of the NSTB, INL hosts a dedicated SCADA testing facility which consists of multiple control systems supplied by leading national and international manufacturers. Within the test bed, INL researchers systematically examine control system components and work to identify vulnerabilities. In support of the CSSP, INL develops and conducts training courses which are designed to increase awareness and defensive capabilities for IT/Control System professionals. These trainings vary from web-based cyber security trainings for control systems engineers to more advanced hands-on training that culminates with a Red Team/ Blue Team exercise that is conducted within an actual control systems environment. INL also provides staffing and operational support to the DHS Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) Security Operations Center which responds to and analyzes control systems cyber incidents across the 18 US critical infrastructure sectors.

  11. Comparison of Statistical Methods for Detector Testing Programs

    Energy Technology Data Exchange (ETDEWEB)

    Rennie, John Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Abhold, Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-14

    A typical goal for any detector testing program is to ascertain not only the performance of the detector systems under test, but also the confidence that systems accepted using that testing program’s acceptance criteria will exceed a minimum acceptable performance (which is usually expressed as the minimum acceptable success probability, p). A similar problem often arises in statistics, where we would like to ascertain the fraction, p, of a population of items that possess a property that may take one of two possible values. Typically, the problem is approached by drawing a fixed sample of size n, with the number of items out of n that possess the desired property, x, being termed successes. The sample mean gives an estimate of the population mean p ≈ x/n, although usually it is desirable to accompany such an estimate with a statement concerning the range within which p may fall and the confidence associated with that range. Procedures for establishing such ranges and confidence limits are described in detail by Clopper, Brown, and Agresti for two-sided symmetric confidence intervals.

  12. A rotating differential accelerometer for testing the equivalence principle in space: results from laboratory tests of a ground prototype

    Science.gov (United States)

    Nobili, A. M.; Bramanti, D.; Comandi, G. L.; Toncelli, R.; Polacco, E.

    2003-07-01

    We have proposed to test the equivalence principle (EP) in low Earth orbit with a rapidly rotating differential accelerometer (made of weakly coupled concentric test cylinders) whose rotation provides high frequency signal modulation and avoids severe limitations otherwise due to operation at room temperature [PhRvD 63 (2001) 101101]. Although the accelerometer has been conceived for best performance in absence of weight, we have designed, built and tested a variant of it at 1-g. Here we report the results of measurements performed so far. Losses measured with the full system in operation yield a quality factor only four times smaller than the value required for the proposed high accuracy EP test in space. Unstable whirl motions, which are known to arise in the system and might be a matter of concern, are found to grow as slowly as predicted and can be stabilized. The capacitance differential read-out (the mechanical parts, electronics and software for data analysis) is in all similar to what is needed in the space experiment. In the instrument described here the coupling of the test masses is 24 000 times stiffer than in the one proposed for flight, which makes it 24 000 times less sensitive to differential displacements. With this stiffness it should detect test masses separations of 1.5·10 -2 μm, while so far we have achieved only 1.5 μm, because of large perturbations—due to the motor, the ball bearings, the non-perfect verticality of the system—all of which, however, are absent in space. The effects of these perturbations should be reduced by 100 times in order to perform a better demonstration. Further instrument improvements are underway to fill this gap and also to reduce its stiffness, thus increasing its significance as a prototype of the space experiment.

  13. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    Science.gov (United States)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  14. Allen Newell's Program of Research: The Video-Game Test.

    Science.gov (United States)

    Gobet, Fernand

    2017-04-01

    Newell (1973) argued that progress in psychology was slow because research focused on experiments trying to answer binary questions, such as serial versus parallel processing. In addition, not enough attention was paid to the strategies used by participants, and there was a lack of theories implemented as computer models offering sufficient precision for being tested rigorously. He proposed a three-headed research program: to develop computational models able to carry out the task they aimed to explain; to study one complex task in detail, such as chess; and to build computational models that can account for multiple tasks. This article assesses the extent to which the papers in this issue advance Newell's program. While half of the papers devote much attention to strategies, several papers still average across them, a capital sin according to Newell. The three courses of action he proposed were not popular in these papers: Only two papers used computational models, with no model being both able to carry out the task and to account for human data; there was no systematic analysis of a specific video game; and no paper proposed a computational model accounting for human data in several tasks. It is concluded that, while they use sophisticated methods of analysis and discuss interesting results, overall these papers contribute only little to Newell's program of research. In this respect, they reflect the current state of psychology and cognitive science. This is a shame, as Newell's ideas might help address the current crisis of lack of replication and fraud in psychology. Copyright © 2017 The Author. Topics in Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  15. Modelling ground rupture due to groundwater withdrawal: applications to test cases in China and Mexico

    Science.gov (United States)

    Franceschini, A.; Teatini, P.; Janna, C.; Ferronato, M.; Gambolati, G.; Ye, S.; Carreón-Freyre, D.

    2015-11-01

    The stress variation induced by aquifer overdraft in sedimentary basins with shallow bedrock may cause rupture in the form of pre-existing fault activation or earth fissure generation. The process is causing major detrimental effects on a many areas in China and Mexico. Ruptures yield discontinuity in both displacement and stress field that classic continuous finite element (FE) models cannot address. Interface finite elements (IE), typically used in contact mechanics, may be of great help and are implemented herein to simulate the fault geomechanical behaviour. Two main approaches, i.e. Penalty and Lagrangian, are developed to enforce the contact condition on the element interface. The incorporation of IE incorporation into a three-dimensional (3-D) FE geomechanical simulator shows that the Lagrangian approach is numerically more robust and stable than the Penalty, thus providing more reliable solutions. Furthermore, the use of a Newton-Raphson scheme to deal with the non-linear elasto-plastic fault behaviour allows for quadratic convergence. The FE - IE model is applied to investigate the likely ground rupture in realistic 3-D geologic settings. The case studies are representative of the City of Wuxi in the Jiangsu Province (China), and of the City of Queretaro, Mexico, where significant land subsidence has been accompanied by the generation of several earth fissures jeopardizing the stability and integrity of the overland structures and infrastructure.

  16. Variable thickness transient ground-water flow model. Volume 3. Program listings

    Energy Technology Data Exchange (ETDEWEB)

    Reisenauer, A.E.

    1979-12-01

    The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This is the third of 3 volumes of the description of the VTT (Variable Thickness Transient) Groundwater Hydrologic Model - second level (intermediate complexity) two-dimensional saturated groundwater flow.

  17. Testing the role of meander cutoff in promoting gene flow across a riverine barrier in ground skinks (Scincella lateralis.

    Directory of Open Access Journals (Sweden)

    Nathan D Jackson

    Full Text Available Despite considerable attention, the long-term impact of rivers on species diversification remains uncertain. Meander loop cutoff (MLC is one river phenomenon that may compromise a river's diversifying effects by passively transferring organisms from one side of the river to the other. However, the ability of MLC to promote gene flow across rivers has not been demonstrated empirically. Here, we test several predictions of MLC-mediated gene flow in populations of North American ground skinks (Scincella lateralis separated by a well-established riverine barrier, the Mississippi River: 1 individuals collected from within meander cutoffs should be more closely related to individuals across the river than on the same side, 2 individuals within meander cutoffs should contain more immigrants than individuals away from meander cutoffs, 3 immigration rates estimated across the river should be highest in the direction of the cutoff event, and 4 the distribution of alleles native to one side of the river should be better predicted by the historical rather than current path of the river. To test these predictions we sampled 13 microsatellite loci and mitochondrial DNA from ground skinks collected near three ancient meander loops. These predictions were generally supported by genetic data, although support was stronger for mtDNA than for microsatellite data. Partial support for genetic divergence of samples within ancient meander loops also provides evidence for the MLC hypothesis. Although a role for MLC-mediated gene flow was supported here for ground skinks, the transient nature of river channels and morphologies may limit the long-term importance of MLC in stemming population divergence across major rivers.

  18. Ground Testing and Flight Demonstration of Charge Management of Insulated Test Masses Using UV LED Electron Photoemission

    OpenAIRE

    Saraf, Shailendhar; Buchman, Sasha; Balakrishnan, Karthik; Lui, Chin Yang; Soulage, Michael; Faied, Dohy; Hanson, John; Ling, Kuok; Jaroux, Belgacem; AlRashed, Abdullah; Nassban, Badr Al; Suwaidan, Badr Al; Harbi, Mohammed Al; Salamah, Badr Bin; Othman, Mohammed Bin

    2016-01-01

    The UV LED mission demonstrates the precise control of the potential of electrically isolated test masses that is essential for the operation of space accelerometers and drag free sensors. Accelerometers and drag free sensors were and remain at the core of geodesy, aeronomy, and precision navigation missions as well as gravitational science experiments and gravitational wave observatories. Charge management using photoelectrons generated by the 254 nm UV line of Hg was first demonstrated on G...

  19. Technical Challenges of the U.S. Army’s Ground Combat Vehicle Program

    Science.gov (United States)

    2012-11-01

    GCV contractors must design for and test high road speed during the vehicle’s development. The ability of a hybrid electrical drivetrain to sustain...Bradley required heavier-duty drivetrain components because the smooth suspensions encouraged drivers to stress the mechanical limits of the drivetrain

  20. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    Energy Technology Data Exchange (ETDEWEB)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  1. 49 CFR 40.123 - What are the MRO's responsibilities in the DOT drug testing program?

    Science.gov (United States)

    2010-10-01

    ... drug testing program? 40.123 Section 40.123 Transportation Office of the Secretary of Transportation PROCEDURES FOR TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Medical Review Officers and the Verification Process § 40.123 What are the MRO's responsibilities in the DOT drug testing program? As an MRO...

  2. 78 FR 35330 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2013-06-12

    ... COMMISSION Initial Test Programs for Water-Cooled Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG), 1.68, ``Initial Test Programs for Water-Cooled Nuclear Power Plants... Initial Test Programs (ITPs) for light water cooled nuclear power plants. ADDRESSES: Please refer...

  3. Ground Testing of the EMCS Seed Cassette for Biocompatibility with the Cellular Slime Mold, Dictyostelium Discoideum

    Science.gov (United States)

    Hanely, Julia C.; Reinsch, Sigrid; Myers, Zachary A.; Freeman, John; Steele, Marianne K.; Sun, Gwo-Shing; Heathcote, David G.

    2014-01-01

    The European Modular Cultivation System, EMCS, was developed by ESA for plant experiments. To expand the use of flight verified hardware for various model organisms, we performed ground experiments to determine whether ARC EMCS Seed Cassettes could be adapted for use with cellular slime mold for future space flight experiments. Dictyostelium is a cellular slime mold that can exist both as a single-celled independent organism and as a part of a multicellular colony which functions as a unit (pseudoplasmodium). Under certain stress conditions, individual amoebae will aggregate to form multicellular structures. Developmental pathways are very similar to those found in Eukaryotic organisms, making this a uniquely interesting organism for use in genetic studies. Dictyostelium has been used as a genetic model organism for prior space flight experiments. Due to the formation of spores that are resistant to unfavorable conditions such as desiccation, Dictyostelium is also a good candidate for use in the EMCS Seed Cassettes. The growth substratum in the cassettes is a gridded polyether sulfone (PES) membrane. A blotter beneath the PES membranes contains dried growth medium. The goals of this study were to (1) verify that Dictyostelium are capable of normal growth and development on PES membranes, (2) develop a method for dehydration of Dictyostelium spores with successful recovery and development after rehydration, and (3) successful mock rehydration experiments in cassettes. Our results show normal developmental progression in two strains of Dictyostelium discoideum on PES membranes with a bacterial food source. We have successfully performed a mock rehydration of spores with developmental progression from aggregation to slug formation, and production of morphologically normal spores within 9 days of rehydration. Our results indicate that experiments on the ISS using the slime mold, Dictyostelium discoideum could potentially be performed in the flight verified hardware of

  4. Deterministic Identity Testing of Read-Once Algebraic Branching Programs

    CERN Document Server

    Jansen, Maurice; Sarma, Jayalal

    2009-01-01

    In this paper we study polynomial identity testing of sums of $k$ read-once algebraic branching programs ($\\Sigma_k$-RO-ABPs), generalizing the work in (Shpilka and Volkovich 2008,2009), who considered sums of $k$ read-once formulas ($\\Sigma_k$-RO-formulas). We show that $\\Sigma_k$-RO-ABPs are strictly more powerful than $\\Sigma_k$-RO-formulas, for any $k \\leq \\lfloor n/2\\rfloor$, where $n$ is the number of variables. We obtain the following results: 1) Given free access to the RO-ABPs in the sum, we get a deterministic algorithm that runs in time $O(k^2n^7s) + n^{O(k)}$, where $s$ bounds the size of any largest RO-ABP given on the input. This implies we have a deterministic polynomial time algorithm for testing whether the sum of a constant number of RO-ABPs computes the zero polynomial. 2) Given black-box access to the RO-ABPs computing the individual polynomials in the sum, we get a deterministic algorithm that runs in time $k^2n^{O(\\log n)} + n^{O(k)}$. 3) Finally, given only black-box access to the polyn...

  5. Efficient separations and processing crosscutting program: Develop and test sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Bray, L.A.

    1995-09-01

    This report summarizes work performed during FY 1995 under the task {open_quotes}Develop and Test Sorbents,{close_quotes} the purpose of which is to develop high-capacity, selective solid extractants to recover cesium, strontium, and technetium from nuclear wastes. This work is being done for the Efficient Separations and Processing Crosscutting Program (ESP), operated by the U.S. Department of Energy`s Office of Environmental Management`s Office of Technology Development. The task is under the direction of staff at Pacific Northwest Laboratory (PNL) with key participation from industrial and university staff at 3M, St. Paul, Minnesota; IBC Advanced Technologies, Inc., American Forks, Utah; AlliedSignal, Inc., Des Plaines, Illinois, and Texas A&M University, College Station, Texas. 3M and IBC are responsible for ligand and membrane technology development; AlliedSignal and Texas A&M are developing sodium titanate powders; and PNL is testing the materials developed by the industry/university team members. Major accomplishments for FY 1995 are summarized in this report.

  6. Lewis icing research tunnel test of the aerodynamic effects of aircraft ground deicing/anti-icing fluids

    Science.gov (United States)

    Runyan, L. James; Zierten, Thomas A.; Hill, Eugene G.; Addy, Harold E., Jr.

    1992-01-01

    A wind tunnel investigation of the effect of aircraft ground deicing/anti-icing fluids on the aerodynamic characteristics of a Boeing 737-200ADV airplane was conducted. The test was carried out in the NASA Lewis Icing Research Tunnel. Fluids tested include a Newtonian deicing fluid, three non-Newtonian anti-icing fluids commercially available during or before 1988, and eight new experimental non-Newtonian fluids developed by four fluid manufacturers. The results show that fluids remain on the wind after liftoff and cause a measurable lift loss and drag increase. These effects are dependent on the high-lift configuration and on the temperature. For a configuration with a high-lift leading-edge device, the fluid effect is largest at the maximum lift condition. The fluid aerodynamic effects are related to the magnitude of the fluid surface roughness, particularly in the first 30 percent chord. The experimental fluids show a significant reduction in aerodynamic effects.

  7. Design and Test Results of AMIGO: A Novel Remote Ground Sensor System

    Science.gov (United States)

    2007-01-01

    situe entre 150 m et 1,2 km, selon l’emplacement du capteur , la portée optique et la disposition du terrain. Par ailleurs, on a testé AMIGO sur le...l’emplacement du capteur , la portée optique et la disposition du terrain Par ailleurs, on a testé AMIGO sur le terrain à RDDC Valcartier selon divers...variant entre 20 et 333 heures. Équipé de capteurs IR passifs et acoustiques, AMIGO peut détecter une cible en mouvement de dimension humaine à une

  8. Measuring structure deformations of a composite glider by optical means with on-ground and in-flight testing

    Science.gov (United States)

    Bakunowicz, Jerzy; Święch, Łukasz; Meyer, Ralf

    2016-12-01

    In aeronautical research experimental data sets of high quality are essential to verify and improve simulation algorithms. For this reason the experimental techniques need to be constantly refined. The shape, movement or deformation of structural aircraft elements can be measured implicitly in multiple ways; however, only optical, correlation-based techniques are able to deliver direct high-order and spatial results. In this paper two different optical metrologies are used for on-ground preparation and the actual execution of in-flight wing deformation measurements on a PW-6U glider. Firstly, the commercial PONTOS system is used for static tests on the ground and for wind tunnel investigations to successfully certify an experimental sensor pod mounted on top of the test bed fuselage. Secondly, a modification of the glider is necessary to implement the optical method named image pattern correlation technique (IPCT), which has been developed by the German Aerospace Center DLR. This scientific technology uses a stereoscopic camera set-up placed inside the experimental pod and a stochastic dot matrix applied to the area of interest on the glider wing to measure the deformation of the upper wing surface in-flight. The flight test installation, including the preparation, is described and results are presented briefly. Focussing on the compensation for typical error sources, the paper concludes with a recommended procedure to enhance the data processing for better results. Within the presented project IPCT has been developed and optimized for a new type of test bed. Adapted to the special requirements of the glider, the IPCT measurements were able to deliver a valuable wing deformation data base which now can be used to improve corresponding numerical models and simulations.

  9. Interim-Night Integrated Goggle Head Tracking System (I-Nights). Volume 1. Ground Test Summary

    Science.gov (United States)

    1992-08-01

    Albery, J. Whitestone, The Standard Automated Mass Properties Testing Procedure, 1988, AAMRL-TR-88-XX (unpublished). 2. A. Lephart, C. Albery, A. Obert ...Systematic Variation of Headgear Weights and Centre -of- Gravity", Aviation. Sgace. and Environmental Medicine, pp 901- 905, October 1983. 13. Privitzer, E

  10. Ground tests of 120 kW(heat) biomass fired gasifier diesel installation

    Energy Technology Data Exchange (ETDEWEB)

    Zyssin, L.V.; Maronet, I.J.; Morshin, V.N. [Energotechnology Ltd., St. Petersburg (Russian Federation)

    1996-12-31

    For the 1 MW and less power range diesel gasifier power plants could be considered as one of the main energy sources. The brief information about works carried out in Russia according to this direction is presented. Data of preliminary tests for gas diesel installations are presented. (orig.)

  11. Standard practice for guided wave testing of above ground steel pipework using piezoelectric effect transduction

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice provides a procedure for the use of guided wave testing (GWT), also previously known as long range ultrasonic testing (LRUT) or guided wave ultrasonic testing (GWUT). 1.2 GWT utilizes ultrasonic guided waves, sent in the axial direction of the pipe, to non-destructively test pipes for defects or other features by detecting changes in the cross-section and/or stiffness of the pipe. 1.3 GWT is a screening tool. The method does not provide a direct measurement of wall thickness or the exact dimensions of defects/defected area; an estimate of the defect severity however can be provided. 1.4 This practice is intended for use with tubular carbon steel or low-alloy steel products having Nominal Pipe size (NPS) 2 to 48 corresponding to 60.3 to 1219.2 mm (2.375 to 48 in.) outer diameter, and wall thickness between 3.81 and 25.4 mm (0.15 and 1 in.). 1.5 This practice covers GWT using piezoelectric transduction technology. 1.6 This practice only applies to GWT of basic pipe configuration. This inc...

  12. Instrumentation for Ground-Based Testing in Simulated Space and Planetary Conditions

    Science.gov (United States)

    Kleiman, Jacob; Horodetsky, Sergey; Issoupov, Vitali

    This paper is an overview of instrumentation developed and created by ITL Inc. for simulated testing and performance evaluation of spacecraft materials, structures, mechanisms, assemblies and components in different space and planetary environments. The LEO Space Environment Simulator allows simulation of the synergistic effect of ultra-high vacuum conditions, 5 eV neutral atomic oxygen beams, Vacuum-Ultraviolet (VUV) and Near-Ultraviolet (NUV) radiation, and temperature conditions. The simulated space environmental conditions can be controlled in-situ using a quadruple mass-spectrometer, Time-of-Flight technique, as well as Quartz Crystal Microbalance sensors. The new NUV System is capable of delivering an NUV power intensity of up to 10 Equivalent Suns. The design of the system uses horizontal orientation of the 5 kW Mercury lamp, focusing of NUV radiation is achieved due to a parabolic reflector. To address the Lunar/Martian surface environments, the Planetary Environmental Simulator/Test Facility has been developed and built to allow for physical evaluation of the effects of the Lunar/Martian dust environments in conjunction with other factors (ultra-high vacuum or planetary atmospheric conditions, VUV/NUV radiation, thermal cycling, and darkness). The ASTM E 595/ASTM E 1559 Outgassing Test Facility provides the means for the outgassing test of materials with the objective to select materials with low outgassing properties for spacecraft use and allows to determine the following outgassing parameters: Total Mass Loss, Collected Volatile Condensable Materials, and Water Vapor Regained.

  13. Resolution of Forces and Strain Measurements from an Acoustic Ground Test

    Science.gov (United States)

    Smith, Andrew M.; LaVerde, Bruce T.; Hunt, Ronald; Waldon, James M.

    2013-01-01

    The Conservatism in Typical Vibration Tests was Demonstrated: Vibration test at component level produced conservative force reactions by approximately a factor of 4 (approx.12 dB) as compared to the integrated acoustic test in 2 out of 3 axes. Reaction Forces Estimated at the Base of Equipment Using a Finite Element Based Method were Validated: FEM based estimate of interface forces may be adequate to guide development of vibration test criteria with less conservatism. Element Forces Estimated in Secondary Structure Struts were Validated: Finite element approach provided best estimate of axial strut forces in frequency range below 200 Hz where a rigid lumped mass assumption for the entire electronics box was valid. Models with enough fidelity to represent diminishing apparent mass of equipment are better suited for estimating force reactions across the frequency range. Forward Work: Demonstrate the reduction in conservatism provided by; Current force limited approach and an FEM guided approach. Validate proposed CMS approach to estimate coupled response from uncoupled system characteristics for vibroacoustics.

  14. Systems for heat and cold from the ground. Proposal for a development program; System foer vaerme och kyla ur mark - Foerslag till utvecklingsprogram

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Bengt; Gabrielsson, Anna; Fallsvik, Jan; Nilsson, Gunnel [Swedish Geotechnical Inst., Linkoeping (Sweden); Hellstroem, Goeran [Lund Inst. of Technology (Sweden). Dept. of Mathematical Physics

    2002-02-01

    Ground heat systems usually consist of a heat pump, with an evaporator connected to a heat carrier circuit of heat exchangers in the ground, and a condenser connected to the heat distribution system inside the building (radiators, fan convectors, floor heating etc). The heat pump's compressor is connected to the electricity grid. Similar systems without heat pumps are also used, where the excess heat from the building or process is exchanged with the cooler ground solely by circulation of the heat carrier fluid in the ground heat exchangers, so called 'Tree cooling'. The performance of ground heat systems depends on several factors. There is a continuous development of components and their interaction in heating/cooling systems, both in Sweden and abroad. Based on the current state of the art of ground heat systems and the national energy market it is possible to identify the development potential within many areas. In this report the development potentials for ground heat systems are presented in the following program areas: Combined heating/cooling systems with or without heat pumps and improvements of existing systems. Horizontal, compact and vertical ground heat exchangers, installation methods. Geological prerequisites and geotechnical impact of heating and/or cooling. Thermal capacity of all types of ground heat exchangers including moisture transport effects. Design specifications for different types of ground heat exchangers and ground conditions. Operation and maintenance. Environmental impact, e.g. of heat carrier fluids and local government environmental protection requirements. Economic optimization based on verified technical performance and cost figures.

  15. Efficiency of the program of correction of emotional-volitional sphere of swimmers with violations of intellect on a test 4х50 m.

    Directory of Open Access Journals (Sweden)

    Babich Nataliia Leonidovna

    2011-09-01

    Full Text Available The comparative analysis of results of implementation of test is resulted 4х50 m by swimmers with violations of mental development before and after introduction of the experimental program of correction emotionally of volitional sphere of such sportsmen. Grounded expedience of the use of test 4х50 m as one of criteria of estimation of ability of swimmers to mobilization and display of conations on a background a fatigue. It is well-proven that the experimental program positively influenced on the dynamics of stabilizing of results of swimming of the 4 test cuttings-off in the conditions of hard rest on a background a fatigue.

  16. The Role of Tests in a Literacy Assessment Program (Assessment).

    Science.gov (United States)

    Pikulski, John J.

    1990-01-01

    Discusses curtailing the misuse and misinterpretation of standardized tests, and suggests ways to improve existing tests while reviewing the Test of Early Reading Ability-2, Tests of Reading Comprehension, and Effective Reading Tests. (MG)

  17. On-ground testing of the role of adhesion in the LISA-Pathfinder test mass injection phase

    Science.gov (United States)

    Bortoluzzi, D.; Zanoni, C.; Conklin, J. W.

    2017-05-01

    Many space missions share the need to fly a free-falling body inside the spacecraft, as a reference for navigation and/or as a probe for the local gravitational field. When a mechanism is required to cage such an object during the launch phase, the need arises to release it to free-fall once the operational phase must be initiated in orbit. The criticality of this phase increases when the mechanical interfaces between the body and the mechanism are affected by adhesion and the actuation authority of the control system on the free-falling body is limited. Both conditions are realized in the LISA Pathfinder mission, which aims at injecting a gold-coated 2 kg cubic test mass into a nearly perfect geodesic trajectory to demonstrate the readiness of the developed technology for in-space gravity wave detection. The criticality of adhesion is widely recognized in space technology, because it can affect and jeopardize the functionality of mechanisms, when arising between moving parts. In the LISA Pathfinder case, metallic adhesion potentially plays a relevant role, mainly for two reasons. First, thanks to its properties (ductility, high surface energy) the gold coating on the proof mass easily produces cold weldings, especially in vacuum conditions. Second, the detachment of the proof mass from the releasing device occurs abruptly and a relevant influence of the separation velocity is expected on the strength of the welding. This can produce an excessive velocity of the proof mass at the retraction of the releasing device for the following capture and centring phase on behalf of the control system. A testing activity is performed to characterize the dynamic behaviour of the adhesive bonds between the proof mass and the releasing device, which can be used to predict their contribution on the residual velocity of the proof mass after in-flight release. The study of such a dynamic phenomenon sets some challenging requirements on the measurement technique, both on the

  18. Correcting for systematic effects in ground-based photographic proper motions: The Southern Proper Motion Program as a case study

    Science.gov (United States)

    van Altena, William F.; Girard, T. M.; Platais, I.; Kozhurina-Platais, V.; López, C. E.

    The derivation of accurate positions and proper motions from ground-based photographic materials requires the minimization of systematic errors due to inaccurate modeling of the telescopes' field-of-view and the magnitude equation. We describe the procedures that have been developed for the Southern Proper Motions Program (SPM) to deal with these important problems. The SPM is based on photographic plates taken at our Carlos Cesco Observatory at El Leoncito, Argentina and will yield absolute proper motions and positions to magnitude B approximately 19 for approximately 1 million stars south of declination -20 degrees. The SPM is a joint program between the Yale Southern Observatory and the Universidad Nacional de San Juan, Argentina. The SPM Catalog 2.0, which is the current version covering the -25 to -40 degree declination zones, provides positions, absolute proper motions, and photographic BV photometry for over 320,000 stars and galaxies. Stars cover the magnitude range 5 astrom/. Our web-side contains several useful plots showing the sky coverage, error distribution, a quick comparison with the Hipparcos proper motions, etc. We would appreciate your comments on the SPM 2.0 and our Web page.

  19. Ionospheric Disturbances Originating From Tropospheric and Ground Activities: A new Strategic Research Program at the Los Alamos National Laboratory

    Science.gov (United States)

    Shao, X. M.

    2015-12-01

    It has been increasingly recognized and observed that activities within the troposphere, either natural (e.g., thunderstorm, earthquake, volcano) or anthropogenic (e.g., explosion above or below ground), can substantially disturb the ionosphere in the forms of atmosphere gravity wave, infrasonic acoustic wave, and electric-field-induced ionospheric chemical reaction. These disturbances introduce plasma density variations in the ionosphere that adversely distort the transionospheric radio signals for communication, navigation, surveillance, and other national security missions. A new three-year strategic research program has been initiated at LANL in FY16 to investigate, understand, and characterize the interwoven dynamic and electrodynamic coupling processes from the source in the troposphere to the disturbances in the ionosphere via comprehensive observation and model simulation. The planned study area is chosen to be over the US Great Plains where severe thunderstorms occur frequently and where the necessary atmospheric and ionospheric observations are conducted routinely. In this presentation, we will outline our program plan, technical approaches, and scientific goals, and will discuss opportunities of possible inter-institute collaborations.

  20. Marine and Lacustrine Turbidite Records: Testing Linkages and Estimating Ground Motions, Central Cascadia Margin, USA

    Science.gov (United States)

    Hausmann, R. B.; Goldfinger, C.; Black, B.; Collins, T.; Romsos, C. G.; Medeiros, L.; Mutschler, M.; Galer, S.; Raymond, R.; Morey, A. E.

    2015-12-01

    measurements. Initial slope stability models suggest that slopes less than ~ 25 degrees are statically stable. We are investigating the levels of ground motion required to destabilize surface sediments around the lake, and radiocarbon dating the disturbance events for comparison to other paleoseismic records, including new offshore cores at a similar latitude.

  1. Bit-error-rate testing of high-power 30-GHz traveling-wave tubes for ground-terminal applications

    Science.gov (United States)

    Shalkhauser, Kurt A.

    1987-01-01

    Tests were conducted at NASA Lewis to measure the bit-error-rate performance of two 30-GHz 200-W coupled-cavity traveling-wave tubes (TWTs). The transmission effects of each TWT on a band-limited 220-Mbit/s SMSK signal were investigated. The tests relied on the use of a recently developed digital simulation and evaluation system constructed at Lewis as part of the 30/20-GHz technology development program. This paper describes the approach taken to test the 30-GHz tubes and discusses the test data. A description of the bit-error-rate measurement system and the adaptations needed to facilitate TWT testing are also presented.

  2. Electrophoresis tests on STS-3 and ground control experiments - A basis for future biological sample selections

    Science.gov (United States)

    Morrison, D. R.; Lewis, M. L.

    1982-01-01

    Static zone electrophoresis is an electrokinetic method of separating macromolecules and small particles. However, its application for the isolation of biological cells and concentrated protein solutions is limited by sedimentation and convection. Microgravity eliminates or reduces sedimentation, floatation, and density-driven convection arising from either Joule heating or concentration differences. The advantages of such an environment were first demonstrated in space during the Apollo 14 and 16 missions. In 1975 the Electrophoresis Technology Experiment (MA-011) was conducted during the Apollo-Soyuz Test Project flight. In 1979 a project was initiated to repeat the separations of human kidney cells. One of the major objectives of the Electrophoresis Equipment Verification Tests (EEVT) on STS-3 was to repeat and thereby validate the first successful electrophoretic separation of human kidney cells. Attention is given to the EEVT apparatus, the preflight electrophoresis, and inflight operational results.

  3. A torsion pendulum ground test of the LISA Pathfinder Free-fall mode

    CERN Document Server

    Russano, Giuliana

    2016-01-01

    LISA Pathfinder is the technological demonstrator space mission for the future gravitational waves observatory in space eLISA, with the aim of measure the differential acceleration between free-falling test masses orbiting in the same apparatus at a level of 30 fm/s-2Hz-1/2 at 1 mHz. Because the satellite can't follow the two masses at the same time, the second mass must be forced to follow either the other one or the spacecraft. The actuation force applied to compensate this effect introduces a dominant source of force noise in the mission noise budget at frequency near and below the mHz. The free-fall mode actuation control scheme has been designed to suppress this noise source and avoid actuation instabilities: actuation is limited to brief periodic impulses, with test masses in free fall in between two kicks. This actuation-free motion is then analyzed for the remaining sources of acceleration ultra noise. A free-fall mode parallel testing has been successfully implemented on torsion pendulum facility at ...

  4. Multi-offset ground-penetrating radar imaging of a lab-scale infiltration test

    Directory of Open Access Journals (Sweden)

    A. R. Mangel

    2012-11-01

    Full Text Available A lab scale infiltration experiment was conducted in a sand tank to evaluate the use of time-lapse multi-offset ground-penetrating radar (GPR data for monitoring dynamic hydrologic events in the vadose zone. Sets of 21 GPR traces at offsets between 0.44–0.9 m were recorded every 30 s during a 3 h infiltration experiment to produce a data cube that can be viewed as multi-offset gathers at unique times or common offset images, tracking changes in arrivals through time. Specifically, we investigated whether this data can be used to estimate changes in average soil water content during wetting and drying and to track the migration of the wetting front during an infiltration event. For the first problem we found that normal-moveout (NMO analysis of the GPR reflection from the bottom of the sand layer provided water content estimates ranging between 0.10–0.30 volumetric water content, which underestimated the value determined by depth averaging a vertical array of six moisture probes by 0.03–0.05 volumetric water content. Relative errors in the estimated depth to the bottom of the 0.6 m thick sand layer were typically on the order of 2%, though increased as high as 25% as the wetting front approached the bottom of the tank. NMO analysis of the wetting front reflection during the infiltration event generally underestimated the depth of the front with discrepancies between GPR and moisture probe estimates approaching 0.15 m. The analysis also resulted in underestimates of water content in the wetted zone on the order of 0.06 volumetric water content and a wetting front velocity equal to about half the rate inferred from the probe measurements. In a parallel modeling effort we found that HYDRUS-1D also underestimates the observed average tank water content determined from the probes by approximately 0.01–0.03 volumetric water content, despite the fact that the model was calibrated to the probe data. This error suggests that the assumed conceptual

  5. Development and Ground-Test Validation of Fiber Optic Sensor Attachment Techniques for Hot Structures Applications

    Science.gov (United States)

    Piazza, Anthony; Hudson, Larry D.; Richards, W. Lance

    2005-01-01

    Fiber Optic Strain Measurements: a) Successfully attached silica fiber optic sensors to both metallics and composites; b) Accomplished valid EFPI strain measurements to 1850 F; c) Successfully attached EFPI sensors to large scale hot-structures; and d) Attached and thermally validated FBG bond and epsilon(sub app). Future Development a) Improve characterization of sensors on C-C and C-SiC substrates; b) Apply application to other composites such as SiC-SiC; c) Assist development of interferometer based Sapphire sensor currently being conducted under a Phase II SBIR; and d) Complete combined thermal/mechanical testing of FBG on composite substrates in controlled laboratory environment.

  6. Experimental study of a low-thrust measurement system for thruster ground tests.

    Science.gov (United States)

    Gong, Jingsong; Hou, Lingyun; Zhao, Wenhua

    2014-03-01

    The development of thrusters used for the control of position and orbit of micro-satellites requires thrust stands that can measure low thrust. A new method to measure low thrust is presented, and the measuring device is described. The test results show that the thrust range is up to 1000 mN, the measurement error of the device is lower than ±1% of full scale, and the drift of the zero offset is less than ±1% of full scale. Its response rise time is less than 15 ms. It is employed to measure the working process of a model chemical thruster with repeatability.

  7. SATPro: the system assessment test program for Z-R.

    Energy Technology Data Exchange (ETDEWEB)

    Lehr, Jane Marie (Titan Pulse Sciences Division, San Leandro, CA); Bloomquist, Douglas D.; Drennan, Scott Allen (Ktech Corp, Albuquerque NM); Guthrie, Douglas Wayne (Ktech Corp, Albuquerque NM); Johnson, D. J.; Harjes, Henry Charles III; McDaniel, Dillon Heirman; Corley, John Phillip (Ktech Corp, Albuquerque NM); Struve, Kenneth William; Hodge, Keith Conquest (Ktech Corp, Albuquerque NM); Maenchen, John Eric

    2004-09-01

    In the mid-90's, breakthroughs were achieved at Sandia with z-pinches for high energy density physics on the Saturn machine. These initial tests led to the modification of the PBFA II machine to provide high currents rather than the high voltage it was initially designed for. The success of z-pinch for high energy density physics experiments insured a new mission for the converted accelerator, known as Z since 1997. Z now provides a unique capability to a number of basic science communities and has expanded its mission to include radiation effects research, inertial confinement fusion and material properties research. To achieve continued success, the physics community has requested higher peak current, better precision and pulse shaping versatility be incorporated into the refurbishment of the Z machine, known as ZR. In addition to the performance specification for ZR of a peak current of 26 MA with an implosion time of 100 ns, the machine also has a reliability specification to achieve 400 shots per year. While changes to the basic architecture of the Z machine are minor, the vast majority of its components have been redesigned. Moreover the increase in peak current from its present 18 MA to ZR's peak current of 26 MA at nominal operating parameters requires significantly higher voltages. These higher voltages, along with the reliability requirement, mandate a system assessment be performed to insure the requirements have been met. This paper will describe the System Assessment Test Program (SATPro) for the ZR project and report on the results.

  8. Fluid-structural dynamics of ground-based and microgravity caloric tests

    Science.gov (United States)

    Kassemi, M.; Oas, J. G.; Deserranno, Dimitri

    2005-01-01

    Microgravity caloric tests aboard the 1983 SpaceLab1 mission produced nystagmus results with an intensity comparable to those elicited during post- and pre- flight tests, thus contradicting the basic premise of Barany's convection hypothesis for caloric stimulation. In this work, we present a dynamic fluid structural analysis of the caloric stimulation of the lateral semicircular canal based on two simultaneous driving forces for the endolymphatic flow: natural convection driven by the temperature-dependent density variation in the bulk fluid and expansive convection caused by direct volumetric displacement of the endolymph during the thermal irrigation. Direct numerical simulations indicate that on earth, the natural convection mechanism is dominant. But in the microgravity environment of orbiting spacecraft, where buoyancy effects are mitigated, expansive convection becomes the sole mechanism for producing cupular displacement. A series of transient 1 g and microgravity case studies are presented to delineate the differences between the dynamics of the 1 g and microgravity endolymphatic flows. The impact of these different flow dynamics on the endolymph-cupula fluid-structural interactions is also analyzed based on the time evolutions of cupular displacement and velocity and the transcupular pressure differences.

  9. Microtensile bond strength test and failure analysis to assess bonding characteristics of different adhesion approaches to ground versus unground enamel.

    Science.gov (United States)

    Hipólito, Vinicius Di; Alonso, Roberta Caroline Bruschi; Carrilho, Marcela Rocha de Oliveira; Anauate Netto, Camillo; Sinhoreti, Mário Alexandre Coelho; Goes, Mario Fernando de

    2011-01-01

    This study evaluated the bonding characteristics to ground and unground enamel obtained with different strategies. For this purpose, 24 sound third-molars were bisected mesiodistally to obtain tooth halves. A flat enamel area was delimited in the tooth sections, which were randomly distributed into 8 groups (n=6), according to the enamel condition (ground and unground) and adhesive system (Adper Single Bond 2 - SB2; Adper Prompt L-Pop - PLP; Adper Prompt - AD; Clearfil SE Bond - SE). Each system was applied according manufacturers' instructions and a 6-mm-high resin composite "crown" was incrementally built up on bonded surfaces. Hourglass-shaped specimens with 0.8 mm(2) cross-section were produced. Microtensile bond strength (μTBS) was recorded and the failure patterns were classified. Results were analyzed by two-way ANOVA and Tukey's test (α=0.05). There were no statistically significant differences among the μTBS values of SB2, PLP and AD (p>0.05). SE values were significantly lower (p0.05). There was prevalence of cohesive failure within enamel, adhesive system and resin composite for SB2. The self-etch systems produced higher incidence of cohesive failures in the adhesive system. Enamel condition did not determine significant differences on bonding characteristics for the same bonding system. In conclusion, the bonding systems evaluated in this study resulted in specific μTBS and failure patterns due to the particular interaction with enamel.

  10. A Blind Test Experiment in Volcano Geodesy: a Benchmark for Inverse Methods of Ground Deformation and Gravity Data

    Science.gov (United States)

    D'Auria, Luca; Fernandez, Jose; Puglisi, Giuseppe; Rivalta, Eleonora; Camacho, Antonio; Nikkhoo, Mehdi; Walter, Thomas

    2016-04-01

    The inversion of ground deformation and gravity data is affected by an intrinsic ambiguity because of the mathematical formulation of the inverse problem. Current methods for the inversion of geodetic data rely on both parametric (i.e. assuming a source geometry) and non-parametric approaches. The former are able to catch the fundamental features of the ground deformation source but, if the assumptions are wrong or oversimplified, they could provide misleading results. On the other hand, the latter class of methods, even if not relying on stringent assumptions, could suffer from artifacts, especially when dealing with poor datasets. In the framework of the EC-FP7 MED-SUV project we aim at comparing different inverse approaches to verify how they cope with basic goals of Volcano Geodesy: determining the source depth, the source shape (size and geometry), the nature of the source (magmatic/hydrothermal) and hinting the complexity of the source. Other aspects that are important in volcano monitoring are: volume/mass transfer toward shallow depths, propagation of dikes/sills, forecasting the opening of eruptive vents. On the basis of similar experiments already done in the fields of seismic tomography and geophysical imaging, we have devised a bind test experiment. Our group was divided into one model design team and several inversion teams. The model design team devised two physical models representing volcanic events at two distinct volcanoes (one stratovolcano and one caldera). They provided the inversion teams with: the topographic reliefs, the calculated deformation field (on a set of simulated GPS stations and as InSAR interferograms) and the gravity change (on a set of simulated campaign stations). The nature of the volcanic events remained unknown to the inversion teams until after the submission of the inversion results. Here we present the preliminary results of this comparison in order to determine which features of the ground deformation and gravity source

  11. Evaluation of Cavity Collapse and Surface Crater Formation at the Salut Underground Nuclear Test in U20ak, Nevada National Security Site, and the Impact of Stability of the Ground Surface

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A

    2012-04-25

    At the request of Jerry Sweeney, the LLNL Containment Program performed a review of nuclear test-related data for the Salut underground nuclear test in U20ak to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. Review of the Salut site is complicated because the test experienced a subsurface, rather than surface, collapse. Of particular interest is the stability of the ground surface above the Salut detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeologogy due to the nuclear detonation. Sweeney's proposal requires physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Test Site (NNSS, formerly the Nevada Test Site), and focuses on possible activities such as visual observation, multispectral measurements, and shallow, and deep geophysical surveys.

  12. Multidisciplinary Studies of the Fate and Transport of Contaminants in Ground Water at the U.S. Geological Survey Cape Cod Toxic Substances Hydrology Program Research Site, Massachusetts

    Science.gov (United States)

    Leblanc, D. R.; Smith, R. L.; Kent, D. B.; Barber, L. B.; Harvey, R. W.

    2008-12-01

    The U.S. Geological Survey conducts multidisciplinary research on the physical, chemical, and microbiological processes affecting ground-water contaminants of global concern at its Cape Cod Toxic Substances Hydrology Program site in Massachusetts, USA. The work centers on a 6-kilometer-long plume of treated wastewater in a glacial sand and gravel aquifer. The plume is characterized by distinct geochemical zones caused by the biodegradation of organic materials in treated wastewater that was disposed to the aquifer by rapid infiltration during the period 1936-95. A core group of hydrogeologists, geochemists, microbiologists, and geophysicists has been involved in the research effort for more than two decades. The effort has been enhanced by stable funding, a readily accessible site, a relatively simple hydrologic setting, and logistical support from an adjacent military base. The research team uses a three-part approach to plan and conduct research at the site. First, detailed spatial and temporal monitoring of the plume since the late 1970s provides field evidence of important contaminant-transport processes and provides the basis for multidisciplinary, process-oriented studies. Second, ground-water tracer experiments are conducted in various geochemical zones in the plume to study factors that control the rate and extent of contaminant transport. Several arrays of multilevel sampling devices, including an array with more than 15,000 individual sampling points, are used to conduct these experiments. Plume-scale (kilometers) and tracer-test-scale (1- 100 meters) studies are complemented by laboratory experiments and mathematical modeling of flow and reactive transport. Third, results are applied to the treated-wastewater plume, other contaminant plumes at the military base, and other sites nationally to evaluate the applicability of the findings and to point toward further research. Examples of findings to date include that (1) macrodispersivity can be related to

  13. Ground Truth and Application for the Anisotropic Receiver Functions Technique - Test site KTB: the installation campaign

    Science.gov (United States)

    Bianchi, Irene; Anselmi, Mario; Apoloner, Maria-Theresia; Qorbani, Ehsan; Gribovszki, Katalin; Bokelmann, Götz

    2015-04-01

    The project at hand is a field test around the KTB (Kontinentale Tiefbohrung) site in the Oberpfalz, Southeastern Germany, at the northwestern edge of the Bohemian Massif. The region has been extensively studied through the analysis of several seismic reflection lines deployed around the drilling site. The deep borehole had been placed into gneiss rocks of the Zone Erbendorf-Vohenstrauss. Drilling activity lasted since 1987 to 1994, and it descends down to a depth of 9101 meters. In our experiment, we aim to recover structural information as well as anisotropy of the upper crust using the receiver function technique. This retrieved information will form the base for a comparison between the resulting anisotropy amount and orientation with information of rock samples from up to 9 km depth, and with earlier high-frequency seismic experiments around the drill site. For that purpose, we installed 9 seismic stations, and recorded seismicity continuously for two years.

  14. A high flux pulsed source of energetic atomic oxygen. [for spacecraft materials ground testing

    Science.gov (United States)

    Krech, Robert H.; Caledonia, George E.

    1986-01-01

    The design and demonstration of a pulsed high flux source of nearly monoenergetic atomic oxygen are reported. In the present test setup, molecular oxygen under several atmospheres of pressure is introduced into an evacuated supersonic expansion nozzle through a pulsed molecular beam valve. A 10J CO2 TEA laser is focused to intensities greater than 10 to the 9th W/sq cm in the nozzle throat, generating a laser-induced breakdown with a resulting 20,000-K plasma. Plasma expansion is confined by the nozzle geometry to promote rapid electron-ion recombination. Average O-atom beam velocities from 5-13 km/s at fluxes up to 10 to the 18th atoms/pulse are measured, and a similar surface oxygen enrichment in polyethylene samples to that obtained on the STS-8 mission is found.

  15. General-Purpose Heat Source Development: Safety Test Program. Postimpact evaluation, Design Iteration Test 3

    Energy Technology Data Exchange (ETDEWEB)

    Schonfeld, F.W.; George, T.G.

    1984-07-01

    The General-Purpose Heat Source(GPHS) provides power for space missions by transmitting the heat of /sup 238/PuO/sub 2/ decay to thermoelectric elements. Because of the inevitable return of certain aborted missions, the heat source must be designed and constructed to survive both re-entry and Earth impact. The Design Iteration Test (DIT) series is part of an ongoing test program. In the third test (DIT-3), a full GPHS module was impacted at 58 m/s and 930/sup 0/C. The module impacted the target at an angle of 30/sup 0/ to the pole of the large faces. The four capsules used in DIT-3 survived impact with minimal deformation; no internal cracks other than in the regions indicated by Savannah River Plant (SRP) preimpact nondestructive testing were observed in any of the capsules. The 30/sup 0/ impact orientation used in DIT-3 was considerably less severe than the flat-on impact utilized in DIT-1 and DIT-2. The four capsules used in DIT-1 survived, while two of the capsules used in DIT-2 breached; a small quantity (approx. = 50 ..mu..g) of /sup 238/PuO/sub 2/ was released from the capsules breached in the DIT-2 impact. All of the capsules used in DIT-1 and DIT-2 were severely deformed and contained large internal cracks. Postimpact analyses of the DIT-3 test components are described, with emphasis on weld structure and the behavior of defects identified by SRP nondestructive testing.

  16. LLNL Calibration Program: Data Collection, Ground Truth Validation, and Regional Coda Magnitude

    Energy Technology Data Exchange (ETDEWEB)

    Myers, S C; Mayeda, K; Walter, C; Schultz, C; O' Boyle, J; Hofstetter, A; Rodgers, A; Ruppert, S

    2001-08-28

    Lawrence Livermore National Laboratory (LLNL) integrates and collects data for use in calibration of seismic detection, location, and identification. Calibration data is collected by (1) numerous seismic field efforts, many conducted under NNSA (ROA) and DTRA (PRDA) contracts, and (2) permanent seismic stations that are operated by national and international organizations. Local-network operators and international organizations (e.g. International Seismic Center) provide location and other source characterization (collectively referred to as source parameters) to LLNL, or LLNL determines these parameters from raw data. For each seismic event, LLNL rigorously characterizes the uncertainty of source parameters. This validation process is used to identify events whose source parameters are accurate enough for use in calibration. LLNL has developed criteria for determining the accuracy of seismic locations and methods to characterize the covariance of calibration datasets. Although the most desirable calibration events are chemical and nuclear explosions with highly accurate locations and origin times, catalogues of naturally occurring earthquakes offer needed geographic coverage that is not provided by man made sources. The issue in using seismically determined locations for calibration is validating the location accuracy. Sweeney (1998) presented a 50/90 teleseismic, network-coverage criterion (50 defining phases and 90{sup o} maximum azimuthal gap) that generally results in 15-km maximum epicenter error. We have also conducted tests of recently proposed local/regional criteria and found that 10-km accuracy can be achieved by applying a 20/90 criteria. We continue to conduct tests that may validate less stringent criteria (which will produce more calibration events) while maintaining desirable location accuracy. Lastly, we examine methods of characterizing the covariance structure of calibration datasets. Each dataset is likely to be effected by distinct error

  17. LLNL Calibration Program: Data Collection, Ground Truth Validation, and Regional Coda Magnitude

    Energy Technology Data Exchange (ETDEWEB)

    Myers, S C; Mayeda, K; Walter, C; Schultz, C; O' Boyle, J; Hofstetter, A; Rodgers, A; Ruppert, S

    2001-08-28

    Lawrence Livermore National Laboratory (LLNL) integrates and collects data for use in calibration of seismic detection, location, and identification. Calibration data is collected by (1) numerous seismic field efforts, many conducted under NNSA (ROA) and DTRA (PRDA) contracts, and (2) permanent seismic stations that are operated by national and international organizations. Local-network operators and international organizations (e.g. International Seismic Center) provide location and other source characterization (collectively referred to as source parameters) to LLNL, or LLNL determines these parameters from raw data. For each seismic event, LLNL rigorously characterizes the uncertainty of source parameters. This validation process is used to identify events whose source parameters are accurate enough for use in calibration. LLNL has developed criteria for determining the accuracy of seismic locations and methods to characterize the covariance of calibration datasets. Although the most desirable calibration events are chemical and nuclear explosions with highly accurate locations and origin times, catalogues of naturally occurring earthquakes offer needed geographic coverage that is not provided by man made sources. The issue in using seismically determined locations for calibration is validating the location accuracy. Sweeney (1998) presented a 50/90 teleseismic, network-coverage criterion (50 defining phases and 90{sup o} maximum azimuthal gap) that generally results in 15-km maximum epicenter error. We have also conducted tests of recently proposed local/regional criteria and found that 10-km accuracy can be achieved by applying a 20/90 criteria. We continue to conduct tests that may validate less stringent criteria (which will produce more calibration events) while maintaining desirable location accuracy. Lastly, we examine methods of characterizing the covariance structure of calibration datasets. Each dataset is likely to be effected by distinct error

  18. Automated Critical Peak Pricing Field Tests: Program Descriptionand Results

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Xu, Peng

    2006-04-06

    California utilities have been exploring the use of critical peak prices (CPP) to help reduce needle peaks in customer end-use loads. CPP is a form of price-responsive demand response (DR). Recent experience has shown that customers have limited knowledge of how to operate their facilities in order to reduce their electricity costs under CPP (Quantum 2004). While the lack of knowledge about how to develop and implement DR control strategies is a barrier to participation in DR programs like CPP, another barrier is the lack of automation of DR systems. During 2003 and 2004, the PIER Demand Response Research Center (DRRC) conducted a series of tests of fully automated electric demand response (Auto-DR) at 18 facilities. Overall, the average of the site-specific average coincident demand reductions was 8% from a variety of building types and facilities. Many electricity customers have suggested that automation will help them institutionalize their electric demand savings and improve their overall response and DR repeatability. This report focuses on and discusses the specific results of the Automated Critical Peak Pricing (Auto-CPP, a specific type of Auto-DR) tests that took place during 2005, which build on the automated demand response (Auto-DR) research conducted through PIER and the DRRC in 2003 and 2004. The long-term goal of this project is to understand the technical opportunities of automating demand response and to remove technical and market impediments to large-scale implementation of automated demand response (Auto-DR) in buildings and industry. A second goal of this research is to understand and identify best practices for DR strategies and opportunities. The specific objectives of the Automated Critical Peak Pricing test were as follows: (1) Demonstrate how an automated notification system for critical peak pricing can be used in large commercial facilities for demand response (DR). (2) Evaluate effectiveness of such a system. (3) Determine how customers

  19. Automated Critical Peak Pricing Field Tests: Program Descriptionand Results

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Xu, Peng

    2006-04-06

    California utilities have been exploring the use of critical peak prices (CPP) to help reduce needle peaks in customer end-use loads. CPP is a form of price-responsive demand response (DR). Recent experience has shown that customers have limited knowledge of how to operate their facilities in order to reduce their electricity costs under CPP (Quantum 2004). While the lack of knowledge about how to develop and implement DR control strategies is a barrier to participation in DR programs like CPP, another barrier is the lack of automation of DR systems. During 2003 and 2004, the PIER Demand Response Research Center (DRRC) conducted a series of tests of fully automated electric demand response (Auto-DR) at 18 facilities. Overall, the average of the site-specific average coincident demand reductions was 8% from a variety of building types and facilities. Many electricity customers have suggested that automation will help them institutionalize their electric demand savings and improve their overall response and DR repeatability. This report focuses on and discusses the specific results of the Automated Critical Peak Pricing (Auto-CPP, a specific type of Auto-DR) tests that took place during 2005, which build on the automated demand response (Auto-DR) research conducted through PIER and the DRRC in 2003 and 2004. The long-term goal of this project is to understand the technical opportunities of automating demand response and to remove technical and market impediments to large-scale implementation of automated demand response (Auto-DR) in buildings and industry. A second goal of this research is to understand and identify best practices for DR strategies and opportunities. The specific objectives of the Automated Critical Peak Pricing test were as follows: (1) Demonstrate how an automated notification system for critical peak pricing can be used in large commercial facilities for demand response (DR). (2) Evaluate effectiveness of such a system. (3) Determine how customers

  20. Two-dimensional models as testing ground for principles and concepts of local quantum physics

    CERN Document Server

    Schrör, B

    2005-01-01

    In the past two-dimensional models of QFT have served as theoretical laboratories for testing new concepts under mathematically controllable condition. In more recent times low-dimensional models (e.g. chiral models, factorizing models) often have been treated by special recipes in a way which sometimes led to a loss of unity of QFT. In the present work I try to counteract this apartheid tendency by reviewing past results within the setting of the general principles of QFT. To this I add two new ideas: a derivation of the chiral model temperature duality from a suitable operator formulation of the angular Wick rotation (in analogy to the Nelson-Symanzik duality in the Ostertwalder-Schrader setting) and a modular interpretation of the chiral model Diff(S)-covariance with a close connection to the recently formulated local covariance principle for QFT in curved spacetime. As a special case of the thermal duality, the SL(2,Z) modular Verlinde relation is thus a consequence of the principles of thermal QFT togeth...

  1. The Apache Longbow-Hellfire Missile Test at Yuma Proving Ground: Introduction and Problem Formulation for a Multiple Stressor Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Efroymson, Rebecca Ann [ORNL; Peterson, Mark J [ORNL; Jones, Daniel Steven [ORNL; Suter, Glenn [U.S. Environmental Protection Agency

    2008-01-01

    An ecological risk assessment was conducted at Yuma Proving Ground, Arizona, as a demonstration of the Military Ecological Risk Assessment Framework (MERAF). The focus of the assessment was a testing program at Cibola Range, which involved an Apache Longbow helicopter firing Hellfire missiles at moving targets, i.e., M60-A1 tanks. The problem formulation for the assessment included conceptual models for three component activities of the test, helicopter overflight, missile firing, and tracked vehicle movement, and two ecological endpoint entities, woody desert wash communities and desert mule deer (Odocoileus hemionus crooki) populations. An activity-specific risk assessment framework was available to provide guidance for assessing risks associated with aircraft overflights. Key environmental features of the study area include barren desert pavement and tree-lined desert washes. The primary stressors associated with helicopter overflights were sound and the view of the aircraft. The primary stressor associated with Hellfire missile firing was sound. The principal stressor associated with tracked vehicle movement was soil disturbance, and a resulting, secondary stressor was hydrological change. Water loss to washes and wash vegetation was expected to result from increased ponding, infiltrationand/or evaporation associated with disturbances to desert pavement. A plan for estimating integrated risks from the three military activities was included in the problem formulation.

  2. 78 FR 15807 - Energy Conservation Program: Test Procedures for Television Sets

    Science.gov (United States)

    2013-03-12

    ... March 12, 2013 Part II Department of Energy 10 CFR Parts 429 and 430 Energy Conservation Program: Test... Conservation Program: Test Procedures for Television Sets AGENCY: Office of Energy Efficiency and Renewable...) established the ``Energy Conservation Program for Consumer Products Other Than Automobiles.'' The...

  3. A Java program to test homogeneity of samples and examine sampling completeness

    OpenAIRE

    WenJun Zhang

    2011-01-01

    A Java program to test the homogeneity of samples and examine sampling completeness was presented in this study. The program was based on the model of Coleman et al. (1982) for random placement hypothesis and the algorithm of Zhang et al. (1999). The program was used to test samples' homogeneity and examine sampling completeness for four arthropod sampling data sets.

  4. 76 FR 50164 - Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing...

    Science.gov (United States)

    2011-08-12

    ... AGENCY 40 CFR Parts 72 and 75 RIN 2060-AQ06 Protocol Gas Verification Program and Minimum Competency... Program and Minimum Competency Requirements for Air Emission Testing rule. EPA published in the Federal... Program (PGVP) and the minimum competency requirements for Air Emission Testing Bodies (AETBs), and...

  5. North Carolina Minimum Skills Diagnostic Testing Program. Administrative Information, 1992-93.

    Science.gov (United States)

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Accountability Services/Research.

    Information is presented regarding the administration of the North Carolina Minimum Skills Diagnostic Testing Program. This testing program, mandated by the state's basic education program under the Secondary School Reform Act of 1984, checks the necessity for remediation by determining a student's mastery of specific objectives and diagnoses…

  6. Technology-Based Programs to Promote Walking Fluency or Improve Foot-Ground Contact during Walking: Two Case Studies of Adults with Multiple Disabilities

    Science.gov (United States)

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; La Martire, Maria L.; Oliva, Doretta; Groeneweg, Jop

    2012-01-01

    These two case studies assessed technology-based programs for promoting walking fluency and improving foot-ground contact during walking with a man and a woman with multiple disabilities, respectively. The man showed breaks during walking and the woman presented with toe walking. The technology used in the studies included a microprocessor with…

  7. From Ground Truth to Space: Surface, Subsurface and Remote Observations Associated with Nuclear Test Detection

    Science.gov (United States)

    Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.

    2016-12-01

    Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.

  8. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays

    Directory of Open Access Journals (Sweden)

    Nicolás Yunes

    2013-11-01

    Full Text Available This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein’s theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  9. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.

    Science.gov (United States)

    Yunes, Nicolás; Siemens, Xavier

    2013-01-01

    This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  10. Reflections on methodological approaches and conceptual contributions in a program of caregiving research: development and testing of Wuest's theory of family caregiving.

    Science.gov (United States)

    Wuest, Judith; Hodgins, Marilyn J

    2011-02-01

    Caregiving by family members, particularly women, is a societal expectation that is intensifying in the context of an aging population and health care restructuring. Our program of caregiving research spans two decades, moving from inductive theory development using grounded theory methods to deductive theory testing. In this article, we reflect on the serendipitous development of this program of research methodologically and conceptually. We summarize the key conceptual contributions that the program has made to caregiving knowledge, particularly with respect to the past relationship between care recipient and caregiver, obligation to care, caregiver agency, and relationships between caregivers and the health care system.

  11. Evaluation of Cavity Collapse and Surface Crater Formation at the Norbo Underground Nuclear Test in U8c, Nevada Nuclear Security Site, and the Impact on Stability of the Ground Surface

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A

    2012-06-18

    Lawrence Livermore National Laboratory (LLNL) Containment Program performed a review of nuclear test-related data for the Norbo underground nuclear test in U8c to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. This request is similar to one made for the Salut site in U8c (Pawloski, 2012b). Review of the Norbo site is complicated because the test first exhibited subsurface collapse, which was not unusual, but it then collapsed to the surface over one year later, which was unusual. Of particular interest is the stability of the ground surface above the Norbo detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeology due to the nuclear detonation. Aviva Sussman from the Los Alamos National Laboratory (LANL) has also proposed work at this site. Both proposals require physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Security Site (NNSS), formerly the Nevada Test Site (NTS), and focus on possible activities such as visual observation, multispectral measurements, and shallow and deep geophysical surveys.

  12. JTst - An Automated Unit Testing Tool for Java Program

    OpenAIRE

    Kamal Z.  Zamli; Nor A.M.   Isa

    2008-01-01

    Software testing is an integral part of software development lifecycle. Lack of testing can often lead to disastrous consequences including lost of data, fortunes, and even lives. Despite its importance, current software testing practice lacks automation, and is still primarily based on highly manual processes from the generation of test cases up to the actual execution of the test. Although the emergence of helpful automated testing tools in the market is blooming, their adoptions are lackin...

  13. User's guide to Model Viewer, a program for three-dimensional visualization of ground-water model results

    Science.gov (United States)

    Hsieh, Paul A.; Winston, Richard B.

    2002-01-01

    Model Viewer is a computer program that displays the results of three-dimensional groundwater models. Scalar data (such as hydraulic head or solute concentration) may be displayed as a solid or a set of isosurfaces, using a red-to-blue color spectrum to represent a range of scalar values. Vector data (such as velocity or specific discharge) are represented by lines oriented to the vector direction and scaled to the vector magnitude. Model Viewer can also display pathlines, cells or nodes that represent model features such as streams and wells, and auxiliary graphic objects such as grid lines and coordinate axes. Users may crop the model grid in different orientations to examine the interior structure of the data. For transient simulations, Model Viewer can animate the time evolution of the simulated quantities. The current version (1.0) of Model Viewer runs on Microsoft Windows 95, 98, NT and 2000 operating systems, and supports the following models: MODFLOW-2000, MODFLOW-2000 with the Ground-Water Transport Process, MODFLOW-96, MOC3D (Version 3.5), MODPATH, MT3DMS, and SUTRA (Version 2D3D.1). Model Viewer is designed to directly read input and output files from these models, thus minimizing the need for additional postprocessing. This report provides an overview of Model Viewer. Complete instructions on how to use the software are provided in the on-line help pages.

  14. Multidimensional Computerized Adaptive Scholastic Aptitude Test Program Used for Grade 9 Students under Different Reviewing Test Conditions

    Science.gov (United States)

    Khunkrai, Naruemon; Sawangboon, Tatsirin; Ketchatturat, Jatuphum

    2015-01-01

    The aim of this research is to study the accurate prediction of comparing test information and evaluation result by multidimensional computerized adaptive scholastic aptitude test program used for grade 9 students under different reviewing test conditions. Grade 9 students of the Secondary Educational Service Area Office in the North-east of…

  15. EMC Test Report: StangSat - CubeSat Program

    Science.gov (United States)

    Carmody, Lynne M.; Aragona, Peter S.

    2013-01-01

    This report documents the Electromagnetic Interference E M I testing performed on the StangSat; the unit under test (UUT). Testing was per the requirements of MIL STD-461F. The UUT was characterized and passed the radiated emissions (RE102 limit for Spacecraft) testing.

  16. 76 FR 34086 - Mandatory Guidelines for Federal Workplace Drug Testing Programs; Request for Information...

    Science.gov (United States)

    2011-06-10

    ... Federal Workplace Drug Testing Programs; Request for Information Regarding Specific Issues Related to the Use of the Oral Fluid Specimen for Drug Testing AGENCY: Substance Abuse and Mental Health Services... Mandatory Guidelines for Federal Workplace Drug Testing Programs (oral fluid specimen). DATES: Comment Close...

  17. 78 FR 39190 - Revisions to Fitness for Duty Programs' Drug Testing Requirements

    Science.gov (United States)

    2013-07-01

    ...-2009-0225] RIN 3150-AI67 Revisions to Fitness for Duty Programs' Drug Testing Requirements AGENCY... regulations regarding drug testing requirements in NRC licensees' fitness for duty programs. The regulatory... select drug testing provisions in the U.S. Department of Health and Human Services' ``Mandatory...

  18. 77 FR 18793 - Spectrum Sharing Innovation Test-Bed Pilot Program

    Science.gov (United States)

    2012-03-28

    ... Pilot Program, 73 FR 76,002 (Dec. 15, 2008). \\3\\ The final Phase I test plan and additional information... National Telecommunications and Information Administration Spectrum Sharing Innovation Test-Bed Pilot... conduct in Phase II/III of the Spectrum Sharing Innovation Test-Bed pilot program to assess...

  19. 77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors

    Science.gov (United States)

    2012-06-15

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors AGENCY: Nuclear...-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling- Water Reactors.'' This... testing features of emergency core cooling systems (ECCSs) for boiling-water reactors (BWRs). DATES...

  20. DARPA/USAF/USN J-UCAS X-45A System Demonstration Program: A Review of Flight Test Site Processes and Personnel

    Science.gov (United States)

    Cosentino, Gary B.

    2008-01-01

    The Joint Unmanned Combat Air Systems (J-UCAS) program is a collaborative effort between the Defense Advanced Research Project Agency (DARPA), the US Air Force (USAF) and the US Navy (USN). Together they have reviewed X-45A flight test site processes and personnel as part of a system demonstration program for the UCAV-ATD Flight Test Program. The goal was to provide a disciplined controlled process for system integration and testing and demonstration flight tests. NASA's Dryden Flight Research Center (DFRC) acted as the project manager during this effort and was tasked with the responsibilities of range and ground safety, the provision of flight test support and infrastructure and the monitoring of technical and engineering tasks. DFRC also contributed their engineering knowledge through their contributions in the areas of autonomous ground taxi control development, structural dynamics testing and analysis and the provision of other flight test support including telemetry data, tracking radars, and communications and control support equipment. The Air Force Flight Test Center acted at the Deputy Project Manager in this effort and was responsible for the provision of system safety support and airfield management and air traffic control services, among other supporting roles. The T-33 served as a J-UCAS surrogate aircraft and demonstrated flight characteristics similar to that of the the X-45A. The surrogate served as a significant risk reduction resource providing mission planning verification, range safety mission assessment and team training, among other contributions.

  1. Study of the Pierre Auger Observatory ground detectors: tests, simulation and calibration; Etude des detecteurs de surface de l'observatoire Pierre Auger: tests, simulation et etalonnage

    Energy Technology Data Exchange (ETDEWEB)

    Creusot, A

    2004-10-01

    The Pierre Auger Observatory is intended to the ultra high energy cosmic rays study. This study is realized through the particles showers coming from the interaction between the cosmic rays and the atmosphere. The ground detection of these showers requires a comprehensive understanding of the detectors. Several test tanks have been elaborated for this purpose, especially the Orsay one. The first chapter is dedicated to the presentation of the cosmic rays and of the Pierre Auger Observatory. The second one describes the detectors used for the Observatory surface array. The Orsay test tank is then presented and detailed. We study the results we have got with the Orsay test tank in the fourth chapter and compare these results with those of the Observatory detectors in the fifth chapter. The sixth chapter is dedicated to the validation of the results set through the simulation (GEANT4 software). Finally, the first detected particles showers are presented in the seventh chapter. The data acquisition has begun this year. The construction will be finished by end of 2005. From this moment, The Pierre Auger Observatory will allow us to contribute to solving the cosmic rays puzzle. (author)

  2. Automatic apparatus and data transmission for field response tests of the ground; Automatisation et teletransmission des donnees pour les tests de reponse du terrain

    Energy Technology Data Exchange (ETDEWEB)

    Laloui, L.; Steinmann, G.

    2004-07-01

    This is the report on the third part of a development started 1998 at the Swiss Federal Institute of Technology Lausanne (EPFL) in Lausanne, Switzerland. Energy piles are becoming increasingly used as a heat exchanger and heat storage device, as are geothermal probes. Their design and sizing is subject to some uncertainty due to the fact that the planner has to estimate the thermal and mechanical properties of the ground surrounding the piles or probes. The aim of the project was to develop an apparatus for field measurements of thermal and mechanical properties of an energy pile or a geothermal probe (thermal response tests). In the reported third phase of the project the portable apparatus was equipped with a data transmission device using the Internet. Real-time data acquisition and supervision is now implemented and data processing has been improved. Another goal of the project was to obtain the official accreditation of such response tests according to the European standard EN 45,000. First operation experience from a test in Lyon, France is reported.

  3. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    Science.gov (United States)

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species-specific models is only warranted when gains in accuracy of stand-based predictions are relatively high (e.g. high-value monocultures).

  4. Integration of ground-penetrating radar, ultrasonic tests and infrared thermography for the analysis of a precious medieval rose window

    Science.gov (United States)

    Nuzzo, L.; Calia, A.; Liberatore, D.; Masini, N.; Rizzo, E.

    2010-04-01

    The integration of high-resolution, non-invasive geophysical techniques (such as ground-penetrating radar or GPR) with emerging sensing techniques (acoustics, thermography) can complement limited destructive tests to provide a suitable methodology for a multi-scale assessment of the state of preservation, material and construction components of monuments. This paper presents the results of the application of GPR, infrared thermography (IRT) and ultrasonic tests to the 13th century rose window of Troia Cathedral (Apulia, Italy), affected by widespread decay and instability problems caused by the 1731 earthquake and reactivated by recent seismic activity. This integrated approach provided a wide amount of complementary information at different scales, ranging from the sub-centimetre size of the metallic joints between the various architectural elements, narrow fractures and thin mortar fillings, up to the sub-metre scale of the internal masonry structure of the circular ashlar curb linking the rose window to the façade, which was essential to understand the original building technique and to design an effective restoration strategy.

  5. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle.

    Science.gov (United States)

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-11-11

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality.

  6. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    Jaegyu Jang

    2015-11-01

    Full Text Available The Ground-based Radio Navigation System (GRNS is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo. In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services SC (special committee-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP or fluctuations in the received signal quality.

  7. Mixtures Equation Pilot Program to Reduce Animal Testing

    Science.gov (United States)

    EPA is announcing the start of a pilot program to evaluate the usefulness and acceptability of a mathematical tool (the GHS Mixtures Equation), which is used in the Globally Harmonized System of Classification and Labeling of Chemicals (GHS).

  8. State Assessment and Testing Programs: An Annotated ERIC Bibliography. Volume I: General References. Volume II: Individual State Programs.

    Science.gov (United States)

    Porter, Deborah Elena; Wildemuth, Barbara

    There is a growing body of literature in the ERIC data base pertaining to state educational assessment and testing programs. Volume I of this bibliography includes abstracts of 39 documents and journal articles describing the design and implementation of programs, as well as the technical and political issues which have been addressed by the…

  9. Standardized Testing Program for Solid-State Hydrogen Storage Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Michael A. [Southwest Research Institute; Page, Richard A. [Southwest Research Institute

    2012-07-30

    In the US and abroad, major research and development initiatives toward establishing a hydrogen-based transportation infrastructure have been undertaken, encompassing key technological challenges in hydrogen production and delivery, fuel cells, and hydrogen storage. However, the principal obstacle to the implementation of a safe, low-pressure hydrogen fueling system for fuel-cell powered vehicles remains storage under conditions of near-ambient temperature and moderate pressure. The choices for viable hydrogen storage systems at the present time are limited to compressed gas storage tanks, cryogenic liquid hydrogen storage tanks, chemical hydrogen storage, and hydrogen absorbed or adsorbed in a solid-state material (a.k.a. solid-state storage). Solid-state hydrogen storage may offer overriding benefits in terms of storage capacity, kinetics and, most importantly, safety.The fervor among the research community to develop novel storage materials had, in many instances, the unfortunate consequence of making erroneous, if not wild, claims on the reported storage capacities achievable in such materials, to the extent that the potential viability of emerging materials was difficult to assess. This problem led to a widespread need to establish a capability to accurately and independently assess the storage behavior of a wide array of different classes of solid-state storage materials, employing qualified methods, thus allowing development efforts to focus on those materials that showed the most promise. However, standard guidelines, dedicated facilities, or certification programs specifically aimed at testing and assessing the performance, safety, and life cycle of these emergent materials had not been established. To address the stated need, the Testing Laboratory for Solid-State Hydrogen Storage Technologies was commissioned as a national-level focal point for evaluating new materials emerging from the designated Materials Centers of Excellence (MCoE) according to

  10. Analysis of Well ER-EC-8 testing, Western Pahute Mesa-Oasis Valley FY 2000 testing program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-30

    This report documents the analysis of the data collected for Well ER-EC-8 during the Western Pahute Mesa - Oasis Valley (WPM-OV) well development and testing program that was conducted during fiscal year (FY) 2000. The data collection for that program is documented in Appendix A, Western Pahute Mesa-Oasis Valley, Well ER-EC-8 Data Report for development and Hydraulic Testing.

  11. Analysis of Well ER-EC-2a Testing, Western Pahute Mesa-Oasis Valley FY 2000 Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-30

    This report documents the analysis of the data collected for Well ER-EC-2a during the Western Pahute Mesa - Oasis Valley (WPM-OV) well development and testing program that was conducted during fiscal year (FY) 2000. The data collection for that program is documented in Appendix A, Western Pahute Mesa - Oasis Valley, Well ER-EC-2a Data Report for Development and Hydraulic Testing.

  12. Analysis of Well ER-EC-5 Testing, Western Pahute Mesa-Oasis Valley FY 2000 Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-30

    This report documents the analysis of the data collected for Well ER-EC-5 during the Western Pahute Mesa - Oasis Valley (WPM-OV) well development and testing program that was conducted during fiscal year (FY) 2000. The data collection for that program is documented in Appendix A, Western Pahute Mesa - Oasis Valley, Well ER-EC-5 Data Report for Development and Hydraulic Testing.

  13. Analysis of Well ER-EC-7 Testing, Western Pahute Mesa - Oasis Valley FY 2000 Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-30

    This report documents the analysis of the data collected for Well ER-EC-7 during the Western Pahute Mesa - Oasis Valley (WPM-OV) well development and testing program that was conducted during fiscal year (FY) 2000. The data collection for that program was documented in Appendix A, Western Pahute Mesa - Oasis Valley, Well ER-EC-7 Data Report for Development and Hydraulic Testing.

  14. Analysis of Well ER-EC-6 Testing, Western Pahute Mesa - Oasis Valley FY 2000 Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-30

    This report documents the analysis of the data collected for Well ER-EC-6 during the Western Pahute Mesa-Oasis Valley (WPM-OV) well development and testing program that was conducted during fiscal year (FY) 2000. The data collection for that program is documented in Appendix A, Western Pahute Mesa-Oasis Valley, Well ER-EC-6 Data Report for Development and Hydraulic Testing.

  15. Analysis of Well ER-EC-4 Testing, Western Pahute Mesa-Oasis Valley FY 2000 Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-30

    This report documents the analysis of the data collected for Well ER-EC-4 during the Western Pahute Mesa-Oasis Valley (WPM-OV) well development and testing program that was conducted during fiscal year (FY) 2000. The data collection for that program is documented in Appendix A, Western Pahute Mesa - Oasis Valley, Well ER-EC-4 Data Report for Development and Hydraulic Testing.

  16. Program Director Survey: Attitudes Regarding Child Neurology Training and Testing.

    Science.gov (United States)

    Valencia, Ignacio; Feist, Terri B; Gilbert, Donald L

    2016-04-01

    As a result of major clinical and scientific advances and changes in clinical practice, the role of adult neurology training for Child Neurology and Neurodevelopmental Disability (NDD) certification has become controversial. The most recently approved requirements for board eligibility for child neurology and neurodevelopmental disability residents still include 12 months in adult neurology rotations. The objective of this study was to assess United States child neurology and neurodevelopmental disability residency program directors' opinions regarding optimal residency training. The authors developed an 18-item questionnaire and contacted all 80 child neurology and neurodevelopmental disability program directors via e-mail, using SurveyMonkey. A total of 44 program directors responded (55%), representing programs that train 78 categorical and 94 total resident positions, approximately 70% of those filled in the match. Respondents identified multiple areas where child neurology residents need more training, including genetics and neuromuscular disease. A substantial majority (73%) believed child neurology and neurodevelopmental disability residents need less than 12 adult neurology training months; however, most (75%) also believed adult hospital service and man-power needs (55%) and finances (34%) would pose barriers to reducing adult neurology. Most (70%) believed reductions in adult neurology training should be program flexible. A majority believed the written initial certification examination should be modified with more child neurology and fewer basic neuroscience questions. Nearly all (91%) felt the views of child neurology and neurodevelopmental disability program directors are under-represented within the Accreditation Council for Graduate Medical Education Residency Review Committee. The requirement for 12 adult neurology months for Child Neurology and Neurodevelopmental Disability certification is not consistent with the views of the majority of program

  17. Resident Development via Progress Testing and Test-Marking: An Innovation and Program Evaluation

    Science.gov (United States)

    Schiff, Karen; Williams, D. Josh; Pardhan, Alim; Preyra, Ian; Li, Shelly-Anne

    2017-01-01

    Introduction Since 2008, the McMaster University Royal College Emergency Medicine residency training program has run practice Short Answer Question (SAQ) examinations to help residents test their knowledge and gain practice in answering exam-style questions. However, marking this type of SAQ exam is time-consuming. Methods To help address this problem, we require that senior residents help mark at least one exam per year alongside faculty members. Examinees’ identities are kept anonymous by assigning a random number to each resident, which is only decoded after marking. Aggregation of marks is done by faculty only. The senior residents and faculty members all share sequential marking of each question. Each question is reviewed, and exemplar “best practice” answers are discussed. As novel/unusual answers appear, instantaneous fact-checking (via textbooks, or the internet) and discussions occur allowing for real-time modification to the answer keys as needed. Results A total of 22 out of 37 residents (post graduate year 1 to post graduate year 5 (PGY1 to PGY5)) participated in a recent program evaluation focus group. This evaluation showed that residents feel quite positive about this process. With the anonymization process, residents do not object to their colleagues seeing and marking their answers. Senior residents have found this process informative and have felt that this process helps them gain insight into better “examsmanship.” Conclusions Involving residents in marking short-answer exams is acceptable and perceived as useful experience for improving exam-taking skills. More studies of similar innovations would be required to determine to what extent this may be the case. PMID:28265528

  18. Summary of Granulation Matrix Testing for the Plutonium Immobilization Program

    Energy Technology Data Exchange (ETDEWEB)

    Herman, C.C.

    2001-10-19

    In FY00, a matrix for process development testing was created to identify those items related to the ceramic process that had not been fully developed or tested and to help identify variables that needed to be tested. This matrix, NMTP/IP-99-003, was jointly created between LLNL and SRTC and was issued to all affected individuals. The matrix was also used to gauge the progress of the development activities. As part of this matrix, several series of tests were identified for the granulation process. This summary provides the data and results from the granulation testing. The results of the granulation matrix testing were used to identify the baseline process for testing in the PuCTF with cold surrogates in B241 at LLNL.

  19. Modeling earthquake ground motion with an earthquake simulation program (EMPSYN) that utilizes empirical Green's functions

    Energy Technology Data Exchange (ETDEWEB)

    Hutchings, L.

    1992-01-01

    This report outlines a method of using empirical Green's functions in an earthquake simulation program EMPSYN that provides realistic seismograms from potential earthquakes. The theory for using empirical Green's functions is developed, implementation of the theory in EMPSYN is outlined, and an example is presented where EMPSYN is used to synthesize observed records from the 1971 San Fernando earthquake. To provide useful synthetic ground motion data from potential earthquakes, synthetic seismograms should model frequencies from 0.5 to 15.0 Hz, the full wave-train energy distribution, and absolute amplitudes. However, high-frequency arrivals are stochastically dependent upon the inhomogeneous geologic structure and irregular fault rupture. The fault rupture can be modeled, but the stochastic nature of faulting is largely an unknown factor in the earthquake process. The effect of inhomogeneous geology can readily be incorporated into synthetic seismograms by using small earthquakes to obtain empirical Green's functions. Small earthquakes with source corner frequencies higher than the site recording limit f{sub max}, or much higher than the frequency of interest, effectively have impulsive point-fault dislocation sources, and their recordings are used as empirical Green's functions. Since empirical Green's functions are actual recordings at a site, they include the effects on seismic waves from all geologic inhomogeneities and include all recordable frequencies, absolute amplitudes, and all phases. They scale only in amplitude with differences in seismic moment. They can provide nearly the exact integrand to the representation relation. Furthermore, since their source events have spatial extent, they can be summed to simulate fault rupture without loss of information, thereby potentially computing the exact representation relation for an extended source earthquake.

  20. LiDAR-Assisted Multi-Source Program (LAMP for Measuring Above Ground Biomass and Forest Carbon

    Directory of Open Access Journals (Sweden)

    Tuomo Kauranne

    2017-02-01

    Full Text Available Forest measurement for purposes like harvesting planning, biomass estimation and mitigating climate change through carbon capture by forests call for increasingly frequent forest measurement campaigns that need to balance cost with accuracy and precision. Often this implies the use of remote sensing based measurement methods. For any remote-sensing based methods to be accurate, they must be validated against field data. We present a method that combines field measurements with two layers of remote sensing data: sampling of forests by airborne laser scanning (LiDAR and Landsat imagery. The Bayesian model-based framework presented here is called Lidar-Assisted Multi-source Programme—or LAMP—for Above Ground Biomass estimation. The method has two variants: LAMP2 which splits the biomass estimation task into two separate stages: forest type stratification from Landsat imagery and mean biomass density estimation of each forest type by LiDAR models calibrated on field plots. LAMP3, on the other hand, estimates first the biomass on a LiDAR sample using models calibrated with field plots and then uses these LiDAR-based models to generate biomass density estimates on thousands of surrogate plots, with which a satellite image based model is calibrated and subsequently used to estimate biomass density on the entire forest area. Both LAMP methods have been applied to a 2 million hectare area in Southern Nepal, the Terai Arc Landscape or TAL to calculate the emission Reference Levels (RLs that are required for the UN REDD+ program that was accepted as part of the Paris Climate Agreement. The uncertainty of these estimates is studied with error variance estimation, cross-validation and Monte Carlo simulation. The relative accuracy of activity data at pixel level was found to be 14 per cent at 95 per cent confidence level and the root mean squared error of biomass estimates to be between 35 and 39 per cent at 1 ha resolution.