WorldWideScience

Sample records for ground test hardware

  1. Pre-Flight Tests with Astronauts, Flight and Ground Hardware, to Assure On-Orbit Success

    Science.gov (United States)

    Haddad Michael E.

    2010-01-01

    On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit or on the Lunar surface. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g/vacuum environment of space or low-g/vacuum environment on the Lunar/Mars Surface. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit/on Lunar/Mars surface before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit/Lunar/Mars surface operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.

  2. The LISA Pathfinder interferometry-hardware and system testing

    Energy Technology Data Exchange (ETDEWEB)

    Audley, H; Danzmann, K; MarIn, A Garcia; Heinzel, G; Monsky, A; Nofrarias, M; Steier, F; Bogenstahl, J [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik und Universitaet Hannover, 30167 Hannover (Germany); Gerardi, D; Gerndt, R; Hechenblaikner, G; Johann, U; Luetzow-Wentzky, P; Wand, V [EADS Astrium GmbH, Friedrichshafen (Germany); Antonucci, F [Dipartimento di Fisica, Universita di Trento and INFN, Gruppo Collegato di Trento, 38050 Povo, Trento (Italy); Armano, M [European Space Astronomy Centre, European Space Agency, Villanueva de la Canada, 28692 Madrid (Spain); Auger, G; Binetruy, P [APC UMR7164, Universite Paris Diderot, Paris (France); Benedetti, M [Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Universita di Trento and INFN, Gruppo Collegato di Trento, Mesiano, Trento (Italy); Boatella, C, E-mail: antonio.garcia@aei.mpg.de [CNES, DCT/AQ/EC, 18 Avenue Edouard Belin, 31401 Toulouse, Cedex 9 (France)

    2011-05-07

    Preparations for the LISA Pathfinder mission have reached an exciting stage. Tests of the engineering model (EM) of the optical metrology system have recently been completed at the Albert Einstein Institute, Hannover, and flight model tests are now underway. Significantly, they represent the first complete integration and testing of the space-qualified hardware and are the first tests on an optical system level. The results and test procedures of these campaigns will be utilized directly in the ground-based flight hardware tests, and subsequently during in-flight operations. In addition, they allow valuable testing of the data analysis methods using the MATLAB-based LTP data analysis toolbox. This paper presents an overview of the results from the EM test campaign that was successfully completed in December 2009.

  3. TRL Assessment of Solar Sail Technology Development Following the 20-Meter System Ground Demonstrator Hardware Testing

    Science.gov (United States)

    Young, Roy M.; Adams, Charles L.

    2010-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.

  4. A hardware-in-the-loop simulation program for ground-based radar

    Science.gov (United States)

    Lam, Eric P.; Black, Dennis W.; Ebisu, Jason S.; Magallon, Julianna

    2011-06-01

    A radar system created using an embedded computer system needs testing. The way to test an embedded computer system is different from the debugging approaches used on desktop computers. One way to test a radar system is to feed it artificial inputs and analyze the outputs of the radar. More often, not all of the building blocks of the radar system are available to test. This will require the engineer to test parts of the radar system using a "black box" approach. A common way to test software code on a desktop simulation is to use breakpoints so that is pauses after each cycle through its calculations. The outputs are compared against the values that are expected. This requires the engineer to use valid test scenarios. We will present a hardware-in-the-loop simulator that allows the embedded system to think it is operating with real-world inputs and outputs. From the embedded system's point of view, it is operating in real-time. The hardware in the loop simulation is based on our Desktop PC Simulation (PCS) testbed. In the past, PCS was used for ground-based radars. This embedded simulation, called Embedded PCS, allows a rapid simulated evaluation of ground-based radar performance in a laboratory environment.

  5. Testing flight software on the ground: Introducing the hardware-in-the-loop simulation method to the Alpha Magnetic Spectrometer on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenhao, E-mail: wenhao_sun@126.com [Southeast University, Nanjing 210096 (China); Cai, Xudong [Massachusetts Institute of Technology, MA 02139-4307 (United States); Meng, Qiao [Southeast University, Nanjing 210096 (China)

    2016-04-11

    Complex automatic protection functions are being added to the onboard software of the Alpha Magnetic Spectrometer. A hardware-in-the-loop simulation method has been introduced to overcome the difficulties of ground testing that are brought by hardware and environmental limitations. We invented a time-saving approach by reusing the flight data as the data source of the simulation system instead of mathematical models. This is easy to implement and it works efficiently. This paper presents the system framework, implementation details and some application examples.

  6. LISA Pathfinder: hardware tests and their input to the mission

    Science.gov (United States)

    Audley, Heather

    The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA mission for the first space-borne gravitational wave detector. LISA aims to detect sources in the 0.1mHz to 1Hz range, which include supermassive black holes and galactic binary stars. Core technologies required for the LISA mission, including drag-free test mass control, picometre interferometry and micro-Newton thrusters, cannot be tested on-ground. Therefore, a precursor satellite, LISA Pathfinder, has been developed as a technology demonstration mission. The preparations for the LISA Pathfinder mission have reached an exciting stage. Tests of the engineering model of the optical metrology system have recently been completed at the Albert Einstein Institute, Hannover, and flight model tests are now underway. Significantly, they represent the first complete integration and testing of the space-qualified hardware and are the first tests on system level. The results and test procedures of these campaigns will be utilised directly in the ground-based flight hardware tests, and subsequently within in-flight operations. In addition, they allow valuable testing of the data analysis methods using the MatLab based LTP data analysis toolbox. This contribution presents an overview of the test campaigns calibration, control and perfor-mance results, focusing on the implications for the Experimental Master Plan which provides the basis for the in-flight operations and procedures.

  7. VEG-01: Veggie Hardware Verification Testing

    Science.gov (United States)

    Massa, Gioia; Newsham, Gary; Hummerick, Mary; Morrow, Robert; Wheeler, Raymond

    2013-01-01

    The Veggie plant/vegetable production system is scheduled to fly on ISS at the end of2013. Since much of the technology associated with Veggie has not been previously tested in microgravity, a hardware validation flight was initiated. This test will allow data to be collected about Veggie hardware functionality on ISS, allow crew interactions to be vetted for future improvements, validate the ability of the hardware to grow and sustain plants, and collect data that will be helpful to future Veggie investigators as they develop their payloads. Additionally, food safety data on the lettuce plants grown will be collected to help support the development of a pathway for the crew to safely consume produce grown on orbit. Significant background research has been performed on the Veggie plant growth system, with early tests focusing on the development of the rooting pillow concept, and the selection of fertilizer, rooting medium and plant species. More recent testing has been conducted to integrate the pillow concept into the Veggie hardware and to ensure that adequate water is provided throughout the growth cycle. Seed sanitation protocols have been established for flight, and hardware sanitation between experiments has been studied. Methods for shipping and storage of rooting pillows and the development of crew procedures and crew training videos for plant activities on-orbit have been established. Science verification testing was conducted and lettuce plants were successfully grown in prototype Veggie hardware, microbial samples were taken, plant were harvested, frozen, stored and later analyzed for microbial growth, nutrients, and A TP levels. An additional verification test, prior to the final payload verification testing, is desired to demonstrate similar growth in the flight hardware and also to test a second set of pillows containing zinnia seeds. Issues with root mat water supply are being resolved, with final testing and flight scheduled for later in 2013.

  8. Ground test program for a full-size solar dynamic heat receiver

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  9. Hardware Testing for the Optical PAyload for Lasercomm Science (OPALS)

    Science.gov (United States)

    Slagle, Amanda

    2011-01-01

    Hardware for several subsystems of the proposed Optical PAyload for Lasercomm Science (OPALS), including the gimbal and avionics, was tested. Microswitches installed on the gimbal were evaluated to verify that their point of actuation would remain within the acceptable range even if the switches themselves move slightly during launch. An inspection of the power board was conducted to ensure that all power and ground signals were isolated, that polarized components were correctly oriented, and that all components were intact and securely soldered. Initial testing on the power board revealed several minor problems, but once they were fixed the power board was shown to function correctly. All tests and inspections were documented for future use in verifying launch requirements.

  10. Hardware-in-the-Loop Testing

    Data.gov (United States)

    Federal Laboratory Consortium — RTC has a suite of Hardware-in-the Loop facilities that include three operational facilities that provide performance assessment and production acceptance testing of...

  11. Surface moisture measurement system hardware acceptance test report

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.A., Westinghouse Hanford

    1996-05-28

    This document summarizes the results of the hardware acceptance test for the Surface Moisture Measurement System (SMMS). This test verified that the mechanical and electrical features of the SMMS functioned as designed and that the unit is ready for field service. The bulk of hardware testing was performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. The SMMS was developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks.

  12. Solar cooling in the hardware-in-the-loop test; Solare Kuehlung im Hardware-in-the-Loop-Test

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Sandra; Radosavljevic, Rada; Goebel, Johannes; Gottschald, Jonas; Adam, Mario [Fachhochschule Duesseldorf (Germany). Erneuerbare Energien und Energieeffizienz E2

    2012-07-01

    The first part of the BMBF-funded research project 'Solar cooling in the hardware-in-the-loop test' (SoCool HIL) deals with the simulation of a solar refrigeration system using the simulation environment Matlab / Simulink with the toolboxes Stateflow and Carnot. Dynamic annual simulations and DoE supported parameter variations were used to select meaningful system configurations, control strategies and dimensioning of components. The second part of this project deals with hardware-in-the-loop tests using the 17.5 kW absorption chiller of the company Yazaki Europe Limited (Hertfordshire, United Kingdom). For this, the chiller is operated on a test bench in order to emulate the behavior of other system components (solar circuit with heat storage, recooling, buildings and cooling distribution / transfer). The chiller is controlled by a simulation of the system using MATLAB / Simulink / Carnot. Based on the knowledge on the real dynamic performance of the chiller the simulation model of the chiller can then be validated. Further tests are used to optimize the control of the chiller to the current cooling load. In addition, some changes in system configurations (for example cold backup) are tested with the real machine. The results of these tests and the findings on the dynamic performance of the chiller are presented.

  13. The Simbox Experiment with Arabidopsis Thaliana Cell Cultures: Hardware-Tests and First Resutls from the German-Chinese satellite Mission Shenzhou 8

    Science.gov (United States)

    Fengler, Svenja; Neef, Maren; Ecke, Margret; Hampp, Ruediger

    2013-02-01

    The Simbox experiment was the first joint German-Chinese space project. In this context Arabidopsis thaliana cell cultures were exposed to microgravity for a 17-day period. To carry out a successful space mission, diverse hardware tests were performed in advance. Due to the limited oxygen supply inside the hardware units, cells were fixed after 5 days under microgravity conditions. As a control, samples were exposed in an on-board 1g reference centrifuge. To investigate the space effect, a ground-based study was performed with the same hardware and identical experimental procedures. As we were able to obtain high quality RNA from the RNAlater quenched samples, we used the Affymetrix Arabidopsis genome array for a transcriptome analysis. Our experiment aimed at the identification of plant genes that were differentially expressed after long-term exposure to microgravity. Pair-wise comparison of flight samples with 1g controls revealed the largest differences between space 1g and ground 1g controls.

  14. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    Science.gov (United States)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2015-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-W radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center. While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus, the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA Glenn. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  15. Environmental Friendly Coatings and Corrosion Prevention For Flight Hardware Project

    Science.gov (United States)

    Calle, Luz

    2014-01-01

    Identify, test and develop qualification criteria for environmentally friendly corrosion protective coatings and corrosion preventative compounds (CPC's) for flight hardware an ground support equipment.

  16. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    Science.gov (United States)

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  17. Testing Microgravity Flight Hardware Concepts on the NASA KC-135

    Science.gov (United States)

    Motil, Susan M.; Harrivel, Angela R.; Zimmerli, Gregory A.

    2001-01-01

    This paper provides an overview of utilizing the NASA KC-135 Reduced Gravity Aircraft for the Foam Optics and Mechanics (FOAM) microgravity flight project. The FOAM science requirements are summarized, and the KC-135 test-rig used to test hardware concepts designed to meet the requirements are described. Preliminary results regarding foam dispensing, foam/surface slip tests, and dynamic light scattering data are discussed in support of the flight hardware development for the FOAM experiment.

  18. Managing the Testing Process Practical Tools and Techniques for Managing Hardware and Software Testing

    CERN Document Server

    Black, Rex

    2011-01-01

    New edition of one of the most influential books on managing software and hardware testing In this new edition of his top-selling book, Rex Black walks you through the steps necessary to manage rigorous testing programs of hardware and software. The preeminent expert in his field, Mr. Black draws upon years of experience as president of both the International and American Software Testing Qualifications boards to offer this extensive resource of all the standards, methods, and tools you'll need. The book covers core testing concepts and thoroughly examines the best test management practices

  19. Smart Home Hardware-in-the-Loop Testing

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Annabelle

    2017-07-12

    This presentation provides a high-level overview of NREL's smart home hardware-in-the-loop testing. It was presented at the Fourth International Workshop on Grid Simulator Testing of Energy Systems and Wind Turbine Powertrains, held April 25-26, 2017, hosted by NREL and Clemson University at the Energy Systems Integration Facility in Golden, Colorado.

  20. Multi-loop PWR modeling and hardware-in-the-loop testing using ACSL

    International Nuclear Information System (INIS)

    Thomas, V.M.; Heibel, M.D.; Catullo, W.J.

    1989-01-01

    Westinghouse has developed an Advanced Digital Feedwater Control System (ADFCS) which is aimed at reducing feedwater related reactor trips through improved control performance for pressurized water reactor (PWR) power plants. To support control system setpoint studies and functional design efforts for the ADFCS, an ACSL based model of the nuclear steam supply system (NSSS) of a Westinghouse (PWR) was generated. Use of this plant model has been extended from system design to system testing through integration of the model into a Hardware-in-Loop test environment for the ADFCS. This integration includes appropriate interfacing between a Gould SEL 32/87 computer, upon which the plant model executes in real time, and the Westinghouse Distributed Processing family (WDPF) test hardware. A development program has been undertaken to expand the existing ACSL model to include capability to explicitly model multiple plant loops, steam generators, and corresponding feedwater systems. Furthermore, the program expands the ADFCS Hardware-in-Loop testing to include the multi-loop plant model. This paper provides an overview of the testing approach utilized for the ADFCS with focus on the role of Hardware-in-Loop testing. Background on the plant model, methodology and test environment is also provided. Finally, an overview is presented of the program to expand the model and associated Hardware-in-Loop test environment to handle multiple loops

  1. Development of Ground Test System For RKX-200EB

    Science.gov (United States)

    Yudhi Irwanto, Herma

    2018-04-01

    After being postponed for seven years, the development of RKX-200EB now restarts by initiating a ground test, preceding the real flight test. The series of the development starts from simulation test using the real vehicle and its components, focusing on a flight sequence test using hardware in the loop simulation. The result of the simulation shows that the autonomous control system in development is able to control the X tail fin vehicle, since take off using booster, separating booster-sustainer, making flight maneuver using sustainer with average cruise speed of 1000 km/h, and doing bank to maneuver up to ±40 deg heading to the target. The simulation result also shows that the presence of sustainer in vehicle control can expand the distance range by 162% (12.6 km) from its ballistic range using only a booster.

  2. Development of Hardware and Software for Automated Ultrasonic Testing

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Lee, Hee Jong; Yang, Seung Ok

    2012-01-01

    Nondestructive testing (NDT) for the construction and operating of NPPs plays an important role in confirming the integrity of the NPPs. Especially, Automated ultrasonic testing (AUT) is one of the primary nondestructive examination methods for in-service inspection of the welding parts in major components in NPPs. AUT is a reliable nondestructive testing because the data of AUT are saved and reviewed with other examiners. Korea Hydro and Nuclear Power-Central Research Institute (KHNP-CRI) has developed an automated ultrasonic testing (AUT) system based on a high speed pulser-receiver. In combination with the designed software and hardware architecture, this new system permits user configurations for a wide range of user-specific applications through fully automated inspections using compact portable systems with up to eight channels. This paper gives an overview of hardware (H/W) and software (S/W) for the AUT system to inspect welds in NPPs

  3. The design of a hardware testing system for the D Zero Detector

    International Nuclear Information System (INIS)

    Angstadt, R.; Johnson, M.; Martin, M.; Matulik, M.; Utes, M.

    1991-11-01

    Testing a system as large as the D Zero data acquisition system is difficult. This paper describes the use of IBM compatible personal computers in a hardware test system that can run on any size system from an engineer's test bench to the entire subsystem in the D Zero Detector. The test system uses a PC to VME bus interface for the local testing and the Token Ring network for more global testing. This system has been implemented for several different hardware systems in D Zero

  4. Test Hardware Design for Flight-Like Operation of Advanced Stirling Convertors

    Science.gov (United States)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  5. Radioisotope thermoelectric generator licensed hardware package and certification tests

    International Nuclear Information System (INIS)

    Goldmann, L.H.; Averette, H.S.

    1994-01-01

    This paper presents the Licensed Hardware package and the Certification Test portions of the Radioisotope Thermoelectric Generator Transportation System. This package has been designed to meet those portions of the Code of Federal Regulations (10 CFR 71) relating to ''Type B'' shipments of radioactive materials. The detailed information for the anticipated license is presented in the safety analysis report for packaging, which is now in process and undergoing necessary reviews. As part of the licensing process, a full-size Certification Test Article unit, which has modifications slightly different than the Licensed Hardware or production shipping units, is used for testing. Dimensional checks of the Certification Test Article were made at the manufacturing facility. Leak testing and drop testing were done at the 300 Area of the US Department of Energy's Hanford Site near Richland, Washington. The hardware includes independent double containments to prevent the environmental spread of 238 Pu, impact limiting devices to protect portions of the package from impacts, and thermal insulation to protect the seal areas from excess heat during accident conditions. The package also features electronic feed-throughs to monitor the Radioisotope Thermoelectric Generator's temperature inside the containment during the shipment cycle. This package is designed to safely dissipate the typical 4500 thermal watts produced in the largest Radioisotope Thermoelectric Generators. The package also contains provisions to ensure leak tightness when radioactive materials, such as a Radioisotope Thermoelectric Generator for the Cassini Mission, planned for 1997 by the National Aeronautics and Space Administration, are being prepared for shipment. These provisions include test ports used in conjunction with helium mass spectrometers to determine seal leakage rates of each containment during the assembly process

  6. Effect of spaceflight hardware on the skeletal properties of ground control mice

    Science.gov (United States)

    Bateman, Ted; Lloyd, Shane; Dunlap, Alex; Ferguson, Virginia; Simske, Steven; Stodieck, Louis; Livingston, Eric

    Introduction: Spaceflight experiments using mouse or rat models require habitats that are specifically designed for the microgravity environment. During spaceflight, rodents are housed in a specially designed stainless steel meshed cage with gravity-independent food and water delivery systems and constant airflow to push floating urine and feces towards a waste filter. Differences in the housing environment alone, not even considering the spaceflight environment itself, may lead to physiological changes in the animals contained within. It is important to characterize these cage differences so that results from spaceflight experiments can be more reliably compared to studies from other laboratories. Methods: For this study, we examined the effect of NASA's Animal Enclosure Module (AEM) spaceflight hardware on the skeletal properties of 8-week-old female C57BL/6J mice. This 13-day experiment, conducted on the ground, modeled the flight experiment profile of the CBTM-01 payload on STS-108, with standard vivarium-housed mice being compared to AEM-housed mice (n = 12/group). Functional differences were compared via mechanical testing, micro-hardness indentation, microcomputed tomography, and mineral/matrix composition. Cellular changes were examined by serum chemistry, histology, quantitative histomorphometry, and RT-PCR. A Student's t-test was utilized, with the level of Type I error set at 95 Results: There was no change in elastic, maximum, or fracture force mechanical properties at the femur mid-diaphysis, however, structural stiffness was -17.5 Conclusions: Housing mice in the AEM spaceflight hardware had minimal effects on femur cortical bone properties. However, trabecular bone at the proximal tibia in AEM mice experi-enced large increases in microarchitecture and mineral composition. Increases in bone density were accompanied by reductions in bone-forming osteoblasts and bone-resorbing osteoclasts, representing a general decline in bone turnover at this site

  7. Deployment Testing of the De-Orbit Sail Flight Hardware

    OpenAIRE

    Hillebrandt, Martin; Meyer, Sebastian; Zander, Martin; Hühne, Christian

    2015-01-01

    The paper describes the results of the deployment testing of the De-Orbit Sail flight hardware, a drag sail for de-orbiting applications, performed by DLR. It addresses in particular the deployment tests of the fullscale sail subsystem and deployment force tests performed on the boom deployment module. For the fullscale sail testing a gravity compensation device is used which is described in detail. It allows observations of the in-plane interaction of the booms with the sail membrane and the...

  8. Surface moisture measurement system hardware acceptance test procedure

    International Nuclear Information System (INIS)

    Ritter, G.A.

    1996-01-01

    The purpose of this acceptance test procedure is to verify that the mechanical and electrical features of the Surface Moisture Measurement System are operating as designed and that the unit is ready for field service. This procedure will be used in conjunction with a software acceptance test procedure, which addresses testing of software and electrical features not addressed in this document. Hardware testing will be performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. These systems were developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks

  9. AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research

    Science.gov (United States)

    Laughter, Sean; Cox, David

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.

  10. Hardware Commissioning of the LHC Quality Assurance, follow-up and storing of the test results

    CERN Document Server

    Barbero, E

    2005-01-01

    During the commissioning of the LHC technical systems [1] (the so-called Hardware Commissioning) a large number of test sequences and procedures will be applied to the different systems and components of the accelerator. All the information related to the coordination of the Hardware Commissioning will be structured and managed towards the final objective of integrating all the data produced in the Manufacturing and Test Folders (MTF) [2] at both equipment level (i.e. individual system tests) and commissioning level (i.e.Hardware Commissioning). The MTF for Hardware Commissioning will be mainly used to archive the results of the tests (i.e. status, parameters and waveforms) which will be used later as reference during the operation with beam. Also it is an indispensable tool for monitoring the progress of the different tests and ensuring the proper follow-up of the procedures described in the engineering specifications; in this way, the Quality Assurance process will be completed. This paper describes the spe...

  11. An environmental testing facility for Space Station Freedom power management and distribution hardware

    Science.gov (United States)

    Jackola, Arthur S.; Hartjen, Gary L.

    1992-01-01

    The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.

  12. Test Hardware Design for Flightlike Operation of Advanced Stirling Convertors (ASC-E3)

    Science.gov (United States)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  13. Hardware design for the production of NTD silicon in the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Schell, M.J.

    1984-01-01

    The Advanced Test Reactor (ATR) is a 250-MW(t) materials testing and nuclear research facility operated for EG and G Idaho, Inc. The unique capabilities of the ATR can be readily adapted via hardware to produce large quantitities of large-diameter (20 cm plus) doped silicon crystals. Conservative estimates place the production capability in excess of 15 metric tons per year. The proposed hardware is based upon a closed-loop, hydraulic-shuttle tube system

  14. Improvement of hardware basic testing : Identification and development of a scripted automation tool that will support hardware basic testing

    OpenAIRE

    Rask, Ulf; Mannestig, Pontus

    2002-01-01

    In the ever-increasing development pace, circuits and hardware are no exception. Hardware designs grow and circuits gets more complex at the same time as the market pressure lowers the expected time-to-market. In this rush, verification methods often lag behind. Hardware manufacturers must be aware of the importance of total verification if they want to avoid quality flaws and broken deadlines which in the long run will lead to delayed time-to-market, bad publicity and a decreasing market sha...

  15. Hardware-in-the-Loop environment for testing and commissioning of space controllers; Hardware-in-the-Loop Umgebung zum Test und zur Inbetriebnahme von Raumreglern

    Energy Technology Data Exchange (ETDEWEB)

    Adlhoch, Alexander; Becker, Martin [Hochschule Biberach (Germany). Inst. fuer Gebaeude- und Energiesysteme

    2012-07-01

    The energy-efficient and optimal functioning of room controllers in terms of indoor air climates is influenced mainly by the control algorithm and the optimal adjustment of the parameters of controllers used in terms of space requirements. In the practical operation, deficits in the function or parameters of the controller are hardly or only with great effort metrological detectable, but have a significant impact on the energy consumption and / or the indoor climate comfort. In a hardware-in-the-loop (HIL) environment, room controllers can be examined in terms of the function under defined conditions, and different controllers can be evaluated comparatively. It is also possible to adjust the parameters of the controller before the commissioning. The HiL environment presented in the contribution under consideration consists of a model of the controlled system, a hardware coupler and a real controller to be tested. Among the spatial models, it can be selected from a plurality of different types of space which in turn can be assigned by means of different spatial parameters and environmental models. These combinations enable a replication of a test scenario corresponding to the later application. The hardware coupler provides a selection of physical inputs and outputs as well as interfaces to different bus systems (for example KNX, LON, EnOcean) for connecting different types of controllers. The construction and operation of a HIL test stand for space controller is presented based on first practical control tests. At this, the focus is on the suitability of this test environment for a variety of different controllers as well as development assistance and assistance for the adjustment of parameters. The HiL environments developed in the joint research project HiL RHK1 for the testing of space controllers, controllers for HVAC systems and refrigeration technology controllers have been developed so that the HiL environments can be coupled to a multi-HIL environment. This

  16. Real-Time Hardware-in-the-Loop Testing for Digital Controllers

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Kwon, Park In; Wu, Qiuwei

    2012-01-01

    of the power electronics hardware are not included in the RTDS. Instead, the control algorithms are coded using the native C code and downloaded to the dedicated digital signal processor (DSP)/microcontrollers. The two experimental applications illustrate the effectiveness of the HIL controller testing...

  17. Hardware-Software Complex for Functional and Parametric Tests of ARM Microcontrollers STM32F1XX

    Directory of Open Access Journals (Sweden)

    Egorov Aleksey

    2016-01-01

    Full Text Available The article presents the hardware-software complex for functional and parametric tests of ARM microcontrollers STM32F1XX. The complex is based on PXI devices by National Instruments and LabVIEW software environment. Data exchange procedure between a microcontroller under test and the complex hardware is describes. Some test results are also presented.

  18. Dynamic modelling and hardware-in-the-loop testing of PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Vath, Andreas; Soehn, Matthias; Nicoloso, Norbert; Hartkopf, Thomas [Technische Universitaet Darmstadt/Institut fuer Elektrische Energie wand lung, Landgraf-Georg-Str. 4, D-64283 Darmstadt (Germany); Lemes, Zijad; Maencher, Hubert [MAGNUM Automatisierungstechnik GmbH, Bunsenstr. 22, D-64293 Darmstadt (Germany)

    2006-07-03

    Modelling and hardware-in-the-loop (HIL) testing of fuel cell components and entire systems open new ways for the design and advance development of FCs. In this work proton exchange membrane fuel cells (PEMFC) are dynamically modelled within MATLAB-Simulink at various operation conditions in order to establish a comprehensive description of their dynamic behaviour as well as to explore the modelling facility as a diagnostic tool. Set-up of a hardware-in-the-loop (HIL) system enables real time interaction between the selected hardware and the model. The transport of hydrogen, nitrogen, oxygen, water vapour and liquid water in the gas diffusion and catalyst layers of the stack are incorporated into the model according to their physical and electrochemical characteristics. Other processes investigated include, e.g., the membrane resistance as a function of the water content during fast load changes. Cells are modelled three-dimensionally and dynamically. In case of system simulations a one-dimensional model is preferred to reduce computation time. The model has been verified by experiments with a water-cooled stack. (author)

  19. Health Maintenance System (HMS) Hardware Research, Design, and Collaboration

    Science.gov (United States)

    Gonzalez, Stefanie M.

    2010-01-01

    The Space Life Sciences division (SLSD) concentrates on optimizing a crew member's health. Developments are translated into innovative engineering solutions, research growth, and community awareness. This internship incorporates all those areas by targeting various projects. The main project focuses on integrating clinical and biomedical engineering principles to design, develop, and test new medical kits scheduled for launch in the Spring of 2011. Additionally, items will be tagged with Radio Frequency Interference Devices (RFID) to keep track of the inventory. The tags will then be tested to optimize Radio Frequency feed and feed placement. Research growth will occur with ground based experiments designed to measure calcium encrusted deposits in the International Space Station (ISS). The tests will assess the urine calcium levels with Portable Clinical Blood Analyzer (PCBA) technology. If effective then a model for urine calcium will be developed and expanded to microgravity environments. To support collaboration amongst the subdivisions of SLSD the architecture of the Crew Healthcare Systems (CHeCS) SharePoint site has been redesigned for maximum efficiency. Community collaboration has also been established with the University of Southern California, Dept. of Aeronautical Engineering and the Food and Drug Administration (FDA). Hardware disbursements will transpire within these communities to support planetary surface exploration and to serve as an educational tool demonstrating how ground based medicine influenced the technological development of space hardware.

  20. The Application of Hardware in the Loop Testing for Distributed Engine Control

    Science.gov (United States)

    Thomas, George L.; Culley, Dennis E.; Brand, Alex

    2016-01-01

    The essence of a distributed control system is the modular partitioning of control function across a hardware implementation. This type of control architecture requires embedding electronics in a multitude of control element nodes for the execution of those functions, and their integration as a unified system. As the field of distributed aeropropulsion control moves toward reality, questions about building and validating these systems remain. This paper focuses on the development of hardware-in-the-loop (HIL) test techniques for distributed aero engine control, and the application of HIL testing as it pertains to potential advanced engine control applications that may now be possible due to the intelligent capability embedded in the nodes.

  1. PhoneSat: Ground Testing of a Phone-Based Prototype Bus

    Science.gov (United States)

    Felix, Carmen; Howard, Benjamin; Reyes, Matthew; Snarskiy, Fedor; Hickman, Ryan; Boshuizen, Christopher; Marshall, William

    2010-01-01

    Most of the key capabilities that are requisite of a satellite bus are housed in today's smart phones. PhoneSat refers to an initiative to build a ground-based prototype vehicle that could all the basic functionality of a satellite, including attitude control, using a smart Phone as its central hardware. All components used were also low cost Commercial off the Shelf (COTS). In summer 2009, an initial prototype was created using the LEGO Mindstorm toolkit demonstrating simple attitude control. Here we report on a follow up initiative to design, build and test a vehicle based on the Google s smart phone Nexus One. The report includes results from initial thermal-vacuum chamber tests and low altitude sub-orbital rocket flights which show that, at least for short durations, the Nexus One phone is able to withstand key aspects of the space environment without failure. We compare the sensor data from the Phone's accelerometers and magnetometers with that of an external microelectronic inertial measurement unit.

  2. KSC ground operations planning for Space Station

    Science.gov (United States)

    Lyon, J. R.; Revesz, W., Jr.

    1993-01-01

    At the Kennedy Space Center (KSC) in Florida, processing facilities are being built and activated to support the processing, checkout, and launch of Space Station elements. The generic capability of these facilities will be utilized to support resupply missions for payloads, life support services, and propellants for the 30-year life of the program. Special Ground Support Equipment (GSE) is being designed for Space Station hardware special handling requirements, and a Test, Checkout, and Monitoring System (TCMS) is under development to verify that the flight elements are ready for launch. The facilities and equipment used at KSC, along with the testing required to accomplish the mission, are described in detail to provide an understanding of the complexity of operations at the launch site. Assessments of hardware processing flows through KSC are being conducted to minimize the processing flow times for each hardware element. Baseline operations plans and the changes made to improve operations and reduce costs are described, recognizing that efficient ground operations are a major key to success of the Space Station.

  3. Hardware in the loop simulation test platform of fuel cell backup system

    Directory of Open Access Journals (Sweden)

    Ma Tiancai

    2015-01-01

    Full Text Available Based on an analysis of voltage mechanistic model, a real-time simulation model of the proton exchange membrane (PEM fuel cell backup system is developed, and verified by the measurable experiment data. The method of online parameters identification for the model is also improved. Based on the software LabVIEW/VeriStand real-time environment and the PXI Express hardware system, the PEM fuel cell system controller hardware in the loop (HIL simulation plat-form is established. Controller simulation test results showed the accuracy of HIL simulation platform.

  4. Is Hardware Removal Recommended after Ankle Fracture Repair?

    Directory of Open Access Journals (Sweden)

    Hong-Geun Jung

    2016-01-01

    Full Text Available The indications and clinical necessity for routine hardware removal after treating ankle or distal tibia fracture with open reduction and internal fixation are disputed even when hardware-related pain is insignificant. Thus, we determined the clinical effects of routine hardware removal irrespective of the degree of hardware-related pain, especially in the perspective of patients’ daily activities. This study was conducted on 80 consecutive cases (78 patients treated by surgery and hardware removal after bony union. There were 56 ankle and 24 distal tibia fractures. The hardware-related pain, ankle joint stiffness, discomfort on ambulation, and patient satisfaction were evaluated before and at least 6 months after hardware removal. Pain score before hardware removal was 3.4 (range 0 to 6 and decreased to 1.3 (range 0 to 6 after removal. 58 (72.5% patients experienced improved ankle stiffness and 65 (81.3% less discomfort while walking on uneven ground and 63 (80.8% patients were satisfied with hardware removal. These results suggest that routine hardware removal after ankle or distal tibia fracture could ameliorate hardware-related pain and improves daily activities and patient satisfaction even when the hardware-related pain is minimal.

  5. Hot Ground Vibration Tests

    Data.gov (United States)

    National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...

  6. Spacelab Level 4 Programmatic Implementation Assessment Study. Volume 2: Ground Processing requirements

    Science.gov (United States)

    1978-01-01

    Alternate ground processing options are summarized, including installation and test requirements for payloads, space processing, combined astronomy, and life sciences. The level 4 integration resource requirements are also reviewed for: personnel, temporary relocation, transportation, ground support equipment, and Spacelab flight hardware.

  7. Testing FlexRay ECUs with a hardware-in-the-loop simulator; Test von FlexRay-Steuergeraeten am Hardware-in-the-Loop Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Stroop, J.; Koehl, S. [dSPACE GmbH, Paderborn (Germany); Peller, M.; Riedesser, P. [BMW AG, Muenchen (Germany)

    2005-07-01

    To master the data communication of complex and safety relevant systems within future vehicles, the BMW Group prepares the application of FlexRay. The accompanying development process plays an important role for the quality, stability and reliability of those systems. Hardware-in-the-loop simulation and test stands are indispensable constituents and they are an integral part of the validation process. The following contribution describes the technology that is used within the BMW Group in more detail, especially in terms of communication networks with FlexRay. (orig.)

  8. Test system design for Hardware-in-Loop evaluation of PEM fuel cells and auxiliaries

    Energy Technology Data Exchange (ETDEWEB)

    Randolf, Guenter; Moore, Robert M. [Hawaii Natural Energy Institute, University of Hawaii, Honolulu, HI (United States)

    2006-07-14

    In order to evaluate the dynamic behavior of proton exchange membrane (PEM) fuel cells and their auxiliaries, the dynamic capability of the test system must exceed the dynamics of the fastest component within the fuel cell or auxiliary component under test. This criterion is even more critical when a simulated component of the fuel cell system (e.g., the fuel cell stack) is replaced by hardware and Hardware-in-Loop (HiL) methodology is employed. This paper describes the design of a very fast dynamic test system for fuel cell transient research and HiL evaluation. The integration of the real time target (which runs the simulation), the test stand PC (that controls the operation of the test stand), and the programmable logic controller (PLC), for safety and low-level control tasks, into one single integrated unit is successfully completed. (author)

  9. Real-Time Hardware-in-the-Loop Laboratory Testing for Multisensor Sense and Avoid Systems

    Directory of Open Access Journals (Sweden)

    Giancarmine Fasano

    2013-01-01

    Full Text Available This paper focuses on a hardware-in-the-loop facility aimed at real-time testing of architectures and algorithms of multisensor sense and avoid systems. It was developed within a research project aimed at flight demonstration of autonomous non-cooperative collision avoidance for Unmanned Aircraft Systems. In this framework, an optionally piloted Very Light Aircraft was used as experimental platform. The flight system is based on multiple-sensor data integration and it includes a Ka-band radar, four electro-optical sensors, and two dedicated processing units. The laboratory test system was developed with the primary aim of prototype validation before multi-sensor tracking and collision avoidance flight tests. System concept, hardware/software components, and operating modes are described in the paper. The facility has been built with a modular approach including both flight hardware and simulated systems and can work on the basis of experimentally tested or synthetically generated scenarios. Indeed, hybrid operating modes are also foreseen which enable performance assessment also in the case of alternative sensing architectures and flight scenarios that are hardly reproducible during flight tests. Real-time multisensor tracking results based on flight data are reported, which demonstrate reliability of the laboratory simulation while also showing the effectiveness of radar/electro-optical fusion in a non-cooperative collision avoidance architecture.

  10. ATLAS TileCal LVPS Upgrade Hardware and Testing

    CERN Document Server

    Hibbard, Michael James; The ATLAS collaboration; Hadavand, Haleh Khani

    2018-01-01

    UTA (University of Texas at Arlington) has been designing and producing new testing stations to ensure the reliability and quality of new TileLVPS (Low Voltage Power Supplies), also produced at UTA, which will power the next generation of upgraded hardware in the TileCal (Tile Calorimeter) system of ATLAS at CERN. UTA has produced two new types of testing stations, which build upon the previous generation of testing stations used in the initial production of the TileCal system. The first station is the Initial Test Station, and quickly quantifies a multitude of performance metrics of a LVPS. We have developed our own PC based program which graphically display and records onto file these metrics. A few notable metrics we are measuring are the system clock and its jitter. Excessive clock jitter in LVPS can affect system stability and derate the working range of the system duty cycle. This station also verifies protection circuitry of LVPS, which protects it from over temperature, current and voltage. The second...

  11. Hardware Design of Tuber Electrical Resistance Tomography System Based on the Soil Impedance Test and Analysis

    Directory of Open Access Journals (Sweden)

    Liu Shuyi

    2016-01-01

    Full Text Available The hardware design of tuber electrical resistance tomography (TERT system is one of the key research problems of TERT data acquisition system. The TERT system can be applied to the tuber growth process monitoring in agriculture, i.e., the TERT data acquisition system can realize the real imaging of tuber plants in soil. In TERT system, the imaging tuber and soil multiphase medium is quite complexity. So, the impedance test and analysis of soil multiphase medium is very important to the design of sensitive array sensor subsystem and signals processing circuits. In the paper, the soil impedance test experimental is described and the results are analysed. The data acquisition hardware system is designed based on the result of soil medium impedance test and analysis. In the hardware design, the switch control chip ADG508, the instrumentation amplifier AD620 and programmable amplifier AD526 are employed. In the meantime, the phase locked loop technique for signal demodulation is introduced. The initial data collection is given and discussed under the conditions of existing plant tuber and no existing plant tuber. Conclusions of the hardware design of TERT system are presented.

  12. Fault Detection, Isolation and Recovery (FDIR) Portable Liquid Oxygen Hardware Demonstrator

    Science.gov (United States)

    Oostdyk, Rebecca L.; Perotti, Jose M.

    2011-01-01

    The Fault Detection, Isolation and Recovery (FDIR) hardware demonstration will highlight the effort being conducted by Constellation's Ground Operations (GO) to provide the Launch Control System (LCS) with system-level health management during vehicle processing and countdown activities. A proof-of-concept demonstration of the FDIR prototype established the capability of the software to provide real-time fault detection and isolation using generated Liquid Hydrogen data. The FDIR portable testbed unit (presented here) aims to enhance FDIR by providing a dynamic simulation of Constellation subsystems that feed the FDIR software live data based on Liquid Oxygen system properties. The LO2 cryogenic ground system has key properties that are analogous to the properties of an electronic circuit. The LO2 system is modeled using electrical components and an equivalent circuit is designed on a printed circuit board to simulate the live data. The portable testbed is also be equipped with data acquisition and communication hardware to relay the measurements to the FDIR application running on a PC. This portable testbed is an ideal capability to perform FDIR software testing, troubleshooting, training among others.

  13. Hardware-in-the-loop environment for the design and test of regulators in the refrigeration technology; Hardware-in-the-Loop Umgebung fuer den Entwurf und Test von kaeltetechnischen Reglern

    Energy Technology Data Exchange (ETDEWEB)

    Koeberle, Thomas; Becker, Martin [Hochschule Biberach (Germany). Inst. fuer Gebaeude- und Energiesysteme

    2012-07-01

    In its Directive on energy efficiency, The European Commission has specified a target value for saving primary energy by 20 % up the year 2020. According to current projections, the target will be failed by half. This is why significantly more efforts are needed. The energy consumption of the technical supply of coldness amounts nearly 14 % of the total consumption of electrical power in Germany. The Research Council Coldness specifies that the potential for energy conservation in the refrigeration engineering amounts up to 40 %. Thus, more effort must be made in the refrigeration engineering in order to reach the energy saving targets of the European Commission. Thereby, the major portion of the potential of energy saving consists of the establishment of the requirements in regard to system concepts and components as well as the control. The control of refrigeration systems provides a simple possibility of intervention to optimize the energy efficiency. The optimization of control parameters is usually achieved only with great experience and knowledge. There are any tools which facilitate an objective comparison of optimization measures of control concepts, strategies and settings. In order to facilitate the evaluation and comparison of refrigeration controls, a hardware-in-the-loop test environment was set up at the University of Applied Sciences in Biberach (Federal Republic of Germany). The test environment facilitates an implementation of a controller in a simulation environment so that the controller drives the simulation model of the chiller. Due to this procedure, tests are possible under standardized and reproducible conditions. The impact of modified control parameters, disturbances and modifications in the regulatory approach can be investigated by means of the possibility of a targeted impacting of individual disturbances. The test rig was designed, built and tested at the University of Applied Sciences in Biberach. Simulation models were adapted to the

  14. Hardware-in-the-Loop Test for Automatic Voltage Regulator of Synchronous Condenser

    DEFF Research Database (Denmark)

    Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde

    2018-01-01

    Automatic voltage regulator (AVR) plays an important role in volt/var control of synchronous condenser (SC) in power systems. Test AVR performance in steady-state and dynamic conditions in real grid is expensive, low efficiency, and hard to achieve. To address this issue, we implement hardware...

  15. Engine Test Cell Aeroacoustics and Recommendations

    National Research Council Canada - National Science Library

    Tam, Christopher

    2007-01-01

    Ground testing of turbojet engines in test cells necessarily involves very high acoustic amplitudes, often enough and severe enough that testing is interrupted and facility hardware and test articles are damaged...

  16. Advanced Testing Method for Ground Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [ORNL; Clemenzi, Rick [Geothermal Design Center Inc.; Liu, Su [University of Tennessee (UT)

    2017-04-01

    A new method is developed that can quickly and more accurately determine the effective ground thermal conductivity (GTC) based on thermal response test (TRT) results. Ground thermal conductivity is an important parameter for sizing ground heat exchangers (GHEXs) used by geothermal heat pump systems. The conventional GTC test method usually requires a TRT for 48 hours with a very stable electric power supply throughout the entire test. In contrast, the new method reduces the required test time by 40%–60% or more, and it can determine GTC even with an unstable or intermittent power supply. Consequently, it can significantly reduce the cost of GTC testing and increase its use, which will enable optimal design of geothermal heat pump systems. Further, this new method provides more information about the thermal properties of the GHEX and the ground than previous techniques. It can verify the installation quality of GHEXs and has the potential, if developed, to characterize the heterogeneous thermal properties of the ground formation surrounding the GHEXs.

  17. Hardware in the loop testing and evaluation of seaborne search radars

    CSIR Research Space (South Africa)

    Strydom, JJ

    2012-09-01

    Full Text Available for independent testing and evaluation of radar systems. The CSIR digital radio frequency memory (DRFM) hardware technology is used as the basis of these test systems. DRFM's are traditionally used for EW applications, but processing power of field programmable... environment simulation (RES) on digital radio frequency memory (DRFM) platforms can be utilised to test the performance of a search radar in a sea clutter Y ra n ge X r a n g e S h a p e p a r a m e t e r 0 1 2 3 4 x 1 0 4 - 3 - 2 - 1...

  18. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    Science.gov (United States)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  19. Hardware in the Loop Testing of an Iodine-Fed Hall Thruster

    Science.gov (United States)

    Polzin, Kurt A.; Peeples, Steven R.; Cecil, Jim; Lewis, Brandon L.; Molina Fraticelli, Jose C.; Clark, James P.

    2015-01-01

    chamber (it is under 10(exp -6) torr at -75 C), making it possible to 'cryopump' the propellant with lower-cost recirculating refrigerant-based systems as opposed to using liquid nitrogen or low temperature gaseous helium cryopanels. In the present paper, we describe testing performed using an iodine-fed 200 W Hall thruster mounted to a thrust stand and operated in conjunction with MSFCs Small Projects Rapid Integration and Test Environment (SPRITE) Portable Hardware In the Loop (PHIL) hardware. This work is performed in support of the iodine satellite (iSAT) project, which aims to fly a 200-W iodine-fed thruster on a 12-U CubeSat. The SPRITE PHIL hardware allows a given vehicle to do a checkout of its avionics algorithm by allowing it to monitor and feed data to simulated sensors and effectors in a digital environment. These data are then used to determine the attitude of the vehicle and a separate computer is used to interpret the data set and visualize it using a 3D graphical interface. The PHIL hardware allows the testing of the vehicles bus by providing 'real' hardware interfaces (in the case of this test a real RS422 bus) and specific components can be modeled to show their interactions with the avionics algorithm (e.g. a thruster model). For the iSAT project the PHIL is used to visualize the operating cycle of the thruster and the subsequent effect this thrusting has on the attitude of the satellite over a given period of time. The test is controlled using software running on an Andrews Space Cortex 160 flight computer. This computer is the current baseline for a full iSAT mission. While the test could be conducted with a lab computer and software, the team chose to exercise the propulsion system with a representative CubeSat-class computer. For purposes of this test, the "flight" software monitored the propulsion and PPU systems, controlled operation of the thruster, and provided thruster state data to the PHIL simulation. Commands to operate the thruster were

  20. Design, Development, and Testing of a UAV Hardware-in-the-Loop Testbed for Aviation and Airspace Prognostics Research

    Science.gov (United States)

    Kulkarni, Chetan; Teubert, Chris; Gorospe, George; Burgett, Drew; Quach, Cuong C.; Hogge, Edward

    2016-01-01

    The airspace is becoming more and more complicated, and will continue to do so in the future with the integration of Unmanned Aerial Vehicles (UAVs), autonomy, spacecraft, other forms of aviation technology into the airspace. The new technology and complexity increases the importance and difficulty of safety assurance. Additionally, testing new technologies on complex aviation systems & systems of systems can be very difficult, expensive, and sometimes unsafe in real life scenarios. Prognostic methodology provides an estimate of the health and risks of a component, vehicle, or airspace and knowledge of how that will change over time. That measure is especially useful in safety determination, mission planning, and maintenance scheduling. The developed testbed will be used to validate prediction algorithms for the real-time safety monitoring of the National Airspace System (NAS) and the prediction of unsafe events. The framework injects flight related anomalies related to ground systems, routing, airport congestion, etc. to test and verify algorithms for NAS safety. In our research work, we develop a live, distributed, hardware-in-the-loop testbed for aviation and airspace prognostics along with exploring further research possibilities to verify and validate future algorithms for NAS safety. The testbed integrates virtual aircraft using the X-Plane simulator and X-PlaneConnect toolbox, UAVs using onboard sensors and cellular communications, and hardware in the loop components. In addition, the testbed includes an additional research framework to support and simplify future research activities. It enables safe, accurate, and inexpensive experimentation and research into airspace and vehicle prognosis that would not have been possible otherwise. This paper describes the design, development, and testing of this system. Software reliability, safety and latency are some of the critical design considerations in development of the testbed. Integration of HITL elements in

  1. Planning for Plume Diagnostics for Ground Testing of J-2X Engines at the SSC

    Science.gov (United States)

    SaintCyr, William W.; Tejwani, Gopal D.; McVay, Gregory P.; Langford, Lester A.; SaintCyr, William W.

    2010-01-01

    John C. Stennis Space Center (SSC) is the premier test facility for liquid rocket engine development and certification for the National Aeronautics and Space Administration (NASA). Therefore, it is no surprise that the SSC will play the most prominent role in the engine development testing and certification for the J-2X engine. The Pratt & Whitney Rocketdyne J-2X engine has been selected by the Constellation Program to power the Ares I Upper Stage Element and the Ares V Earth Departure Stage in NASA s strategy of risk mitigation for hardware development by building on the Apollo program and other lessons learned to deliver a human-rated engine that is on an aggressive development schedule, with first demonstration flight in 2010 and human test flights in 2012. Accordingly, J-2X engine design, development, test, and evaluation is to build upon heritage hardware and apply valuable experience gained from past development and testing efforts. In order to leverage SSC s successful and innovative expertise in the plume diagnostics for the space shuttle main engine (SSME) health monitoring,1-10 this paper will present a blueprint for plume diagnostics for various proposed ground testing activities for J-2X at SSC. Complete description of the SSC s test facilities, supporting infrastructure, and test facilities is available in Ref. 11. The A-1 Test Stand is currently being prepared for testing the J-2X engine at sea level conditions. The A-2 Test Stand is currently being used for testing the SSME and may also be used for testing the J-2X engine at sea level conditions in the future. Very recently, ground-breaking ceremony for the new A-3 rocket engine test stand took place at SSC on August 23, 2007. A-3 is the first large - scale test stand to be built at the SSC since the A and B stands were constructed in the 1960s. The A-3 Test Stand will be used for testing J-2X engines under vacuum conditions simulating high altitude operation at approximately 30,480 m (100,000 ft

  2. Door Hardware and Installations; Carpentry: 901894.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The curriculum guide outlines a course designed to provide instruction in the selection, preparation, and installation of hardware for door assemblies. The course is divided into five blocks of instruction (introduction to doors and hardware, door hardware, exterior doors and jambs, interior doors and jambs, and a quinmester post-test) totaling…

  3. James Webb Space Telescope Core 2 Test - Cryogenic Thermal Balance Test of the Observatorys Core Area Thermal Control Hardware

    Science.gov (United States)

    Cleveland, Paul; Parrish, Keith; Thomson, Shaun; Marsh, James; Comber, Brian

    2016-01-01

    The James Webb Space Telescope (JWST), successor to the Hubble Space Telescope, will be the largest astronomical telescope ever sent into space. To observe the very first light of the early universe, JWST requires a large deployed 6.5-meter primary mirror cryogenically cooled to less than 50 Kelvin. Three scientific instruments are further cooled via a large radiator system to less than 40 Kelvin. A fourth scientific instrument is cooled to less than 7 Kelvin using a combination pulse-tube Joule-Thomson mechanical cooler. Passive cryogenic cooling enables the large scale of the telescope which must be highly folded for launch on an Ariane 5 launch vehicle and deployed once on orbit during its journey to the second Earth-Sun Lagrange point. Passive cooling of the observatory is enabled by the deployment of a large tennis court sized five layer Sunshield combined with the use of a network of high efficiency radiators. A high purity aluminum heat strap system connects the three instrument's detector systems to the radiator systems to dissipate less than a single watt of parasitic and instrument dissipated heat. JWST's large scale features, while enabling passive cooling, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone of most space missions' thermal verification plans. This paper describes the JWST Core 2 Test, which is a cryogenic thermal balance test of a full size, high fidelity engineering model of the Observatory's 'Core' area thermal control hardware. The 'Core' area is the key mechanical and cryogenic interface area between all Observatory elements. The 'Core' area thermal control hardware allows for temperature transition of 300K to approximately 50 K by attenuating heat from the room temperature IEC (instrument electronics) and the Spacecraft Bus. Since the flight hardware is not available for test, the Core 2 test uses high fidelity and flight-like reproductions.

  4. Development of a hardware-in-the-loop testbed to demonstrate multiple spacecraft operations in proximity

    Science.gov (United States)

    Eun, Youngho; Park, Sang-Young; Kim, Geuk-Nam

    2018-06-01

    This paper presents a new state-of-the-art ground-based hardware-in-the-loop test facility, which was developed to verify and demonstrate autonomous guidance, navigation, and control algorithms for space proximity operations and formation flying maneuvers. The test facility consists of two complete spaceflight simulators, an aluminum-based operational arena, and a set of infrared motion tracking cameras; thus, the testbed is capable of representing space activities under circumstances prevailing on the ground. The spaceflight simulators have a maximum of five-degree-of-freedom in a quasi-momentum-free environment, which is produced by a set of linear/hemispherical air-bearings and a horizontally leveled operational arena. The tracking system measures the real-time three-dimensional position and attitude to provide state variables to the agents. The design of the testbed is illustrated in detail for every element throughout the paper. The practical hardware characteristics of the active/passive measurement units and internal actuators are identified in detail from various perspectives. These experimental results support the successful development of the entire facility and enable us to implement and verify the spacecraft proximity operation strategy in the near future.

  5. Taking advantage of ground data systems attributes to achieve quality results in testing software

    Science.gov (United States)

    Sigman, Clayton B.; Koslosky, John T.; Hageman, Barbara H.

    1994-01-01

    During the software development life cycle process, basic testing starts with the development team. At the end of the development process, an acceptance test is performed for the user to ensure that the deliverable is acceptable. Ideally, the delivery is an operational product with zero defects. However, the goal of zero defects is normally not achieved but is successful to various degrees. With the emphasis on building low cost ground support systems while maintaining a quality product, a key element in the test process is simulator capability. This paper reviews the Transportable Payload Operations Control Center (TPOCC) Advanced Spacecraft Simulator (TASS) test tool that is used in the acceptance test process for unmanned satellite operations control centers. The TASS is designed to support the development, test and operational environments of the Goddard Space Flight Center (GSFC) operations control centers. The TASS uses the same basic architecture as the operations control center. This architecture is characterized by its use of distributed processing, industry standards, commercial off-the-shelf (COTS) hardware and software components, and reusable software. The TASS uses much of the same TPOCC architecture and reusable software that the operations control center developer uses. The TASS also makes use of reusable simulator software in the mission specific versions of the TASS. Very little new software needs to be developed, mainly mission specific telemetry communication and command processing software. By taking advantage of the ground data system attributes, successful software reuse for operational systems provides the opportunity to extend the reuse concept into the test area. Consistency in test approach is a major step in achieving quality results.

  6. Small UAV Automatic Ground Collision Avoidance System Design Considerations and Flight Test Results

    Science.gov (United States)

    Sorokowski, Paul; Skoog, Mark; Burrows, Scott; Thomas, SaraKatie

    2015-01-01

    The National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Small Unmanned Aerial Vehicle (SUAV) Automatic Ground Collision Avoidance System (Auto GCAS) project demonstrated several important collision avoidance technologies. First, the SUAV Auto GCAS design included capabilities to take advantage of terrain avoidance maneuvers flying turns to either side as well as straight over terrain. Second, the design also included innovative digital elevation model (DEM) scanning methods. The combination of multi-trajectory options and new scanning methods demonstrated the ability to reduce the nuisance potential of the SUAV while maintaining robust terrain avoidance. Third, the Auto GCAS algorithms were hosted on the processor inside a smartphone, providing a lightweight hardware configuration for use in either the ground control station or on board the test aircraft. Finally, compression of DEM data for the entire Earth and successful hosting of that data on the smartphone was demonstrated. The SUAV Auto GCAS project demonstrated that together these methods and technologies have the potential to dramatically reduce the number of controlled flight into terrain mishaps across a wide range of aviation platforms with similar capabilities including UAVs, general aviation aircraft, helicopters, and model aircraft.

  7. Hardware synthesis from DDL. [Digital Design Language for computer aided design and test of LSI

    Science.gov (United States)

    Shah, A. M.; Shiva, S. G.

    1981-01-01

    The details of the digital systems can be conveniently input into the design automation system by means of Hardware Description Languages (HDL). The Computer Aided Design and Test (CADAT) system at NASA MSFC is used for the LSI design. The Digital Design Language (DDL) has been selected as HDL for the CADAT System. DDL translator output can be used for the hardware implementation of the digital design. This paper addresses problems of selecting the standard cells from the CADAT standard cell library to realize the logic implied by the DDL description of the system.

  8. NDAS Hardware Translation Layer Development

    Science.gov (United States)

    Nazaretian, Ryan N.; Holladay, Wendy T.

    2011-01-01

    The NASA Data Acquisition System (NDAS) project is aimed to replace all DAS software for NASA s Rocket Testing Facilities. There must be a software-hardware translation layer so the software can properly talk to the hardware. Since the hardware from each test stand varies, drivers for each stand have to be made. These drivers will act more like plugins for the software. If the software is being used in E3, then the software should point to the E3 driver package. If the software is being used at B2, then the software should point to the B2 driver package. The driver packages should also be filled with hardware drivers that are universal to the DAS system. For example, since A1, A2, and B2 all use the Preston 8300AU signal conditioners, then the driver for those three stands should be the same and updated collectively.

  9. Ground test for vibration control demonstrator

    Science.gov (United States)

    Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.

    2016-09-01

    In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.

  10. Hardware-in-the-loop (HIL) Test of Demand as Frequency Controlled Reserve (DFR)

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Zimmermann, K.; Østergaard, Jacob

    2016-01-01

    This paper presents the hardware-in-the-loop (HIL) test of the demand as frequency controlled reserve (DFR). The HIL test refers to a test in which parts of a pure simulation have been replaced by actual physical components. It is used to understand the behavior of a new device or controller....... The DFR has been tested by offline simulations to illustrate the efficacy of this technology. The DFR control logics have been implemented in the SmartBox. The HIL was conducted by having the SmartBox connected to the real time simulations and the performance of the SmartBox was tested with difference...

  11. Single-event effect ground test issues

    International Nuclear Information System (INIS)

    Koga, R.

    1996-01-01

    Ground-based single event effect (SEE) testing of microcircuits permits characterization of device susceptibility to various radiation induced disturbances, including: (1) single event upset (SEU) and single event latchup (SEL) in digital microcircuits; (2) single event gate rupture (SEGR), and single event burnout (SEB) in power transistors; and (3) bit errors in photonic devices. These characterizations can then be used to generate predictions of device performance in the space radiation environment. This paper provides a general overview of ground-based SEE testing and examines in critical depth several underlying conceptual constructs relevant to the conduct of such tests and to the proper interpretation of results. These more traditional issues are contrasted with emerging concerns related to the testing of modern, advanced microcircuits

  12. Human subjects concerns in ground based ECLSS testing - Managing uncertainty in closely recycled systems

    Science.gov (United States)

    Crump, William J.; Janik, Daniel S.; Thomas, L. Dale

    1990-01-01

    U.S. space missions have to this point used water either made on board or carried from earth and discarded after use. For Space Station Freedom, long duration life support will include air and water recycling using a series of physical-chemical subsystems. The Environmental Control and Life Support System (ECLSS) designed for this application must be tested extensively at all stages of hardware maturity. Human test subjects are required to conduct some of these tests, and the risks associated with the use of development hardware must be addressed. Federal guidelines for protection of human subjects require careful consideration of risks and potential benefits by an Institutional Review Board (IRB) before and during testing. This paper reviews the ethical principles guiding this consideration, details the problems and uncertainties inherent in current hardware testing, and presents an incremental approach to risk assessment for ECLSS testing.

  13. An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design

    International Nuclear Information System (INIS)

    Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

    1993-01-01

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed

  14. Ground testing of an SP-100 prototypic reactor

    International Nuclear Information System (INIS)

    Motwani, K.; Pflasterer, G.R.; Upton, H.; Lazarus, J.D.; Gluck, R.

    1988-01-01

    SP-100 is a space power system which is being developed by GE to meet future space electrical power requirements. The ground testing of an SP-100 prototypic reactor system will be conducted at the Westinghouse Hanford Company site located at Richland, Washington. The objective of this test is to demonstrate the performance of a full scale prototypic reactor system, including the reactor, control system and flight shield. The ground test system is designed to simulate the flight operating conditions while meeting all the necessary nuclear safety requirements in a gravity environment. The goal of the reactor ground test system is to establish confidence in the design maturity of the SP-100 space reactor power system and resolve the technical issues necessary for the development of a flight mission design

  15. The Effect of Predicted Vehicle Displacement on Ground Crew Task Performance and Hardware Design

    Science.gov (United States)

    Atencio, Laura Ashley; Reynolds, David W.

    2011-01-01

    NASA continues to explore new launch vehicle concepts that will carry astronauts to low- Earth orbit to replace the soon-to-be retired Space Transportation System (STS) shuttle. A tall vertically stacked launch vehicle (> or =300 ft) is exposed to the natural environment while positioned on the launch pad. Varying directional winds and vortex shedding cause the vehicle to sway in an oscillating motion. Ground crews working high on the tower and inside the vehicle during launch preparations will be subjected to this motion while conducting critical closeout tasks such as mating fluid and electrical connectors and carrying heavy objects. NASA has not experienced performing these tasks in such environments since the Saturn V, which was serviced from a movable (but rigid) service structure; commercial launchers are likewise attended by a service structure that moves away from the vehicle for launch. There is concern that vehicle displacement may hinder ground crew operations, impact the ground system designs, and ultimately affect launch availability. The vehicle sway assessment objective is to replicate predicted frequencies and displacements of these tall vehicles, examine typical ground crew tasks, and provide insight into potential vehicle design considerations and ground crew performance guidelines. This paper outlines the methodology, configurations, and motion testing performed while conducting the vehicle displacement assessment that will be used as a Technical Memorandum for future vertically stacked vehicle designs.

  16. Image processing and computer controls for video profile diagnostic system in the ground test accelerator (GTA)

    International Nuclear Information System (INIS)

    Wright, R.; Zander, M.; Brown, S.; Sandoval, D.; Gilpatrick, D.; Gibson, H.

    1992-01-01

    This paper describes the application of video image processing to beam profile measurements on the Ground Test Accelerator (GTA). A diagnostic was needed to measure beam profiles in the intermediate matching section (IMS) between the radio-frequency quadrupole (RFQ) and the drift tube linac (DTL). Beam profiles are measured by injecting puffs of gas into the beam. The light emitted from the beam-gas interaction is captured and processed by a video image processing system, generating the beam profile data. A general purpose, modular and flexible video image processing system, imagetool, was used for the GTA image profile measurement. The development of both software and hardware for imagetool and its integration with the GTA control system (GTACS) is discussed. The software includes specialized algorithms for analyzing data and calibrating the system. The underlying design philosophy of imagetool was tested by the experience of building and using the system, pointing the way for future improvements. (Author) (3 figs., 4 refs.)

  17. Speed test results and hardware/software study of computational speed problem, appendix D

    Science.gov (United States)

    1984-01-01

    The HP9845C is a desktop computer which is tested and evaluated for processing speed. A study was made to determine the availability and approximate cost of computers and/or hardware accessories necessary to meet the 20 ms sample period speed requirements. Additional requirements were that the control algorithm could be programmed in a high language and that the machine have sufficient storage to store the data from a complete experiment.

  18. Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center

    Science.gov (United States)

    Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki

    2012-01-01

    The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.

  19. History of ground motion programs at the Nevada Test Site

    International Nuclear Information System (INIS)

    Banister, J.R.

    1984-01-01

    Some measurements were made in the atmospheric testing era, but the study of ground motion from nuclear tests became of wider interest after the instigation of underground testing. The ground motion generated by underground nuclear test has been investigated for a number of reasons including understanding basic phenomena, operational and safety concerns, yield determination, stimulation of earthquake concerns, and developing methods to aid in treaty verifications. This history of ground motion programs will include discussing early studies, high yield programs, Peaceful Nuclear Explosions tests, and some more recent developments. 6 references, 10 figures

  20. Hardware standardization for embedded systems

    International Nuclear Information System (INIS)

    Sharma, M.K.; Kalra, Mohit; Patil, M.B.; Mohanty, Ashutos; Ganesh, G.; Biswas, B.B.

    2010-01-01

    Reactor Control Division (RCnD) has been one of the main designers of safety and safety related systems for power reactors. These systems have been built using in-house developed hardware. Since the present set of hardware was designed long ago, a need was felt to design a new family of hardware boards. A Working Group on Electronics Hardware Standardization (WG-EHS) was formed with an objective to develop a family of boards, which is general purpose enough to meet the requirements of the system designers/end users. RCnD undertook the responsibility of design, fabrication and testing of boards for embedded systems. VME and a proprietary I/O bus were selected as the two system buses. The boards have been designed based on present day technology and components. The intelligence of these boards has been implemented on FPGA/CPLD using VHDL. This paper outlines the various boards that have been developed with a brief description. (author)

  1. ISS Logistics Hardware Disposition and Metrics Validation

    Science.gov (United States)

    Rogers, Toneka R.

    2010-01-01

    I was assigned to the Logistics Division of the International Space Station (ISS)/Spacecraft Processing Directorate. The Division consists of eight NASA engineers and specialists that oversee the logistics portion of the Checkout, Assembly, and Payload Processing Services (CAPPS) contract. Boeing, their sub-contractors and the Boeing Prime contract out of Johnson Space Center, provide the Integrated Logistics Support for the ISS activities at Kennedy Space Center. Essentially they ensure that spares are available to support flight hardware processing and the associated ground support equipment (GSE). Boeing maintains a Depot for electrical, mechanical and structural modifications and/or repair capability as required. My assigned task was to learn project management techniques utilized by NASA and its' contractors to provide an efficient and effective logistics support infrastructure to the ISS program. Within the Space Station Processing Facility (SSPF) I was exposed to Logistics support components, such as, the NASA Spacecraft Services Depot (NSSD) capabilities, Mission Processing tools, techniques and Warehouse support issues, required for integrating Space Station elements at the Kennedy Space Center. I also supported the identification of near-term ISS Hardware and Ground Support Equipment (GSE) candidates for excessing/disposition prior to October 2010; and the validation of several Logistics Metrics used by the contractor to measure logistics support effectiveness.

  2. BUSTED BUTTE TEST FACILITY GROUND SUPPORT CONFIRMATION ANALYSIS

    International Nuclear Information System (INIS)

    Bonabian, S.

    1998-01-01

    The main purpose and objective of this analysis is to confirm the validity of the ground support design for Busted Butte Test Facility (BBTF). The highwall stability and adequacy of highwall and tunnel ground support is addressed in this analysis. The design of the BBTF including the ground support system was performed in a separate document (Reference 5.3). Both in situ and seismic loads are considered in the evaluation of the highwall and the tunnel ground support system. In this analysis only the ground support designed in Reference 5.3 is addressed. The additional ground support installed (still work in progress) by the constructor is not addressed in this analysis. This additional ground support was evaluated by the A/E during a site visit and its findings and recommendations are addressed in this analysis

  3. Sizing and preliminary hardware testing of solar powered UAV

    Directory of Open Access Journals (Sweden)

    S. Jashnani

    2013-12-01

    Full Text Available Integrating solar energy into modern aircraft technology has been a topic of interest and has received a lot of attention from researchers over the last two decades. A few among the many potential applications of this technology are the possibility of continuous self sustained flight for purposes such as information relay, surveillance and monitoring. This paper discusses the altitude and payload mass, as independent parameters, and their influence on the size and design of the aircraft. To estimate available solar power, two different models have been presented; one for low altitudes and the other for high altitudes. An engineering ground model was built to simulate the power and propulsion system over 24 h of continuous operation. The paper presents data from tests performed till date and lessons learnt while dealing with the construction of the engineering ground model as well as changes that can be made to improve the design.

  4. Hardware Resource Allocation for Hardware/Software Partitioning in the LYCOS System

    DEFF Research Database (Denmark)

    Grode, Jesper Nicolai Riis; Knudsen, Peter Voigt; Madsen, Jan

    1998-01-01

    as a designer's/design tool's aid to generate good hardware allocations for use in hardware/software partitioning. The algorithm has been implemented in a tool under the LYCOS system. The results show that the allocations produced by the algorithm come close to the best allocations obtained by exhaustive search.......This paper presents a novel hardware resource allocation technique for hardware/software partitioning. It allocates hardware resources to the hardware data-path using information such as data-dependencies between operations in the application, and profiling information. The algorithm is useful...

  5. Multi-Megawatt-Scale Power-Hardware-in-the-Loop Interface for Testing Ancillary Grid Services by Converter-Coupled Generation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Koralewicz, Przemyslaw J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gevorgian, Vahan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wallen, Robert B [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-26

    Power-hardware-in-the-loop (PHIL) is a simulation tool that can support electrical systems engineers in the development and experimental validation of novel, advanced control schemes that ensure the robustness and resiliency of electrical grids that have high penetrations of low-inertia variable renewable resources. With PHIL, the impact of the device under test on a generation or distribution system can be analyzed using a real-time simulator (RTS). PHIL allows for the interconnection of the RTS with a 7 megavolt ampere (MVA) power amplifier to test multi-megawatt renewable assets available at the National Wind Technology Center (NWTC). This paper addresses issues related to the development of a PHIL interface that allows testing hardware devices at actual scale. In particular, the novel PHIL interface algorithm and high-speed digital interface, which minimize the critical loop delay, are discussed.

  6. Pre-flight physical simulation test of HIMES reentry test vehicle

    Science.gov (United States)

    Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Yonemoto, Koichi; Hosokawa, Shigeru

    ISAS is now developing a small reentry test vehicle, which is 2m long with a 1.5m wing span and weighs about 170 kg, for the purpose of exploring high angle-of-attack aerodynamic attitude control issue in supersonic and hypersonic speed. The flight test, employing 'Rockoon' launch system, is planned as a preliminary design verification for a fully reusable winged rocket named HIMES (Highly Maneuverable Experimental Space) vehicle. This paper describes the results of preflight ground test using a motion table system. This ground system test is called 'physical simulation' aimed at: (1) functional verification of side-jet system, aerodynamic surface actuators, battery and onboard avionics; and (2) guidance and control law evaluation, in total hardware-in-the-loop system. The pressure of side-jet nozzles was measured to provide exact thrust characteristics of reaction control. The dynamics of vehicle motion was calculated in real-time by the ground simulation computer.

  7. Ground test facility for nuclear testing of space reactor subsystems

    International Nuclear Information System (INIS)

    Quapp, W.J.; Watts, K.D.

    1985-01-01

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  8. System-Level Testing of the Advanced Stirling Radioisotope Generator Engineering Hardware

    Science.gov (United States)

    Chan, Jack; Wiser, Jack; Brown, Greg; Florin, Dominic; Oriti, Salvatore M.

    2014-01-01

    To support future NASA deep space missions, a radioisotope power system utilizing Stirling power conversion technology was under development. This development effort was performed under the joint sponsorship of the Department of Energy and NASA, until its termination at the end of 2013 due to budget constraints. The higher conversion efficiency of the Stirling cycle compared with that of the Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, Pluto New Horizons and Mars Science Laboratory) offers the advantage of a four-fold reduction in Pu-238 fuel, thereby extending its limited domestic supply. As part of closeout activities, system-level testing of flight-like Advanced Stirling Convertors (ASCs) with a flight-like ASC Controller Unit (ACU) was performed in February 2014. This hardware is the most representative of the flight design tested to date. The test fully demonstrates the following ACU and system functionality: system startup; ASC control and operation at nominal and worst-case operating conditions; power rectification; DC output power management throughout nominal and out-of-range host voltage levels; ACU fault management, and system command / telemetry via MIL-STD 1553 bus. This testing shows the viability of such a system for future deep space missions and bolsters confidence in the maturity of the flight design.

  9. Power-hardware-in-the-loop test of VSC-HVDC connection for off-shore wind power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ranjan [Siemens Wind Power A/S, Brande (Denmark); Technical Univ. of Denmark (Denmark). Center for Electric Technology; Cha, Seung T.; Wu, Qiuwei; Rasmussen, Tonny W.; Oestergaard, Jacob [Technical Univ. of Denmark (Denmark). Center for Electric Technology; Jensen, Kim H. [Siemens Wind Power A/S, Brande (Denmark)

    2011-07-01

    This paper present a power-hardware-in-the-loop (PHIL) test of an off-shore wind power plant (WPP) interconnected to the on-shore grid via a VSC-HVDC connection. The intention of the PHIL test is to verify the hardware interaction and the control co-ordination between the plant side VSC of the HVDC system and the wind turbines within the WPP in order to ensure smooth operation of the WPP under both normal and fault operating condition. The PHIL test platform is comprised of a real time digital simulator (RTDS), a Spitzenberger Spies three phase 7,5 kW power amplifier, a purpose built VSC and a DC chopper. The WPP is simulated in the RTDS as a single full-scale wind turbine. The simulated WPP interacts with the WPP side VSC through the power amplifier. The interface between the RTDS and the power amplifier is done via an analogue GTAO I/O card of the RTDS and the input channel of the amplifier. The amplifier scales up the voltages at the point of connection of the WPP in the RTDS to the voltage level for the WPP side VSC. The WPP side VSC converter is equipped with a DC chopper. The test results show the successful control coordination between the WPP and the plant side VSC converter of the HVDC connection of the WPP. (orig.)

  10. 2012 Ground Testing Highlights

    Science.gov (United States)

    Buchholz, Steven J.

    2012-01-01

    As part of the Fundamental Aeronautics Program and a collaborative effort with Boeing, and Lockheed Martin this past year a series of sonic boom test were completed in the NASA Ames Unitary Plan Wind Tunnel (UPWT). One of the goals was to develop new test techniques and hardware for measuring sonic boom signatures in the transonic and supersonic regimes. Data for various model designs and configurations were collected and will be used to validate CFD predictions of sonic boom signatures. Reactivation of the NASA Ames Mitsubishi compressor system was completed this past year. The compressor is intended to replace and augment the existing UPWT Clark Compressor as the primary Make Up Air (MUA) source. The MUA system provides air and vacuum pumping capability to the Ames UPWT. It will improve productivity and reliability of the UPWT as a vital testing and research facility for the U.S. aerospace industry and NASA. Funding for this task was provided from the American Recovery Investment Act (ARRA). Installation and validation of a Noncontact Stress Monitoring System (NSMS) for the 3-stage compressor was completed at the 11-foot Transonic Wind Tunnel. The system, originally developed at AEDC, consists of 36 pairs of LED light sources with optic beam send and receive probes along a 1-per rev signal. The new system allows for continuous monitoring and recording of compressor blade bending and torsion stress during normal test operations. A very unusual test was completed in the 11 FT TWT to acquire aerodynamic and flow field data for the Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS) to validate CFD methods and tools. Surface pressure distribution measurements and velocity measurements in the wake of the command module back to the drogues parachute location were acquired. Testing methods included Particle Image Velocimetry (PIV), Pressure Sensitive Paint (PSP), Schlieren Infrared Imaging (IR) and boundary layer survey and skin friction.

  11. Initial site characterization and evaluation of radionuclide contaminated soil waste burial grounds

    International Nuclear Information System (INIS)

    Phillips, S.J.; Reisenauer, A.E.; Rickard, W.H.; Sandness, G.A.

    1977-02-01

    A survey of historical records and literature containing information on the contents of 300 Area and North Burial Grounds was completed. Existing records of radioactive waste location, type, and quantity within each burial ground facility were obtained and distributed to cooperating investigators. A study was then initiated to evaluate geophysical exploration techniques for mapping buried waste materials, waste containers, and trench boundaries. Results indicate that a combination of ground penetrating radar, magnetometer, metal detector, and acoustic measurements will be effective but will require further study, hardware development, and field testing. Drilling techniques for recovering radionuclide-contaminated materials and sediment cores were developed and tested. Laboratory sediment characterization and fluid transport and monitoring analyses were begun by installation of in situ transducers at the 300 North Burial Ground site. Biological transport mechanisms that control radionuclide movement at contaminated sites were also studied. Flora and fauna presently inhabiting specific burial ground areas were identified and analyzed. Future monitoring of specific mammal populations will permit determination of dose rate and pathways of contaminated materials contained in and adjacent to burial ground sites

  12. Storage Information Management System (SIMS) Spaceflight Hardware Warehousing at Goddard Space Flight Center

    Science.gov (United States)

    Kubicko, Richard M.; Bingham, Lindy

    1995-01-01

    Goddard Space Flight Center (GSFC) on site and leased warehouses contain thousands of items of ground support equipment (GSE) and flight hardware including spacecraft, scaffolding, computer racks, stands, holding fixtures, test equipment, spares, etc. The control of these warehouses, and the management, accountability, and control of the items within them, is accomplished by the Logistics Management Division. To facilitate this management and tracking effort, the Logistics and Transportation Management Branch, is developing a system to provide warehouse personnel, property owners, and managers with storage and inventory information. This paper will describe that PC-based system and address how it will improve GSFC warehouse and storage management.

  13. Hardware for soft computing and soft computing for hardware

    CERN Document Server

    Nedjah, Nadia

    2014-01-01

    Single and Multi-Objective Evolutionary Computation (MOEA),  Genetic Algorithms (GAs), Artificial Neural Networks (ANNs), Fuzzy Controllers (FCs), Particle Swarm Optimization (PSO) and Ant colony Optimization (ACO) are becoming omnipresent in almost every intelligent system design. Unfortunately, the application of the majority of these techniques is complex and so requires a huge computational effort to yield useful and practical results. Therefore, dedicated hardware for evolutionary, neural and fuzzy computation is a key issue for designers. With the spread of reconfigurable hardware such as FPGAs, digital as well as analog hardware implementations of such computation become cost-effective. The idea behind this book is to offer a variety of hardware designs for soft computing techniques that can be embedded in any final product. Also, to introduce the successful application of soft computing technique to solve many hard problem encountered during the design of embedded hardware designs. Reconfigurable em...

  14. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    Science.gov (United States)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  15. Hardware implementation of a GFSR pseudo-random number generator

    Science.gov (United States)

    Aiello, G. R.; Budinich, M.; Milotti, E.

    1989-12-01

    We describe the hardware implementation of a pseudo-random number generator of the "Generalized Feedback Shift Register" (GFSR) type. After brief theoretical considerations we describe two versions of the hardware, the tests done and the performances achieved.

  16. Co-simulation Platform for Train-to-Ground communications

    DEFF Research Database (Denmark)

    Yan, Ying; Bouaziz, Maha; Kassab, Mohamed

    The project SAFE4RAIL (SAFE architecture for Robust distributed Application Integration in roLling stock) from the Shift2Rail Joint Undertaking will provide a cosimulation platform based on hardware/software co-simulation. The platform will be used for Train-to-Ground (T2G) test environments...... in the context of the validation of the new wireless Train Control Management System (TCMS) transmission over LTE technologies in order to evaluate performances with realistic services and under various railway traffic conditions....

  17. An adaptable, low cost test-bed for unmanned vehicle systems research

    Science.gov (United States)

    Goppert, James M.

    2011-12-01

    An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The creation of this test-bed allows research teams to focus on algorithm development and employ a common well-tested experimental framework. The ArduPilotOne autopilot was developed to provide the necessary level of abstraction for multiple vehicle types. The autopilot was also designed to be highly integrated with the Mavlink protocol for Micro Air Vehicle (MAV) communication. Mavlink is the native protocol for QGroundControl, a MAV ground control program. Features were added to QGroundControl to accommodate outdoor usage. Next, the Mavsim toolbox was developed for Scicoslab to allow hardware-in-the-loop testing, control design and analysis, and estimation algorithm testing and verification. In order to obtain linear models of aircraft dynamics, the JSBSim flight dynamics engine was extended to use a probabilistic Nelder-Mead simplex method. The JSBSim aircraft dynamics were compared with wind-tunnel data collected. Finally, a structured methodology for successive loop closure control design is proposed. This methodology is demonstrated along with the rest of the test-bed tools on a quadrotor, a fixed wing RC plane, and a ground vehicle. Test results for the ground vehicle are presented.

  18. Non-fuel bearing hardware melting technology

    International Nuclear Information System (INIS)

    Newman, D.F.

    1993-01-01

    Battelle has developed a portable hardware melter concept that would allow spent fuel rod consolidation operations at commercial nuclear power plants to provide significantly more storage space for other spent fuel assemblies in existing pool racks at lower cost. Using low pressure compaction, the non-fuel bearing hardware (NFBH) left over from the removal of spent fuel rods from the stainless steel end fittings and the Zircaloy guide tubes and grid spacers still occupies 1/3 to 2/5 of the volume of the consolidated fuel rod assemblies. Melting the non-fuel bearing hardware reduces its volume by a factor 4 from that achievable with low-pressure compaction. This paper describes: (1) the configuration and design features of Battelle's hardware melter system that permit its portability, (2) the system's throughput capacity, (3) the bases for capital and operating estimates, and (4) the status of NFBH melter demonstration to reduce technical risks for implementation of the concept. Since all NFBH handling and processing operations would be conducted at the reactor site, costs for shipping radioactive hardware to and from a stationary processing facility for volume reduction are avoided. Initial licensing, testing, and installation in the field would follow the successful pattern achieved with rod consolidation technology

  19. Current Hypersonic and Space Vehicle Flight Test and Instrumentation

    Science.gov (United States)

    2015-06-22

    ground station hardware and software. B. Space- based Platforms There are already in place several satellite based options to collecting and... Transceive data over very long range at low to very high altitudes DARPA: XS-1 Ground Based Aircraft Based Space Based Future Data...412TW-PA-15264 AIR FORCE TEST CENTER EDWARDS AIR FORCE BASE , CALIFORNIA AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE REPORT

  20. Introduction to Hardware Security

    Directory of Open Access Journals (Sweden)

    Yier Jin

    2015-10-01

    Full Text Available Hardware security has become a hot topic recently with more and more researchers from related research domains joining this area. However, the understanding of hardware security is often mixed with cybersecurity and cryptography, especially cryptographic hardware. For the same reason, the research scope of hardware security has never been clearly defined. To help researchers who have recently joined in this area better understand the challenges and tasks within the hardware security domain and to help both academia and industry investigate countermeasures and solutions to solve hardware security problems, we will introduce the key concepts of hardware security as well as its relations to related research topics in this survey paper. Emerging hardware security topics will also be clearly depicted through which the future trend will be elaborated, making this survey paper a good reference for the continuing research efforts in this area.

  1. Power-Hardware-In-the-Loop (PHIL) Test of VSC-based HVDC connection for Offshore Wind Power Plants (WPPs)

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Cha, Seung-Tae; Wu, Qiuwei

    2011-01-01

    This paper presents a power-hardware-in-the-loop (PHIL) test for an offshore wind power plant (WPP) interconnected to the onshore grid by a VSC-based HVDC connection. The intention of the PHIL test is to verify the control coordination between the plant side converter of the HVDC connection...... the successful control coordination between the WPP and the plant side VSC converter of the HVDC connection of the WPP....

  2. FY1995 evolvable hardware chip; 1995 nendo shinkasuru hardware chip

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This project aims at the development of 'Evolvable Hardware' (EHW) which can adapt its hardware structure to the environment to attain better hardware performance, under the control of genetic algorithms. EHW is a key technology to explore the new application area requiring real-time performance and on-line adaptation. 1. Development of EHW-LSI for function level hardware evolution, which includes 15 DSPs in one chip. 2. Application of the EHW to the practical industrial applications such as data compression, ATM control, digital mobile communication. 3. Two patents : (1) the architecture and the processing method for programmable EHW-LSI. (2) The method of data compression for loss-less data, using EHW. 4. The first international conference for evolvable hardware was held by authors: Intl. Conf. on Evolvable Systems (ICES96). It was determined at ICES96 that ICES will be held every two years between Japan and Europe. So the new society has been established by us. (NEDO)

  3. FY1995 evolvable hardware chip; 1995 nendo shinkasuru hardware chip

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This project aims at the development of 'Evolvable Hardware' (EHW) which can adapt its hardware structure to the environment to attain better hardware performance, under the control of genetic algorithms. EHW is a key technology to explore the new application area requiring real-time performance and on-line adaptation. 1. Development of EHW-LSI for function level hardware evolution, which includes 15 DSPs in one chip. 2. Application of the EHW to the practical industrial applications such as data compression, ATM control, digital mobile communication. 3. Two patents : (1) the architecture and the processing method for programmable EHW-LSI. (2) The method of data compression for loss-less data, using EHW. 4. The first international conference for evolvable hardware was held by authors: Intl. Conf. on Evolvable Systems (ICES96). It was determined at ICES96 that ICES will be held every two years between Japan and Europe. So the new society has been established by us. (NEDO)

  4. Guidance on the Stand Down, Mothball, and Reactivation of Ground Test Facilities

    Science.gov (United States)

    Volkman, Gregrey T.; Dunn, Steven C.

    2013-01-01

    The development of aerospace and aeronautics products typically requires three distinct types of testing resources across research, development, test, and evaluation: experimental ground testing, computational "testing" and development, and flight testing. Over the last twenty plus years, computational methods have replaced some physical experiments and this trend is continuing. The result is decreased utilization of ground test capabilities and, along with market forces, industry consolidation, and other factors, has resulted in the stand down and oftentimes closure of many ground test facilities. Ground test capabilities are (and very likely will continue to be for many years) required to verify computational results and to provide information for regimes where computational methods remain immature. Ground test capabilities are very costly to build and to maintain, so once constructed and operational it may be desirable to retain access to those capabilities even if not currently needed. One means of doing this while reducing ongoing sustainment costs is to stand down the facility into a "mothball" status - keeping it alive to bring it back when needed. Both NASA and the US Department of Defense have policies to accomplish the mothball of a facility, but with little detail. This paper offers a generic process to follow that can be tailored based on the needs of the owner and the applicable facility.

  5. CT image reconstruction system based on hardware implementation

    International Nuclear Information System (INIS)

    Silva, Hamilton P. da; Evseev, Ivan; Schelin, Hugo R.; Paschuk, Sergei A.; Milhoretto, Edney; Setti, Joao A.P.; Zibetti, Marcelo; Hormaza, Joel M.; Lopes, Ricardo T.

    2009-01-01

    Full text: The timing factor is very important for medical imaging systems, which can nowadays be synchronized by vital human signals, like heartbeats or breath. The use of hardware implemented devices in such a system has advantages considering the high speed of information treatment combined with arbitrary low cost on the market. This article refers to a hardware system which is based on electronic programmable logic called FPGA, model Cyclone II from ALTERA Corporation. The hardware was implemented on the UP3 ALTERA Kit. A partially connected neural network with unitary weights was programmed. The system was tested with 60 topographic projections, 100 points in each, of the Shepp and Logan phantom created by MATLAB. The main restriction was found to be the memory size available on the device: the dynamic range of reconstructed image was limited to 0 65535. Also, the normalization factor must be observed in order to do not saturate the image during the reconstruction and filtering process. The test shows a principal possibility to build CT image reconstruction systems for any reasonable amount of input data by arranging the parallel work of the hardware units like we have tested. However, further studies are necessary for better understanding of the error propagation from topographic projections to reconstructed image within the implemented method. (author)

  6. Review of Nuclear Thermal Propulsion Ground Test Options

    Science.gov (United States)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  7. Characterization of Oribtal Debris via Hyper-Velocity Ground-Based Tests

    Science.gov (United States)

    Cowardin, H.

    2015-01-01

    Existing DoD and NASA satellite breakup models are based on a key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve the break-up models and the NASA Size Estimation Model (SEM) for events involving more modern satellite designs, the NASA Orbital Debris Program Office has worked in collaboration with the University of Florida to replicate a hypervelocity impact using a satellite built with modern-day spacecraft materials and construction techniques. The spacecraft, called DebriSat, was intended to be a representative of modern LEO satellites and all major designs decisions were reviewed and approved by subject matter experts at Aerospace Corporation. DebriSat is composed of 7 major subsystems including attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. All fragments down to 2 mm is size will be characterized via material, size, shape, bulk density, and the associated data will be stored in a database for multiple users to access. Laboratory radar and optical measurements will be performed on a subset of fragments to provide a better understanding of the data products from orbital debris acquired from ground-based radars and telescopes. The resulting data analysis from DebriSat will be used to update break-up models and develop the first optical SEM in conjunction with updates into the current NASA SEM. The characterization of the fragmentation will be discussed in the subsequent presentation.

  8. Compiling quantum circuits to realistic hardware architectures using temporal planners

    Science.gov (United States)

    Venturelli, Davide; Do, Minh; Rieffel, Eleanor; Frank, Jeremy

    2018-04-01

    To run quantum algorithms on emerging gate-model quantum hardware, quantum circuits must be compiled to take into account constraints on the hardware. For near-term hardware, with only limited means to mitigate decoherence, it is critical to minimize the duration of the circuit. We investigate the application of temporal planners to the problem of compiling quantum circuits to newly emerging quantum hardware. While our approach is general, we focus on compiling to superconducting hardware architectures with nearest neighbor constraints. Our initial experiments focus on compiling Quantum Alternating Operator Ansatz (QAOA) circuits whose high number of commuting gates allow great flexibility in the order in which the gates can be applied. That freedom makes it more challenging to find optimal compilations but also means there is a greater potential win from more optimized compilation than for less flexible circuits. We map this quantum circuit compilation problem to a temporal planning problem, and generated a test suite of compilation problems for QAOA circuits of various sizes to a realistic hardware architecture. We report compilation results from several state-of-the-art temporal planners on this test set. This early empirical evaluation demonstrates that temporal planning is a viable approach to quantum circuit compilation.

  9. Post-Test Inspection of NASA's Evolutionary Xenon Thruster Long-Duration Test Hardware: Discharge and Neutralizer Cathodes

    Science.gov (United States)

    Shastry, Rohit; Soulas, George C.

    2016-01-01

    The NEXT Long-Duration Test is part of a comprehensive thruster service life assessment intended to demonstrate overall throughput capability, validate service life models, quantify wear rates as a function of time and operating condition, and identify any unknown life-limiting mechanisms. The test was voluntarily terminated in February 2014 after demonstrating 51,184 hours of high-voltage operation, 918 kg of propellant throughput, and 35.5 MN-s of total impulse. The post-test inspection of the thruster hardware began shortly afterwards with a combination of non-destructive and destructive analysis techniques, and is presently nearing completion. This paper presents relevant results of the post-test inspection for both discharge and neutralizer cathodes. Discharge keeper erosion was found to be significantly reduced from what was observed in the NEXT 2 kh wear test and NSTAR Extended Life Test, providing adequate protection of vital cathode components throughout the test with ample lifetime remaining. The area of the discharge cathode orifice plate that was exposed by the keeper orifice exhibited net erosion, leading to cathode plate material building up in the cathode-keeper gap and causing a thermally-induced electrical short observed during the test. Significant erosion of the neutralizer cathode orifice was also found and is believed to be the root cause of an observed loss in flow margin. Deposition within the neutralizer keeper orifice as well as on the downstream surface was thicker than expected, potentially resulting in a facility-induced impact on the measured flow margin from plume mode. Neutralizer keeper wall erosion on the beam side was found to be significantly lower compared to the NEXT 2 kh wear test, likely due to the reduction in beam extraction diameter of the ion optics that resulted in decreased ion impingement. Results from the post-test inspection have led to some minor thruster design improvements.

  10. RRFC hardware operation manual

    International Nuclear Information System (INIS)

    Abhold, M.E.; Hsue, S.T.; Menlove, H.O.; Walton, G.

    1996-05-01

    The Research Reactor Fuel Counter (RRFC) system was developed to assay the 235 U content in spent Material Test Reactor (MTR) type fuel elements underwater in a spent fuel pool. RRFC assays the 235 U content using active neutron coincidence counting and also incorporates an ion chamber for gross gamma-ray measurements. This manual describes RRFC hardware, including detectors, electronics, and performance characteristics

  11. The microelectronics and photonics test bed (MPTB) space, ground test and modeling experiments

    International Nuclear Information System (INIS)

    Campbell, A.

    1999-01-01

    This paper is an overview of the MPTB (microelectronics and photonics test bed) experiment, a combination of a space experiment, ground test and modeling programs looking at the response of advanced electronic and photonic technologies to the natural radiation environment of space. (author)

  12. CRYogenic Orbital TEstbed Ground Test Article Thermal Analysis

    Science.gov (United States)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to CRYOTE ground test data. The CRYOTE ground test artide was jointly developed by Innovative Engineering Solutions, United Launch Alliance and NASA KSC. The test article was constructed out of a titanium alloy tank, Sapphire 77 composite skin (similar to G10), an external secondary payload adapter ring, thermal vent system, multi layer insulation and various data acquisition instrumentation. In efforts to understand heat loads throughout this system, the GTA (filled with liquid nitrogen for safety purposes) was subjected to a series of tests in a vacuum chamber at Marshall Space Flight Center. By anchoring analytical models against test data, higher fidelity thermal environment predictions can be made for future flight articles which would eventually demonstrate critical cryogenic fluid management technologies such as system chilldown, transfer, pressure control and long term storage. Significant factors that influenced heat loads included radiative environments, multi-layer insulation performance, tank fill levels and pressures and even contact conductance coefficients. This report demonstrates how analytical thermal/fluid networks were established and includes supporting rationale for specific thermal responses.

  13. PaTAVTT: A Hardware-in-the-Loop Scaled Platform for Testing Autonomous Vehicle Trajectory Tracking

    Directory of Open Access Journals (Sweden)

    Zhigang Xu

    2017-01-01

    Full Text Available With the advent of autonomous vehicles, in particular its adaptability to harsh conditions, the research and development of autonomous vehicles attract significant attention by not only academia but also practitioners. Due to the high risk, high cost, and difficulty to test autonomous vehicles under harsh conditions, the hardware-in-the-loop (HIL scaled platform has been proposed as it is a safe, inexpensive, and effective test method. This platform system consists of scaled autonomous vehicle, scaled roadway, monitoring center, transmission device, positioning device, and computers. This paper uses a case of the development process of tracking control for high-speed U-turn to build the tracking control function. Further, a simplified vehicle dynamics model and a trajectory tracking algorithm have been considered to build the simulation test. The experiment results demonstrate the effectiveness of the HIL scaled platform.

  14. Hardware description languages

    Science.gov (United States)

    Tucker, Jerry H.

    1994-01-01

    Hardware description languages are special purpose programming languages. They are primarily used to specify the behavior of digital systems and are rapidly replacing traditional digital system design techniques. This is because they allow the designer to concentrate on how the system should operate rather than on implementation details. Hardware description languages allow a digital system to be described with a wide range of abstraction, and they support top down design techniques. A key feature of any hardware description language environment is its ability to simulate the modeled system. The two most important hardware description languages are Verilog and VHDL. Verilog has been the dominant language for the design of application specific integrated circuits (ASIC's). However, VHDL is rapidly gaining in popularity.

  15. Using Innovative Techniques for Manufacturing Rocket Engine Hardware

    Science.gov (United States)

    Betts, Erin M.; Reynolds, David C.; Eddleman, David E.; Hardin, Andy

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As we enter into a new space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt new and innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using the Workhorse Gas Generator (WHGG) test setup at MSFC?s East Test Area test stand 116, the duct was subject to extreme J-2X gas generator environments and endured a total of 538 seconds of hot-fire time. The duct survived the testing and was inspected after the test. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  16. Handling effluent from nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Allen, G.C.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests

  17. Kedalion: NASA's Adaptable and Agile Hardware/Software Integration and Test Lab

    Science.gov (United States)

    Mangieri, Mark L.; Vice, Jason

    2011-01-01

    NASA fs Kedalion engineering analysis lab at Johnson Space Center is on the forefront of validating and using many contemporary avionics hardware/software development and integration techniques, which represent new paradigms to heritage NASA culture. Kedalion has validated many of the Orion hardware/software engineering techniques borrowed from the adjacent commercial aircraft avionics solution space, with the intention to build upon such techniques to better align with today fs aerospace market. Using agile techniques, commercial products, early rapid prototyping, in-house expertise and tools, and customer collaboration, Kedalion has demonstrated that cost effective contemporary paradigms hold the promise to serve future NASA endeavors within a diverse range of system domains. Kedalion provides a readily adaptable solution for medium/large scale integration projects. The Kedalion lab is currently serving as an in-line resource for the project and the Multipurpose Crew Vehicle (MPCV) program.

  18. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    International Nuclear Information System (INIS)

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs

  19. Hardware Design of Tuber Electrical Resistance Tomography System Based on the Soil Impedance Test and Analysis

    OpenAIRE

    Liu Shuyi; Deng Xiang; Jiang Zili; Tang Yu

    2016-01-01

    The hardware design of tuber electrical resistance tomography (TERT) system is one of the key research problems of TERT data acquisition system. The TERT system can be applied to the tuber growth process monitoring in agriculture, i.e., the TERT data acquisition system can realize the real imaging of tuber plants in soil. In TERT system, the imaging tuber and soil multiphase medium is quite complexity. So, the impedance test and analysis of soil multiphase medium is very important to the desi...

  20. Definitive design status of the SP-100 Ground Engineering System Test Site

    International Nuclear Information System (INIS)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper

  1. Definitive design status of the SP-100 Ground Engineering System Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper.

  2. Large Payload Ground Transportation and Test Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2016-01-01

    Many spacecraft concepts under consideration by the National Aeronautics and Space Administration’s (NASA’s) Evolvable Mars Campaign take advantage of a Space Launch System payload shroud that may be 8 to 10 meters in diameter. Large payloads can theoretically save cost by reducing the number of launches needed--but only if it is possible to build, test, and transport a large payload to the launch site in the first place. Analysis performed previously for the Altair project identified several transportation and test issues with an 8.973 meters diameter payload. Although the entire Constellation Program—including Altair—has since been canceled, these issues serve as important lessons learned for spacecraft designers and program managers considering large payloads for future programs. A transportation feasibility study found that, even broken up into an Ascent and Descent Module, the Altair spacecraft would not fit inside available aircraft. Ground transportation of such large payloads over extended distances is not generally permitted, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 67 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA’s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels

  3. The role of the visual hardware system in rugby performance ...

    African Journals Online (AJOL)

    This study explores the importance of the 'hardware' factors of the visual system in the game of rugby. A group of professional and club rugby players were tested and the results compared. The results were also compared with the established norms for elite athletes. The findings indicate no significant difference in hardware ...

  4. 49 CFR 238.105 - Train electronic hardware and software safety.

    Science.gov (United States)

    2010-10-01

    ... and software system safety as part of the pre-revenue service testing of the equipment. (d)(1... safely by initiating a full service brake application in the event of a hardware or software failure that... 49 Transportation 4 2010-10-01 2010-10-01 false Train electronic hardware and software safety. 238...

  5. Ground Operations Demonstration Unit for Liquid Hydrogen Initial Test Results

    Science.gov (United States)

    Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.

    2015-01-01

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.

  6. Hardware-in-the-Loop Simulation for the Automatic Power Control System of Research Reactors

    International Nuclear Information System (INIS)

    Fikry, R.M.; Shehata, S.A.; Elaraby, S.M.; Mahmoud, M.I.; Elbardini, M.M.

    2009-01-01

    Designing and testing digital control system for any nuclear research reactor can be costly and time consuming. In this paper, a rapid, low-cost proto typing and testing procedure for digital controller design is proposed using the concept of Hardware-In- The-Loop (HIL). Some of the control loop components are real hardware components and thc others are simulated. First, the whole system is modeled and tested by Real- Time Simulation (RTS) using conventional simulation techniques such as MATLAB / SIMULINK. Second the Hardware-in-the-Ioop simulation is tested using Real-Time Windows Target in MATLAB and Visual C++. The control parts are included as hardware components which are the reactor control rod and its drivers. Two kinds of controllers are studied, Proportional derivative (PD) and Fuzzy controller, An experimental setup for the hardware used in HIL concept for the control of the nuclear research reactor has been realized. Experimental results are obtained and compared with the simulation results. The experimental results indicate the validation of HIL method in this domain

  7. Operational Testing of a Combined Hardware-Software Strategy for Triage of Radiologically-Contaminated Persons.

    Science.gov (United States)

    Waller, Edward J

    2015-08-01

    After a radiological dispersal device (RDD) event, it is possible for radionuclides to enter the human body through inhalation, ingestion, and skin and wound absorption. The dominant pathway will be through inhalation. From a health physics perspective, it is important to know the magnitude of the intake to perform dosimetric assessments. From a medical perspective, removal of radionuclides leading to dose (hence risk) aversion is of high importance. The efficacy of medical decorporation strategies is extremely dependent upon the time of treatment delivery after intake. The "golden hour," or more realistically 3-4 h, is imperative when attempting to increase removal of radionuclides from extracellular fluids prior to cellular incorporation. To assist medical first response personnel in making timely decisions regarding appropriate treatment delivery modes, a software tool has been developed which compiles existing radionuclide decorporation therapy data and allows a user to perform simple triage leading to potential appropriate decorporation treatment strategies. Three triage algorithms were included: (1) multi-parameter model (MPM), (2) clinical decision guidance (CDG) model, and (3) annual limit on intake (ALI) model. A radiation triage mask (RTM) has simultaneously been developed to provide a simple and rapid hardware solution for first responders to triage internally exposed personnel in the field. The hardware/software strategy was field tested with a military medical unit and was found by end-users to be relatively simple to learn and use.

  8. A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems

    Science.gov (United States)

    Zinnecker, Alicia M.; Culley, Dennis E.; Aretskin-Hariton, Eliot D.

    2015-01-01

    Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a SimulinkR library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system.

  9. Hardware Development Process for Human Research Facility Applications

    Science.gov (United States)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. The source of hardware requirements is the science community and HRF program. The HRF Science Working Group, consisting of SCientists from various medical disciplines, defined a basic set of equipment with functional requirements. This established the performance requirements of the hardware. HRF program requirements focus on making the hardware safe and operational in a space environment. This includes structural, thermal, human factors, and material requirements. Science and HRF program requirements are defined in a hardware requirements document which includes verification methods. Once the hardware is fabricated, requirements are verified by inspection, test, analysis, or demonstration. All data is compiled and reviewed to certify the hardware for flight. Obviously, the basis for all hardware development activities is requirement definition. Full and complete requirement definition is ideal prior to initiating the hardware development. However, this is generally not the case, but the hardware team typically has functional inputs as a guide. The first step is for engineers to conduct market research based on the functional inputs provided by scientists. CommerCially available products are evaluated against the science requirements as

  10. Hardware and software status of QCDOC

    International Nuclear Information System (INIS)

    Boyle, P.A.; Chen, D.; Christ, N.H.; Clark, M.; Cohen, S.D.; Cristian, C.; Dong, Z.; Gara, A.; Joo, B.; Jung, C.; Kim, C.; Levkova, L.; Liao, X.; Liu, G.; Mawhinney, R.D.; Ohta, S.; Petrov, K.; Wettig, T.; Yamaguchi, A.

    2004-01-01

    QCDOC is a massively parallel supercomputer whose processing nodes are based on an application-specific integrated circuit (ASIC). This ASIC was custom-designed so that crucial lattice QCD kernels achieve an overall sustained performance of 50% on machines with several 10,000 nodes. This strong scalability, together with low power consumption and a price/performance ratio of $1 per sustained MFlops, enable QCDOC to attack the most demanding lattice QCD problems. The first ASICs became available in June of 2003, and the testing performed so far has shown all systems functioning according to specification. We review the hardware and software status of QCDOC and present performance figures obtained in real hardware as well as in simulation

  11. A Cost-Effective Approach to Hardware-in-the-Loop Simulation

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Hansen, M. R.; Ballebye, M.

    2012-01-01

    This paper presents an approach for developing cost effective hardware-in-the- loop (HIL) simulation platforms for the use in controller software test and development. The approach is aimed at the many smaller manufacturers of e.g. mobile hydraulic machinery, which often do not have very advanced...... testing facilities at their disposal. A case study is presented where a HIL simulation platform is developed for the controller of a truck mounted loader crane. The total expenses in hardware and software is less than 10.000$....

  12. A Novel 100 kW Power Hardware-in-the-Loop Emulation Test Bench for Permanent Magnet Synchronous Machines with Nonlinear Magnetics

    OpenAIRE

    Schmitt, Alexander; Richter, Jan; Gommeringer, Mario; Wersal, Thomas; Braun, Michael

    2016-01-01

    This paper presents a high dynamic power hardware-inthe-loop (PHIL) emulation test bench to mimic arbitrary permanent magnet synchronous machines with nonlinear magnetics. The proposed PHIL test bench is composed of a high performance real-time simulation system to calculate the machine behaviour and a seven level modular multiphase multilevel converter to emulate the power flow of the virtual machine. The PHIL test bench is parametrized for an automotive synchronous machine and controlled by...

  13. Foundations of hardware IP protection

    CERN Document Server

    Torres, Lionel

    2017-01-01

    This book provides a comprehensive and up-to-date guide to the design of security-hardened, hardware intellectual property (IP). Readers will learn how IP can be threatened, as well as protected, by using means such as hardware obfuscation/camouflaging, watermarking, fingerprinting (PUF), functional locking, remote activation, hidden transmission of data, hardware Trojan detection, protection against hardware Trojan, use of secure element, ultra-lightweight cryptography, and digital rights management. This book serves as a single-source reference to design space exploration of hardware security and IP protection. · Provides readers with a comprehensive overview of hardware intellectual property (IP) security, describing threat models and presenting means of protection, from integrated circuit layout to digital rights management of IP; · Enables readers to transpose techniques fundamental to digital rights management (DRM) to the realm of hardware IP security; · Introduce designers to the concept of salutar...

  14. Development of a PC-based ground support system for a small satellite instrument

    Science.gov (United States)

    Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.

    1993-11-01

    The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.

  15. Using Innovative Technologies for Manufacturing Rocket Engine Hardware

    Science.gov (United States)

    Betts, E. M.; Eddleman, D. E.; Reynolds, D. C.; Hardin, N. A.

    2011-01-01

    Many of the manufacturing techniques that are currently used for rocket engine component production are traditional methods that have been proven through years of experience and historical precedence. As the United States enters into the next space age where new launch vehicles are being designed and propulsion systems are being improved upon, it is sometimes necessary to adopt innovative techniques for manufacturing hardware. With a heavy emphasis on cost reduction and improvements in manufacturing time, rapid manufacturing techniques such as Direct Metal Laser Sintering (DMLS) are being adopted and evaluated for their use on NASA s Space Launch System (SLS) upper stage engine, J-2X, with hopes of employing this technology on a wide variety of future projects. DMLS has the potential to significantly reduce the processing time and cost of engine hardware, while achieving desirable material properties by using a layered powder metal manufacturing process in order to produce complex part geometries. Marshall Space Flight Center (MSFC) has recently hot-fire tested a J-2X gas generator (GG) discharge duct that was manufactured using DMLS. The duct was inspected and proof tested prior to the hot-fire test. Using a workhorse gas generator (WHGG) test fixture at MSFC's East Test Area, the duct was subjected to extreme J-2X hot gas environments during 7 tests for a total of 537 seconds of hot-fire time. The duct underwent extensive post-test evaluation and showed no signs of degradation. DMLS manufacturing has proven to be a viable option for manufacturing rocket engine hardware, and further development and use of this manufacturing method is recommended.

  16. A photovoltaic source I/U model suitable for hardware in the loop application

    Directory of Open Access Journals (Sweden)

    Stala Robert

    2017-12-01

    Full Text Available This paper presents a novel, low-complexity method of simulating PV source characteristics suitable for real-time modeling and hardware implementation. The application of the suitable model of the PV source as well as the model of all the PV system components in a real-time hardware gives a safe, fast and low cost method of testing PV systems. The paper demonstrates the concept of the PV array model and the hardware implementation in FPGAs of the system which combines two PV arrays. The obtained results confirm that the proposed model is of low complexity and can be suitable for hardware in the loop (HIL tests of the complex PV system control, with various arrays operating under different conditions.

  17. Open hardware for open science

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Inspired by the open source software movement, the Open Hardware Repository was created to enable hardware developers to share the results of their R&D activities. The recently published CERN Open Hardware Licence offers the legal framework to support this knowledge and technology exchange.   Two years ago, a group of electronics designers led by Javier Serrano, a CERN engineer, working in experimental physics laboratories created the Open Hardware Repository (OHR). This project was initiated in order to facilitate the exchange of hardware designs across the community in line with the ideals of “open science”. The main objectives include avoiding duplication of effort by sharing results across different teams that might be working on the same need. “For hardware developers, the advantages of open hardware are numerous. For example, it is a great learning tool for technologies some developers would not otherwise master, and it avoids unnecessary work if someone ha...

  18. 2011 Ground Testing Highlights Article

    Science.gov (United States)

    Ross, James C.; Buchholz, Steven J.

    2011-01-01

    Two tests supporting development of the launch abort system for the Orion MultiPurpose Crew Vehicle were run in the NASA Ames Unitary Plan wind tunnel last year. The first test used a fully metric model to examine the stability and controllability of the Launch Abort Vehicle during potential abort scenarios for Mach numbers ranging from 0.3 to 2.5. The aerodynamic effects of the Abort Motor and Attitude Control Motor plumes were simulated using high-pressure air flowing through independent paths. The aerodynamic effects of the proximity to the launch vehicle during the early moments of an abort were simulated with a remotely actuated Service Module that allowed the position relative to the Crew Module to be varied appropriately. The second test simulated the acoustic environment around the Launch Abort Vehicle caused by the plumes from the 400,000-pound thrust, solid-fueled Abort Motor. To obtain the proper acoustic characteristics of the hot rocket plumes for the flight vehicle, heated Helium was used. A custom Helium supply system was developed for the test consisting of 2 jumbo high-pressure Helium trailers, a twelve-tube accumulator, and a 13MW gas-fired heater borrowed from the Propulsion Simulation Laboratory at NASA Glenn Research Center. The test provided fluctuating surface pressure measurements at over 200 points on the vehicle surface that have now been used to define the ground-testing requirements for the Orion Launch Abort Vehicle.

  19. Open Hardware Business Models

    OpenAIRE

    Edy Ferreira

    2008-01-01

    In the September issue of the Open Source Business Resource, Patrick McNamara, president of the Open Hardware Foundation, gave a comprehensive introduction to the concept of open hardware, including some insights about the potential benefits for both companies and users. In this article, we present the topic from a different perspective, providing a classification of market offers from companies that are making money with open hardware.

  20. Magnetic qubits as hardware for quantum computers

    International Nuclear Information System (INIS)

    Tejada, J.; Chudnovsky, E.; Barco, E. del

    2000-01-01

    We propose two potential realisations for quantum bits based on nanometre scale magnetic particles of large spin S and high anisotropy molecular clusters. In case (1) the bit-value basis states vertical bar-0> and vertical bar-1> are the ground and first excited spin states S z = S and S-1, separated by an energy gap given by the ferromagnetic resonance (FMR) frequency. In case (2), when there is significant tunnelling through the anisotropy barrier, the qubit states correspond to the symmetric, vertical bar-0>, and antisymmetric, vertical bar-1>, combinations of the two-fold degenerate ground state S z = ± S. In each case the temperature of operation must be low compared to the energy gap, Δ, between the states vertical bar-0> and vertical bar-1>. The gap Δ in case (2) can be controlled with an external magnetic field perpendicular to the easy axis of the molecular cluster. The states of different molecular clusters and magnetic particles may be entangled by connecting them by superconducting lines with Josephson switches, leading to the potential for quantum computing hardware. (author)

  1. Magnetic qubits as hardware for quantum computers

    Energy Technology Data Exchange (ETDEWEB)

    Tejada, J.; Chudnovsky, E.; Barco, E. del [and others

    2000-07-01

    We propose two potential realisations for quantum bits based on nanometre scale magnetic particles of large spin S and high anisotropy molecular clusters. In case (1) the bit-value basis states vertical bar-0> and vertical bar-1> are the ground and first excited spin states S{sub z} = S and S-1, separated by an energy gap given by the ferromagnetic resonance (FMR) frequency. In case (2), when there is significant tunnelling through the anisotropy barrier, the qubit states correspond to the symmetric, vertical bar-0>, and antisymmetric, vertical bar-1>, combinations of the two-fold degenerate ground state S{sub z} = {+-} S. In each case the temperature of operation must be low compared to the energy gap, {delta}, between the states vertical bar-0> and vertical bar-1>. The gap {delta} in case (2) can be controlled with an external magnetic field perpendicular to the easy axis of the molecular cluster. The states of different molecular clusters and magnetic particles may be entangled by connecting them by superconducting lines with Josephson switches, leading to the potential for quantum computing hardware. (author)

  2. MFTF supervisory control and diagnostics system hardware

    International Nuclear Information System (INIS)

    Butner, D.N.

    1979-01-01

    The Supervisory Control and Diagnostics System (SCDS) for the Mirror Fusion Test Facility (MFTF) is a multiprocessor minicomputer system designed so that for most single-point failures, the hardware may be quickly reconfigured to provide continued operation of the experiment. The system is made up of nine Perkin-Elmer computers - a mixture of 8/32's and 7/32's. Each computer has ports on a shared memory system consisting of two independent shared memory modules. Each processor can signal other processors through hardware external to the shared memory. The system communicates with the Local Control and Instrumentation System, which consists of approximately 65 microprocessors. Each of the six system processors has facilities for communicating with a group of microprocessors; the groups consist of from four to 24 microprocessors. There are hardware switches so that if an SCDS processor communicating with a group of microprocessors fails, another SCDS processor takes over the communication

  3. Space station common module network topology and hardware development

    Science.gov (United States)

    Anderson, P.; Braunagel, L.; Chwirka, S.; Fishman, M.; Freeman, K.; Eason, D.; Landis, D.; Lech, L.; Martin, J.; Mccorkle, J.

    1990-01-01

    Conceptual space station common module power management and distribution (SSM/PMAD) network layouts and detailed network evaluations were developed. Individual pieces of hardware to be developed for the SSM/PMAD test bed were identified. A technology assessment was developed to identify pieces of equipment requiring development effort. Equipment lists were developed from the previously selected network schematics. Additionally, functional requirements for the network equipment as well as other requirements which affected the suitability of specific items for use on the Space Station Program were identified. Assembly requirements were derived based on the SSM/PMAD developed requirements and on the selected SSM/PMAD network concepts. Basic requirements and simplified design block diagrams are included. DC remote power controllers were successfully integrated into the DC Marshall Space Flight Center breadboard. Two DC remote power controller (RPC) boards experienced mechanical failure of UES 706 stud-mounted diodes during mechanical installation of the boards into the system. These broken diodes caused input to output shorting of the RPC's. The UES 706 diodes were replaced on these RPC's which eliminated the problem. The DC RPC's as existing in the present breadboard configuration do not provide ground fault protection because the RPC was designed to only switch the hot side current. If ground fault protection were to be implemented, it would be necessary to design the system so the RPC switched both the hot and the return sides of power.

  4. Open Hardware Business Models

    Directory of Open Access Journals (Sweden)

    Edy Ferreira

    2008-04-01

    Full Text Available In the September issue of the Open Source Business Resource, Patrick McNamara, president of the Open Hardware Foundation, gave a comprehensive introduction to the concept of open hardware, including some insights about the potential benefits for both companies and users. In this article, we present the topic from a different perspective, providing a classification of market offers from companies that are making money with open hardware.

  5. Anechoic Chamber test of the Electromagnetic Measurement System ground test unit

    Science.gov (United States)

    Stevenson, L. E.; Scott, L. D.; Oakes, E. T.

    1987-04-01

    The Electromagnetic Measurement System (EMMS) will acquire data on electromagnetic (EM) environments at key weapon locations on various aircraft certified for nuclear weapons. The high-frequency ground unit of the EMMS consists of an instrumented B61 bomb case that will measure (with current probes) the localized current density resulting from an applied EM field. For this portion of the EMMS, the first system test was performed in the Anechoic Chamber Facility at Sandia National Laboratories, Albuquerque, New Mexico. The EMMS pod was subjected to EM radiation at microwave frequencies of 1, 3, and 10 GHz. At each frequency, the EMMS pod was rotated at many positions relative to the microwave source so that the individual current probes were exposed to a direct line-of-sight illumination. The variations between the measured and calculated electric fields for the current probes with direct illumination by the EM source are within a few db. The results obtained from the anechoic test were better than expected and verify that the high frequency ground portion of the EMMS will accurately measure the EM environments for which it was designed.

  6. CASIS Fact Sheet: Hardware and Facilities

    Science.gov (United States)

    Solomon, Michael R.; Romero, Vergel

    2016-01-01

    Vencore is a proven information solutions, engineering, and analytics company that helps our customers solve their most complex challenges. For more than 40 years, we have designed, developed and delivered mission-critical solutions as our customers' trusted partner. The Engineering Services Contract, or ESC, provides engineering and design services to the NASA organizations engaged in development of new technologies at the Kennedy Space Center. Vencore is the ESC prime contractor, with teammates that include Stinger Ghaffarian Technologies, Sierra Lobo, Nelson Engineering, EASi, and Craig Technologies. The Vencore team designs and develops systems and equipment to be used for the processing of space launch vehicles, spacecraft, and payloads. We perform flight systems engineering for spaceflight hardware and software; develop technologies that serve NASA's mission requirements and operations needs for the future. Our Flight Payload Support (FPS) team at Kennedy Space Center (KSC) provides engineering, development, and certification services as well as payload integration and management services to NASA and commercial customers. Our main objective is to assist principal investigators (PIs) integrate their science experiments into payload hardware for research aboard the International Space Station (ISS), commercial spacecraft, suborbital vehicles, parabolic flight aircrafts, and ground-based studies. Vencore's FPS team is AS9100 certified and a recognized implementation partner for the Center for Advancement of Science in Space (CASIS

  7. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  8. A Power Hardware-in-the-Loop Platform with Remote Distribution Circuit Cosimulation

    Energy Technology Data Exchange (ETDEWEB)

    Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta; Williams, Tess L.; Schneider, Kevin P.; Chassin, David P.

    2015-04-01

    This paper demonstrates the use of a novel cosimulation architecture that integrates hardware testing using Power Hardware-in-the-Loop (PHIL) with larger-scale electric grid models using off-the-shelf, non-PHIL software tools. This architecture enables utilities to study the impacts of emerging energy technologies on their system and manufacturers to explore the interactions of new devices with existing and emerging devices on the power system, both without the need to convert existing grid models to a new platform or to conduct in-field trials. The paper describes an implementation of this architecture for testing two residential-scale advanced solar inverters at separate points of common coupling. The same hardware setup is tested with two different distribution feeders (IEEE 123 and 8500 node test systems) modeled using GridLAB-D. In addition to simplifying testing with multiple feeders, the architecture demonstrates additional flexibility with hardware testing in one location linked via the Internet to software modeling in a remote location. In testing, inverter current, real and reactive power, and PCC voltage are well captured by the co-simulation platform. Testing of the inverter advanced control features is currently somewhat limited by the software model time step (1 sec) and tested communication latency (24 msec). Overshoot induced oscillations are observed with volt/VAR control delays of 0 and 1.5 sec, while 3.4 sec and 5.5 sec delays produced little or no oscillation. These limitations could be overcome using faster modeling and communication within the same co-simulation architecture.

  9. Fabrication and Testing of Nuclear-Thermal Propulsion Ground Test Hardware, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Efficient nuclear-thermal propulsion requires heating a low molecular weight gas, typically hydrogen, to high temperature and expelling it through a nozzle. The...

  10. Ground vibration test results of a JetStar airplane using impulsive sine excitation

    Science.gov (United States)

    Kehoe, Michael W.; Voracek, David F.

    1989-01-01

    Structural excitation is important for both ground vibration and flight flutter testing. The structural responses caused by this excitation are analyzed to determine frequency, damping, and mode shape information. Many excitation waveforms have been used throughout the years. The use of impulsive sine (sin omega t)/omega t as an excitation waveform for ground vibration testing and the advantages of using this waveform for flight flutter testing are discussed. The ground vibration test results of a modified JetStar airplane using impulsive sine as an excitation waveform are compared with the test results of the same airplane using multiple-input random excitation. The results indicated that the structure was sufficiently excited using the impulsive sine waveform. Comparisons of input force spectrums, mode shape plots, and frequency and damping values for the two methods of excitation are presented.

  11. Reconfiguration of NASA GRC's Vacuum Facility 6 for Testing of Advanced Electric Propulsion System (AEPS) Hardware

    Science.gov (United States)

    Peterson, Peter Y.; Kamhawi, Hani; Huang, Wensheng; Yim, John T.; Haag, Thomas W.; Mackey, Jonathan A.; McVetta, Michael S.; Sorrelle, Luke T.; Tomsik, Thomas M.; Gilligan, Ryan P.; hide

    2018-01-01

    The NASA Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight propulsion system. The HERMeS thruster is being developed and tested at NASA GRC and NASA JPL through support of the Space Technology Mission Directorate (STMD) and is intended to be used as the electric propulsion system on the Power and Propulsion Element (PPE) of the recently announced Deep Space Gateway (DSG). The Advanced Electric Propulsion System (AEPS) contract was awarded to Aerojet-Rocketdyne to develop the HERMeS system into a flight system for use by NASA. To address the hardware test needs of the AEPS project, NASA GRC launched an effort to reconfigure Vacuum Facility 6 (VF-6) for high-power electric propulsion testing including upgrades and reconfigurations necessary to conduct performance, plasma plume, and system level integration testing. Results of the verification and validation testing with HERMeS Technology Demonstration Unit (TDU)-1 and TDU-3 Hall thrusters are also included.

  12. Testing a ground-based canopy model using the wind river canopy crane

    Science.gov (United States)

    Robert Van Pelt; Malcolm P. North

    1999-01-01

    A ground-based canopy model that estimates the volume of occupied space in forest canopies was tested using the Wind River Canopy Crane. A total of 126 trees in a 0.25 ha area were measured from the ground and directly from a gondola suspended from the crane. The trees were located in a low elevation, old-growth forest in the southern Washington Cascades. The ground-...

  13. Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft. Volume 3: Data from crew module testing

    Science.gov (United States)

    Shane, S. J.

    1985-01-01

    Over the past years, several papers and reports have documented the unacceptably high injury rate during the escape sequence (including the ejection and ground impact) of the crew module for F/FB-111 aircraft. This report documents a program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats. An energy absorbing test seat was designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions, was conducted at a sled test facility. Comparative tests with operational F-111 crewseats were also conducted. After successful dynamic testing of the seat, more testing was conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests werre conducted. The vertical drop tests were used to obtain comparative data between the energy absorbing and operational seats.

  14. LANDSAT-D ground segment operations plan, revision A

    Science.gov (United States)

    Evans, B.

    1982-01-01

    The basic concept for the utilization of LANDSAT ground processing resources is described. Only the steady state activities that support normal ground processing are addressed. This ground segment operations plan covers all processing of the multispectral scanner and the processing of thematic mapper through data acquisition and payload correction data generation for the LANDSAT 4 mission. The capabilities embedded in the hardware and software elements are presented from an operations viewpoint. The personnel assignments associated with each functional process and the mechanisms available for controlling the overall data flow are identified.

  15. SOAC - State-of-the-Art Car Engineering Tests at Department of Transportation High Speed Ground Test Center : Volume 2. Performance Tests.

    Science.gov (United States)

    1975-01-01

    The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...

  16. Battery algorithm verification and development using hardware-in-the-loop testing

    Science.gov (United States)

    He, Yongsheng; Liu, Wei; Koch, Brain J.

    Battery algorithms play a vital role in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), extended-range electric vehicles (EREVs), and electric vehicles (EVs). The energy management of hybrid and electric propulsion systems needs to rely on accurate information on the state of the battery in order to determine the optimal electric drive without abusing the battery. In this study, a cell-level hardware-in-the-loop (HIL) system is used to verify and develop state of charge (SOC) and power capability predictions of embedded battery algorithms for various vehicle applications. Two different batteries were selected as representative examples to illustrate the battery algorithm verification and development procedure. One is a lithium-ion battery with a conventional metal oxide cathode, which is a power battery for HEV applications. The other is a lithium-ion battery with an iron phosphate (LiFePO 4) cathode, which is an energy battery for applications in PHEVs, EREVs, and EVs. The battery cell HIL testing provided valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms, to accelerate battery algorithm future development and improvement, and to reduce hybrid/electric vehicle system development time and costs.

  17. Battery algorithm verification and development using hardware-in-the-loop testing

    Energy Technology Data Exchange (ETDEWEB)

    He, Yongsheng [General Motors Global Research and Development, 30500 Mound Road, MC 480-106-252, Warren, MI 48090 (United States); Liu, Wei; Koch, Brain J. [General Motors Global Vehicle Engineering, Warren, MI 48090 (United States)

    2010-05-01

    Battery algorithms play a vital role in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), extended-range electric vehicles (EREVs), and electric vehicles (EVs). The energy management of hybrid and electric propulsion systems needs to rely on accurate information on the state of the battery in order to determine the optimal electric drive without abusing the battery. In this study, a cell-level hardware-in-the-loop (HIL) system is used to verify and develop state of charge (SOC) and power capability predictions of embedded battery algorithms for various vehicle applications. Two different batteries were selected as representative examples to illustrate the battery algorithm verification and development procedure. One is a lithium-ion battery with a conventional metal oxide cathode, which is a power battery for HEV applications. The other is a lithium-ion battery with an iron phosphate (LiFePO{sub 4}) cathode, which is an energy battery for applications in PHEVs, EREVs, and EVs. The battery cell HIL testing provided valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms, to accelerate battery algorithm future development and improvement, and to reduce hybrid/electric vehicle system development time and costs. (author)

  18. Respiration testing for bioventing and biosparging remediation of petroleum contaminated soil and ground water

    International Nuclear Information System (INIS)

    Gray, A.L.; Brown, A.; Moore, B.J.; Payne, R.E.

    1996-01-01

    Respiration tests were performed to measure the effect of subsurface aeration on the biodegradation rates of petroleum hydrocarbon contamination in vadose zone soils (bioventing) and ground water (biosparging). The aerobic biodegradation of petroleum contamination is typically limited by the absence of oxygen in the soil and ground water. Therefore, the goal of these bioremediation technologies is to increase the oxygen concentration in the subsurface and thereby enhance the natural aerobic biodegradation of the organic contamination. One case study for biosparging bioremediation testing is presented. At this site atmospheric air was injected into the ground water to increase the dissolved oxygen concentration in the ground water surrounding a well, and to aerate the smear zone above the ground water table. Aeration flow rates of 3 to 8 cfm (0.09 to 0.23 m 3 /min) were sufficient to increase the dissolved oxygen concentration. Petroleum hydrocarbon biodegradation rates of 32 to 47 microg/l/hour were calculated based on measurements of dissolved oxygen concentration in ground water. The results of this test have demonstrated that biosparging enhances the biodegradation of petroleum hydrocarbons, but the results as they apply to remediation are not known. Two case studies for bioventing respiration testing are presented

  19. Open Hardware at CERN

    CERN Multimedia

    CERN Knowledge Transfer Group

    2015-01-01

    CERN is actively making its knowledge and technology available for the benefit of society and does so through a variety of different mechanisms. Open hardware has in recent years established itself as a very effective way for CERN to make electronics designs and in particular printed circuit board layouts, accessible to anyone, while also facilitating collaboration and design re-use. It is creating an impact on many levels, from companies producing and selling products based on hardware designed at CERN, to new projects being released under the CERN Open Hardware Licence. Today the open hardware community includes large research institutes, universities, individual enthusiasts and companies. Many of the companies are actively involved in the entire process from design to production, delivering services and consultancy and even making their own products available under open licences.

  20. A hardware-in-the-loop simulation platform for prototyping and testing of wind generator controllers

    Energy Technology Data Exchange (ETDEWEB)

    Paquin, J.N.; Dufour, C.; Belanger, J. [OPAL-RT Technologies Inc., Montreal, PQ (Canada)

    2008-07-01

    Engineers from different specialized fields need to be involved in meeting the growing demand for integrated renewable energy sources into existing power grids. The integration of distributed generation (DG) sources significantly changes the characteristics of an entire network and requires analysis of power quality, transient response to fault occurrences, protection coordination studies and controller interaction studies. Power electronic converters are a considerable challenge. Accurately simulating fast switching devices requires the use of very small time steps to solve the system's equations. Off-line simulation is often used in the field. However, it is time consuming if no precision compromise has been made on models. In addition, off-line simulation tools do not offer the wide range of possibilities available with state-of-the-art distributed real-time simulators that combine the efforts of control engineers and specialists from wind turbine manufacturers, who need to test their controllers using hardware-in-the-loop (HIL), together with those of network planning engineers from public utilities, who will conduct interconnection, interaction and protection studies. This paper focused on the prototyping and testing of DG controllers using hardware-in-the-loop simulation. The model was described and consisted of a 10-turbine wind farm connected to a single feeder, simulated using an eMEGAsim real-time simulator equipped with 8-processor cores. One of the wind turbines was controlled using an externally emulated controller. It was modeled and simulated using a dual-processor core real-time simulator, which interacted with the plant model via analog and fast digital inputs and outputs. The effectiveness of the technology was demonstrated by comparing fully numerical simulation results with an HIL-connected DFIG controller simulation. The sampling effect of the digital simulator was correctly compensated for. The simulator could be driven directly by real

  1. Cryogenic actuator testing for the SAFARI ground calibration setup

    Science.gov (United States)

    de Jonge, C.; Eggens, M.; Nieuwenhuizen, A. C. T.; Detrain, A.; Smit, H.; Dieleman, P.

    2012-09-01

    For the on-ground calibration setup of the SAFARI instrument cryogenic mechanisms are being developed at SRON Netherlands Institute for Space Research, including a filter wheel, XYZ-scanner and a flipmirror mechanism. Due to the extremely low background radiation requirement of the SAFARI instrument, all of these mechanisms will have to perform their work at 4.5 Kelvin and low-dissipative cryogenic actuators are required to drive these mechanisms. In this paper, the performance of stepper motors, piezoelectric actuators and brushless DC-motors as cryogenic actuators are compared. We tested stepper motor mechanical performance and electrical dissipation at 4K. The actuator requirements, test setup and test results are presented. Furthermore, design considerations and early performance tests of the flipmirror mechanism are discussed. This flipmirror features a 102 x 72 mm aluminum mirror that can be rotated 45°. A Phytron stepper motor with reduction gearbox has been chosen to drive the flipmirror. Testing showed that this motor has a dissipation of 49mW at 4K with a torque of 60Nmm at 100rpm. Thermal modeling of the flipmirror mechanism predicts that with proper thermal strapping the peak temperature of the flipmirror after a single action will be within the background level requirements of the SAFARI instrument. Early tests confirm this result. For low-duty cycle operations commercial stepper motors appear suitable as actuators for test equipment in the SAFARI on ground calibration setup.

  2. Travel Software using GPU Hardware

    CERN Document Server

    Szalwinski, Chris M; Dimov, Veliko Atanasov; CERN. Geneva. ATS Department

    2015-01-01

    Travel is the main multi-particle tracking code being used at CERN for the beam dynamics calculations through hadron and ion linear accelerators. It uses two routines for the calculation of space charge forces, namely, rings of charges and point-to-point. This report presents the studies to improve the performance of Travel using GPU hardware. The studies showed that the performance of Travel with the point-to-point simulations of space-charge effects can be speeded up at least 72 times using current GPU hardware. Simple recompilation of the source code using an Intel compiler can improve performance at least 4 times without GPU support. The limited memory of the GPU is the bottleneck. Two algorithms were investigated on this point: repeated computation and tiling. The repeating computation algorithm is simpler and is the currently recommended solution. The tiling algorithm was more complicated and degraded performance. Both build and test instructions for the parallelized version of the software are inclu...

  3. A Hardware-Accelerated Quantum Monte Carlo framework (HAQMC) for N-body systems

    Science.gov (United States)

    Gothandaraman, Akila; Peterson, Gregory D.; Warren, G. Lee; Hinde, Robert J.; Harrison, Robert J.

    2009-12-01

    Interest in the study of structural and energetic properties of highly quantum clusters, such as inert gas clusters has motivated the development of a hardware-accelerated framework for Quantum Monte Carlo simulations. In the Quantum Monte Carlo method, the properties of a system of atoms, such as the ground-state energies, are averaged over a number of iterations. Our framework is aimed at accelerating the computations in each iteration of the QMC application by offloading the calculation of properties, namely energy and trial wave function, onto reconfigurable hardware. This gives a user the capability to run simulations for a large number of iterations, thereby reducing the statistical uncertainty in the properties, and for larger clusters. This framework is designed to run on the Cray XD1 high performance reconfigurable computing platform, which exploits the coarse-grained parallelism of the processor along with the fine-grained parallelism of the reconfigurable computing devices available in the form of field-programmable gate arrays. In this paper, we illustrate the functioning of the framework, which can be used to calculate the energies for a model cluster of helium atoms. In addition, we present the capabilities of the framework that allow the user to vary the chemical identities of the simulated atoms. Program summaryProgram title: Hardware Accelerated Quantum Monte Carlo (HAQMC) Catalogue identifier: AEEP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 691 537 No. of bytes in distributed program, including test data, etc.: 5 031 226 Distribution format: tar.gz Programming language: C/C++ for the QMC application, VHDL and Xilinx 8.1 ISE/EDK tools for FPGA design and development Computer: Cray XD

  4. Forced vibration tests of a model foundation on rock ground

    International Nuclear Information System (INIS)

    Kisaki, N.; Siota, M.; Yamada, M.; Ikeda, A.; Tsuchiya, H.; Kitazawa, K.; Kuwabara, Y.; Ogiwara, Y.

    1983-01-01

    The response of very stiff structures, such as nuclear reactor buildings, to earthquake ground motion is significantly affected by radiation damping due to the soil-structure interaction. The radiation damping can be computed by vibration admittance theory or dynamical ground compliance theory. In order to apply the values derived from these theories to the practical problems, comparative studies between theoretical results and experimental results concerning the soil-structure interaction, especially if the ground is rock, are urgently needed. However, experimental results for rock are less easily obtained than theoretical ones. The purpose of this paper is to describe the harmonic excitation tests of a model foundation on rock and to describe the results of comparative studies. (orig./HP)

  5. Optical studies in the holographic ground station

    Science.gov (United States)

    Workman, Gary L.

    1991-01-01

    The Holographic Group System (HGS) Facility in rooms 22 & 123, Building 4708 has been developed to provide for ground based research in determining pre-flight parameters and analyzing the results from space experiments. The University of Alabama, Huntsville (UAH) has researched the analysis aspects of the HGS and reports their findings here. Some of the results presented here also occur in the Facility Operating Procedure (FOP), which contains instructions for power up, operation, and powerdown of the Fluid Experiment System (FES) Holographic Ground System (HGS) Test Facility for the purpose of optically recording fluid and/or crystal behavior in a test article during ground based testing through the construction of holograms and recording of videotape. The alignment of the optical bench components, holographic reconstruction and and microscopy alignment sections were also included in the document for continuity even though they are not used until after optical recording of the test article) setup of support subsystems and the Automated Holography System (AHS) computer. The HGS provides optical recording and monitoring during GCEL runs or development testing of potential FES flight hardware or software. This recording/monitoring can be via 70mm holographic film, standard videotape, or digitized images on computer disk. All optical bench functions necessary to construct holograms will be under the control of the AHS personal computer (PC). These include type of exposure, time intervals between exposures, exposure length, film frame identification, film advancement, film platen evacuation and repressurization, light source diffuser introduction, and control of realtime video monitoring. The completed sequence of hologram types (single exposure, diffuse double exposure, etc.) and their time of occurrence can be displayed, printed, or stored on floppy disk posttest for the user.

  6. Hardware Implementation Of Line Clipping A lgorithm By Using FPGA

    Directory of Open Access Journals (Sweden)

    Amar Dawod

    2013-04-01

    Full Text Available The computer graphics system performance is increasing faster than any other computing application. Algorithms for line clipping against convex polygons and lines have been studied for a long time and many research papers have been published so far. In spite of the latest graphical hardware development and significant increase of performance the clipping is still a bottleneck of any graphical system. So its implementation in hardware is essential for real time applications. In this paper clipping operation is discussed and a hardware implementation of the line clipping algorithm is presented and finally formulated and tested using Field Programmable Gate Arrays (FPGA. The designed hardware unit consists of two parts : the first is positional code generator unit and the second is the clipping unit. Finally it is worth mentioning that the  designed unit is capable of clipping (232524 line segments per second.       

  7. Optimized hardware design for the divertor remote handling control system

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, Hannu [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland)], E-mail: hannu.saarinen@tut.fi; Tiitinen, Juha; Aha, Liisa; Muhammad, Ali; Mattila, Jouni; Siuko, Mikko; Vilenius, Matti [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Jaervenpaeae, Jorma [VTT Systems Engineering, Tekniikankatu 1, 33720 Tampere (Finland); Irving, Mike; Damiani, Carlo; Semeraro, Luigi [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2009-06-15

    A key ITER maintenance activity is the exchange of the divertor cassettes. One of the major focuses of the EU Remote Handling (RH) programme has been the study and development of the remote handling equipment necessary for divertor exchange. The current major step in this programme involves the construction of a full scale physical test facility, namely DTP2 (Divertor Test Platform 2), in which to demonstrate and refine the RH equipment designs for ITER using prototypes. The major objective of the DTP2 project is the proof of concept studies of various RH devices, but is also important to define principles for standardizing control hardware and methods around the ITER maintenance equipment. This paper focuses on describing the control system hardware design optimization that is taking place at DTP2. Here there will be two RH movers, namely the Cassette Multifuctional Mover (CMM), Cassette Toroidal Mover (CTM) and assisting water hydraulic force feedback manipulators (WHMAN) located aboard each Mover. The idea here is to use common Real Time Operating Systems (RTOS), measurement and control IO-cards etc. for all maintenance devices and to standardize sensors and control components as much as possible. In this paper, new optimized DTP2 control system hardware design and some initial experimentation with the new DTP2 RH control system platform are presented. The proposed new approach is able to fulfil the functional requirements for both Mover and Manipulator control systems. Since the new control system hardware design has reduced architecture there are a number of benefits compared to the old approach. The simplified hardware solution enables the use of a single software development environment and a single communication protocol. This will result in easier maintainability of the software and hardware, less dependence on trained personnel, easier training of operators and hence reduced the development costs of ITER RH.

  8. Testing, installation and development of hardware and software components for the forward pixel detector of CMS

    CERN Document Server

    Florez Bustos, Carlos Andres

    2007-01-01

    The LHC (Large Hadron Collider) will be the particle accelerator with the highest collision energy ever. CMS (Compact Muon Solenoid) is one of the two largest experiments at the LHC. A main goal of CMS is to elucidate the electroweak symmetry breaking and determine if the Higgs mechanism is responsible for it. The pixel detector in CMS is the closest detector to the interaction point and is part of the tracker system. This thesis presents four different projects related to the forward pixel detector, performed as part of the testing and development of its hardware and software components. It presents the methods, implementation and results for the data acquisition and installation of the detector control system at the Meson Test Beam Facility of Fermilab for the beam test of the detector; the study of the C.A.E.N power supply and the multi service cable; the layout of the test stands for the assembly of the half-disk and half-service cylinder and the development of a software interface to the data acquisition...

  9. Secure Hardware Performance Analysis in Virtualized Cloud Environment

    Directory of Open Access Journals (Sweden)

    Chee-Heng Tan

    2013-01-01

    Full Text Available The main obstacle in mass adoption of cloud computing for database operations is the data security issue. In this paper, it is shown that IT services particularly in hardware performance evaluation in virtual machine can be accomplished effectively without IT personnel gaining access to real data for diagnostic and remediation purposes. The proposed mechanisms utilized TPC-H benchmark to achieve 2 objectives. First, the underlying hardware performance and consistency is supervised via a control system, which is constructed using a combination of TPC-H queries, linear regression, and machine learning techniques. Second, linear programming techniques are employed to provide input to the algorithms that construct stress-testing scenarios in the virtual machine, using the combination of TPC-H queries. These stress-testing scenarios serve 2 purposes. They provide the boundary resource threshold verification to the first control system, so that periodic training of the synthetic data sets for performance evaluation is not constrained by hardware inadequacy, particularly when the resources in the virtual machine are scaled up or down which results in the change of the utilization threshold. Secondly, they provide a platform for response time verification on critical transactions, so that the expected Quality of Service (QoS from these transactions is assured.

  10. Web tools to monitor and debug DAQ hardware

    International Nuclear Information System (INIS)

    Desavouret, Eugene; Nogiec, Jerzy M.

    2003-01-01

    A web-based toolkit to monitor and diagnose data acquisition hardware has been developed. It allows for remote testing, monitoring, and control of VxWorks data acquisition computers and associated instrumentation using the HTTP protocol and a web browser. This solution provides concurrent and platform independent access, supplementary to the standard single-user rlogin mechanism. The toolkit is based on a specialized web server, and allows remote access and execution of select system commands and tasks, execution of test procedures, and provides remote monitoring of computer system resources and connected hardware. Various DAQ components such as multiplexers, digital I/O boards, analog to digital converters, or current sources can be accessed and diagnosed remotely in a uniform and well-organized manner. Additionally, the toolkit application supports user authentication and is able to enforce specified access restrictions

  11. Aircraft interrogation and display system: A ground support equipment for digital flight systems

    Science.gov (United States)

    Glover, R. D.

    1982-01-01

    A microprocessor-based general purpose ground support equipment for electronic systems was developed. The hardware and software are designed to permit diverse applications in support of aircraft flight systems and simulation facilities. The implementation of the hardware, the structure of the software, describes the application of the system to an ongoing research aircraft project are described.

  12. Electronic ground support equipment for the Cluster Electric Field and Wave Experiment

    International Nuclear Information System (INIS)

    Sten, T.A.

    1992-10-01

    In a collaboration between ESA and NASA, ionosphere plasma structures will be studied by four indentical space probes to be launched in 1995 from French Guiana. The Electric Field and Wave (EFW) experiment will be designed to measure electric field and density fluctations by means of four sensors, each deployed on a 50 meter wire boom. In order to perform comprehensive tests and calibrations of the EFW experiment, computer controlled electronic ground support equipment has been developed. This report describes the hardware of the equipment, produced and assembled at the University of Oslo. 15 figs

  13. Hardware protection through obfuscation

    CERN Document Server

    Bhunia, Swarup; Tehranipoor, Mark

    2017-01-01

    This book introduces readers to various threats faced during design and fabrication by today’s integrated circuits (ICs) and systems. The authors discuss key issues, including illegal manufacturing of ICs or “IC Overproduction,” insertion of malicious circuits, referred as “Hardware Trojans”, which cause in-field chip/system malfunction, and reverse engineering and piracy of hardware intellectual property (IP). The authors provide a timely discussion of these threats, along with techniques for IC protection based on hardware obfuscation, which makes reverse-engineering an IC design infeasible for adversaries and untrusted parties with any reasonable amount of resources. This exhaustive study includes a review of the hardware obfuscation methods developed at each level of abstraction (RTL, gate, and layout) for conventional IC manufacturing, new forms of obfuscation for emerging integration strategies (split manufacturing, 2.5D ICs, and 3D ICs), and on-chip infrastructure needed for secure exchange o...

  14. Component design challenges for the ground-based SP-100 nuclear assembly test

    International Nuclear Information System (INIS)

    Markley, R.A.; Disney, R.K.; Brown, G.B.

    1989-01-01

    The SP-100 ground engineering system (GES) program involves a ground test of the nuclear subsystems to demonstrate their design. The GES nuclear assembly test (NAT) will be performed in a simulated space environment within a vessel maintained at ultrahigh vacuum. The NAT employs a radiation shielding system that is comprised of both prototypical and nonprototypical shield subsystems to attenuate the reactor radiation leakage and also nonprototypical heat transport subsystems to remove the heat generated by the reactor. The reactor is cooled by liquid lithium, which will operate at temperatures prototypical of the flight system. In designing the components for these systems, a number of design challenges were encountered in meeting the operational requirements of the simulated space environment (and where necessary, prototypical requirements) while also accommodating the restrictions of a ground-based test facility with its limited available space. This paper presents a discussion of the design challenges associated with the radiation shield subsystem components and key components of the heat transport systems

  15. Assessment of three types of spaceflight hardware for tissue culture studies: Comparison of skeletal tissue growth and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Klement, B.J. [Space Medicine and Life Sciences Research Center Department of Anatomy Morehouse School of Medicine 720 Westview Dr. SW Atlanta, Georgia30310-1495 (United States); Spooner, B.S. [NASA Specialized Center of Research and Training Division of Biology Ackert Hall Kansas State University Manhattan, Kansas66506 (United States)

    1997-01-01

    Three different types of spaceflight hardware, the BioProcessing Module (BPM), the Materials Dispersion Apparatus (MDA), and the Fluid Processing Apparatus (FPA), were assessed for their ability to support pre-metatarsal growth and differentiation in experiments conducted on five space shuttle flights. BPM-cultured pre-metatarsal tissue showed no difference in flight and ground control lengths. Flight and ground controls cultured in the MDA grew 135 {mu}m and 141 {mu}m, respectively, in an 11 day experiment. Only five control rods and three flight rods mineralized. In another MDA experiment, pre-metatarsals were cultured at 4{degree}C (277K) or 20{degree}C (293K) for the 16 day mission, then cultured an additional 16 days in laboratory dishes at 37{degree}C (310K). The 20{degree}C (293K) cultures died post-flight. The 4{degree}C (277K) flight pre-metatarsals grew 417 {mu}m more than the 4{degree}C (277K) ground controls post-flight. In 5 and 6 day experiments done in FPAs, flight rods grew longer than ground control rods. In a 14 day experiment, ground control and flight rods also expanded in length, but there was no difference between them. The pre-metatarsals cultured in the FPAs did not mineralize, or terminally differentiate. These experiments demonstrate, that while supporting pre-metatarsal growth in length, the three types of hardware are not suitable to support routine differentiation. {copyright} {ital 1997 American Institute of Physics.}

  16. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02

    Directory of Open Access Journals (Sweden)

    Ruihang Yu

    2015-09-01

    Full Text Available In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter—SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS, a Global Navigation Satellite System (GNSS remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising.

  17. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    International Nuclear Information System (INIS)

    Chiara, P.; Morelli, A.

    2010-01-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements.Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken.This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  18. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    Science.gov (United States)

    Chiara, P.; Morelli, A.

    2010-05-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements. Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken. This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  19. Expert System analysis of non-fuel assembly hardware and spent fuel disassembly hardware: Its generation and recommended disposal

    International Nuclear Information System (INIS)

    Williamson, D.A.

    1991-01-01

    Almost all of the effort being expended on radioactive waste disposal in the United States is being focused on the disposal of spent Nuclear Fuel, with little consideration for other areas that will have to be disposed of in the same facilities. one area of radioactive waste that has not been addressed adequately because it is considered a secondary part of the waste issue is the disposal of the various Non-Fuel Bearing Components of the reactor core. These hardware components fall somewhat arbitrarily into two categories: Non-Fuel Assembly (NFA) hardware and Spent Fuel Disassembly (SFD) hardware. This work provides a detailed examination of the generation and disposal of NFA hardware and SFD hardware by the nuclear utilities of the United States as it relates to the Civilian Radioactive Waste Management Program. All available sources of data on NFA and SFD hardware are analyzed with particular emphasis given to the Characteristics Data Base developed by Oak Ridge National Laboratory and the characterization work performed by Pacific Northwest Laboratories and Rochester Gas ampersand Electric. An Expert System developed as a portion of this work is used to assist in the prediction of quantities of NFA hardware and SFD hardware that will be generated by the United States' utilities. Finally, the hardware waste management practices of the United Kingdom, France, Germany, Sweden, and Japan are studied for possible application to the disposal of domestic hardware wastes. As a result of this work, a general classification scheme for NFA and SFD hardware was developed. Only NFA and SFD hardware constructed of zircaloy and experiencing a burnup of less than 70,000 MWD/MTIHM and PWR control rods constructed of stainless steel are considered Low-Level Waste. All other hardware is classified as Greater-ThanClass-C waste

  20. Boeing's STAR-FODB test results

    Science.gov (United States)

    Fritz, Martin E.; de la Chapelle, Michael; Van Ausdal, Arthur W.

    1995-05-01

    Boeing has successfully concluded a 2 1/2 year, two phase developmental contract for the STAR-Fiber Optic Data Bus (FODB) that is intended for future space-based applications. The first phase included system analysis, trade studies, behavior modeling, and architecture and protocal selection. During this phase we selected AS4074 Linear Token Passing Bus (LTPB) protocol operating at 200 Mbps, along with the passive, star-coupled fiber media. The second phase involved design, build, integration, and performance and environmental test of brassboard hardware. The resulting brassboard hardware successfully passed performance testing, providing 200 Mbps operation with a 32 X 32 star-coupled medium. This hardware is suitable for a spaceflight experiment to validate ground testing and analysis and to demonstrate performace in the intended environment. The fiber bus interface unit (FBIU) is a multichip module containing transceiver, protocol, and data formatting chips, buffer memory, and a station management controller. The FBIU has been designed for low power, high reliability, and radiation tolerance. Nine FBIUs were built and integrated with the fiber optic physical layer consisting of the fiber cable plant (FCP) and star coupler assembly (SCA). Performance and environmental testing, including radiation exposure, was performed on selected FBIUs and the physical layer. The integrated system was demonstrated with a full motion color video image transfer across the bus while simultaneously performing utility functions with a fiber bus control module (FBCM) over a telemetry and control (T&C) bus, in this case AS1773.

  1. TreeBASIS Feature Descriptor and Its Hardware Implementation

    Directory of Open Access Journals (Sweden)

    Spencer Fowers

    2014-01-01

    Full Text Available This paper presents a novel feature descriptor called TreeBASIS that provides improvements in descriptor size, computation time, matching speed, and accuracy. This new descriptor uses a binary vocabulary tree that is computed using basis dictionary images and a test set of feature region images. To facilitate real-time implementation, a feature region image is binary quantized and the resulting quantized vector is passed into the BASIS vocabulary tree. A Hamming distance is then computed between the feature region image and the effectively descriptive basis dictionary image at a node to determine the branch taken and the path the feature region image takes is saved as a descriptor. The TreeBASIS feature descriptor is an excellent candidate for hardware implementation because of its reduced descriptor size and the fact that descriptors can be created and features matched without the use of floating point operations. The TreeBASIS descriptor is more computationally and space efficient than other descriptors such as BASIS, SIFT, and SURF. Moreover, it can be computed entirely in hardware without the support of a CPU for additional software-based computations. Experimental results and a hardware implementation show that the TreeBASIS descriptor compares well with other descriptors for frame-to-frame homography computation while requiring fewer hardware resources.

  2. Variations in radon-222 in soil and ground water at the Nevada Test Site

    International Nuclear Information System (INIS)

    Wollenberg, H.; Straume, T.; Smith, A.; King, C.Y.

    1977-01-01

    To help evaluate the applicability of variations of radon-222 in ground water and soil gas as a possible earthquake predictor, measurements were conducted in conjunction with underground explosions at the Nevada Test Site (NTS). Radon fluctuations in ground water have been observed during a sequence of aftershocks following the Oroville, California earthquake of 1 August 1975. The NTS measurements were designed to show if these fluctuations were in response to ground shaking; if not, they could be attributed to changes in earth strain prior to the aftershocks. Well waters were periodically sampled and soil-gas 222 Rn monitored prior to and following seven underground explosions of varying strength and distance from sampling and detector locations. Soil-gas 222 Rn contents were measured by the alpha-track method; well water 222 Rn by gamma-ray spectrometry. There was no clearly identifiable correlation between well-water radon fluctuations and individual underground tests. One prominent variation in soil-gas radon corresponded to ground shaking from a pair of underground tests in alluvium; otherwise, there was no apparent correlation between radon emanation and other explosions. Markedly lower soil-gas radon contents following the tests were probably caused by consolidation of alluvium in response to ground shaking

  3. Plutonium Protection System (PPS). Volume 2. Hardware description. Final report

    International Nuclear Information System (INIS)

    Miyoshi, D.S.

    1979-05-01

    The Plutonium Protection System (PPS) is an integrated safeguards system developed by Sandia Laboratories for the Department of Energy, Office of Safeguards and Security. The system is designed to demonstrate and test concepts for the improved safeguarding of plutonium. Volume 2 of the PPS final report describes the hardware elements of the system. The major areas containing hardware elements are the vault, where plutonium is stored, the packaging room, where plutonium is packaged into Container Modules, the Security Operations Center, which controls movement of personnel, the Material Accountability Center, which maintains the system data base, and the Material Operations Center, which monitors the operating procedures in the system. References are made to documents in which details of the hardware items can be found

  4. The on-ground acquisition and data analysis system for the PDS detector on board the SAX satellite

    International Nuclear Information System (INIS)

    Dal Fiume, D.; Nicastro, L.; Orlandini, M.; Trifoglio, M.

    1997-01-01

    The Phoswich Detection System (PDS) is the high-energy (15-300 keV) instrument on board the Italian-Dutch X-ray astronomy satellite SAX. Functional tests were carried out at BICRON (Newbury, Ohio USA) and at LABEN (Vimodrone Italy). Full ground calibrations have been performed between the end of 1994 and the beginning of 1995. The authors describe in the following the system that they used to acquire and analyse the data coming from the PDS experiment during the ground tests and calibration. It will be used to store and maintain data during both the pre-operational and the operational phases. In a previous report (Dal Fiume D., Frontera F., Orlandini M., and Trifoglio M., AIP Conf. Proc., 61 (1994) 395) they described the general architecture of the data analysis system. In this report they give a detailed description of the entire system, including the hardware and software developed by LABEN to acquire data during on-ground tests. A complete description of the different modules, user interface, inter-process communications, analysis and display tools are presented. Current status of the project is discussed

  5. Locating hardware faults in a data communications network of a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-01-12

    Hardware faults location in a data communications network of a parallel computer. Such a parallel computer includes a plurality of compute nodes and a data communications network that couples the compute nodes for data communications and organizes the compute node as a tree. Locating hardware faults includes identifying a next compute node as a parent node and a root of a parent test tree, identifying for each child compute node of the parent node a child test tree having the child compute node as root, running a same test suite on the parent test tree and each child test tree, and identifying the parent compute node as having a defective link connected from the parent compute node to a child compute node if the test suite fails on the parent test tree and succeeds on all the child test trees.

  6. Hardware Support for Embedded Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2012-01-01

    The general Java runtime environment is resource hungry and unfriendly for real-time systems. To reduce the resource consumption of Java in embedded systems, direct hardware support of the language is a valuable option. Furthermore, an implementation of the Java virtual machine in hardware enables...... worst-case execution time analysis of Java programs. This chapter gives an overview of current approaches to hardware support for embedded and real-time Java....

  7. Parallel random number generator for inexpensive configurable hardware cells

    Science.gov (United States)

    Ackermann, J.; Tangen, U.; Bödekker, B.; Breyer, J.; Stoll, E.; McCaskill, J. S.

    2001-11-01

    A new random number generator ( RNG) adapted to parallel processors has been created. This RNG can be implemented with inexpensive hardware cells. The correlation between neighboring cells is suppressed with smart connections. With such connection structures, sequences of pseudo-random numbers are produced. Numerical tests including a self-avoiding random walk test and the simulation of the order parameter and energy of the 2D Ising model give no evidence for correlation in the pseudo-random sequences. Because the new random number generator has suppressed the correlation between neighboring cells which is usually observed in cellular automaton implementations, it is applicable for extended time simulations. It gives an immense speed-up factor if implemented directly in configurable hardware, and has recently been used for long time simulations of spatially resolved molecular evolution.

  8. Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft. Volume 2: Data from seat testing

    Science.gov (United States)

    Shane, S. J.

    1985-01-01

    The unacceptably high injury rate during the escape sequence (including the ejection and ground impact) of the crew module for F/FB-111 aircraft is reviewed. A program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats is presented. An energy absorbing test seat is designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions is conducted at a sled test facility. Comparative tests with operational F-111 crewseats are also conducted. After successful dynamic testing of the seat, more testing is conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests are conducted. The vertical drop tests are used to obtain comparative data between the energy absorbing and operational seats. Volume 1 describes the energy absorbing test seat and testing conducted, and evaluates the data from both test series. Volume 2 presents the data obtained during the seat test series, while Volume 3 presents the data from the crew module test series.

  9. Development of a hardware-in-loop attitude control simulator for a CubeSat satellite

    Science.gov (United States)

    Tapsawat, Wittawat; Sangpet, Teerawat; Kuntanapreeda, Suwat

    2018-01-01

    Attitude control is an important part in satellite on-orbit operation. It greatly affects the performance of satellites. Testing of an attitude determination and control subsystem (ADCS) is very challenging since it might require attitude dynamics and space environment in the orbit. This paper develops a low-cost hardware-in-loop (HIL) simulator for testing an ADCS of a CubeSat satellite. The simulator consists of a numerical simulation part, a hardware part, and a HIL interface hardware unit. The numerical simulation part includes orbital dynamics, attitude dynamics and Earth’s magnetic field. The hardware part is the real ADCS board of the satellite. The simulation part outputs satellite’s angular velocity and geomagnetic field information to the HIL interface hardware. Then, based on this information, the HIL interface hardware generates I2C signals mimicking the signals of the on-board rate-gyros and magnetometers and consequently outputs the signals to the ADCS board. The ADCS board reads the rate-gyro and magnetometer signals, calculates control signals, and drives the attitude actuators which are three magnetic torquers (MTQs). The responses of the MTQs sensed by a separated magnetometer are feedback to the numerical simulation part completing the HIL simulation loop. Experimental studies are conducted to demonstrate the feasibility and effectiveness of the simulator.

  10. HARDWARE TROJAN IDENTIFICATION AND DETECTION

    OpenAIRE

    Samer Moein; Fayez Gebali; T. Aaron Gulliver; Abdulrahman Alkandari

    2017-01-01

    ABSTRACT The majority of techniques developed to detect hardware trojans are based on specific attributes. Further, the ad hoc approaches employed to design methods for trojan detection are largely ineffective. Hardware trojans have a number of attributes which can be used to systematically develop detection techniques. Based on this concept, a detailed examination of current trojan detection techniques and the characteristics of existing hardware trojans is presented. This is used to dev...

  11. Hunting for hardware changes in data centres

    International Nuclear Information System (INIS)

    Coelho dos Santos, M; Steers, I; Szebenyi, I; Xafi, A; Barring, O; Bonfillou, E

    2012-01-01

    With many servers and server parts the environment of warehouse sized data centres is increasingly complex. Server life-cycle management and hardware failures are responsible for frequent changes that need to be managed. To manage these changes better a project codenamed “hardware hound” focusing on hardware failure trending and hardware inventory has been started at CERN. By creating and using a hardware oriented data set - the inventory - with detailed information on servers and their parts as well as tracking changes to this inventory, the project aims at, for example, being able to discover trends in hardware failure rates.

  12. GES [Ground Engineering System] test site preparation

    International Nuclear Information System (INIS)

    Cox, C.M.; Mahaffey, M.K.; Miller, W.C.; Schade, A.R.; Toyoda, K.G.

    1987-10-01

    Activities are under way at Hanford to convert the 309 containment building and its associated service wing to a nuclear test facility for the Ground Engineering System (GES) test. Conceptual design is about 80% complete, encompassing facility modifications, a secondary heat transport system, a large vacuum system, a test article cell and handing system, control and data handling systems, and safety andl auxiliary systems. The design makes extensive use of existing equipment to minimize technical risk and cost. Refurbishment of this equipment is 25% complete. Cleanout of some 1000 m 3 of equipment from the earlier reactor test in the facility is 85% complete. An Environmental Assessment was prepared and revised to incorporate Department of Energy (DOE) comments. It is now in the DOE approval chain, where a Finding of No Significant Impact is expected. During the next year, definite design will be well advanced, long-lead procurements will be initiated, construction planning will be completed, an operator training plan will be prepared, and the site (preliminary) safety analysis report will be drafted

  13. Open-source hardware for medical devices.

    Science.gov (United States)

    Niezen, Gerrit; Eslambolchilar, Parisa; Thimbleby, Harold

    2016-04-01

    Open-source hardware is hardware whose design is made publicly available so anyone can study, modify, distribute, make and sell the design or the hardware based on that design. Some open-source hardware projects can potentially be used as active medical devices. The open-source approach offers a unique combination of advantages, including reducing costs and faster innovation. This article compares 10 of open-source healthcare projects in terms of how easy it is to obtain the required components and build the device.

  14. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Xianwen Ning

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  15. Ground-based self-gravity tests for LISA Pathfinder and LISA

    International Nuclear Information System (INIS)

    Trenkel, C; Warren, C; Wealthy, D

    2009-01-01

    Gravitational coupling between the free-falling test masses and the surrounding spacecraft is one of the dominant noise sources for both LISA Pathfinder and LISA. At present, there are no plans to verify any of the self-gravity requirements by test, on the ground. Here, we explore the possibilities of conducting such tests, using a customised torsion balance. We discuss the main sources of systematic and statistical uncertainty present in such a set-up. Our preliminary assessment indicates that the sensitivity is sufficient to carry out meaningful self-gravity tests.

  16. Electrical, electronics, and digital hardware essentials for scientists and engineers

    CERN Document Server

    Lipiansky, Ed

    2012-01-01

    A practical guide for solving real-world circuit board problems Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers arms engineers with the tools they need to test, evaluate, and solve circuit board problems. It explores a wide range of circuit analysis topics, supplementing the material with detailed circuit examples and extensive illustrations. The pros and cons of various methods of analysis, fundamental applications of electronic hardware, and issues in logic design are also thoroughly examined. The author draws on more than tw

  17. Carbonate fuel cell endurance: Hardware corrosion and electrolyte management status

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Farooque, M.; Maru, H.

    1993-01-01

    Endurance tests of carbonate fuel cell stacks (up to 10,000 hours) have shown that hardware corrosion and electrolyte losses can be reasonably controlled by proper material selection and cell design. Corrosion of stainless steel current collector hardware, nickel clad bipolar plate and aluminized wet seal show rates within acceptable limits. Electrolyte loss rate to current collector surface has been minimized by reducing exposed current collector surface area. Electrolyte evaporation loss appears tolerable. Electrolyte redistribution has been restrained by proper design of manifold seals.

  18. Carbonate fuel cell endurance: Hardware corrosion and electrolyte management status

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Farooque, M.; Maru, H.

    1993-05-01

    Endurance tests of carbonate fuel cell stacks (up to 10,000 hours) have shown that hardware corrosion and electrolyte losses can be reasonably controlled by proper material selection and cell design. Corrosion of stainless steel current collector hardware, nickel clad bipolar plate and aluminized wet seal show rates within acceptable limits. Electrolyte loss rate to current collector surface has been minimized by reducing exposed current collector surface area. Electrolyte evaporation loss appears tolerable. Electrolyte redistribution has been restrained by proper design of manifold seals.

  19. Advanced Photovoltaic Inverter Control Development and Validation in a Controller-Hardware-in-the-Loop Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Prabakar, Kumaraguru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Shirazi, Mariko [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Singh, Akanksha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chakraborty, Sudipta [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-07

    Penetration levels of solar photovoltaic (PV) generation on the electric grid have increased in recent years. In the past, most PV installations have not included grid-support functionalities. But today, standards such as the upcoming revisions to IEEE 1547 recommend grid support and anti-islanding functions-including volt-var, frequency-watt, volt-watt, frequency/voltage ride-through, and other inverter functions. These functions allow for the standardized interconnection of distributed energy resources into the grid. This paper develops and tests low-level inverter current control and high-level grid support functions. The controller was developed to integrate advanced inverter functions in a systematic approach, thus avoiding conflict among the different control objectives. The algorithms were then programmed on an off-the-shelf, embedded controller with a dual-core computer processing unit and field-programmable gate array (FPGA). This programmed controller was tested using a controller-hardware-in-the-loop (CHIL) test bed setup using an FPGA-based real-time simulator. The CHIL was run at a time step of 500 ns to accommodate the 20-kHz switching frequency of the developed controller. The details of the advanced control function and CHIL test bed provided here will aide future researchers when designing, implementing, and testing advanced functions of PV inverters.

  20. Component evaluation testing and analysis algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Darren M.; Merchant, Bion John

    2011-10-01

    The Ground-Based Monitoring R&E Component Evaluation project performs testing on the hardware components that make up Seismic and Infrasound monitoring systems. The majority of the testing is focused on the Digital Waveform Recorder (DWR), Seismic Sensor, and Infrasound Sensor. In order to guarantee consistency, traceability, and visibility into the results of the testing process, it is necessary to document the test and analysis procedures that are in place. Other reports document the testing procedures that are in place (Kromer, 2007). This document serves to provide a comprehensive overview of the analysis and the algorithms that are applied to the Component Evaluation testing. A brief summary of each test is included to provide the context for the analysis that is to be performed.

  1. An evaluation of Skylab habitability hardware

    Science.gov (United States)

    Stokes, J.

    1974-01-01

    For effective mission performance, participants in space missions lasting 30-60 days or longer must be provided with hardware to accommodate their personal needs. Such habitability hardware was provided on Skylab. Equipment defined as habitability hardware was that equipment composing the food system, water system, sleep system, waste management system, personal hygiene system, trash management system, and entertainment equipment. Equipment not specifically defined as habitability hardware but which served that function were the Wardroom window, the exercise equipment, and the intercom system, which was occasionally used for private communications. All Skylab habitability hardware generally functioned as intended for the three missions, and most items could be considered as adequate concepts for future flights of similar duration. Specific components were criticized for their shortcomings.

  2. Structural Design Requirements and Factors of Safety for Spaceflight Hardware: For Human Spaceflight. Revision A

    Science.gov (United States)

    Bernstein, Karen S.; Kujala, Rod; Fogt, Vince; Romine, Paul

    2011-01-01

    This document establishes the structural requirements for human-rated spaceflight hardware including launch vehicles, spacecraft and payloads. These requirements are applicable to Government Furnished Equipment activities as well as all related contractor, subcontractor and commercial efforts. These requirements are not imposed on systems other than human-rated spacecraft, such as ground test articles, but may be tailored for use in specific cases where it is prudent to do so such as for personnel safety or when assets are at risk. The requirements in this document are focused on design rather than verification. Implementation of the requirements is expected to be described in a Structural Verification Plan (SVP), which should describe the verification of each structural item for the applicable requirements. The SVP may also document unique verifications that meet or exceed these requirements with NASA Technical Authority approval.

  3. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    International Nuclear Information System (INIS)

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative ECS that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal

  4. A Message-Passing Hardware/Software Cosimulation Environment for Reconfigurable Computing Systems

    Directory of Open Access Journals (Sweden)

    Manuel Saldaña

    2009-01-01

    Full Text Available High-performance reconfigurable computers (HPRCs provide a mix of standard processors and FPGAs to collectively accelerate applications. This introduces new design challenges, such as the need for portable programming models across HPRCs and system-level verification tools. To address the need for cosimulating a complete heterogeneous application using both software and hardware in an HPRC, we have created a tool called the Message-passing Simulation Framework (MSF. We have used it to simulate and develop an interface enabling an MPI-based approach to exchange data between X86 processors and hardware engines inside FPGAs. The MSF can also be used as an application development tool that enables multiple FPGAs in simulation to exchange messages amongst themselves and with X86 processors. As an example, we simulate a LINPACK benchmark hardware core using an Intel-FSB-Xilinx-FPGA platform to quickly prototype the hardware, to test the communications. and to verify the benchmark results.

  5. Integrated Vehicle Ground Vibration Testing of Manned Spacecraft: Historical Precedent

    Science.gov (United States)

    Lemke, Paul R.; Tuma, Margaret L.; Askins, Bruce R.

    2008-01-01

    For the first time in nearly 30 years, NASA is developing a new manned space flight launch system. The Ares I will carry crew and cargo to not only the International Space Station, but onward for the future exploration of the Moon and Mars. The Ares I control system and structural designs use complex computer models for their development. An Integrated Vehicle Ground Vibration Test (IVGVT) will validate the efficacy of these computer models. The IVGVT will reduce the technical risk of unexpected conditions that could place the vehicle or crew in jeopardy. The Ares Project Office's Flight and Integrated Test Office commissioned a study to determine how historical programs, such as Saturn and Space Shuttle, validated the structural dynamics of an integrated flight vehicle. The study methodology was to examine the historical record and seek out members of the engineering community who recall the development of historic manned launch vehicles. These records and interviews provided insight into the best practices and lessons learned from these historic development programs. The information that was gathered allowed the creation of timelines of the historic development programs. The timelines trace the programs from the development of test articles through test preparation, test operations, and test data reduction efforts. These timelines also demonstrate how the historical tests fit within their overall vehicle development programs. Finally, the study was able to quantify approximate staffing levels during historic development programs. Using this study, the Flight and Integrated Test Office was able to evaluate the Ares I Integrated Vehicle Ground Vibration Test schedule and workforce budgets in light of the historical precedents to determine if the test had schedule or cost risks associated with it.

  6. SPHERES: From Ground Development to Operations on ISS

    Science.gov (United States)

    Katterhagen, A.

    2015-01-01

    SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES Facility on ISS is managed and operated by the SPHERES National Lab Facility at NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. To help make science a reality on the ISS, the SPHERES ARC team supports a Guest Scientist Program (GSP). This program allows anyone with new science the possibility to interface with the SPHERES team and hardware. In addition to highlighting the available SPHERES hardware on ISS and on the ground, this presentation will also highlight ground support, facilities, and resources available to guest researchers. Investigations on the ISS evolve through four main phases: Strategic, Tactical, Operations, and Post Operations. The Strategic Phase encompasses early planning beginning with initial contact by the Principle Investigator (PI) and the SPHERES program who may work with the PI to assess what assistance the PI may need. Once the basic parameters are understood, the investigation moves to the Tactical Phase which involves more detailed planning, development, and testing. Depending on the nature of the investigation, the tactical phase may be split into the Lab Tactical Phase or the ISS Tactical Phase due to the difference in requirements for the two destinations. The Operations Phase is when the actual science is performed; this can be either in the lab, or on the ISS. The Post Operations Phase encompasses data analysis and distribution, and generation of summary status and reports. The SPHERES Operations and Engineering teams at ARC is composed of

  7. Guidelines of the Design of Electropyrotechnic Firing Circuit for Unmanned Flight and Ground Test Projects

    Science.gov (United States)

    Gonzalez, Guillermo A.; Lucy, Melvin H.; Massie, Jeffrey J.

    2013-01-01

    The NASA Langley Research Center, Engineering Directorate, Electronic System Branch, is responsible for providing pyrotechnic support capabilities to Langley Research Center unmanned flight and ground test projects. These capabilities include device selection, procurement, testing, problem solving, firing system design, fabrication and testing; ground support equipment design, fabrication and testing; checkout procedures and procedure?s training to pyro technicians. This technical memorandum will serve as a guideline for the design, fabrication and testing of electropyrotechnic firing systems. The guidelines will discuss the entire process beginning with requirements definition and ending with development and execution.

  8. From Open Source Software to Open Source Hardware

    OpenAIRE

    Viseur , Robert

    2012-01-01

    Part 2: Lightning Talks; International audience; The open source software principles progressively give rise to new initiatives for culture (free culture), data (open data) or hardware (open hardware). The open hardware is experiencing a significant growth but the business models and legal aspects are not well known. This paper is dedicated to the economics of open hardware. We define the open hardware concept and determine intellectual property tools we can apply to open hardware, with a str...

  9. Orion Ground Test Article Water Impact Tests: Photogrammetric Evaluation of Impact Conditions

    Science.gov (United States)

    Vassilakos, Gregory J.; Mark, Stephen D.

    2018-01-01

    The Ground Test Article (GTA) is an early production version of the Orion Crew Module (CM). The structural design of the Orion CM is being developed based on LS-DYNA water landing simulations. As part of the process of confirming the accuracy of LS-DYNA water landing simulations, the GTA water impact test series was conducted at NASA Langley Research Center (LaRC) to gather data for comparison with simulations. The simulation of the GTA water impact tests requires the accurate determination of the impact conditions. To accomplish this, the GTA was outfitted with an array of photogrammetry targets. The photogrammetry system utilizes images from two cameras with a specialized tracking software to determine time histories for the 3-D coordinates of each target. The impact conditions can then be determined from the target location data.

  10. Standard Test Methods for Insulation Integrity and Ground Path Continuity of Photovoltaic Modules

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 These test methods cover procedures for (1) testing for current leakage between the electrical circuit of a photovoltaic module and its external components while a user-specified voltage is applied and (2) for testing for possible module insulation breakdown (dielectric voltage withstand test). 1.2 A procedure is described for measuring the insulation resistance between the electrical circuit of a photovoltaic module and its external components (insulation resistance test). 1.3 A procedure is provided for verifying that electrical continuity exists between the exposed external conductive surfaces of the module, such as the frame, structural members, or edge closures, and its grounding point (ground path continuity test). 1.4 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method. 1.5 There is no similar or equivalent ISO standard. This standard does not purport to address all of the safety concerns, if a...

  11. Ground facility for information reception, processing, dissemination and scientific instruments management setup in the CORONAS-PHOTON space project

    Science.gov (United States)

    Buslov, A. S.; Kotov, Yu. D.; Yurov, V. N.; Bessonov, M. V.; Kalmykov, P. A.; Oreshnikov, E. M.; Alimov, A. M.; Tumanov, A. V.; Zhuchkova, E. A.

    2011-06-01

    This paper deals with the organizational structure of ground-based receiving, processing, and dissemination of scientific information created by the Astrophysics Institute of the Scientific Research Nuclear University, Moscow Engineering Physics Institute. Hardware structure and software features are described. The principles are given for forming sets of control commands for scientific equipment (SE) devices, and statistics data are presented on the operation of facility during flight tests of the spacecraft (SC) in the course of one year.

  12. ZEUS hardware control system

    Science.gov (United States)

    Loveless, R.; Erhard, P.; Ficenec, J.; Gather, K.; Heath, G.; Iacovacci, M.; Kehres, J.; Mobayyen, M.; Notz, D.; Orr, R.; Orr, R.; Sephton, A.; Stroili, R.; Tokushuku, K.; Vogel, W.; Whitmore, J.; Wiggers, L.

    1989-12-01

    The ZEUS collaboration is building a system to monitor, control and document the hardware of the ZEUS detector. This system is based on a network of VAX computers and microprocessors connected via ethernet. The database for the hardware values will be ADAMO tables; the ethernet connection will be DECNET, TCP/IP, or RPC. Most of the documentation will also be kept in ADAMO tables for easy access by users.

  13. ZEUS hardware control system

    International Nuclear Information System (INIS)

    Loveless, R.; Erhard, P.; Ficenec, J.; Gather, K.; Heath, G.; Iacovacci, M.; Kehres, J.; Mobayyen, M.; Notz, D.; Orr, R.; Sephton, A.; Stroili, R.; Tokushuku, K.; Vogel, W.; Whitmore, J.; Wiggers, L.

    1989-01-01

    The ZEUS collaboration is building a system to monitor, control and document the hardware of the ZEUS detector. This system is based on a network of VAX computers and microprocessors connected via ethernet. The database for the hardware values will be ADAMO tables; the ethernet connection will be DECNET, TCP/IP, or RPC. Most of the documentation will also be kept in ADAMO tables for easy access by users. (orig.)

  14. IDEAS and App Development Internship in Hardware and Software Design

    Science.gov (United States)

    Alrayes, Rabab D.

    2016-01-01

    In this report, I will discuss the tasks and projects I have completed while working as an electrical engineering intern during the spring semester of 2016 at NASA Kennedy Space Center. In the field of software development, I completed tasks for the G-O Caching Mobile App and the Asbestos Management Information System (AMIS) Web App. The G-O Caching Mobile App was written in HTML, CSS, and JavaScript on the Cordova framework, while the AMIS Web App is written in HTML, CSS, JavaScript, and C# on the AngularJS framework. My goals and objectives on these two projects were to produce an app with an eye-catching and intuitive User Interface (UI), which will attract more employees to participate; to produce a fully-tested, fully functional app which supports workforce engagement and exploration; to produce a fully-tested, fully functional web app that assists technicians working in asbestos management. I also worked in hardware development on the Integrated Display and Environmental Awareness System (IDEAS) wearable technology project. My tasks on this project were focused in PCB design and camera integration. My goals and objectives for this project were to successfully integrate fully functioning custom hardware extenders on the wearable technology headset to minimize the size of hardware on the smart glasses headset for maximum user comfort; to successfully integrate fully functioning camera onto the headset. By the end of this semester, I was able to successfully develop four extender boards to minimize hardware on the headset, and assisted in integrating a fully-functioning camera into the system.

  15. Hardware for dynamic quantum computing.

    Science.gov (United States)

    Ryan, Colm A; Johnson, Blake R; Ristè, Diego; Donovan, Brian; Ohki, Thomas A

    2017-10-01

    We describe the hardware, gateware, and software developed at Raytheon BBN Technologies for dynamic quantum information processing experiments on superconducting qubits. In dynamic experiments, real-time qubit state information is fed back or fed forward within a fraction of the qubits' coherence time to dynamically change the implemented sequence. The hardware presented here covers both control and readout of superconducting qubits. For readout, we created a custom signal processing gateware and software stack on commercial hardware to convert pulses in a heterodyne receiver into qubit state assignments with minimal latency, alongside data taking capability. For control, we developed custom hardware with gateware and software for pulse sequencing and steering information distribution that is capable of arbitrary control flow in a fraction of superconducting qubit coherence times. Both readout and control platforms make extensive use of field programmable gate arrays to enable tailored qubit control systems in a reconfigurable fabric suitable for iterative development.

  16. Joint ACE ground penetrating radar antenna test facility at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter; Sarri, A.

    2005-01-01

    A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented.......A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented....

  17. Feasibility study of a XML-based software environment to manage data acquisition hardware devices

    International Nuclear Information System (INIS)

    Arcidiacono, R.; Brigljevic, V.; Bruno, G.; Cano, E.; Cittolin, S.; Erhan, S.; Gigi, D.; Glege, F.; Gomez-Reino, R.; Gulmini, M.; Gutleber, J.; Jacobs, C.; Kreuzer, P.; Lo Presti, G.; Magrans, I.; Marinelli, N.; Maron, G.; Meijers, F.; Meschi, E.; Murray, S.; Nafria, M.; Oh, A.; Orsini, L.; Pieri, M.; Pollet, L.; Racz, A.; Rosinsky, P.; Schwick, C.; Sphicas, P.; Varela, J.

    2005-01-01

    A Software environment to describe configuration, control and test systems for data acquisition hardware devices is presented. The design follows a model that enforces a comprehensive use of an extensible markup language (XML) syntax to describe both the code and associated data. A feasibility study of this software, carried out for the CMS experiment at CERN, is also presented. This is based on a number of standalone applications for different hardware modules, and the design of a hardware management system to remotely access to these heterogeneous subsystems through a uniform web service interface

  18. Feasibility study of a XML-based software environment to manage data acquisition hardware devices

    Energy Technology Data Exchange (ETDEWEB)

    Arcidiacono, R. [Massachusetts Institute of Technology, Cambridge, MA (United States); Brigljevic, V. [CERN, Geneva (Switzerland); Rudjer Boskovic Institute, Zagreb (Croatia); Bruno, G. [CERN, Geneva (Switzerland); Cano, E. [CERN, Geneva (Switzerland); Cittolin, S. [CERN, Geneva (Switzerland); Erhan, S. [University of California, Los Angeles, Los Angeles, CA (United States); Gigi, D. [CERN, Geneva (Switzerland); Glege, F. [CERN, Geneva (Switzerland); Gomez-Reino, R. [CERN, Geneva (Switzerland); Gulmini, M. [INFN-Laboratori Nazionali di Legnaro, Legnaro (Italy); CERN, Geneva (Switzerland); Gutleber, J. [CERN, Geneva (Switzerland); Jacobs, C. [CERN, Geneva (Switzerland); Kreuzer, P. [University of Athens, Athens (Greece); Lo Presti, G. [CERN, Geneva (Switzerland); Magrans, I. [CERN, Geneva (Switzerland) and Electronic Engineering Department, Universidad Autonoma de Barcelona, Barcelona (Spain)]. E-mail: ildefons.magrans@cern.ch; Marinelli, N. [Institute of Accelerating Systems and Applications, Athens (Greece); Maron, G. [INFN-Laboratori Nazionali di Legnaro, Legnaro (Italy); Meijers, F. [CERN, Geneva (Switzerland); Meschi, E. [CERN, Geneva (Switzerland); Murray, S. [CERN, Geneva (Switzerland); Nafria, M. [Electronic Engineering Department, Universidad Autonoma de Barcelona, Barcelona (Spain); Oh, A. [CERN, Geneva (Switzerland); Orsini, L. [CERN, Geneva (Switzerland); Pieri, M. [University of California, San Diago, San Diago, CA (United States); Pollet, L. [CERN, Geneva (Switzerland); Racz, A. [CERN, Geneva (Switzerland); Rosinsky, P. [CERN, Geneva (Switzerland); Schwick, C. [CERN, Geneva (Switzerland); Sphicas, P. [University of Athens, Athens (Greece); CERN, Geneva (Switzerland); Varela, J. [LIP, Lisbon (Portugal); CERN, Geneva (Switzerland)

    2005-07-01

    A Software environment to describe configuration, control and test systems for data acquisition hardware devices is presented. The design follows a model that enforces a comprehensive use of an extensible markup language (XML) syntax to describe both the code and associated data. A feasibility study of this software, carried out for the CMS experiment at CERN, is also presented. This is based on a number of standalone applications for different hardware modules, and the design of a hardware management system to remotely access to these heterogeneous subsystems through a uniform web service interface.

  19. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    Science.gov (United States)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  20. Benchmarking Model Variants in Development of a Hardware-in-the-Loop Simulation System

    Science.gov (United States)

    Aretskin-Hariton, Eliot D.; Zinnecker, Alicia M.; Kratz, Jonathan L.; Culley, Dennis E.; Thomas, George L.

    2016-01-01

    Distributed engine control architecture presents a significant increase in complexity over traditional implementations when viewed from the perspective of system simulation and hardware design and test. Even if the overall function of the control scheme remains the same, the hardware implementation can have a significant effect on the overall system performance due to differences in the creation and flow of data between control elements. A Hardware-in-the-Loop (HIL) simulation system is under development at NASA Glenn Research Center that enables the exploration of these hardware dependent issues. The system is based on, but not limited to, the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). This paper describes the step-by-step conversion from the self-contained baseline model to the hardware in the loop model, and the validation of each step. As the control model hardware fidelity was improved during HIL system development, benchmarking simulations were performed to verify that engine system performance characteristics remained the same. The results demonstrate the goal of the effort; the new HIL configurations have similar functionality and performance compared to the baseline C-MAPSS40k system.

  1. Hardware device binding and mutual authentication

    Science.gov (United States)

    Hamlet, Jason R; Pierson, Lyndon G

    2014-03-04

    Detection and deterrence of device tampering and subversion by substitution may be achieved by including a cryptographic unit within a computing device for binding multiple hardware devices and mutually authenticating the devices. The cryptographic unit includes a physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generates a binding PUF value. The cryptographic unit uses the binding PUF value during an enrollment phase and subsequent authentication phases. During a subsequent authentication phase, the cryptographic unit uses the binding PUF values of the multiple hardware devices to generate a challenge to send to the other device, and to verify a challenge received from the other device to mutually authenticate the hardware devices.

  2. Secure coupling of hardware components

    NARCIS (Netherlands)

    Hoepman, J.H.; Joosten, H.J.M.; Knobbe, J.W.

    2011-01-01

    A method and a system for securing communication between at least a first and a second hardware components of a mobile device is described. The method includes establishing a first shared secret between the first and the second hardware components during an initialization of the mobile device and,

  3. Flow Quality Analysis of Shape Morphing Structures for Hypersonic Ground Testing Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Background: Shape morphing, high temperature, ceramic structural materials are now becoming available and can revolutionize ground testing by providing dynamic flow...

  4. Hardware-in-the-loop-based development methods for mechatronic light control; Hardware-in-the-loop basierte Entwicklungsmethodik fuer eine mechatronische Leuchtweiteregelung

    Energy Technology Data Exchange (ETDEWEB)

    Opgen-Rhein, P.

    2005-07-01

    A hardware-in-the-loop solution is presented which in the system integration phase takes account of the process of functional property validation of mechatronic light control systems. The method is not tested on the road but on a test rig with defined boundary conditions. This test stand, combined with objective assessment criteria developed for the specific requirements, helps to minimize the number of costly road tests still required. Using the example of an adaptive filter of a light control system, the author shows how filter paramaters are applied on the test stand, and how the subjective judgement of the driver is taken into account as well in the evaluations. (orig.)

  5. Locating hardware faults in a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-04-13

    Locating hardware faults in a parallel computer, including defining within a tree network of the parallel computer two or more sets of non-overlapping test levels of compute nodes of the network that together include all the data communications links of the network, each non-overlapping test level comprising two or more adjacent tiers of the tree; defining test cells within each non-overlapping test level, each test cell comprising a subtree of the tree including a subtree root compute node and all descendant compute nodes of the subtree root compute node within a non-overlapping test level; performing, separately on each set of non-overlapping test levels, an uplink test on all test cells in a set of non-overlapping test levels; and performing, separately from the uplink tests and separately on each set of non-overlapping test levels, a downlink test on all test cells in a set of non-overlapping test levels.

  6. Thermal and Fluid Modeling of the CRYogenic Orbital TEstbed (CRYOTE) Ground Test Article (GTA)

    Science.gov (United States)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to data acquired from a ground test article (GTA) for the CRYogenic Orbital TEstbed - CRYOTE. To accomplish this analysis, it was broken into four primary tasks. These included model development, pre-test predictions, testing support at Marshall Space Flight Center (MSFC} and post-test correlations. Information from MSFC facilitated the task of refining and correlating the initial models. The primary goal of the modeling/testing/correlating efforts was to characterize heat loads throughout the ground test article. Significant factors impacting the heat loads included radiative environments, multi-layer insulation (MLI) performance, tank fill levels, tank pressures, and even contact conductance coefficients. This paper demonstrates how analytical thermal/fluid networks were established, and it includes supporting rationale for specific thermal responses seen during testing.

  7. Advanced stellar compass deep space navigation, ground testing results

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn

    2006-01-01

    Deep space exploration is in the agenda of the major space agencies worldwide and at least the European Space Agency (SMART & Aurora Programs) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the risks...... and the costs of the deep space missions. Navigation is the Achilles' heel of deep space. Being performed on ground, it imposes considerable constraints on the system and the operations, it is very expensive to execute, especially when the mission lasts several years and, above all, it is not failure tolerant...... to determine the orbit of a spacecraft autonomously, on-board and without any a priori knowledge of any kind. The solution is robust, elegant and fast. This paper presents the preliminary performances obtained during the ground tests. The results are very positive and encouraging....

  8. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    Energy Technology Data Exchange (ETDEWEB)

    M. J. Appel and J. M. Capron

    2007-07-25

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

  9. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Appel, M.J.; Capron, J.M.

    2007-01-01

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes

  10. Distribution of ground rigidity and ground model for seismic response analysis in Hualian project of large scale seismic test

    International Nuclear Information System (INIS)

    Kokusho, T.; Nishi, K.; Okamoto, T.; Tanaka, Y.; Ueshima, T.; Kudo, K.; Kataoka, T.; Ikemi, M.; Kawai, T.; Sawada, Y.; Suzuki, K.; Yajima, K.; Higashi, S.

    1997-01-01

    An international joint research program called HLSST is proceeding. HLSST is large-scale seismic test (LSST) to investigate soil-structure interaction (SSI) during large earthquake in the field in Hualien, a high seismic region in Taiwan. A 1/4-scale model building was constructed on the gravelly soil in this site, and the backfill material of crushed stone was placed around the model plant after excavation for the construction. Also the model building and the foundation ground were extensively instrumental to monitor structure and ground response. To accurately evaluate SSI during earthquakes, geotechnical investigation and forced vibration test were performed during construction process namely before/after base excavation, after structure construction and after backfilling. And the distribution of the mechanical properties of the gravelly soil and the backfill are measured after the completion of the construction by penetration test and PS-logging etc. This paper describes the distribution and the change of the shear wave velocity (V s ) measured by the field test. Discussion is made on the effect of overburden pressure during the construction process on V s in the neighbouring soil and, further on the numerical soil model for SSI analysis. (orig.)

  11. Environmental Tests of the Flight GLAST LAT Tracker Towers

    Energy Technology Data Exchange (ETDEWEB)

    Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; Angelis, A.De; Drell, P.; Favuzzi, C.; Fusco, P.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Goodman, J.; Himel, T.

    2008-03-12

    The Gamma-ray Large Area Space telescope (GLAST) is a gamma-ray satellite scheduled for launch in 2008. Before the assembly of the Tracker subsystem of the Large Area Telescope (LAT) science instrument of GLAST, every component (tray) and module (tower) has been subjected to extensive ground testing required to ensure successful launch and on-orbit operation. This paper describes the sequence and results of the environmental tests performed on an engineering model and all the flight hardware of the GLAST LAT Tracker. Environmental tests include vibration testing, thermal cycles and thermal-vacuum cycles of every tray and tower as well as the verification of their electrical performance.

  12. Control/interlock/display system for EBT-P using commercially-available hardware and firmware

    International Nuclear Information System (INIS)

    Schmitt, R.J.

    1983-01-01

    For the EBT-P project, alternative commercially-available hardware, software and firmware have been employed for control, interlock and data display functions. This paper describes the criteria and rationale used to select that commercial equipment and discusses the important features of the equipment chosen, especially programmable controllers. Additional discussion is centered on interface problems which are encountered upon attempts to integrate equipment from several vendors. Some solutions to these problems are discussed. Details of software and hardware performance during tests are presented. The extent to which the EBT-P hardware and software configuration addresses and resolves various issues is discussed. Several areas have been uncovered in which relatively slight improvements/modifications of commercial programmable controller firmware would significantly improve the capability of this type of hardware in fusion control applications. These improvements are discussed in detail

  13. Development of a Ground Test and Analysis Protocol for NASA's NextSTEP Phase 2 Habitation Concepts

    Science.gov (United States)

    Gernhardt, Michael L.; Beaton, Kara H.; Chappell, Steven P.; Bekdash, Omar S.; Abercromby, Andrew F. J.

    2018-01-01

    The NASA Next Space Technologies for Exploration Partnerships (NextSTEP) program is a public-private partnership model that seeks commercial development of deep space exploration capabilities to support human spaceflight missions around and beyond cislunar space. NASA first issued the Phase 1 NextSTEP Broad Agency Announcement to U.S. industries in 2014, which called for innovative cislunar habitation concepts that leveraged commercialization plans for low-Earth orbit. These habitats will be part of the Deep Space Gateway (DSG), the cislunar space station planned by NASA for construction in the 2020s. In 2016, Phase 2 of the NextSTEP program selected five commercial partners to develop ground prototypes. A team of NASA research engineers and subject matter experts (SMEs) have been tasked with developing the ground-test protocol that will serve as the primary means by which these Phase 2 prototypes will be evaluated. Since 2008, this core test team has successfully conducted multiple spaceflight analog mission evaluations utilizing a consistent set of operational tools, methods, and metrics to enable the iterative development, testing, analysis, and validation of evolving exploration architectures, operations concepts, and vehicle designs. The purpose of implementing a similar evaluation process for the Phase 2 Habitation Concepts is to consistently evaluate different commercial partner ground prototypes to provide data-driven, actionable recommendations for Phase 3. This paper describes the process by which the ground test protocol was developed and the objectives, methods, and metrics by which the NextSTEP Phase 2 Habitation Concepts will be rigorously and systematically evaluated. The protocol has been developed using both a top-down and bottom-up approach. Top-down development began with the Human Exploration and Operations Mission Directorate (HEOMD) exploration objectives and ISS Exploration Capability Study Team (IECST) candidate flight objectives. Strategic

  14. Hardware-in-the-loop vehicle system including dynamic fuel cell model

    Energy Technology Data Exchange (ETDEWEB)

    Lemes, Z.; Lenhart, T.; Braun, M.; Maencher, H. [MAGNUM Automatisierungstechnik GmbH, Darmstadt (Germany)

    2005-07-01

    In order to reduce costs and accelerate the development of fuel cells and systems the usage of hardware-in-the-loop (HIL) testing and dynamic modelling opens new possibilities. The dynamic model of a proton exchange membrane fuel cell (PEMFC) together with a vehicle model is used to carry out a comprehensive system investigation, which allows designing and optimising the behaviour of the components and the entire fuel cell system. The set-up of a HIL system enables real time interaction between the selected hardware and the model. (orig.)

  15. The Impact of Flight Hardware Scavenging on Space Logistics

    Science.gov (United States)

    Oeftering, Richard C.

    2011-01-01

    For a given fixed launch vehicle capacity the logistics payload delivered to the moon may be only roughly 20 percent of the payload delivered to the International Space Station (ISS). This is compounded by the much lower flight frequency to the moon and thus low availability of spares for maintenance. This implies that lunar hardware is much more scarce and more costly per kilogram than ISS and thus there is much more incentive to preserve hardware. The Constellation Lunar Surface System (LSS) program is considering ways of utilizing hardware scavenged from vehicles including the Altair lunar lander. In general, the hardware will have only had a matter of hours of operation yet there may be years of operational life remaining. By scavenging this hardware the program, in effect, is treating vehicle hardware as part of the payload. Flight hardware may provide logistics spares for system maintenance and reduce the overall logistics footprint. This hardware has a wide array of potential applications including expanding the power infrastructure, and exploiting in-situ resources. Scavenging can also be seen as a way of recovering the value of, literally, billions of dollars worth of hardware that would normally be discarded. Scavenging flight hardware adds operational complexity and steps must be taken to augment the crew s capability with robotics, capabilities embedded in flight hardware itself, and external processes. New embedded technologies are needed to make hardware more serviceable and scavengable. Process technologies are needed to extract hardware, evaluate hardware, reconfigure or repair hardware, and reintegrate it into new applications. This paper also illustrates how scavenging can be used to drive down the cost of the overall program by exploiting the intrinsic value of otherwise discarded flight hardware.

  16. Hardware security and trust design and deployment of integrated circuits in a threatened environment

    CERN Document Server

    Chaves, Ricardo; Natale, Giorgio; Regazzoni, Francesco

    2017-01-01

    This book provides a comprehensive introduction to hardware security, from specification to implementation. Applications discussed include embedded systems ranging from small RFID tags to satellites orbiting the earth. The authors describe a design and synthesis flow, which will transform a given circuit into a secure design incorporating counter-measures against fault attacks. In order to address the conflict between testability and security, the authors describe innovative design-for-testability (DFT) computer-aided design (CAD) tools that support security challenges, engineered for compliance with existing, commercial tools. Secure protocols are discussed, which protect access to necessary test infrastructures and enable the design of secure access controllers. Covers all aspects of hardware security including design, manufacturing, testing, reliability, validation and utilization; Describes new methods and algorithms for the identification/detection of hardware trojans; Defines new architectures capable o...

  17. Status of Ground Motion Mitigation Techniques for CLIC

    CERN Document Server

    Snuverink, J; Collette, C; Duarte Ramos, F; Gaddi, A; Gerwig, H; Janssens, S; Pfingstner, J; Schulte, D; Balik, G; Brunetti, L; Jeremie, A; Burrows, P; Caron, B; Resta-Lopez, J

    2011-01-01

    The Compact Linear Collider (CLIC) accelerator has strong stability requirements on the position of the beam. In particular, the beam position will be sensitive to ground motion. A number of mitigation techniques are proposed - quadrupole stabilisation and positioning, final doublet stabilisation as well as beam based orbit and interaction point (IP) feedback. Integrated studies of the impact of the ground motion on the CLIC Main Linac (ML) and Beam Delivery System (BDS) have been performed, which model the hardware and beam performance in detail. Based on the results future improvements of the mitigation techniques are suggested and simulated. It is shown that with the current design the tight luminosity budget for ground motion effects is fulfilled and accordingly, an essential feasibility issue of CLIC has been addressed.

  18. Constructing Hardware in a Scale Embedded Language

    Energy Technology Data Exchange (ETDEWEB)

    2014-08-21

    Chisel is a new open-source hardware construction language developed at UC Berkeley that supports advanced hardware design using highly parameterized generators and layered domain-specific hardware languages. Chisel is embedded in the Scala programming language, which raises the level of hardware design abstraction by providing concepts including object orientation, functional programming, parameterized types, and type inference. From the same source, Chisel can generate a high-speed C++-based cycle-accurate software simulator, or low-level Verilog designed to pass on to standard ASIC or FPGA tools for synthesis and place and route.

  19. Hardware Objects for Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Thalinger, Christian; Korsholm, Stephan

    2008-01-01

    Java, as a safe and platform independent language, avoids access to low-level I/O devices or direct memory access. In standard Java, low-level I/O it not a concern; it is handled by the operating system. However, in the embedded domain resources are scarce and a Java virtual machine (JVM) without...... an underlying middleware is an attractive architecture. When running the JVM on bare metal, we need access to I/O devices from Java; therefore we investigate a safe and efficient mechanism to represent I/O devices as first class Java objects, where device registers are represented by object fields. Access...... to those registers is safe as Java’s type system regulates it. The access is also fast as it is directly performed by the bytecodes getfield and putfield. Hardware objects thus provide an object-oriented abstraction of low-level hardware devices. As a proof of concept, we have implemented hardware objects...

  20. Neutron Imaging for Selective Laser Melting Inconel Hardware with Internal Passages

    Science.gov (United States)

    Tramel, Terri L.; Norwood, Joseph K.; Bilheux, Hassina

    2014-01-01

    Additive Manufacturing is showing great promise for the development of new innovative designs and large potential life cycle cost reduction for the Aerospace Industry. However, more development work is required to move this technology into space flight hardware production. With selective laser melting (SLM), hardware that once consisted of multiple, carefully machined and inspected pieces, joined together can be made in one part. However standard inspection techniques cannot be used to verify that the internal passages are within dimensional tolerances or surface finish requirements. NASA/MSFC traveled to Oak Ridge National Lab's (ORNL) Spallation Neutron Source to perform some non-destructive, proof of concept imaging measurements to assess the capabilities to understand internal dimensional tolerances and internal passages surface roughness. This presentation will describe 1) the goals of this proof of concept testing, 2) the lessons learned when designing and building these Inconel 718 test specimens to minimize beam time, 3) the neutron imaging test setup and test procedure to get the images, 4) the initial results in images, volume and a video, 4) the assessment of using this imaging technique to gather real data for designing internal flow passages in SLM manufacturing aerospace hardware, and lastly 5) how proper cleaning of the internal passages is critically important. In summary, the initial results are very promising and continued development of a technique to assist in SLM development for aerospace components is desired by both NASA and ORNL. A plan forward that benefits both ORNL and NASA will also be presented, based on the promising initial results. The initial images and volume reconstruction showed that clean, clear images of the internal passages geometry are obtainable. These clear images of the internal passages of simple geometries will be compared to the build model to determine any differences. One surprising result was that a new cleaning

  1. Ultraviolet spectrometer and polarimeter (UVSP) software development and hardware tests for the solar maximum mission

    Science.gov (United States)

    Bruner, M. E.; Haisch, B. M.

    1986-01-01

    The Ultraviolet Spectrometer/Polarimeter Instrument (UVSP) for the Solar Maximum Mission (SMM) was based on the re-use of the engineering model of the high resolution ultraviolet spectrometer developed for the OSO-8 mission. Lockheed assumed four distinct responsibilities in the UVSP program: technical evaluation of the OSO-8 engineering model; technical consulting on the electronic, optical, and mechanical modifications to the OSO-8 engineering model hardware; design and development of the UVSP software system; and scientific participation in the operations and analysis phase of the mission. Lockheed also provided technical consulting and assistance with instrument hardware performance anomalies encountered during the post launch operation of the SMM observatory. An index to the quarterly reports delivered under the contract are contained, and serves as a useful capsule history of the program activity.

  2. A study on the nondestructive test optimum design for a ground tracked combat vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Kim Byeong Ho; Seo, Jae Hyun; Gil, Hyeon Jun [Defence Agency for Technology and Quality, Seoul (Korea, Republic of); Kim, Seon Hyeong [Hanwha Techwin Co.,Ltd., Changwon (Korea, Republic of); Seo, Sang Chul [Changwon National University, Changwon (Korea, Republic of)

    2015-10-15

    In this study, a nondestructive test (NDT) is performed to inspect the optimal design of a ground tracked combat vehicle for self-propelled artillery, tank, and armored vehicles. The minimum qualification required for personnel performing the NDT of a ground tracked combat vehicle was initially established in US military standards, and then applied to the Korean defense specifications to develop a ground tracked combat vehicle. However, the qualification standards of an NDT inspector have been integrated into NAS410 through the military and commercial specifications unification project that were applied in the existing aerospace/defense industry public standard. The design method for this study was verified by applying the optimal design to the liquid penetrant testing Al forging used in self-propelled artillery. This confirmed the reliability and soundness of the product.

  3. Testing of a Spray-bar Thermodynamic Vent System in Liquid Nitrogen

    Science.gov (United States)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.

    2005-01-01

    To support development of a microgravity pressure control capability for liquid oxygen, thermodynamic vent system (TVS) testing was conducted at Marshall Space Flight Center (MSFC) using liquid nitrogen (LN2) as a LOX simulant. The spray bar TVS hardware used was originally designed by the Boeing Company for testing in liquid hydrogen (LH2). With this concept, a small portion of the tank fluid is passed through a Joule-Thomson (J-T) device, and then through a longitudinal spray bar mixed-heat exchanger in order to cool the bulk fluid. To accommodate the larger mass flow rates associated with LN2, the TVS hardware was modified by replacing the recirculation pump with an LN2 compatible pump and replacing the J-T valve. The primary advantage of the spray-bar configuration is that tank pressure control can be achieved independent of liquid and vapor location, enhancing the applicability of ground test data to microgravity conditions. Performance testing revealed that the spray-bar TVS was effective in controlling tank pressure within a 6.89 kPa band for fill levels of 90%, 50%, and 25%. Tests were also conducted with gaseous helium (GHe) in the ullage. The TVS operated nominally with GHe in the ullage, with performance similar to the tests with gaseous nitrogen (GN2). Testing demonstrated that the spray-bar TVS design was flexible enough for use in two different propellants with minimal hardware modifications.

  4. Fast and Reliable Mouse Picking Using Graphics Hardware

    Directory of Open Access Journals (Sweden)

    Hanli Zhao

    2009-01-01

    Full Text Available Mouse picking is the most commonly used intuitive operation to interact with 3D scenes in a variety of 3D graphics applications. High performance for such operation is necessary in order to provide users with fast responses. This paper proposes a fast and reliable mouse picking algorithm using graphics hardware for 3D triangular scenes. Our approach uses a multi-layer rendering algorithm to perform the picking operation in linear time complexity. The objectspace based ray-triangle intersection test is implemented in a highly parallelized geometry shader. After applying the hardware-supported occlusion queries, only a small number of objects (or sub-objects are rendered in subsequent layers, which accelerates the picking efficiency. Experimental results demonstrate the high performance of our novel approach. Due to its simplicity, our algorithm can be easily integrated into existing real-time rendering systems.

  5. Hybrid Smith predictor and phase lead based divergence compensation for hardware-in-the-loop contact simulation with measurement delay

    Science.gov (United States)

    Qi, Chenkun; Gao, Feng; Zhao, Xianchao; Wang, Qian; Ren, Anye

    2018-06-01

    On the ground the hardware-in-the-loop (HIL) simulation is a good approach to test the contact dynamics of spacecraft docking process in space. Unfortunately, due to the time delay in the system the HIL contact simulation becomes divergent. However, the traditional first-order phase lead compensation approach still result in a small divergence for the pure time delay. The serial Smith predictor and phase lead compensation approach proposed by the authors recently will lead to an over-compensation and an obvious convergence. In this study, a hybrid Smith predictor and phase lead compensation approach is proposed. The hybrid Smith predictor and phase lead compensation can achieve a higher simulation fidelity with a little convergence. The phase angle of the compensator is analyzed and the stability condition of the HIL simulation system is given. The effectiveness of the proposed compensation approach is tested by simulations on an undamped elastic contact process.

  6. Large scale vibration tests on pile-group effects using blast-induced ground motion

    International Nuclear Information System (INIS)

    Katsuichirou Hijikata; Hideo Tanaka; Takayuki Hashimoto; Kazushige Fujiwara; Yuji Miyamoto; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site. Ground motions induced by large-scale blasting operations were used as excitation forces for vibration tests. The main objective of this research is to investigate the dynamic behavior of pile-supported structures, in particular, pile-group effects. Two test structures were constructed in an excavated 4 m deep pit. Their test-structures were exactly the same. One structure had 25 steel piles and the other had 4 piles. The test pit was backfilled with sand of appropriate grain size distributions to obtain good compaction, especially between the 25 piles. Accelerations were measured at the structures, in the test pit and in the adjacent free field, and pile strains were measured. Dynamic modal tests of the pile-supported structures and PS measurements of the test pit were performed before and after the vibration tests to detect changes in the natural frequencies of the soil-pile-structure systems and the soil stiffness. The vibration tests were performed six times with different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 57 cm/s 2 to 1,683 cm/s 2 according to the distances between the test site and the blast areas. (authors)

  7. Use of Ground Penetrating Radar at the FAA's National Airport Pavement Test Facility

    Science.gov (United States)

    Injun, Song

    2015-04-01

    The Federal Aviation Administration (FAA) in the United States has used a ground-coupled Ground Penetrating Radar (GPR) at the National Airport Pavement Test Facility (NAPTF) since 2005. One of the primary objectives of the testing at the facility is to provide full-scale pavement response and failure information for use in airplane landing gear design and configuration studies. During the traffic testing at the facility, a GSSI GPR system was used to develop new procedures for monitoring Hot Mix Asphalt (HMA) pavement density changes that is directly related to pavement failure. After reviewing current setups for data acquisition software and procedures for identifying different pavement layers, dielectric constant and pavement thickness were selected as dominant parameters controlling HMA properties provided by GPR. A new methodology showing HMA density changes in terms of dielectric constant variations, called dielectric sweep test, was developed and applied in full-scale pavement test. The dielectric constant changes were successfully monitored with increasing airplane traffic numbers. The changes were compared to pavement performance data (permanent deformation). The measured dielectric constants based on the known HMA thicknesses were also compared with computed dielectric constants using an equation from ASTM D4748-98 Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar. Six inches diameter cylindrical cores were taken after construction and traffic testing for the HMA layer bulk specific gravity. The measured bulk specific gravity was also compared to monitor HMA density changes caused by aircraft traffic conditions. Additionally this presentation will review the applications of the FAA's ground-coupled GPR on embedded rebar identification in concrete pavement, sewer pipes in soil, and gage identifications in 3D plots.

  8. Implementation of Hardware Accelerators on Zynq

    DEFF Research Database (Denmark)

    Toft, Jakob Kenn

    of the ARM Cortex-9 processor featured on the Zynq SoC, with regard to execution time, power dissipation and energy consumption. The implementation of the hardware accelerators were successful. Use of the Monte Carlo processor resulted in a significant increase in performance. The Telco hardware accelerator......In the recent years it has become obvious that the performance of general purpose processors are having trouble meeting the requirements of high performance computing applications of today. This is partly due to the relatively high power consumption, compared to the performance, of general purpose...... processors, which has made hardware accelerators an essential part of several datacentres and the worlds fastest super-computers. In this work, two different hardware accelerators were implemented on a Xilinx Zynq SoC platform mounted on the ZedBoard platform. The two accelerators are based on two different...

  9. Monitoring of natural revegetation of Semipalatinsk nuclear testing ground

    International Nuclear Information System (INIS)

    Sultanova, B.M.

    2002-01-01

    It is well known, that monitoring of natural revegetation of Semipalatinsk test site (STS) was carried out during period 1994-2002 at test areas (Experimental field, Balapan, Degelen). In this paper the peculiarities of vegetation cover of these test areas are observed. Thus, vegetation cover of Experimental field ground in the epicentre is completely destroyed. At present there are different stages of zonal steppe communities rehabilitation: in zones with γ-irradiation 11000-14000 μR/h the revegetation is not found; on the plots with γ-irradiation 8200-10000 μR/h rare species of Artemisia frigida are found; aggregation of plant (managed from 6000-7000 μR/h is observed; At the γ-irradiation 80-200 μR/h rarefied groups of bunch grass communities similar to the zonal steppe are formed and zonal bunch grass communities developed with 18-25 μR/h. Vegetation cover of Degelen hill tops and near-mouth ground in the results of underground nuclear expulsions are completely destroyed. Here there are three main kinds of vegetation: very stony gallery areas don't almost overgrow; at technogen tops near galleries the single plants, rare field groups and unclosed micro-phyto-biocenoses of weed and adventive species (Amaranthus retroflexus, Artemisia dracunculus, Laxctuca serriola, Chorispora sibirica etc.). On the Balapan are the revegetation is limited by high radiation pollution rate. Here cenose rehabilitation is presented by Artemisia marshalliana, Spita sareptana, Festuca valresiaca). In their paper florostic and phyrocoenitic diversity of STS's flora transformation is studied. Pattern distribution and migration of radionuclides in soils and vegetation cover is represented

  10. Computer hardware fault administration

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  11. Fast Gridding on Commodity Graphics Hardware

    DEFF Research Database (Denmark)

    Sørensen, Thomas Sangild; Schaeffter, Tobias; Noe, Karsten Østergaard

    2007-01-01

    is the far most time consuming of the three steps (Table 1). Modern graphics cards (GPUs) can be utilised as a fast parallel processor provided that algorithms are reformulated in a parallel solution. The purpose of this work is to test the hypothesis, that a non-cartesian reconstruction can be efficiently...... implemented on graphics hardware giving a significant speedup compared to CPU based alternatives. We present a novel GPU implementation of the convolution step that overcomes the problems of memory bandwidth that has limited the speed of previous GPU gridding algorithms [2]....

  12. Efficient Hardware Implementation For Fingerprint Image Enhancement Using Anisotropic Gaussian Filter.

    Science.gov (United States)

    Khan, Tariq Mahmood; Bailey, Donald G; Khan, Mohammad A U; Kong, Yinan

    2017-05-01

    A real-time image filtering technique is proposed which could result in faster implementation for fingerprint image enhancement. One major hurdle associated with fingerprint filtering techniques is the expensive nature of their hardware implementations. To circumvent this, a modified anisotropic Gaussian filter is efficiently adopted in hardware by decomposing the filter into two orthogonal Gaussians and an oriented line Gaussian. An architecture is developed for dynamically controlling the orientation of the line Gaussian filter. To further improve the performance of the filter, the input image is homogenized by a local image normalization. In the proposed structure, for a middle-range reconfigurable FPGA, both parallel compute-intensive and real-time demands were achieved. We manage to efficiently speed up the image-processing time and improve the resource utilization of the FPGA. Test results show an improved speed for its hardware architecture while maintaining reasonable enhancement benchmarks.

  13. Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space. 73 refs., 19 figs., 7 tabs.

  14. Cleanup Verification Package for the 118-B-1, 105-B Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Capron, J.M.

    2008-01-01

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance criteria for the 118-B-1, 105-B Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-B Reactor and P-10 Tritium Separation Project and also received waste from the 105-N Reactor. The burial ground received reactor hardware, process piping and tubing, fuel spacers, glassware, electrical components, tritium process wastes, soft wastes and other miscellaneous debris

  15. NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing

    Science.gov (United States)

    Clements, Greg

    2011-01-01

    This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather

  16. Treatment alternatives for non-fuel-bearing hardware

    International Nuclear Information System (INIS)

    Ross, W.A.; Clark, L.L.; Oma, K.H.

    1987-01-01

    This evaluation compared four alternatives for the treatment or processing of non-fuel bearing hardware (NFBH) to reduce its volume and prepare it for disposal. These treatment alternatives are: shredding; shredding and low pressure compaction; shredding and supercompaction; and melting. These alternatives are compared on the basis of system costs, waste form characteristics, and process considerations. The study recommends that melting and supercompaction alternatives be further considered and that additional testing be conducted for these two alternatives

  17. Mitigation of ground motion effects in linear accelerators via feed-forward control

    Directory of Open Access Journals (Sweden)

    J. Pfingstner

    2014-12-01

    Full Text Available Ground motion is a severe problem for many particle accelerators, since it excites beam oscillations, which decrease the beam quality and create beam-beam offset (at colliders. Orbit feedback systems can only compensate ground motion effects at frequencies significantly smaller than the beam repetition rate. In linear colliders, where the repetition rate is low, additional counter measures have to be put in place. For this reason, a ground motion mitigation method based on feed-forward control is presented in this paper. It has several advantages compared to other techniques (stabilization systems and intratrain feedback systems such as cost reduction and potential performance improvement. An analytical model is presented that allows the derivation of hardware specification and performance estimates for a specific accelerator and ground motion model. At the Accelerator Test Facility (ATF2, ground motion sensors have been installed to verify the feasibility of important parts of the mitigation strategy. In experimental studies, it has been shown that beam excitations due to ground motion can be predicted from ground motion measurements on a pulse-to-pulse basis. Correlations of up to 80% between the estimated and measured orbit jitter have been observed. Additionally, an orbit jitter source was identified and has been removed, which halved the orbit jitter power at ATF2 and shows that the feed-forward scheme is also very useful for the detection of installation issues. We believe that the presented mitigation method has the potential to reduce costs and improve the performance of linear colliders and potentially other linear accelerators.

  18. Internet-based hardware/software co-design framework for embedded 3D graphics applications

    Directory of Open Access Journals (Sweden)

    Wong Weng-Fai

    2011-01-01

    Full Text Available Abstract Advances in technology are making it possible to run three-dimensional (3D graphics applications on embedded and handheld devices. In this article, we propose a hardware/software co-design environment for 3D graphics application development that includes the 3D graphics software, OpenGL ES application programming interface (API, device driver, and 3D graphics hardware simulators. We developed a 3D graphics system-on-a-chip (SoC accelerator using transaction-level modeling (TLM. This gives software designers early access to the hardware even before it is ready. On the other hand, hardware designers also stand to gain from the more complex test benches made available in the software for verification. A unique aspect of our framework is that it allows hardware and software designers from geographically dispersed areas to cooperate and work on the same framework. Designs can be entered and executed from anywhere in the world without full access to the entire framework, which may include proprietary components. This results in controlled and secure transparency and reproducibility, granting leveled access to users of various roles.

  19. Saturn V First Stage Lowered to the Ground After Static Test

    Science.gov (United States)

    1966-01-01

    This vintage photograph shows the 138-foot long first stage of the Saturn V being lowered to the ground following a successful static test firing at Marshall Space flight Center's S-1C test stand. The firing provided NASA engineers information on the booster's systems. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  20. Commissioning of the Ground Test Accelerator RFQ

    International Nuclear Information System (INIS)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Connolly, R.; Garnett, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohson, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Saadatmand, K.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H - beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 key H - injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2βγ Drift Tube Linac (DTL-1) module, the 8.7 MeV 2βγ DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the RFQ beam experiments will be presented along with comparisons to simulations

  1. Commissioning of the ground test accelerator RFQ

    International Nuclear Information System (INIS)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Brown, S.; Garnott, R.; Gilpatrick, J.D.; Guy, F.W.; Ingalls, W.B.; Little, C.; Lohsen, R.A.; Lloyd, S.; Neuschaefer, G.; Power, J.; Sandoval, D.P.; Saadatmand, K.; Stevens, R.R.Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V.; Connolly, R.; Weiss, R.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H - beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on line. The commissioning stages are the 35-keV H - injector, the 2.5-MeV radio-frequency quadrupole (RFQ), the intertank matching section (IMS), the 3.2-MeV first 2-βλ drift tube linac (DTL-1) module, the 8.7-MeV 2-βλDTL (modules 1-5), and the 24-MeV GTA (all 10 DTL modules). Commissioning results from the RFQ beam experiments are presented along with comparisons with simulations. (Author) 8 refs., 9 figs

  2. Power Hardware-in-the-Loop Testing of Multiple Photovoltaic Inverters' Volt-Var Control with Real-Time Grid Model

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Sudipta; Nelson, Austin; Hoke, Anderson

    2016-12-12

    Traditional testing methods fall short in evaluating interactions between multiple smart inverters providing advanced grid support functions due to the fact that such interactions largely depend on their placements on the electric distribution systems with impedances between them. Even though significant concerns have been raised by the utilities on the effects of such interactions, little effort has been made to evaluate them. In this paper, power hardware-in-the-loop (PHIL) based testing was utilized to evaluate autonomous volt-var operations of multiple smart photovoltaic (PV) inverters connected to a simple distribution feeder model. The results provided in this paper show that depending on volt-var control (VVC) parameters and grid parameters, interaction between inverters and between the inverter and the grid is possible in some extreme cases with very high VVC slopes, fast response times and large VVC response delays.

  3. Synthetic hardware performance analysis in virtualized cloud environment for healthcare organization.

    Science.gov (United States)

    Tan, Chee-Heng; Teh, Ying-Wah

    2013-08-01

    The main obstacles in mass adoption of cloud computing for database operations in healthcare organization are the data security and privacy issues. In this paper, it is shown that IT services particularly in hardware performance evaluation in virtual machine can be accomplished effectively without IT personnel gaining access to actual data for diagnostic and remediation purposes. The proposed mechanisms utilized the hypothetical data from TPC-H benchmark, to achieve 2 objectives. First, the underlying hardware performance and consistency is monitored via a control system, which is constructed using TPC-H queries. Second, the mechanism to construct stress-testing scenario is envisaged in the host, using a single or combination of TPC-H queries, so that the resource threshold point can be verified, if the virtual machine is still capable of serving critical transactions at this constraining juncture. This threshold point uses server run queue size as input parameter, and it serves 2 purposes: It provides the boundary threshold to the control system, so that periodic learning of the synthetic data sets for performance evaluation does not reach the host's constraint level. Secondly, when the host undergoes hardware change, stress-testing scenarios are simulated in the host by loading up to this resource threshold level, for subsequent response time verification from real and critical transactions.

  4. The Space Operations Simulation Center (SOSC) and Closed-Loop Hardware Testing for Orion Rendezvous System Design

    Science.gov (United States)

    Milenkovic, Zoran; DSouza, Christopher; Huish, David; Bendle, John; Kibler, Angela

    2012-01-01

    The exploration goals of Orion / MPCV Project will require a mature Rendezvous, Proximity Operations and Docking (RPOD) capability. Ground testing autonomous docking with a next-generation sensor such as the Vision Navigation Sensor (VNS) is a critical step along the path of ensuring successful execution of autonomous RPOD for Orion. This paper will discuss the testing rationale, the test configuration, the test limitations and the results obtained from tests that have been performed at the Lockheed Martin Space Operations Simulation Center (SOSC) to evaluate and mature the Orion RPOD system. We will show that these tests have greatly increased the confidence in the maturity of the Orion RPOD design, reduced some of the latent risks and in doing so validated the design philosophy of the Orion RPOD system. This paper is organized as follows: first, the objectives of the test are given. Descriptions of the SOSC facility, and the Orion RPOD system and associated components follow. The details of the test configuration of the components in question are presented prior to discussing preliminary results of the tests. The paper concludes with closing comments.

  5. Aerothermal Ground Testing of Flexible Thermal Protection Systems for Hypersonic Inflatable Aerodynamic Decelerators

    Science.gov (United States)

    Bruce, Walter E., III; Mesick, Nathaniel J.; Ferlemann, Paul G.; Siemers, Paul M., III; DelCorso, Joseph A.; Hughes, Stephen J.; Tobin, Steven A.; Kardell, Matthew P.

    2012-01-01

    Flexible TPS development involves ground testing and analysis necessary to characterize performance of the FTPS candidates prior to flight testing. This paper provides an overview of the analysis and ground testing efforts performed over the last year at the NASA Langley Research Center and in the Boeing Large-Core Arc Tunnel (LCAT). In the LCAT test series, material layups were subjected to aerothermal loads commensurate with peak re-entry conditions enveloping a range of HIAD mission trajectories. The FTPS layups were tested over a heat flux range from 20 to 50 W/cm with associated surface pressures of 3 to 8 kPa. To support the testing effort a significant redesign of the existing shear (wedge) model holder from previous testing efforts was undertaken to develop a new test technique for supporting and evaluating the FTPS in the high-temperature, arc jet flow. Since the FTPS test samples typically experience a geometry change during testing, computational fluid dynamic (CFD) models of the arc jet flow field and test model were developed to support the testing effort. The CFD results were used to help determine the test conditions experienced by the test samples as the surface geometry changes. This paper includes an overview of the Boeing LCAT facility, the general approach for testing FTPS, CFD analysis methodology and results, model holder design and test methodology, and selected thermal results of several FTPS layups.

  6. A Practical Introduction to HardwareSoftware Codesign

    CERN Document Server

    Schaumont, Patrick R

    2013-01-01

    This textbook provides an introduction to embedded systems design, with emphasis on integration of custom hardware components with software. The key problem addressed in the book is the following: how can an embedded systems designer strike a balance between flexibility and efficiency? The book describes how combining hardware design with software design leads to a solution to this important computer engineering problem. The book covers four topics in hardware/software codesign: fundamentals, the design space of custom architectures, the hardware/software interface and application examples. The book comes with an associated design environment that helps the reader to perform experiments in hardware/software codesign. Each chapter also includes exercises and further reading suggestions. Improvements in this second edition include labs and examples using modern FPGA environments from Xilinx and Altera, which make the material applicable to a greater number of courses where these tools are already in use.  Mo...

  7. Comparative Modal Analysis of Sieve Hardware Designs

    Science.gov (United States)

    Thompson, Nathaniel

    2012-01-01

    The CMTB Thwacker hardware operates as a testbed analogue for the Flight Thwacker and Sieve components of CHIMRA, a device on the Curiosity Rover. The sieve separates particles with a diameter smaller than 150 microns for delivery to onboard science instruments. The sieving behavior of the testbed hardware should be similar to the Flight hardware for the results to be meaningful. The elastodynamic behavior of both sieves was studied analytically using the Rayleigh Ritz method in conjunction with classical plate theory. Finite element models were used to determine the mode shapes of both designs, and comparisons between the natural frequencies and mode shapes were made. The analysis predicts that the performance of the CMTB Thwacker will closely resemble the performance of the Flight Thwacker within the expected steady state operating regime. Excitations of the testbed hardware that will mimic the flight hardware were recommended, as were those that will improve the efficiency of the sieving process.

  8. Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site Readiness Ground Motion

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A

    2008-01-16

    In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.

  9. Hardware implementation of on -chip learning using re configurable FPGAS

    International Nuclear Information System (INIS)

    Kelash, H.M.; Sorour, H.S; Mahmoud, I.I.; Zaki, M; Haggag, S.S.

    2009-01-01

    The multilayer perceptron (MLP) is a neural network model that is being widely applied in the solving of diverse problems. A supervised training is necessary before the use of the neural network.A highly popular learning algorithm called back-propagation is used to train this neural network model. Once trained, the MLP can be used to solve classification problems. An interesting method to increase the performance of the model is by using hardware implementations. The hardware can do the arithmetical operations much faster than software. In this paper, a design and implementation of the sequential mode (stochastic mode) of backpropagation algorithm with on-chip learning using field programmable gate arrays (FPGA) is presented, a pipelined adaptation of the on-line back propagation algorithm (BP) is shown.The hardware implementation of forward stage, backward stage and update weight of backpropagation algorithm is also presented. This implementation is based on a SIMD parallel architecture of the forward propagation the diagnosis of the multi-purpose research reactor of Egypt accidents is used to test the proposed system

  10. A Field Test of Electromigration as a Method for Remediating Sulfate from Shallow Ground Water

    Science.gov (United States)

    Patterson, C.G.; Runnells, D.D.

    1996-01-01

    Electromigration offers a potential tool for remediating ground water contaminated with highly soluble components, such as Na+, Cl-, NO3-, and SO4-. A field experiment was designed to test the efficacy of electromigration for preconcentrating dissolved SO42- in ground water associated with a fossil-fuel power plant. Two shallow wells, 25 feet apart (one 25 feet deep, the other 47 feet deep), were constructed in the upper portion of an unconfined alluvial aquifer. The wells were constructed with a double-wall design, with an outer casing of 4-inch PVC and an inner tube of 2-inch PVC; both were fully slotted (0.01 inch). Electrodes were constructed by wrapping the inner tubing with a 100-foot length of rare-earth metal oxide/copper wire. An electrical potential of 10.65 volts DC was applied, and tests were run for periods of 12, 44, and 216 hours. Results showed large changes in the pH from the initial pH of ground water of about 7.5 to values of approximately 2 and 12 at the anode and cathode, respectively. Despite the fact that the test conditions were far from ideal, dissolved SO42- was significantly concentrated at the anode. Over a period of approximately nine days, the concentration of SO42- at the anode reached what appeared to be a steady-state value of 2200 mg/L, compared to the initial value in ground water of approximately 1150 mg/L. The results of this field test should encourage further investigation of electromigration as a tool in the remediation of contaminated ground water.

  11. X-43A Vehicle During Ground Testing

    Science.gov (United States)

    1999-01-01

    The X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' is seen here undergoing ground testing at NASA's Dryden Flight Research Center, Edwards, California in December 1999. The X-43A was developed to research a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only

  12. Remote hardware-reconfigurable robotic camera

    Science.gov (United States)

    Arias-Estrada, Miguel; Torres-Huitzil, Cesar; Maya-Rueda, Selene E.

    2001-10-01

    In this work, a camera with integrated image processing capabilities is discussed. The camera is based on an imager coupled to an FPGA device (Field Programmable Gate Array) which contains an architecture for real-time computer vision low-level processing. The architecture can be reprogrammed remotely for application specific purposes. The system is intended for rapid modification and adaptation for inspection and recognition applications, with the flexibility of hardware and software reprogrammability. FPGA reconfiguration allows the same ease of upgrade in hardware as a software upgrade process. The camera is composed of a digital imager coupled to an FPGA device, two memory banks, and a microcontroller. The microcontroller is used for communication tasks and FPGA programming. The system implements a software architecture to handle multiple FPGA architectures in the device, and the possibility to download a software/hardware object from the host computer into its internal context memory. System advantages are: small size, low power consumption, and a library of hardware/software functionalities that can be exchanged during run time. The system has been validated with an edge detection and a motion processing architecture, which will be presented in the paper. Applications targeted are in robotics, mobile robotics, and vision based quality control.

  13. Ground testing and simulation. II - Aerodynamic testing and simulation: Saving lives, time, and money

    Science.gov (United States)

    Dayman, B., Jr.; Fiore, A. W.

    1974-01-01

    The present work discusses in general terms the various kinds of ground facilities, in particular, wind tunnels, which support aerodynamic testing. Since not all flight parameters can be simulated simultaneously, an important problem consists in matching parameters. It is pointed out that there is a lack of wind tunnels for a complete Reynolds-number simulation. Using a computer to simulate flow fields can result in considerable reduction of wind-tunnel hours required to develop a given flight vehicle.

  14. Lightning and surge protection of large ground facilities

    Science.gov (United States)

    Stringfellow, Michael F.

    1988-04-01

    The vulnerability of large ground facilities to direct lightning strikes and to lightning-induced overvoltages on the power distribution, telephone and data communication lines are discussed. Advanced electrogeometric modeling is used for the calculation of direct strikes to overhead power lines, buildings, vehicles and objects within the facility. Possible modes of damage, injury and loss are discussed. Some appropriate protection methods for overhead power lines, structures, vehicles and aircraft are suggested. Methods to mitigate the effects of transients on overhead and underground power systems as well as within buildings and other structures are recommended. The specification and location of low-voltage surge suppressors for the protection of vulnerable hardware such as computers, telecommunication equipment and radar installations are considered. The advantages and disadvantages of commonly used grounding techniques, such as single point, multiple and isolated grounds are compared. An example is given of the expected distribution of lightning flashes to a large airport, its buildings, structures and facilities, as well as to vehicles on the ground.

  15. First in situ operation performance test of ground source heat pump in Tunisia

    International Nuclear Information System (INIS)

    Naili, Nabiha; Attar, Issam; Hazami, Majdi; Farhat, Abdelhamid

    2013-01-01

    Highlights: • Evaluate the geothermal energy in Tunisia. • Study of the performance of GSHP system for cooling space. • GSHP is a promising alternative for building cooling in Tunisia. - Abstract: The main purpose of this paper is to study the energetic potential of the deployment in Tunisia of the Ground Source Heat Pump (GSHP) system for cooling mode application. Therefore, a pilot GSHP system using horizontal Ground Heat Exchanger (GHE) was installed and experimented in the Research and Technology Center of Energy (CRTEn), Borj Cédria. The experiment is conducted in a test room with a floor area of about 12 m 2 . In the floor of the tested room is integrated a polyethylene exchanger (PEX) used as a radiant floor cooling (RFC) system. The experimental setup mainly includes the ground temperature, the temperature and flow rate of water circulating in the heat pump and the GHE, as well as the power consumption of the heat pump and circulating pumps. These experimental data are essentially used to evaluate the coefficient of performance of the heat pump (COP hp ) and the overall system (COP sys ) for continuous operation mode. The COP hp and the COP sys were found to be 4.25 and 2.88, respectively. These results reveal that the use of the ground source heat pump is very appropriate for Tunisian building cooling

  16. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    Directory of Open Access Journals (Sweden)

    Ten-See Wang

    Full Text Available A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process. Keywords: Hydrogen decomposition reactions, Hydrogen recombination reactions, Hydrogen containment process, Nuclear thermal propulsion, Ground testing

  17. Transmission delays in hardware clock synchronization

    Science.gov (United States)

    Shin, Kang G.; Ramanathan, P.

    1988-01-01

    Various methods, both with software and hardware, have been proposed to synchronize a set of physical clocks in a system. Software methods are very flexible and economical but suffer an excessive time overhead, whereas hardware methods require no time overhead but are unable to handle transmission delays in clock signals. The effects of nonzero transmission delays in synchronization have been studied extensively in the communication area in the absence of malicious or Byzantine faults. The authors show that it is easy to incorporate the ideas from the communication area into the existing hardware clock synchronization algorithms to take into account the presence of both malicious faults and nonzero transmission delays.

  18. Computer hardware description languages - A tutorial

    Science.gov (United States)

    Shiva, S. G.

    1979-01-01

    The paper introduces hardware description languages (HDL) as useful tools for hardware design and documentation. The capabilities and limitations of HDLs are discussed along with the guidelines needed in selecting an appropriate HDL. The directions for future work are provided and attention is given to the implementation of HDLs in microcomputers.

  19. USB environment measurements based on full-scale static engine ground tests

    Science.gov (United States)

    Sussman, M. B.; Harkonen, D. L.; Reed, J. B.

    1976-01-01

    Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle, and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data, and to establish a basis for future flight test comparisons.

  20. DUL Radio: A light-weight, wireless toolkit for sketching in hardware

    DEFF Research Database (Denmark)

    Brynskov, Martin; Lunding, Rasmus; Vestergaard, Lasse Steenbock

    2011-01-01

    -mobile prototyping where fast reaction is needed (e.g. in controlling sound). The target audiences include designers, students, artists etc. with minimal programming and hardware skills. This presentation covers our motivations for creating the toolkit, specifications, test results, comparison to related products...

  1. Support for NUMA hardware in HelenOS

    OpenAIRE

    Horký, Vojtěch

    2011-01-01

    The goal of this master thesis is to extend HelenOS operating system with the support for ccNUMA hardware. The text of the thesis contains a brief introduction to ccNUMA hardware, an overview of NUMA features and relevant features of HelenOS (memory management, scheduling, etc.). The thesis analyses various design decisions of the implementation of NUMA support -- introducing the hardware topology into the kernel data structures, propagating this information to user space, thread affinity to ...

  2. A Ground-Based Validation System of Teleoperation for a Space Robot

    Directory of Open Access Journals (Sweden)

    Xueqian Wang

    2012-10-01

    Full Text Available Teleoperation of space robots is very important for future on-orbit service. In order to assure the task is accomplished successfully, ground experiments are required to verify the function and validity of the teleoperation system before a space robot is launched. In this paper, a ground-based validation subsystem is developed as a part of a teleoperation system. The subsystem is mainly composed of four parts: the input verification module, the onboard verification module, the dynamic and image workstation, and the communication simulator. The input verification module, consisting of hardware and software of the master, is used to verify the input ability. The onboard verification module, consisting of the same hardware and software as the onboard processor, is used to verify the processor's computing ability and execution schedule. In addition, the dynamic and image workstation calculates the dynamic response of the space robot and target, and generates emulated camera images, including the hand-eye cameras, global-vision camera and rendezvous camera. The communication simulator provides fidelity communication conditions, i.e., time delays and communication bandwidth. Lastly, we integrated a teleoperation system and conducted many experiments on the system. Experiment results show that the ground system is very useful for verified teleoperation technology.

  3. The control system of the 12-m medium-size telescope prototype: a test-ground for the CTA array control

    Science.gov (United States)

    Oya, I.; Anguner, E. A.; Behera, B.; Birsin, E.; Fuessling, M.; Lindemann, R.; Melkumyan, D.; Schlenstedt, S.; Schmidt, T.; Schwanke, U.; Sternberger, R.; Wegner, P.; Wiesand, S.

    2014-07-01

    The Cherenkov Telescope Array (CTA) will be the next generation ground-based very-high energy -ray observatory. CTA will consist of two arrays: one in the Northern hemisphere composed of about 20 telescopes, and the other one in the Southern hemisphere composed of about 100 telescopes, both arrays containing telescopes of different sizes and types and in addition numerous auxiliary devices. In order to provide a test-ground for the CTA array control, the steering software of the 12-m medium size telescope (MST) prototype deployed in Berlin has been implemented using the tools and design concepts under consideration to be used for the control of the CTA array. The prototype control system is implemented based on the Atacama Large Millimeter/submillimeter Array (ALMA) Common Software (ACS) control middleware, with components implemented in Java, C++ and Python. The interfacing to the hardware is standardized via the Object Linking and Embedding for Process Control Unified Architecture (OPC UA). In order to access the OPC UA servers from the ACS framework in a common way, a library has been developed that allows to tie the OPC UA server nodes, methods and events to the equivalents in ACS components. The front-end of the archive system is able to identify the deployed components and to perform the sampling of the monitoring points of each component following time and value change triggers according to the selected configurations. The back-end of the archive system of the prototype is composed by two different databases: MySQL and MongoDB. MySQL has been selected as storage of the system configurations, while MongoDB is used to have an efficient storage of device monitoring data, CCD images, logging and alarm information. In this contribution, the details and conclusions on the implementation of the control software of the MST prototype are presented.

  4. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, William [Brooks Engineering, Vacaville, CA (United States); Basso, Thomas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coddington, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  5. Sterilization of space hardware.

    Science.gov (United States)

    Pflug, I. J.

    1971-01-01

    Discussion of various techniques of sterilization of space flight hardware using either destructive heating or the action of chemicals. Factors considered in the dry-heat destruction of microorganisms include the effects of microbial water content, temperature, the physicochemical properties of the microorganism and adjacent support, and nature of the surrounding gas atmosphere. Dry-heat destruction rates of microorganisms on the surface, between mated surface areas, or buried in the solid material of space vehicle hardware are reviewed, along with alternative dry-heat sterilization cycles, thermodynamic considerations, and considerations of final sterilization-process design. Discussed sterilization chemicals include ethylene oxide, formaldehyde, methyl bromide, dimethyl sulfoxide, peracetic acid, and beta-propiolactone.

  6. Software for Managing Inventory of Flight Hardware

    Science.gov (United States)

    Salisbury, John; Savage, Scott; Thomas, Shirman

    2003-01-01

    The Flight Hardware Support Request System (FHSRS) is a computer program that relieves engineers at Marshall Space Flight Center (MSFC) of most of the non-engineering administrative burden of managing an inventory of flight hardware. The FHSRS can also be adapted to perform similar functions for other organizations. The FHSRS affords a combination of capabilities, including those formerly provided by three separate programs in purchasing, inventorying, and inspecting hardware. The FHSRS provides a Web-based interface with a server computer that supports a relational database of inventory; electronic routing of requests and approvals; and electronic documentation from initial request through implementation of quality criteria, acquisition, receipt, inspection, storage, and final issue of flight materials and components. The database lists both hardware acquired for current projects and residual hardware from previous projects. The increased visibility of residual flight components provided by the FHSRS has dramatically improved the re-utilization of materials in lieu of new procurements, resulting in a cost savings of over $1.7 million. The FHSRS includes subprograms for manipulating the data in the database, informing of the status of a request or an item of hardware, and searching the database on any physical or other technical characteristic of a component or material. The software structure forces normalization of the data to facilitate inquiries and searches for which users have entered mixed or inconsistent values.

  7. Targeting multiple heterogeneous hardware platforms with OpenCL

    Science.gov (United States)

    Fox, Paul A.; Kozacik, Stephen T.; Humphrey, John R.; Paolini, Aaron; Kuller, Aryeh; Kelmelis, Eric J.

    2014-06-01

    The OpenCL API allows for the abstract expression of parallel, heterogeneous computing, but hardware implementations have substantial implementation differences. The abstractions provided by the OpenCL API are often insufficiently high-level to conceal differences in hardware architecture. Additionally, implementations often do not take advantage of potential performance gains from certain features due to hardware limitations and other factors. These factors make it challenging to produce code that is portable in practice, resulting in much OpenCL code being duplicated for each hardware platform being targeted. This duplication of effort offsets the principal advantage of OpenCL: portability. The use of certain coding practices can mitigate this problem, allowing a common code base to be adapted to perform well across a wide range of hardware platforms. To this end, we explore some general practices for producing performant code that are effective across platforms. Additionally, we explore some ways of modularizing code to enable optional optimizations that take advantage of hardware-specific characteristics. The minimum requirement for portability implies avoiding the use of OpenCL features that are optional, not widely implemented, poorly implemented, or missing in major implementations. Exposing multiple levels of parallelism allows hardware to take advantage of the types of parallelism it supports, from the task level down to explicit vector operations. Static optimizations and branch elimination in device code help the platform compiler to effectively optimize programs. Modularization of some code is important to allow operations to be chosen for performance on target hardware. Optional subroutines exploiting explicit memory locality allow for different memory hierarchies to be exploited for maximum performance. The C preprocessor and JIT compilation using the OpenCL runtime can be used to enable some of these techniques, as well as to factor in hardware

  8. Some Hardware and Instrumentation Aspects of the Development of an Automation System for Jar Tests in Drinking Water Treatment.

    Science.gov (United States)

    Calderón, Antonio José; González, Isaías

    2017-10-11

    The so-called Jar Test (JT) plays a vital role in the drinking water and wastewater treatments for establishing the dosage of flocculants and coagulant. This test is a well-proved laboratory instrumental procedure performed by trained personnel. In this work, a completely novel system for the automation and monitoring of a JT devoted to drinking water treatment is presented. It has been implemented using an industrial programmable controller and sensors and instruments specifically selected for this purpose. Once the parameters of the test have been entered, the stages that compose the JT (stirring, coagulant addition, etc.) are sequentially performed without human intervention. Moreover, all the involved measurements from sensors are collected and made accessible for continuous monitoring of the process. By means of the proposed system, the JT procedure is conducted fully automatically and can be locally and remotely monitored in real-time. Furthermore, the developed system constitutes a portable laboratory that offers advantageous features like scalability and transportability. The proposed system is described focusing on hardware and instrumentation aspects, and successful results are reported.

  9. Some Hardware and Instrumentation Aspects of the Development of an Automation System for Jar Tests in Drinking Water Treatment

    Science.gov (United States)

    2017-01-01

    The so-called Jar Test (JT) plays a vital role in the drinking water and wastewater treatments for establishing the dosage of flocculants and coagulant. This test is a well-proved laboratory instrumental procedure performed by trained personnel. In this work, a completely novel system for the automation and monitoring of a JT devoted to drinking water treatment is presented. It has been implemented using an industrial programmable controller and sensors and instruments specifically selected for this purpose. Once the parameters of the test have been entered, the stages that compose the JT (stirring, coagulant addition, etc.) are sequentially performed without human intervention. Moreover, all the involved measurements from sensors are collected and made accessible for continuous monitoring of the process. By means of the proposed system, the JT procedure is conducted fully automatically and can be locally and remotely monitored in real-time. Furthermore, the developed system constitutes a portable laboratory that offers advantageous features like scalability and transportability. The proposed system is described focusing on hardware and instrumentation aspects, and successful results are reported. PMID:29019943

  10. High-performance reconfigurable hardware architecture for restricted Boltzmann machines.

    Science.gov (United States)

    Ly, Daniel Le; Chow, Paul

    2010-11-01

    Despite the popularity and success of neural networks in research, the number of resulting commercial or industrial applications has been limited. A primary cause for this lack of adoption is that neural networks are usually implemented as software running on general-purpose processors. Hence, a hardware implementation that can exploit the inherent parallelism in neural networks is desired. This paper investigates how the restricted Boltzmann machine (RBM), which is a popular type of neural network, can be mapped to a high-performance hardware architecture on field-programmable gate array (FPGA) platforms. The proposed modular framework is designed to reduce the time complexity of the computations through heavily customized hardware engines. A method to partition large RBMs into smaller congruent components is also presented, allowing the distribution of one RBM across multiple FPGA resources. The framework is tested on a platform of four Xilinx Virtex II-Pro XC2VP70 FPGAs running at 100 MHz through a variety of different configurations. The maximum performance was obtained by instantiating an RBM of 256 × 256 nodes distributed across four FPGAs, which resulted in a computational speed of 3.13 billion connection-updates-per-second and a speedup of 145-fold over an optimized C program running on a 2.8-GHz Intel processor.

  11. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    International Nuclear Information System (INIS)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository

  12. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository.

  13. Launch and Landing Effects Ground Operations (LLEGO) Model

    Science.gov (United States)

    2008-01-01

    LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.

  14. SCaN Network Ground Station Receiver Performance for Future Service Support

    Science.gov (United States)

    Estabrook, Polly; Lee, Dennis; Cheng, Michael; Lau, Chi-Wung

    2012-01-01

    Objectives: Examine the impact of providing the newly standardized CCSDS Low Density Parity Check (LDPC) codes to the SCaN return data service on the SCaN SN and DSN ground stations receivers: SN Current Receiver: Integrated Receiver (IR). DSN Current Receiver: Downlink Telemetry and Tracking (DTT) Receiver. Early Commercial-Off-The-Shelf (COTS) prototype of the SN User Service Subsystem Component Replacement (USS CR) Narrow Band Receiver. Motivate discussion of general issues of ground station hardware design to enable simple and cheap modifications for support of future services.

  15. Ground-water data for the Nevada Test Site and selected other areas in South-Central Nevada, 1992--1993

    International Nuclear Information System (INIS)

    1995-01-01

    The US Geological Survey, in support of the US Department of Energy Environmental Restoration and Hydrologic Resources Management Programs, collects and compiles hydrogeologic data to aid in characterizing the regional and local ground-water flow systems underlying the Nevada Test Site and vicinity. This report presents selected ground-water data collected from wells and test holes at and in the vicinity of the Nevada Test Site. Depth-to-water measurements were made during water year 1993 at 55 sites at the Nevada Test Site and 43 regional sites in the vicinity of the Nevada Test Site. Depth to water ranged from 87.7 to 674.6 meters below land surface at the Nevada Test Site and from 6.0 to 444.7 meters below land surface at sites in the vicinity of the Nevada Test Site. Depth-to-water measurements were obtained using the wire-line, electric-tape, air-line, and steel-tape devices. Total measured ground-water withdrawal from the Nevada Test Site during the 1993 calendar year was 1,888.04 million liters. Annual ground-water withdrawals from 14 wells ranged from 0.80 million to 417.20 million liters. Tritium concentrations from four samples at the Nevada Test Site and from three samples in the vicinity of the Nevada Test Site collected during water year 1993 ranged from near 0 to 27,676.0 becquerels per liter and from near 0 to 3.9 becquerels per liter, respectively

  16. Hardware realization of chaos based block cipher for image encryption

    KAUST Repository

    Barakat, Mohamed L.; Radwan, Ahmed G.; Salama, Khaled N.

    2011-01-01

    Unlike stream ciphers, block ciphers are very essential for parallel processing applications. In this paper, the first hardware realization of chaotic-based block cipher is proposed for image encryption applications. The proposed system is tested for known cryptanalysis attacks and for different block sizes. When implemented on Virtex-IV, system performance showed high throughput and utilized small area. Passing successfully in all tests, our system proved to be secure with all block sizes. © 2011 IEEE.

  17. Hardware realization of chaos based block cipher for image encryption

    KAUST Repository

    Barakat, Mohamed L.

    2011-12-01

    Unlike stream ciphers, block ciphers are very essential for parallel processing applications. In this paper, the first hardware realization of chaotic-based block cipher is proposed for image encryption applications. The proposed system is tested for known cryptanalysis attacks and for different block sizes. When implemented on Virtex-IV, system performance showed high throughput and utilized small area. Passing successfully in all tests, our system proved to be secure with all block sizes. © 2011 IEEE.

  18. National Spherical Torus Experiment Real Time Plasma Control Data Acquisition Hardware

    International Nuclear Information System (INIS)

    R.J. Marsala; J. Schneider

    2002-01-01

    The National Spherical Torus Experiment (NSTX) is currently providing researchers data on low aspect-ratio toroidal plasmas. NSTX's Plasma Control System adjusts the firing angles of thyristor rectifier power supplies, in real time, to control plasma position, shape and density. A Data Acquisition system comprised of off-the-shelf and custom hardware provides the magnetic diagnostics data required in calculating firing angles. This VERSAmodule Eurocard (VME) bus-based system utilizes Front Panel Data Port (FPDP) for high-speed data transfer. Data coming from physically different locations is referenced to several different ground potentials necessitating the need for a custom FPDP multiplexer. This paper discusses the data acquisition system configuration, the in-house designed 4-to-1 FPDP Input Multiplexing Module (FIMM), and future expansion plans

  19. Digital Hardware Realization of Forward and Inverse Kinematics for a Five-Axis Articulated Robot Arm

    Directory of Open Access Journals (Sweden)

    Bui Thi Hai Linh

    2015-01-01

    Full Text Available When robot arm performs a motion control, it needs to calculate a complicated algorithm of forward and inverse kinematics which consumes much CPU time and certainty slows down the motion speed of robot arm. Therefore, to solve this issue, the development of a hardware realization of forward and inverse kinematics for an articulated robot arm is investigated. In this paper, the formulation of the forward and inverse kinematics for a five-axis articulated robot arm is derived firstly. Then, the computations algorithm and its hardware implementation are described. Further, very high speed integrated circuits hardware description language (VHDL is applied to describe the overall hardware behavior of forward and inverse kinematics. Additionally, finite state machine (FSM is applied for reducing the hardware resource usage. Finally, for verifying the correctness of forward and inverse kinematics for the five-axis articulated robot arm, a cosimulation work is constructed by ModelSim and Simulink. The hardware of the forward and inverse kinematics is run by ModelSim and a test bench which generates stimulus to ModelSim and displays the output response is taken in Simulink. Under this design, the forward and inverse kinematics algorithms can be completed within one microsecond.

  20. Static Scheduling of Periodic Hardware Tasks with Precedence and Deadline Constraints on Reconfigurable Hardware Devices

    Directory of Open Access Journals (Sweden)

    Ikbel Belaid

    2011-01-01

    Full Text Available Task graph scheduling for reconfigurable hardware devices can be defined as finding a schedule for a set of periodic tasks with precedence, dependence, and deadline constraints as well as their optimal allocations on the available heterogeneous hardware resources. This paper proposes a new methodology comprising three main stages. Using these three main stages, dynamic partial reconfiguration and mixed integer programming, pipelined scheduling and efficient placement are achieved and enable parallel computing of the task graph on the reconfigurable devices by optimizing placement/scheduling quality. Experiments on an application of heterogeneous hardware tasks demonstrate an improvement of resource utilization of 12.45% of the available reconfigurable resources corresponding to a resource gain of 17.3% compared to a static design. The configuration overhead is reduced to 2% of the total running time. Due to pipelined scheduling, the task graph spanning is minimized by 4% compared to sequential execution of the graph.

  1. Magnetic Gimbal Proof-of-Concept Hardware performance results

    Science.gov (United States)

    Stuart, Keith O.

    1993-01-01

    The Magnetic Gimbal Proof-of-Concept Hardware activities, accomplishments, and test results are discussed. The Magnetic Gimbal Fabrication and Test (MGFT) program addressed the feasibility of using a magnetic gimbal to isolate an Electro-Optical (EO) sensor from the severe angular vibrations induced during the firing of divert and attitude control system (ACS) thrusters during space flight. The MGFT effort was performed in parallel with the fabrication and testing of a mechanically gimballed, flex pivot based isolation system by the Hughes Aircraft Missile Systems Group. Both servo systems supported identical EO sensor assembly mockups to facilitate direct comparison of performance. The results obtained from the MGFT effort indicate that the magnetic gimbal exhibits the ability to provide significant performance advantages over alternative mechanically gimballed techniques.

  2. TFTR grounding scheme and ground-monitor system

    International Nuclear Information System (INIS)

    Viola, M.

    1983-01-01

    The Tokamak Fusion Test Reactor (TFTR) grounding system utilizes a single-point ground. It is located directly under the machine, at the basement floor level, and is tied to the building perimeter ground. Wired to this single-point ground, via individual 500 MCM insulated cables, are: the vacuum vessel; four toroidal field coil cases/inner support structure quadrants; umbrella structure halves; the substructure ring girder; radial beams and columns; and the diagnostic systems. Prior to the first machine operation, a ground-loop removal program was initiated. It required insulation of all hangers and supports (within a 35-foot radius of the center of the machine) of the various piping, conduits, cable trays, and ventilation systems. A special ground-monitor system was designed and installed. It actively monitors each of the individual machine grounds to insure that there are no inadvertent ground loops within the machine structure or its ground and that the machine grounds are intact prior to each pulse. The TFTR grounding system has proven to be a very manageable system and one that is easy to maintain

  3. Design Tools for Reconfigurable Hardware in Orbit (RHinO)

    Science.gov (United States)

    French, Mathew; Graham, Paul; Wirthlin, Michael; Larchev, Gregory; Bellows, Peter; Schott, Brian

    2004-01-01

    The Reconfigurable Hardware in Orbit (RHinO) project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. These tools leverage an established FPGA design environment and focus primarily on space effects mitigation and power optimization. The project is creating software to automatically test and evaluate the single-event-upsets (SEUs) sensitivities of an FPGA design and insert mitigation techniques. Extensions into the tool suite will also allow evolvable algorithm techniques to reconfigure around single-event-latchup (SEL) events. In the power domain, tools are being created for dynamic power visualiization and optimization. Thus, this technology seeks to enable the use of Reconfigurable Hardware in Orbit, via an integrated design tool-suite aiming to reduce risk, cost, and design time of multimission reconfigurable space processors using SRAM-based FPGAs.

  4. COMPUTER HARDWARE MARKING

    CERN Multimedia

    Groupe de protection des biens

    2000-01-01

    As part of the campaign to protect CERN property and for insurance reasons, all computer hardware belonging to the Organization must be marked with the words 'PROPRIETE CERN'.IT Division has recently introduced a new marking system that is both economical and easy to use. From now on all desktop hardware (PCs, Macintoshes, printers) issued by IT Division with a value equal to or exceeding 500 CHF will be marked using this new system.For equipment that is already installed but not yet marked, including UNIX workstations and X terminals, IT Division's Desktop Support Service offers the following services free of charge:Equipment-marking wherever the Service is called out to perform other work (please submit all work requests to the IT Helpdesk on 78888 or helpdesk@cern.ch; for unavoidable operational reasons, the Desktop Support Service will only respond to marking requests when these coincide with requests for other work such as repairs, system upgrades, etc.);Training of personnel designated by Division Leade...

  5. Advanced Software Ground Station and UAV Development for NLoS Control Using Mobile Communications

    Directory of Open Access Journals (Sweden)

    Amr AbdElHamid

    2015-01-01

    Full Text Available Over the last decades, Unmanned Aerial Systems (UASs have gained much attention due to their various applications in different sections. However, their communication range is limited to utilized communication equipment. Therefore, utilization of GSM channels opens a new prospect towards long distance UAV missions and mobile command and control centers. This paper demonstrates new design and development of a small-scale UAV and a Ground Control Station (GCS using GSM bidirectional communications for Non-Line of Sight (NLoS long range control. GCSs are considered the front end node in UAV guidance process. Therefore, the proposed GCS employs a two-layer framework to consider all ground pilot requirements. Moreover, a new exploitation of global weather forecast data is added to the GCS. On the other hand, the proposed airborne system utilizes a new integration of different Commercial off-the-Shelf (COTS components and excludes short range receivers. The ground and flight tests show that stable bidirectional GSM communication is established, reliable hardware integration is accomplished, real time performance is achieved, GCS functional fidelity is obtained, and low cost is maintained. Finally, some qualitative aspects of the proposed platform are presented to address the detailed features.

  6. Superior Generalization Capability of Hardware-Learing Algorithm Developed for Self-Learning Neuron-MOS Neural Networks

    Science.gov (United States)

    Kondo, Shuhei; Shibata, Tadashi; Ohmi, Tadahiro

    1995-02-01

    We have investigated the learning performance of the hardware backpropagation (HBP) algorithm, a hardware-oriented learning algorithm developed for the self-learning architecture of neural networks constructed using neuron MOS (metal-oxide-semiconductor) transistors. The solution to finding a mirror symmetry axis in a 4×4 binary pixel array was tested by computer simulation based on the HBP algorithm. Despite the inherent restrictions imposed on the hardware-learning algorithm, HBP exhibits equivalent learning performance to that of the original backpropagation (BP) algorithm when all the pertinent parameters are optimized. Very importantly, we have found that HBP has a superior generalization capability over BP; namely, HBP exhibits higher performance in solving problems that the network has not yet learnt.

  7. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  8. Ground vibration test results for Drones for Aerodynamic and Structural Testing (DAST)/Aeroelastic Research Wing (ARW-1R) aircraft

    Science.gov (United States)

    Cox, T. H.; Gilyard, G. B.

    1986-01-01

    The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.

  9. GOSH! A roadmap for open-source science hardware

    CERN Multimedia

    Stefania Pandolfi

    2016-01-01

    The goal of the Gathering for Open Science Hardware (GOSH! 2016), held from 2 to 5 March 2016 at IdeaSquare, was to lay the foundations of the open-source hardware for science movement.   The participants in the GOSH! 2016 meeting gathered in IdeaSquare. (Image: GOSH Community) “Despite advances in technology, many scientific innovations are held back because of a lack of affordable and customisable hardware,” says François Grey, a professor at the University of Geneva and coordinator of Citizen Cyberlab – a partnership between CERN, the UN Institute for Training and Research and the University of Geneva – which co-organised the GOSH! 2016 workshop. “This scarcity of accessible science hardware is particularly obstructive for citizen science groups and humanitarian organisations that don’t have the same economic means as a well-funded institution.” Instead, open sourcing science hardware co...

  10. Use of the Aromascan(TM) Instrument for Nonsubjective Evaluation of Rodent Spaceflight Hardware

    Science.gov (United States)

    Scribner, K. A.; Steele, M. K.; Hinds, W. E.; Dalton, Bonnie P. (Technical Monitor)

    1997-01-01

    This report describes the verification and utilization of the AromaScan(TM) (Hollis, NH) instrument for the ground-based evaluation of odor containment by various spaceflight habitats developed at NASA's Ames Research Center (ARC). The AromaScan(TM) instrument is an electronic odor detection system consisting of 32 polymer sensors that respond differentially to 10 different chemical groups present in an air sample. The AromaScan(TM) system also includes neural network software for constructing a database of known odors, against which an unknown odor can be compared. At present, the standard method for characterizing rodent odor containment during the development and testing of spaceflight hardware is the use of a human odor assessment panel. However, this can be a very time consuming and costly process, and the results are inherently subjective. The AromaScan(TM) system should produce more consistent and objective results, as well as a cost savings in the long term. To test and verify the AromaScan(TM) instrument, daily air samples will be collected from the exhaust port of rodent habitats, during experiment development tests, then injected into the instrument and used to create a database of recognizable odors. Human sniff tests will be performed in conjunction with the AromaScan(TM) analysis, and the results will be correlated. We will then teach the neural network to differentiate between an acceptable and an unacceptable odor profile, as defined by the human sniff test, and to be able to accurately identify an odor that would not pass a sniff panel. The results of our efforts will be to verify that the AromaScan(TM) system is a valuable alternative to human sniff panel assessments for the early iterative process of designing and testing rodent waste filters for spaceflight. Acceptance by a human panel will remain one of the final criteria for successful rodent habitat development.

  11. Hardware Accelerated Simulated Radiography

    International Nuclear Information System (INIS)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-01-01

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists

  12. Reusable LH2 tank technology demonstration through ground test

    Science.gov (United States)

    Bianca, C.; Greenberg, H. S.; Johnson, S. E.

    1995-01-01

    The paper presents the project plan to demonstrate, by March 1997, the reusability of an integrated composite LH2 tank structure, cryogenic insulation, and thermal protection system (TPS). The plan includes establishment of design requirements and a comprehensive trade study to select the most suitable Reusable Hydrogen Composite Tank system (RHCTS) within the most suitable of 4 candidate structural configurations. The 4 vehicles are winged body with the capability to deliver 25,000 lbs of payload to a circular 220 nm, 51.6 degree inclined orbit (also 40,000 lbs to a 28.5 inclined 150 nm orbit). A prototype design of the selected RHCTS is established to identify the construction, fabrication, and stress simulation and test requirements necessary in an 8 foot diameter tank structure/insulation/TPS test article. A comprehensive development test program supports the 8 foot test article development and involves the composite tank itself, cryogenic insulation, and integrated tank/insulation/TPS designs. The 8 foot diameter tank will contain the integrated cryogenic insulation and TPS designs resulting from this development and that of the concurrent lightweight durable TPS program. Tank ground testing will include 330 cycles of LH2 filling, pressurization, body loading, depressurization, draining, and entry heating.

  13. Replacement Technologies for Precision Cleaning of Aerospace Hardware for Propellant Service

    Science.gov (United States)

    Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul

    1997-01-01

    The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-l13- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. Replacement technologies are being investigated for aerospace hardware and for gauges and instrumentation. This paper includes the findings of investigations of aqueous cleaning and verification of aerospace hardware using known contaminants, such as hydraulic fluid and commonly used oils. The results correlate nonvolatile residue with CFC 113. The studies also include enhancements to aqueous sampling for organic and particulate contamination. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon 225 (HCFC 225), HCFC 141b, HFE 7100(R), and Vertrel MCA(R) was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC 113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autogenous ignition and liquid oxygen mechanical impact testing.

  14. Autonomous target tracking of UAVs based on low-power neural network hardware

    Science.gov (United States)

    Yang, Wei; Jin, Zhanpeng; Thiem, Clare; Wysocki, Bryant; Shen, Dan; Chen, Genshe

    2014-05-01

    Detecting and identifying targets in unmanned aerial vehicle (UAV) images and videos have been challenging problems due to various types of image distortion. Moreover, the significantly high processing overhead of existing image/video processing techniques and the limited computing resources available on UAVs force most of the processing tasks to be performed by the ground control station (GCS) in an off-line manner. In order to achieve fast and autonomous target identification on UAVs, it is thus imperative to investigate novel processing paradigms that can fulfill the real-time processing requirements, while fitting the size, weight, and power (SWaP) constrained environment. In this paper, we present a new autonomous target identification approach on UAVs, leveraging the emerging neuromorphic hardware which is capable of massively parallel pattern recognition processing and demands only a limited level of power consumption. A proof-of-concept prototype was developed based on a micro-UAV platform (Parrot AR Drone) and the CogniMemTMneural network chip, for processing the video data acquired from a UAV camera on the y. The aim of this study was to demonstrate the feasibility and potential of incorporating emerging neuromorphic hardware into next-generation UAVs and their superior performance and power advantages towards the real-time, autonomous target tracking.

  15. Value of PCR in sonication fluid for the diagnosis of orthopedic hardware-associated infections: Has the molecular era arrived?

    Science.gov (United States)

    Renz, Nora; Cabric, Sabrina; Morgenstern, Christian; Schuetz, Michael A; Trampuz, Andrej

    2018-04-01

    Bone healing disturbance following fracture fixation represents a continuing challenge. We evaluated a novel fully automated polymerase chain reaction (PCR) assay using sonication fluid from retrieved orthopedic hardware to diagnose infection. In this prospective diagnostic cohort study, explanted orthopedic hardware materials from consecutive patients were investigated by sonication and the resulting sonication fluid was analyzed by culture (standard procedure) and multiplex PCR (investigational procedure). Hardware-associated infection was defined as visible purulence, presence of a sinus tract, implant on view, inflammation in peri-implant tissue or positive culture. McNemar's chi-squared test was used to compare the performance of diagnostic tests. For the clinical performance all pathogens were considered, whereas for analytical performance only microorganisms were considered for which primers are included in the PCR assay. Among 51 patients, hardware-associated infection was diagnosed in 38 cases (75%) and non-infectious causes in 13 patients (25%). The sensitivity for diagnosing infection was 66% for peri-implant tissue culture, 84% for sonication fluid culture, 71% (clinical performance) and 77% (analytical performance) for sonication fluid PCR, the specificity of all tests was >90%. The analytical sensitivity of PCR was higher for gram-negative bacilli (100%), coagulase-negative staphylococci (89%) and Staphylococcus aureus (75%) than for Cutibacterium (formerly Propionibacterium) acnes (57%), enterococci (50%) and Candida spp. (25%). The performance of sonication fluid PCR for diagnosis of orthopedic hardware-associated infection was comparable to culture tests. The additional advantage of PCR was short processing time (PCR has the potential to complement conventional cultures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Vision-based Ground Test for Active Debris Removal

    Directory of Open Access Journals (Sweden)

    Seong-Min Lim

    2013-12-01

    Full Text Available Due to the continuous space development by mankind, the number of space objects including space debris in orbits around the Earth has increased, and accordingly, difficulties of space development and activities are expected in the near future. In this study, among the stages for space debris removal, the implementation of a vision-based approach technique for approaching space debris from a far-range rendezvous state to a proximity state, and the ground test performance results were described. For the vision-based object tracking, the CAM-shift algorithm with high speed and strong performance, and the Kalman filter were combined and utilized. For measuring the distance to a tracking object, a stereo camera was used. For the construction of a low-cost space environment simulation test bed, a sun simulator was used, and in the case of the platform for approaching, a two-dimensional mobile robot was used. The tracking status was examined while changing the position of the sun simulator, and the results indicated that the CAM-shift showed a tracking rate of about 87% and the relative distance could be measured down to 0.9 m. In addition, considerations for future space environment simulation tests were proposed.

  17. Dynamic load testing on the bearing capacity of prestressed tubular concrete piles in soft ground

    Science.gov (United States)

    Yu, Chuang; Liu, Songyu

    2008-11-01

    Dynamic load testing (DLT) is a high strain test method for assessing pile performance. The shaft capacity of a driven PTC (prestressed tubular concrete) pile in marine soft ground will vary with time after installation. The DLT method has been successfully transferred to the testing of prestressed pipe piles in marine soft clay of Lianyungang area in China. DLT is investigated to determine the ultimate bearing capacity of single pile at different period after pile installation. The ultimate bearing capacity of single pile was founded to increase more than 70% during the inventing 3 months, which demonstrate the time effect of rigid pile bearing capacity in marine soft ground. Furthermore, the skin friction and axial force along the pile shaft are presented as well, which present the load transfer mechanism of pipe pile in soft clay. It shows the economy and efficiency of DLT method compared to static load testing method.

  18. Use of a russian software and hardware complex for quantitative analysis of coronary angiograms

    International Nuclear Information System (INIS)

    Savchenko, A.P.; Pavlov, N.A.; Myasnikova, A.L.

    1996-01-01

    The software and hardware complex developed by the Cardiology Research Center, Russian Academy of Medical Sciences, jointly with the Technomash Research Production Association on the basis of a IBM 386DX personal computer equipped with a VS-100 video controller and a DS P31 VS signal processor board. Testing has indicated that it provides a qualitative image and a quantitative analysis both of phantoms and real images of coronarograms, but more accurately in the analysis of the image obtained from a film projector. Clinical tests have shown that the software and hardware complex may yield a rather qualitative image and calculate the required diameter of a vessel, virtually without prolonging the time of intervention. 4 refs.; 3 figs. 1 tab

  19. Hardware stream cipher with controllable chaos generator for colour image encryption

    KAUST Repository

    Barakat, Mohamed L.

    2014-01-01

    This study presents hardware realisation of chaos-based stream cipher utilised for image encryption applications. A third-order chaotic system with signum non-linearity is implemented and a new post processing technique is proposed to eliminate the bias from the original chaotic sequence. The proposed stream cipher utilises the processed chaotic output to mask and diffuse input pixels through several stages of XORing and bit permutations. The performance of the cipher is tested with several input images and compared with previously reported systems showing superior security and higher hardware efficiency. The system is experimentally verified on XilinxVirtex 4 field programmable gate array (FPGA) achieving small area utilisation and a throughput of 3.62 Gb/s. © The Institution of Engineering and Technology 2013.

  20. Digital Controller Development Methodology Based on Real-Time Simulations with LabVIEW FPGA Hardware-Software Toolset

    Directory of Open Access Journals (Sweden)

    Tommaso Caldognetto

    2013-12-01

    Full Text Available In this paper, we exemplify the use of NI Lab-VIEW FPGA as a rapid prototyping environment for digital controllers. In our power electronics laboratory, it has been successfully employed in the development, debugging, and test of different power converter controllers for microgrid applications.The paper shows how this high level programming language,together with its target hardware platforms, including CompactRIO and Single Board RIO systems, allows researchers and students to develop even complex applications in reasonable times. The availability of efficient drivers for the considered hardware platforms frees the users from the burden of low level programming. At the same time, the high level programming approach facilitates software re-utilization, allowing the laboratory know-how to steadily grow along time. Furthermore, it allows hardware-in-the-loop real-time simulation, that proved to be effective, and safe, in debugging even complex hardware and software co-designed controllers. To illustrate the effectiveness of these hardware-software toolsets and of the methodology based upon them, two case studies are

  1. Benchmarking and Hardware-In-The-Loop Operation of a ...

    Science.gov (United States)

    Engine Performance evaluation in support of LD MTE. EPA used elements of its ALPHA model to apply hardware-in-the-loop (HIL) controls to the SKYACTIV engine test setup to better understand how the engine would operate in a chassis test after combined with future leading edge technologies, advanced high-efficiency transmission, reduced mass, and reduced roadload. Predict future vehicle performance with Atkinson engine. As part of its technology assessment for the upcoming midterm evaluation of the 2017-2025 LD vehicle GHG emissions regulation, EPA has been benchmarking engines and transmissions to generate inputs for use in its ALPHA model

  2. Reliable software for unreliable hardware a cross layer perspective

    CERN Document Server

    Rehman, Semeen; Henkel, Jörg

    2016-01-01

    This book describes novel software concepts to increase reliability under user-defined constraints. The authors’ approach bridges, for the first time, the reliability gap between hardware and software. Readers will learn how to achieve increased soft error resilience on unreliable hardware, while exploiting the inherent error masking characteristics and error (stemming from soft errors, aging, and process variations) mitigations potential at different software layers. · Provides a comprehensive overview of reliability modeling and optimization techniques at different hardware and software levels; · Describes novel optimization techniques for software cross-layer reliability, targeting unreliable hardware.

  3. Hardware device to physical structure binding and authentication

    Science.gov (United States)

    Hamlet, Jason R.; Stein, David J.; Bauer, Todd M.

    2013-08-20

    Detection and deterrence of device tampering and subversion may be achieved by including a cryptographic fingerprint unit within a hardware device for authenticating a binding of the hardware device and a physical structure. The cryptographic fingerprint unit includes an internal physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generate an internal PUF value. Binding logic is coupled to receive the internal PUF value, as well as an external PUF value associated with the physical structure, and generates a binding PUF value, which represents the binding of the hardware device and the physical structure. The cryptographic fingerprint unit also includes a cryptographic unit that uses the binding PUF value to allow a challenger to authenticate the binding.

  4. Integrated Human-in-the-Loop Ground Testing - Value, History, and the Future

    Science.gov (United States)

    Henninger, Donald L.

    2016-01-01

    Systems for very long-duration human missions to Mars will be designed to operate reliably for many years and many of these systems will never be returned to Earth. The need for high reliability is driven by the requirement for safe functioning of remote, long-duration crewed systems and also by unsympathetic abort scenarios. Abort from a Mars mission could be as long as 450 days to return to Earth. The key to developing a human-in-the-loop architecture is a development process that allows for a logical sequence of validating successful development in a stepwise manner, with assessment of key performance parameters (KPPs) at each step; especially important are KPPs for technologies evaluated in a full systems context with human crews on Earth and on space platforms such as the ISS. This presentation will explore the implications of such an approach to technology development and validation including the roles of ground and space-based testing necessary to develop a highly reliable system for long duration human exploration missions. Historical development and systems testing from Mercury to the International Space Station (ISS) to ground testing will be reviewed. Current work as well as recommendations for future work will be described.

  5. Exploiting current-generation graphics hardware for synthetic-scene generation

    Science.gov (United States)

    Tanner, Michael A.; Keen, Wayne A.

    2010-04-01

    Increasing seeker frame rate and pixel count, as well as the demand for higher levels of scene fidelity, have driven scene generation software for hardware-in-the-loop (HWIL) and software-in-the-loop (SWIL) testing to higher levels of parallelization. Because modern PC graphics cards provide multiple computational cores (240 shader cores for a current NVIDIA Corporation GeForce and Quadro cards), implementation of phenomenology codes on graphics processing units (GPUs) offers significant potential for simultaneous enhancement of simulation frame rate and fidelity. To take advantage of this potential requires algorithm implementation that is structured to minimize data transfers between the central processing unit (CPU) and the GPU. In this paper, preliminary methodologies developed at the Kinetic Hardware In-The-Loop Simulator (KHILS) will be presented. Included in this paper will be various language tradeoffs between conventional shader programming, Compute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL), including performance trades and possible pathways for future tool development.

  6. Raspberry Pi hardware projects 1

    CERN Document Server

    Robinson, Andrew

    2013-01-01

    Learn how to take full advantage of all of Raspberry Pi's amazing features and functions-and have a blast doing it! Congratulations on becoming a proud owner of a Raspberry Pi, the credit-card-sized computer! If you're ready to dive in and start finding out what this amazing little gizmo is really capable of, this ebook is for you. Taken from the forthcoming Raspberry Pi Projects, Raspberry Pi Hardware Projects 1 contains three cool hardware projects that let you have fun with the Raspberry Pi while developing your Raspberry Pi skills. The authors - PiFace inventor, Andrew Robinson and Rasp

  7. Generalized Maintenance Trainer Simulator: Development of Hardware and Software. Final Report.

    Science.gov (United States)

    Towne, Douglas M.; Munro, Allen

    A general purpose maintenance trainer, which has the potential to simulate a wide variety of electronic equipments without hardware changes or new computer programs, has been developed and field tested by the Navy. Based on a previous laboratory model, the Generalized Maintenance Trainer Simulator (GMTS) is a relatively low cost trainer that…

  8. A Hardware Abstraction Layer in Java

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Korsholm, Stephan; Kalibera, Tomas

    2011-01-01

    Embedded systems use specialized hardware devices to interact with their environment, and since they have to be dependable, it is attractive to use a modern, type-safe programming language like Java to develop programs for them. Standard Java, as a platform-independent language, delegates access...... to devices, direct memory access, and interrupt handling to some underlying operating system or kernel, but in the embedded systems domain resources are scarce and a Java Virtual Machine (JVM) without an underlying middleware is an attractive architecture. The contribution of this article is a proposal...... for Java packages with hardware objects and interrupt handlers that interface to such a JVM. We provide implementations of the proposal directly in hardware, as extensions of standard interpreters, and finally with an operating system middleware. The latter solution is mainly seen as a migration path...

  9. Hardware-in-the-loop simulation for the virtual application of control functions for a coordination of the interaction between a gasoline engine and the 14V-power electrical system; Hardware-in-the-Loop-Simulation fuer die virtuelle Applikation von Steuerungsfunktionen zur Motor-Energiebordnetz-Koordination

    Energy Technology Data Exchange (ETDEWEB)

    Schiele, Thomas

    2010-07-01

    The development of advanced engine management systems increasingly is supported by model-based development tools. Thereby the hardware-in-the-loop simulation is one of these tools. The author of the contribution under consideration reports on an extension of the capabilities of the hardware-in-the-loop simulation from the classic functional testing and safety tests up to the model-based application. Using the control functions for the coordination of the interaction between a gasoline engine and the 14V-power electrical system as an example, the practical application of hardware-in-the-loop systems is presented. Here, the author reviews on the state of technology for the real-time modeling of internal combustion engines and wiring systems.

  10. Designing Secure Systems on Reconfigurable Hardware

    OpenAIRE

    Huffmire, Ted; Brotherton, Brett; Callegari, Nick; Valamehr, Jonathan; White, Jeff; Kastner, Ryan; Sherwood, Ted

    2008-01-01

    The extremely high cost of custom ASIC fabrication makes FPGAs an attractive alternative for deployment of custom hardware. Embedded systems based on reconfigurable hardware integrate many functions onto a single device. Since embedded designers often have no choice but to use soft IP cores obtained from third parties, the cores operate at different trust levels, resulting in mixed trust designs. The goal of this project is to evaluate recently proposed security primitives for reconfigurab...

  11. Hardware-Accelerated Simulated Radiography

    International Nuclear Information System (INIS)

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S.; Frank, R

    2005-01-01

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32-bit floating point texture capabilities to obtain solutions to the radiative transport equation for X-rays. The hardware accelerated solutions are accurate enough to enable scientists to explore the experimental design space with greater efficiency than the methods currently in use. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedral meshes that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester

  12. Automated ECU software tests on hardware-in-the-loop test benches; Automatisierte ECU-Software-Tests an Hardware-in-the-Loop-Pruefstaenden

    Energy Technology Data Exchange (ETDEWEB)

    Voegl, R. [AVL List GmbH, Graz (Austria). Abteilung Kalibrierung Ottomotoren; Duerager, Ch. [AVL List GmbH, Graz (Austria). Abteilung Kalibriermethodik; Beer, W.; Martini, E. [AVL List GmbH, Graz (Austria)

    2005-08-01

    Due to the continuous increase in complexity of engine application, AVL List decided to develop methods for automated ECU software commissioning on HiL test benches. This required the intensive co-operation of the departments for calibration methodology, calibration and electrical/electronic engineering. The result is a practical orientated collection of methods that significantly increase the test coverage for a new software version without extending the commissioning time. (orig.)

  13. Evaluation of two transport aircraft and several ground test vehicle friction measurements obtained for various runway surface types and conditions. A summary of test results from joint FAA/NASA Runway Friction Program

    Science.gov (United States)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1990-01-01

    Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.

  14. Hardware descriptions of the I and C systems for NPP

    International Nuclear Information System (INIS)

    Lee, Cheol Kwon; Oh, In Suk; Park, Joo Hyun; Kim, Dong Hoon; Han, Jae Bok; Shin, Jae Whal; Kim, Young Bak

    2003-09-01

    The hardware specifications for I and C Systems of SNPP(Standard Nuclear Power Plant) are reviewed in order to acquire the hardware requirement and specification of KNICS (Korea Nuclear Instrumentation and Control System). In the study, we investigated hardware requirements, hardware configuration, hardware specifications, man-machine hardware requirements, interface requirements with the other system, and data communication requirements that are applicable to SNP. We reviewed those things of control systems, protection systems, monitoring systems, information systems, and process instrumentation systems. Through the study, we described the requirements and specifications of digital systems focusing on a microprocessor and a communication interface, and repeated it for analog systems focusing on the manufacturing companies. It is expected that the experience acquired from this research will provide vital input for the development of the KNICS

  15. Interoperability Testing Using the Hardware-in-the-Loop Test Tool

    National Research Council Canada - National Science Library

    Buxton, Bradley

    1999-01-01

    In the past, missile defense testing was limited to models and simulations, which provided maximum flexibility but often lacked realism, or to live fire testing, which provided realism but proved very expensive...

  16. AMS Ground Truth Measurements: Calibration and Test Lines

    International Nuclear Information System (INIS)

    Wasiolek, P.

    2013-01-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima nuclear power plant (NPP) accident in March-May 2011. To map ground contamination a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count rate data expressed in counts per second (cps) needs to be converted to the terrestrial component of the exposure rate 1 m above ground, or surface activity of isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, as the production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish very early into the event a common calibration line. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements. This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  17. AMS Ground Truth Measurements: Calibrations and Test Lines

    Energy Technology Data Exchange (ETDEWEB)

    Wasiolek, Piotr T. [National Security Technologies, LLC

    2015-12-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima NPP accident in March-May 2011. To map ground contamination, a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count data, expressed in counts per second (cps), need to be converted to a terrestrial component of the exposure rate at 1 meter (m) above ground, or surface activity of the isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large-scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, because production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish a common calibration line very early into the event. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and that are potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  18. In-flight and ground testing of single event upset sensitivity in static RAMs

    International Nuclear Information System (INIS)

    Johansson, K.; Dyreklev, P.; Granbom, B.; Calvet, C.; Fourtine, S.; Feuillatre, O.

    1998-01-01

    This paper presents the results from in-flight measurements of single event upsets (SEU) in static random access memories (SRAM) caused by the atmospheric radiation environment at aircraft altitudes. The memory devices were carried on commercial airlines at high altitude and mainly high latitudes. The SEUs were monitored by a Component Upset Test Equipment (CUTE), designed for this experiment. The in flight results are compared to ground based testing with neutrons from three different sources

  19. Diseño de AUV.Arquitectura de hardware y software

    Directory of Open Access Journals (Sweden)

    Alain Martínez

    2013-07-01

    Full Text Available Resumen: El presente documento discute la estrategia bajo la que fueron concebidas la arquitectura de hardware y software para el prototipo de vehículo autónomo: HRC-AUV, así como la selección de los elementos fundamentales que las componen. El diseño obtenido pondera la sencillez y el desarrollo en condiciones de bajo costo, factores útiles a investigadores que comienzan su actividad en este campo. El trabajo resume las prestaciones que brindan dichas estructuras y las pruebas preliminares de operatividad a que han sido sometidas para demostrar la validez de su empleo en la explotación de un AUV. De igual forma se presentan los modelos dinámicos linealizados de la planta, utilizados en la sintonía de los lazos de control. La respuesta de dichos lazos y en general del HRC-AUV navegando en el océano, es presentada a través de los resultados obtenidos en varias pruebas experimentales. Abstract: This paper discusses the strategy under which were conceived the hardware and software architecture for autonomous vehicle prototype: HRC-AUV, and the selection of the fundamental elements that compose them. The obtained design weights simplicity and development in terms of low cost, factors useful to researchers begin their activity in this field. The paper summarizes the benefits provided by these structures and preliminary operational tests that have been submitted to demonstrate the validity of their use in the operation of an AUV. Likewise are linearized dynamic models of the plant, used in the tuning of the control loops are presented. The response of such loops and in general the HRC-AUV navigating in the ocean is presented through the results of several experimental tests. Palabras clave: AUV, arquitectura de hardware, arquitectura de software., Keywords: AUV, hardware architecture, software architecture.

  20. Hardware design and implementation of the closed-orbit feedback system at APS

    International Nuclear Information System (INIS)

    Barr, D.; Chung, Youngjoo.

    1996-01-01

    The Advanced Photon Source (APS) storage ring will utilize a closed-orbit feedback system in order to produce a more stable beam. The specified orbit measurement resolution is 25 microns for global feedback and 1 micron for local feedback. The system will sample at 4 kHz and provide a correction bandwidth of 100 Hz. At this bandwidth, standard rf BPMs will provide a resolution of 0.7 micron, while specialized miniature BPMs positioned on either side of the insertion devices for local feedback will provide a resolution of 0.2 micron (1). The measured BPM noise floor for standard BPMs is 0.06 micron per root hertz mA. Such a system has been designed, simulated, and tested on a small scale (2). This paper covers the actual hardware design and layout of the entire closed-loop system. This includes commercial hardware components, in addition to many components designed and built in-house. The paper will investigate the large-scale workings of all these devices, as well as an overall view of each piece of hardware used

  1. Software-Controlled Dynamically Swappable Hardware Design in Partially Reconfigurable Systems

    Directory of Open Access Journals (Sweden)

    Huang Chun-Hsian

    2008-01-01

    Full Text Available Abstract We propose two basic wrapper designs and an enhanced wrapper design for arbitrary digital hardware circuit designs such that they can be enhanced with the capability for dynamic swapping controlled by software. A hardware design with either of the proposed wrappers can thus be swapped out of the partially reconfigurable logic at runtime in some intermediate state of computation and then swapped in when required to continue from that state. The context data is saved to a buffer in the wrapper at interruptible states, and then the wrapper takes care of saving the hardware context to communication memory through a peripheral bus, and later restoring the hardware context after the design is swapped in. The overheads of the hardware standardization and the wrapper in terms of additional reconfigurable logic resources and the time for context switching are small and generally acceptable. With the capability for dynamic swapping, high priority hardware tasks can interrupt low-priority tasks in real-time embedded systems so that the utilization of hardware space per unit time is increased.

  2. Development and Testing of Techniques for In-Ground Stabilization, Size Reduction and Safe Removal of Radioactive Wastes Stored in Large Containments in Burial Grounds - 13591

    International Nuclear Information System (INIS)

    Halliwell, Stephen

    2013-01-01

    Radioactive waste materials, including Transuranic (TRU) wastes from laboratories have been stored below ground in large containments at a number of sites in the US DOE Complex, and at nuclear sites in Europe. These containments are generally referred to as caissons or shafts. The containments are in a range of sizes and depths below grade. The caissons at the DOE's Hanford site are cylindrical, of the order of 2,500 mm in diameter, 3,050 mm in height and are buried about 6,000 mm below grade. One type of caisson is made out of corrugated pipe, whereas others are made of concrete with standard re-bar. However, the larger shafts in the UK are of the order of 4,600 mm in diameter, 53,500 mm deep, and 12,000 below grade. This paper describes the R and D work and testing activities performed to date to evaluate the concept of in-ground size reduction and stabilization of the contents of large containments similar to those at Hanford. In practice, the height of the Test Facility provided for a test cell that was approximately 22' deep. That prevented a 'full scale mockup' test in the sense that the Hanford Caisson configuration would be an identical replication. Therefore, the project was conducted in two phases. The first phase tested a simulated Caisson with surrogate contents, and part of a Chute section, and the second phase tested a full chute section. These tests were performed at VJ Technologies Test Facility located in East Haven, CT, as part of the Proof of Design Concept program for studying the feasibility of an in-situ grout/grind/mix/stabilize technology for the remediation of four caissons at the 618-11 Burial Ground at US Department of Energy Hanford Site. The test site was constructed such that multiple testing areas were provided for the evaluation of various tools, equipment and procedures under conditions that simulated the Hanford site, with representative soils and layout dimensions. (authors)

  3. Development and Testing of Techniques for In-Ground Stabilization, Size Reduction and Safe Removal of Radioactive Wastes Stored in Large Containments in Burial Grounds - 13591

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, Stephen [VJ Technologies Inc, 89 Carlough Road, Bohemia, NY (United States)

    2013-07-01

    Radioactive waste materials, including Transuranic (TRU) wastes from laboratories have been stored below ground in large containments at a number of sites in the US DOE Complex, and at nuclear sites in Europe. These containments are generally referred to as caissons or shafts. The containments are in a range of sizes and depths below grade. The caissons at the DOE's Hanford site are cylindrical, of the order of 2,500 mm in diameter, 3,050 mm in height and are buried about 6,000 mm below grade. One type of caisson is made out of corrugated pipe, whereas others are made of concrete with standard re-bar. However, the larger shafts in the UK are of the order of 4,600 mm in diameter, 53,500 mm deep, and 12,000 below grade. This paper describes the R and D work and testing activities performed to date to evaluate the concept of in-ground size reduction and stabilization of the contents of large containments similar to those at Hanford. In practice, the height of the Test Facility provided for a test cell that was approximately 22' deep. That prevented a 'full scale mockup' test in the sense that the Hanford Caisson configuration would be an identical replication. Therefore, the project was conducted in two phases. The first phase tested a simulated Caisson with surrogate contents, and part of a Chute section, and the second phase tested a full chute section. These tests were performed at VJ Technologies Test Facility located in East Haven, CT, as part of the Proof of Design Concept program for studying the feasibility of an in-situ grout/grind/mix/stabilize technology for the remediation of four caissons at the 618-11 Burial Ground at US Department of Energy Hanford Site. The test site was constructed such that multiple testing areas were provided for the evaluation of various tools, equipment and procedures under conditions that simulated the Hanford site, with representative soils and layout dimensions. (authors)

  4. Settlement mechanism of the backfilled ground around nuclear power plant buildings. Part 1. A series of 1G shaking table tests

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Kawai, Tadashi

    2008-01-01

    The large ground settlement locally occurred at the backfilled ground around the Kashiwazaki-Kariwa Nuclear Power Plant buildings during the Niigataken Chuetsu-oki Earthquake in 2007. The purposes of this study are to verify the assumed mechanism of the settlement and to discuss the influence factors on the settlement. For these purposes, we conducted a series of 1G shaking table tests using a rigid structure and sand. In the tests, parameters, which were variously changed, are related to two factors; one is the horizontal ground displacement relative to the structure, the other is the ground strength against the sliding failure. The following results were obtained: (1) All the results showed that the ground settlement sizes near the structure were larger than the ground settlement sizes far from the structure, (2) From the video observed at the ground near the structure, it was found that the settlement locally occurred due to the sliding failure after the ground was separated from the structure, (3) The ground settlement sizes near the structure were large as the horizontal ground displacement sizes were large, and the soil strength arising from fines affected the ground settlement sizes near the structure. (author)

  5. Generation of Embedded Hardware/Software from SystemC

    Directory of Open Access Journals (Sweden)

    Dominique Houzet

    2006-08-01

    Full Text Available Designers increasingly rely on reusing intellectual property (IP and on raising the level of abstraction to respect system-on-chip (SoC market characteristics. However, most hardware and embedded software codes are recoded manually from system level. This recoding step often results in new coding errors that must be identified and debugged. Thus, shorter time-to-market requires automation of the system synthesis from high-level specifications. In this paper, we propose a design flow intended to reduce the SoC design cost. This design flow unifies hardware and software using a single high-level language. It integrates hardware/software (HW/SW generation tools and an automatic interface synthesis through a custom library of adapters. We have validated our interface synthesis approach on a hardware producer/consumer case study and on the design of a given software radiocommunication application.

  6. Generation of Embedded Hardware/Software from SystemC

    Directory of Open Access Journals (Sweden)

    Ouadjaout Salim

    2006-01-01

    Full Text Available Designers increasingly rely on reusing intellectual property (IP and on raising the level of abstraction to respect system-on-chip (SoC market characteristics. However, most hardware and embedded software codes are recoded manually from system level. This recoding step often results in new coding errors that must be identified and debugged. Thus, shorter time-to-market requires automation of the system synthesis from high-level specifications. In this paper, we propose a design flow intended to reduce the SoC design cost. This design flow unifies hardware and software using a single high-level language. It integrates hardware/software (HW/SW generation tools and an automatic interface synthesis through a custom library of adapters. We have validated our interface synthesis approach on a hardware producer/consumer case study and on the design of a given software radiocommunication application.

  7. Complex biological testing of ground water quality in the area of sewage settler filtration fields of JSC 'Almaty Kanty'

    International Nuclear Information System (INIS)

    Vetrinskaya, N.I.; Goldobina, E.A.; Kosmukhambetov, A.R.; Kulikova, O.V.; Kozlova, N.V.; Ismailova, Zh.B.

    2001-01-01

    Results are given on the ground water ecological quality estimation of operating survey boreholes of JSC 'Almaty Kanty' industrial enterprise filtration fields using different methods of biological testing. Proved that various biological objects reacted differently onto the toxins present in the water. Concealment of toxic effect was performed at short-period testing at several testing objects (stimulation). Revealed during long period tests, that ground water from all the boreholes surveyed is not ecologically clean and pure, and can bring damage for ecosystem of water reservoirs adjacent and sources of drinking water if migration happens. (author)

  8. Cooperative communications hardware, channel and PHY

    CERN Document Server

    Dohler, Mischa

    2010-01-01

    Facilitating Cooperation for Wireless Systems Cooperative Communications: Hardware, Channel & PHY focuses on issues pertaining to the PHY layer of wireless communication networks, offering a rigorous taxonomy of this dispersed field, along with a range of application scenarios for cooperative and distributed schemes, demonstrating how these techniques can be employed. The authors discuss hardware, complexity and power consumption issues, which are vital for understanding what can be realized at the PHY layer, showing how wireless channel models differ from more traditional

  9. IDD Archival Hardware Architecture and Workflow

    Energy Technology Data Exchange (ETDEWEB)

    Mendonsa, D; Nekoogar, F; Martz, H

    2008-10-09

    This document describes the functionality of every component in the DHS/IDD archival and storage hardware system shown in Fig. 1. The document describes steps by step process of image data being received at LLNL then being processed and made available to authorized personnel and collaborators. Throughout this document references will be made to one of two figures, Fig. 1 describing the elements of the architecture and the Fig. 2 describing the workflow and how the project utilizes the available hardware.

  10. Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware

    Directory of Open Access Journals (Sweden)

    Andreas Stöckel

    2017-08-01

    Full Text Available Large-scale neuromorphic hardware platforms, specialized computer systems for energy efficient simulation of spiking neural networks, are being developed around the world, for example as part of the European Human Brain Project (HBP. Due to conceptual differences, a universal performance analysis of these systems in terms of runtime, accuracy and energy efficiency is non-trivial, yet indispensable for further hard- and software development. In this paper we describe a scalable benchmark based on a spiking neural network implementation of the binary neural associative memory. We treat neuromorphic hardware and software simulators as black-boxes and execute exactly the same network description across all devices. Experiments on the HBP platforms under varying configurations of the associative memory show that the presented method allows to test the quality of the neuron model implementation, and to explain significant deviations from the expected reference output.

  11. Aspects of system modelling in Hardware/Software partitioning

    DEFF Research Database (Denmark)

    Knudsen, Peter Voigt; Madsen, Jan

    1996-01-01

    This paper addresses fundamental aspects of system modelling and partitioning algorithms in the area of Hardware/Software Codesign. Three basic system models for partitioning are presented and the consequences of partitioning according to each of these are analyzed. The analysis shows...... the importance of making a clear distinction between the model used for partitioning and the model used for evaluation It also illustrates the importance of having a realistic hardware model such that hardware sharing can be taken into account. Finally, the importance of integrating scheduling and allocation...

  12. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development

    Science.gov (United States)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony

    2015-01-01

    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  13. Analog Exercise Hardware to Implement a High Intensity Exercise Program During Bed Rest

    Science.gov (United States)

    Loerch, Linda; Newby, Nate; Ploutz-Snyder, Lori

    2012-01-01

    Background: In order to evaluate novel countermeasure protocols in a space flight analog prior to validation on the International Space Station (ISS), NASA's Human Research Program (HRP) is sponsoring a multi-investigator bedrest campaign that utilizes a combination of commercial and custom-made exercise training hardware to conduct daily resistive and aerobic exercise protocols. This paper will describe these pieces of hardware and how they are used to support current bedrest studies at NASA's Flight Analog Research Unit in Galveston, TX. Discussion: To implement candidate exercise countermeasure studies during extended bed rest studies the following analog hardware are being utilized: Stand alone Zero-Gravity Locomotion Simulator (sZLS) -- a custom built device by NASA, the sZLS allows bedrest subjects to remain supine as they run on a vertically-oriented treadmill (0-15 miles/hour). The treadmill includes a pneumatic subject loading device to provide variable body loading (0-100%) and a harness to keep the subject in contact with the motorized treadmill to provide a ground reaction force at their feet that is quantified by a Kistler Force Plate. Supine Cycle Ergometer -- a commercially available supine cycle ergometer (Lode, Groningen, Netherlands) is used for all cycle ergometer sessions. The ergometer has adjustable shoulder supports and handgrips to help stabilize the subject during exercise. Horizontal Squat Device (HSD) -- a custom built device by Quantum Fitness Corp (Stafford, TX), the HSD allows for squat exercises to be performed while lying in a supine position. The HSD can provide 0 to 600 pounds of force in selectable 5 lb increments, and allows hip translation in both the vertical and horizontal planes. Prone Leg Curl -- a commercially available prone leg curl machine (Cybex International Inc., Medway, MA) is used to complete leg curl exercises. Horizontal Leg Press -- a commercially available horizontal leg press (Quantum Fitness Corporation) is

  14. Hardware Acceleration of Adaptive Neural Algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    James, Conrad D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    As tradit ional numerical computing has faced challenges, researchers have turned towards alternative computing approaches to reduce power - per - computation metrics and improve algorithm performance. Here, we describe an approach towards non - conventional computing that strengthens the connection between machine learning and neuroscience concepts. The Hardware Acceleration of Adaptive Neural Algorithms (HAANA) project ha s develop ed neural machine learning algorithms and hardware for applications in image processing and cybersecurity. While machine learning methods are effective at extracting relevant features from many types of data, the effectiveness of these algorithms degrades when subjected to real - world conditions. Our team has generated novel neural - inspired approa ches to improve the resiliency and adaptability of machine learning algorithms. In addition, we have also designed and fabricated hardware architectures and microelectronic devices specifically tuned towards the training and inference operations of neural - inspired algorithms. Finally, our multi - scale simulation framework allows us to assess the impact of microelectronic device properties on algorithm performance.

  15. Operational Range of Several Interface Algorithms for Different Power Hardware-In-The-Loop Setups

    Directory of Open Access Journals (Sweden)

    Ron Brandl

    2017-11-01

    Full Text Available The importance of Power Hardware-in-the-Loop (PHIL experiments is rising more and more over the last decade in the field of power system and components testing. Due to the bidirectional exchange between virtual and physical systems, a true-to-reality interface is essential; however, linking several dynamic systems, stability issues can challenge the experiments, the components under test, and the individuals performing the experiments. Over the time, several interface algorithms (IA have been developed and analyzed, each having different advantages and disadvantages in view of combining virtual simulations with physical power systems. Finally, IA are very specific to the kind of PHIL experiment. This paper investigates the operational range of several IA for specific PHIL setups by calculations, simulations, and measurements. Therefore, a selection of the mainly used respectively optimized IA is mathematically described. The operational range is verified in a PHIL system testing environment. Furthermore, in order to study the influence of different PHIL setups, according to software and hardware impedance, different tests using linear and switching amplifiers are performed.

  16. Portable Health Algorithms Test System

    Science.gov (United States)

    Melcher, Kevin J.; Wong, Edmond; Fulton, Christopher E.; Sowers, Thomas S.; Maul, William A.

    2010-01-01

    A document discusses the Portable Health Algorithms Test (PHALT) System, which has been designed as a means for evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT system allows systems health management algorithms to be developed in a graphical programming environment, to be tested and refined using system simulation or test data playback, and to be evaluated in a real-time hardware-in-the-loop mode with a live test article. The integrated hardware and software development environment provides a seamless transition from algorithm development to real-time implementation. The portability of the hardware makes it quick and easy to transport between test facilities. This hard ware/software architecture is flexible enough to support a variety of diagnostic applications and test hardware, and the GUI-based rapid prototyping capability is sufficient to support development execution, and testing of custom diagnostic algorithms. The PHALT operating system supports execution of diagnostic algorithms under real-time constraints. PHALT can perform real-time capture and playback of test rig data with the ability to augment/ modify the data stream (e.g. inject simulated faults). It performs algorithm testing using a variety of data input sources, including real-time data acquisition, test data playback, and system simulations, and also provides system feedback to evaluate closed-loop diagnostic response and mitigation control.

  17. Simulation analyses of vibration tests on pile-group effects using blast-induced ground motions

    International Nuclear Information System (INIS)

    Takayuki Hashimoto; Kazushige Fujiwara; Katsuichirou Hijikata; Hideo Tanaka; Kohji Koyamada; Atsushi Suzuki; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site to promote better understanding of the dynamic behavior of pile-supported structures, especially pile-group effects. Two test structures were constructed in an excavated pit. One structure was supported on 25 tubular steel piles and the other on 4. The test pit was backfilled with sand of an appropriate grain size distribution to ensure good compaction. Ground motions induced by large-scale blasting operations were used as excitation forces for the tests. The 3D Finite Element Method (3D FEM)and a Genetic Algorithm (GA) were employed to identify the shear wave velocities and damping factors of the compacted sand, especially of the surface layer. A beam-interaction spring model was employed to simulate the test results of the piles and the pile-supported structures. The superstructure and pile foundation were modeled by a one-stick model comprising lumped masses and beam elements. The pile foundations were modeled just as they were, with lumped masses and beam elements to simulate the test results showing that, for the 25-pile structure, piles at different locations showed different responses. It was confirmed that the analysis methods employed were very useful for evaluating the nonlinear behavior of the soil-pile-structure system, even under severe ground motions. (authors)

  18. Risk-based screening analysis of ground water contaminated by radionuclides introduced at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Daniels, J.I.; Anspaugh, L.R.; Andricevic, R.; Jacobson, R.L.

    1993-06-01

    The Nevada Test Site (NTS) is located in the southwestern part of Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. Underground tests of nuclear weapons devices have been conducted at the NTS since late 1962 and ground water beneath the NTS has been contaminated with radionuclides produced by these tests. This concern prompted this examination of the potential health risk to these individuals from drinking the contaminated ground water either at a location on the NTS (assuming loss of institutional control after 100 y) or at one offsite (considering groundwater migration). For the purpose of this assessment, a representative mix of the radionuclides of importance and their concentrations in ground water beneath the NTS were identified from measurements of radionuclide concentrations in groundwater samples-of-opportunity collected at the NTS. Transport of radionuclide-contaminated ground water offsite was evaluated using a travel-time-transport approach. At both locations of interest, potential human-health risk was calculated for an individual ingesting radionuclide-contaminated ground water over the course of a 70-y lifetime. Uncertainties about human physiological attributes, as well as about estimates of physical detriment per unit of radioactive material, were quantified and incorporated into the estimates of risk. The maximum potential excess lifetime risk of cancer mortality estimated for an individual at the offsite location ranges from 7 x 10 -7 to 1 x 10 -5 , and at the onsite location ranges from 3 x 10 -3 to 2 x 10 -2 . Both the offsite and the onsite estimates of risk are dominated by the lifetime doses from tritium. For the assessment of radionuclides in ground water, the critical uncertainty is their concentration today under the entire NTS

  19. Hardware/software virtualization for the reconfigurable multicore platform.

    NARCIS (Netherlands)

    Ferger, M.; Al Kadi, M.; Hübner, M.; Koedam, M.L.P.J.; Sinha, S.S.; Goossens, K.G.W.; Marchesan Almeida, Gabriel; Rodrigo Azambuja, J.; Becker, Juergen

    2012-01-01

    This paper presents the Flex Tiles approach for the virtualization of hardware and software for a reconfigurable multicore architecture. The approach enables the virtualization of a dynamic tile-based hardware architecture consisting of processing tiles connected via a network-on-chip and a

  20. Commissioning of the Ground Test Accelerator Intertank Matching Section

    International Nuclear Information System (INIS)

    Johnson, K.F.; Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Cole, R.; Connolly, R.; Gilpatrick, J.D.; Ingalls, W.B.; Kersteins, D.; Little, C.; Lohsen, R.A.; Lysenko, W.P.; Mottershead, C.T.; Power, J.; Rusthoi, D.P.; Sandoval, D.P.; Stevens, R.R.; Vaughn, G.; Wadlinger, E.A.; Weiss, R.; Yuan, V.

    1992-01-01

    The Ground Test Accelerator (GTA) has the objective of verifying much of the technology (physics and engineering) required for producing high-brightness, high-current H - beams. GTA commissioning is staged to verify the beam dynamics design of each major accelerator component as it is brought on-line. The commissioning stages are the 35 keV H - injector, the 2.5 MeV Radio Frequency Quadrupole (RFQ), the Intertank Matching Section (IMS), the 3.2 MeV first 2βγ Drift Tube Linac (DTL-1) module, the 8.7 MeV 2βγ DTL (modules 1--5), and the 24 MeV GTA; all 10 DTL modules. Commissioning results from the IMS beam experiments will be presented

  1. Construction management at the SP-100 ground engineering system test site

    International Nuclear Information System (INIS)

    Burchell, G.P.; Wilson, L.R.

    1991-01-01

    Contractors under the U.S. Department of Energy management have implemented a comprehensive approach to the management of design and construction of the complex facility modifications at the SP-100 Ground Engineering System Test Site on the Hanford Reservation. The SP-100 Test Site employs a multi-organizational integrated management approach with clearly defined responsibilities to assure success. This approach allows for thorough planning and analysis before the project kick off, thus minimizing the number and magnitude of problems which arise during the course of the project. When combined with a comprehensive cost and schedule/project management reporting system the problems which do occur are recognized early enough to assure timely intervention and resolution

  2. Teleoperated Visual Inspection and Surveillance with Unmanned Ground and Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Viatcheslav Tretyakov

    2008-11-01

    Full Text Available This paper introduces our robotic system named UGAV (Unmanned Ground-Air Vehicle consisting of two semi-autonomous robot platforms, an Unmanned Ground Vehicle (UGV and an Unmanned Aerial Vehicles (UAV. The paper focuses on three topics of the inspection with the combined UGV and UAV: (A teleoperated control by means of cell or smart phones with a new concept of automatic configuration of the smart phone based on a RKI-XML description of the vehicles control capabilities, (B the camera and vision system with the focus to real time feature extraction e.g. for the tracking of the UAV and (C the architecture and hardware of the UAV

  3. PERANCANGAN APLIKASI SISTEM PAKAR DIAGNOSA KERUSAKAN HARDWARE KOMPUTER METODE FORWARD CHAINING

    Directory of Open Access Journals (Sweden)

    Ali Akbar Rismayadi

    2016-09-01

    Full Text Available Abstract Damage to computer hardware, not a big disaster, because not all damage to computer hardware can not be repaired, nearly all computer users, whether public or institutions often suffer various kinds of damage that occurred in the computer hardware it has, and the damage can be caused by various factors that are basically as the user does not know the cause of what makes the computer hardware used damaged. Therefore, it is necessary to build an application that can help users to mendiganosa damage to computer hardware. So that everyone can diagnose the type of hardware damage his computer. Development of expert system diagnosis of damage to computer hardware uses forward chaining method by promoting alisisis descriptive of various damage data obtained from several experts and other sources of literature to reach a conclusion on the diagnosis of damage. As well as using the waterfall model as a model system development, starting from the analysis stage to stage software needs support. This application is built using a programming language tools Eclipse ADT as well as SQLite as its database. diagnosis expert system damage computer hardware is expected to be used as a tool to help find the causes of damage to computer hardware independently without the help of a computer technician.

  4. Development of Hardware-in-the-Loop Simulation Based on Gazebo and Pixhawk for Unmanned Aerial Vehicles

    Science.gov (United States)

    Nguyen, Khoa Dang; Ha, Cheolkeun

    2018-04-01

    Hardware-in-the-loop simulation (HILS) is well known as an effective approach in the design of unmanned aerial vehicles (UAV) systems, enabling engineers to test the control algorithm on a hardware board with a UAV model on the software. Performance of HILS is determined by performances of the control algorithm, the developed model, and the signal transfer between the hardware and software. The result of HILS is degraded if any signal could not be transferred to the correct destination. Therefore, this paper aims to develop a middleware software to secure communications in HILS system for testing the operation of a quad-rotor UAV. In our HILS, the Gazebo software is used to generate a nonlinear six-degrees-of-freedom (6DOF) model, sensor model, and 3D visualization for the quad-rotor UAV. Meanwhile, the flight control algorithm is designed and implemented on the Pixhawk hardware. New middleware software, referred to as the control application software (CAS), is proposed to ensure the connection and data transfer between Gazebo and Pixhawk using the multithread structure in Qt Creator. The CAS provides a graphical user interface (GUI), allowing the user to monitor the status of packet transfer, and perform the flight control commands and the real-time tuning parameters for the quad-rotor UAV. Numerical implementations have been performed to prove the effectiveness of the middleware software CAS suggested in this paper.

  5. Power Hardware-in-the-Loop Evaluation of PV Inverter Grid Support on Hawaiian Electric Feeders

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Austin A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Prabakar, Kumaraguru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nagarajan, Adarsh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nepal, Shaili [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hoke, Anderson F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Asano, Marc [Hawaiian Electric Company; Ueda, Reid [Hawaiian Electric Company; Ifuku, Earle [Hawaiian Electric Company

    2017-10-03

    As more grid-connected photovoltaic (PV) inverters become compliant with evolving interconnections requirements, there is increased interest from utilities in understanding how to best deploy advanced grid-support functions (GSF) in the field. One efficient and cost-effective method to examine such deployment options is to leverage power hardware-in-the-loop (PHIL) testing methods, which combine the fidelity of hardware tests with the flexibility of computer simulation. This paper summarizes a study wherein two Hawaiian Electric feeder models were converted to real-time models using an OPAL-RT real-time digital testing platform, and integrated with models of GSF capable PV inverters based on characterization test data. The integrated model was subsequently used in PHIL testing to evaluate the effects of different fixed power factor and volt-watt control settings on voltage regulation of the selected feeders using physical inverters. Selected results are presented in this paper, and complete results of this study were provided as inputs for field deployment and technical interconnection requirements for grid-connected PV inverters on the Hawaiian Islands.

  6. Tools for DIY site-testing

    Science.gov (United States)

    Flores, Federico; Rondanelli, Roberto; Abarca, Accel; Diaz, Marcos; Querel, Richard

    2012-09-01

    Our group has designed, sourced and constructed a radiosonde/ground-station pair using inexpensive opensource hardware. Based on the Arduino platform, the easy to build radiosonde allows the atmospheric science community to test and deploy instrumentation packages that can be fully customized to their individual sensing requirements. This sensing/transmitter package has been successfully deployed on a tethered-balloon, a weather balloon, a UAV airplane, and is currently being integrated into a UAV quadcopter and a student-built rocket. In this paper, the system, field measurements and potential applications will be described. As will the science drivers of having full control and open access to a measurement system in an age when commercial solutions have become popular but are restrictive in terms of proprietary sensor specifications, "black-box" calibration operations or data handling routines, etc. The ability to modify and experiment with both the hardware and software tools is an essential part of the scientific process. Without an understanding of the intrinsic biases or limitations in your instruments and system, it becomes difficult to improve them or advance the knowledge in any given field.

  7. Integration of an open interface PC scene generator using COTS DVI converter hardware

    Science.gov (United States)

    Nordland, Todd; Lyles, Patrick; Schultz, Bret

    2006-05-01

    Commercial-Off-The-Shelf (COTS) personal computer (PC) hardware is increasingly capable of computing high dynamic range (HDR) scenes for military sensor testing at high frame rates. New electro-optical and infrared (EO/IR) scene projectors feature electrical interfaces that can accept the DVI output of these PC systems. However, military Hardware-in-the-loop (HWIL) facilities such as those at the US Army Aviation and Missile Research Development and Engineering Center (AMRDEC) utilize a sizeable inventory of existing projection systems that were designed to use the Silicon Graphics Incorporated (SGI) digital video port (DVP, also known as DVP2 or DD02) interface. To mate the new DVI-based scene generation systems to these legacy projection systems, CG2 Inc., a Quantum3D Company (CG2), has developed a DVI-to-DVP converter called Delta DVP. This device takes progressive scan DVI input, converts it to digital parallel data, and combines and routes color components to derive a 16-bit wide luminance channel replicated on a DVP output interface. The HWIL Functional Area of AMRDEC has developed a suite of modular software to perform deterministic real-time, wave band-specific rendering of sensor scenes, leveraging the features of commodity graphics hardware and open source software. Together, these technologies enable sensor simulation and test facilities to integrate scene generation and projection components with diverse pedigrees.

  8. Flight Hardware Virtualization for On-Board Science Data Processing

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilize Hardware Virtualization technology to benefit on-board science data processing by investigating new real time embedded Hardware Virtualization solutions and...

  9. Hyper-X Mach 7 Scramjet Design, Ground Test and Flight Results

    Science.gov (United States)

    Ferlemann, Shelly M.; McClinton, Charles R.; Rock, Ken E.; Voland, Randy T.

    2005-01-01

    The successful Mach 7 flight test of the Hyper-X (X-43) research vehicle has provided the major, essential demonstration of the capability of the airframe integrated scramjet engine. This flight was a crucial first step toward realizing the potential for airbreathing hypersonic propulsion for application to space launch vehicles. However, it is not sufficient to have just achieved a successful flight. The more useful knowledge gained from the flight is how well the prediction methods matched the actual test results in order to have confidence that these methods can be applied to the design of other scramjet engines and powered vehicles. The propulsion predictions for the Mach 7 flight test were calculated using the computer code, SRGULL, with input from computational fluid dynamics (CFD) and wind tunnel tests. This paper will discuss the evolution of the Mach 7 Hyper-X engine, ground wind tunnel experiments, propulsion prediction methodology, flight results and validation of design methods.

  10. Speed challenge: a case for hardware implementation in soft-computing

    Science.gov (United States)

    Daud, T.; Stoica, A.; Duong, T.; Keymeulen, D.; Zebulum, R.; Thomas, T.; Thakoor, A.

    2000-01-01

    For over a decade, JPL has been actively involved in soft computing research on theory, architecture, applications, and electronics hardware. The driving force in all our research activities, in addition to the potential enabling technology promise, has been creation of a niche that imparts orders of magnitude speed advantage by implementation in parallel processing hardware with algorithms made especially suitable for hardware implementation. We review our work on neural networks, fuzzy logic, and evolvable hardware with selected application examples requiring real time response capabilities.

  11. Computer hardware for radiologists: Part I

    International Nuclear Information System (INIS)

    Indrajit, IK; Alam, A

    2010-01-01

    Computers are an integral part of modern radiology practice. They are used in different radiology modalities to acquire, process, and postprocess imaging data. They have had a dramatic influence on contemporary radiology practice. Their impact has extended further with the emergence of Digital Imaging and Communications in Medicine (DICOM), Picture Archiving and Communication System (PACS), Radiology information system (RIS) technology, and Teleradiology. A basic overview of computer hardware relevant to radiology practice is presented here. The key hardware components in a computer are the motherboard, central processor unit (CPU), the chipset, the random access memory (RAM), the memory modules, bus, storage drives, and ports. The personnel computer (PC) has a rectangular case that contains important components called hardware, many of which are integrated circuits (ICs). The fiberglass motherboard is the main printed circuit board and has a variety of important hardware mounted on it, which are connected by electrical pathways called “buses”. The CPU is the largest IC on the motherboard and contains millions of transistors. Its principal function is to execute “programs”. A Pentium ® 4 CPU has transistors that execute a billion instructions per second. The chipset is completely different from the CPU in design and function; it controls data and interaction of buses between the motherboard and the CPU. Memory (RAM) is fundamentally semiconductor chips storing data and instructions for access by a CPU. RAM is classified by storage capacity, access speed, data rate, and configuration

  12. Computer hardware for radiologists: Part I

    Directory of Open Access Journals (Sweden)

    Indrajit I

    2010-01-01

    Full Text Available Computers are an integral part of modern radiology practice. They are used in different radiology modalities to acquire, process, and postprocess imaging data. They have had a dramatic influence on contemporary radiology practice. Their impact has extended further with the emergence of Digital Imaging and Communications in Medicine (DICOM, Picture Archiving and Communication System (PACS, Radiology information system (RIS technology, and Teleradiology. A basic overview of computer hardware relevant to radiology practice is presented here. The key hardware components in a computer are the motherboard, central processor unit (CPU, the chipset, the random access memory (RAM, the memory modules, bus, storage drives, and ports. The personnel computer (PC has a rectangular case that contains important components called hardware, many of which are integrated circuits (ICs. The fiberglass motherboard is the main printed circuit board and has a variety of important hardware mounted on it, which are connected by electrical pathways called "buses". The CPU is the largest IC on the motherboard and contains millions of transistors. Its principal function is to execute "programs". A Pentium® 4 CPU has transistors that execute a billion instructions per second. The chipset is completely different from the CPU in design and function; it controls data and interaction of buses between the motherboard and the CPU. Memory (RAM is fundamentally semiconductor chips storing data and instructions for access by a CPU. RAM is classified by storage capacity, access speed, data rate, and configuration.

  13. Hardware malware

    CERN Document Server

    Krieg, Christian

    2013-01-01

    In our digital world, integrated circuits are present in nearly every moment of our daily life. Even when using the coffee machine in the morning, or driving our car to work, we interact with integrated circuits. The increasing spread of information technology in virtually all areas of life in the industrialized world offers a broad range of attack vectors. So far, mainly software-based attacks have been considered and investigated, while hardware-based attacks have attracted comparatively little interest. The design and production process of integrated circuits is mostly decentralized due to

  14. HISTRAP [Heavy Ion Storage Ring for Atomic Physics] prototype hardware studies

    International Nuclear Information System (INIS)

    Olsen, D.K.; Atkins, W.H.; Dowling, D.T.; Johnson, J.W.; Lord, R.S.; McConnell, J.W.; Milner, W.T.; Mosko, S.W.; Tatum, B.A.

    1989-01-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed 2.67-Tm synchrotron/cooler/storage ring optimized for advanced atomic physics research which will be injected with ions from either the HHIRF 25-MV tandem accelerator or a dedicated ECR source and RFQ linac. Over the last two years, hardware prototypes have been developed for difficult and long lead-time components. A vacuum test stand, the rf cavity, and a prototype dipole magnet have been designed, constructed, and tested. 7 refs., 8 figs., 2 tabs

  15. Hardware Accelerated Sequence Alignment with Traceback

    Directory of Open Access Journals (Sweden)

    Scott Lloyd

    2009-01-01

    in a timely manner. Known methods to accelerate alignment on reconfigurable hardware only address sequence comparison, limit the sequence length, or exhibit memory and I/O bottlenecks. A space-efficient, global sequence alignment algorithm and architecture is presented that accelerates the forward scan and traceback in hardware without memory and I/O limitations. With 256 processing elements in FPGA technology, a performance gain over 300 times that of a desktop computer is demonstrated on sequence lengths of 16000. For greater performance, the architecture is scalable to more processing elements.

  16. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the U.S. Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts supported through the U.S. Department of Energy program will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Test-generated contaminants have been introduced over large areas and at variable depths above and below the water table throughout NTS. Evaluating the risks associated with these byproducts of underground testing presupposes a knowledge of the source, transport, and potential receptors of these contaminants. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. Any assessment of the risk must rely in part on the current understanding of ground-water flow, and the assessment will be only as good as the understanding

  17. Life Improvement of Pot Hardware in Continuous Hot Dipping Processes Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Xingbo Liu

    2006-01-18

    The process of continuous galvanizing of rolled sheet steel includes immersion into a bath of molten zinc/aluminum alloy. The steel strip is dipped in the molten bath through a series of driving motors and rollers which control the speed and tension of the strip, with the ability to modify both the amount of coating applied to the steel as well as the thickness and width of the sheet being galvanized. There are three rolls used to guide the steel strip through the molten metal bath. The rolls that operate in the molten Zn/Al are subject to a severely corrosive environment and require frequent changing. The performance of this equipment, the metallic hardware submerged in the molten Zn/Al bath, is the focus of this research. The primary objective of this research is to extend the performance life of the metallic hardware components of molten Zn/Al pot hardware by an order of magnitude. Typical galvanizing operations experience downtimes on the order of every two weeks to change the metallic hardware submerged in the molten metal bath. This is an expensive process for industry which takes upwards of 3 days for a complete turn around to resume normal operation. Each roll bridle consists of a sink, stabilizer, and corrector roll with accompanying bearing components. The cost of the bridle rig with all components is as much as $25,000 dollars just for materials. These inefficiencies are of concern to the steel coating companies and serve as a potential market for many materials suppliers. This research effort served as a bridge between the market potential and industry need to provide an objective analytical and mechanistic approach to the problem of wear and corrosion of molten metal bath hardware in a continuous sheet galvanizing line. The approach of the investigators was to provide a means of testing and analysis that was both expeditious and cost effective. The consortium of researchers from West Virginia University and Oak Ridge National Laboratory developed

  18. Web-Compatible Graphics Visualization Framework for Online Instruction and Assessment of Hardware Concepts

    Science.gov (United States)

    Chandramouli, Magesh; Chittamuru, Siva-Teja

    2016-01-01

    This paper explains the design of a graphics-based virtual environment for instructing computer hardware concepts to students, especially those at the beginner level. Photorealistic visualizations and simulations are designed and programmed with interactive features allowing students to practice, explore, and test themselves on computer hardware…

  19. Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines

    International Nuclear Information System (INIS)

    Hicks, H.G.

    1981-11-01

    This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines

  20. Learning Machines Implemented on Non-Deterministic Hardware

    OpenAIRE

    Gupta, Suyog; Sindhwani, Vikas; Gopalakrishnan, Kailash

    2014-01-01

    This paper highlights new opportunities for designing large-scale machine learning systems as a consequence of blurring traditional boundaries that have allowed algorithm designers and application-level practitioners to stay -- for the most part -- oblivious to the details of the underlying hardware-level implementations. The hardware/software co-design methodology advocated here hinges on the deployment of compute-intensive machine learning kernels onto compute platforms that trade-off deter...

  1. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the US Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. 113 refs

  2. Hardware Middleware for Person Tracking on Embedded Distributed Smart Cameras

    Directory of Open Access Journals (Sweden)

    Ali Akbar Zarezadeh

    2012-01-01

    Full Text Available Tracking individuals is a prominent application in such domains like surveillance or smart environments. This paper provides a development of a multiple camera setup with jointed view that observes moving persons in a site. It focuses on a geometry-based approach to establish correspondence among different views. The expensive computational parts of the tracker are hardware accelerated via a novel system-on-chip (SoC design. In conjunction with this vision application, a hardware object request broker (ORB middleware is presented as the underlying communication system. The hardware ORB provides a hardware/software architecture to achieve real-time intercommunication among multiple smart cameras. Via a probing mechanism, a performance analysis is performed to measure network latencies, that is, time traversing the TCP/IP stack, in both software and hardware ORB approaches on the same smart camera platform. The empirical results show that using the proposed hardware ORB as client and server in separate smart camera nodes will considerably reduce the network latency up to 100 times compared to the software ORB.

  3. Programming time-multiplexed reconfigurable hardware using a scalable neuromorphic compiler.

    Science.gov (United States)

    Minkovich, Kirill; Srinivasa, Narayan; Cruz-Albrecht, Jose M; Cho, Youngkwan; Nogin, Aleksey

    2012-06-01

    Scalability and connectivity are two key challenges in designing neuromorphic hardware that can match biological levels. In this paper, we describe a neuromorphic system architecture design that addresses an approach to meet these challenges using traditional complementary metal-oxide-semiconductor (CMOS) hardware. A key requirement in realizing such neural architectures in hardware is the ability to automatically configure the hardware to emulate any neural architecture or model. The focus for this paper is to describe the details of such a programmable front-end. This programmable front-end is composed of a neuromorphic compiler and a digital memory, and is designed based on the concept of synaptic time-multiplexing (STM). The neuromorphic compiler automatically translates any given neural architecture to hardware switch states and these states are stored in digital memory to enable desired neural architectures. STM enables our proposed architecture to address scalability and connectivity using traditional CMOS hardware. We describe the details of the proposed design and the programmable front-end, and provide examples to illustrate its capabilities. We also provide perspectives for future extensions and potential applications.

  4. Incorporating Traffic Control and Safety Hardware Performance Functions into Risk-based Highway Safety Analysis

    Directory of Open Access Journals (Sweden)

    Zongzhi Li

    2017-04-01

    Full Text Available Traffic control and safety hardware such as traffic signs, lighting, signals, pavement markings, guardrails, barriers, and crash cushions form an important and inseparable part of highway infrastructure affecting safety performance. Significant progress has been made in recent decades to develop safety performance functions and crash modification factors for site-specific crash predictions. However, the existing models and methods lack rigorous treatments of safety impacts of time-deteriorating conditions of traffic control and safety hardware. This study introduces a refined method for computing the Safety Index (SI as a means of crash predictions for a highway segment that incorporates traffic control and safety hardware performance functions into the analysis. The proposed method is applied in a computation experiment using five-year data on nearly two hundred rural and urban highway segments. The root-mean square error (RMSE, Chi-square, Spearman’s rank correlation, and Mann-Whitney U tests are employed for validation.

  5. Development of a Hardware-In-Loop (HIL Simulator for Spacecraft Attitude Control Using Momentum Wheels

    Directory of Open Access Journals (Sweden)

    Dohee Kim

    2008-12-01

    Full Text Available In this paper, a Hardware-In-the-Loop simulator to simulate attitude control of spacecraft using momentum wheels is developed. The simulator consists of a spherical air bearing system allowing rotation and tilt in all three axes, three momentum wheels for actuation, and an AHRS (Attitude Heading Reference System. The simulator processes various types of data in PC104 and wirelessly communicates with a host PC using TCP/IP protocol. A simple low-cost momentum wheel assembly set and its drive electronics are also developed. Several experiments are performed to test the performance of the momentum wheels. For the control performance test of the simulator, a PID controller is implemented. The results of experimental demonstrations confirm the feasibility and validity of the Hardware-In-the-Loop simulator developed in the current study.

  6. Single event effect ground test results for a fiber optic data interconnect and associated electronics

    International Nuclear Information System (INIS)

    LaBel, K.A.; Hawkins, D.K.; Cooley, J.A.; Stassinopoulos, E.G.; Seidleck, C.M.; Marshall, P.; Dale, C.; Gates, M.M.; Kim, H.S.

    1994-01-01

    As spacecraft unlock the potential of fiber optics for spaceflight applications, system level bit error rates become of concern to the system designer. The authors present ground test data and analysis on candidate system components

  7. 26th Space Simulation Conference Proceedings. Environmental Testing: The Path Forward

    Science.gov (United States)

    Packard, Edward A.

    2010-01-01

    Topics covered include: A Multifunctional Space Environment Simulation Facility for Accelerated Spacecraft Materials Testing; Exposure of Spacecraft Surface Coatings in a Simulated GEO Radiation Environment; Gravity-Offloading System for Large-Displacement Ground Testing of Spacecraft Mechanisms; Microscopic Shutters Controlled by cRIO in Sounding Rocket; Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing; Upgrade of a Thermal Vacuum Chamber for 20 Kelvin Operations; A New Approach to Improve the Uniformity of Solar Simulator; A Perfect Space Simulation Storm; A Planetary Environmental Simulator/Test Facility; Collimation Mirror Segment Refurbishment inside ESA s Large Space; Space Simulation of the CBERS 3 and 4 Satellite Thermal Model in the New Brazilian 6x8m Thermal Vacuum Chamber; The Certification of Environmental Chambers for Testing Flight Hardware; Space Systems Environmental Test Facility Database (SSETFD), Website Development Status; Wallops Flight Facility: Current and Future Test Capabilities for Suborbital and Orbital Projects; Force Limited Vibration Testing of JWST NIRSpec Instrument Using Strain Gages; Investigation of Acoustic Field Uniformity in Direct Field Acoustic Testing; Recent Developments in Direct Field Acoustic Testing; Assembly, Integration and Test Centre in Malaysia: Integration between Building Construction Works and Equipment Installation; Complex Ground Support Equipment for Satellite Thermal Vacuum Test; Effect of Charging Electron Exposure on 1064nm Transmission through Bare Sapphire Optics and SiO2 over HfO2 AR-Coated Sapphire Optics; Environmental Testing Activities and Capabilities for Turkish Space Industry; Integrated Circuit Reliability Simulation in Space Environments; Micrometeoroid Impacts and Optical Scatter in Space Environment; Overcoming Unintended Consequences of Ambient Pressure Thermal Cycling Environmental Tests; Performance and Functionality Improvements to Next Generation

  8. Proof-Carrying Hardware: Concept and Prototype Tool Flow for Online Verification

    OpenAIRE

    Drzevitzky, Stephanie; Kastens, Uwe; Platzner, Marco

    2010-01-01

    Dynamically reconfigurable hardware combines hardware performance with software-like flexibility and finds increasing use in networked systems. The capability to load hardware modules at runtime provides these systems with an unparalleled degree of adaptivity but at the same time poses new challenges for security and safety. In this paper, we elaborate on the presentation of proof carrying hardware (PCH) as a novel approach to reconfigurable system security. PCH takes ...

  9. Treatability tests on water from a low-level waste burial ground

    International Nuclear Information System (INIS)

    Taylor, P.A.

    1990-01-01

    Lab-scale treatability tests on trench water from a low-level waste burial ground have shown that the water can be successfully treated by existing wastewater treatment plants at Oak Ridge National Laboratory. Water from the four most highly contaminated trenches that had been identified to date was used in the treatability tests. The softening and ion exchange processes used in the Process Wastewater Treatment Plant removed Sr-90 from the trench water, which was the only radionuclide present at above the discharge limits. The air stripping and activated carbon adsorption processes used in the Nonradiological Wastewater Treatment Plant removed volatile and semi-volatile organics, which were the main contaminants in the trench water, to below detection limits. 6 refs., 2 figs., 7 tabs

  10. Forward and adjoint spectral-element simulations of seismic wave propagation using hardware accelerators

    Science.gov (United States)

    Peter, Daniel; Videau, Brice; Pouget, Kevin; Komatitsch, Dimitri

    2015-04-01

    Improving the resolution of tomographic images is crucial to answer important questions on the nature of Earth's subsurface structure and internal processes. Seismic tomography is the most prominent approach where seismic signals from ground-motion records are used to infer physical properties of internal structures such as compressional- and shear-wave speeds, anisotropy and attenuation. Recent advances in regional- and global-scale seismic inversions move towards full-waveform inversions which require accurate simulations of seismic wave propagation in complex 3D media, providing access to the full 3D seismic wavefields. However, these numerical simulations are computationally very expensive and need high-performance computing (HPC) facilities for further improving the current state of knowledge. During recent years, many-core architectures such as graphics processing units (GPUs) have been added to available large HPC systems. Such GPU-accelerated computing together with advances in multi-core central processing units (CPUs) can greatly accelerate scientific applications. There are mainly two possible choices of language support for GPU cards, the CUDA programming environment and OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted mainly by AMD graphic cards. In order to employ such hardware accelerators for seismic wave propagation simulations, we incorporated a code generation tool BOAST into an existing spectral-element code package SPECFEM3D_GLOBE. This allows us to use meta-programming of computational kernels and generate optimized source code for both CUDA and OpenCL languages, running simulations on either CUDA or OpenCL hardware accelerators. We show here applications of forward and adjoint seismic wave propagation on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.

  11. LHCb: Hardware Data Injector

    CERN Multimedia

    Delord, V; Neufeld, N

    2009-01-01

    The LHCb High Level Trigger and Data Acquisition system selects about 2 kHz of events out of the 1 MHz of events, which have been selected previously by the first-level hardware trigger. The selected events are consolidated into files and then sent to permanent storage for subsequent analysis on the Grid. The goal of the upgrade of the LHCb readout is to lift the limitation to 1 MHz. This means speeding up the DAQ to 40 MHz. Such a DAQ system will certainly employ 10 Gigabit or technologies and might also need new networking protocols: a customized TCP or proprietary solutions. A test module is being presented, which integrates in the existing LHCb infrastructure. It is a 10-Gigabit traffic generator, flexible enough to generate LHCb's raw data packets using dummy data or simulated data. These data are seen as real data coming from sub-detectors by the DAQ. The implementation is based on an FPGA using 10 Gigabit Ethernet interface. This module is integrated in the experiment control system. The architecture, ...

  12. High Performance Motion-Planner Architecture for Hardware-In-the-Loop System Based on Position-Based-Admittance-Control

    OpenAIRE

    Francesco La Mura; Giovanni Todeschini; Hermes Giberti

    2018-01-01

    This article focuses on a Hardware-In-the-Loop application developed from the advanced energy field project LIFES50+. The aim is to replicate, inside a wind gallery test facility, the combined effect of aerodynamic and hydrodynamic loads on a floating wind turbine model for offshore energy production, using a force controlled robotic device, emulating floating substructure’s behaviour. In addition to well known real-time Hardware-In-the-Loop (HIL) issues, the particular application presented ...

  13. Transonic and supersonic ground effect aerodynamics

    Science.gov (United States)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  14. The VMTG Hardware Description

    CERN Document Server

    Puccio, B

    1998-01-01

    The document describes the hardware features of the CERN Master Timing Generator. This board is the common platform for the transmission of General Timing Machine required by the CERN accelerators. In addition, the paper shows the various jumper options to customise the card which is compliant to the VMEbus standard.

  15. Dynamically-Loaded Hardware Libraries (HLL) Technology for Audio Applications

    DEFF Research Database (Denmark)

    Esposito, A.; Lomuscio, A.; Nunzio, L. Di

    2016-01-01

    In this work, we apply hardware acceleration to embedded systems running audio applications. We present a new framework, Dynamically-Loaded Hardware Libraries or HLL, to dynamically load hardware libraries on reconfigurable platforms (FPGAs). Provided a library of application-specific processors......, we load on-the-fly the specific processor in the FPGA, and we transfer the execution from the CPU to the FPGA-based accelerator. The proposed architecture provides excellent flexibility with respect to the different audio applications implemented, high quality audio, and an energy efficient solution....

  16. Utilization of ISS to Develop and Test Operational Concepts and Hardware for Low-Gravity Terrestrial EVA

    Science.gov (United States)

    Gast, Matthew A.

    2010-01-01

    NASA has considerable experience in two areas of Extravehicular Activities (EVA). The first can be defined as microgravity, orbital EVAs. This consists of everything done in low Earth orbit (LEO), from the early, proof of concept EVAs conducted during the Gemini program of the 1960s, to the complex International Space Station (ISS) assembly tasks of the first decade of the 21st century. The second area of expertise is comprised of those EVAs conducted on the lunar surface, under a gravitational force one-sixth that of Earth. This EVA expertise encapsulates two extremes - microgravity and Earthlike gravitation - but is insufficient as humans expand their exploration purview, most notably with respect to spacewalks conducted on very low-gravity bodies, such as near- Earth objects (NEO) and the moons of Mars. The operational and technical challenges of this category of EVA have yet to be significantly examined, and as such, only a small number of operational concepts have been proposed thus far. To ensure mission success, however, EVA techniques must be developed and vetted to allow the selection of operational concepts that can be utilized across an assortment of destinations whose physical characteristics vary. This paper examines the utilization of ISS-based EVAs to test operational concepts and hardware in preparation for a low-gravity terrestrial EVA. While the ISS cannot mimic some of the fundamental challenges of a low-gravity terrestrial EVA - such as rotation rate and surface composition - it may be the most effective test bed available.

  17. Hardware Approach for Real Time Machine Stereo Vision

    Directory of Open Access Journals (Sweden)

    Michael Tornow

    2006-02-01

    Full Text Available Image processing is an effective tool for the analysis of optical sensor information for driver assistance systems and controlling of autonomous robots. Algorithms for image processing are often very complex and costly in terms of computation. In robotics and driver assistance systems, real-time processing is necessary. Signal processing algorithms must often be drastically modified so they can be implemented in the hardware. This task is especially difficult for continuous real-time processing at high speeds. This article describes a hardware-software co-design for a multi-object position sensor based on a stereophotogrammetric measuring method. In order to cover a large measuring area, an optimized algorithm based on an image pyramid is implemented in an FPGA as a parallel hardware solution for depth map calculation. Object recognition and tracking are then executed in real-time in a processor with help of software. For this task a statistical cluster method is used. Stabilization of the tracking is realized through use of a Kalman filter. Keywords: stereophotogrammetry, hardware-software co-design, FPGA, 3-d image analysis, real-time, clustering and tracking.

  18. Hardware Realization of Chaos Based Symmetric Image Encryption

    KAUST Repository

    Barakat, Mohamed L.

    2012-06-01

    This thesis presents a novel work on hardware realization of symmetric image encryption utilizing chaos based continuous systems as pseudo random number generators. Digital implementation of chaotic systems results in serious degradations in the dynamics of the system. Such defects are illuminated through a new technique of generalized post proceeding with very low hardware cost. The thesis further discusses two encryption algorithms designed and implemented as a block cipher and a stream cipher. The security of both systems is thoroughly analyzed and the performance is compared with other reported systems showing a superior results. Both systems are realized on Xilinx Vetrix-4 FPGA with a hardware and throughput performance surpassing known encryption systems.

  19. GROUNDED THEORY METHODOLOGY and GROUNDED THEORY RESEARCH in TURKEY

    OpenAIRE

    ARIK, Ferhat; ARIK, Işıl Avşar

    2016-01-01

    This research discusses the historical development of the Grounded Theory Methodology, which is one of the qualitative research method, its transformation over time and how it is used as a methodology in Turkey. The Grounded Theory which was founded by Strauss and Glaser, is a qualitative methodology based on inductive logic to discover theories in contrast with the deductive understanding which is based on testing an existing theory in sociology. It is possible to examine the Grounded Theory...

  20. Hardware Acceleration of SQL-Queries Processing in MDM-Systems Based on MISDSolution

    Directory of Open Access Journals (Sweden)

    V. E. Podol'skii

    2015-01-01

    Full Text Available In this article we examine the possibility of hardware support for functions of mobile device management platform (MDM-platform using a Multiple Instructions and Single Data stream computer system, developed within the framework of the project in Bauman Moscow State Technical University. At the universities the MDM-platform is used to provide various mobile services for the faculty, students and administration to facilitate the learning process: a mobile schedule, document sharing, text messages, and other interactive activities. Most of these services are provided by the extensive use of data stored in MDM-platform databases. When accessing the databases SQL- queries are commonly used. These queries comprise operators of SQL-language that are based on mathematical sets theory. Hardware support for operations on sets is implemented in Multiple Instructions and Single Data stream computer system (MISD System. This allows performance improvement of algorithms and operations on sets. Thus, the hardware support for the processing of SQL-queries in MISD system allows us to benefit from the implementation of SQL-queries in the MISD paradigm.The scientific novelty of the work lies in the fact that it is the first time a set of algorithms for basic SQL statements has been presented in a format supported by MISD system. In addition, for the first time operators INNER JOIN, LEFT JOIN and LEFT OUTER JOIN have been implemented for MISD system and tested for it (testing was done for FPGA Xilinx Virtex-II Pro XC2VP30 implementation of MISD system. The practical significance of the work lies in the fact that the results of the study will be used in the project "Development of the Russian analogue of the system software for centralized management of personal devices and platforms in enterprise networks" of the St. Petersburg Polytechnic University (with the financial support of the state represented by the Ministry of Education and Science of the Russian

  1. Desenvolvimento de hardware reconfigurável de criptografia assimétrica

    Directory of Open Access Journals (Sweden)

    Otávio Souza Martins Gomes

    2015-01-01

    Full Text Available Este artigo apresenta o resultado parcial do desenvolvimento de uma interface de hardware reconfigurável para criptografia assimétrica que permite a troca segura de dados. Hardwares reconfiguráveis permitem o desenvolvimento deste tipo de dispositivo com segurança e flexibilidade e possibilitam a mudança de características no projeto com baixo custo e de forma rápida.Palavras-chave: Criptografia. Hardware. ElGamal. FPGA. Segurança. Development of an asymmetric cryptography reconfigurable harwadre ABSTRACTThis paper presents some conclusions and choices about the development of an asymmetric cryptography reconfigurable hardware interface to allow a safe data communication. Reconfigurable hardwares allows the development of this kind of device with safety and flexibility, and offer the possibility to change some features with low cost and in a fast way.Keywords: Cryptography. Hardware. ElGamal. FPGAs. Security.

  2. MRI monitoring of focused ultrasound sonications near metallic hardware.

    Science.gov (United States)

    Weber, Hans; Ghanouni, Pejman; Pascal-Tenorio, Aurea; Pauly, Kim Butts; Hargreaves, Brian A

    2018-07-01

    To explore the temperature-induced signal change in two-dimensional multi-spectral imaging (2DMSI) for fast thermometry near metallic hardware to enable MR-guided focused ultrasound surgery (MRgFUS) in patients with implanted metallic hardware. 2DMSI was optimized for temperature sensitivity and applied to monitor focus ultrasound surgery (FUS) sonications near metallic hardware in phantoms and ex vivo porcine muscle tissue. Further, we evaluated its temperature sensitivity for in vivo muscle in patients without metallic hardware. In addition, we performed a comparison of temperature sensitivity between 2DMSI and conventional proton-resonance-frequency-shift (PRFS) thermometry at different distances from metal devices and different signal-to-noise ratios (SNR). 2DMSI thermometry enabled visualization of short ultrasound sonications near metallic hardware. Calibration using in vivo muscle yielded a constant temperature sensitivity for temperatures below 43 °C. For an off-resonance coverage of ± 6 kHz, we achieved a temperature sensitivity of 1.45%/K, resulting in a minimum detectable temperature change of ∼2.5 K for an SNR of 100 with a temporal resolution of 6 s per frame. The proposed 2DMSI thermometry has the potential to allow MR-guided FUS treatments of patients with metallic hardware and therefore expand its reach to a larger patient population. Magn Reson Med 80:259-271, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. 15 MW HArdware-in-the-loop Grid Simulation Project

    Energy Technology Data Exchange (ETDEWEB)

    Rigas, Nikolaos [Clemson Univ., SC (United States); Fox, John Curtiss [Clemson Univ., SC (United States); Collins, Randy [Clemson Univ., SC (United States); Tuten, James [Clemson Univ., SC (United States); Salem, Thomas [Clemson Univ., SC (United States); McKinney, Mark [Clemson Univ., SC (United States); Hadidi, Ramtin [Clemson Univ., SC (United States); Gislason, Benjamin [Clemson Univ., SC (United States); Boessneck, Eric [Clemson Univ., SC (United States); Leonard, Jesse [Clemson Univ., SC (United States)

    2014-10-31

    The 15MW Hardware-in-the-loop (HIL) Grid Simulator project was to (1) design, (2) construct and (3) commission a state-of-the-art grid integration testing facility for testing of multi-megawatt devices through a ‘shared facility’ model open to all innovators to promote the rapid introduction of new technology in the energy market to lower the cost of energy delivered. The 15 MW HIL Grid Simulator project now serves as the cornerstone of the Duke Energy Electric Grid Research, Innovation and Development (eGRID) Center. This project leveraged the 24 kV utility interconnection and electrical infrastructure of the US DOE EERE funded WTDTF project at the Clemson University Restoration Institute in North Charleston, SC. Additionally, the project has spurred interest from other technology sectors, including large PV inverter and energy storage testing and several leading edge research proposals dealing with smart grid technologies, grid modernization and grid cyber security. The key components of the project are the power amplifier units capable of providing up to 20MW of defined power to the research grid. The project has also developed a one of a kind solution to performing fault ride-through testing by combining a reactive divider network and a large power converter into a hybrid method. This unique hybrid method of performing fault ride-through analysis will allow for the research team at the eGRID Center to investigate the complex differences between the alternative methods of performing fault ride-through evaluations and will ultimately further the science behind this testing. With the final goal of being able to perform HIL experiments and demonstration projects, the eGRID team undertook a significant challenge with respect to developing a control system that is capable of communicating with several different pieces of equipment with different communication protocols in real-time. The eGRID team developed a custom fiber optical network that is based upon FPGA

  4. Embracing Safe Ground Test Facility Operations and Maintenance

    Science.gov (United States)

    Dunn, Steven C.; Green, Donald R.

    2010-01-01

    Conducting integrated operations and maintenance in wind tunnel ground test facilities requires a balance of meeting due dates, efficient operation, responsiveness to the test customer, data quality, effective maintenance (relating to readiness and reliability), and personnel and facility safety. Safety is non-negotiable, so the balance must be an "and" with other requirements and needs. Pressure to deliver services faster at increasing levels of quality in under-maintained facilities is typical. A challenge for management is to balance the "need for speed" with safety and quality. It s especially important to communicate this balance across the organization - workers, with a desire to perform, can be tempted to cut corners on defined processes to increase speed. Having a lean staff can extend the time required for pre-test preparations, so providing a safe work environment for facility personnel and providing good stewardship for expensive National capabilities can be put at risk by one well-intending person using at-risk behavior. This paper documents a specific, though typical, operational environment and cites management and worker safety initiatives and tools used to provide a safe work environment. Results are presented and clearly show that the work environment is a relatively safe one, though still not good enough to keep from preventing injury. So, the journey to a zero injury work environment - both in measured reality and in the minds of each employee - continues. The intent of this paper is to provide a benchmark for others with operational environments and stimulate additional sharing and discussion on having and keeping a safe work environment.

  5. Ground rubber: Sorption media for ground water containing benzene and O-xylene

    International Nuclear Information System (INIS)

    Kershaw, D.S.; Pamukcu, S.

    1997-01-01

    The purpose of the current study is to examine the ability of ground rubber to sorb benzene and O-xylene from water contained with aromatic hydrocarbons. The study consisted of running both batch and packed bed column tests to determine the sorption capacity, the required sorption equilibration time, and the flow through utilization efficiency of ground rubber under various contact times when exposed to water contaminated with various amounts of benzene or O-xylene. Initial batch test results indicate that ground rubber can attain equilibrium sorption capacities up to 1.3 or 8.2 mg of benzene or O-xylene, respectively, per gram of tire rubber at solution equilibrium concentrations of 10 mg/L. Packed bed column tests indicate that ground tire rubber has on the average a 40% utilization rate when a hydraulic residence time of 15 min is used. Possible future uses of round rubber as a sorption media could include, but are not limited to, the use of ground rubber as an aggregate in slurry cutoff walls that are in contact with petroleum products. Ground rubber could also be used as a sorption media in pump-and-treat methodologies or as a sorption media in in-situ reactive permeable barriers

  6. SCOS 2: A distributed architecture for ground system control

    Science.gov (United States)

    Keyte, Karl P.

    The current generation of spacecraft ground control systems in use at the European Space Agency/European Space Operations Centre (ESA/ESOC) is based on the SCOS 1. Such systems have become difficult to manage in both functional and financial terms. The next generation of spacecraft is demanding more flexibility in the use, configuration and distribution of control facilities as well as functional requirements capable of matching those being planned for future missions. SCOS 2 is more than a successor to SCOS 1. Many of the shortcomings of the existing system have been carefully analyzed by user and technical communities and a complete redesign was made. Different technologies were used in many areas including hardware platform, network architecture, user interfaces and implementation techniques, methodologies and language. As far as possible a flexible design approach has been made using popular industry standards to provide vendor independence in both hardware and software areas. This paper describes many of the new approaches made in the architectural design of the SCOS 2.

  7. Hardware interface unit for control of shuttle RMS vibrations

    Science.gov (United States)

    Lindsay, Thomas S.; Hansen, Joseph M.; Manouchehri, Davoud; Forouhar, Kamran

    1994-01-01

    Vibration of the Shuttle Remote Manipulator System (RMS) increases the time for task completion and reduces task safety for manipulator-assisted operations. If the dynamics of the manipulator and the payload can be physically isolated, performance should improve. Rockwell has developed a self contained hardware unit which interfaces between a manipulator arm and payload. The End Point Control Unit (EPCU) is built and is being tested at Rockwell and at the Langley/Marshall Coupled, Multibody Spacecraft Control Research Facility in NASA's Marshall Space Flight Center in Huntsville, Alabama.

  8. Hardware Architectures for the Correspondence Problem in Image Analysis

    DEFF Research Database (Denmark)

    Paulsen, Thomas Eide

    Method"has been developed in conjunction with the work on this thesis and has not previously been described. Also, during this project a combined image acquisition and compression board has been developed for a NASA sounding rocket. This circuit, a so-called Lightning Imager, is also described. Finally...... an optimized hardware architecture has been proposed in relation to the three matching methods mentioned above. Because of the cost required to physically implement and test the developed architecture, it has been decided todocument the performance of the architecture through theoretical proofs only....

  9. Recent Ground Hold and Rapid Depressurization Testing of Multilayer Systems

    Science.gov (United States)

    Johnson, Wesley L.

    2014-01-01

    In the development of flight insulation systems for large cryogenic orbital storage (spray on foam and multilayer insulation), testing need include all environments that are experienced during flight. While large efforts have been expended on studying, bounding, and modeling the orbital performance of the insulation systems, little effort has been expended on the ground hold and ascent phases of a mission. Historical cryogenic in-space systems that have flown have been able to ignore these phases of flight due to the insulation system being within a vacuum jacket. In the development phase of the Nuclear Mars Vehicle and the Shuttle Nuclear Vehicle, several insulation systems were evaluated for the full mission cycle. Since that time there had been minimal work on these phases of flight until the Constellation program began investigating cryogenic service modules and long duration upper stages. With the inception of the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, a specific need was seen for the data and as such, several tests were added to the Cryogenic Boil-off Reduction System liquid hydrogen test matrix to provide more data on a insulation system. Testing was attempted with both gaseous nitrogen (GN2) and gaseous helium (GHe) backfills. The initial tests with nitrogen backfill were not successfully completed due to nitrogen liquefaction and solidification preventing the rapid pumpdown of the vacuum chamber. Subsequent helium backfill tests were successful and showed minimal degradation. The results are compared to the historical data.

  10. Trends in computer hardware and software.

    Science.gov (United States)

    Frankenfeld, F M

    1993-04-01

    Previously identified and current trends in the development of computer systems and in the use of computers for health care applications are reviewed. Trends identified in a 1982 article were increasing miniaturization and archival ability, increasing software costs, increasing software independence, user empowerment through new software technologies, shorter computer-system life cycles, and more rapid development and support of pharmaceutical services. Most of these trends continue today. Current trends in hardware and software include the increasing use of reduced instruction-set computing, migration to the UNIX operating system, the development of large software libraries, microprocessor-based smart terminals that allow remote validation of data, speech synthesis and recognition, application generators, fourth-generation languages, computer-aided software engineering, object-oriented technologies, and artificial intelligence. Current trends specific to pharmacy and hospitals are the withdrawal of vendors of hospital information systems from the pharmacy market, improved linkage of information systems within hospitals, and increased regulation by government. The computer industry and its products continue to undergo dynamic change. Software development continues to lag behind hardware, and its high cost is offsetting the savings provided by hardware.

  11. Strength and durability tests of pipeline supports for the areas of above-ground routing under the influence of operational loads

    Directory of Open Access Journals (Sweden)

    Surikov Vitaliy Ivanovich

    2014-03-01

    Full Text Available The present article deals with integrated research works and tests of pipeline supports for the areas of above-ground routing of the pipeline system “Zapolyarye - Pur-pe” which is laid in the eternally frozen grounds. In order to ensure the above-ground routing method for the oil pipeline “Zapolyarye - Pur-pe” and in view of the lack of construction experience in case of above-ground routing of oil pipelines, the leading research institute of JSC “Transneft” - LLC “NII TNN” over the period of August, 2011 - September, 2012 performed a research and development work on the subject “Development and production of pipeline supports and pile foundation test specimens for the areas of above-ground routing of the pipeline system “Zapolyarye - Pur-pe”. In the course of the works, the test specimens of fixed support, linear-sliding and free-sliding pipeline supports DN1000 and DN800 were produced and examined. For ensuring the stable structural reliability of the supports constructions and operational integrity of the pipelines the complex research works and tests were performed: 1. Cyclic tests of structural elements of the fixed support on the test bed of JSC “Diascan” by means of internal pressure and bending moment with the application of specially prepared equipment for defining the pipeline supports strength and durability. 2. Tests of the fixed support under the influence of limit operating loads and by means of internal pressure for confirming the support’s integrity. On the test bed there were simulated all the maximum loads on the support (vertical, longitudinal, side loadings, bending moment including subsidence of the neighboring sliding support and, simultaneously, internal pressure of the carried medium. 3. Cyclic tests of endurance and stability of the displacements of sliding supports under the influence of limit operating loads for confirming their operation capacity. Relocation of the pipeline on the sliding

  12. CERN Neutrino Platform Hardware

    CERN Document Server

    Nelson, Kevin

    2017-01-01

    My summer research was broadly in CERN's neutrino platform hardware efforts. This project had two main components: detector assembly and data analysis work for ICARUS. Specifically, I worked on assembly for the ProtoDUNE project and monitored the safety of ICARUS as it was transported to Fermilab by analyzing the accelerometer data from its move.

  13. Human Centered Hardware Modeling and Collaboration

    Science.gov (United States)

    Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena

    2013-01-01

    In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.

  14. Analysis for Parallel Execution without Performing Hardware/Software Co-simulation

    OpenAIRE

    Muhammad Rashid

    2014-01-01

    Hardware/software co-simulation improves the performance of embedded applications by executing the applications on a virtual platform before the actual hardware is available in silicon. However, the virtual platform of the target architecture is often not available during early stages of the embedded design flow. Consequently, analysis for parallel execution without performing hardware/software co-simulation is required. This article presents an analysis methodology for parallel execution of ...

  15. Software error masking effect on hardware faults

    International Nuclear Information System (INIS)

    Choi, Jong Gyun; Seong, Poong Hyun

    1999-01-01

    Based on the Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL), in this work, a simulation model for fault injection is developed to estimate the dependability of the digital system in operational phase. We investigated the software masking effect on hardware faults through the single bit-flip and stuck-at-x fault injection into the internal registers of the processor and memory cells. The fault location reaches all registers and memory cells. Fault distribution over locations is randomly chosen based on a uniform probability distribution. Using this model, we have predicted the reliability and masking effect of an application software in a digital system-Interposing Logic System (ILS) in a nuclear power plant. We have considered four the software operational profiles. From the results it was found that the software masking effect on hardware faults should be properly considered for predicting the system dependability accurately in operation phase. It is because the masking effect was formed to have different values according to the operational profile

  16. Instrument hardware and software upgrades at IPNS

    International Nuclear Information System (INIS)

    Worlton, Thomas; Hammonds, John; Mikkelson, D.; Mikkelson, Ruth; Porter, Rodney; Tao, Julian; Chatterjee, Alok

    2006-01-01

    IPNS is in the process of upgrading their time-of-flight neutron scattering instruments with improved hardware and software. The hardware upgrades include replacing old VAX Qbus and Multibus-based data acquisition systems with new systems based on VXI and VME. Hardware upgrades also include expanded detector banks and new detector electronics. Old VAX Fortran-based data acquisition and analysis software is being replaced with new software as part of the ISAW project. ISAW is written in Java for ease of development and portability, and is now used routinely for data visualization, reduction, and analysis on all upgraded instruments. ISAW provides the ability to process and visualize the data from thousands of detector pixels, each having thousands of time channels. These operations can be done interactively through a familiar graphical user interface or automatically through simple scripts. Scripts and operators provided by end users are automatically included in the ISAW menu structure, along with those distributed with ISAW, when the application is started

  17. Flight Hardware Virtualization for On-Board Science Data Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilize Hardware Virtualization technology to benefit on-board science data processing by investigating new real time embedded Hardware Virtualization solutions and...

  18. Exploring Infiniband Hardware Virtualization in OpenNebula towards Efficient High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Pais Pitta de Lacerda Ruivo, Tiago [IIT, Chicago; Bernabeu Altayo, Gerard [Fermilab; Garzoglio, Gabriele [Fermilab; Timm, Steven [Fermilab; Kim, Hyun-Woo [Fermilab; Noh, Seo-Young [KISTI, Daejeon; Raicu, Ioan [IIT, Chicago

    2014-11-11

    has been widely accepted that software virtualization has a big negative impact on high-performance computing (HPC) application performance. This work explores the potential use of Infiniband hardware virtualization in an OpenNebula cloud towards the efficient support of MPI-based workloads. We have implemented, deployed, and tested an Infiniband network on the FermiCloud private Infrastructure-as-a-Service (IaaS) cloud. To avoid software virtualization towards minimizing the virtualization overhead, we employed a technique called Single Root Input/Output Virtualization (SRIOV). Our solution spanned modifications to the Linux’s Hypervisor as well as the OpenNebula manager. We evaluated the performance of the hardware virtualization on up to 56 virtual machines connected by up to 8 DDR Infiniband network links, with micro-benchmarks (latency and bandwidth) as well as w a MPI-intensive application (the HPL Linpack benchmark).

  19. Event-driven processing for hardware-efficient neural spike sorting

    Science.gov (United States)

    Liu, Yan; Pereira, João L.; Constandinou, Timothy G.

    2018-02-01

    Objective. The prospect of real-time and on-node spike sorting provides a genuine opportunity to push the envelope of large-scale integrated neural recording systems. In such systems the hardware resources, power requirements and data bandwidth increase linearly with channel count. Event-based (or data-driven) processing can provide here a new efficient means for hardware implementation that is completely activity dependant. In this work, we investigate using continuous-time level-crossing sampling for efficient data representation and subsequent spike processing. Approach. (1) We first compare signals (synthetic neural datasets) encoded with this technique against conventional sampling. (2) We then show how such a representation can be directly exploited by extracting simple time domain features from the bitstream to perform neural spike sorting. (3) The proposed method is implemented in a low power FPGA platform to demonstrate its hardware viability. Main results. It is observed that considerably lower data rates are achievable when using 7 bits or less to represent the signals, whilst maintaining the signal fidelity. Results obtained using both MATLAB and reconfigurable logic hardware (FPGA) indicate that feature extraction and spike sorting accuracies can be achieved with comparable or better accuracy than reference methods whilst also requiring relatively low hardware resources. Significance. By effectively exploiting continuous-time data representation, neural signal processing can be achieved in a completely event-driven manner, reducing both the required resources (memory, complexity) and computations (operations). This will see future large-scale neural systems integrating on-node processing in real-time hardware.

  20. Development of a Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    Science.gov (United States)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  1. Fuel cell hardware-in-loop

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.M.; Randolf, G.; Virji, M. [University of Hawaii, Hawaii Natural Energy Institute (United States); Hauer, K.H. [Xcellvision (Germany)

    2006-11-08

    Hardware-in-loop (HiL) methodology is well established in the automotive industry. One typical application is the development and validation of control algorithms for drive systems by simulating the vehicle plus the vehicle environment in combination with specific control hardware as the HiL component. This paper introduces the use of a fuel cell HiL methodology for fuel cell and fuel cell system design and evaluation-where the fuel cell (or stack) is the unique HiL component that requires evaluation and development within the context of a fuel cell system designed for a specific application (e.g., a fuel cell vehicle) in a typical use pattern (e.g., a standard drive cycle). Initial experimental results are presented for the example of a fuel cell within a fuel cell vehicle simulation under a dynamic drive cycle. (author)

  2. Integrated Ground Operations Demonstration Units Testing Plans and Status

    Science.gov (United States)

    Johnson, Robert G.; Notardonato, William U.; Currin, Kelly M.; Orozco-Smith, Evelyn M.

    2012-01-01

    Cryogenic propellant loading operations with their associated flight and ground systems are some of the most complex, critical activities in launch operations. Consequently, these systems and operations account for a sizeable portion of the life cycle costs of any launch program. NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite advances in cryogenics, system health management and command and control technologies. This project was developed to mature, integrate and demonstrate advancement in the current state of the art in these areas using two distinct integrated ground operations demonstration units (GODU): GODU Integrated Refrigeration and Storage (IRAS) and GODU Autonomous Control

  3. Flexible hardware design for RSA and Elliptic Curve Cryptosystems

    NARCIS (Netherlands)

    Batina, L.; Bruin - Muurling, G.; Örs, S.B.; Okamoto, T.

    2004-01-01

    This paper presents a scalable hardware implementation of both commonly used public key cryptosystems, RSA and Elliptic Curve Cryptosystem (ECC) on the same platform. The introduced hardware accelerator features a design which can be varied from very small (less than 20 Kgates) targeting wireless

  4. Sharing open hardware through ROP, the robotic open platform

    NARCIS (Netherlands)

    Lunenburg, J.; Soetens, R.P.T.; Schoenmakers, F.; Metsemakers, P.M.G.; van de Molengraft, M.J.G.; Steinbuch, M.; Behnke, S.; Veloso, M.; Visser, A.; Xiong, R.

    2014-01-01

    The robot open source software community, in particular ROS, drastically boosted robotics research. However, a centralized place to exchange open hardware designs does not exist. Therefore we launched the Robotic Open Platform (ROP). A place to share and discuss open hardware designs. Among others

  5. Sharing open hardware through ROP, the Robotic Open Platform

    NARCIS (Netherlands)

    Lunenburg, J.J.M.; Soetens, R.P.T.; Schoenmakers, Ferry; Metsemakers, P.M.G.; Molengraft, van de M.J.G.; Steinbuch, M.

    2013-01-01

    The robot open source software community, in particular ROS, drastically boosted robotics research. However, a centralized place to exchange open hardware designs does not exist. Therefore we launched the Robotic Open Platform (ROP). A place to share and discuss open hardware designs. Among others

  6. Hardware Abstraction and Protocol Optimization for Coded Sensor Networks

    DEFF Research Database (Denmark)

    Nistor, Maricica; Roetter, Daniel Enrique Lucani; Barros, João

    2015-01-01

    The design of the communication protocols in wireless sensor networks (WSNs) often neglects several key characteristics of the sensor's hardware, while assuming that the number of transmitted bits is the dominating factor behind the system's energy consumption. A closer look at the hardware speci...

  7. Settlement mechanism of the backfilled ground around nuclear power plant buildings. Part 2. A series of centrifuge tests and a numerical simulation by using FEM about a typical test result

    International Nuclear Information System (INIS)

    Kawai, Tadashi; Ishimaru, Makoto

    2009-01-01

    During the Niigataken Chuetsu-oki earthquake, rather large settlements of the backfill ground around the rigid and stable buildings were observed. In this study, five cases of centrifuge tests with shaking events were conducted to reproduce the similar type of the settlements in order to examine the mechanism of the settlements. The results from those tests showed that the ground was settled by the negative dilatancy of sandy soils anywhere in the model ground and the additional settlements were suddenly caused when the backfill ground was apart from the rigid wall modeling the rigid and stable buildings, namely a sliding failure in an active state was occurred in the backfill ground near the structure. It was confirmed that these settlements were able to be estimated by a simple method proposed in this report, in which only the differences between the self-weight of the sliding block and the soil strength calculated at the initial stress conditions were considered as the driving forces of the sliding failure, and then the accelerations calculated from the forces being divided by the mass of the sliding block were simply integrated two times with respected to the time when the ground was apart from the structure. Further, a numerical simulation by using FEM about a typical test result was conducted, and these settlements were well simulated. (author)

  8. Fast DRR splat rendering using common consumer graphics hardware

    International Nuclear Information System (INIS)

    Spoerk, Jakob; Bergmann, Helmar; Wanschitz, Felix; Dong, Shuo; Birkfellner, Wolfgang

    2007-01-01

    Digitally rendered radiographs (DRR) are a vital part of various medical image processing applications such as 2D/3D registration for patient pose determination in image-guided radiotherapy procedures. This paper presents a technique to accelerate DRR creation by using conventional graphics hardware for the rendering process. DRR computation itself is done by an efficient volume rendering method named wobbled splatting. For programming the graphics hardware, NVIDIAs C for Graphics (Cg) is used. The description of an algorithm used for rendering DRRs on the graphics hardware is presented, together with a benchmark comparing this technique to a CPU-based wobbled splatting program. Results show a reduction of rendering time by about 70%-90% depending on the amount of data. For instance, rendering a volume of 2x10 6 voxels is feasible at an update rate of 38 Hz compared to 6 Hz on a common Intel-based PC using the graphics processing unit (GPU) of a conventional graphics adapter. In addition, wobbled splatting using graphics hardware for DRR computation provides higher resolution DRRs with comparable image quality due to special processing characteristics of the GPU. We conclude that DRR generation on common graphics hardware using the freely available Cg environment is a major step toward 2D/3D registration in clinical routine

  9. Motor sport in France: testing-ground for the world.

    Science.gov (United States)

    Cofaigh, Eamon O

    2011-01-01

    The birth of the automobile in the late nineteenth century was greeted with a mixture of awe, scepticism and sometimes even disdain from sections of the European public. In this article, the steps taken in France to pioneer and promote this new invention are examined. Unreliable and noisy, the early automobile owes a debt of gratitude to the French aristocracy who organised and codified motor racing in an effort to test these new inventions while at the same time introduce them to a wider public. City-to-city races demonstrated the potential of the automobile before the initiative of Gordon Bennett proved to be the catalyst for the birth of international motor sport as we recognise it today. Finally this article looks at the special connection between Le Mans and the automobile. Le Mans has, through its 24-hour race, maintained a strong link with the development of everyday automobile tourism and offers the enthusiast an alternative to the machines that reach incredible speeds on modern-day closed circuits. This article examines how French roads were veritable testing grounds for the earliest cars and how the public roads of Le Mans maintain the tradition to this day.

  10. Development of a hardware-based AC microgrid for AC stability assessment

    Science.gov (United States)

    Swanson, Robert R.

    As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

  11. Final test results for the ground operations demonstration unit for liquid hydrogen

    Science.gov (United States)

    Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    Described herein is a comprehensive project-a large-scale test of an integrated refrigeration and storage system called the Ground Operations and Demonstration Unit for Liquid Hydrogen (GODU LH2), sponsored by the Advanced Exploration Systems Program and constructed at Kennedy Space Center. A commercial cryogenic refrigerator interfaced with a 125,000 l liquid hydrogen tank and auxiliary systems in a manner that enabled control of the propellant state by extracting heat via a closed loop Brayton cycle refrigerator coupled to a novel internal heat exchanger. Three primary objectives were demonstrating zero-loss storage and transfer, gaseous liquefaction, and propellant densification. Testing was performed at three different liquid hydrogen fill-levels. Data were collected on tank pressure, internal tank temperature profiles, mass flow in and out of the system, and refrigeration system performance. All test objectives were successfully achieved during approximately two years of testing. A summary of the final results is presented in this paper.

  12. Ripple FPN reduced algorithm based on temporal high-pass filter and hardware implementation

    Science.gov (United States)

    Li, Yiyang; Li, Shuo; Zhang, Zhipeng; Jin, Weiqi; Wu, Lei; Jin, Minglei

    2016-11-01

    Cooled infrared detector arrays always suffer from undesired Ripple Fixed-Pattern Noise (FPN) when observe the scene of sky. The Ripple Fixed-Pattern Noise seriously affect the imaging quality of thermal imager, especially for small target detection and tracking. It is hard to eliminate the FPN by the Calibration based techniques and the current scene-based nonuniformity algorithms. In this paper, we present a modified space low-pass and temporal high-pass nonuniformity correction algorithm using adaptive time domain threshold (THP&GM). The threshold is designed to significantly reduce ghosting artifacts. We test the algorithm on real infrared in comparison to several previously published methods. This algorithm not only can effectively correct common FPN such as Stripe, but also has obviously advantage compared with the current methods in terms of detail protection and convergence speed, especially for Ripple FPN correction. Furthermore, we display our architecture with a prototype built on a Xilinx Virtex-5 XC5VLX50T field-programmable gate array (FPGA). The hardware implementation of the algorithm based on FPGA has two advantages: (1) low resources consumption, and (2) small hardware delay (less than 20 lines). The hardware has been successfully applied in actual system.

  13. FPS-RAM: Fast Prefix Search RAM-Based Hardware for Forwarding Engine

    Science.gov (United States)

    Zaitsu, Kazuya; Yamamoto, Koji; Kuroda, Yasuto; Inoue, Kazunari; Ata, Shingo; Oka, Ikuo

    Ternary content addressable memory (TCAM) is becoming very popular for designing high-throughput forwarding engines on routers. However, TCAM has potential problems in terms of hardware and power costs, which limits its ability to deploy large amounts of capacity in IP routers. In this paper, we propose new hardware architecture for fast forwarding engines, called fast prefix search RAM-based hardware (FPS-RAM). We designed FPS-RAM hardware with the intent of maintaining the same search performance and physical user interface as TCAM because our objective is to replace the TCAM in the market. Our RAM-based hardware architecture is completely different from that of TCAM and has dramatically reduced the costs and power consumption to 62% and 52%, respectively. We implemented FPS-RAM on an FPGA to examine its lookup operation.

  14. Benchmarking and Hardware-In-The-Loop Operation of a 2014 MAZDA SkyActiv (SAE 2016-01-1007)

    Science.gov (United States)

    Engine Performance evaluation in support of LD MTE. EPA used elements of its ALPHA model to apply hardware-in-the-loop (HIL) controls to the SKYACTIV engine test setup to better understand how the engine would operate in a chassis test after combined with future leading edge tech...

  15. Generation of Efficient High-Level Hardware Code from Dataflow Programs

    OpenAIRE

    Siret , Nicolas; Wipliez , Matthieu; Nezan , Jean François; Palumbo , Francesca

    2012-01-01

    High-level synthesis (HLS) aims at reducing the time-to-market by providing an automated design process that interprets and compiles high-level abstraction programs into hardware. However, HLS tools still face limitations regarding the performance of the generated code, due to the difficulties of compiling input imperative languages into efficient hardware code. Moreover the hardware code generated by the HLS tools is usually target-dependant and at a low level of abstraction (i.e. gate-level...

  16. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    Energy Technology Data Exchange (ETDEWEB)

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  17. Quantum neuromorphic hardware for quantum artificial intelligence

    Science.gov (United States)

    Prati, Enrico

    2017-08-01

    The development of machine learning methods based on deep learning boosted the field of artificial intelligence towards unprecedented achievements and application in several fields. Such prominent results were made in parallel with the first successful demonstrations of fault tolerant hardware for quantum information processing. To which extent deep learning can take advantage of the existence of a hardware based on qubits behaving as a universal quantum computer is an open question under investigation. Here I review the convergence between the two fields towards implementation of advanced quantum algorithms, including quantum deep learning.

  18. Pre-Flight Ground Testing of the Full-Scale HIFiRE-1 at Fully Duplicated Flight Conditions

    National Research Council Canada - National Science Library

    Wadhams, Tim P; MacLean, Matthew G; Holden, Michael S; Mundy, Erik

    2008-01-01

    As part of an experimental study to obtain detailed heating and pressure data over the full-scale HIFiRE-1 flight geometry, CUBRC has completed a 30-run matrix of ground tests, sponsored by the AFOSR...

  19. Introduction to co-simulation of software and hardware in embedded processor systems

    Energy Technology Data Exchange (ETDEWEB)

    Dreike, P.L.; McCoy, J.A.

    1996-09-01

    From the dawn of the first use of microprocessors and microcontrollers in embedded systems, the software has been blamed for products being late to market, This is due to software being developed after hardware is fabricated. During the past few years, the use of Hardware Description (or Design) Languages (HDLs) and digital simulation have advanced to a point where the concurrent development of software and hardware can be contemplated using simulation environments. This offers the potential of 50% or greater reductions in time-to-market for embedded systems. This paper is a tutorial on the technical issues that underlie software-hardware (swhw) co-simulation, and the current state of the art. We review the traditional sequential hardware-software design paradigm, and suggest a paradigm for concurrent design, which is supported by co-simulation of software and hardware. This is followed by sections on HDLs modeling and simulation;hardware assisted approaches to simulation; microprocessor modeling methods; brief descriptions of four commercial products for sw-hw co-simulation and a description of our own experiments to develop a co-simulation environment.

  20. The LASS hardware processor

    International Nuclear Information System (INIS)

    Kunz, P.F.

    1976-01-01

    The problems of data analysis with hardware processors are reviewed and a description is given of a programmable processor. This processor, the 168/E, has been designed for use in the LASS multi-processor system; it has an execution speed comparable to the IBM 370/168 and uses the subset of IBM 370 instructions appropriate to the LASS analysis task. (Auth.)

  1. Removal of symptomatic craniofacial titanium hardware following craniotomy: Case series and review

    Directory of Open Access Journals (Sweden)

    Sheri K. Palejwala

    2015-06-01

    Full Text Available Titanium craniofacial hardware has become commonplace for reconstruction and bone flap fixation following craniotomy. Complications of titanium hardware include palpability, visibility, infection, exposure, pain, and hardware malfunction, which can necessitate hardware removal. We describe three patients who underwent craniofacial reconstruction following craniotomies for trauma with post-operative courses complicated by medically intractable facial pain. All three patients subsequently underwent removal of the symptomatic craniofacial titanium hardware and experienced rapid resolution of their painful parasthesias. Symptomatic plates were found in the region of the frontozygomatic suture or MacCarty keyhole, or in close proximity with the supraorbital nerve. Titanium plates, though relatively safe and low profile, can cause local nerve irritation or neuropathy. Surgeons should be cognizant of the potential complications of titanium craniofacial hardware and locations that are at higher risk for becoming symptomatic necessitating a second surgery for removal.

  2. Test process for the safety-critical embedded software

    International Nuclear Information System (INIS)

    Sung, Ahyoung; Choi, Byoungju; Lee, Jangsoo

    2004-01-01

    Digitalization of nuclear Instrumentation and Control (I and C) system requires high reliability of not only hardware but also software. Verification and Validation (V and V) process is recommended for software reliability. But a more quantitative method is necessary such as software testing. Most of software in the nuclear I and C system is safety-critical embedded software. Safety-critical embedded software is specified, verified and developed according to V and V process. Hence two types of software testing techniques are necessary for the developed code. First, code-based software testing is required to examine the developed code. Second, after code-based software testing, software testing affected by hardware is required to reveal the interaction fault that may cause unexpected results. We call the testing of hardware's influence on software, an interaction testing. In case of safety-critical embedded software, it is also important to consider the interaction between hardware and software. Even if no faults are detected when testing either hardware or software alone, combining these components may lead to unexpected results due to the interaction. In this paper, we propose a software test process that embraces test levels, test techniques, required test tasks and documents for safety-critical embedded software. We apply the proposed test process to safety-critical embedded software as a case study, and show the effectiveness of it. (author)

  3. Memory Based Machine Intelligence Techniques in VLSI hardware

    OpenAIRE

    James, Alex Pappachen

    2012-01-01

    We briefly introduce the memory based approaches to emulate machine intelligence in VLSI hardware, describing the challenges and advantages. Implementation of artificial intelligence techniques in VLSI hardware is a practical and difficult problem. Deep architectures, hierarchical temporal memories and memory networks are some of the contemporary approaches in this area of research. The techniques attempt to emulate low level intelligence tasks and aim at providing scalable solutions to high ...

  4. Hardware support for collecting performance counters directly to memory

    Science.gov (United States)

    Gara, Alan; Salapura, Valentina; Wisniewski, Robert W.

    2012-09-25

    Hardware support for collecting performance counters directly to memory, in one aspect, may include a plurality of performance counters operable to collect one or more counts of one or more selected activities. A first storage element may be operable to store an address of a memory location. A second storage element may be operable to store a value indicating whether the hardware should begin copying. A state machine may be operable to detect the value in the second storage element and trigger hardware copying of data in selected one or more of the plurality of performance counters to the memory location whose address is stored in the first storage element.

  5. Why Open Source Hardware matters and why you should care

    OpenAIRE

    Gürkaynak, Frank K.

    2017-01-01

    Open source hardware is currently where open source software was about 30 years ago. The idea is well received by enthusiasts, there is interest and the open source hardware has gained visible momentum recently, with several well-known universities including UC Berkeley, Cambridge and ETH Zürich actively working on large projects involving open source hardware, attracting the attention of companies big and small. But it is still not quite there yet. In this talk, based on my experience on the...

  6. Acceleration of Meshfree Radial Point Interpolation Method on Graphics Hardware

    International Nuclear Information System (INIS)

    Nakata, Susumu

    2008-01-01

    This article describes a parallel computational technique to accelerate radial point interpolation method (RPIM)-based meshfree method using graphics hardware. RPIM is one of the meshfree partial differential equation solvers that do not require the mesh structure of the analysis targets. In this paper, a technique for accelerating RPIM using graphics hardware is presented. In the method, the computation process is divided into small processes suitable for processing on the parallel architecture of the graphics hardware in a single instruction multiple data manner.

  7. No-hardware-signature cybersecurity-crypto-module: a resilient cyber defense agent

    Science.gov (United States)

    Zaghloul, A. R. M.; Zaghloul, Y. A.

    2014-06-01

    We present an optical cybersecurity-crypto-module as a resilient cyber defense agent. It has no hardware signature since it is bitstream reconfigurable, where single hardware architecture functions as any selected device of all possible ones of the same number of inputs. For a two-input digital device, a 4-digit bitstream of 0s and 1s determines which device, of a total of 16 devices, the hardware performs as. Accordingly, the hardware itself is not physically reconfigured, but its performance is. Such a defense agent allows the attack to take place, rendering it harmless. On the other hand, if the system is already infected with malware sending out information, the defense agent allows the information to go out, rendering it meaningless. The hardware architecture is immune to side attacks since such an attack would reveal information on the attack itself and not on the hardware. This cyber defense agent can be used to secure a point-to-point, point-to-multipoint, a whole network, and/or a single entity in the cyberspace. Therefore, ensuring trust between cyber resources. It can provide secure communication in an insecure network. We provide the hardware design and explain how it works. Scalability of the design is briefly discussed. (Protected by United States Patents No.: US 8,004,734; US 8,325,404; and other National Patents worldwide.)

  8. The proposed alignment system for the Final Focus Test Beam at SLAC

    International Nuclear Information System (INIS)

    Ruland, R.E.; Fischer, G.E.

    1990-09-01

    This report describes the current state of work in progress with respect to the geometry, alignment requirements, scenarios, and hardware for meeting the tolerances of the Final Focus Test Beam (FFTB) at SLAC. The methods and systems proposed acknowledge that component motion at the micron level, from whatever cause (ground motion, thermal effects, etc.) must be measured on-line and compensated for on relatively short time scales. To provide an integrated alignment/positioning package, some unique designs for reference systems, calibration of effect electric and magnetic centers, and component movers are introduced. 24 refs., 28 figs

  9. Future aerospace ground test facility requirements for the Arnold Engineering Development Center

    Science.gov (United States)

    Kirchner, Mark E.; Baron, Judson R.; Bogdonoff, Seymour M.; Carter, Donald I.; Couch, Lana M.; Fanning, Arthur E.; Heiser, William H.; Koff, Bernard L.; Melnik, Robert E.; Mercer, Stephen C.

    1992-01-01

    Arnold Engineering Development Center (AEDC) was conceived at the close of World War II, when major new developments in flight technology were presaged by new aerodynamic and propulsion concepts. During the past 40 years, AEDC has played a significant part in the development of many aerospace systems. The original plans were extended through the years by some additional facilities, particularly in the area of propulsion testing. AEDC now has undertaken development of a master plan in an attempt to project requirements and to plan for ground test and computational facilities over the coming 20 to 30 years. This report was prepared in response to an AEDC request that the National Research Council (NRC) assemble a committee to prepare guidance for planning and modernizing AEDC facilities for the development and testing of future classes of aerospace systems as envisaged by the U.S. Air Force.

  10. Efficient Architecture for Spike Sorting in Reconfigurable Hardware

    Science.gov (United States)

    Hwang, Wen-Jyi; Lee, Wei-Hao; Lin, Shiow-Jyu; Lai, Sheng-Ying

    2013-01-01

    This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA) and fuzzy C-means (FCM) algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA). It is embedded in a System-on-Chip (SOC) platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation. PMID:24189331

  11. Efficient Architecture for Spike Sorting in Reconfigurable Hardware

    Directory of Open Access Journals (Sweden)

    Sheng-Ying Lai

    2013-11-01

    Full Text Available This paper presents a novel hardware architecture for fast spike sorting. The architecture is able to perform both the feature extraction and clustering in hardware. The generalized Hebbian algorithm (GHA and fuzzy C-means (FCM algorithm are used for feature extraction and clustering, respectively. The employment of GHA allows efficient computation of principal components for subsequent clustering operations. The FCM is able to achieve near optimal clustering for spike sorting. Its performance is insensitive to the selection of initial cluster centers. The hardware implementations of GHA and FCM feature low area costs and high throughput. In the GHA architecture, the computation of different weight vectors share the same circuit for lowering the area costs. Moreover, in the FCM hardware implementation, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. To show the effectiveness of the circuit, the proposed architecture is physically implemented by field programmable gate array (FPGA. It is embedded in a System-on-Chip (SOC platform for performance measurement. Experimental results show that the proposed architecture is an efficient spike sorting design for attaining high classification correct rate and high speed computation.

  12. Parallel asynchronous hardware implementation of image processing algorithms

    Science.gov (United States)

    Coon, Darryl D.; Perera, A. G. U.

    1990-01-01

    Research is being carried out on hardware for a new approach to focal plane processing. The hardware involves silicon injection mode devices. These devices provide a natural basis for parallel asynchronous focal plane image preprocessing. The simplicity and novel properties of the devices would permit an independent analog processing channel to be dedicated to every pixel. A laminar architecture built from arrays of the devices would form a two-dimensional (2-D) array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuron-like asynchronous pulse-coded form through the laminar processor. No multiplexing, digitization, or serial processing would occur in the preprocessing state. High performance is expected, based on pulse coding of input currents down to one picoampere with noise referred to input of about 10 femtoamperes. Linear pulse coding has been observed for input currents ranging up to seven orders of magnitude. Low power requirements suggest utility in space and in conjunction with very large arrays. Very low dark current and multispectral capability are possible because of hardware compatibility with the cryogenic environment of high performance detector arrays. The aforementioned hardware development effort is aimed at systems which would integrate image acquisition and image processing.

  13. Testing of ground fault relay response during the energisation of megawatt range electric boilers in thermal power plants

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth; Davidsen, Troels

    2015-01-01

    , with the advantage that the warmed water can be reused in a thermal power plant or at regional heating, thus, minimising the overall losses. However, one problem was raised by those purchasing the boilers, mainly the possibility of an unwanted triggering of the protections relays, especially ground fault protection...... for the testing of two ground fault protection relays, in order to assure that they are not triggered by the energisation of the boiler. The test is performed via an OMICRON CMC 256 with Advanced TransPlay SW, which generates the signals that would be present at the secondary of the instrumentation transformers......, during the energisation of a boiler. A special case for concern was the presence of an electric arc between the electrodes of the boiler and the water in the boiler during approximately 2s at the energisation, which can in theory be seen as a ground fault by the relay. The voltage and current transient...

  14. A study on seismic behavior of pile foundations of bridge abutment on liquefiable ground through shaking table tests

    Science.gov (United States)

    Nakata, Mitsuhiko; Tanimoto, Shunsuke; Ishida, Shuichi; Ohsumi, Michio; Hoshikuma, Jun-ichi

    2017-10-01

    There is risk of bridge foundations to be damaged by liquefaction-induced lateral spreading of ground. Once bridge foundations have been damaged, it takes a lot of time for restoration. Therefore, it is important to assess the seismic behavior of the foundations on liquefiable ground appropriately. In this study, shaking table tests of models on a scale of 1/10 were conducted at the large scale shaking table in Public Works Research Institute, Japan, to investigate the seismic behavior of pile-supported bridge abutment on liquefiable ground. The shaking table tests were conducted for three types of model. Two are models of existing bridge which was built without design for liquefaction and the other is a model of bridge which was designed based on the current Japanese design specifications for highway bridges. As a result, the bending strains of piles of the abutment which were designed based on the current design specifications were less than those of the existing bridge.

  15. Ground/Flight Test Techniques and Correlation.

    Science.gov (United States)

    1983-02-01

    dihedral. The photogrammetric analysis system developed at AEDC 6 uses 70-mm Hasselblad cameras and a Keffel & Esser DSC-3/80® analytical stereocompiler...model transmits data to a ground receiver by telemetry and is tracked by accurate radar scanners and/or kinetheodolite cameras as required. The required...Materials Panel Meeting, Ottawa/Canada Sept. 25-27, 1967; also Jahrbuch 1967 der Wissenschaftlichen Gesell - schaft fur Luft- und Raumfahrt, pp. 211

  16. MXIbus data throughput tests

    International Nuclear Information System (INIS)

    Botlo, M.; Dunning, J.; Jagieski, M.; Miller, L.; Romero, A.

    1992-11-01

    A series of tests were conducted to evaluate data transfer rates using the MXIbus architecture. The tests were conducted by the DAQ group in the Physics Research Division. The MXIbus from National Instruments provides a multisystem extension interface bus. It allows multiple VME chassis to be networked. Other bus architectures that can participate in the network include VXIbus, IBM PC-AT bus, Sun Sbus, Mac NuBus and stand-alone instruments with the appropriate MXIbus adapter cards. From a functional standpoint the MXIbus provides the capability to enlarge the address space in a fashion that is transparent to the software application. The tests were designed to measure data throughput when using the MSIbus with other industry off-the-shelf hardware. This report contains discussions on: MXIbus architecture and general guidelines; the commercial hardware and software used in each set of tests; and a brief description of each set of tests, observations and guidelines; the commercial hardware and software used in each set of tests; and a brief description of each set of tests, observations and conclusions

  17. A Hybrid Hardware and Software Component Architecture for Embedded System Design

    Science.gov (United States)

    Marcondes, Hugo; Fröhlich, Antônio Augusto

    Embedded systems are increasing in complexity, while several metrics such as time-to-market, reliability, safety and performance should be considered during the design of such systems. A component-based design which enables the migration of its components between hardware and software can cope to achieve such metrics. To enable that, we define hybrid hardware and software components as a development artifact that can be deployed by different combinations of hardware and software elements. In this paper, we present an architecture for developing such components in order to construct a repository of components that can migrate between the hardware and software domains to meet the design system requirements.

  18. Hardware Development and Locomotion Control Strategy for an Over-Ground Gait Trainer: NaTUre-Gaits.

    Science.gov (United States)

    Luu, Trieu Phat; Low, Kin Huat; Qu, Xingda; Lim, Hup Boon; Hoon, Kay Hiang

    2014-01-01

    Therapist-assisted body weight supported (TABWS) gait rehabilitation was introduced two decades ago. The benefit of TABWS in functional recovery of walking in spinal cord injury and stroke patients has been demonstrated and reported. However, shortage of therapists, labor-intensiveness, and short duration of training are some limitations of this approach. To overcome these deficiencies, robotic-assisted gait rehabilitation systems have been suggested. These systems have gained attentions from researchers and clinical practitioner in recent years. To achieve the same objective, an over-ground gait rehabilitation system, NaTUre-gaits, was developed at the Nanyang Technological University. The design was based on a clinical approach to provide four main features, which are pelvic motion, body weight support, over-ground walking experience, and lower limb assistance. These features can be achieved by three main modules of NaTUre-gaits: 1) pelvic assistance mechanism, mobile platform, and robotic orthosis. Predefined gait patterns are required for a robotic assisted system to follow. In this paper, the gait pattern planning for NaTUre-gaits was accomplished by an individual-specific gait pattern prediction model. The model generates gait patterns that resemble natural gait patterns of the targeted subjects. The features of NaTUre-gaits have been demonstrated by walking trials with several subjects. The trials have been evaluated by therapists and doctors. The results show that 10-m walking trial with a reduction in manpower. The task-specific repetitive training approach and natural walking gait patterns were also successfully achieved.

  19. BIOLOGICALLY INSPIRED HARDWARE CELL ARCHITECTURE

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a system comprising: - a reconfigurable hardware platform; - a plurality of hardware units defined as cells adapted to be programmed to provide self-organization and self-maintenance of the system by means of implementing a program expressed in a programming language defined as DNA...... language, where each cell is adapted to communicate with one or more other cells in the system, and where the system further comprises a converter program adapted to convert keywords from the DNA language to a binary DNA code; where the self-organisation comprises that the DNA code is transmitted to one...... or more of the cells, and each of the one or more cells is adapted to determine its function in the system; where if a fault occurs in a first cell and the first cell ceases to perform its function, self-maintenance is performed by that the system transmits information to the cells that the first cell has...

  20. The principles of computer hardware

    CERN Document Server

    Clements, Alan

    2000-01-01

    Principles of Computer Hardware, now in its third edition, provides a first course in computer architecture or computer organization for undergraduates. The book covers the core topics of such a course, including Boolean algebra and logic design; number bases and binary arithmetic; the CPU; assembly language; memory systems; and input/output methods and devices. It then goes on to cover the related topics of computer peripherals such as printers; the hardware aspects of the operating system; and data communications, and hence provides a broader overview of the subject. Its readable, tutorial-based approach makes it an accessible introduction to the subject. The book has extensive in-depth coverage of two microprocessors, one of which (the 68000) is widely used in education. All chapters in the new edition have been updated. Major updates include: powerful software simulations of digital systems to accompany the chapters on digital design; a tutorial-based introduction to assembly language, including many exam...

  1. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    OpenAIRE

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    2016-01-01

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze ...

  2. Metrics for Analyzing Quantifiable Differentiation of Designs with Varying Integrity for Hardware Assurance

    Science.gov (United States)

    2017-03-01

    Keywords — Trojan; integrity; trust; quantify; hardware; assurance; verification; metrics ; reference, quality ; profile I. INTRODUCTION A. The Rising...as a framework for benchmarking Trusted Part certifications. Previous work conducted in Trust Metric development has focused on measures at the...the lowest integrities. Based on the analysis, the DI metric shows measurable differentiation between all five Test Article Error Location Error

  3. Characterization of a Prototype Radio Frequency Space Environment Path Emulator for Evaluating Spacecraft Ranging Hardware

    Science.gov (United States)

    Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for interspacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of the medium, moving platforms, and radiated power. The Path Emulator for Radio Frequency Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.

  4. Experience with procuring, deploying and maintaining hardware at remote co-location centre

    International Nuclear Information System (INIS)

    Bärring, O; Bonfillou, E; Clement, B; Santos, M Coelho Dos; Dore, V; Gentit, A; Grossir, A; Salter, W; Valsan, L; Xafi, A

    2014-01-01

    In May 2012 CERN signed a contract with the Wigner Data Centre in Budapest for an extension to CERN's central computing facility beyond its current boundaries set by electrical power and cooling available for computing. The centre is operated as a remote co-location site providing rack-space, electrical power and cooling for server, storage and networking equipment acquired by CERN. The contract includes a 'remote-hands' services for physical handling of hardware (rack mounting, cabling, pushing power buttons, ...) and maintenance repairs (swapping disks, memory modules, ...). However, only CERN personnel have network and console access to the equipment for system administration. This report gives an insight to adaptations of hardware architecture, procurement and delivery procedures undertaken enabling remote physical handling of the hardware. We will also describe tools and procedures developed for automating the registration, burn-in testing, acceptance and maintenance of the equipment as well as an independent but important change to the IT assets management (ITAM) developed in parallel as part of the CERN IT Agile Infrastructure project. Finally, we will report on experience from the first large delivery of 400 servers and 80 SAS JBOD expansion units (24 drive bays) to Wigner in March 2013. Changes were made to the abstract file on 13/06/2014 to correct errors, the pdf file was unchanged.

  5. Hardware-Assisted System for Program Execution Security of SOC

    Directory of Open Access Journals (Sweden)

    Wang Xiang

    2016-01-01

    Full Text Available With the rapid development of embedded systems, the systems’ security has become more and more important. Most embedded systems are at the risk of series of software attacks, such as buffer overflow attack, Trojan virus. In addition, with the rapid growth in the number of embedded systems and wide application, followed embedded hardware attacks are also increasing. This paper presents a new hardware assisted security mechanism to protect the program’s code and data, monitoring its normal execution. The mechanism mainly monitors three types of information: the start/end address of the program of basic blocks; the lightweight hash value in basic blocks and address of the next basic block. These parameters are extracted through additional tools running on PC. The information will be stored in the security module. During normal program execution, the security module is designed to compare the real-time state of program with the information in the security module. If abnormal, it will trigger the appropriate security response, suspend the program and jump to the specified location. The module has been tested and validated on the SOPC with OR1200 processor. The experimental analysis shows that the proposed mechanism can defence a wide range of common software and physical attacks with low performance penalties and minimal overheads.

  6. Hardware and software for image acquisition in nuclear medicine

    International Nuclear Information System (INIS)

    Fideles, E.L.; Vilar, G.; Silva, H.S.

    1992-01-01

    A system for image acquisition and processing in nuclear medicine is presented, including the hardware and software referring to acquisition. The hardware is consisted of an analog-digital conversion card, developed in wire-wape. Its function is digitate the analogic signs provided by gamma camera. The acquisitions are made in list or frame mode. (C.G.C.)

  7. Development of a Ground Test and Analysis Protocol to Support NASA's NextSTEP Phase 2 Habitation Concepts

    Science.gov (United States)

    Beaton, Kara H.; Chappell, Steven P.; Bekdash, Omar S.; Gernhardt, Michael L.

    2018-01-01

    The NASA Next Space Technologies for Exploration Partnerships (NextSTEP) program is a public-private partnership model that seeks commercial development of deep space exploration capabilities to support extensive human spaceflight missions around and beyond cislunar space. NASA first issued the Phase 1 NextSTEP Broad Agency Announcement to U.S. industries in 2014, which called for innovative cislunar habitation concepts that leveraged commercialization plans for low Earth orbit. These habitats will be part of the Deep Space Gateway (DSG), the cislunar space station planned by NASA for construction in the 2020s. In 2016, Phase 2 of the NextSTEP program selected five commercial partners to develop ground prototypes. A team of NASA research engineers and subject matter experts have been tasked with developing the ground test protocol that will serve as the primary means by which these Phase 2 prototype habitats will be evaluated. Since 2008, this core test team has successfully conducted multiple spaceflight analog mission evaluations utilizing a consistent set of operational products, tools, methods, and metrics to enable the iterative development, testing, analysis, and validation of evolving exploration architectures, operations concepts, and vehicle designs. The purpose of implementing a similar evaluation process for the NextSTEP Phase 2 Habitation Concepts is to consistently evaluate the different commercial partner ground prototypes to provide data-driven, actionable recommendations for Phase 3.

  8. Hardware Realization of Chaos-based Symmetric Video Encryption

    KAUST Repository

    Ibrahim, Mohamad A.

    2013-05-01

    This thesis reports original work on hardware realization of symmetric video encryption using chaos-based continuous systems as pseudo-random number generators. The thesis also presents some of the serious degradations caused by digitally implementing chaotic systems. Subsequently, some techniques to eliminate such defects, including the ultimately adopted scheme are listed and explained in detail. Moreover, the thesis describes original work on the design of an encryption system to encrypt MPEG-2 video streams. Information about the MPEG-2 standard that fits this design context is presented. Then, the security of the proposed system is exhaustively analyzed and the performance is compared with other reported systems, showing superiority in performance and security. The thesis focuses more on the hardware and the circuit aspect of the system’s design. The system is realized on Xilinx Vetrix-4 FPGA with hardware parameters and throughput performance surpassing conventional encryption systems.

  9. Systematic development of industrial control systems using Software/Hardware Engineering

    NARCIS (Netherlands)

    Voeten, J.P.M.; van der Putten, P.H.A.; Stevens, M.P.J.; Milligan, P.; Corr, P.

    1997-01-01

    SHE (Software/Hardware Engineering) is a new object-oriented analysis, specification and design method for complex reactive hardware/software systems. SHE is based on the formal specification language POOSL and a design framework guiding analysis and design activities. This paper reports on the

  10. Evaluation of Various Cleaning Methods to Remove Bacillus Spores from Spacecraft Hardware Materials

    Science.gov (United States)

    Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger

    2004-09-01

    A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm × 2.5 cm) were precleaned and inoculated with 5.8 × 103 cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.

  11. Hypersonic ground test capabilities for T and E testing above mach 8 ''a case where S and T meets T and E''

    International Nuclear Information System (INIS)

    Constantino, M; Miles, R; Brown, G; Laster, M; Nelson, G

    1999-01-01

    Simulation of hypersonic flight in ground test and evaluation (T and E) facilities is a challenging and formidable task, especially to fully duplicate the flight environment above approximately Mach 8 for most all hypersonic flight systems that have been developed, conceived, or envisioned. Basically, and for many years, the enabling technology to build such a ground test wind tunnel facility has been severely limited in the area of high-temperature, high-strength materials and thermal protection approaches. To circumvent the problems, various approaches have been used, including partial simulation and use of similarity laws and reduced test time. These approaches often are not satisfactory, i.e. operability and durability testing for air-breathing propulsion development and thermal protection development of many flight systems. Thus, there is a strong need for science and technology (S and T) community involvement in technology development to address these problems. This paper discusses a specific case where this need exists and where significant S and T involvement has made and continues to make significant contributions. The case discussed will be an Air Force research program currently underway to develop enabling technologies for a Mach 8-15 hypersonic true temperature wind tunnel with relatively long run time. The research is based on a concept proposed by princeton University using radiant or beamed energy into the supersonic nozzle flow

  12. Performance comparison between ISCSI and other hardware and software solutions

    CERN Document Server

    Gug, M

    2003-01-01

    We report on our investigations on some technologies that can be used to build disk servers and networks of disk servers using commodity hardware and software solutions. It focuses on the performance that can be achieved by these systems and gives measured figures for different configurations. It is divided into two parts : iSCSI and other technologies and hardware and software RAID solutions. The first part studies different technologies that can be used by clients to access disk servers using a gigabit ethernet network. It covers block access technologies (iSCSI, hyperSCSI, ENBD). Experimental figures are given for different numbers of clients and servers. The second part compares a system based on 3ware hardware RAID controllers, a system using linux software RAID and IDE cards and a system mixing both hardware RAID and software RAID. Performance measurements for reading and writing are given for different RAID levels.

  13. Hardware-in-the-Loop Co-simulation of Distribution Grid for Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Rotger-Griful, Sergi; Chatzivasileiadis, Spyros; Jacobsen, Rune H.; Stewart, Emma M.; Domingo, Javier M.; Wetter, Michael

    2016-06-20

    In modern power systems, co-simulation is proposed as an enabler for analyzing the interactions between disparate systems. This paper introduces the co-simulation platform Virtual Grid Integration Laboratory (VirGIL) including Hardware-in-the-Loop testing, and demonstrates its potential to assess demand response strategies. VirGIL is based on a modular architecture using the Functional Mock-up Interface industrial standard to integrate new simulators. VirGIL combines state-of-the-art simulators in power systems, communications, buildings, and control. In this work, VirGIL is extended with a Hardware-in-the-Loop component to control the ventilation system of a real 12-story building in Denmark. VirGIL capabilities are illustrated in three scenarios: load following, primary reserves and load following aggregation. Experimental results show that the system can track one minute changing signals and it can provide primary reserves for up-regulation. Furthermore, the potential of aggregating several ventilation systems is evaluated considering the impact at distribution grid level and the communications protocol effect.

  14. Hardware based redundant multi-threading inside a GPU for improved reliability

    Science.gov (United States)

    Sridharan, Vilas; Gurumurthi, Sudhanva

    2015-05-05

    A system and method for verifying computation output using computer hardware are provided. Instances of computation are generated and processed on hardware-based processors. As instances of computation are processed, each instance of computation receives a load accessible to other instances of computation. Instances of output are generated by processing the instances of computation. The instances of output are verified against each other in a hardware based processor to ensure accuracy of the output.

  15. Status of the Correlation Process of the V-HAB Simulation with Ground Tests and ISS Telemetry Data

    Science.gov (United States)

    Ploetner, P.; Roth, C.; Zhukov, A.; Czupalla, M.; Anderson, M.; Ewert, M.

    2013-01-01

    The Virtual Habitat (V-HAB) is a dynamic Life Support System (LSS) simulation, created for investigation of future human spaceflight missions. It provides the capability to optimize LSS during early design phases. The focal point of the paper is the correlation and validation of V-HAB against ground test and flight data. In order to utilize V-HAB to design an Environmental Control and Life Support System (ECLSS) it is important to know the accuracy of simulations, strengths and weaknesses. Therefore, simulations of real systems are essential. The modeling of the International Space Station (ISS) ECLSS in terms of single technologies as well as an integrated system and correlation against ground and flight test data is described. The results of the simulations make it possible to prove the approach taken by V-HAB.

  16. Hardware math for the 6502 microprocessor

    Science.gov (United States)

    Kissel, R.; Currie, J.

    1985-01-01

    A floating-point arithmetic unit is described which is being used in the Ground Facility of Large Space Structures Control Verification (GF/LSSCV). The experiment uses two complete inertial measurement units and a set of three gimbal torquers in a closed loop to control the structural vibrations in a flexible test article (beam). A 6502 (8-bit) microprocessor controls four AMD 9511A floating-point arithmetic units to do all the computation in 20 milliseconds.

  17. Study on load temperature control system of ground laser communication

    Science.gov (United States)

    Zhai, Xunhua; Zhang, Hongtao; Liu, Wangsheng; Zhang, Chijun; Zhou, Xun

    2007-12-01

    The ground laser communication terminal as the termination of a communication system, works at the temperature which varies from -40°C to 50°C. We design a temperature control system to keep optical and electronic components working properly in the load. The load is divided into two sections to control temperature respectively. Because the space is limited, we use heater film and thermoelectric cooler to clearify and refrigerate the load. We design a hardware and a software for the temperature control system, establish mathematic model, and emulate it with Matlab.

  18. Basics of spectroscopic instruments. Hardware of NMR spectrometer

    International Nuclear Information System (INIS)

    Sato, Hajime

    2009-01-01

    NMR is a powerful tool for structure analysis of small molecules, natural products, biological macromolecules, synthesized polymers, samples from material science and so on. Magnetic Resonance Imaging (MRI) is applicable to plants and animals Because most of NMR experiments can be done by an automation mode, one can forget hardware of NMR spectrometers. It would be good to understand features and performance of NMR spectrometers. Here I present hardware of a modern NMR spectrometer which is fully equipped with digital technology. (author)

  19. Integrated circuit authentication hardware Trojans and counterfeit detection

    CERN Document Server

    Tehranipoor, Mohammad; Zhang, Xuehui

    2013-01-01

    This book describes techniques to verify the authenticity of integrated circuits (ICs). It focuses on hardware Trojan detection and prevention and counterfeit detection and prevention. The authors discuss a variety of detection schemes and design methodologies for improving Trojan detection techniques, as well as various attempts at developing hardware Trojans in IP cores and ICs. While describing existing Trojan detection methods, the authors also analyze their effectiveness in disclosing various types of Trojans, and demonstrate several architecture-level solutions. 

  20. How Funding and Policy Affect Access to and Modernization of Major Air Force Ground Test Infrastructure Assets

    Science.gov (United States)

    2017-04-06

    annually for the DoD, other government agencies, allies, and commercial customers at the world’s largest ground test flight simulation facility...center’s wind tunnels, gas turbine sea level and altitude test cells, space chambers, altitude rocket cells, ballistic ranges, arc heaters and other...complex and the second was an 12 altitude solid rocket motor test facility called J6.xx The first was the result of a herculean effort that took

  1. A Hardware Lab Anywhere At Any Time

    Directory of Open Access Journals (Sweden)

    Tobias Schubert

    2004-12-01

    Full Text Available Scientific technical courses are an important component in any student's education. These courses are usually characterised by the fact that the students execute experiments in special laboratories. This leads to extremely high costs and a reduction in the maximum number of possible participants. From this traditional point of view, it doesn't seem possible to realise the concepts of a Virtual University in the context of sophisticated technical courses since the students must be "on the spot". In this paper we introduce the so-called Mobile Hardware Lab which makes student participation possible at any time and from any place. This lab nevertheless transfers a feeling of being present in a laboratory. This is accomplished with a special Learning Management System in combination with hardware components which correspond to a fully equipped laboratory workstation that are lent out to the students for the duration of the lab. The experiments are performed and solved at home, then handed in electronically. Judging and marking are also both performed electronically. Since 2003 the Mobile Hardware Lab is now offered in a completely web based form.

  2. Acceptance Test Report for Gamma Carts A and B

    International Nuclear Information System (INIS)

    FULLER, P.J.

    2000-01-01

    Report of Shop Test of the Gamma Cart System to be used in the AZ-101 Mixer Pump Demonstration Test. Reports of the hardware and software tests. The objective of the testing was to verify in the shop that the hardware and software operated according to design specifications before field-testing and installation

  3. Hardware controls for the STAR experiment at RHIC

    International Nuclear Information System (INIS)

    Reichhold, D.; Bieser, F.; Bordua, M.; Cherney, M.; Chrin, J.; Dunlop, J.C.; Ferguson, M.I.; Ghazikhanian, V.; Gross, J.; Harper, G.; Howe, M.; Jacobson, S.; Klein, S.R.; Kravtsov, P.; Lewis, S.; Lin, J.; Lionberger, C.; LoCurto, G.; McParland, C.; McShane, T.; Meier, J.; Sakrejda, I.; Sandler, Z.; Schambach, J.; Shi, Y.; Willson, R.; Yamamoto, E.; Zhang, W.

    2003-01-01

    The STAR detector sits in a high radiation area when operating normally; therefore it was necessary to develop a robust system to remotely control all hardware. The STAR hardware controls system monitors and controls approximately 14,000 parameters in the STAR detector. Voltages, currents, temperatures, and other parameters are monitored. Effort has been minimized by the adoption of experiment-wide standards and the use of pre-packaged software tools. The system is based on the Experimental Physics and Industrial Control System (EPICS) . VME processors communicate with subsystem-based sensors over a variety of field busses, with High-level Data Link Control (HDLC) being the most prevalent. Other features of the system include interfaces to accelerator and magnet control systems, a web-based archiver, and C++-based communication between STAR online, run control and hardware controls and their associated databases. The system has been designed for easy expansion as new detector elements are installed in STAR

  4. Motion compensation in digital subtraction angiography using graphics hardware.

    Science.gov (United States)

    Deuerling-Zheng, Yu; Lell, Michael; Galant, Adam; Hornegger, Joachim

    2006-07-01

    An inherent disadvantage of digital subtraction angiography (DSA) is its sensitivity to patient motion which causes artifacts in the subtraction images. These artifacts could often reduce the diagnostic value of this technique. Automated, fast and accurate motion compensation is therefore required. To cope with this requirement, we first examine a method explicitly designed to detect local motions in DSA. Then, we implement a motion compensation algorithm by means of block matching on modern graphics hardware. Both methods search for maximal local similarity by evaluating a histogram-based measure. In this context, we are the first who have mapped an optimizing search strategy on graphics hardware while paralleling block matching. Moreover, we provide an innovative method for creating histograms on graphics hardware with vertex texturing and frame buffer blending. It turns out that both methods can effectively correct the artifacts in most case, as the hardware implementation of block matching performs much faster: the displacements of two 1024 x 1024 images can be calculated at 3 frames/s with integer precision or 2 frames/s with sub-pixel precision. Preliminary clinical evaluation indicates that the computation with integer precision could already be sufficient.

  5. Hardware packet pacing using a DMA in a parallel computer

    Science.gov (United States)

    Chen, Dong; Heidelberger, Phillip; Vranas, Pavlos

    2013-08-13

    Method and system for hardware packet pacing using a direct memory access controller in a parallel computer which, in one aspect, keeps track of a total number of bytes put on the network as a result of a remote get operation, using a hardware token counter.

  6. The priority queue as an example of hardware/software codesign

    DEFF Research Database (Denmark)

    Høeg, Flemming; Mellergaard, Niels; Staunstrup, Jørgen

    1994-01-01

    The paper identifies a number of issues that are believed to be important for hardware/software codesign. The issues are illustrated by a small comprehensible example: a priority queue. Based on simulations of a real application, we suggest a combined hardware/software realization of the priority...

  7. From Regional Hazard Assessment to Nuclear-Test-Ban Treaty Support - InSAR Ground Motion Services

    Science.gov (United States)

    Lege, T.; Kalia, A.; Gruenberg, I.; Frei, M.

    2016-12-01

    There are numerous scientific applications of InSAR methods in tectonics, earthquake analysis and other geologic and geophysical fields. Ground motion on local and regional scale measured and monitored via the application of the InSAR techniques provide scientists and engineers with plenty of new insights and further understanding of subsurface processes. However, the operational use of InSAR is not yet very widespread. To foster the operational utilization of the Copernicus Sentinel Satellites in the day-to-day business of federal, state and municipal work and planning BGR (Federal Institute for Geosciences and Natural Resources) initiated workshops with potential user groups. Through extensive reconcilement of interests and demands with scientific, technical, economic and governmental stakeholders (e.g. Ministries, Mining Authorities, Geological Surveys, Geodetic Surveys and Environmental Agencies on federal and state level, SMEs, German Aerospace Center) BGR developed the concept of the InSAR based German National Ground Motion Service. One important backbone for the nationwide ground motion service is the so-called Persistent Scatterer Interferometry Wide Area Product (WAP) approach developed with grants of European research funds. The presentation shows the implementation of the ground motion service and examples for product developments for operational supervision of mining, water resources management and spatial planning. Furthermore the contributions of Copernicus Sentinel 1 radar data in the context of CTBT are discussed. The DInSAR processing of Sentinel 1 IW (Interferometric Wide Swath) SAR acquisitions from January 1st and 13th Jan. 2016 allow for the first time a near real time ground motion measurement of the North Korean nuclear test site. The measured ground displacements show a strong spatio-temporal correlation to the calculated epicenter measured by teleseismic stations. We are convinced this way another space technique will soon contribute even

  8. Hardware characteristic and application

    International Nuclear Information System (INIS)

    Gu, Dong Hyeon

    1990-03-01

    The contents of this book are system board on memory, performance, system timer system click and specification, coprocessor such as programing interface and hardware interface, power supply on input and output, protection for DC output, Power Good signal, explanation on 84 keyboard and 101/102 keyboard,BIOS system, 80286 instruction set and 80287 coprocessor, characters, keystrokes and colors, communication and compatibility of IBM personal computer on application direction, multitasking and code for distinction of system.

  9. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    Science.gov (United States)

    Winternitz, Luke; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the high-fidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars

  10. Hardware architecture design of image restoration based on time-frequency domain computation

    Science.gov (United States)

    Wen, Bo; Zhang, Jing; Jiao, Zipeng

    2013-10-01

    The image restoration algorithms based on time-frequency domain computation is high maturity and applied widely in engineering. To solve the high-speed implementation of these algorithms, the TFDC hardware architecture is proposed. Firstly, the main module is designed, by analyzing the common processing and numerical calculation. Then, to improve the commonality, the iteration control module is planed for iterative algorithms. In addition, to reduce the computational cost and memory requirements, the necessary optimizations are suggested for the time-consuming module, which include two-dimensional FFT/IFFT and the plural calculation. Eventually, the TFDC hardware architecture is adopted for hardware design of real-time image restoration system. The result proves that, the TFDC hardware architecture and its optimizations can be applied to image restoration algorithms based on TFDC, with good algorithm commonality, hardware realizability and high efficiency.

  11. Automating an EXAFS facility: hardware and software considerations

    International Nuclear Information System (INIS)

    Georgopoulos, P.; Sayers, D.E.; Bunker, B.; Elam, T.; Grote, W.A.

    1981-01-01

    The basic design considerations for computer hardware and software, applicable not only to laboratory EXAFS facilities, but also to synchrotron installations, are reviewed. Uniformity and standardization of both hardware configurations and program packages for data collection and analysis are heavily emphasized. Specific recommendations are made with respect to choice of computers, peripherals, and interfaces, and guidelines for the development of software packages are set forth. A description of two working computer-interfaced EXAFS facilities is presented which can serve as prototypes for future developments. 3 figures

  12. Space Shuttle Program (SSP) Shock Test and Specification Experience for Reusable Flight Hardware Equipment

    Science.gov (United States)

    Larsen, Curtis E.

    2012-01-01

    As commercial companies are nearing a preliminary design review level of design maturity, several companies are identifying the process for qualifying their multi-use electrical and mechanical components for various shock environments, including pyrotechnic, mortar firing, and water impact. The experience in quantifying the environments consists primarily of recommendations from Military Standard-1540, Product Verification Requirement for Launch, Upper Stage, and Space Vehicles. Therefore, the NASA Engineering and Safety Center (NESC) formed a team of NASA shock experts to share the NASA experience with qualifying hardware for the Space Shuttle Program (SSP) and other applicable programs and projects. Several team teleconferences were held to discuss past experience and to share ideas of possible methods for qualifying components for multiple missions. This document contains the information compiled from the discussions

  13. Aircraft and ground vehicle friction correlation test results obtained under winter runway conditions during joint FAA/NASA Runway Friction Program

    Science.gov (United States)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1988-01-01

    Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.

  14. Development and testing of techniques for in-ground stabilization, size reduction, and safe removal of radioactive wastes stored in containments buried in ground

    International Nuclear Information System (INIS)

    Halliwell, Stephen; Christodoulou, Apostolos

    2013-01-01

    Since the 1950's radioactive wastes from a number of laboratories have been stored below ground at the Hanford site, Washington State, USA, in vertical pipe units (VPUs) made of five 200 litre drums without tops or bottoms, and in caissons, made out of corrugated pipe, or concrete and typically 2,500 mm in diameter. The VPU's are buried of the order of 2,100 mm below grade, and the caissons are buried of the order of 6,000 mm below grade. The waste contains fuel pieces, fission products, and a range of chemicals used in the laboratory processes. This can include various energetic reactants such as un-reacted sodium potassium (NaK), potassium superoxide (KO 2 ), and picric acid, as well as quantities of other liquids. The integrity of the containments is considered to present unacceptable risks from leakage of radioactivity to the environment. This paper describes the successful development and full scale testing of in-ground augering equipment, grouting systems and removal equipment for remediation and removal of the VPUs, and the initial development work to test the utilization of the same basic augering and grouting techniques for the stabilization, size reduction and removal of caissons. (authors)

  15. Commodity hardware and software summary

    International Nuclear Information System (INIS)

    Wolbers, S.

    1997-04-01

    A review is given of the talks and papers presented in the Commodity Hardware and Software Session at the CHEP97 conference. An examination of the trends leading to the consideration of PC's for HEP is given, and a status of the work that is being done at various HEP labs and Universities is given

  16. Precision Time Protocol support hardware for ATCA control and data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Correia, Miguel, E-mail: miguelfc@ipfn.ist.utl.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Sousa, Jorge; Carvalho, Bernardo B.; Santos, Bruno; Carvalho, Paulo F.; Rodrigues, António P.; Combo, Álvaro M.; Pereira, Rita C. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Correia, Carlos M.B.A. [Centro de Instrumentação, Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Gonçalves, Bruno [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • ATCA based control and data acquisition subsystem has been developed at IPFN. • PTP and time stamping were implemented with VHDL and PTP daemon (PTPd) codes. • The RTM (…) provides PTP synchronization with an external GMC. • The main advantage is that timestamps are generated closer to the Physical Layer at the GMII. • IPFN's upgrade consistently exhibited jitter values below 25 ns RMS. - Abstract: An in-house, Advanced Telecom Computing Architecture (ATCA) based control and data acquisition (C&DAQ) subsystem has been developed at Instituto de Plasmas e Fusão Nuclear (IPFN), aiming for compliance with the ITER Fast Plant System Controller (FPSC). Timing and synchronization for the ATCA modules connects to ITER Control, Data Access and Communication (CODAC) through the Timing Communication Network (TCN), which uses IEEE 1588-2008 Precision Time Protocol (PTP) to synchronize devices to a Grand Master Clock (GMC). The TCN infrastructure was tested for an RMS jitter under the limit of 50 ns. Therefore, IPFN's hardware, namely the ATCA-PTSW-AMC4 hub-module, which is in charge of timing and synchronization distribution for all subsystem endpoints, shall also perform within this jitter limit. This paper describes a relevant upgrade, applied to the ATCA-PTSW-AMC4 hardware, to comply with these requirements – in particular, the integration of an add-on module “RMC-TMG-1588” on its Rear Transition Module (RTM). This add-on is based on a commercial FPGA-based module from Trenz Electronic, using the ZHAW “PTP VHDL code for timestamping unit and clock”, which features clock offset and drift correction and hardware-assisted time stamping. The main advantage is that timestamps are generated closer to the Physical Layer, at the Gigabit Ethernet Media Independent Interface (GMII), avoiding the timing uncertainties accumulated through the upper layers. PTP code and user software run in a MicroBlaze™ soft-core CPU with Linux in the

  17. Precision Time Protocol support hardware for ATCA control and data acquisition system

    International Nuclear Information System (INIS)

    Correia, Miguel; Sousa, Jorge; Carvalho, Bernardo B.; Santos, Bruno; Carvalho, Paulo F.; Rodrigues, António P.; Combo, Álvaro M.; Pereira, Rita C.; Correia, Carlos M.B.A.; Gonçalves, Bruno

    2015-01-01

    Highlights: • ATCA based control and data acquisition subsystem has been developed at IPFN. • PTP and time stamping were implemented with VHDL and PTP daemon (PTPd) codes. • The RTM (…) provides PTP synchronization with an external GMC. • The main advantage is that timestamps are generated closer to the Physical Layer at the GMII. • IPFN's upgrade consistently exhibited jitter values below 25 ns RMS. - Abstract: An in-house, Advanced Telecom Computing Architecture (ATCA) based control and data acquisition (C&DAQ) subsystem has been developed at Instituto de Plasmas e Fusão Nuclear (IPFN), aiming for compliance with the ITER Fast Plant System Controller (FPSC). Timing and synchronization for the ATCA modules connects to ITER Control, Data Access and Communication (CODAC) through the Timing Communication Network (TCN), which uses IEEE 1588-2008 Precision Time Protocol (PTP) to synchronize devices to a Grand Master Clock (GMC). The TCN infrastructure was tested for an RMS jitter under the limit of 50 ns. Therefore, IPFN's hardware, namely the ATCA-PTSW-AMC4 hub-module, which is in charge of timing and synchronization distribution for all subsystem endpoints, shall also perform within this jitter limit. This paper describes a relevant upgrade, applied to the ATCA-PTSW-AMC4 hardware, to comply with these requirements – in particular, the integration of an add-on module “RMC-TMG-1588” on its Rear Transition Module (RTM). This add-on is based on a commercial FPGA-based module from Trenz Electronic, using the ZHAW “PTP VHDL code for timestamping unit and clock”, which features clock offset and drift correction and hardware-assisted time stamping. The main advantage is that timestamps are generated closer to the Physical Layer, at the Gigabit Ethernet Media Independent Interface (GMII), avoiding the timing uncertainties accumulated through the upper layers. PTP code and user software run in a MicroBlaze™ soft-core CPU with Linux in the same FPGA

  18. RF System description for the ground test accelerator radio-frequency quadrupole

    International Nuclear Information System (INIS)

    Regan, A.H.; Brittain, D.; Rees, D.E.; Ziomek, D.

    1992-01-01

    This paper describes the RF system being used to provide RF power and to control the cavity field for the ground test accelerator (GTA) radio-frequency quadrupole (RFQ). The RF system consists of a low-level RF (LLRF) control system, and RF Reference generation subsystem, and a tetrode as a high-power amplifier (HPA) that can deliver up to 300 kW of peak power to the RFQ cavity at a 2% duty factor. The LLRF control system implements in-phase and quadrature (I and Q) control to maintain the cavity field within tolerances of 0.5% in amplitude and 0.5 degrees in phase in the presence of beam-induced instabilities

  19. Computer organization and design the hardware/software interface

    CERN Document Server

    Hennessy, John L

    1994-01-01

    Computer Organization and Design: The Hardware/Software Interface presents the interaction between hardware and software at a variety of levels, which offers a framework for understanding the fundamentals of computing. This book focuses on the concepts that are the basis for computers.Organized into nine chapters, this book begins with an overview of the computer revolution. This text then explains the concepts and algorithms used in modern computer arithmetic. Other chapters consider the abstractions and concepts in memory hierarchies by starting with the simplest possible cache. This book di

  20. Development of a hardware-in-the-loop-test rig to verify the reliability of oil burner pumps. Application by the use of biocide in domestic heating oil; Entwicklung eines Hardware-in-the-loop Pruefstands zum Nachweis der Betriebssicherheit von Oelbrennerpumpen. Anwendungen bei Einsatz von Biozidadditiven

    Energy Technology Data Exchange (ETDEWEB)

    Rheinberg, Oliver van; Lukito, Jayadi; Liska, Martin [Oel-Waerme-Institut gGmbH (OWI), Aachen-Herzogenrath (Germany)

    2009-09-15

    Within this project, a hardware-in-the-loop test rig has been developed to investigate the influence of different fuels on the reliability of oil burner pumps. The test rig is constructed with commercial burner components. One test rig consists of four pump cycles, where the fuel recirculates for max. 2000 h. Low powered electric motors of 90 Watts have been used deliberately, so that the apparatus is more sensitive to failure due to an increase in pump load. A practise relevant intermittent operating mode has been implemented for the simulation of real operation characteristics. The measured variable and evaluation parameters are start-up torque, intake pressure, fuel pump pressure and temperature. Operation failures of oil burner pumps in the field, due to an over-additisation of biocides, have been observed. These failures could be reproducibly simulated on the pump test stands. The results of the project are a redefinition of limits of biocide concentration and the development of new biocides, which are suitable for use in domestic heating oil with a content of up to 20 % Fatty-Acid-Methyl-Ester. (orig.)