WorldWideScience

Sample records for ground temperature observations

  1. Temperature Effect in Secondary Cosmic Rays (MUONS) Observed at the Ground: Analysis of the Global MUON Detector Network Data

    Science.gov (United States)

    de Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Munakata, K.; Kuwabara, T.; Kozai, M.; Kato, C.; Rockenbach, M.; Schuch, N. J.; Jassar, H. K. Al; Sharma, M. M.; Tokumaru, M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.

    2016-10-01

    The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.

  2. Neptune at Summer Solstice: Zonal Mean Temperatures from Ground-Based Observations 2003-2007

    CERN Document Server

    Fletcher, Leigh N; Orton, Glenn S; Hammel, Heidi B; Sitko, Michael L; Irwin, Patrick G J

    2013-01-01

    Imaging and spectroscopy of Neptune's thermal infrared emission is used to assess seasonal changes in Neptune's zonal mean temperatures between Voyager-2 observations (1989, heliocentric longitude Ls=236) and southern summer solstice (2005, Ls=270). Our aim was to analyse imaging and spectroscopy from multiple different sources using a single self-consistent radiative-transfer model to assess the magnitude of seasonal variability. Globally-averaged stratospheric temperatures measured from methane emission tend towards a quasi-isothermal structure (158-164 K) above the 0.1-mbar level, and are found to be consistent with spacecraft observations of AKARI. This remarkable consistency, despite very different observing conditions, suggests that stratospheric temporal variability, if present, is $\\pm$5 K at 1 mbar and $\\pm$3 K at 0.1 mbar during this solstice period. Conversely, ethane emission is highly variable, with abundance determinations varying by more than a factor of two. The retrieved C2H6 abundances are e...

  3. The Association Between Fog and Temperature Inversions from Ground and Radiosonde Observations in East Greenland

    Science.gov (United States)

    Gilson, G.; Jiskoot, H.

    2016-12-01

    Many Arctic glaciers terminate along coasts where temperature inversions and sea fog are frequent during summer. Both can influence glacier ablation, but the effects of fog may be complex. To understand fog's physical and radiative properties and its association to temperature inversions it is important to determine accurate Arctic coastal fog climatologies In previous research we determined that fog in East Greenland peaks in the melt season and can be spatially extensive over glacierized terrain. In this study we aim to understand which environmental factors influence fog occurrence in East Greenland; understand the association between fog and temperature inversions; and quantify fog height. We analyzed fog observations and other weather data from coastal synoptic weather stations, and extracted temperature inversions from the Integrated Global Radiosonde Archive radiosonde profiles. Fog height was calculated from radiosonde profiles, based on a method developed for radiation fog which we expanded to include advection and steam fog. Our results show that Arctic coastal fog requires sea ice breakup and a sea breeze with wind speed between 1-4 m/s. Fog is mostly advective, occurring under stable synoptic conditions characterized by deep and strong low-level temperature inversions. Steam fog may occur 5-30% of the time. Fog can occur under near-surface subsidence, with a subsaturated inversion base, or a saturated inversion base. We classified five types of fog based on their vertical sounding characteristics: only at the surface, below an inversion, capped by an inversion, inside a surface-based inversion, or inside a low-level inversion. Fog is commonly 100-400 m thick, often reaching the top of the boundary layer. Fog height is greater at northern stations, where daily fog duration is longer and relative humidity lower. Our results will be included in glacier energy-balance models to account for the influence of fog and temperature inversions on glacier melt.

  4. Neptune at summer solstice: Zonal mean temperatures from ground-based observations, 2003-2007

    Science.gov (United States)

    Fletcher, Leigh N.; de Pater, Imke; Orton, Glenn S.; Hammel, Heidi B.; Sitko, Michael L.; Irwin, Patrick G. J.

    2014-03-01

    Imaging and spectroscopy of Neptune’s thermal infrared emission from Keck/LWS (2003), Gemini-N/MICHELLE (2005); VLT/VISIR (2006) and Gemini-S/TReCS (2007) is used to assess seasonal changes in Neptune’s zonal mean temperatures between Voyager-2 observations (1989, heliocentric longitude Ls=236°) and southern summer solstice (2005, Ls=270°). Our aim was to analyse imaging and spectroscopy from multiple different sources using a single self-consistent radiative-transfer model to assess the magnitude of seasonal variability. Globally-averaged stratospheric temperatures measured from methane emission tend towards a quasi-isothermal structure (158-164 K) above the 0.1-mbar level, and are found to be consistent with spacecraft observations of AKARI. This remarkable consistency, despite very different observing conditions, suggests that stratospheric temporal variability, if present, is <±5 K at 1 mbar and <±3 K at 0.1 mbar during this solstice period. Conversely, ethane emission is highly variable, with abundance determinations varying by more than a factor of two (from 500 to 1200 ppb at 1 mbar). The retrieved C2H6 abundances are extremely sensitive to the details of the T(p) derivation, although the underlying cause of the variable ethane emission remains unidentified. Stratospheric temperatures and ethane are found to be latitudinally uniform away from the south pole (assuming a latitudinally-uniform distribution of stratospheric methane), with no large seasonal hemispheric asymmetries evident at solstice. At low and mid-latitudes, comparisons of synthetic Voyager-era images with solstice-era observations suggest that tropospheric zonal temperatures are unchanged since the Voyager 2 encounter, with cool mid-latitudes and a warm equator and pole. A re-analysis of Voyager/IRIS 25-50 μm mapping of tropospheric temperatures and para-hydrogen disequilibrium (a tracer for vertical motions) suggests a symmetric meridional circulation with cold air rising at mid

  5. Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models

    Science.gov (United States)

    Elise Pendall; Scott Bridgham; Paul J. Hanson; Bruce Hungate; David W. Kicklighter; Dale W. Johnson; Beverly E. Law; Yiqi Luo; J. Patrick Megonigal; Maria Olsrud; Michael G. Ryan; Shiqiang Wan

    2004-01-01

    Rising atmospheric CO2 and temperatures are probably altering ecosystem carbon cycling, causing both positive and negative feedbacks to climate. Below-ground processes play a key role in the global carbon (C) cycle because they regulate storage of large quantities of C, and are potentially very sensitive to direct and indirect effects of elevated...

  6. First ground-based observations of mesopause temperatures above the Eastern-Mediterranean Part I: Multi-day oscillations and tides

    Science.gov (United States)

    Silber, Israel; Price, Colin; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael; Pecora, Emilio

    2017-03-01

    The mesopause region ( 90 km altitude) is the coldest region of our atmosphere, and is found at the boundary between the upper mesosphere and lower thermosphere. Ground-based spectrometers, which are sensitive to the emissions from the hydroxyl (OH*) airglow layer (lying at 87 km altitude), are used to monitor the temperature variability within the mesosphere-lower-thermosphere (MLT), at high temporal resolution. The variability of the MLT region of the atmosphere is driven by momentum deposition from gravity waves, atmospheric tides and planetary waves. The displacement of air caused by these waves can produce strong temperature, wind and species concentration perturbations. In this study we present an analysis of 4-years of OH* rotational temperature data, acquired with the German Aerospace Center (DLR) GRIPS-10 (Ground Based Infrared P-branch Spectrometer) instrument, which was installed in Israel in November 2011. This instrument provided the first long-term ground-based observations of airglow emissions in the Eastern Mediterranean. We show the nocturnal mean temperature analysis, which includes time series as well as spectral analysis of the data. In addition, we obtain (migrating) tidal oscillation estimates from the high resolution (1 min) data, by using harmonic fitting, and we analyze the variability of planetary wave signatures in the residual temperature data, which are retrieved after the removal of the tidal harmonic fits from the data. In this analysis of the residual data we find a dominant quasi-5-7 day planetary wave influence on the mesopause temperatures above the Eastern Mediterranean.

  7. Characteristics of Ground Surface Temperatures as in situ Observed in Elevational Permafrost on the Northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Luo, D.; Jin, H.; Marchenko, S. S.; Romanovsky, V. E.

    2016-12-01

    Elevational permafrost is primarily distributed on the Qinghai-Tibet Plateau (QTP) at mid-latitudes, where the average elevation is higher than 4,000 m a.s.l. The topography, including the elevation and aspect, obviously is the decisive controlling factor of thermal regimes of elevational permafrost, which is warm and extremely sensitive to anthropogenic activities and climate changes. Due to the harsh weather conditions and unfavorable logistics accommodations, however, the elevational permafrost on the QTP, especially in the rugged topography, is hard to be plotted through ground-based field investigations. The exact distribution of elevational permafrost could be simulated through GST. In this study, we set up three monitoring sites of GST at the beginning of 2015. One located in the rugged mountain of the source area of the Yellow River, one located in the sunny slope of the Bayan Har Mountain Pass, and one another located in a degrading alpine meadow of the source area of the Yangtze River. Based on these GST records, the daily, monthly, seasonal and year-average values of GST, freezing and thawing indices calculated from GST, and empirical Stefan Equation to calculate the ALT, as well as the GIPL-2.0 model to simulate the freezing and thawing processes of the active layer were integrative executed for these three sites. Results demonstrate that GST could be a much more reliable driving parameter to simulate the active layer and permafrost than the air temperature and land surface temperature.

  8. Thermospheric wind and temperature fields observed using two ground based all-sky imaging Fabry-Perot spectrometers in Antarctica

    Science.gov (United States)

    Conde, M.; Bristow, W. A.; Hampton, D. L.; Kosch, M. J.; Ishii, M.; Paxton, L. J.; Davies, T.

    2016-12-01

    During the austral summer of 2015-2016 two new all-sky imaging Fabry-Perot spectrometers were installed in Antarctica to measure wind and temperature fields in the lower and middle thermosphere, at heights spanning a range from approximately 110 to 240 km altitude. The instruments are located at McMurdo and South Pole stations, both of which are typically near the equatorward edge of the polar cap under quiet to moderate levels of activity. Automated nightly observations began in March (McMurdo) and April (South Pole) of 2016. The instruments record Doppler spectra of the thermospheric oxygen 558 nm green line and 630 nm red line emissions. They view the sky down to around 70 degrees zenith angle, with this field being divided in software into 115 sub-regions, each of which gives an independent measure of Doppler temperature and line-of-sight wind. Typical integration times are one to several minutes. Here we will present an overview of the results obtained during this first season, including both climatological averages and examples of data from individual days. The overall behavior is generally as expected, with winds blowing approximately antisunward at all local times. However substantial local perturbations about this mean flow occur frequently, and are seen to be collocated with regions of strong ion convection observed by the SuperDARN radar network, and with regions of bright aurora, as observed by the Fabry-Perot instruments themselves, and by the SSUSI instruments aboard the DMSP F16 to F18 satellites. F-region neutral temperatures recorded on most days are spatially uniform and slowly varying in time. However very significant spatial and temporal temperature variations are observed during times of geomagnetic disturbance. Wave activity is also very a very common feature of the observed wind fields. These results are morphologically quite different to the behavior seen by similar instruments located in the northern hemisphere auroral zone. Reasons for

  9. Ground level cosmic ray observations

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements); Grimani, C.; Brunetti, M.T.; Codino, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F.; Piccardi, S. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Hof, M. [Siegen Univ. (Germany). Fachbereich Physik

    1995-09-01

    Cosmic rays at ground level have been collected using the NMSU/Wizard - MASS2 instrument. The 17-hr observation run was made on September 9. 1991 in Fort Sumner, New Mexico, Usa. Fort Sumner is located at 1270 meters a.s.l., corresponding to an atmospheric depth of about 887 g/cm{sup 2}. The geomagnetic cutoff is 4.5 GV/c. The charge ratio of positive and negative muons and the proton to muon ratio have been determined. These observations will also be compared with data collected at a higher latitude using the same basic apparatus.

  10. The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles✰

    Science.gov (United States)

    Limaye, Sanjay S.; Lebonnois, Sebastien; Mahieux, Arnaud; Pätzold, Martin; Bougher, Steven; Bruinsma, Sean; Chamberlain, Sarah; Clancy, R. Todd; Gérard, Jean-Claude; Gilli, Gabriella; Grassi, Davide; Haus, Rainer; Herrmann, Maren; Imamura, Takeshi; Kohler, Erika; Krause, Pia; Migliorini, Alessandra; Montmessin, Franck; Pere, Christophe; Persson, Moa; Piccialli, Arianna; Rengel, Miriam; Rodin, Alexander; Sandor, Brad; Sornig, Manuela; Svedhem, Håkan; Tellmann, Silvia; Tanga, Paolo; Vandaele, Ann C.; Widemann, Thomas; Wilson, Colin F.; Müller-Wodarg, Ingo; Zasova, Ludmila

    2017-09-01

    The Venus International Reference Atmosphere (VIRA) model contains tabulated values of temperature and number densities obtained by the experiments on the Venera entry probes, Pioneer Venus Orbiter and multi-probe missions in the 1980s. The instruments on the recent Venus Express orbiter mission generated a significant amount of new observational data on the vertical and horizontal structure of the Venus atmosphere from 40 km to about 180 km altitude from April 2006 to November 2014. Many ground based experiments have provided data on the upper atmosphere (90-130 km) temperature structure since the publication of VIRA in 1985. The "Thermal Structure of the Venus Atmosphere" Team was supported by the International Space Studies Institute (ISSI), Bern, Switzerland, from 2013 to 2015 in order to combine and compare the ground-based observations and the VEx observations of the thermal structure as a first step towards generating an updated VIRA model. Results of this comparison are presented in five latitude bins and three local time bins by assuming hemispheric symmetry. The intercomparison of the ground-based and VEx results provides for the first time a consistent picture of the temperature and density structure in the 40 km-180 km altitude range. The Venus Express observations have considerably increased our knowledge of the Venus atmospheric thermal structure above ∼40 km and provided new information above 100 km. There are, however, still observational gaps in latitude and local time above certain regions. Considerable variability in the temperatures and densities is seen above 100 km but certain features appear to be systematically present, such as a succession of warm and cool layers. Preliminary modeling studies support the existence of such layers in agreement with a global scale circulation. The intercomparison focuses on average profiles but some VEx experiments provide sufficient global coverage to identify solar thermal tidal components. The differences

  11. Temperature Observation Experiment of High Altitude Airship on the Ground%高空飞艇地面温度观测实验研究

    Institute of Scientific and Technical Information of China (English)

    周华刚; 周雷; 陈江涛

    2012-01-01

    热分析模型是高空飞艇飞行控制模型的重要组成部分.为了构建正确的热分析模型,开展了高空实验艇地面温度观测实验.实验在地面进行,实验艇水平停放在外场实验场地上.实验中,在囊体外表面和内部气室内安装温度测试系统,用以观测飞艇在不同热环境条件下表面温度和内部气体温度在空间和时间上的分布规律.实验结果表明:①太阳辐射具有明显的方向性,囊体上表面不同几何位置上所接收到的太阳辐射通量受太阳高度角的影响较大,而受太阳方位角的影响较小;②地面长波辐射具有明显的漫射特性,囊体下表面对地面长波辐射的吸收几乎不受实验艇方向角和仰角变化的影响;③囊体表面和不纯净的氦气对太阳短波辐射的吸收比对地面长波辐射的吸收更强烈,从而在飞艇内部空间形成明显的径向温度梯度;④空气室的充放气过程对囊体表面温度和内部气体温度均产生显著的影响,充气过程会引起温度的上升,放气过程会引起温度的下降.%Thermal analysis model is the important part of the flight control model of high altitude airship. To construct the thermal analysis model correctly, a temperature observation experiment of high altitude airship is performed on the ground. The temperature measurement system is installed on the exterior and interior of the ballonet to observe and measure the temperature distribution and change law. Experiment data indicate that: ① solar radiation has distinct direction property, so that solar radiation flux from different geometric location on the up-surface of ballonet is influenced by the solar elevation obviously, and is influenced by solar azimuth less, ② long wave radiation of ground has distinct diffusion property, so that the radiation flux absorbed from ground on the down-surface of the ballonet is influenced by the azimuth angle and elevation of airship scarcely,

  12. A numerical model for ground temperature determination

    Science.gov (United States)

    Jaszczur, M.; Polepszyc, I.; Biernacka, B.; Sapińska-Śliwa, A.

    2016-09-01

    The ground surface temperature and the temperature with respect to depth are one of the most important issues for geotechnical and environmental applications as well as for plants and other living organisms. In geothermal systems, temperature is directly related to the energy resources in the ground and it influences the efficiency of the ground source system. The ground temperature depends on a very large number of parameters, but it often needs to be evaluated with good accuracy. In the present work, models for the prediction of the ground temperature with a focus on the surface temperature at which all or selected important ground and environmental phenomena are taken into account have been analysed. It has been found that the simplest models and the most complex model may result in a similar temperature variation, yet at a very low depth and for specific cases only. A detailed analysis shows that taking into account different types of pavement or a greater depth requires more complex and advanced models.

  13. Ground-based observations of Saturn's auroral ionosphere over three days: Trends in H3+ temperature, density and emission with Saturn local time and planetary period oscillation

    Science.gov (United States)

    O'Donoghue, James; Melin, Henrik; Stallard, Tom S.; Provan, G.; Moore, Luke; Badman, Sarah V.; Cowley, Stan W. H.; Baines, Kevin H.; Miller, Steve; Blake, James S. D.

    2016-01-01

    On 19-21 April 2013, the ground-based 10-m W.M. Keck II telescope was used to simultaneously measure H3+ emissions from four regions of Saturn's auroral ionosphere: (1) the northern noon region of the main auroral oval; (2) the northern midnight main oval; (3) the northern polar cap and (4) the southern noon main oval. The H3+ emission from these regions was captured in the form of high resolution spectral images as the planet rotated. The results herein contain twenty-three H3+ temperatures, column densities and total emissions located in the aforementioned regions - ninety-two data points in total, spread over timescales of both hours and days. Thermospheric temperatures in the spring-time northern main oval are found to be cooler than their autumn-time southern counterparts by tens of K, consistent with the hypothesis that the total thermospheric heating rate is inversely proportional to magnetic field strength. The main oval H3+ density and emission is lower at northern midnight than it is at noon, in agreement with a nearby peak in the electron influx in the post-dawn sector and a minimum flux at midnight. Finally, when arranging the northern main oval H3+ parameters as a function of the oscillation period seen in Saturn's magnetic field - the planetary period oscillation (PPO) phase - we see a large peak in H3+ density and emission at ∼115° northern phase, with a full-width at half-maximum (FWHM) of ∼44°. This seems to indicate that the influx of electrons associated with the PPO phase at 90° is responsible at least in part for the behavior of all H3+ parameters. A combination of the H3+ production and loss timescales and the ±10° uncertainty in the location of a given PPO phase are likely, at least in part, to be responsible for the observed peaks in H3+ density and emission occurring at a later time than the peak precipitation expected at 90° PPO phase.

  14. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  15. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  16. Control of radiation and evaporation on temperature variability in a WRF regional climate simulation: comparison with colocated long term ground based observations near Paris

    Science.gov (United States)

    Bastin, S.; Chiriaco, M.; Drobinski, P.

    2016-03-01

    The objective of this paper is to understand how large-scale processes, cloud cover and surface fluxes affect the temperature variability over the SIRTA site, near Paris, and in a regional climate simulation performed in the frame of HyMeX/Med-CORDEX programs. This site is located in a climatic transitional area where models usually show strong dispersions despite the significant influence of large scale on interannual variability due to its western location. At seasonal time scale, the temperature is mainly controlled by surface fluxes. In the model, the transition from radiation to soil moisture limited regime occurs earlier than in observations leading to an overestimate of summertime temperature. An overestimate of shortwave radiation (SW), consistent with a lack of low clouds, enhances the soil dryness. A simulation with a wet soil is used to better analyse the relationship between dry soil and clouds but while the wetter soil leads to colder temperature, the cloud cover during daytime is not increased due to the atmospheric stability. At shorter time scales, the control of surface radiation becomes higher. In the simulation, higher temperatures are associated with higher SW. A wet soil mitigates the effect of radiation due to modulation by evaporation. In observations, the variability of clouds and their effect on SW is stronger leading to a nearly constant mean SW when sorted by temperature quantile but a stronger impact of cloud cover on day-to-day temperature variability. Impact of cloud albedo effect on precipitation is also compared.

  17. First ground-based observations of mesopause temperatures above the Eastern-Mediterranean Part II: OH*-climatology and gravity wave activity

    Science.gov (United States)

    Wüst, Sabine; Schmidt, Carsten; Bittner, Michael; Silber, Israel; Price, Colin; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M.

    2017-03-01

    In this study, we present an analysis of approximately four years of nightly temperature data, acquired with the OH-spectrometer GRIPS 10 (GRound based Infrared P-branch Spectrometer), which was installed in Tel Aviv (32.11°N, 34.8°E), Israel in November 2011 for routine measurements. As our instrument does not give any height information, we use TIMED-SABER data in order to answer the question concerning the height region our measurement technique exactly addresses. For the first time, we estimate the density of wave potential energy for periods between some minutes and some hours for this station. These values are typical for gravity waves. Since GRIPS measurements do not currently provide vertically resolved data, the Brunt-Väisälä frequency, which is needed for the estimation of potential energy density, is calculated using TIMED-SABER measurements. The monthly mean density of wave potential energy is presented for periods shorter and longer than 60 min. For the winter months (November, December, and January), the data base allows the calculation of a seasonal mean for the different years. This publication is the companion paper to Silber et al. (2016). Here, we focus on oscillations with shorter periods.

  18. GODAE, SFCOBS - Surface Temperature Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GODAE, SFCOBS - Surface Temperature Observations: Ship, fixed/drifting buoy, and CMAN in-situ surface temperature. Global Telecommunication System (GTS) Data. The...

  19. First observation of $^{13}$Li ground state

    CERN Document Server

    Kohley, Z; DeYoung, P A; Volya, A; Baumann, T; Bazin, D; Christian, G; Cooper, N L; Frank, N; Gade, A; Hall, C; Hinnefeld, J; Luther, B; Mosby, S; Peters, W A; Smith, J K; Snyder, J; Spyrou, A; Thoennessen, M

    2013-01-01

    The ground state of neutron-rich unbound $^{13}$Li was observed for the first time in a one-proton removal reaction from $^{14}$Be at a beam energy of 53.6 MeV/u. The $^{13}$Li ground state was reconstructed from $^{11}$Li and two neutrons giving a resonance energy of 120$^{+60}_{-80}$ keV. All events involving single and double neutron interactions in the Modular Neutron Array (MoNA) were analyzed, simulated, and fitted self-consistently. The three-body ($^{11}$Li+$n+n$) correlations within Jacobi coordinates showed strong dineutron characteristics. The decay energy spectrum of the intermediate $^{12}$Li system ($^{11}$Li+$n$) was described with an s-wave scattering length of greater than -4 fm, which is a smaller absolute value than reported in a previous measurement.

  20. Relevant Analysis of Grassland Temperature and Ground Net Radiation in Guilin

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the relevance of grassland temperature and ground net radiation in Guilin.[Method] By dint of ground observation data and net radiation of national benchmark climate station in Guilin from 2007 to 2009,the changes of grassland temperature and ground net radiation were expounded and their relations were pointed out.[Result] The annual changes trends of grassland temperature and ground net radiation in Guilin were basically the same.Monthly average maximum value all appeared i...

  1. In Situ Measurement of the Undisturbed Ground Temperature for Ground Source Heat Pump System

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ya-su

    2008-01-01

    The undisturbed ground are important for design of the ground heat exchangers in ground source heat pump (GSHP) systems. In this paper, the undisturbed ground temperatures measured in two different methods are presented. The investigation was carried out in two cases. The temperature measured with the direct method is assumed to give the correct undisturbed ground temperature profile. The temperature measured with indirect method overestimates the undisturbed ground temperature by 2.1℃ and 1.7℃. This difference is mainly caused by the circulation pump and ambient air to the fluid. Therefore, the results that are decreased about 2℃ as compared with the indirect measured are recommended to estimate the undisturbed ground temperature in situ measuring. A smaller pump or deeper borehole or mild weather would result in a more correct temperature. Because the undisturbed ground temperature is affected by many factors. Whether or not these conclusions are correct to other areas, this would need further investigation.

  2. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    OpenAIRE

    2010-01-01

    We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight cal...

  3. Sensitivities and uncertainties of modeled ground temperatures in mountain environments

    Directory of Open Access Journals (Sweden)

    S. Gubler

    2013-02-01

    Full Text Available Before operational use or for decision making, models must be validated, and the degree of trust in model outputs should be quantified. Often, model validation is performed at single locations due to the lack of spatially-distributed data. Since the analysis of parametric model uncertainties can be performed independently of observations, it is a suitable method to test the influence of environmental variability on model evaluation. In this study, the sensitivities and uncertainty of a physically-based mountain permafrost model are quantified within an artificial topography consisting of different elevations and exposures combined with six ground types characterized by their hydraulic properties. The analyses performed for all combinations of topographic factors and ground types allowed to quantify the variability of model sensitivity and uncertainty within mountain regions. We found that modeled snow duration considerably influences the mean annual ground temperature (MAGT. The melt-out day of snow (MD is determined by processes determining snow accumulation and melting. Parameters such as the temperature and precipitation lapse rate and the snow correction factor have therefore a great impact on modeled MAGT. Ground albedo changes MAGT from 0.5 to 4°C in dependence of the elevation, the aspect and the ground type. South-exposed inclined locations are more sensitive to changes in ground albedo than north-exposed slopes since they receive more solar radiation. The sensitivity to ground albedo increases with decreasing elevation due to shorter snow cover. Snow albedo and other parameters determining the amount of reflected solar radiation are important, changing MAGT at different depths by more than 1°C. Parameters influencing the turbulent fluxes as the roughness length or the dew temperature are more sensitive at low elevation sites due to higher air temperatures and decreased solar radiation. Modeling the individual terms of the energy

  4. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    Directory of Open Access Journals (Sweden)

    Miguel Ramos

    2010-10-01

    Full Text Available We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS Ground Temperature Sensor (GTS, an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.

  5. The strong ground motion observation for the Wenchuan aftershock

    Institute of Scientific and Technical Information of China (English)

    Ruizhi Wen; Zhenghua Zhou; Xiaojun Li; Cheng Yang; Yuhuan Wang; Quan Liu; Xiaotao Yin; Mindu Zhou; Jianwen Cui

    2009-01-01

    In this paper, the mobile strong ground motion observation for the destructive earthquake is introduced. Considering the characteristics and its spatial distributions of aftershock, 59 strong ground motion instruments were installed along the Longmenshan fault area, and more than 2 000 records have been accumulated. It shows that it is necessary to perform the mobile strong ground motion observation after the destructive earthquake, and the precious collected data could be applied for further research.

  6. North American regional climate reconstruction from ground surface temperature histories

    Science.gov (United States)

    Jaume-Santero, Fernando; Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-12-01

    Within the framework of the PAGES NAm2k project, 510 North American borehole temperature-depth profiles were analyzed to infer recent climate changes. To facilitate comparisons and to study the same time period, the profiles were truncated at 300 m. Ground surface temperature histories for the last 500 years were obtained for a model describing temperature changes at the surface for several climate-differentiated regions in North America. The evaluation of the model is done by inversion of temperature perturbations using singular value decomposition and its solutions are assessed using a Monte Carlo approach. The results within 95 % confidence interval suggest a warming between 1.0 and 2.5 K during the last two centuries. A regional analysis, composed of mean temperature changes over the last 500 years and geographical maps of ground surface temperatures, show that all regions experienced warming, but this warming is not spatially uniform and is more marked in northern regions.

  7. Sensitivities and uncertainties of modeled ground temperatures in mountain environments

    Directory of Open Access Journals (Sweden)

    S. Gubler

    2013-08-01

    Full Text Available Model evaluation is often performed at few locations due to the lack of spatially distributed data. Since the quantification of model sensitivities and uncertainties can be performed independently from ground truth measurements, these analyses are suitable to test the influence of environmental variability on model evaluation. In this study, the sensitivities and uncertainties of a physically based mountain permafrost model are quantified within an artificial topography. The setting consists of different elevations and exposures combined with six ground types characterized by porosity and hydraulic properties. The analyses are performed for a combination of all factors, that allows for quantification of the variability of model sensitivities and uncertainties within a whole modeling domain. We found that model sensitivities and uncertainties vary strongly depending on different input factors such as topography or different soil types. The analysis shows that model evaluation performed at single locations may not be representative for the whole modeling domain. For example, the sensitivity of modeled mean annual ground temperature to ground albedo ranges between 0.5 and 4 °C depending on elevation, aspect and the ground type. South-exposed inclined locations are more sensitive to changes in ground albedo than north-exposed slopes since they receive more solar radiation. The sensitivity to ground albedo increases with decreasing elevation due to shorter duration of the snow cover. The sensitivity in the hydraulic properties changes considerably for different ground types: rock or clay, for instance, are not sensitive to uncertainties in the hydraulic properties, while for gravel or peat, accurate estimates of the hydraulic properties significantly improve modeled ground temperatures. The discretization of ground, snow and time have an impact on modeled mean annual ground temperature (MAGT that cannot be neglected (more than 1 °C for several

  8. How to observe fluctuating temperature?

    CERN Document Server

    Utyuzh, O V; Wlodarczyk, Z

    2001-01-01

    We provide arguments that event-by-event (EBE) analysis of multiparticle production data are ideal place to search for the possible fluctuation of temperature characterizing hadronizing source in thermodynamical approach.

  9. Observation of Hyperfine Transitions in Trapped Ground-State Antihydrogen

    CERN Document Server

    Olin, Arthur

    2015-01-01

    This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4~parts~in~$10^3$. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.

  10. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  11. Uncertainties and shortcomings of ground surface temperature histories derived from inversion of temperature logs

    OpenAIRE

    Hartmann, Andreas; Rath, Volker

    2008-01-01

    Analysing borehole temperature data in terms of ground surface history can add useful information to reconstructions of past climates. Therefore, a rigorous assessment of uncertainties and error sources is a necessary prerequisite for the meaningful interpretation of such ground surface temperature histories. This study analyses the most prominent sources of uncertainty. The diffusive nature of the process makes the inversion relatively robust against incomplete knowledge of the thermal diffu...

  12. Room temperature skyrmion ground state stabilized through interlayer exchange coupling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gong, E-mail: gchenncem@gmail.com; Schmid, Andreas K. [NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Mascaraque, Arantzazu [Depto. Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Unidad Asociada IQFR (CSIC) - UCM, 28040 Madrid (Spain); N' Diaye, Alpha T. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-15

    Possible magnetic skyrmion device applications motivate the search for structures that extend the stability of skyrmion spin textures to ambient temperature. Here, we demonstrate an experimental approach to stabilize a room temperature skyrmion ground state in chiral magnetic films via exchange coupling across non-magnetic spacer layers. Using spin polarized low-energy electron microscopy to measure all three Cartesian components of the magnetization vector, we image the spin textures in Fe/Ni films. We show how tuning the thickness of a copper spacer layer between chiral Fe/Ni films and perpendicularly magnetized Ni layers permits stabilization of a chiral stripe phase, a skyrmion phase, and a single domain phase. This strategy to stabilize skyrmion ground states can be extended to other magnetic thin film systems and may be useful for designing skyrmion based spintronics devices.

  13. Ground-based observations of Kepler asteroseismic targets

    CERN Document Server

    Uytterhoeven, K; Southworth, J; Randall, S; Ostensen, R; Molenda-Zakowicz, J; Marconi, M; Kurtz, D W; Kiss, L; Gutierrez-Soto, J; Frandsen, S; De Cat, P; Bruntt, H; Briquet, M; Zhang, X B; Telting, J H; Steslicki, M; Ripepi, V; Pigulski, A; Paparo, M; Oreiro, R; Choong, Ngeow Chow; Niemczura, E; Nemec, J; Narwid, A; Mathias, P; Martin-Ruiz, S; Lehman, H; Kopacki, G; Karoff, C; Jackiewicz, J; Henden, A A; Handler, G; Grigachene, A; Green, E M; Garrido, R; Machado, L Fox; Debosscher, J; Creevey, O L; Catanzaro, G; Bognar, Z; Biazzo, K; Bernabei, S

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising Kepler pulsators. So far, 35 different instruments at 30 telescopes on 22 different observatories in 12 countries are in use, and a total of more than 530 observing nights has been awarded. (Based on observations made with the Isaac Newton Telescope, William Herschel Telescope, Nordic Optical Telescope, Telescopio Nazionale Galileo, Mercator Telescope (La Palma, Spain), and IAC-80 (Tenerife, Spain). Also based on observations taken at the observatories of Sierra Nevada, San Pedro Martir, Vienna, Xinglong, Apache Point, Lulin, Tautenburg, Loiano, Serra la Nave, Asiago, McDonald, Skinakas, Pic du Midi, Mauna Kea, Steward Observatory, Bialkow Observatory of the Wroclaw University, Piszkesteto Mountain Station, Observato...

  14. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  15. The advances in airglow study and observation by the ground-based airglow observation network over China

    Science.gov (United States)

    Xu, Jiyao; Li, Qinzeng; Yuan, Wei; Liu, Xiao; Liu, Weijun; Sun, Longchang

    2017-04-01

    Ground-based airglow observation networks over China used to study airglow have been established, which contains 15 stations. Some new results were obtained using the networks. For OH airglow observations, firstly, an unusual outbreak of Concentric Gravity Wave (CGW) events were observed by the first no-gap network nearly every night during the first half of August 2013. Combination of the ground imager network with satellites provides multilevel observations of the CGWs from the troposphere to the mesopause region. Secondly, three-year OH airglow images (2012-2014) from Qujing (25.6°N, 103.7°E) were used to study how orographic features of the Tibetan Plateau (TP) affect the geographical distributions of gravity wave (GW) sources. We find the orographic forcings have a significant impact on the gravity wave propagation features. Thirdly, ground-based observations of the OH (9-4, 8-3, 6-2, 5-1, 3-0) band airglow over Xinglong (40°2N, 117°4E) in northern China from 2012 to 2014 are used to calculate rotational temperatures. By comparing the ground-based OH rotational temperature with SABER's observations, five Einstein coefficient datasets are evaluated. We find rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. We have obtained a set of optimal Einstein coefficients ratios for rotational temperature derivation using three years data from ground-based OH spectra and SABER temperatures. For the OI 630.0 nm airglow observations, we used three-year (2011-2013) observations of thermospheric winds (at 250 km) by Fabry-Perot interferometers at Xinglong to study the climatology of atmospheric planetary wave-type oscillations (PWTOs) with periods of 4-19 days. We found these PWTOs occur more frequently in the months from May to October. They are consistent with the summertime preference of middle-latitude ionospheric electron density oscillations noted in other studies. By using an all-sky airglow imager

  16. West Coast Observing System (WCOS) Temperature Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The West Coast Observing System (WCOS) project provides access to temperature and currents data collected at four of the five National Marine Sanctuary sites,...

  17. Compositional Ground Truth of Diviner Lunar Radiometer Observations

    Science.gov (United States)

    Greenhagen, B. T.; Thomas, I. R.; Bowles, N. E.; Allen, C. C.; Donaldson Hanna, K. L.; Foote, E. J.; Paige, D. A.

    2012-01-01

    The Moon affords us a unique opportunity to "ground truth" thermal infrared (i.e. 3 to 25 micron) observations of an airless body. The Moon is the most accessable member of the most abundant class of solar system bodies, which includes Mercury, astroids, and icy satellites. The Apollo samples returned from the Moon are the only extraterrestrial samples with known spatial context. And the Diviner Lunar Radiometer (Diviner) is the first instrument to globally map the spectral thermal emission of an airless body. Here we compare Diviner observations of Apollo sites to compositional and spectral measurements of Apollo lunar soil samples in simulated lunar environment (SLE).

  18. RF radiation observations of positive cloud-to-ground flashes

    Science.gov (United States)

    Shao, X. M.; Rhodes, C. T.; Holden, D. N.

    1999-04-01

    During the summers of 1995 and 1996 we conducted broadband HF-UHF and narrowband VHF radio frequency (RF) observations of positive cloud-to-ground (+CG) flashes at Langmuir and Los Alamos laboratories, New Mexico. These observations indicate that positive leaders to ground produce no or very weak radiation from HF to UHF. The broadband system was able to record 2 ms data each time it was triggered. For a +CG the system was usually triggered by the return stroke, and a 1 ms pretrigger period was coincident with the positive leader process. It was commonly observed that no or little radiation was associated with the leader process in the 1 ms pretrigger period. The narrowband VHF system employed a logarithmic power amplifier and recorded one 1 s data each time it was triggered. The narrowband observations show that strong and often continuous radiation occurs at the beginning of the +CGs, but the radiation usually becomes intermittent and impulsive during the last few tens of milliseconds preceding the return strokes. The observations for most of the +CGs also show complete lack of radiation a few ms before the beginning of the return strokes, suggesting that the ongoing downward positive leaders were quiet at VHF, at least during the final few ms. The results of this study for natural positive leaders are in agreement with the results obtained from laboratory gap discharges and rocket-triggered lightning.

  19. Ground-based optical observation system for LEO objects

    Science.gov (United States)

    Yanagisawa, T.; Kurosaki, H.; Oda, H.; Tagawa, M.

    2015-08-01

    We propose a ground-based optical observation system for monitoring LEO objects, which uses numerous optical sensors to cover a vast region of the sky. Its potential in terms of detection and orbital determination were examined. About 30 cm LEO objects at 1000 km altitude are detectable using an 18 cm telescope, a CCD camera and the analysis software developed. Simulations and a test observation showed that two longitudinally separate observation sites with arrays of optical sensors can identify the same objects from numerous data sets and determine their orbits precisely. The proposed system may complement or replace the current radar observation system for monitoring LEO objects, like space-situation awareness, in the near future.

  20. How Does Measuring Generate Evidence? The Problem of Observational Grounding

    Science.gov (United States)

    Tal, Eran

    2016-11-01

    The epistemology of measurement is an area of philosophy that studies the relationships between measurement and knowledge. One of its central aims is to explain how measurement can function as a reliable source of scientific evidence. Key to such explanation is a clear characterization of the dependence of measurement on observation, but such characterization has remained elusive. This article traces the recent historical trajectory of views on the observational grounding of measurement, clarifies the current state of the problem, and proposes new directions for progress. Specifically, I argue in favour of viewing measurement outcomes as the best predictors of observed instrument indications under a given theoretical-statistical model of the measurement process. The evidential efficacy of measurement outcomes is explained by their relatively high epistemic security, rather than by their inferential or structural closeness to observation.

  1. Solar Array at Very High Temperatures: Ground Tests

    Science.gov (United States)

    Vayner, Boris

    2016-01-01

    Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 volts) or to operate at higher voltages with encapsulation of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between the coverglass and the conductive spacecraft body in a kilovolt range. In such a case, the weakly conductive layer over coverglass, indium tin oxide (ITO) is one of the possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of minus150 degrees Centigrade to plus 1100 degrees Centigrade. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside a shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to the Sun. The conductive layer over coverglass causes a sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating (Room Temperature Vulcanizing (RTV) material; radiative heating of a coupon in vacuum chamber becomes practically impossible above 1500 degrees Centigrade; conductivities of glass and adhesive go up with temperature that decrease array efficiency; and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 2000 degrees

  2. Casimir Free Energy at High Temperatures: Grounded vs Isolated Conductors

    CERN Document Server

    Fosco, C D; Mazzitelli, F D

    2016-01-01

    We evaluate the difference between the Casimir free energies corresponding to either grounded or isolated perfect conductors, at high temperatures. We show that a general and simple expression for that difference can be given, in terms of the electrostatic capacitance matrix for the system of conductors. For the case of close conductors, we provide approximate expressions for that difference, by evaluating the capacitance matrix using the proximity force approximation. Since the high-temperature limit for the Casimir free energy for a medium described by a frequency-dependent conductivity diverging at zero frequency coincides with that of an isolated conductor, our results may shed light on the corrections to the Casimir force in the presence of real materials.

  3. Predictions of experimentally observed stochastic ground vibrations induced by blasting.

    Science.gov (United States)

    Kostić, Srđan; Perc, Matjaž; Vasović, Nebojša; Trajković, Slobodan

    2013-01-01

    In the present paper, we investigate the blast induced ground motion recorded at the limestone quarry "Suva Vrela" near Kosjerić, which is located in the western part of Serbia. We examine the recorded signals by means of surrogate data methods and a determinism test, in order to determine whether the recorded ground velocity is stochastic or deterministic in nature. Longitudinal, transversal and the vertical ground motion component are analyzed at three monitoring points that are located at different distances from the blasting source. The analysis reveals that the recordings belong to a class of stationary linear stochastic processes with Gaussian inputs, which could be distorted by a monotonic, instantaneous, time-independent nonlinear function. Low determinism factors obtained with the determinism test further confirm the stochastic nature of the recordings. Guided by the outcome of time series analysis, we propose an improved prediction model for the peak particle velocity based on a neural network. We show that, while conventional predictors fail to provide acceptable prediction accuracy, the neural network model with four main blast parameters as input, namely total charge, maximum charge per delay, distance from the blasting source to the measuring point, and hole depth, delivers significantly more accurate predictions that may be applicable on site. We also perform a sensitivity analysis, which reveals that the distance from the blasting source has the strongest influence on the final value of the peak particle velocity. This is in full agreement with previous observations and theory, thus additionally validating our methodology and main conclusions.

  4. First Observation of Ground State Dineutron Decay: Be16

    Science.gov (United States)

    Spyrou, A.; Kohley, Z.; Baumann, T.; Bazin, D.; Brown, B. A.; Christian, G.; Deyoung, P. A.; Finck, J. E.; Frank, N.; Lunderberg, E.; Mosby, S.; Peters, W. A.; Schiller, A.; Smith, J. K.; Snyder, J.; Strongman, M. J.; Thoennessen, M.; Volya, A.

    2012-03-01

    We report on the first observation of dineutron emission in the decay of Be16. A single-proton knockout reaction from a 53MeV/u B17 beam was used to populate the ground state of Be16. Be16 is bound with respect to the emission of one neutron and unbound to two-neutron emission. The dineutron character of the decay is evidenced by a small emission angle between the two neutrons. The two-neutron separation energy of Be16 was measured to be 1.35(10) MeV, in good agreement with shell model calculations, using standard interactions for this mass region.

  5. Atmospheric contamination for CMB ground-based observations

    CERN Document Server

    Errard, J; Akiba, Y; Arnold, K; Atlas, M; Baccigalupi, C; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Cukierman, A; Delabrouille, J; Dobbs, M; Ducout, A; Elleflot, T; Fabbian, G; Feng, C; Feeney, S; Gilbert, A; Goeckner-Wald, N; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Hill, C; Holzapfel, W L; Hori, Y; Inoue, Y; Jaehnig, G C; Jaffe, A H; Jeong, O; Katayama, N; Kaufman, J; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Jeune, M Le; Lee, A T; Leitch, E M; Leon, D; Linder, E; Matsuda, F; Matsumura, T; Miller, N J; Myers, M J; Navaroli, M; Nishino, H; Okamura, T; Paar, H; Peloton, J; Poletti, D; Puglisi, G; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K M; Schenck, D E; Sherwin, B D; Siritanasak, P; Smecher, G; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Tajima, O; Takakura, S; Tikhomirov, A; Tomaru, T; Whitehorn, N; Wilson, B; Yadav, A; Zahn, O

    2015-01-01

    Atmosphere is one of the most important noise sources for ground-based Cosmic Microwave Background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3d-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive an analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We compare our results to previous st...

  6. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. These effects can inform electromagnetic follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  7. Associating ground magnetometer observations with current or voltage generators

    DEFF Research Database (Denmark)

    Hartinger, M. D.; Xu, Z.; Clauer, C. R.

    2017-01-01

    A circuit analogy for magnetosphere-ionosphere current systems has two extremes for driversof ionospheric currents: ionospheric elec tric fields/voltages constant while current/conductivity vary—the“voltage generator”—and current constant while electric field/conductivity vary—the “current generator.......”Statistical studies of ground magnetometer observations associated with dayside Transient High LatitudeCurrent Systems (THLCS) driven by similar mechanisms find contradictory results using this paradigm:some studies associate THLCS with voltage generators, others with current generators. We argue that mostof...... these two assumptions substantially alter expectations for magnetic perturbations associatedwith either a current or a voltage generator. Our results demonstrate that before interpreting groundmagnetometer observations of THLCS in the context of current/voltage generators, the location...

  8. Integrated water vapor from IGS ground-based GPS observations. Initial results from a global 5-min data set

    Energy Technology Data Exchange (ETDEWEB)

    Heise, S.; Dick, G.; Gendt, G.; Schmidt, T.; Wickert, J. [GFZ German Research Centre for Geosciences, Potsdam (Germany). Dept. 1 Geodesy and Remote Sensing

    2009-07-01

    Ground based GPS zenith path delay (ZPD) measurements are well established as a powerful tool for integrated water vapor (IWV) observation. The International GNSS Service (IGS) provides ZPD data of currently more than 300 globally distributed GPS stations. To derive IWV from these data, meteorological information (ground pressure and mean temperature above the station) are needed. Only a limited number of IGS stations is equipped with meteorological ground sensors up to now. Thus, meteorological data for IWV conversion are usually derived from nearby ground meteorological observations (ground pressure) and meteorological analyses (mean temperature). In this paper we demonstrate for the first time the applicability of ground pressure data from ECMWF meteorological analysis fields in this context. Beside simplified data handling (no single station data and quality control) this approach allows for IWV derivation if nearby meteorological stations are not available. Using ECMWF ground pressure and mean temperature data the new IGS 5-min ZPD data set has been converted to IWV for the first time. We present initial results from selected stations with ground meteorological sensors including pressure and temperature comparisons between ECMWF and local measurements. The GPS IWV is generally validated by comparison with ECMWF IWV. The ECMWF derived station meteorological data are compared with local measurements at all accordingly equipped stations. Based on this comparison, the mean error (in terms of standard deviation) introduced by time interpolation of the 6-hourly ECMWF data is estimated below 0.2 mm IWV. (orig.)

  9. Stepped leaders observed in ground operations of ADELE

    Science.gov (United States)

    Smith, D. M.; Kelley, N.; Lowell, A.; Martinez-McKinney, F.; Dwyer, J. R.; Splitt, M. E.; Lazarus, S. M.; Cramer, E. S.; Levine, S.; Cummer, S. A.; Lu, G.; Shao, X.; Ho, C.; Eastvedt, E. M.; Trueblood, J.; Edens, H. E.; Hunyady, S. J.; Winn, W. P.; Rassoul, H. K.

    2010-12-01

    While the Airborne Detector for Energetic Lightning Emissions (ADELE) was designed primarily to study high-energy radiation associated with thunderstorms at aircraft altitude, it can also be used as a mobile ground-based instrument when mounted in a van. ADELE contains scintillation detectors optimized for faint and bright events and a flat-plate antenna measuring dE/dt. In July and August 2010, ADELE was brought to Langmuir Laboratory in New Mexico as a stationary detector and to the Florida peninsula (based at the Florida Institute of Technology in Melbourne) for rapid-response (storm-chasing) operations. In ten days of chasing, stepped-leader x-ray emission was observed from at least four close CG flashes, a much higher rate of success than can be achieved from a stationary detector or array. We will present these four events as well as the results of a study of candidate events of lesser statistical significance. We will also discuss the optimization of lightning-chasing strategies, science goals for future ground campaigns, and what additional instrumentation would be most scientifically beneficial. In the latter category, a proximity sensor (comparing flash and thunder arrival times) and a field mill are particularly important.

  10. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    CERN Document Server

    Chen, Hsin-Yu; Vitale, Salvatore; Holz, Daniel E; Katsavounidis, Erik

    2016-01-01

    Ground-based interferometers are not perfectly all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean and, as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources' right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO's observations and electromagnetic follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over $80\\%$ of the localization probability, while mid-latitudes will access closer to $70\\%$. Facilities located near the two LIGO sites can obser...

  11. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  12. Satellite Type Estination from Ground-based Photometric Observation

    Science.gov (United States)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  13. Observational Selection Effects with Ground-based Gravitational Wave Detectors

    Science.gov (United States)

    Chen, Hsin-Yu; Essick, Reed; Vitale, Salvatore; Holz, Daniel E.; Katsavounidis, Erik

    2017-01-01

    Ground-based interferometers are not perfect all-sky instruments, and it is important to account for their behavior when considering the distribution of detected events. In particular, the LIGO detectors are most sensitive to sources above North America and the Indian Ocean, and as the Earth rotates, the sensitive regions are swept across the sky. However, because the detectors do not acquire data uniformly over time, there is a net bias on detectable sources’ right ascensions. Both LIGO detectors preferentially collect data during their local night; it is more than twice as likely to be local midnight than noon when both detectors are operating. We discuss these selection effects and how they impact LIGO’s observations and electromagnetic (EM) follow-up. Beyond galactic foregrounds associated with seasonal variations, we find that equatorial observatories can access over 80% of the localization probability, while mid-latitudes will access closer to 70%. Facilities located near the two LIGO sites can observe sources closer to their zenith than their analogs in the south, but the average observation will still be no closer than 44° from zenith. We also find that observatories in Africa or the South Atlantic will wait systematically longer before they can begin observing compared to the rest of the world though, there is a preference for longitudes near the LIGOs. These effects, along with knowledge of the LIGO antenna pattern, can inform EM follow-up activities and optimization, including the possibility of directing observations even before gravitational-wave events occur.

  14. Monitoring of Gangotri glacier using remote sensing and ground observations

    Indian Academy of Sciences (India)

    H S Negi; N K Thakur; A Ganju; Snehmani

    2012-08-01

    In this study, Gangotri glacier was monitored using Indian Remote Sensing (IRS) LISS-III sensor data in combination with field collected snow-meteorological data for a period of seven years (2001–2008). An overall decreasing trend in the areal extent of seasonal snow cover area (SCA) was observed. An upward shifting trend of wet snow line was observed in the beginning of melt period, i.e., in May and dominant wet snow conditions were observed between May and October. Snow meteorological parameters collected in the Gangotri sub-basin suggest reduction in fresh snowfall amount during winter, increase in rainfall amount during summer, decrease in snowfall days, increase in rainfall days and rising trend of average temperature. The prevailing wet snow condition on glacier has caused scouring of slopes which led the excessive soil/debris deposition on the glacier surface. This was observed as one of the major factor for activating fast melting and affecting the glacier health significantly. Apart from climatic conditions, terrain factors were observed for changing the glacio-morphology. The significant changes on the glacier surface were observed in the regions of abrupt slope change. The above factors affecting the Gangotri glacier health were also validated using high resolution satellite imageries and field visit. A deglaciation of 6% in overall area of Gangotri glacier was observed between the years 1962 and 2006.

  15. Theoretical validation of ground-based microwave ozone observations

    Directory of Open Access Journals (Sweden)

    P. Ricaud

    Full Text Available Ground-based microwave measurements of the diurnal and seasonal variations of ozoneat 42±4.5 and 55±8 km are validated by comparing with results from a zero-dimensional photochemical model and a two-dimensional (2D chemical/radiative/dynamical model, respectively. O3 diurnal amplitudes measured in Bordeaux are shown to be in agreement with theory to within 5%. For the seasonal analysis of O3 variation, at 42±4.5 km, the 2D model underestimates the yearly averaged ozone concentration compared with the measurements. A double maximum oscillation (~3.5% is measured in Bordeaux with an extended maximum in September and a maximum in February, whilst the 2D model predicts only a single large maximum (17% in August and a pronounced minimum in January. Evidence suggests that dynamical transport causes the winter O3 maximum by propagation of planetary waves, phenomena which are not explicitly reproduced by the 2D model. At 55±8 km, the modeled yearly averaged O3 concentration is in very good agreement with the measured yearly average. A strong annual oscillation is both measured and modeled with differences in the amplitude shown to be exclusively linked to temperature fields.

  16. Observed parity-odd CMB temperature bispectrum

    CERN Document Server

    Shiraishi, Maresuke; Fergusson, James R

    2015-01-01

    Parity-odd non-Gaussianities create a variety of temperature bispectra in the cosmic microwave background (CMB), defined in the domain: $\\ell_1 + \\ell_2 + \\ell_3 = {\\rm odd}$. These models are yet unconstrained in the literature, that so far focused exclusively on the more common parity-even scenarios. In this work, we provide the first experimental constraints on parity-odd bispectrum signals in WMAP 9-year temperature data, using a separable modal parity-odd estimator. Comparing theoretical bispectrum templates to the observed bispectrum, we place constraints on the so-called nonlineality parameters of parity-odd tensor non-Gaussianities predicted by several Early Universe models. Our technique also generates a model-independent, smoothed reconstruction of the bispectrum of the data for parity-odd configurations.

  17. Ground-based observations of Kepler asteroseismic targets

    DEFF Research Database (Denmark)

    Uyttterhoeven , K.; Karoff, Christoffer

    2010-01-01

    We present the ground-based activities within the different working groups of the Kepler Asteroseismic Science Consortium (KASC). The activities aim at the systematic characterization of the 5000+ KASC targets, and at the collection of ground-based follow-up time-series data of selected promising...

  18. Assessment of the quality of OSIRIS mesospheric temperatures using satellite and ground-based measurements

    Directory of Open Access Journals (Sweden)

    P. E. Sheese

    2012-12-01

    Full Text Available The Optical Spectrograph and InfraRed Imaging System (OSIRIS on the Odin satellite is currently in its 12th year of observing the Earth's limb. For the first time, continuous temperature profiles extending from the stratopause to the upper mesosphere have been derived from OSIRIS measurements of Rayleigh-scattered sunlight. Through most of the mesosphere, OSIRIS temperatures are in good agreement with coincident temperature profiles derived from other satellite and ground-based measurements. In the altitude region of 55–80 km, OSIRIS temperatures are typically within 4–5 K of those from the SABER, ACE-FTS, and SOFIE instruments on the TIMED, SciSat-I, and AIM satellites, respectively. The mean differences between individual OSIRIS profiles and those of the other satellite instruments are typically within the combined uncertainties and previously reported biases. OSIRIS temperatures are typically within 2 K of those from the University of Western Ontario's Purple Crow Lidar in the altitude region of 52–79 km, where the mean differences are within combined uncertainties. Near 84 km, OSIRIS temperatures exhibit a cold bias of 10–15 K, which is due to a cold bias in OSIRIS O2 A-band temperatures at 85 km, the upper boundary of the Rayleigh-scatter derived temperatures; and near 48 km OSIRIS temperatures exhibit a cold bias of 5–15 K, which is likely due to multiple-scatter effects that are not taken into account in the retrieval.

  19. Ground motion observations of the 2014 South Napa earthquake

    Science.gov (United States)

    Baltay, Annemarie S.; Boatwright, John

    2015-01-01

    Ground motions of the South Napa earthquake (24 August 2014; M 6.0) were recorded at 19 stations within 20 km and 292 stations within 100 km of the rupture surface trace, generating peak ground motions in excess of 50%g and 50  cm/s in and near Napa Valley. This large dataset allows us to compare the ground motion from the earthquake to existing ground‐motion prediction equations (GMPEs) in considerable detail.

  20. Ground-Based Observing Campaign of Briz-M Debris

    Science.gov (United States)

    Lederer, S. M.; Buckalew, B.; Frith, J.; Cowardin, H. M.; Hickson, P.; Matney, M.; Anz-Meador, P.

    2017-01-01

    In 2015, NASA's Orbital Debris Program Office (ODPO) completed the installation of the Meter Class Autonomous Telescope (MCAT) on Ascension Island. MCAT is a 1.3m optical telescope designed with a fast tracking capability for observing orbital debris at all orbital regimes (Low-Erath orbits to Geosyncronous (GEO) orbits) from a low latitude site. This new asset is dedicated year-round for debris observations, and its location fills a geographical gap in the Ground-based Electro Optical Space Surveillance (GEODSS) network. A commercial off the shelf (COTS) research grade 0.4m telescope (named the Benbrook telescope) will also be installed on Ascension at the end of 2016. This smaller version is controlled by the same master software, designed by Euclid Research, and can be tasked to work independently or in concert with MCAT. Like MCAT, it has a the same suite of filters, a similar field of view, and a fast-tracking Astelco mount, and is also capable of tracking debris at all orbital regimes. These assets are well suited for targeted campagins or surveys of debris. Since 2013, NASA's ODPO has also had extensive access to the 3.8m infrared UKIRT telescope, located on Mauna Kea. At nearly 14,000-ft, this site affords excellent conditions for collecting both photometery and spectroscopy at near-IR (0.9 - 2.5 micrometers SWIR) and thermal-IR (8 - 25 micrometers; LWIR) regimes, ideal for investigating material properties as well as thermal characteristics and sizes of debris. For the purposes of understanding orbital debris, taking data in both survey mode as well as targeting individual objects for more in-depth characterizations are desired. With the recent break-ups of Briz-M rocket bodies, we have collected a suite of data in the optical, near-infrared, and mid-infrared of in-tact objects as well as those classified as debris. A break-up at GEO of a Briz-M rocket occurred in January, 2016, well timed for the first remote observing survey-campaign with MCAT. Access to

  1. WSO-UV ground segment for observation optimisation

    Science.gov (United States)

    Basargina, O.; Sachkov, M.; Kazakevich, Y.; Kanev, E.; Sichevskij, S.

    2016-07-01

    The World Space Observatory-Ultraviolet (WSO-UV) is a Russian-Spanish space mission born as a response to the growing up demand for UV facilities by the astronomical community. Main components of the WSO-UV Ground Segment, Mission Control Centre and Science Operation Centre, are being developed by international cooperation In this paper the fundamental components of WSO-UV ground segment are described. Also approaches to optimize observatory scheduling problem are discussed.

  2. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    Science.gov (United States)

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  3. Ground surface temperature and humidity, ground temperature cycles and the ice table depths in University Valley, McMurdo Dry Valleys of Antarctica

    Science.gov (United States)

    Fisher, David A.; Lacelle, Denis; Pollard, Wayne; Davila, Alfonso; McKay, Christopher P.

    2016-11-01

    In the upper McMurdo Dry Valleys, 90% of the measured ice table depths range from 0 to 80 cm; however, numerical models predict that the ice table is not in equilibrium with current climate conditions and should be deeper than measured. This study explored the effects of boundary conditions (air versus ground surface temperature and humidity), ground temperature cycles, and their diminishing amplitude with depth and advective flows (Darcy flow and wind pumping) on water vapor fluxes in soils and ice table depths using the REGO vapor diffusion model. We conducted a series of numerical experiments that illustrated different hypothetical scenarios and estimated the water vapor flux and ice table depth using the conditions in University Valley, a small high elevation valley. In situ measurements showed that while the mean annual ground surface temperature approximates that in the air, the mean annual ground surface relative humidity (>85%ice) was significantly higher than in the atmosphere ( 50%ice). When ground surface temperature and humidity were used as boundary conditions, along with damping diurnal and annual temperature cycles within the sandy soil, REGO predicted that measured ice table depths in the valley were in equilibrium with contemporary conditions. Based on model results, a dry soil column can become saturated with ice within centuries. Overall, the results from the new soil data and modeling have implications regarding the factors and boundary conditions that affect the stability of ground ice in cold and hyperarid regions where liquid water is rare.

  4. Transfer function models to quantify the delay between air and ground temperatures in thawed active layers

    Directory of Open Access Journals (Sweden)

    E. Zenklusen Mutter

    2011-10-01

    Full Text Available Air temperatures influence ground temperatures with a certain delay, which increases with depth. Borehole temperatures measured at 0.5 m depth in Alpine permafrost and air temperatures measured at or near the boreholes have been used to model this dependency. Statistical transfer function models have been fitted to the daily difference series of air and ground temperatures measured at seven different permafrost sites in the Swiss Alps.

    The relation between air and ground temperature is influenced by various factors such as ground surface cover, snow depth, water or ground ice content. To avoid complications induced by the insulating properties of the snow cover and by phase changes in the ground, only the mostly snow-free summer period when the ground at 0.5 m depth is thawed has been considered here. All summers from 2006 to 2009 have been analysed, with the main focus on summer 2006.

    The results reveal that in summer 2006 daily air temperature changes influence ground temperatures at 0.5 m depth with a delay ranging from one to six days, depending on the site. The fastest response times are found for a very coarse grained, blocky rock glacier site whereas slower response times are found for blocky scree slopes with smaller grain sizes.

  5. Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux

    NARCIS (Netherlands)

    Bense, V.F.; Read, T.; Verhoef, A.

    2016-01-01

    We present one of the first studies of the use of distributed temperature sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer

  6. Comparison of Thermal Structure Results from Venus Express and Ground Based Observations since Vira

    Science.gov (United States)

    Limaye, Sanjay

    2016-07-01

    An international team was formed in 2013 through the International Space Studies Institute (Bern, Switzerland) to compare recent results of the Venus atmospheric thermal structure from spacecraft and ground based observations made since the Venus International Reference Atmosphere (VIRA) was developed (Kliore et al., 1985, Keating et al., 1985). Five experiments on European Space Agency's Venus Express orbiter mission have yielded results on the atmospheric structure during is operational life (April 2006 - November 2014). Three of these were from occultation methods: at near infrared wavelengths from solar occultations, (SOIR, 70 - 170 km), at ultraviolet wavelengths from stellar occultations (SPICAV, 90-140 km), and occultation of the VEx-Earth radio signal (VeRa, 40-90 km). In-situ drag measurements from three different techniques (accelerometry, torque, and radio tracking, 130 - 200 km) were also obtained using the spacecraft itself while passive infrared remote sensing was used by the VIRTIS experiment (70 - 120 km). The only new data in the -40-70 km altitude range are from radio occultation, as no new profiles of the deep atmosphere have been obtained since the VeGa 2 lander measurements in 1985 (not included in VIRA). Some selected ground based results available to the team were also considered by team in the inter comparisons. The temperature structure in the lower thermosphere from disk resolved ground based observations (except for one ground based investigation), is generally consistent with the Venus Express results. These experiments sampled at different periods, at different locations and at different local times and have different vertical and horizontal resolution and coverage. The data were therefore binned in latitude and local time bins and compared, ignoring temporal variations over the life time of the Venus Express mission and assumed north-south symmetry. Alternating warm and cooler layers are present in the 120-160 altitude range in results

  7. An analysis of the numerical model influence on the ground temperature profile determination

    Science.gov (United States)

    Jaszczur, Marek; Polepszyc, Inga; Sapińska-Śliwa, Aneta; Gonet, Andrzej

    2017-02-01

    The estimation of the ground temperature profile with respect to the depth and time is the key issue in many engineering applications which use the ground as a source of thermal energy. In the present work, the influence of the model components on the calculated ground temperature distribution has been analysed in order to develop an accurate and robust model for the prediction of the ground temperature profile. The presented mathematical model takes into account all the key phenomena occurring in the soil and on its top surface. The impact of individual model elements on the temperature of the soil has been analysed. It has been found that the simplest models and the most complex model result in a similar temperature variation over the simulation period, but only at a low depth. A detailed analysis shows that a larger depth requires more complex models and the calculation with the use of simple models results in an incorrect temperature and a theoretical COP estimation.

  8. Evaluation of brightness temperature from a forward model of ground-based microwave radiometer

    Indian Academy of Sciences (India)

    S Rambabu; J S Pillai; A Agarwal; G Pandithurai

    2014-06-01

    Ground-based microwave radiometers are getting great attention in recent years due to their capability to profile the temperature and humidity at high temporal and vertical resolution in the lower troposphere. The process of retrieving these parameters from the measurements of radiometric brightness temperature () includes the inversion algorithm, which uses the background information from a forward model. In the present study, an algorithm development and evaluation of this forward model for a ground-based microwave radiometer, being developed by Society for Applied Microwave Electronics Engineering and Research (SAMEER) of India, is presented. Initially, the analysis of absorption coefficient and weighting function at different frequencies was made to select the channels. Further the range of variation of for these selected channels for the year 2011, over the two stations Mumbai and Delhi is discussed. Finally the comparison between forward-model simulated s and radiometer measured s at Mahabaleshwar (73.66°E and 17.93°N) is done to evaluate the model. There is good agreement between model simulations and radiometer observations, which suggests that these forward model simulations can be used as background for inversion models for retrieving the temperature and humidity profiles.

  9. Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland

    Directory of Open Access Journals (Sweden)

    C. Pettersen

    2015-12-01

    Full Text Available Multi-instrument, ground-based measurements provide unique and comprehensive datasets of the atmosphere for a specific location over long periods of time and resulting data compliments past and existing global satellite observations. This paper explores the effect of ice hydrometeors on ground-based, high frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland from 2010–2013. Data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m−2 or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high frequency microwave channels: 90, 150, and 225 GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. This measured ice signature was then compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single scattering properties for several ice habits. Initial model results compare well against the four years of summer season isolated ice signature in the high-frequency microwave channels.

  10. DETERMINING UNDISTURBED GROUND TEMPERATURE AS PART OF SHALLOW GEOTHERMAL RESOURCES ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2010-12-01

    Full Text Available The undisturbed ground temperature is one of the key thermogeological parameters for the assessment and utilization of shallow geothermal resources. Geothermal energy is the type of energy which is stored in the ground where solar radiation has no effect. The depth at which the undisturbed ground temperature occurs, independent of seasonal changes in the surface air temperature, is functionally determined by climate parameters and thermogeological properties. In deeper layers, the increase of ground temperature depends solely on geothermal gradient. Determining accurate values of undisturbed ground temperature and depth of occurrence is crucial for the correct sizing of a borehole heat exchanger as part of the ground-source heat pump system, which is considered the most efficient technology for utilising shallow geothermal resources. The purpose of this paper is to define three specific temperature regions, based on the measured ground temperature data collected from the main meteorological stations in Croatia. The three regions are: Northern Croatia, Adriatic region, and the regions of Lika and Gorski Kotar.

  11. Two decades of temperature-time monitoring experiment: air - ground surface - shallow subsurface interactions

    Science.gov (United States)

    Cermak, Vladimir; Dedecek, Petr; Safanda, Jan; Kresl, Milan

    2014-05-01

    Long-term observations (1994-2013) of air and shallow ground temperatures at borehole Prague-Sporilov (50º02'28.5"E, 14º28'40.2"N, 274 m a.s.l.) have been thoroughly analyzed to understand the relationship between these quantities and to describe the mechanism of heat transport at the land-atmosphere boundary layer. Data provided a surprisingly small mean ground-air temperature offset of only 0.31 K with no clear annual course and with the offset value changing irregularly even on a daily scale. Such value is substantially lower than similar values (1-2 K and more) found elsewhere, but may well characterize a mild temperate zone, when all so far available information referred rather to southern locations. Borehole data were correlated with similar observations in a polygon-site under four types of surface conditions (grass, soil, sand and asphalt) completed with registration of meteorological variables (wind direction & velocity, air & soil humidity, direct & reflected solar radiation, precipitation and snow cover). The "thermal orbits" technique proved to be an effective tool for the fast qualitative diagnostics of the thermal regime in the subsurface (conductive versus non-conductive).

  12. Martian Surface Temperature and Spectral Response from the MSL REMS Ground Temperature Sensor

    Science.gov (United States)

    Martin-Torres, Javier; Martínez-Frías, Jesús; Zorzano, María-Paz; Serrano, María; Mendaza, Teresa; Hamilton, Vicky; Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; REMS Team

    2013-04-01

    The Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory (MSL) offers the opportunity to explore the near surface atmospheric conditions and, in particular will shed new light into the heat budget of the Martian surface. This is important for studies of the atmospheric boundary layer (ABL), as the ground and air temperatures measured directly by REMS control the coupling of the atmosphere with the surface [Zurek et al., 1992]. This coupling is driven by solar insolation. The ABL plays an important role in the general circulation and the local atmospheric dynamics of Mars. One of the REMS sensors, the ground temperature sensor (GTS), provides the data needed to study the thermal inertia properties of the regolith and rocks beneath the MSL rover. The GTS includes thermopile detectors, with infrared bands of 8-14 µm and 16-20 µm [Gómez-Elvira et al., 2012]. These sensors are clustered in a single location on the MSL mast and the 8-14 µm thermopile sounds the surface temperature. The infrared radiation reaching the thermopile is proportional to the emissivity of the surface minerals across these thermal wavelengths. We have developed a radiative transfer retrieval method for the REMS GTS using a database of thermal infrared laboratory spectra of analogue minerals and their mixtures. [Martín Redondo et al. 2009, Martínez-Frías et al. 2012 - FRISER-IRMIX database]. This method will be used to assess the perfomance of the REMS GTS as well as determine, through the error analysis, the surface temperature and emissivity values where MSL is operating. Comparisons with orbiter data will be performed. References Gómez-Elvira et al. [2012], REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover, Space Science Reviews, Volume 170, Issue 1-4, pp. 583-640. Martín-Redondo et al. [2009] Journal of Environmental Monitoring 11:, pp. 1428-1432. Martínez-Frías et al. [2012] FRISER-IRMIX database http

  13. Features of positive ground flashes observed in Kathmandu Nepal

    Science.gov (United States)

    Adhikari, Pitri Bhakta; Sharma, Shriram; Baral, Kedarnath

    2016-07-01

    Lightning vertical electric fields pertinent to the subtropical thunderstorms occurring over the rugged terrain have been measured and recorded at a hilly station Kathmandu, Nepal. In the present work, waveforms of the positive ground flashes have been selected from all the records and were analyzed. To the best of our knowledge, this is the first time that fine structure of electric field signature pertinent to the positive return stroke; have been analyzed and presented from Nepal. One hundred and thirty three (133) of the total of four hundred twenty-five (425) flashes were selected from seven thunderstorm days and analyzed. Of the data recorded for seven days, 133 flashes (31.3%) were positive flashes and 276 flashes (64.9%) were cloud flashes. Majority of the positive ground flashes were found to be single stroke ones, whereas, the average number of strokes per flash is found to be 1.1 with a maximum value of 4. Majority of the positive ground flashes were found either lacking the initial breakdown process and the leader stage or these processes could not be detected. The return strokes are found to be succeeded by large in cloud activity in the continuing current portion of the flash. The average zero-crossing time of the positive return strokes was found to be 60.45 μs with a range of 447.81 μs and the average rise time was found to be 9.44 μs with a range of 42.56 μs.

  14. A comparison of ground-based hydroxyl airglow temperatures with SABER/TIMED measurements over 23° N, India

    Science.gov (United States)

    Parihar, Navin; Singh, Dupinder; Gurubaran, Subramanian

    2017-03-01

    Ground-based observations of OH (6, 2) Meinel band nightglow were carried out at Ranchi (23.3° N, 85.3° E), India, during January-March 2011, December 2011-May 2012 and December 2012-March 2013 using an all-sky imaging system. Near the mesopause, OH temperatures were derived from the OH (6, 2) Meinel band intensity information. A limited comparison of OH temperatures (TOH) with SABER/TIMED measurements in 30 cases was performed by defining almost coincident criterion of ±1.5° latitude-longitude and ±3 min of the ground-based observations. Using SABER OH 1.6 and 2.0 µm volume emission rate profiles as the weighing function, two sets of OH-equivalent temperature (T1. 6 and T2. 0 respectively) were estimated from its kinetic temperature profile for comparison with OH nightglow measurements. Overall, fair agreement existed between ground-based and SABER measurements in the majority of events within the limits of experimental errors. Overall, the mean value of OH-derived temperatures and SABER OH-equivalent temperatures were 197.3 ± 4.6, 192.0 ± 10.8 and 192.7 ± 10.3 K, and the ground-based temperatures were 4-5 K warmer than SABER values. A difference of 8 K or more is noted between two measurements when the peak of the OH emission layer lies in the vicinity of large temperature inversions. A comparison of OH temperatures derived using different sets of Einstein transition probabilities and SABER measurements was also performed; however, OH temperatures derived using Langhoff et al. (1986) transition probabilities were found to compare well.

  15. Validation of stratospheric temperature profiles from a ground-based microwave radiometer with other techniques

    Science.gov (United States)

    Navas, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2016-04-01

    Vertical profiles of atmospheric temperature trends has become recognized as an important indicator of climate change, because different climate forcing mechanisms exhibit distinct vertical warming and cooling patterns. For example, the cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming. Despite its importance, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. One of the main reason is because stratospheric long-term datasets are sparse and obtained trends differ from one another. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. This study presents an evaluation of the stratospheric temperature profiles from a newly ground-based microwave temperature radiometer (TEMPERA) which has been built and designed at the University of Bern. The measurements from TEMPERA are compared with the ones from other different techniques such as in-situ (radiosondes), active remote sensing (lidar) and passive remote sensing on board of Aura satellite (MLS) measurements. In addition a statistical analysis of the stratospheric temperature obtained from TEMPERA measurements during four years of data has been performed. This analysis evidenced the capability of TEMPERA radiometer to monitor the temperature in the stratosphere for a long-term. The detection of some singular sudden stratospheric warming (SSW) during the analyzed period shows the necessity of these

  16. Ground-based observation of emission lines from the corona of a red-dwarf star.

    Science.gov (United States)

    Schmitt, J H; Wichmann, R

    2001-08-02

    All 'solar-like' stars are surrounded by coronae, which contain magnetically confined plasma at temperatures above 106 K. (Until now, only the Sun's corona could be observed in the optical-as a shimmering envelope during a total solar eclipse.) As the underlying stellar 'surfaces'-the photospheres-are much cooler, some non-radiative process must be responsible for heating the coronae. The heating mechanism is generally thought to be magnetic in origin, but is not yet understood even for the case of the Sun. Ultraviolet emission lines first led to the discovery of the enormous temperature of the Sun's corona, but thermal emission from the coronae of other stars has hitherto been detectable only from space, at X-ray wavelengths. Here we report the detection of emission from highly ionized iron (Fe XIII at 3,388.1 A) in the corona of the red-dwarf star CN Leonis, using a ground-based telescope. The X-ray flux inferred from our data is consistent with previously measured X-ray fluxes, and the non-thermal line width of 18.4 km s-1 indicates great similarities between solar and stellar coronal heating mechanisms. The accessibility and spectral resolution (45,000) of the ground-based instrument are much better than those of X-ray satellites, so a new window to the study of stellar coronae has been opened.

  17. Development of hybrid fog detection algorithm (FDA) using satellite and ground observation data for nighttime

    Science.gov (United States)

    Kim, So-Hyeong; Han, Ji-Hae; Suh, Myoung-Seok

    2017-04-01

    In this study, we developed a hybrid fog detection algorithm (FDA) using AHI/Himawari-8 satellite and ground observation data for nighttime. In order to detect fog at nighttime, Dual Channel Difference (DCD) method based on the emissivity difference between SWIR and IR1 is most widely used. DCD is good at discriminating fog from other things (middle/high clouds, clear sea and land). However, it is difficult to distinguish fog from low clouds. In order to separate the low clouds from the pixels that satisfy the thresholds of fog in the DCD test, we conducted supplementary tests such as normalized local standard derivation (NLSD) of BT11 and the difference of fog top temperature (BT11) and air temperature (Ta) from NWP data (SST from OSTIA data). These tests are based on the larger homogeneity of fog top than low cloud tops and the similarity of fog top temperature and Ta (SST). Threshold values for the three tests were optimized through ROC analysis for the selected fog cases. In addition, considering the spatial continuity of fog, post-processing was performed to detect the missed pixels, in particular, at edge of fog or sub-pixel size fog. The final fog detection results are presented by fog probability (0 100 %). Validation was conducted by comparing fog detection probability with the ground observed visibility data from KMA. The validation results showed that POD and FAR are ranged from 0.70 0.94 and 0.45 0.72, respectively. The quantitative validation and visual inspection indicate that current FDA has a tendency to over-detect the fog. So, more works which reducing the FAR is needed. In the future, we will also validate sea fog using CALIPSO data.

  18. Interannual changes in snow cover and its impact on ground surface temperatures in Livingston Island (Antarctica)

    Science.gov (United States)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2015-04-01

    In permafrost areas the seasonal snow cover is an important factor on the ground thermal regime. Snow depth and timing are important in ground insulation from the atmosphere, creating different snow patterns and resulting in spatially variable ground temperatures. The aim of this work is to characterize the interactions between ground thermal regimes and snow cover and the influence on permafrost spatial distribution. The study area is the ice-free terrains of northwestern Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". Air and ground temperatures and snow thickness data where analysed from 4 sites along an altitudinal transect in Hurd Peninsula from 2007 to 2012: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). The data covers 6 cold seasons showing different conditions: i) very cold with thin snow cover; ii) cold with a gradual increase of snow cover; iii) warm with thick snow cover. The data shows three types of periods regarding the ground surface thermal regime and the thickness of snow cover: a) thin snow cover and short-term fluctuation of ground temperatures; b) thick snow cover and stable ground temperatures; c) very thick snow cover and ground temperatures nearly constant at 0°C. a) Thin snow cover periods: Collado Ramos and Ohridski sites show frequent temperature variations, alternating between short-term fluctuations and stable ground temperatures. Nuevo Incinerador displays during most of the winter stable ground temperatures; b) Cold winters with a gradual increase of the snow cover: Nuevo Incinerador, Collado Ramos and Ohridski sites show similar behavior, with a long period of stable ground temperatures; c) Thick snow cover periods: Collado Ramos and Ohridski show long periods of stable ground, while Nuevo Incinerador shows temperatures close to 0°C since the beginning of the winter, due to early snow cover

  19. Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis

    Science.gov (United States)

    Cermak, Vladimir; Bodri, Louise

    2016-06-01

    This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, ΔT(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of ΔT(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.

  20. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    Science.gov (United States)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  1. Towards retrieving critical relative humidity from ground-based remote sensing observations

    Energy Technology Data Exchange (ETDEWEB)

    Van Weverberg, Kwinten; Boutle, Ian; Morcrette, Cyril J.; Newsom, Rob K.

    2016-08-22

    Nearly all parameterisations of large-scale cloud require the specification of the critical relative humidity (RHcrit). This is the gridbox-mean relative humidity at which the subgrid fluctuations in temperature and water vapour become so large that part of a subsaturated gridbox becomes saturated and cloud starts to form. Until recently, the lack of high-resolution observations of temperature and moisture variability has hindered a reasonable estimate of the RHcrit from observations. However, with the advent of ground-based measurements from Raman lidar, it becomes possible to obtain long records of temperature and moisture (co-)variances with sub-minute sample rates. Lidar observations are inherently noisy and any analysis of higher-order moments will be very dependent on the ability to quantify and remove this noise. We present an exporatory study aimed at understanding whether current noise levels of lidar-retrieved temperature and water vapour are sufficient to obtain a reasonable estimate of the RHcrit. We show that vertical profiles of RHcrit can be derived for a gridbox length of up to about 30 km (120) with an uncertainty of about 4 % (2 %). RHcrit tends to be smallest near the scale height and seems to be fairly insensitive to the horizontal grid spacing at the scales investigated here (30 - 120 km). However, larger sensitivity was found to the vertical grid spacing. As the grid spacing decreases from 400 to 100 m, RHcrit is observed to increase by about 6 %, which is more than the uncertainty in the RHcrit retrievals.

  2. Comparison of MTI Water Temperatures with Ground Truth Measurements at Crater Lake, OR

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.J.

    2002-12-09

    Water surface temperatures calculated with the Los Alamos National Laboratory Robust algorithm were compared with ground truth water temperature measurements near the Oregon State University buoy in Crater Lake, OR. Bulk water measurements at the OSU buoy were corrected for the skin temperature depression and temperature gradient in the top 10 cm of the water to find the water surface temperature for 18 MTI images for June 2000 to Feb 2002. The MTI robust temperatures were found to be biased by 0.1C, with an RMS error of 1.9C compared with the ground truth water surface temperatures. When corrected for the errors in the buoy temperatures the RMS was reduced to 1.3C. This RMS difference is greater than the 1C found at the Pacific Island of Nauru because of the greater variability in the lake temperature and the atmosphere at Crater Lake and the much smaller target area used in the comparison.

  3. A biophysical process based approach for estimating net primary production using satellite and ground observations

    Science.gov (United States)

    Choudhury, Bhaskar J.

    An approach is presented for calculating interannual variation of net primary production (C) of terrestrial plant communities at regional scale using satellite and ground measurements. C has been calculated as the difference of gross photosynthesis (A g) and respiration (R), recognizing that different biophysical factors exert major control on these two processes. A g has been expressed as the product of radiation use efficiency for gross photosynthesis by an unstressed canopy and intercepted photosynthetically active radiation, which is then adjusted for stresses due to soil water shortage and temperature away from optimum. R has been calculated as the sum of growth and maintenance components (respectively, R g and R m. The R m has been determined from nitrogen content of plant tissue per unit ground area, while R g has been obtained as a fraction of the difference of A g and R m. Model parameters have not been determined by matching the calculated fluxes against observations at any location. Results are presented for cultivated and temperate deciduous forest areas over North America for five consecutive years (1986-1990) and compared with observations.

  4. Simultaneous MSL REMS and Mars Odyssey THEMIS ground temperature measurements in Gale crater, Mars

    Science.gov (United States)

    Hamilton, Victoria; Vasavada, Ashwin; Christensen, Philip; Ramos, Miguel; de Pablo, Miguel Angel

    2014-05-01

    Ground temperature measurements and thermal models have been used extensively to infer physical properties of the Martian surface such as effective mean particle size [1], rock abundance [2], the presence of lateral or vertical heterogeneity [e.g., 3], degree of induration or cementation [4], etc. Knowledge of these physical properties is valuable for interpreting Mars' geologic history at a variety of spatial scales from local to global, as well as providing important insight into the safety and trafficability of landing sites, both prior to [e.g., 5, 6] and during landed mission operations. The Ground Temperature Sensor (GTS) of the Rover Environmental Monitoring Station (REMS) onboard the Mars Science Laboratory Curiosity provides the first in situ observations of ground temperature throughout the diurnal cycle [7]. We have compared GTS-measured temperatures and derived thermal inertias through sol 414 with simultaneously acquired data obtained from the Thermal Emission Imaging System (THEMIS) onboard the Mars Odyssey orbiter [8]. These measurements enable us to: 1) compare orbital and in situ temperature observations, 2) compare thermal inertias derived from single time-of-day measurements to those derived from a full diurnal temperature cycle, and 3) validate interpretations of thermophysical data with visual observations of local terrain. Surface temperatures measured by GTS and THEMIS at locations along Curiosity's traverse show a good correlation and deviations from a perfect fit are expected based on the instruments' spatial resolution differences. Local imaging (e.g., Mastcam clast survey images) show that, not surprisingly, the relatively small GTS field of view can be heavily biased by small-scale, local thermophysical features. THEMIS thermal inertias appear to be somewhat higher than their GTS-derived counterparts overall. However, much of this difference can be attributed to the difference in the spatial resolution of the instruments, particularly at

  5. Maryland Ground-Water Observation Well Network, 2001

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — MDNET is a point coverage that represents the locations and names of a network of observation wells for the State of Maryland. Additional information on water...

  6. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Reiner

    2007-08-07

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000–2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  7. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006

    Science.gov (United States)

    Reiner, Steven R.

    2007-01-01

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000-2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  8. Monitoring rock glacier dynamics and ground temperatures in the semiarid Andes (Chile, 30°S)

    Science.gov (United States)

    Brenning, Alexander; Azócar, Guillermo F.; Bodin, Xavier

    2013-04-01

    Rock glaciers and mountain permafrost are widespread in the high semiarid Andes of Chile, where they concentrate greater amounts of ice than glaciers. Rock glaciers are of particular interest because in some cases the permafrost they contain might be in a degrading in response to climatic warming. This could result in increased dynamics and even to destabilization, which has been observed on some rock glaciers in the studied area. Displacement rates and active-layer temperatures of two rock glaciers as well as ground surface temperatures of the periglacial environment in the upper Elqui valley have been monitored since summer 2009/10 with funding from the Chilean Dirección General de Aguas. Differential GPS measurements of 115 points on the surface of two rock glaciers since April 2010 showed horizontal displacements of up to 1.3 m/a on the Llano de las Liebres rock glacier and up to 1.2 m/a on the Tapado rock glacier. General velocity patterns are consistent with the morphological evidence of activity (e.g., front slopes, looseness of debris) and for the Tapado complex, a clearly distinct activity from the debris-covered glacier was observed. Temperature measurements in four boreholes indicate active-layer depths of about 2.5 m at the highest locations on the Tapado rock glacier (~4400 m a.s.l.) and about 8 m near the front of the Llano rock glacier (3786 m a.s.l.). Spatial patterns of mean ground surface temperature (MGST) were analyzed with regards to influences of elevation, potential incoming solar radiation, location on ice-debris landforms (rock and debris-covered glaciers), and snow cover duration using linear mixed-effects models. While accounting for the other variables, sites with long-lasting snow patches had ~0.4°C lower MGST, and ice-debris landforms had ~0.4-0.6°C lower MGST than general debris surfaces, highlighting important local modifications to the general topographic variation of ground thermal conditions.

  9. Observational Evidence of Changes in Soil Temperatures across Eurasian Continent

    Science.gov (United States)

    Zhang, T.

    2015-12-01

    Soil temperature is one of the key climate change indicators and plays an important role in plant growth, agriculture, carbon cycle and ecosystems as a whole. In this study, variability and changes in ground surface and soil temperatures up to 3.20 m were investigated based on data and information obtained from hydrometeorological stations across Eurasian continent since the early 1950s. Ground surface and soil temperatures were measured daily by using the same standard method and by the trained professionals across Eurasian continent, which makes the dataset unique and comparable over a large study region. Using the daily soil temperature profiles, soil seasonal freeze depth was also obtained through linear interpolation. Preliminary results show that soil temperatures at various depths have increased dramatically, almost twice as much as air temperature increase over the same period. Regionally, soil temperature increase was more dramatically in high northern latitudes than mid/lower latitude regions. Air temperature changes alone may not be able to fully explain the magnitude of changes in soil temperatures. Further study indicates that snow cover establishment started later in autumn and snow cover disappearance occurred earlier in spring, while winter snow depth became thicker with a decreasing trend of snow density. Changes in snow cover conditions may play an important role in changes of soil temperatures over the Eurasian continent.

  10. Ground-temperature controlling effects of duct-ventilated railway embankment in permafrost regions

    Institute of Scientific and Technical Information of China (English)

    NIU; Fujun; CHENG; Guodong

    2004-01-01

    Based on observed data from field-testing embankment of the Qinghai-Tibet Railway, ground-temperature controlling effect of duct-ventilated embankment is studied in this paper.The results show that ventilation ducts can effectively cool the soils surrounding the ducts of the embankment, and the heat budget of the ambient soils in a year shows as heat release. Temperature status of the permafrost below the embankment with ducts buried in the relatively high position is similar to that of the common embankment. The permafrost processes warming all along in the two freezing-thawing cycles when the embankment was constructed. However, the temperature of the frozen soils below the embankment, in which the ducts buried in the relatively low position, rises a little in the initial stage. After that, it cools down gradually. At the same time,ventilation ducts can effectively reduce the thermal disturbance caused by the filled soils. The frozen soils below the common embankment and that with high-posited ducts absorb heat all along in the initial two cycles. While the soils below the embankment with low-posited ducts begin to release heat in the second cycle. This phenomenon proves that the ventilation embankment with low-posited ducts shows efficient temperature-controlling effect. Such embankment can actively cool the subgrade soils and therefore keeps the roadbed thermally stable.

  11. Ground-Based Observations of Unusual Atmospheric Light Emissions

    Institute of Scientific and Technical Information of China (English)

    杨静; 陆高鹏; 杜艰; 潘蔚琳

    2014-01-01

    Unusual atmospheric light emissions were observed from a station located in Shandong Province of East China. The main morphology of these events includes a bright glowing spot, which differs distinctly from any type of transient luminous events (TLEs) well recognized in literature, such as sprites, halos, elves, gigantic jets, blue jets, and blue starters. A comparison between the observations of four such light emission events and the data from lightning detection networks reveals no correlation between these events and the intense lightning activity in the adjacent area. The events reported in this paper may imply the existence of a new phenomenon with a mechanism that remains to be investigated with further observation and complementary lightning measurement.

  12. Satellite observations of ground water changes in New Mexico

    Science.gov (United States)

    In 2002 NASA launched the Gravity Recovery and Climate Experiment (GRACE) satellite mission. GRACE consists of two satellites with a separation of about 200 km.  By accurately measuring the separation between the twin satellites, the differences in the gravity field can be determined. Monthly observ...

  13. RTTOV-gb - adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations

    Science.gov (United States)

    De Angelis, Francesco; Cimini, Domenico; Hocking, James; Martinet, Pauline; Kneifel, Stefan

    2016-08-01

    Ground-based microwave radiometers (MWRs) offer a new capability to provide continuous observations of the atmospheric thermodynamic state in the planetary boundary layer. Thus, they are potential candidates to supplement radiosonde network and satellite data to improve numerical weather prediction (NWP) models through a variational assimilation of their data. However in order to assimilate MWR observations, a fast radiative transfer model is required and such a model is not currently available. This is necessary for going from the model state vector space to the observation space at every observation point. The fast radiative transfer model RTTOV is well accepted in the NWP community, though it was developed to simulate satellite observations only. In this work, the RTTOV code has been modified to allow for simulations of ground-based upward-looking microwave sensors. In addition, the tangent linear, adjoint, and K-modules of RTTOV have been adapted to provide Jacobians (i.e., the sensitivity of observations to the atmospheric thermodynamical state) for ground-based geometry. These modules are necessary for the fast minimization of the cost function in a variational assimilation scheme. The proposed ground-based version of RTTOV, called RTTOV-gb, has been validated against accurate and less time-efficient line-by-line radiative transfer models. In the frequency range commonly used for temperature and humidity profiling (22-60 GHz), root-mean-square brightness temperature differences are smaller than typical MWR uncertainties (˜ 0.5 K) at all channels used in this analysis. Brightness temperatures (TBs) computed with RTTOV-gb from radiosonde profiles have been compared with nearly simultaneous and co-located ground-based MWR observations. Differences between simulated and measured TBs are below 0.5 K for all channels except for the water vapor band, where most of the uncertainty comes from instrumental errors. The Jacobians calculated with the K-module of RTTOV

  14. "Sniffing" Jupiter's moon Europa through ground-based IR observations

    Science.gov (United States)

    Paganini, Lucas; Mumma, Michael J.; Hurford, Terry; Roth, Lorenz; Villanueva, Geronimo Luis

    2016-10-01

    The ability to sample possible plumes from the subsurface ocean in Europa represents a major step in our search for extraterrestrial life. If plumes exist, sampling the effluent material would provide insights into their chemistry and relevant information about the prospect that life could exist, or now exists, within the ocean. Most of the difficulties in detecting plumes come from the less frequent observational coverage of Europa, which contrasts strongly with the frequent Cassini flybys of Enceladus (Spencer & Nimmo 2013). Recent observations have been taken with HST/STIS in 2014/2015, but results have shown no evident confirmation of the 2012 plume detection (Roth et al. 2014, 2015). Future in situ observations (Europa Mission) will provide definitive insights, but not before the spacecraft's arrival in ~2025, thus an interim approach is needed to inform such space mission planning and to complement existing observations at other wavelengths.In 2015, we initiated a strong campaign to build a comprehensive survey of possible plumes on Europa through high-resolution IR spectroscopy with Keck/NIRSPEC. We were awarded 10 nights out of 15 total nights available for Key Strategic Mission Support projects for the 2016A, 2016B, 2017A, and 2017B semesters under NASA time with the Keck Observatory. In 2016A, we observed Europa during 10 half-nights and will continue to do so for another 10 half-nights in 2017A. We target a serendipitous search of gaseous activity from Europa to confirm and constrain the chemical composition of possible Europan plumes that can aid the investigation of physical processes underlying (or on) its surface. Ultimately, we seek to: (1) provide information that can inform planning for NASA's Europa mission, (2) further our current understanding of Europa's gas environment, and (3) complement studies that are currently underway with other facilities (like the Hubble Space Telescope). In this presentation, we will discuss preliminary results

  15. Simultaneous ground- and satellite-based observation of MF/HF auroral radio emissions

    Science.gov (United States)

    Sato, Yuka; Kumamoto, Atsushi; Katoh, Yuto; Shinbori, Atsuki; Kadokura, Akira; Ogawa, Yasunobu

    2016-05-01

    We report on the first simultaneous measurements of medium-high frequency (MF/HF) auroral radio emissions (above 1 MHz) by ground- and satellite-based instruments. Observational data were obtained by the ground-based passive receivers in Iceland and Svalbard, and by the Plasma Waves and Sounder experiment (PWS) mounted on the Akebono satellite. We observed two simultaneous appearance events, during which the frequencies of the auroral roar and MF bursts detected at ground level were different from those of the terrestrial hectometric radiation (THR) observed by the Akebono satellite passing over the ground-based stations. This frequency difference confirms that auroral roar and THR are generated at different altitudes across the F peak. We did not observe any simultaneous observations that indicated an identical generation region of auroral roar and THR. In most cases, MF/HF auroral radio emissions were observed only by the ground-based detector, or by the satellite-based detector, even when the satellite was passing directly over the ground-based stations. A higher detection rate was observed from space than from ground level. This can primarily be explained in terms of the idea that the Akebono satellite can detect THR emissions coming from a wider region, and because a considerable portion of auroral radio emissions generated in the bottomside F region are masked by ionospheric absorption and screening in the D/E regions associated with ionization which results from auroral electrons and solar UV radiation.

  16. Satellite Based Soil Moisture Product Validation Using NOAA-CREST Ground and L-Band Observations

    Science.gov (United States)

    Norouzi, H.; Campo, C.; Temimi, M.; Lakhankar, T.; Khanbilvardi, R.

    2015-12-01

    Soil moisture content is among most important physical parameters in hydrology, climate, and environmental studies. Many microwave-based satellite observations have been utilized to estimate this parameter. The Advanced Microwave Scanning Radiometer 2 (AMSR2) is one of many remotely sensors that collects daily information of land surface soil moisture. However, many factors such as ancillary data and vegetation scattering can affect the signal and the estimation. Therefore, this information needs to be validated against some "ground-truth" observations. NOAA - Cooperative Remote Sensing and Technology (CREST) center at the City University of New York has a site located at Millbrook, NY with several insitu soil moisture probes and an L-Band radiometer similar to Soil Moisture Passive and Active (SMAP) one. This site is among SMAP Cal/Val sites. Soil moisture information was measured at seven different locations from 2012 to 2015. Hydra probes are used to measure six of these locations. This study utilizes the observations from insitu data and the L-Band radiometer close to ground (at 3 meters height) to validate and to compare soil moisture estimates from AMSR2. Analysis of the measurements and AMSR2 indicated a weak correlation with the hydra probes and a moderate correlation with Cosmic-ray Soil Moisture Observing System (COSMOS probes). Several differences including the differences between pixel size and point measurements can cause these discrepancies. Some interpolation techniques are used to expand point measurements from 6 locations to AMSR2 footprint. Finally, the effect of penetration depth in microwave signal and inconsistencies with other ancillary data such as skin temperature is investigated to provide a better understanding in the analysis. The results show that the retrieval algorithm of AMSR2 is appropriate under certain circumstances. This validation algorithm and similar study will be conducted for SMAP mission. Keywords: Remote Sensing, Soil

  17. Use of Ground-water Temperature Patterns to Determine the Hydraulic Conductance of the Streambed Along the Middle Reaches of the Russian River, CA

    Science.gov (United States)

    Su, G. W.; Constantz, J.; Jasperse, J.; Seymour, D.

    2002-12-01

    Along the Russian River in Sonoma County, the alluvial aquifer is the preferred source of drinking water because sediments and other constituents in the river water would require additional treatment. From late spring to early winter, an inflatable dam is erected to raise the river stage and passively recharge the alluvial aquifer. The raised stage also permits diversion of river water to a series of recharge ponds located near the dam along the river. Improved understanding of stream exchanges with ground water is needed to better manage available water resources. Heat is used as a tracer of shallow ground-water movement for detailed hydraulic parameter estimation along the middle reaches of the river. Water-levels and ground-water temperatures were measured in a series of observations wells and compared to the river stage and surface-water temperatures. Hydraulic conductivities were predicted by optimizing simulated ground-water temperatures using VS2DHI, a heat and water transport model, to observed temperatures in the aquifer. These conductivity values will be used in a stream/ground-water model of this region being developed using MODFLOW. Temperature-based estimates of streambed conductance will be inserted in the STREAM package of the model to constrain this parameter. Although temperature-based predictions of hydraulic conductivity vary significantly along the reach, the results generally suggest that an anisotropy of 5 to 1 (horizontal to vertical) provides the best hydraulic conductivity matches for predicted versus observed ground-water temperatures.

  18. Observing Io at high resolution from the ground with LBT

    Science.gov (United States)

    Conrad, A.; de Pater, I.; Kürster, M.; Herbst, T.; Kaltenegger, L.; Skrutskie, M.; Hinz, P.

    2011-10-01

    LINC-NIRVANA (LN) is an imaging Fizeau interferometer, with wavelength coverage from 1.1 to 2.4 microns, scheduled for first light on the Large Binocular Telescope (LBT) in 2014. The classical on-axis AO mode of LN, called LINC mode will provide solar system researchers with 15, or in some cases even 10, milliarcsecond spatial resolution. Several projects are planned for using LINC to observe features on Jupiter's volcanic moon Io.

  19. Observation of Ground-State Two-Neutron Decay

    CERN Document Server

    Thoennessen, M; Spyrou, A; Lunderberg, E; DeYoung, P A; Attanayake, H; Baumann, T; Bazin, D; Brown, B A; Christian, G; Divaratne, D; Grimes, S M; Haagsma, A; Finck, J E; Frank, N; Luther, B; Mosby, S; Nagi, T; Peaslee, G F; Peters, W A; Schiller, A; Smith, J K; Snyder, J; Strongman, M; Volya, A

    2012-01-01

    Neutron decay spectroscopy has become a successful tool to explore nuclear properties of nuclei with the largest neutron-to-proton ratios. Resonances in nuclei located beyond the neutron dripline are accessible by kinematic reconstruction of the decay products. The development of two-neutron detection capabilities of the Modular Neutron Array (MoNA) at NSCL has opened up the possibility to search for unbound nuclei which decay by the emission of two neutrons. Specifically this exotic decay mode was observed in 16Be and 26O.

  20. Electronic ground state OH(X) radical in a low-temperature atmospheric pressure plasma jet

    Science.gov (United States)

    Fuh, Che A.; Clark, Shane M.; Wu, Wei; Wang, Chuji

    2016-10-01

    The wide applicability of atmospheric pressure plasma jets in biomedicine stems from the presence of reactive nitrogen and oxygen species generated in these plasma jets. Knowing the absolute concentration of these reactive species is of utmost importance as it is critical, along with the particle flux obtained from the plasma feed gas flow rate to ensure that the correct dosage is applied during applications. In this study, we investigate and report the ground state OH(X) number density acquired using cavity ringdown spectroscopy, along the propagation axis (z-axis) of a cold atmospheric pressure helium plasma plume. The jet was generated by a repetitively pulsed mono-polar square wave of duration 1 μs running at a frequency of 9.9 kHz. The voltage supplied was 6.5 kV with the helium flow rate fixed at 3.6 standard liters per minute. The rotational and vibrational temperatures are simulated from the second positive system of nitrogen, N 2(C3πu-B3πg) , with the rotational temperature being spatially constant at 300 K along the propagation axis of the atmospheric pressure plasma jet while the vibrational temperature is 3620 K at the beginning of the plume and is observed to decrease downstream. The OH(A) emission intensity obtained via optical emission spectroscopy was observed to decrease downstream of the plasma jet. The OH(X) number density along the propagation axis was initially 2.2 × 1013 molecules cm-3 before increasing to a peak value of 2.4 × 1013 molecules cm-3, from which the number density was observed to decrease to 2.2 × 1013 molecules cm-3 downstream of the plasma jet. The total OH(A, X) in the plasma jet remained relatively constant along the propagation axis of the plasma jet before falling off at the tip of the jet. The increase in vibrational temperature downstream and the simultaneous measurements of both the excited state OH(A) and the ground state OH(X) reported in this study provide insights into the formation and consumption of this

  1. Correcting atmospheric effects in thermal ground observations for hyperspectral emissivity estimation

    Science.gov (United States)

    Timmermans, Joris; Buitrago, Maria

    2014-05-01

    Knowledge of Land surface temperature is of crucial importance in energy balance studies and environmental modeling. Accurate retrieval of land surface temperature (LST) demands detailed knowledge of the land surface emissivity. Measured radiation by remote sensing sensors to land surface temperature can only be performed using a-priori knowledge of the emissivity. Uncertainties in the retrieval of this emissivity can cause huge errors in LST estimations. The retrieval of emissivity (and LST) is per definition an underdetermined inversion, as only one observation is made while two variables are to be estimated. Several researches have therefore been performed on measuring emissivity, such as the normalized emissivity method, the temperature-emissivity separation (TES) using the minimum and maximum difference of emissivity and the use of vegetation indices. In each of these approaches atmospherically corrected radiance measurements by remote sensing sensors are correlated to ground measurements. Usually these ground measurements are performed with the ground equivalent of the remote sensing sensors; the CIMEL 312-2 has the same spectral bands as ASTER. This way parameterizations acquired this way are only usable for specific sensors and need to be redone for newer sensors. Recently hyperspectral thermal radiometers, such as the MIDAC, have been developed that can solve this problem. By using hyperspectral observations of emissivity, together with sensor simulators, ground measurements of different satellite sensor can be simulated. This facilitates the production of validation data for the different TES algorithms. However before such measurements can be performed extra steps of processing need to be performed. Atmospheric correction becomes more important in hyperspectral observations than for broadband observations, as energy levels measured per band is lower. As such the atmosphere has a relative larger contribution if bandwidths become smaller. The goal of this

  2. Reconciling the discrepancy in ground- and satellite-observed trends in the spring phenology of winter wheat in China from 1993 to 2008

    Science.gov (United States)

    Guo, Li; An, Ning; Wang, Kaicun

    2016-02-01

    Monitoring crop phenology has become a growing concern for food security. Crop phenology can be traditionally observed at plot scale in the field or recently at a much larger scale by satellites. In this study, we compared the spring phenology of winter wheat (Triticum sp.), quantified as the timing of start-of-spring-season (SOS), using 8 km resolution satellite data and ground observations at 112 agrometeorological stations across China from 1993 to 2008. We found that ground and satellite observations displayed opposing trends in winter wheat SOS. Ground observation exhibited a delayed onset of SOS at 86% of ground stations, whereas satellite data suggested an earlier arrival of SOS at 78% of stations. The meteorological SOS calculated from daily air temperature supported the earlier occurrence of SOS indicated by satellite data. Moreover, satellite data showed more agreement with meteorological data with respect to interannual SOS variations than did field phenology records. Given the dominant control of air temperature on winter wheat's spring phenology, satellite observation provides a reliable measure of the long-term trends and dynamics of SOS. Ground-observed SOS trends were impaired by data heterogeneity and limited spatial coverage. However, compared with ground observations, satellite-derived phenological timings are often lack of biological meanings. Therefore, integrating ground and satellite observations could enhance the monitoring of winter wheat SOS, which would increase the knowledge of vegetation's response to the changing climate and help to optimize timely crop management.

  3. Coordinated Observations of Prominences with SUMER/CDS and Ground Observatories

    Science.gov (United States)

    Wiik, J. E.; Schmieder, B.; Kucera, T.; Poland, A.

    An international campaign for the observation of prominences and filaments was successfully accomplished between June 3 and 9 1996. Several ground observatories took part in the campaign which included the space observatories SOHO and Yohkoh. The main objective of this campaign was to study the dynamics of prominences and the prominence-corona interface, the formation of filaments and the fine structures at different temperatures. We will reported on two Joint Observing Programmes of SUMER and CDS aboard SOHO (JOP 12 and JOP 17), which have been achieved. Finally we will present as an exemple a prominence observed on May 1, 1996 during the tests of the programme JOP 12. This prominence was associated with a CME (observed with LASCO). Very active parts with Dopplershifs up to +/- 36kms(-1) were measured in the SUMER spectra of the prominence, indicating the presence of twisted ropes during the eruption. Mean electron densities have spatial and temporal dispersion of one order of magnitude (10(9) - 10(10) cm(-3) ).

  4. The XRS Low Temperature Cryogenic System: Ground Performance Test Results

    Science.gov (United States)

    Breon, Susan; Sirron, Peter; Boyle, Robert; Canavan, Ed; DiPirro, Michael; Serlemitsos, Aristides; Tuttle, James; Whitehouse, Paul

    1998-01-01

    The X-Ray Spectrometer (XRS) instrument is part of the Astro-E mission scheduled to launch early in 2000. Its cryogenic system is required to cool a 32-element square array of x-ray microcalorimeters to 60-65 mK over a mission lifetime of at least 2 years. This is accomplished using an adiabatic demagnetization refrigerator (ADR) contained within a two-stage superfluid helium/solid neon cooler. Goddard Space Flight Center is providing the ADR and helium dewar. The flight system was assembled in Sept. 1997 and subjected to extensive thermal performance tests. This paper presents test results at both the system and component levels. In addition, results of the low temperature topoff performed in Japan with the engineering unit neon and helium dewars are discussed.

  5. Ground Observations of Post-Noon Aurora :a Case Study

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The characteristics of the post-noon aurora observed at Antarctic Zhongshan station on June 12, 1999, were discussed and analyzed. In the condition of the magnetic activity is not large(Kp≈l), for post-noon 630. 0 nm emissions, the total fluxes of soft precipitating particles were increasing from 10:50 UT to 13:35 UT and were decreasing from 13 :35 UT to 18 :00 UT in almost monotonous way. Away from noon, the 557. 7 nm emissions increased gradually from 10 :50 UT to 17 :10 UT. The behaviors of the precipitat- ing particles for exciting 630. 0 nm aurora and 557. 7 nm aurora were quite different. The peak intensity of 630. 0 nm and 557. 7 nm emissions appeared at about 13:35 UT and 15:40 UT respectively, the time differ- ence of two peaks is about 2 h. The energy of precipitating electrons remained fairly steady until 15:00 UT when it rose dramatically.

  6. Ground-based Infrared Observations of Water Vapor and Hydrogen Peroxide in the Atmosphere of Mars

    Science.gov (United States)

    Encrenaz, T.; Greathouse, T. K.; Bitner, M.; Kruger, A.; Richter, M. J.; Lacy, J. H.; Bézard, B.; Fouchet, T.; Lefevre, F.; Forget, F.; Atreya, S. K.

    2008-11-01

    Ground-based observations of water vapor and hydrogen peroxide have been obtained in the thermal infrared range, using the TEXES instrument at the NASA Infrared Telescope Facility, for different times of the seasonal cycle.

  7. The 3-Hour-Interval Prediction of Ground-Level Temperature in South Korea Using Dynamic Linear Models

    Institute of Scientific and Technical Information of China (English)

    Keon-Tae SOHN; Deuk-Kyun RHA; Young-Kyung SEO

    2003-01-01

    The 3-hour-interval prediction of ground-level temperature from +00 h out to +45 h in South Korea(38 stations) is performed using the DLM (dynamic linear model) in order to eliminate the systematicerror of numerical model forecasts. Numerical model forecasts and observations are used as input values ofthe DLM. According to the comparison of the DLM forecasts to the KFM (Kalman filter model) forecastswith RMSE and bias, the DLM is useful to improve the accuracy of prediction.

  8. Heavy precipitation retrieval from combined satellite observations and ground-based lightning measurements

    Science.gov (United States)

    Mugnai, A.; Dietrich, S.; Casella, D.; di Paola, F.; Formenton, M.; Sanò, P.

    2010-09-01

    We have developed a series of algorithms for the retrieval of precipitation (especially, heavy precipitation) over the Mediterranean area using satellite observations from the available microwave (MW) radiometers onboard low Earth orbit (LEO) satellites and from the visible-infrared (VIS-IR) SEVIRI radiometer onboard the European geosynchronous (GEO) satellite Meteosat Second Generation (MSG), in conjunction with lightning data from ground-based networks - such as ZEUS and LINET. These are: • A new approach for precipitation retrieval from space (which we call the Cloud Dynamics and Radiation Database approach, CDRD) that incorporates lightning and environmental/dynamical information in addition to the upwelling microwave brightness temperatures (TB’s) so as to reduce the retrieval uncertainty and improve the retrieval performance; • A new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique), that uses passive-microwave (PM) retrievals in conjunction with lightning information and the Global Convection Detection (GCD) technique to discriminate deep convective clouds within the GEO observations; • A new morphing approach (which we call the Lightning-based Precipitation Evolving Technique, L-PET) that uses the available lightning measurements for propagating the rainfall estimates from satellite-borne MW radiometers to a much higher time resolution than the MW observations. We will present and discuss our combined MW/IR/lightning precipitation algorithms and analyses with special reference to some case studies over the western Mediterranean.

  9. Observation of Multi-Electromagnetically Induced Transparency in V-type Rubidium at Room Temperature

    CERN Document Server

    Ying, Kang; Qi, Yihong; Chen, Dijun; Cai, Haiwen; Qu, Ronghui; Gong, Shangqing

    2013-01-01

    A detailed experimental investigation and theoretical analysis have been made in the V-type 85Rb atomic medium at room temperature. Seven electromagnetically induced transparency windows, including a central double-peak-structure, have been observed experimentally when a coupling field and a probe field are applied into the ground and first excited states. By taking into account the hyperfine splitting of the excited state, our theoretical analysis gives good explanation for the observed phenomena.

  10. Satellite Cloud Data Validation through MAGIC Ground Observation and the S'COOL Project: Scientific Benefits grounded in Citizen Science

    Science.gov (United States)

    Crecelius, S.; Chambers, L. H.; Lewis, P. M.; Rogerson, T.

    2013-12-01

    The Students' Cloud Observation On-Line (S'COOL) Project was launched in 1997 as the Formal Education and Public Outreach arm of the Clouds and the Earth's Radiant Energy System (CERES) Mission. ROVER, the Citizen Scientist area of S'COOL, started in 2007 and allows participants to make 'roving' observations from any location as opposed to a fixed, registered classroom. The S'COOL Project aids the CERES Mission in trying to answer the research question: 'What is the Effect of Clouds on the Earth's Climate'. Participants from all 50 states, most U.S. Territories, and 63 countries have reported more than 100,500 observations to the S'COOL Project over the past 16 years. The Project is supported by an intuitive website that provides curriculum support and guidance through the observation steps; 1) Request satellite overpass schedule, 2) Observe clouds, and 3) Report cloud observations. The S'COOL Website also hosts a robust database housing all participants' observations as well as the matching satellite data. While the S'COOL observation parameters are based on the data collected by 5 satellite missions, ground observations provide a unique perspective to data validation. Specifically, low to mid level clouds can be obscured by overcast high-level clouds, or difficult to observe from a satellite's perspective due to surface cover or albedo. In these cases, ground observations play an important role in filling the data gaps and providing a better, global picture of our atmosphere and clouds. S'COOL participants, operating within the boundary layer, have an advantage when observing low-level clouds that affect the area we live in, regional weather patterns, and climate change. S'COOL's long-term data set provides a valuable resource to the scientific community in improving the "poorly characterized and poorly represented [clouds] in climate and weather prediction models'. The MAGIC Team contacted S'COOL in early 2012 about making cloud observations as part of the MAGIC

  11. Predicted Attenuation Relation and Observed Ground Motion of Gorkha Nepal Earthquake of 25 April 2015

    Science.gov (United States)

    Singh, R. P.; Ahmad, R.

    2015-12-01

    A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.

  12. The Earth Observing System (EOS) Ground System: Leveraging an Existing Operational Ground System Infrastructure to Support New Missions

    Science.gov (United States)

    Hardison, David; Medina, Johnny; Dell, Greg

    2016-01-01

    The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.

  13. Inferring snow pack ripening and melt out from distributed ground surface temperature measurements

    Directory of Open Access Journals (Sweden)

    M.-O. Schmid

    2012-02-01

    Full Text Available The seasonal snow cover and its melting are heterogeneous both in space and time. Describing and modelling this variability are important because it affects divers phenomena such as runoff, ground temperatures or slope movements. This study investigates the derivation of melting characteristics based on spatial clusters of temperature measurements. Results are based on data from Switzerland where ground surface temperatures were measured with miniature loggers (iButtons at 40 locations, referred to as footprints. At each footprint, ten iButtons have been distributed randomly few cm below the ground surface over an area of 10 m × 10 m. Footprints span elevations of 2100–3300 m a.s.l. and slope angles of 0–55°, as well as diverse slope expositions and types of surface cover and ground material. Based on two years of temperature data, the basal ripening date and the melt-out date are determined for each iButton, aggregated to the footprint level and further analysed. The date of melt out could be derived for nearly all iButtons, the ripening date could be extracted for only approximately half of them because it requires ground freezing below the snow pack. The variability within a footprint is often considerable and one to three weeks difference between melting or ripening of the points in one footprint is not uncommon. The correlation of mean annual ground surface temperatures, ripening date and melt-out date is moderate, making them useful intuitive complementary measured for model evaluation.

  14. Quantum Cohesion Oscillation of Electron Ground State in Low Temperature Laser Plasma

    Science.gov (United States)

    Zhao, Qingxun; Zhang, Ping; Dong, Lifang; Zhang, Kaixi

    1996-01-01

    The development of radically new technological and economically efficient methods for obtaining chemical products and for producing new materials with specific properties requires the study of physical and chemical processes proceeding at temperature of 10(exp 3) to 10(exp 4) K, temperature range of low temperature plasma. In our paper, by means of Wigner matrix of quantum statistical theory, a formula is derived for the energy of quantum coherent oscillation of electron ground state in laser plasma at low temperature. The collective behavior would be important in ion and ion-molecule reactions.

  15. Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels.

    Directory of Open Access Journals (Sweden)

    Allyson G Hindle

    Full Text Available 13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy - wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection. To identify candidate proteins, we applied a sensitive 2D gel electrophoresis method to quantify protein differences among forebrain extracts prepared from ground squirrels in two summer, four winter and fall transition states. Proteins that differed among groups were identified using LC-MS/MS. Only 84 protein spots varied significantly among the defined states of hibernation. Protein changes in the forebrain proteome fell largely into two reciprocal patterns with a strong body temperature dependence. The importance of body temperature was tested in animals from the fall; these fall animals use torpor sporadically with body temperatures mirroring ambient temperatures between 4 and 21°C as they navigate the transition between summer homeothermy and winter heterothermy. Unlike cold-torpid fall ground squirrels, warm-torpid individuals strongly resembled the homeotherms, indicating that the changes observed in torpid hibernators are defined by body temperature, not torpor per se. Metabolic enzymes were largely unchanged despite varied metabolic activity across annual and torpor-arousal cycles. Instead, the majority of the observed changes were cytoskeletal proteins and their regulators. While cytoskeletal structural proteins tended to differ seasonally, i.e., between summer homeothermy and winter heterothermy, their regulatory proteins were more strongly affected by body temperature. Changes in the abundance of various isoforms of the microtubule assembly and disassembly regulatory proteins

  16. Evaluation of the ground surface Enthalpy balance from bedrock shallow borehole temperatures (Livingston Island, Maritime Antarctic

    Directory of Open Access Journals (Sweden)

    M. Ramos

    2008-03-01

    Full Text Available The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic is studied. The borehole is 2.4 m deep and is located in a quartzite outcrop in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth hourly temperature profiles from: (i the cooling periods of the frost seasons of 2000 to 2005, and (ii the warming periods of the thaw seasons of 2002–2003, 2003–2004 and 2004–2005, were studied. In this modelling approach, heat gains and losses across ground surface are considered to be the causes for the 0°C isotherm movement. A methodological approach to calculate the Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density is considered to be constant in the borehole and initial isothermal conditions at 0°C are assumed to run the model. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima.

  17. Evaluation of the ground surface Enthalpy balance from bedrock shallow borehole temperatures (Livingston Island, Maritime Antarctic)

    Science.gov (United States)

    Ramos, M.; Vieira, G.

    2008-03-01

    The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic) is studied. The borehole is 2.4 m deep and is located in a quartzite outcrop in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth) hourly temperature profiles from: (i) the cooling periods of the frost seasons of 2000 to 2005, and (ii) the warming periods of the thaw seasons of 2002-2003, 2003-2004 and 2004-2005, were studied. In this modelling approach, heat gains and losses across ground surface are considered to be the causes for the 0°C isotherm movement. A methodological approach to calculate the Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density is considered to be constant in the borehole and initial isothermal conditions at 0°C are assumed to run the model. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima).

  18. First ground-based FTIR-observations of methane in the tropics

    Directory of Open Access Journals (Sweden)

    A. K. Petersen

    2010-02-01

    Full Text Available Total column concentrations and volume mixing ratio profiles of methane have been retrieved from ground-based solar absorption FTIR spectra in the near-infrared recorded in Paramaribo (Suriname. The methane FTIR observations are compared with TM5 model simulations and satellite observations from SCIAMACHY, and represent the first validation of SCIAMACHY retrievals in the tropics using ground-based remote sensing techniques. Apart from local biomass burning features, our methane FTIR observations agree well with the SCIAMACHY retrievals and TM5 model simulations.

  19. [The importance of temperature on storage of ground natural spices (author's transl)].

    Science.gov (United States)

    Koller, W D

    1976-02-27

    Several factors influencing the ingredients of volative oils of some ground natural spices have been investigated during storage. The effects on the aroma have been characterized sensorically; relations between the analytical and sensorical results are explained using anise as an example. Of the influencing factors studied such as packaging material, storage temperature and storage duration, the storage temperature must be regarded as the most important.

  20. On OMC-1 temperatures determined from methyl cyanide observations

    Science.gov (United States)

    Hollis, J. M.

    1982-01-01

    An analysis is performed on the J(k) = 12(k)-11(k) and 13(k)-12(k) transitions of methyl cyanide detected by other investigators in the direction of OMC-1. The original interpretation of those observations argues for the presence of two distinct temperature regions or possibly a temperature gradient within the cloud. The analysis presented here demonstrates that the observations of these particular molecular transitions are consistent with a single methyl cyanide emission region with a source kinetic temperature of 121.2 + or - 8.2 K and a molecular rotational temperature of 16.6 + or - 1.8 K.

  1. On OMC-1 temperatures determined from methyl cyanide observations

    Science.gov (United States)

    Hollis, J. M.

    1982-01-01

    An analysis is performed on the J(k) = 12(k)-11(k) and 13(k)-12(k) transitions of methyl cyanide detected by other investigators in the direction of OMC-1. The original interpretation of those observations argues for the presence of two distinct temperature regions or possibly a temperature gradient within the cloud. The analysis presented here demonstrates that the observations of these particular molecular transitions are consistent with a single methyl cyanide emission region with a source kinetic temperature of 121.2 + or - 8.2 K and a molecular rotational temperature of 16.6 + or - 1.8 K.

  2. An Efficient Optical Observation Ground Network is the Fundamental basis for any Space Based Debris Observation Segment

    Science.gov (United States)

    Cibin, L.; Chiarini, M.; Annoni, G.; Milani, A.; Bernardi, F.; Dimare, L.; Valsecchi, G.; Rossi, A.; Ragazzoni, R.; Salinari, P.

    2013-08-01

    A matter which is strongly debated in the SSA Community, concerns the observation of Space Debris from Space [1]. This topic has been preliminary studied by our Team for LEO, MEO and GEO orbital belts, allowing to remark a fundamental concept, residing in the fact that to be suitable to provide a functionality unavailable from ground in a cost to performance perspective, any Space Based System must operate in tight collaboration with an efficient Optical Ground Observation Network. In this work an analysis of the different functionalities which can be implemented with this approach for every orbital belt is illustrated, remarking the different achievable targets in terms of population size as a function of the observed orbits. Further, a preliminary definition of the most interesting missions scenarios, together with considerations and assessments on the observation strategy and P/L characteristics are presented.

  3. Modeling short wave radiation and ground surface temperature: a validation experiment in the Western Alps

    Science.gov (United States)

    Pogliotti, P.; Cremonese, E.; Dallamico, M.; Gruber, S.; Migliavacca, M.; Morra di Cella, U.

    2009-12-01

    Permafrost distribution in high-mountain areas is influenced by topography (micro-climate) and high variability of ground covers conditions. Its monitoring is very difficult due to logistical problems like accessibility, costs, weather conditions and reliability of instrumentation. For these reasons physically-based modeling of surface rock/ground temperatures (GST) is fundamental for the study of mountain permafrost dynamics. With this awareness a 1D version of GEOtop model (www.geotop.org) is tested in several high-mountain sites and its accuracy to reproduce GST and incoming short wave radiation (SWin) is evaluated using independent field measurements. In order to describe the influence of topography, both flat and near-vertical sites with different aspects are considered. Since the validation of SWin is difficult on steep rock faces (due to the lack of direct measures) and validation of GST is difficult on flat sites (due to the presence of snow) the two parameters are validated as independent experiments: SWin only on flat morphologies, GST only on the steep ones. The main purpose is to investigate the effect of: (i) distance between driving meteo station location and simulation point location, (ii) cloudiness, (iii) simulation point aspect, (iv) winter/summer period. The temporal duration of model runs is variable from 3 years for the SWin experiment to 8 years for the validation of GST. The model parameterization is constant and tuned for a common massive bedrock of crystalline rock like granite. Ground temperature profile is not initialized because rock temperature is measured at only 10cm depth. A set of 9 performance measures is used for comparing model predictions and observations (including: fractional mean bias (FB), coefficient of residual mass (CMR), mean absolute error (MAE), modelling efficiency (ME), coefficient of determination (R2)). Results are very encouraging. For both experiments the distance (Km) between location of the driving meteo

  4. Effect of low-temperature aging on the mechanical behavior of ground Y-TZP

    NARCIS (Netherlands)

    Pereira, G.K.R.; Amaral, M.; Cesar, P.F.; Bottino, M.C.; Kleverlaan, C.J.; Valandro, L.F.

    2015-01-01

    This study evaluated the effects of low-temperature aging on the surface topography, phase transformation, biaxial flexural strength, and structural reliability of a ground Y-TZP ceramic. Disc-shaped specimens were manufactured and divided according to two factors: "grinding" - without grinding

  5. Entry Dispersion Analysis for the Hayabusa Spacecraft using Ground Based Optical Observation

    CERN Document Server

    Yamaguchi, T; Yagi, M; Tholen, D J

    2011-01-01

    Hayabusa asteroid explorer successfully released the sample capsule to Australia on June 13, 2010. Since the Earth reentry phase of sample return was critical, many backup plans for predicting the landing location were prepared. This paper investigates the reentry dispersion using ground based optical observation as a backup observation for radiometric observation. Several scenarios are calculated and compared for the reentry phase of the Hayabusa to evaluate the navigation accuracy of the ground-based observation. The optical observation doesn't require any active reaction from a spacecraft, thus these results show that optical observations could be a steady backup strategy even if a spacecraft had some trouble. We also evaluate the landing dispersion of the Hayabusa only with the optical observation.

  6. Modeling of ground temperatures in South Shetlands (Antarctic Peninsula): Forcing a land surface model with the reanalysis ERA-Interim

    Science.gov (United States)

    João Rocha, Maria; Dutra, Emanuel; Vieira, Gonçalo; Miranda, Pedro; Ramos, Miguel

    2010-05-01

    This study focus on Livingston Island (South Shetlands Antarctic Peninsula), one of the Earth's regions where warming has been more significant in the last 50 years. Our work is integrated in a project focusing on studying the influence of climate change on permafrost temperatures, which includes systematic and long-term terrain monitoring and also modeling using land surface models. A contribution will be the evaluation of the possibilities for using land surface modeling approaches to areas of the Antarctic Peninsula with lack of data on observational meteorological forcing data, as well as on permafrost temperatures. The climate variability of the Antarctic Peninsula region was studied using the new reanalysis product from European Centre for Medium-Range Weather Forecasts (ECMWF) Era-Interim and observational data from boreholes run by our group. Monthly and annual cycles of near surface climate variables are compared. The modeling approach includes the HTESSEL (Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land) forced with ERA-Interim for modeling ground temperatures in the study region. The simulation results of run of HTESSEL are compared against soil temperature observations. The results show a favorable match between simulated and observed soil temperatures. The use of different forcing parameters is compared and the model vs. observation results from different results is analyzed. The main variable needing further improvement in the modeling is snow cover. The developed methodology provides a good tool for the analysis of the influence of climate variability on permafrost of the Maritime Antarctic.

  7. TETRA Observation of Gamma Rays at Ground Level Associated with Nearby Thunderstorms

    CERN Document Server

    Ringuette, Rebecca; Cherry, Michael L; Granger, Douglas; Guzik, T Gregory; Stewart, Michael; Wefel, John P

    2013-01-01

    Terrestrial Gamma ray Flashes (TGFs) -- very short, intense bursts of electrons, positrons, and energetic photons originating from terrestrial thunderstorms -- have been detected with satellite instruments. TETRA, an array of NaI(Tl) scintillators at Louisiana State University, has now been used to detect similar bursts of 50 keV to over 2 MeV gamma rays at ground level. After 2.6 years of observation, twenty-four events with durations 0.02- 4.2 msec have been detected associated with nearby lightning, three of them coincident events observed by detectors separated by ~1000 m. Nine of the events occurred within 6 msec and 3 miles of negative polarity cloud-to-ground lightning strokes with measured currents in excess of 20 kA. The events reported here constitute the first catalog of TGFs observed at ground level in close proximity to the acceleration site.

  8. Ground-Water Temperature, Noble Gas, and Carbon Isotope Data from the Espanola Basin, New Mexico

    Science.gov (United States)

    Manning, Andrew H.

    2009-01-01

    Ground-water samples were collected from 56 locations throughout the Espanola Basin and analyzed for general chemistry (major ions and trace elements), carbon isotopes (delta 13C and 14C activity) in dissolved inorganic carbon, noble gases (He, Ne, Ar, Kr, Xe, and 3He/4He ratio), and tritium. Temperature profiles were measured at six locations in the southeastern part of the basin. Temperature profiles suggest that ground water generally becomes warmer with distance from the mountains and that most ground-water flow occurs at depths 50 years old, consistent with the 14C ages. Terrigenic He (Heterr) concentrations in ground water are high (log Delta Heterr of 2 to 5) throughout much of the basin. High Heterr concentrations are probably caused by in situ production in the Tesuque Formation from locally high concentrations of U-bearing minerals (Northeast zone only), or by upward diffusive/advective transport of crustal- and mantle-sourced He possibly enhanced by basement piercing faults, or by both. The 3He/4He ratio of Heterr (Rterr) is commonly high (Rterr/Ra of 0.3-2.0, where Ra is the 3He/4He ratio in air) suggesting that Espanola Basin ground water commonly contains mantle-sourced He. The 3He/4He ratio of Heterr is generally the highest in the western and southern parts of the basin, closest to the western border fault system and the Quaternary to Miocene volcanics of the Jemez Mountains and Cerros del Rio.

  9. Evaluation of the ground surface Enthalpy balance from bedrock temperatures (Livingston Island, Maritime Antarctic)

    Science.gov (United States)

    Ramos, M.; Vieira, G.

    2009-05-01

    The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic) is studied. The borehole is 2.4 m deep and is located in a massive quartzite outcrop with negligible water content, in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth) hourly temperature profiles from: (i) the cooling periods of the frost season of 2000 to 2005, and (ii) the warming periods of the thaw season of 2002-2003, 2003-2004 and 2004-2005, were studied. In this modelling approach, heat gains and losses across the ground surface are assumed to be the causes for the 0°C isotherm movement. A methodological approach to calculate the ground Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change into the rock is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density and thermal conductivity are considered to be constant and initial isothermal conditions at 0°C are assumed (based in collected data and local meteorological conditions in this area) to run the model in the beginning of each season. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima). The application of this method avoids error propagation induced by the heat exchange calculations from multiple sensors using the Fourier method.

  10. Evaluation of the ground surface Enthalpy balance from bedrock temperatures (Livingston Island, Maritime Antarctic

    Directory of Open Access Journals (Sweden)

    M. Ramos

    2009-05-01

    Full Text Available The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic is studied. The borehole is 2.4 m deep and is located in a massive quartzite outcrop with negligible water content, in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth hourly temperature profiles from: (i the cooling periods of the frost season of 2000 to 2005, and (ii the warming periods of the thaw season of 2002–2003, 2003–2004 and 2004–2005, were studied. In this modelling approach, heat gains and losses across the ground surface are assumed to be the causes for the 0°C isotherm movement. A methodological approach to calculate the ground Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change into the rock is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density and thermal conductivity are considered to be constant and initial isothermal conditions at 0°C are assumed (based in collected data and local meteorological conditions in this area to run the model in the beginning of each season. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima. The application of this method avoids error propagation induced by the heat exchange calculations from multiple sensors using the Fourier method.

  11. Field observations of carbonyl sulfide deficit near the ground: Possible implication of vegetation

    Science.gov (United States)

    Mihalopoulos, N.; Bonsang, B.; Nguyen, B. C.; Kanakidou, M.; Belviso, S.

    In order to study carbonyl sulfide sources and sinks at ground level, two experiments were conducted in 1986 during temperature inversion events. In the first experiment, the samples were collected in a coastal area during land-breeze events. In the second experiment, COS vertical profiles were carried out in an agricultural area, within and above an inversion layer near the ground. Both stable atmospheric situations resulted in a deficit of COS near the ground which is attributed to the existence of a sink of COS at this level. Deposition onto vegetation seems to be the most likely mechanism for this COS uptake, a conclusion in agreement with the results of laboratory and soil flux chambers experiments.

  12. Assessment of MTI Water Temperature Thermal Discharge Retrievals with Ground Truth

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.J.

    2002-12-06

    Surface water temperatures calculated from Multispectral Thermal Imager (MTI) brightness temperatures and the robust retrieval algorithm, developed by the Los Alamos National Laboratory (LANL), are compared with ground truth measurements at a mid-latitude cold-water site along the Atlantic coast near Plymouth, MA. In contrast to the relative uniformity of the sea-surface temperature in the open ocean the water temperature near Pilgrim exhibits strong spatial gradients and temporal variability. This made it critical that all images be accurately registered in order to extract temperature values at the six buoy locations. Sixteen images during a one-year period from August 2000 to July 2001 were selected for the study. The RMS error of Pilgrim water temperature is about 3.5 C for the 4 buoys located in open water. The RMS error of the combined temperatures from 3 of the open-water buoys is 2.8 C. The RMS error includes errors in the ground truth. The magnitude of this error is estimated to range between 0.8 and 2.3 C. The two main components of this error are warm-layer effect and spatial variability. The actual error in the MTI retrievals for Pilgrim daytime conditions is estimated to be between 2.7 and 3.4 C for individual buoys and between 1.7 and 2.7 C for the combined open-water buoys.

  13. Analytic Perturbation Method for Estimating Ground Flash Fraction from Satellite Lightning Observations

    Science.gov (United States)

    Koshak, William; Solakiewicz, Richard

    2013-01-01

    An analytic perturbation method is introduced for estimating the lightning ground flash fraction in a set of N lightning flashes observed by a satellite lightning mapper. The value of N is large, typically in the thousands, and the observations consist of the maximum optical group area produced by each flash. The method is tested using simulated observations that are based on Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) data. National Lightning Detection NetworkTM (NLDN) data is used to determine the flash-type (ground or cloud) of the satellite-observed flashes, and provides the ground flash fraction truth for the simulation runs. It is found that the mean ground flash fraction retrieval errors are below 0.04 across the full range 0-1 under certain simulation conditions. In general, it is demonstrated that the retrieval errors depend on many factors (i.e., the number, N, of satellite observations, the magnitude of random and systematic measurement errors, and the number of samples used to form certain climate distributions employed in the model).

  14. Can a regional climate model reproduce observed extreme temperatures?

    Directory of Open Access Journals (Sweden)

    Peter F. Craigmile

    2013-10-01

    Full Text Available Using output from a regional Swedish climate model and observations from the Swedish synoptic observational network, we compare seasonal minimum temperatures from model output and observations using marginal extreme value modeling techniques. We make seasonal comparisons using generalized extreme value models and empirically estimate the shift in the distribution as a function of the regional climate model values, using the Doksum shift function. Spatial and temporal comparisons over south central Sweden are made by building hierarchical Bayesian generalized extreme value models for the observed minima and regional climate model output. Generally speaking the regional model is surprisingly well calibrated for minimum temperatures. We do detect a problem in the regional model to produce minimum temperatures close to 0◦C. The seasonal spatial effects are quite similar between data and regional model. The observations indicate relatively strong warming, especially in the northern region. This signal is present in the regional model, but is not as strong.

  15. New Measurements from Old Boreholes: A Look at Interaction Between Surface Air Temperature and Ground Surface Temperature

    Science.gov (United States)

    Heinle, S. M.; Gosnold, W. D.

    2007-12-01

    We recently logged new field measurements of several boreholes throughout the Midwest, including North Dakota, South Dakota, and Nebraska. We then compared these new measurements against measurements previously obtained. Our comparisons included inverse modeling of past and recent measurements as well as climate modeling based on past surface air temperatures obtained from the weather stations. The data show a good correlation between climate warming in the last century and ground surface warming. Of particular importance is that cooling of air temperatures beginning in the mid 1990s reflects in the ground surface temperatures. The boreholes included in the study consist of three boreholes located in north central North Dakota, including two deeper than 200 meters. Two boreholes in the southwestern part of South Dakota, and two from southeastern South Dakota, all approximately 180 meters deep. Also included, were two boreholes (135 meters and over 200 meters deep) located in southwestern Nebraska, and two boreholes in the panhandle of Nebraska, each over 100 meters deep. We obtained historical surface air temperature from climate stations located near the boreholes, both from the United States Historical Climatology Network and from the Western Regional Climate Center.

  16. RTTOV-gb - Adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations

    Science.gov (United States)

    De Angelis, Francesco; Cimini, Domenico; Hocking, James; Martinet, Pauline; Kneifel, Stefan

    2016-04-01

    The Planetary Boundary Layer (PBL) is the single most important under-sampled part of the atmosphere. According to the WMO Statement Of Guidance For Global Numerical Weather Prediction (NWP), temperature and humidity profiles (in cloudy areas) are among the four critical atmospheric variables not adequately measured in the PBL. Ground-based microwave radiometers (MWR) provide temperature and humidity profiles in both clear- and cloudy-sky conditions with high temporal resolution and low-to-moderate vertical resolution, with information mostly residing in the PBL. Ground-based MWR offer to bridge this observational gap by providing continuous temperature and humidity information in the PBL. The MWR data assimilation into NWP models may be particularly important in nowcasting and severe weather initiation. The assimilation of thermodynamic profiles retrieved from MWR data has been recently experimented, but a way to possibly increase the impact is to directly assimilate measured radiances instead of retrieved profiles. The assimilation of observed radiances in a variational scheme requires the following tools: (i) a fast radiative transfer (RT) model to compute the simulated radiances at MWR channels from the NWP model fields (ii) the partial derivatives (Jacobians) of the fast radiative transfer model with respect to control variables to optimize the distances of the atmospheric state from both the first guess and the observations. Such a RT model is available from the EUMETSAT NWPSAF (Numerical Weather Prediction Satellite Application Facility) and well accepted in the NWP community: RTTOV. This model was developed for nadir-viewing passive visible, infrared, and microwave satellite radiometers, spectrometers and interferometers. It has been modified to handle ground-based microwave radiometer observations. This version of RTTOV, called RTTOV-gb, provides the tools needed to exploit ground-based upward looking MWR brightness temperatures into NWP variational data

  17. The Pseudo Radiation Energy Amplifier (PREA) and the mean earth s ground temperature

    CERN Document Server

    Boucenna, Ahmed

    2008-01-01

    From the radiation balance diagram illustrating the IPCC reports one can estimate the power received by Earth from the sun at Pin = 342 W/m2 and the power consumed, remitted and reflected by the earth and its atmosphere at Pout = 599 kW/m2. It seems that the earth emits more power than it receives. The earth s ground mean temperature is estimated at 15 C. A calculation based on the black body radiation theory gives an earth s ground mean temperature of the order of -18 C which is much lower than 15 C. The important gap between these calculated and estimated temperature mean values requires an explanation. Here we show that a gray body separated from vacuum by an interface and submitted to outside incident radiation can behave like a Pseudo Radiation Energy Amplifier. The Earth which is a gray body separated from the space by an interface, behaves like a Pseudo Radiation Energy Amplifier. The balance of the energy exchanged between Earth and outer space is reconsidered and the 15 C Earth s ground temperature m...

  18. Thermospheric zonal temperature gradients observed at low latitudes

    Directory of Open Access Journals (Sweden)

    P. R. Fagundes

    Full Text Available Fabry-Perot interferometer (FPI measurements of thermospheric temperatures from the Doppler widths of the OI 630 nm nightglow emission line have been carried out at Cachoeira Paulista (23° S, 45° W, 16° S dip latitude, Brazil. The east-west components of the thermospheric temperatures obtained on 73 nights during the period from 1988 to 1992, primarily under quiet geomagnetic conditions, were analyzed and are presented in this paper. It was observed that on 67% of these nights, the temperatures in both the east and west sectors presented similar values and nocturnal variations. However, during 33% of the nights, the observed temperatures in the west sector were usually higher than those observed in the east sector, with zonal temperature gradients in the range of 100 K to 600 K, over about an 800 km horizontal distance. Also, in some cases, the observed temperatures in the east and west sectors show different nocturnal variations. One of the possible sources considered for the observed zonal temperature gradients is the influence of gravity wave dissipation effects due to waves that propagate from lower altitudes to thermospheric heights. The observed zonal temperature gradients could also be produced by orographic gravity waves originated away, over the Andes Cordillera in the Pacific Sector, or by dissipation of orographic gravity waves generated over the Mantiqueira Mountains in the Atlantic sector by tropospheric disturbances (fronts and/or subtropical jet streams.

    Key words. Atmospheric composition and structure (air-glow and aurora; thermosphere - composition and chemistry Ionosphere (equatorial ionosphere

  19. Observation of cloud-to-ground lightning channels with high-speed video camera

    CERN Document Server

    Buguet, M; Blanchet, P; Pédeboy, S; Barnéoud, P; Laroche, P

    2014-01-01

    Between May and October 2013 (period of sustained thunderstorm activity in France), several cloud-to-ground lightning flashes have been observed in Paris area with a high-speed video camera (14000 frames per second). The localization and the polarity of the recorded cloud-to-ground flashes have been obtained from the French lightning detection network M{\\'e}t{\\'e}orage which is equipped with the same low frequency sensors used by the US NLDN. In this paper we focused on 7 events (3 positive cloud-to-ground lightning flashes and 4 negative cloud-to-ground lightning flashes). The propagation velocity of the leaders and its temporal evolution have been estimated; the evolution of branching of the negative leaders have been observed during the propagation of the channel which get connected to ground and initiate the first return stroke. One aim of this preliminary study is to emphasize the differences between the characteristics of the positive and of the negative leaders.

  20. CRRES/Ground-based multi-instrument observations of an interval of substorm activity

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    Full Text Available Observations are presented of data taken during a 3-h interval in which five clear substorm onsets/intensifications took place. During this interval ground-based data from the EISCAT incoherent scatter radar, a digital CCD all sky camera, and an extensive array of magnetometers were recorded. In addition data from the CRRES and DMSP spacecraft, whose footprints passed over Scandinavia very close to most of the ground-based instrumentation, are available. The locations and movements of the substorm current system in latitude and longitude, determined from ground and spacecraft magnetic field data, have been correlated with the locations and propagation of increased particle precipitation in the E-region at EISCAT, increased particle fluxes measured by CRRES and DMSP, with auroral luminosity and with ionospheric convection velocities. The onsets and propagation of the injection of magnetospheric particle populations and auroral luminosity have been compared. CRRES was within or very close to the substorm expansion phase onset sector during the interval. The onset region was observed at low latitudes on the ground, and has been confirmed to map back to within L=7 in the magnetotail. The active region was then observed to propagate tailward and poleward. Delays between the magnetic signature of the substorm field aligned currents and field dipolarisation have been measured. The observations support a near-Earth plasma instability mechanism for substorm expansion phase onset.

  1. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  2. Ground Truth Observations of the Interior of a Rockglacier as Validation for Geophysical Monitoring Data Sets

    Science.gov (United States)

    Hilbich, C.; Roer, I.; Hauck, C.

    2007-12-01

    Monitoring the permafrost evolution in mountain regions is currently one of the important tasks in cryospheric studies as little data on past and present changes of the ground thermal regime and its material properties are available. In addition to recently established borehole temperature monitoring networks, techniques to determine and monitor the ground ice content have to be developed. A reliable quantification of ground ice is especially important for modelling the thermal evolution of frozen ground and for assessing the hazard potential due to thawing permafrost induced slope instability. Near surface geophysical methods are increasingly applied to detect and monitor ground ice occurrences in permafrost areas. Commonly, characteristic values of electrical resistivity and seismic velocity are used as indicators for the presence of frozen material. However, validation of the correct interpretation of the geophysical parameters can only be obtained through boreholes, and only regarding vertical temperature profiles. Ground truth of the internal structure and the ice content is usually not available. In this contribution we will present a unique data set from a recently excavated rockglacier near Zermatt/Valais in the Swiss Alps, where an approximately 5 m deep trench was cut across the rockglacier body for the construction of a ski track. Longitudinal electrical resistivity tomography (ERT) and refraction seismic tomography profiles were conducted prior to the excavation, yielding data sets for cross validation of commonly applied geophysical interpretation approaches in the context of ground ice detection. A recently developed 4-phase model was applied to calculate ice-, air- and unfrozen water contents from the geophysical data sets, which were compared to the ground truth data from the excavated trench. The obtained data sets will be discussed in the context of currently established geophysical monitoring networks in permafrost areas. In addition to the

  3. Global manifestations of a substorm onset observed by a multi-satellite and ground station network

    Directory of Open Access Journals (Sweden)

    H. Wang

    2006-12-01

    Full Text Available With a favorable constellation of spacecraft and ground stations, a study is made on the global manifestations of a substorm onset. The onset occurred simultaneously and conjugately in both hemispheres, confirmed by observations of the auroral breakup from IMAGE FUV-WIC and a sudden intensification of a westward electrojet from ground-based magnetometers. Concurrently with the onset, field-aligned and Hall currents in the auroral ionosphere are observed by CHAMP, which are consistent with the signature of a Harang discontinuity. Immediately after the onset a magnetic field dipolarization is clearly observed by Double Star TC-1, located near the central magnetotail and subsequently, by the Cluster quartet. The observations can be explained by a dawnward propagation of the substorm current wedge at a speed of about 300 km/s.

  4. Ground-based observations of Saturn's H3+ aurora and ring rain from Keck in 2013

    Science.gov (United States)

    O'Donoghue, J.; Melin, H.; Stallard, T.; Provan, G.; Moore, L.; Badman, S. V.; Baines, K. H.; Miller, S.; Cowley, S. W. H.

    2014-12-01

    The ground-based 10-metre Keck telescope was used to probe Saturn's H3+ ionosphere in 2013. The slit on the high resolution near infrared spectrometer (NIRSPEC; (R~25,000) was aligned pole-to-pole along Saturn's rotational axis at local noon. This is also aligned (within uncertainties) to the effectively dipolar magnetic field. Four polar/auroral regions of Saturn's ionosphere were measured simultaneously as the planet rotated: 1) the northern noon main auroral oval; 2) the northern midnight main oval; 3) the northern polar cap and 4) the southern main oval at noon. The results here contain twenty-three H3+ temperatures, column densities and total emissions located at the above regions spread over timescales of both hours and days. The main findings of this study are that ionospheric temperatures in the northern main oval are cooler than their southern counterparts by tens of K; supportive of the hypothesis that the total thermospheric heating rate (Joule heating and ion drag) is inversely proportional to magnetic field strength. The main oval H3+ density and emission is lower at northern midnight than at noon, and this is in agreement with an electron influx peaking at 08:00 Saturn local time and having a minimum at midnight. When ordering the northern main oval parameters of H3+ as a function of the oscillation period seen in Saturn's magnetic field - the planetary period oscillation (PPO) phase - we see a large peak in H3+ density and emission at ˜110° phase, with a full-width at half-maximum (FWHM) of ˜40°. This seems to indicate that the influx of electrons associated with the PPO phase at 90° is responsible at least in part for the behavior of all H3+ parameters. In addition to the auroral/polar data we also present the latest results from observations of Saturn's mid-to-low latitude H3+ emission. This emission is thought to be modulated by charged water product influx which flows into the planet along magnetic field lines from Saturn's rings, i.e. ring

  5. The 3-Hour-Interval Prediction of Ground-Level Temperature in South Korea Using Dynamic Linear Models

    Institute of Scientific and Technical Information of China (English)

    Keon-TaeSOHN; Deuk-KyunRHA; Young-KyungSEO

    2003-01-01

    The 3-hour-interval prediction of ground-level temperature from +00 h out to +45 h in South Korea(38 stations) is performed using the DLM (dynamic linear model) in order to eliminate the systematic error of numerical model forecasts. Numerical model forecasts and observations are used as input values of the DLM. According to the comparison of the DLM forecasts to the KFM (Kalman filter model) forecasts with RMSE and bias, the DLM is useful to improve the accuracy of prediction.

  6. Interpreting Ground Temperature Measurements for Thermophysical Properties on Complex Surfaces of the Moon and Mars

    Science.gov (United States)

    Vasavada, A. R.; Hamilton, V. E.; Team, M.

    2013-12-01

    With the successful deployments of the Diviner radiometer on the Lunar Reconnaissance Orbiter and the REMS ground temperature sensor on the Curiosity Mars rover, records of ground temperature with high accuracy and finely sampled diurnal and seasonal cycles have become available. The detailed shapes of these temperature profiles allow inferences beyond just bulk thermophysical properties. Subtle (or sometime significant) effects of surface roughness, slope, and lateral and vertical heterogeneity may be identified in the surface brightness temperature data. For example, changes in thermal or physical properties with depth in the shallow subsurface affect the conduction and storage of thermal energy. These affect the surface energy balance and therefore surface temperatures, especially the rate of cooling at night. Making unique determinations of subsurface soil properties requires minimizing the uncertainties introduced by other effects. On Mars, atmospheric aerosol opacity and wind-driven sensible heat fluxes also affect the diurnal and annual temperature profiles. On both bodies, variations in thermal inertia, slopes, roughness, albedo, and emissivity within the radiometer footprint will cause the composite brightness temperature to differ from a kinetic temperature. Nevertheless, we have detected potential effects of complex surfaces in the temperature data from both Diviner and Curiosity. On the Moon, the results reveal a nearly ubiquitous surface structure, created mechanically by impact gardening, that controls the thermal response of the surface. On Mars, the thermal response is controlled primarily by grain size, cementation, lithification, and composition. However, the secondary effects of near-surface layering aid in the interpretation of stratigraphy and in the identification of geologic processes that have altered the surface.

  7. Symmetry breaking in noncommutative finite temperature λphi4 theory with a nonuniform ground state

    Science.gov (United States)

    Hernández, J. M.; Ramírez, C.; Sánchez, M.

    2014-05-01

    We consider the CJT effective action at finite temperature for a noncommutative real scalar field theory, with noncommutativity among space and time variables. We study the solutions of a stripe type nonuniform background, which depends on space and time. The analysis in the first approximation shows that such solutions appear in the planar limit, but also under normal anisotropic noncommutativity. Further we show that the transition from the uniform ordered phase to the non uniform one is first order and that the critical temperature depends on the nonuniformity of the ground state.

  8. Thermophysical properties along Curiosity's traverse in Gale crater, Mars, derived from the REMS ground temperature sensor

    Science.gov (United States)

    Vasavada, Ashwin R.; Piqueux, Sylvain; Lewis, Kevin W.; Lemmon, Mark T.; Smith, Michael D.

    2017-03-01

    The REMS instrument onboard the Mars Science Laboratory rover, Curiosity, has measured ground temperature nearly continuously at hourly intervals for two Mars years. Coverage of the entire diurnal cycle at 1 Hz is available every few martian days. We compare these measurements with predictions of surface-atmosphere thermal models to derive the apparent thermal inertia and thermally derived albedo along the rover's traverse after accounting for the radiative effects of atmospheric water ice during fall and winter, as is necessary to match the measured seasonal trend. The REMS measurements can distinguish between active sand, other loose materials, mudstone, and sandstone based on their thermophysical properties. However, the apparent thermal inertias of bedrock-dominated surfaces (∼350-550 J m-2 K-1 s-½) are lower than expected. We use rover imagery and the detailed shape of the diurnal ground temperature curve to explore whether lateral or vertical heterogeneity in the surface materials within the sensor footprint might explain the low inertias. We find that the bedrock component of the surface can have a thermal inertia as high as 650-1700 J m-2 K-1 s-½ for mudstone sites and ∼700 J m-2 K-1 s-½ for sandstone sites in models runs that include lateral and vertical mixing. Although the results of our forward modeling approach may be non-unique, they demonstrate the potential to extract information about lateral and vertical variations in thermophysical properties from temporally resolved measurements of ground temperature.

  9. (21) Lutetia spectrophotometry from Rosetta-OSIRIS images and comparison to ground-based observations

    Science.gov (United States)

    Magrin, S.; La Forgia, F.; Pajola, M.; Lazzarin, M.; Massironi, M.; Ferri, F.; da Deppo, V.; Barbieri, C.; Sierks, H.; Osiris Team

    2012-06-01

    Here we present some preliminary results on surface variegation found on (21) Lutetia from ROSETTA-OSIRIS images acquired on 2010-07-10. The spectrophotometry obtained by means of the two cameras NAC and WAC (Narrow and Wide Angle Cameras) is consistent with ground based observations, and does not show surface diversity above the data error bars. The blue and UV images (shortward 500 nm) may, however, indicate a variegation of the optical properties of the asteroid surface on the Baetica region (Sierks et al., 2011). We also speculate on the contribution due to different illumination and to different ground properties (composition or, more probably, grain size diversity). In particular a correlation with geologic units independently defined by Massironi et al. (2012) is evident, suggesting that the variegation of the ground optical properties is likely to be real.

  10. Halo Observations from the Ground and from Space: Further Checks on the Sprite Polarity Paradox

    Science.gov (United States)

    Williams, E.; Kuo, C.; Bor, J.; Satori, G.; Newsome, R. T.; Boldi, R. A.; Downes, E.; Saba, M. M.; Taylor, M. J.; Chen, A. B.; Lyons, W. A.

    2009-12-01

    In continuing efforts to verify the hypothesis that halos produced by negative polarity ground flashes provide a resolution to the ‘sprite polarity paradox’ and are caused by the fast initial charge transfer in the lightning return stroke, additional halo observations are considered from the ground and from space. The ground-based observations include standard frame-rate video cameras, a high-time resolution (40 microsec)) photometer (called PIPER), the National Lightning Detection Network (NLDN), and ELF charge moment observations from Nagycenk Observatory in Hungary. The space-based observations are measurements from the limb-viewing ISUAL satellite. The observations in support of the hypothesis are: (1) charge moments of the same magnitude required for sprites are evident for ‘negative’ halos, (2) negative halos outnumber positive halos in both ISUAL and PIPER observations, (3) short (working hypothesis are (1) ISUAL peak lightning brightnesses are no larger for negative than for positive halo-parent lightning flashes, (2) NLDN peak currents for brighter ‘positive’ halos are not notably larger than for dimmer ‘negative’ flashes, and (3) ELF measurements of charge moments for negative flashes tend to be greater than for positive flashes. An additional similarity between ground- and space-based observations is the tendency for halos to be produced by single-stroke negative flashes, a distinct departure from the statistics of stroke multiplicity for all negative flashes with large peak current. The reason for the polarity asymmetry in the parent lightning flash, at the origin of the sprite polarity asymmetry, remains an open question.

  11. Spatial variation in near-ground radiation and low temperature. Interactions with forest vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, K.

    1997-10-01

    Low temperature has a large impact on the survival and distribution of plants. Interactive effects with high irradiance lead to cold-induced photo inhibition, which may impact on the establishment and growth of tree seedlings. In this thesis, novel approaches are applied for relating the spatial variability in low temperature and irradiance to photosynthetic performance and growth of tree seedlings, and for modelling the micro- and local-scale spatial variations in low temperature for heterogeneous terrain. The methodologies include the development and use of a digital image analysis system for hemispherical photographs, the use of Geographic Information Systems (GIS) and statistical methods, field data acquisition of meteorological elements, plant structure, growth and photosynthetic performance. Temperature and amounts of intercepted direct radiant energy for seedlings on clear days (IDRE) were related to chlorophyll a fluorescence, and the dry weight of seedlings. The combination of increased IDRE with reduced minimum temperatures resulted in persistent and strong photo inhibition as the season progressed, with likely implications for the establishment of tree seedlings at forest edges, and within shelter wood. For models of spatial distribution of low air temperature, the sky view factor was used to parameterize the radiative cooling, whilst drainage, ponding and stagnation of cold air, and thermal properties of the ground were all considered. The models hint at which scales and processes govern the development of spatial variations in low temperature for the construction of corresponding mechanistic models. The methodology is well suited for detecting areas that will be frost prone after clearing of forest and for comparing the magnitudes of impacts on low air temperature of forest management practices, such as shelter wood and soil preparation. The results can be used to formulate ground rules for use in practical forestry 141 refs, 5 figs, 1 tab

  12. Constellation design for earth observation based on the characteristics of the satellite ground track

    Science.gov (United States)

    Luo, Xin; Wang, Maocai; Dai, Guangming; Song, Zhiming

    2017-04-01

    This paper responds to the increasing need for Earth observation missions and deals with the design of Repeating Sun-Synchronous Constellations (RSSCs) which takes into consideration of constellations composed of one or more orbital planes. Based on the mature design approach of Repeating Sun-synchronous orbits, a novel technique to design RSSCs is presented, which takes the second gravitational zonal harmonic into consideration. In order to obtain regular cycles of observation of the Earth by a single satellite, the orbital relationships have to be satisfied firstly are illustrated. Then, by making full analyses of the characteristics of the satellite ground track, orbital parameters are properly calculated to make other satellites pass on the same or different ground track of the single satellite. Last, single-plane or multi-plane constellations are used to improve the repetitions of the observation and the ground resolution. RSSCs allow observing the same region once at the same local time in a solar day and several times at the different local time in a solar day. Therefore, this kind of constellations meets all requirements for the remote sensing applications, which need to observe the same region under the same or different visible conditions. Through various case studies, the calculation technique is successfully demonstrated.

  13. RADIOASTRON OBSERVATIONS OF THE QUASAR 3C273: A CHALLENGE TO THE BRIGHTNESS TEMPERATURE LIMIT

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, Y. Y.; Kardashev, N. S.; Voitsik, P. A.; Kovalev, Yu. A.; Lisakov, M. M.; Sokolovsky, K. V. [Astro Space Center of Lebedev Physical Institute, Profsoyuznaya 84/32, 117997 Moscow (Russian Federation); Kellermann, K. I. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Lobanov, A. P.; Zensus, J. A.; Anderson, J. M.; Bach, U.; Kraus, A. [Max-Planck-Institute for Radio Astronomy, Auf dem Hügel 69, D-53121 (Germany); Johnson, M. D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Gurvits, L. I. [Joint Institute for VLBI ERIC, P.O. Box 2, 7990 AA Dwingeloo (Netherlands); Jauncey, D. L. [CSIRO Astronomy and Space Sciences, Epping, NSW 1710 (Australia); Ghigo, F. [National Radio Astronomy Observatory, Rt. 28/92, Green Bank, WV 24944-0002 (United States); Ghosh, T.; Salter, C. J. [Arecibo Observatory, NAIC, HC3 Box 53995, Arecibo, Puerto Rico, PR 00612 (United States); Petrov, L. Yu. [Astrogeo Center, 7312 Sportsman Drive, Falls Church, VA 22043 (United States); Romney, J. D. [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801-0387 (United States)

    2016-03-20

    Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 10{sup 11.5} K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 10{sup 13} K are inaccessible using ground-based very long baseline interferometry (VLBI) at any wavelength. We present observations of the quasar 3C 273, made with the space VLBI mission RadioAstron on baselines up to 171,000 km, which directly reveal the presence of angular structure as small as 26 μas (2.7 light months) and brightness temperature in excess of 10{sup 13} K. These measurements challenge our understanding of the non-thermal continuum emission in the vicinity of supermassive black holes and require a much higher Doppler factor than what is determined from jet apparent kinematics.

  14. Ground-based microwave measuring of middle atmosphere ozone and temperature profiles during sudden stratospheric warming

    Science.gov (United States)

    Feigin, A. M.; Shvetsov, A. A.; Krasilnikov, A. A.; Kulikov, M. Y.; Karashtin, D. A.; Mukhin, D.; Bolshakov, O. S.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Kukin, L. M.

    2012-12-01

    We carried out the experimental campaign aimed to study the response of middle atmosphere on a sudden stratospheric warming in winter 2011-2012 above Nizhny Novgorod, Russia (56N, 44E). We employed the ground-based microwave complex for remote sensing of middle atmosphere developed in the Institute of Applied Physics of the Russian Academy of Science. The complex combines two room-temperature radiometers, i.e. microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in a range of frequencies that include the rotation transition of ozone molecules with resonance frequency 110.8 GHz. Operating frequency range of the stratospheric thermometer is 52.5-5.4 GHz and includes lower frequency edge of 5 mm molecular oxygen absorption bands and among them two relatively weak lines of O2 emission. Digital fast Fourier transform spectrometers developed by "Acqiris" are employed for signal spectral analysis. The spectrometers have frequency range 0.05-1 GHz and realizes the effective resolution about 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we applied novel method based on Bayesian approach to inverse problem solution, which assumed a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we introduce the results of the campaign in comparison with Aura MLS data. Presented data includes one sudden stratospheric warming event which took place in January 13-14 and was accompanied by temperature increasing up to 310 K at 45 km height. During measurement period, ozone and temperature variations were (almost) anti-correlated, and total ozone abundance achieved a local maxima during the stratosphere cooling phase. In general, results of ground-based measurements are in good agreement with

  15. Monitoring greenhouse gas emissions in Australian landscapes: Comparing ground based mobile surveying data to GOSAT observations

    Science.gov (United States)

    Bashir, S.; Iverach, C.; Kelly, B. F. J.

    2016-12-01

    Climate change is threatening the health and stability of the natural world and human society. Such concerns were emphasized at COP21 conference in Paris 2015 which highlighted the global need to improve our knowledge of sources of greenhouse gas and to develop methods to mitigate the effects of their emissions. Ongoing spatial and temporal measurements of greenhouse gases at both point and regional scales is important for clarification of climate change mechanisms and accounting. The Greenhouse gas Observing SATellite (GOSAT) is designed to monitor the global distribution of carbon dioxide (CO2) and methane (CH4) from orbit. As existing ground monitoring stations are limited and still unevenly distributed, satellite observations provide important frequent, spatially extensive, but low resolution observations. Recent developments in portable laser based greenhouse gas measurement systems have enabled the rapid measurement of greenhouse gases in ppb at the ground surface. This study was conducted to map major sources of CO2 and CH4 in the eastern states of Australia at the landscape scale and to compare the results to GOSAT observations. During April 2016 we conducted a regional CH4 and CO2 mobile survey, using an LGR greenhouse gas analyzer. Measurements were made along a 4000 KM circuit through major cities, country towns, dry sclerophyll forests, coastal wetlands, coal mining regions, coal seam gas developments, dryland farming and irrigated agricultural landscapes. The ground-based survey data were then compared with the data (L2) from GOSAT. Ground-based mobile surveys showed that there are clear statistical differences in the ground level atmospheric concentration of CH4 and CO2 associated with all major changes in land use. These changes extend for kilometers, and cover one or more GOSAT pixels. In the coal mining districts the ground-level atmospheric concentration of CH4 exceeded 2 ppm for over 40 km, yet this was not discernable in the retrieved data (L2

  16. Using Grounded Theory to Analyze Qualitative Observational Data that is Obtained by Video Recording

    Directory of Open Access Journals (Sweden)

    Colin Griffiths

    2013-06-01

    Full Text Available This paper presents a method for the collection and analysis of qualitative data that is derived by observation and that may be used to generate a grounded theory. Video recordings were made of the verbal and non-verbal interactions of people with severe and complex disabilities and the staff who work with them. Three dyads composed of a student/teacher or carer and a person with a severe or profound intellectual disability were observed in a variety of different activities that took place in a school. Two of these recordings yielded 25 minutes of video, which was transcribed into narrative format. The nature of the qualitative micro data that was captured is described and the fit between such data and classic grounded theory is discussed. The strengths and weaknesses of the use of video as a tool to collect data that is amenable to analysis using grounded theory are considered. The paper concludes by suggesting that using classic grounded theory to analyze qualitative data that is collected using video offers a method that has the potential to uncover and explain patterns of non-verbal interactions that were not previously evident.

  17. Synchronized observations by using the STEREO and the largest ground-based decametre radio telescope

    Science.gov (United States)

    Konovalenko, A. A.; Stanislavsky, A. A.; Rucker, H. O.; Lecacheux, A.; Mann, G.; Bougeret, J.-L.; Kaiser, M. L.; Briand, C.; Zarka, P.; Abranin, E. P.; Dorovsky, V. V.; Koval, A. A.; Mel'nik, V. N.; Mukha, D. V.; Panchenko, M.

    2013-08-01

    We consider the approach to simultaneous (synchronous) solar observations of radio emission by using the STEREO-WAVES instruments (frequency range 0.125-16 MHz) and the largest ground-based low-frequency radio telescope. We illustrate it by the UTR-2 radio telescope implementation (10-30 MHz). The antenna system of the radio telescope is a T-shape-like array of broadband dipoles and is located near the village Grakovo in the Kharkiv region (Ukraine). The third observation point on the ground in addition to two space-based ones improves the space-mission performance capabilities for the determination of radio-emission source directivity. The observational results from the high sensitivity antenna UTR-2 are particularly useful for analysis of STEREO data in the condition of weak event appearances during solar activity minima. In order to improve the accuracy of flux density measurements, we also provide simultaneous observations with a large part of the UTR-2 radio telescope array and its single dipole close to the STEREO-WAVES antennas in sensitivity. This concept has been studied by comparing the STEREO data with ground-based records from 2007-2011 and shown to be effective. The capabilities will be useful in the implementation of new instruments (LOFAR, LWA, MWA, etc.) and during the future Solar Orbiter mission.

  18. Antarctic springtime ozone depletion computed from temperature observations

    Science.gov (United States)

    Rosenfield, Joan E.; Schoeberl, Mark R.; Newman, Paul A.

    1988-01-01

    An observationally based, mechanistic dynamical model is used to simulate the decline of total ozone during September and October for the years 1979 through 1986. Vertical velocities derived from observed stratospheric temperature changes and computed radiative heating rates are used to advect an ozone mixing ratio profile during the Antarctic spring period. An early August 1982 Syowa balloonsonde ozone profile is used to initialize the computations. The model reasonably simulates the September and October changes in total ozone, considering the uncertainties in the observed data and the radiative heating. The simulated decline is found to be very sensitive to the choice of initial ozone profile and to small changes in the radiative heating. The results of this study suggest that the dynamical hypothesis of the Antarctic ozone depletion is both quantitatively credible and consistent with the observed temperature changes.

  19. A discussion of differences in preparation, performance and postreflections in participant observations within two grounded theory approaches

    DEFF Research Database (Denmark)

    Berthelsen, Connie Bøttcher; Lindhardt Damsgaard, Tove; Frederiksen, Kirsten

    2016-01-01

    researchers to experience activities and interactions directly in situ. However, using participant observations as a data collection method can be done in many ways, depending on the chosen grounded theory methodology, and may produce different results. This discussion shows that how the differences between......This paper presents a discussion of the differences in using participant observation as a data collection method by comparing the classic grounded theory methodology of Barney Glaser with the constructivist grounded theory methodology by Kathy Charmaz. Participant observations allow nursing...... using participant observations in classic and constructivist grounded theory can be considerable and that grounded theory researchers should adhere to the method descriptions of performing participant observations according to the selected grounded theory methodology to enhance the quality of research....

  20. A discussion of differences in preparation, performance and postreflections in participant observations within two grounded theory approaches.

    Science.gov (United States)

    Berthelsen, Connie Bøttcher; Lindhardt, Tove; Frederiksen, Kirsten

    2016-05-10

    This paper presents a discussion of the differences in using participant observation as a data collection method by comparing the classic grounded theory methodology of Barney Glaser with the constructivist grounded theory methodology by Kathy Charmaz. Participant observations allow nursing researchers to experience activities and interactions directly in situ. However, using participant observations as a data collection method can be done in many ways, depending on the chosen grounded theory methodology, and may produce different results. This discussion shows that how the differences between using participant observations in classic and constructivist grounded theory can be considerable and that grounded theory researchers should adhere to the method descriptions of performing participant observations according to the selected grounded theory methodology to enhance the quality of research.

  1. Observed and Projected Droughts Conditioned on Temperature Change

    Science.gov (United States)

    Chiang, F.; AghaKouchak, A.; Mazdiyasni, O.

    2016-12-01

    Droughts have had severe urban, agricultural and wildlife impacts in historical and recent years. In addition, during times of water scarcity, heat stress has been shown to produce compounding climatic and environmental effects. Understanding the overall conditions associated with drought intensities is important for mapping the anatomy of the climate in the changing world. For the study, we evaluated the relationship drought severity has exhibited with temperature shifts between observed periods and also between an ensemble of BCSD downscaled CMIP5 projected and historically modeled datasets. We compared temperatures during different categories of drought severity on a monthly scale, and mapped areas displaying an escalation of temperature with stricter definitions of drought. A historical shift of warmer temperatures in more severe droughts was observed most consistently in Southwestern and Eastern states between the later half of the 20th century and a reference period of the early half of the 20th century. Future projections from an ensemble of CMIP5 models also showed a shift to warmer temperatures during more intense drought events in similar states. Preliminary statistics show that in many areas future droughts will be warmer that the average projected climate. These observed and forecasted shifts in the heating intensity of severe drought events underscore the need to further research these patterns and relationships both spatially and temporally.

  2. Nonlinear Site Response Due to Large Ground Acceleration: Observation and Computer Simulation

    Science.gov (United States)

    Noguchi, S.; Furumura, T.; Sasatani, T.

    2009-12-01

    We studied nonlinear site response due to large ground acceleration during the 2003 off-Miyagi Earthquake (Mw7.0) in Japan by means of horizontal-to-vertical spectral ratio analysis of S-wave motion. The results were then confirmed by finite-difference method (FDM) simulation of nonlinear seismic wave propagation. A nonlinear site response is often observed at soft sediment sites, and even at hard bedrock sites which are covered by thin soil layers. Nonlinear site response can be induced by strong ground motion whose peak ground acceleration (PGA) exceeds about 100 cm/s/s, and seriously affects the amplification of high frequency ground motion and PGA. Noguchi and Sasatani (2008) developed an efficient technique for quantitative evaluation of nonlinear site response using the horizontal-to-vertical spectral ratio of S-wave (S-H/V) derived from strong ground motion records, based on Wen et al. (2006). We applied this technique to perform a detailed analysis of the properties of nonlinear site response based on a large amount of data recorded at 132 K-NET and KiK-net strong motion stations in Northern Japan during the off-Miyagi Earthquake. We succeeded in demonstrating a relationship between ground motion level, nonlinear site response and surface soil characteristics. For example, the seismic data recorded at KiK-net IWTH26 showed obvious characteristics of nonlinear site response when the PGA exceeded 100 cm/s/s. As the ground motion level increased, the dominant peak of S-H/V shifted to lower frequency, the high frequency level of S-H/V dropped, and PGA amplification decreased. On the other hand, the records at MYGH03 seemed not to be affected by nonlinear site response even for high ground motion levels in which PGA exceeds 800 cm/s/s. The characteristics of such nonlinear site amplification can be modeled by evaluating Murnaghan constants (e.g. McCall, 1994), which are the third-order elastic constants. In order to explain the observed characteristics of

  3. A Multi-Scale Analysis of Namibian Rainfall: Comparing TRMM Satellite Data and Ground Observations

    Science.gov (United States)

    Lu, X.; Wang, L.; Pan, M.; Kaseke, K. F.

    2014-12-01

    Rainfall is critically important in dryland regions, as it is the major source of water for natural vegetation as well as agriculture and livestock production. However, the lack of ground observations has long been a major obstacle to the study of rainfall patterning in drylands. In this study, a continuous 6-year record of ground observations collected at Weltevrede Guest Farm Namibia was used to evaluate the Tropical Rainfall Measuring Mission (TRMM) 0.25-degree (~25 km) 3-hourly satellite rainfall estimates for the period of 2008-2013 for two locations. The agreement between ground and satellite rainfall data was generally good at annual scales but a large variation was observed at the hourly scale. A trend analysis was carried out using bias-corrected annual satellite data (1998-2013) to examine the long-term patterns in rainfall amount, intensity, frequency and seasonal variations. Our results suggest that satellite rainfall estimates offer reasonable performance at annual scale. The preliminary trend analyses showed significant changes in frequency, but not in intensity or total amount in one of the two locations during the rainy season (November - March), but not in the other, emphasizing the spatial variability of the dryland rainfall.

  4. Temperature adaptation of active sodium-potassium transport and of passive permeability in erythrocytes of ground squirrels.

    Science.gov (United States)

    Kimzey, S. L.; Willis, J. S.

    1971-01-01

    Unidirectional active and passive fluxes of K-42 and Na-24 were measured in red blood cells of ground squirrels (hibernators) and guinea pigs (nonhibernators). As the temperature was lowered, ?active' (ouabain-sensitive) K influx and Na efflux were more considerably diminished in guinea pig cells than in those of ground squirrels. The fraction of total K influx which is ouabain-sensitive in red blood cells of ground squirrels was virtually constant at all temperatures, whereas it decreased abruptly in guinea pig cells as temperature was lowered.

  5. Precision simulation of ground-based lensing data using observations from space

    CERN Document Server

    Mandelbaum, Rachel; Leauthaud, Alexie; Massey, Richard J; Rhodes, Jason

    2011-01-01

    Current and upcoming wide-field, ground-based, broad-band imaging surveys promise to address a wide range of outstanding problems in galaxy formation and cosmology. Several such uses of ground-based data, especially weak gravitational lensing, require highly precise measurements of galaxy image statistics with careful correction for the effects of the point-spread function (PSF). In this paper, we introduce the SHERA (SHEar Reconvolution Analysis) software to simulate ground-based imaging data with realistic galaxy morphologies and observing conditions, starting from space-based data (from COSMOS, the Cosmological Evolution Survey) and accounting for the effects of the space-based PSF. This code simulates ground-based data, optionally with a weak lensing shear applied, in a model-independent way using a general Fourier space formalism. The utility of this pipeline is that it allows for a precise, realistic assessment of systematic errors due to the method of data processing, for example in extracting weak len...

  6. Is air transport of stroke patients faster than ground transport? A prospective controlled observational study.

    Science.gov (United States)

    Hesselfeldt, Rasmus; Gyllenborg, Jesper; Steinmetz, Jacob; Do, Hien Quoc; Hejselbæk, Julie; Rasmussen, Lars S

    2014-04-01

    Helicopters are widely used for interhospital transfers of stroke patients, but the benefit is sparsely documented. We hypothesised that helicopter transport would reduce system delay to thrombolytic treatment at the regional stroke centre. In this prospective controlled observational study, we included patients referred to a stroke centre if their ground transport time exceeded 30 min, or they were transported by a secondarily dispatched, physician-staffed helicopter. The primary endpoint was time from telephone contact to triaging neurologist to arrival in the stroke centre. Secondary endpoints included modified Rankin Scale at 3 months, 30-day and 1-year mortality. A total of 330 patients were included; 265 with ground transport and 65 with helicopter, of which 87 (33%) and 22 (34%), received thrombolysis, respectively (p=0.88). Time from contact to triaging neurologist to arrival in the regional stroke centre was significantly shorter in the ground group (55 (34-85) vs 68 (40-85) min, pground group (67 (42-136) km) than in the helicopter group (83 (46-143) km) (pground and helicopter transport. We found significantly shorter time from contact to triaging neurologist to arrival in the regional stroke centre if stroke patients were transported by primarily dispatched ground ambulance compared with a secondarily dispatched helicopter.

  7. Observation of Temperature Chaos in Mesoscopic Spin Glasses

    Science.gov (United States)

    Guchhait, Samaresh

    Temperature Chaos (TC) results from a change in temperature for spin glasses (SG), polymers, and other glassy materials. When the temperature is changed, TC means that the new state has no memory of the preparation of the initial state. TC was predicted long ago [PRL 48, 767 (1982)]. However, ``An experimental measurement of TC is still missing'' [EPL 103, 67003 (2013)]. One reason for this is the question of length scale. In the thermodynamic limit, even an infinitesimal temperature change, ΔT , will create a chaotic condition. However, by working at the mesoscale, one can establish a length scale sufficiently small to exhibit reversible behavior before crossing over to chaotic behavior as the temperature change increases. Observation of TC is possible because, on reasonable laboratory time scales, the SG correlation length can grow to the size of the thickness of the film, L. The lower critical dimension for a SG is ~ 2 . 5 , so that the thin film SG crosses over to a glass temperature Tg = 0 . However, there remains quasi-equilibrium SG states with length scales calculated TC critical exponent, the range of ΔT for reversible behavior is calculated and is in very good agreement with the measured range. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award DE-SC0013599.

  8. Altitude dependence of atmospheric temperature trends: Climate models versus observation

    CERN Document Server

    Douglass, D H; Singer, F

    2004-01-01

    As a consequence of greenhouse forcing, all state of the art general circulation models predict a positive temperature trend that is greater for the troposphere than the surface. This predicted positive trend increases in value with altitude until it reaches a maximum ratio with respect to the surface of as much as 1.5 to 2.0 at about 200 to 400 hPa. However, the temperature trends from several independent observational data sets show decreasing as well as mostly negative values. This disparity indicates that the three models examined here fail to account for the effects of greenhouse forcings.

  9. Observation of isotropic electron temperature in the turbulent E region

    Directory of Open Access Journals (Sweden)

    S. Saito

    Full Text Available Using EISCAT radar data, we find that electrons are strongly heated in the magnetic field-line direction during high electric field events. The remote site data show that the electron temperature increases in almost the same way in the field-perpendicular direction; electron heating by E region plasma turbulence is isotropic. We discuss the implications of our observation for the "plasmon"-electron as well as the wave Joule heating models of the anomalous electron heating in the E region.

    Key words. Ionosphere (auroral ionosphere; plasma temperature and density; plasma waves and instabilities

  10. Validation of mathematical models for Salmonella growth in raw ground beef under dynamic temperature conditions representing loss of refrigeration.

    Science.gov (United States)

    McConnell, Jennifer A; Schaffner, Donald W

    2014-07-01

    Temperature is a primary factor in controlling the growth of microorganisms in food. The current U. S. Food and Drug Administration Model Food Code guidelines state that food can be kept out of temperature control for up to 4 h without qualifiers, or up to 6 h, if the food product starts at an initial 41 °F (5 °C) temperature and does not exceed 70 °F (21 °C) at 6 h. This project validates existing ComBase computer models for Salmonella growth under changing temperature conditions modeling scenarios using raw ground beef as a model system. A cocktail of Salmonella serovars isolated from different meat products ( Salmonella Copenhagen, Salmonella Montevideo, Salmonella Typhimurium, Salmonella Saintpaul, and Salmonella Heidelberg) was made rifampin resistant and used for all experiments. Inoculated samples were held in a programmable water bath at 4.4 °C (40 °F) and subjected to linear temperature changes to different final temperatures over various lengths of time and then returned to 4.4 °C (40 °F). Maximum temperatures reached were 15.6, 26.7, or 37.8 °C (60, 80, or 100 °F), and the temperature increases took place over 4, 6, and 8 h, with varying cooling times. Our experiments show that when maximum temperatures were lower (15.6 or 26.7 °C), there was generally good agreement between the ComBase models and experiments: when temperature increases of 15.6 or 26.7 °C occurred over 8 h, experimental data were within 0.13 log CFU of the model predictions. When maximum temperatures were 37 °C, predictive models were fail-safe. Overall bias of the models was 1.11. and accuracy was 2.11. Our experiments show the U.S. Food and Drug Administration Model Food Code guidelines for holding food out of temperature control are quite conservative. Our research also shows that the ComBase models for Salmonella growth are accurate or fail-safe for dynamic temperature conditions as might be observed due to power loss from natural disasters or during transport out of

  11. GROUND-BASED TRANSIT OBSERVATIONS OF THE SUPER-EARTH 55 Cnc e

    Energy Technology Data Exchange (ETDEWEB)

    De Mooij, E. J. W. [Astronomy and Astrophysics, University of Toronto, Toronto (Canada); López-Morales, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Karjalainen, R.; Hrudkova, M. [Isaac Newton Group of Telescopes, La Palma (Spain); Jayawardhana, Ray, E-mail: demooij@astro.utoronto.ca [Physics and Astronomy, York University, Toronto (Canada)

    2014-12-20

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2 m class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ∼700 and ∼250, spanning the Johnson BVR photometric bands. We find a white light planet-to-star radius ratio of 0.0190{sub −0.0027}{sup +0.0023} from the 2013 observations and 0.0200{sub −0.0018}{sup +0.0017} from the 2014 observations. The two data sets combined result in a radius ratio of 0.0198{sub −0.0014}{sup +0.0013}. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-sized telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite around bright stars. We expect it also will be possible to place constraints on the atmospheric characteristics of those planets by devising observational strategies to minimize scintillation noise.

  12. Hubble space telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Foley, Ryan J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Chornock, Ryan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Holtzman, Jon A. [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Balam, David D. [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Branch, David [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Filippenko, Alexei V.; Ganeshalingam, Mohan; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Frieman, Joshua [Kavli Institute for Cosmological Physics and Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Fynbo, Johan; Leloudas, Giorgos [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Galbany, Lluis [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Garnavich, Peter M. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Leonard, Douglas C., E-mail: cmccully@physics.rutgers.edu [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); and others

    2014-05-10

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n{sub e} ≳ 10{sup 9} cm{sup –3}. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected 'infrared catastrophe', a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a 'complete deflagration' that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  13. Hubble Space Telescope and Ground-Based Observations of the Type Iax Supernovae SN 2005hk and SN 2008A

    Energy Technology Data Exchange (ETDEWEB)

    McCully, Curtis; Jha, Saurabh W.; Foley, Ryan J.; Chornock, Ryan; Holtzman, Jon A.; Balam, David D.; Branch, David; Filippenko, Alexei V.; Frieman, Joshua; Fynbo, Johan; Galbany, Lluis; Ganeshalingam, Mohan; Garnavich, Peter M.; Graham, Melissa L.; Hsiao, Eric Y.; Leloudas, Giorgos; Leonard, Douglas C.; Li, Weidong; Riess, Adam G.; Sako, Masao; Schneider, Donald P.; Silverman, Jeffrey M.; Sollerman, Jesper; Steele, Thea N.; Thomas, Rollin C.; Wheeler, J. Craig; Zheng, Chen

    2014-04-24

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). Here we focus on late-time observations, where these objects deviate most dramatically from all other SN types. Instead of the dominant nebular emission lines that are observed in other SNe at late phases, spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with ne109 cm–3. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected "infrared catastrophe," a generic feature of SN Ia models. However, our HST photometry of SN 2008A does not match the predictions of an infrared catastrophe. Moreover, our HST observations rule out a "complete deflagration" that fully disrupts the white dwarf for these peculiar SNe, showing no evidence for unburned material at late times. Deflagration explosion models that leave behind a bound remnant can match some of the observed properties of SNe Iax, but no published model is consistent with all of our observations of SNe 2005hk and 2008A.

  14. Ground-based multisite observations of two transits of HD 80606b

    CERN Document Server

    Shporer, A; Dreizler, S; Colon, K D; Wood-Vasey, W M; Choi, P I; Morley, C; Moutou, C; Welsh, W F; Pollaco, D; Starkey, D; Adams, E; Barros, S C C; Bouchy, F; Cabrera-Lavers, A; Cerutti, S; Coban, L; Costello, K; Deeg, H; Diaz, R F; Esquerdo, G A; Fernandez, J; Fleming, S W; Ford, E B; Fulton, B J; Good, M; Hebrard, G; Holman, M J; Hunt, M; Kadakia, S; Lander, G; Lockhart, M; Mazeh, T; Morehead, R C; Nelson, B E; Nortmann, L; Reyes, F; Roebuck, E; Rudy, A R; Ruth, R; Simpson, E; Vincent, C; Weaver, G; Xie, J -W

    2010-01-01

    We present ground-based optical observations of the September 2009 and January 2010 transits of HD 80606b. Based on 3 partial light curves of the September 2009 event, we derive a midtransit time of T_c [HJD] = 2455099.196 +- 0.026, which is about 1 sigma away from the previously predicted time. We observed the January 2010 event from 9 different locations, with most phases of the transit being observed by at least 3 different teams. We determine a midtransit time of T_c [HJD] = 2455210.6502 +- 0.0064, which is within 1.3 sigma of the time derived from a Spitzer observation of the same event.

  15. Observation of Optomechanical Quantum Correlations at Room Temperature

    CERN Document Server

    Purdy, T P; Srinivasan, K; Taylor, J M

    2016-01-01

    By shining laser light through a nanomechanical beam, we measure the beam's thermally driven vibrations and perturb its motion with optical forces at a level dictated by the Heisenberg measurement-disturbance uncertainty relation. Such quantum backaction is typically difficult to observe at room temperature where the motion driven by optical quantum intensity fluctuations is many orders of magnitude smaller than the thermal motion. We demonstrate a cross-correlation technique to distinguish optically driven motion from thermally driven motion, observing this quantum backaction signature up to room temperature. While it is often difficult to absolutely calibrate optical detection, we use the scale of the quantum correlations, which is determined by fundamental constants, to gauge the size of thermal motion, demonstrating a path towards absolute thermometry with quantum mechanically calibrated ticks.

  16. Temperature and energy deficit in the ground during operation and recovery phases of closed-loop ground source heat pump system: Effect of the groundwater flow

    Science.gov (United States)

    Erol, Selcuk; Francois, Bertrand

    2016-04-01

    The advection/dispersion mechanism of the groundwater flow in the ground has a significant effect on a borehole heat exchanger (BHE) to enhance its thermal performance. However, the amount of energy extracted from the ground never disappears and only shifts with the magnitude of the effective thermal velocity in the infinite domain. In this work, we focus on the temperature and the energy balance of the ground in an advection/dispersion dominated heat transfer system during the operation period of a BHE and the subsequent recovery phase when the system is idle. The problem is treated with single BHE and multi-BHEs systems, for different representative geology and different groundwater flow velocity. In order to assess the thermal energy deficit due to heat extraction from the ground, we used the finite line source analytical model, developed recently (Erol et al., 2015) that provides the temperature distributions around the boreholes for discontinuous heat extraction. The model is developed based on the Green's function, which is the solution of heat conduction/advection/dispersion equation in porous media, for discontinuous heat extraction by analytically convoluting rectangular function or pulses in time domain. The results demonstrate the significant positive impact of the groundwater flow for the recovery in terms of temperature deficit at the location of the borehole. However, the total thermal energy deficit is not affected by the groundwater movement. The energy balance of the ground is the same no matter the prevailing heat transfer system, which can be only conduction or advection/dispersion. In addition, the energy balance of the ground is not based on either the duration of the production period operation or of the recovery phase, but depends on the total amount of heat that is extracted and on the bulk volumetric heat capacity of the ground.

  17. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    Science.gov (United States)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  18. Ground-Based Network and Supersite Observations to Complement and Enrich EOS Research

    Science.gov (United States)

    Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.

    2011-01-01

    Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System (EOS) - to intensively study, and gain a better understanding of, the Earth as an integrated system. Space-borne remote sensing observations, however, are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. Through numerous participations, particularly but not limited to the EOS remote-sensing/retrieval and validation projects over the years, NASA/GSFC has developed and continuously refined ground-based networks and mobile observatories that proved to be vital in providing high temporal measurements, which complement and enrich the satellite observations. These are: the AERO NET (AErosol RObotic NETwork) a federation of ground-based globally distributed network of spectral sun-sky photometers; the MPLNET (Micro-Pulse Lidar NETwork, a similarly organized network of micro-pulse lidar systems measuring aerosol and cloud vertical structure continuously; and the SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere, mobile observatories, a suite of spectral radiometers and in-situ probes acquiring supersite measurements. Most MPLNET sites are collocated with those of AERONET, and both networks always support the deployment of SMART-COMMIT worldwide. These data products follow the data structure of EOS conventions: Level-0, instrument archived raw data; Level-1 (or 1.5), real-time data with no (or limited) quality assurance; Level-2, not real high temporal and spectral resolutions. In this talk, we will present NASA/GSFC groundbased facilities, serving

  19. COMPARISON OF THE GROUND AND SATELLITE TEMPERATURE DATA, CASE OF WRANGELL ISLAND

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2016-01-01

    Full Text Available In modern times, in the country many remote areas are characterized by low density of weather stations, which reduces the accuracy of synoptic forecasts for territories remoted from the weather stations. In this regard, the use of thermal infrared satellite images for simulation of some climatic parameters is considered by the authors as a promising area of science. The article presents the results of comparing the land surface temperature values calculated from Landsat satellites images and ground-measured air temperature values. For the considered seasons the indicators are characterized by a pronounced linear relationship with a high correlation coefficient.

  20. Ground Truthing Orbital Clay Mineral Observations with the APXS Onboard Mars Exploration Rover Opportunity

    Science.gov (United States)

    Schroeder, C.; Gellert, R.; VanBommel, S.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. S.; Yen, A. S.

    2016-01-01

    NASA's Mars Exploration Rover Opportunity has been exploring approximately 22 km diameter Endeavour crater since 2011. Its rim segments predate the Hesperian-age Burns formation and expose Noachian-age material, which is associated with orbital Fe3+-Mg-rich clay mineral observations [1,2]. Moving to an orders of magnitude smaller instrumental field of view on the ground, the clay minerals were challenging to pinpoint on the basis of geochemical data because they appear to be the result of near-isochemical weathering of the local bedrock [3,4]. However, the APXS revealed a more complex mineral story as fracture fills and so-called red zones appear to contain more Al-rich clay minerals [5,6], which had not been observed from orbit. These observations are important to constrain clay mineral formation processes. More detail will be added as Opportunity is heading into her 10th extended mission, during which she will investigate Noachian bedrock that predates Endeavour crater, study sedimentary rocks inside Endeavour crater, and explore a fluid-carved gully. ESA's ExoMars rover will land on Noachian-age Oxia Planum where abundant Fe3+-Mg-rich clay minerals have been observed from orbit, but the story will undoubtedly become more complex once seen from the ground.

  1. Ground-Based Transit Observations of the Super-Earth 55 Cnc e

    CERN Document Server

    de Mooij, E J W; Karjalainen, R; Hrudkova, M; Jayawardhana, R

    2014-01-01

    We report the first ground-based detections of the shallow transit of the super-Earth exoplanet 55 Cnc e using a 2-meter-class telescope. Using differential spectrophotometry, we observed one transit in 2013 and another in 2014, with average spectral resolutions of ~700 and ~250, spanning the Johnson BVR photometric bands. We find a white-light planet-to-star radius ratio of 0.0190 -0.0027+0.0023 from the 2013 observations and 0.0200 -0.0018+0.0017 from the 2014 observations. The two datasets combined results in a radius ratio of 0.0198 -0.0014+0.0013. These values are all in agreement with previous space-based results. Scintillation noise in the data prevents us from placing strong constraints on the presence of an extended hydrogen-rich atmosphere. Nevertheless, our detections of 55 Cnc e in transit demonstrate that moderate-size telescopes on the ground will be capable of routine follow-up observations of super-Earth candidates discovered by the Transiting Exoplanet Survey Satellite (TESS) around bright st...

  2. Mean Thermal and Compositional Properties of Uranus from Combined Spitzer, ISO, Herschel and Ground-Based Observations

    Science.gov (United States)

    Orton, Glenn; Feuchtgruber, Helmut; Fletcher, Leigh; Moreno, Raphael; Moses, Julianne; Hofstadter, Mark; Lellouch, Emmanuel; Schaeffer, Jochem

    2013-04-01

    We derived models for the mean thermal structure and composition of the atmosphere of Uranus from a suite of spacecraft and ground-based observations. A family of models of the atmospheric temperature and composition derived from the Spitzer Infrared Spectrometer (IRS) data (Orton et al. 2013, submitted to Icarus) have been updated to include the significant influence of H2-H2 dimers on collision-induced absorption that was used to constrain the vertical temperature profile in the upper troposphere down to the 2-bar pressure level. IRS observations of H2 quadrupole lines provided additional constraints on temperatures in the lower stratosphere at pressures less than 100 mbar. We applied additional constraints on this family of models from Hershel PACS observations of HD (Feuchtgruber et al. 2013, Astron. & Astrophys. in press). We have also constrained the He/H2 ratio that characterizes the bulk composition of the atmosphere from previously unpublished observations by the ISO Short-Wavelength Spectrometer (SWS) and confirmed values originally derived by the Voyager IRIS and Radio Sub-System experiment (Conrath et al. 1987. J. Geophys. Res. 92, 15003). We have coupled observational constraints on the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing that are consistent with the mixing ratios of hydrocarbons whose abundances are primarily influenced by dynamics rather than chemistry. Spitzer and Hershel data provide substantial constraints on the abundances and distributions of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. At millimeter wavelengths, strategic ground-based observations from the United Kingdom Infrared Telescope (UKIRT) and Caltech Submillimeter Observatory (CSO) atop Mauna Kea, Hawaii, provide evidence that an additional opacity source in Uranus is required besides (i) the H2 collision-induced and absorption, including significant dimer contributions, and (ii) the NH3 absorption that is consistent with the

  3. ON THE RETRIEVAL OF MESOSPHERIC WINDS ON MARS AND VENUS FROM GROUND-BASED OBSERVATIONS AT 10 μm

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Valverde, M. A. [Instituto de Astrofisica de Andalucia, IAA/CSIC, Granada (Spain); Montabone, L. [Space Science Institute, Boulder, CO (United States); Sornig, M.; Sonnabend, G., E-mail: valverde@iaa.es [University of Cologne, KOSMA, Köln (Germany)

    2016-01-10

    A detailed analysis is presented of ground-based observations of atmospheric emissions on Mars and Venus under non-local thermodynamic equilibrium (non-LTE) conditions at high spectral resolution. Our first goal is to comprehend the difficulties behind the derivation of wind speeds from ground-based observations. A second goal is to set a framework to permit comparisons with other observations and with atmospheric models. A forward model including non-LTE radiative transfer is used to evaluate the information content within the telescopic beam, and is later convolved with the beam function and a typical wind field to discern the major contributions to the measured radiance, including limb and nadir views. The emission mostly arises from the non-LTE limb around altitudes of 75 km on Mars and 110 km on Venus. We propose a parameterization of the limb emission using few geophysical parameters which can be extended to other hypothetical CO{sub 2} planetary atmospheres. The tropospheric or LTE component of the emission varies with the temperature and is important at low solar illumination but only for the emerging radiance, not for the wind determinations since these are derived from the Doppler shift at the non-LTE line cores. We evaluated the sources of uncertainty and found that the forward model errors amount to approximately 12% of the measured winds, which is normally smaller than the instrumental errors. We applied this study to revise a set of measurements extending for three Martian years and confirmed previous results suggesting winds that are too large simulated by current Martian circulation models at equatorial latitudes during solstice. We encourage new observational campaigns, particularly for the strong jet at mid–high latitudes on Mars, and propose general guidelines and recommendations for future observations.

  4. Comparison of optical observational capabilities for the coming decades: ground versus space

    CERN Document Server

    Mountain, Matt; Soummer, Remi; Koekemoer, Anton; Ferguson, Harry; Postman, Marc; Gavel, Donald T; Guyon, Olivier; Simons, Douglas; Traub, Wesley A

    2009-01-01

    Ground-based adaptive optics (AO) in the infrared has made exceptional advances in approaching space-like image quality at higher collecting area. Optical-wavelength applications are now also growing in scope. We therefore provide here a comparison of the pros and cons of observational capabilities from the ground and from space at optical wavelengths. With an eye towards the future, we focus on the comparison of a ~30m ground-based telescope with an 8-16m space-based telescope. We review the current state-of-the-art in AO, and summarize the expected future improvements in image quality, field of view, contrast, and low-wavelength cut-off. We discuss the exciting advances in extreme AO for exoplanet studies and explore what the theoretical limitations in achievable contrast might be. Our analysis shows that extreme AO techniques face both fundamental and technological hurdles to reach the contrast of 1E-10 necessary to study an Earth-twin at 10 pc. Based on our assessment of the current state-of-the-art, the ...

  5. A Ground-Based Array to Observe Geospace Electrodynamics During Adverse Space Weather Conditions

    Science.gov (United States)

    Sojka, J. J.; Eccles, J. V.; Rice, D.

    2004-05-01

    Geomagnetic Storms occur with surprising frequency and create adverse space weather conditions. During these periods, our knowledge and ability to specify or forecast in adequate detail for user needs is negligible. Neither experimental observations nor theoretical developments have made a significant new impact on the problem for over two decades. Although we can now map Total Electron Content (TEC) in the ionosphere over a continent with sufficient resolution to see coherent long-lived structures, these do not provide constraints on the geospace electrodynamics that is at the heart of our lack of understanding. We present arguments for the need of a continental deployment of ground-based sensors to stepwise advance our understanding of the geospace electrodynamics when it is most adverse from a space weather perspective and also most frustrating from an understanding of Magnetosphere-Ionosphere coupling. That a continental-scale deployment is more productive at addressing the problem than a realizable global distribution is shown. Each measurement is discussed from the point-of-view of either providing new knowledge or becoming a key for future real-time specification and forecasting for user applications. An example of a storm database from one mid-latitude station for the 31 March 2002 is used as a conceptual point in a ground-based array. The presentation focuses on scientific questions that have eluded a quantitative solution for over three decades and view a ground-based array as an "IGY" type of catalyst for answering these questions.

  6. A Study of the Relations between Soil Moisture, Soil Temperatures and Surface Temperatures Using ARM Observations and Offline CLM4 Simulations

    Directory of Open Access Journals (Sweden)

    Menglin S. Jin

    2014-09-01

    Full Text Available Soil temperature, soil moisture, skin temperature and 2-m air temperature are examined from both ground observations and the offline community land model (CLM4. Two-layer soil moisture and three-layer soil temperature observations from six-year (2003–2008 ground measurements at the Lamont, Oklahoma site supported by the Atmospheric Radiation Measurement (ARM Program of the Department of Energy (DOE show clear vertical and temporal relations between soil temperature and soil moisture with surface skin temperature and 2-m air temperature. First, daily means reveal that all of these variables have clear seasonal variations, with temperatures peaking in summer and minimizing in winter as a result of surface insolation. Nevertheless, the 2-m air temperature and upper soil temperature (−0.05 m peak at 2 h after that of surface skin temperature because of the lag of transport of heat from the skin level to the 2-m air and to underground respectively. As a result of such lag, at the monthly annual cycle scale, 2-m air temperature has higher correlation with upper soil temperature than skin temperature does. Second, there are little diurnal and annual variations at the lowest soil layer (−0.25 m. Third, a negative correlation (~−0.40 between skin temperature and soil moisture is observed, consistent with the expectation that heat flux and evaporation are competing physical processes for redistributing surface net radiation. Soil moisture, however, minimizes in March and maximizes in winter due to the local rainfall cycle. All of these key observed relations are qualitatively reproduced in the offline CLM4 using the atmosphere forcing derived from ARM observations. Nevertheless, CLM4 is too dry at the upper layer and has less variation at the lower layer than observed. In addition, CLM4 shows stronger correlation between Tsoil and Tskin (r = 0.96 than the observations (r = 0.64, while the predicted nighttime Tskin is 0.5–2 °C higher than the

  7. Geocenter variations derived from a combined processing of LEO- and ground-based GPS observations

    Science.gov (United States)

    Männel, Benjamin; Rothacher, Markus

    2017-08-01

    GNSS observations provided by the global tracking network of the International GNSS Service (IGS, Dow et al. in J Geod 83(3):191-198, 2009) play an important role in the realization of a unique terrestrial reference frame that is accurate enough to allow a detailed monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board low earth orbiters (LEOs) is a promising way to further improve the realization of the terrestrial reference frame and the estimation of geocenter coordinates, GPS satellite orbits and Earth rotation parameters. To assess the scope of the improvement on the geocenter coordinates, we processed a network of 53 globally distributed and stable IGS stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of 3 years (2010-2012). To ensure fully consistent solutions, the zero-difference phase observations of the ground stations and LEOs were processed in a common least-squares adjustment, estimating all the relevant parameters such as GPS and LEO orbits, station coordinates, Earth rotation parameters and geocenter motion. We present the significant impact of the individual LEO and a combination of all four LEOs on the geocenter coordinates. The formal errors are reduced by around 20% due to the inclusion of one LEO into the ground-only solution, while in a solution with four LEOs LEO-specific characteristics are significantly reduced. We compare the derived geocenter coordinates w.r.t. LAGEOS results and external solutions based on GPS and SLR data. We found good agreement in the amplitudes of all components; however, the phases in x- and z-direction do not agree well.

  8. [Observation and Analysis of Ground Daylight Spectra of China's Different Light Climate Partitions].

    Science.gov (United States)

    Liang, Shu-ying; Yang, Chun-yu

    2015-12-01

    The territory of China is vast, so the daylight climates of different regions are not the same. In order to expand theutilization scope and improve the utilization efficiency of solar energy and daylight resources, this article observed and analyzed the ground daylight spectra of China's different light climate partitions. Using a portable spectrum scanner, this article did a tracking observation of ground direct daylight spectra in the period of 380-780 nm visible spectrum of different solar elevation angles during one day in seven representative cities of china's different light climate partitions. The seven representative cities included Kunming, Xining, Beijing, Shenzhen, Nanjing, Nanchang and Chongqing. According to the observation results, this article analyzed the daylight spectrum changing law, compared the daylight spectrum curves of different light climate partitions cities, and summarized the influence factors of daylight spectral radiation intensity. The Analysis of the ground direct daylight spectra showed that the daylight spectral radiation intensity of different solar elevation angles during one day of china's different light climate partitions cities was different, but the distribution and trend of daylight power spectra were basically the same which generally was first increased and then decreased. The maximum peak of spectral power distribution curve appeared at about 475 nm, and there were a steep rise between 380-475 nm and a smooth decline between 475-700 nm while repeatedly big ups and downs appearing after 700 nm. The distribution and trend of daylight power spectra of china's different light climate partitions cities were basically the same, and there was no obvious difference between the daylight spectral power distribution curves and the different light climate partitions. The daylight spectral radiation intensity was closely related to the solar elevation angle and solar surface condition.

  9. The Relation Between Ground Acceleration and Earthquake Source Parameters: Theory and Observations

    Science.gov (United States)

    Lior, Itzhak; Ziv, Alon

    2017-04-01

    A simple relation between the root-mean-square of the ground acceleration and earthquake spectral (or source) parameters is introduced: 2 ----f20---- Arms = (2π )Ω0 √--( πκf0-)2, πκT 1 + 1.50.25 where Ω0 is the low frequency displacement spectral plateau, f0 is the corner frequency, κ is an attenuation parameter, and T is the data interval. This result uses the omega-squared model for far-field radiation, and accounts for site-specific attenuation. The main advantage of the new relation with respect to that of Hanks' (Hanks, 1979) is that it relaxes the simplifying assumption that the spectral corner frequency is much smaller than the maximum corner frequency resulting from attenuation, and that the spectrum may be approximated as being perfectly flat between the two frequencies. The newly proposed relation is tested using a composite dataset of earthquake records from Japan, California, Mexico and Taiwan. Excellent agreement is found between observed and predicted ground acceleration for any combination of corner frequencies. Thus, use of the above relation enables the extrapolation of ground motion prediction equation inferred from the frequent small magnitude earthquakes to the rare large magnitudes. This capacity is extremely useful near slow-slip plate boundaries, where the seismic moment release rates are low. Reference Hanks, T. C. (1979). b values and ω-γ seismic source models: implications for tectonic stress variations along active crustal fault zones and the estimation of high-frequency strong ground motion, J. Geophys. Res. 84, 2235-2241.

  10. Development of a Ground-Based Atmospheric Monitoring Network for the Global Mercury Observation System (GMOS

    Directory of Open Access Journals (Sweden)

    Sprovieri F.

    2013-04-01

    Full Text Available Consistent, high-quality measurements of atmospheric mercury (Hg are necessary in order to better understand Hg emissions, transport, and deposition on a global scale. Although the number of atmospheric Hg monitoring stations has increased in recent years, the available measurement database is limited and there are many regions of the world where measurements have not been extensively performed. Long-term atmospheric Hg monitoring and additional ground-based monitoring sites are needed in order to generate datasets that will offer new insight and information about the global scale trends of atmospheric Hg emissions and deposition. In the framework of the Global Mercury Observation System (GMOS project, a coordinated global observational network for atmospheric Hg is being established. The overall research strategy of GMOS is to develop a state-of-the-art observation system able to provide information on the concentration of Hg species in ambient air and precipitation on the global scale. This network is being developed by integrating previously established ground-based atmospheric Hg monitoring stations with newly established GMOS sites that are located both at high altitude and sea level locations, as well as in climatically diverse regions. Through the collection of consistent, high-quality atmospheric Hg measurement data, we seek to create a comprehensive assessment of atmospheric Hg concentrations and their dependence on meteorology, long-range atmospheric transport and atmospheric emissions.

  11. Relationship between soft stratum thickness and predominant frequency of ground based on microtremor observation data

    Science.gov (United States)

    Chia, Kenny; Lau, Tze Liang

    2017-07-01

    Despite categorized as low seismicity group, until being affected by distant earthquake ground motion from Sumatra and the recent 2015 Sabah Earthquake, Malaysia has come to realize that seismic hazard in the country is real and has the potential to threaten the public safety and welfare. The major concern in this paper is to study the effect of local site condition, where it could amplify the magnitude of ground vibration at sites. The aim for this study is to correlate the thickness of soft stratum with the predominant frequency of soil. Single point microtremor measurements were carried out at 24 selected points where the site investigation reports are available. Predominant period and frequency at each site are determined by Nakamura's method. The predominant period varies from 0.22 s to 0.98 s. Generally, the predominant period increases when getting closer to the shoreline which has thicker sediments. As far as the thickness of the soft stratum could influence the amplification of seismic wave, the advancement of micotremor observation to predict the thickness of soft stratum (h) from predominant frequency (fr) is of the concern. Thus an empirical relationship h =54.917 fr-1.314 is developed based on the microtremor observation data. The empirical relationship will be benefited in the prediction of thickness of soft stratum based on microtremor observation for seismic design with minimal cost compared to conventional boring method.

  12. Ground-based Observations of the Solar Sources of Space Weather (Invited Review)

    CERN Document Server

    Veronig, Astrid M

    2016-01-01

    Monitoring of the Sun and its activity is a task of growing importance in the frame of space weather research and awareness. Major space weather disturbances at Earth have their origin in energetic outbursts from the Sun: solar flares, coronal mass ejections and associated solar energetic particles. In this review we discuss the importance and complementarity of ground-based and space-based observations for space weather studies. The main focus is drawn on ground-based observations in the visible range of the spectrum, in particular in the diagnostically manifold H$\\alpha$ spectral line, which enables us to detect and study solar flares, filaments, filament eruptions, and Moreton waves. Existing H$\\alpha$ networks such as the GONG and the Global High-Resolution H$\\alpha$ Network are discussed. As an example of solar observations from space weather research to operations, we present the system of real-time detection of H$\\alpha$ flares and filaments established at Kanzelh\\"ohe Observatory (KSO; Austria) in the...

  13. Ground-based and spacecraft observations of lightning activity on Saturn

    Science.gov (United States)

    Zakharenko, V.; Mylostna, C.; Konovalenko, A.; Zarka, P.; Fischer, G.; Grießmeier, J.-M.; Litvinenko, G.; Rucker, H.; Sidorchuk, M.; Ryabov, B.; Vavriv, D.; Ryabov, V.; Cecconi, B.; Coffre, A.; Denis, L.; Fabrice, C.; Pallier, L.; Schneider, J.; Kozhyn, R.; Vinogradov, V.; Mukha, D.; Weber, R.; Shevchenko, V.; Nikolaenko, V.

    2012-02-01

    In late 2007, Saturn electrostatic discharges (SED) were simultaneously observed at the radio telescope UTR-2 and with the Cassini spacecraft. Observations at UTR-2 were performed with a multichannel receiver in the frequency range 12-33 MHz, and those performed on Cassini-with a swept frequency receiver that is part of the RPWS (Radio and Plasma Wave Science) instrument in the frequency band 1.8-16 MHz. We got a very good coincidence between data of UTR-2 and Cassini. It is shown for the first time that ground-based radio astronomy lets us detect Saturn's lightning with a high degree of reliability despite terrestrial interferences. This is the necessary basis for further detailed study of the temporal and spectral characteristics of the SEDs with ground based radio telescopes. Based on six observation sessions, several parameters of SEDs were determined, in particularly a correlation of 0.77±0.15 between the average intensity of storms and the e-folding time.

  14. Solar diameter, eclipses and transits: the importance of ground-based observations

    CERN Document Server

    Sigismondi, Costantino

    2012-01-01

    According to satellite measurements the difference between polar and equatorial radius does not exceed 10 milliarcsec. These measurements are differential, and the absolute value of the solar diameter is not precisely known to a level of accuracy needed for finding variations during years or decades. Moreover the lifetime of a satellite is limited, and its calibration is not stable. This shows the need to continue ground-based observations of the Sun exploiting in particular the methods less affected by atmospheric turbulence, as the planetary transits and the total and annular eclipses. The state of art, the advantages and the limits of these two methods are here considered.

  15. IMF By-Related Cusp Currents Observed from the Ørsted Satellite and from Ground

    DEFF Research Database (Denmark)

    Stauning, P.; Primdahl, Fritz; Watermann, J.

    2001-01-01

    from ground-based magnetic observations to define the structure and location of cusp currents and their dependencies on interplanetary magnetic field (IMF) conditions. Example cases illustrate the close relation between IMF B-gamma-related FAC and horizontal ionospheric currents in the cusp region. Our...... statistical analysis defines for the noon region the variations in FAC latitude with IMF B-Z. Comparisons with the statistical cusp location indicate that the more equatorward region of IMF B-gamma-while the more B related FAC is located on field lines closing at the dayside poleward FAC are on "open" field...

  16. Planet Sensitivity from Combined Ground- and Space-based Microlensing Observations

    CERN Document Server

    Zhu, Wei; Beichman, Charles; Novati, Sebastiano Calchi; Carey, Sean; Gaudi, B Scott; Henderson, Calen B; Penny, Matthew; Shvartzvald, Yossi; Yee, Jennifer C; Udalski, A; Poleski, R; Skowron, J; Kozlowski, S; Mroz, P; Pietrukowicz, P; Pietrzynski, G; Szymanski, M K; Soszynski, I; Ulaczyk, K; Wyrzykowski, L; Abe, F; Barry, R K; Bennett, D P; Bhattacharya, A; Fukunaga, D; Inayama, K; Koshimoto, N; Namba, S; Sumi, T; Suzuki, D; Tristram, P J; Wakiyama, Y; Yonehara, A; Maoz, D; Kaspi, S; Friedmann, M

    2015-01-01

    To move one step forward toward a Galactic distribution of planets, we present the first planet sensitivity analysis for microlensing events with simultaneous observations from space and the ground. We present this analysis for two such events, OGLE-2014-BLG-0939 and OGLE-2014-BLG-0124, which both show substantial planet sensitivity even though neither of them reached high magnification. This suggests that an ensemble of low to moderate magnification events can also yield significant planet sensitivity and therefore probability to detect planets. The implications of our results to the ongoing and future space-based microlensing experiments to measure the Galactic distribution of planets are discussed.

  17. Coulomb blockade and Coulomb staircase behavior observed at room temperature

    Science.gov (United States)

    Uky Vivitasari, Pipit; Azuma, Yasuo; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka

    2017-02-01

    A single-electron transistor (SET) consists of source, drain, Coulomb island, and gate to modulate the number of electrons and control the current. For practical applications, it is important to operate a SET at room temperature. One proposal towards the ability to operate at room temperature is to decrease Coulomb island size down to a few nanometres. We investigate a SET using Sn-porphyrin (Sn-por) protected gold nanoparticles (AuNPs) with 1.4 nm in core diameter as a Coulomb island. The fabrication method of nanogap electrodes uses the combination of a top-down technique by electron beam lithography (EBL) and a bottom-up process through electroless gold plating (ELGP) as our group have described before. The electrical measurement was conducted at room temperature (300 K). From current-voltage (I d-V d) characteristics, we obtained clear Coulomb blockade phenomena together with a Coulomb staircase due to a Sn-por protected gold NP as a Coulomb island. Experimental results of I d-V d characteristics agree with a theoretical curve based on using the orthodox model. Clear dI d/dV d peaks are observed in the Coulomb staircase at 9 K which suggest the electron transports through excited energy levels of Au NPs. These results are a big step for obtaining SETs that can operate at room temperature.

  18. Ground observations and remote sensing data for integrated modelisation of water budget in the Merguellil catchment, Tunisia

    Science.gov (United States)

    Mougenot, Bernard

    2016-04-01

    The Mediterranean region is affected by water scarcity. Some countries as Tunisia reached the limit of 550 m3/year/capita due overexploitation of low water resources for irrigation, domestic uses and industry. A lot of programs aim to evaluate strategies to improve water consumption at regional level. In central Tunisia, on the Merguellil catchment, we develop integrated water resources modelisations based on social investigations, ground observations and remote sensing data. The main objective is to close the water budget at regional level and to estimate irrigation and water pumping to test scenarios with endusers. Our works benefit from French, bilateral and European projects (ANR, MISTRALS/SICMed, FP6, FP7…), GMES/GEOLAND-ESA) and also network projects as JECAM and AERONET, where the Merguellil site is a reference. This site has specific characteristics associating irrigated and rainfed crops mixing cereals, market gardening and orchards and will be proposed as a new environmental observing system connected to the OMERE, TENSIFT and OSR systems respectively in Tunisia, Morocco and France. We show here an original and large set of ground and remote sensing data mainly acquired from 2008 to present to be used for calibration/validation of water budget processes and integrated models for present and scenarios: - Ground data: meteorological stations, water budget at local scale: fluxes tower, soil fluxes, soil and surface temperature, soil moisture, drainage, flow, water level in lakes, aquifer, vegetation parameters on selected fieds/month (LAI, height, biomass, yield), land cover: 3 times/year, bare soil roughness, irrigation and pumping estimations, soil texture. - Remote sensing data: remote sensing products from multi-platform (MODIS, SPOT, LANDSAT, ASTER, PLEIADES, ASAR, COSMO-SkyMed, TerraSAR X…), multi-wavelength (solar, micro-wave and thermal) and multi-resolution (0.5 meters to 1 km). Ground observations are used (1) to calibrate soil

  19. Seasonal oscillations of middle atmosphere temperature observed by Rayleigh lidars and their comparisons with TIMED/SABER observations

    Science.gov (United States)

    Dou, Xiankang; Li, Tao; Xu, Jiyao; Liu, Han-Li; Xue, Xianghui; Wang, Shui; Leblanc, Thierry; McDermid, I. Stuart; Hauchecorne, Alain; Keckhut, Philippe; Bencherif, Hassan; Heinselman, Craig; Steinbrecht, Wolfgang; Mlynczak, M. G.; Russell, J. M.

    2009-10-01

    The long-term temperature data sets obtained by Rayleigh lidars at six different locations from low to high latitudes within the Network for the Detection of Atmospheric Composition Change (NDACC) were used to derive the annual oscillations (AO) and semiannual oscillations (SAO) of middle atmosphere temperature: Reunion Island (21.8°S); Mauna Loa Observatory, Hawaii (19.5°N); Table Mountain Facility, California (34.4°N); Observatoire de Haute Provence, France (43.9°N); Hohenpeissenberg, Germany (47.8°N); Sondre Stromfjord, Greenland (67.0°N). The results were compared with those derived from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. The zonal mean temperatures at similar latitudes show good agreement. The observations also reveal that the AO dominates the seasonal oscillations in both the stratosphere and the mesosphere at middle and high latitudes, with the amplitudes increasing poleward. The SAO oscillations are weaker at all six sites. The oscillations in the upper mesosphere are usually stronger than those in the upper stratosphere with a local minimum near 50-65 km. The upper mesospheric signals are clearly out of phase with upper stratospheric signals. Some differences between lidar and SABER results were found in both the stratosphere and mesosphere. These could be due to: the difference in data sampling between ground-based and space-based instruments, the length of data set, the tidal aliasing owing to the temperature AO and SAO since lidar data are nighttime only, and lidar temperature analysis algorithms. The seasonal oscillations of tidal amplitudes derived from SABER observations suggests that the tidal aliasing of the lidar temperature AO and SAO in the upper mesosphere may over- or under-estimate the real temperature oscillations, depending on the tidal phases. In addition, the possibly unrealistic seasonal

  20. Atmospheric Response to Fukushima Daiichi NPP (Japan) Accident Reviled by Satellite and Ground observations

    CERN Document Server

    Ouzounov, D; Hattori, K; Kafatos, M; Taylor, P

    2011-01-01

    Immediately after the March 11, 2011 earthquake and tsunami in Japan we started to continuously survey the Outgoing Long-wavelength Radiation (OLR, 10-13 microns) from NOAA/AVHRR. Our preliminary results show the presence of hot spots on the top of the atmosphere over the Fukushima Daiichi Nuclear Power Plant (FDNPP) and due to their persistence over the same region they are most likely not of meteorological origin. On March 14 and 21 we detected a significant increase in radiation (14 W/m2) at the top of the atmosphere which also coincides with a reported radioactivity gas leaks from the FDNPP. After March 21 the intensity of OLR started to decline, which has been confirmed by ground radiometer network. We hypothesize that this increase in OLR was a result of the radioactive leaks released in atmosphere from the FDNPP. This energy triggers ionization of the air near the ground and lead to release of latent heat energy due to change of air humidity and temperature. Our early results demonstrate the potential ...

  1. Observation of a kilogram-scale oscillator near its quantum ground state

    Science.gov (United States)

    Abbott, B.; Abbott, R.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M. A.; Araya, M.; Armandula, H.; Armor, P.; Aso, Y.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bastarrika, M.; Bayer, K.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bodiya, T. P.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Brunet, G.; Bullington, A.; Buonanno, A.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cao, J.; Cardenas, L.; Casebolt, T.; Castaldi, G.; Cepeda, C.; Chalkley, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Christensen, N.; Clark, D.; Clark, J.; Cokelaer, T.; Conte, R.; Cook, D.; Corbitt, T.; Coyne, D.; Creighton, J. D. E.; Cumming, A.; Cunningham, L.; Cutler, R. M.; Dalrymple, J.; Danilishin, S.; Danzmann, K.; Davies, G.; DeBra, D.; Degallaix, J.; Degree, M.; Dergachev, V.; Desai, S.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Drever, R. W. P.; Duke, I.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Echols, C.; Effler, A.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fehrmann, H.; Fejer, M. M.; Finn, L. S.; Flasch, K.; Fotopoulos, N.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Gouaty, R.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grimaldi, F.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayama, K.; Hayler, T.; Heefner, J.; Heng, I. S.; Hennessy, M.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Huttner, S. H.; Ingram, D.; Ito, M.; Ivanov, A.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamat, S.; Kanner, J.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya; Khan, R.; Khazanov, E.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Kozhevatov, I.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M. M.; Lantz, B.; Lazzarini, A.; Lei, M.; Leindecker, N.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lin, H.; Lindquist, P.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.; Lubinski, M.; Lucianetti, A.; Lück, H.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Mandic, V.; Márka, S.; Márka, Z.; Markosyan, A.; Markowitz, J.; Maros, E.; Martin, I.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McIntyre, G.; McIvor, G.; McKechan, D.; McKenzie, K.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C. J.; Meyers, D.; Miao, H.; Miller, J.; Minelli, J.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Mohanty, S.; Moreno, G.; Mossavi, K.; Mow-Lowry, C.; Mueller, G.; Mukherjee, S.; Mukhopadhyay, H.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Nelson, J.; Newton, G.; Nishizawa, A.; Numata, K.; O'Dell, J.; Ogin, G.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pan, Y.; Pankow, C.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Perreca, A.; Petrie, T.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Postiglione, F.; Principe, M.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D. S.; Radkins, H.; Rainer, N.; Rakhmanov, M.; Ramsunder, M.; Rehbein, H.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S. W.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Sinha, S.

    2009-07-01

    We introduce a novel cooling technique capable of approaching the quantum ground state of a kilogram-scale system—an interferometric gravitational wave detector. The detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) operate within a factor of 10 of the standard quantum limit (SQL), providing a displacement sensitivity of 10-18 m in a 100 Hz band centered on 150 Hz. With a new feedback strategy, we dynamically shift the resonant frequency of a 2.7 kg pendulum mode to lie within this optimal band, where its effective temperature falls as low as 1.4 μK, and its occupation number reaches about 200 quanta. This work shows how the exquisite sensitivity necessary to detect gravitational waves can be made available to probe the validity of quantum mechanics on an enormous mass scale.

  2. The early ELF signals of the gigantic jets captured by the Taiwan ground observation network

    Science.gov (United States)

    Chen, A. B. C.; Huang, P. H.; Su, H. T.; Hsu, R. R.

    2015-12-01

    The in-cloud ignition process of gigantic jets and blue jets receives attentions and discussions in the past years. The polarity and the position of their breakdown were proposed by Krehbiel et al. [2008] but no concrete observational evidence to support it directly. ELF spectrogram is a good tool to explore the electric activities, but traditional spectrograms are generated by a Fourier transform which obtain the frequency information through an integration operation. However the integration greatly limits the lowest frequency revealed by spectrogram and buries the important transient features. In this study, we applied a new but widely-used method, the Hilbert-Huang transform (HHT), to explore the spectrogram. Instead of the integration, HHT obtains the frequency information by differentiating on the phase angle, and become a powerful tool to reveal the fast frequency variation associated with transient luminous events. More than 100 transient luminous events including 25 gigantic jets observed by Taiwan ground optical observation network were analyzed. The results indicate that approximately 70% of gigantic jets can identify a rapid frequency variation in the interval of 300-600 milliseconds before main surge discharge, and this early feature can not find a clear corresponding amplitude variation in its sferic. Since this early signal can not be identified from the traditional Fourier spectrogram, but clear in-cloud lightning was registered correspondingly by the ground optical observation. In contrast to gigantic jets, this feature of early frequency change can be seen only in less than 30% of sprites and elves. These observational evidences are able to provide new constraints on the early discharge process of gigantic jets in clouds.

  3. An integrated model of soil-canopy spectral radiance observations, photosynthesis, fluorescence, temperature and energy balance

    Directory of Open Access Journals (Sweden)

    C. van der Tol

    2009-06-01

    Full Text Available This paper presents the model SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes, which is a vertical (1-D integrated radiative transfer and energy balance model. It calculates the radiation and the energy balance of a vegetated land surface at the level of single leaves as well as at canopy level, and the spectrum of the outgoing radiation in the viewing direction, at a high spectral resolution over the range from 0.4 to 50 μm, thus including the visible, near and shortwave infrared, as well as the thermal domain. A special routine is dedicated to the calculation of chlorophyll fluorescence. The calculation of radiative transfer and the energy balance is fully integrated, allowing for feedback between surface temperatures, leaf chlorophyll fluorescence and radiative fluxes. Model simulations were evaluated against observations reported in the literature. The model may serve as a theoretical ground truth to derive relationships between observed spectra and physical processes at the land surface.

  4. Evaluations of cirrus contamination and screening in ground aerosol observations using collocated lidar systems

    Science.gov (United States)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.; Smirnov, Alexander; Jeong, Myeong-Jae; Hansell, Richard A.; Berkoff, Timothy A.; Liu, Zhaoyan; Liu, Gin-Rong; Campbell, James R.; Liew, Soo Chin; Barnes, John E.

    2012-08-01

    Cirrus clouds, particularly subvisual high thin cirrus with low optical thickness, are difficult to screen in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to systematically examine the susceptibility of operational aerosol products to cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical feature mask (VFM) and the Moderate Resolution Imaging Spectroradiometer (MODIS) thin cirrus screening parameters for the purpose of evaluating cirrus contamination. Key results of this study include: (1) quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted; although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons; (2) challenges in matching up different data for analysis are highlighted and corresponding solutions proposed; and (3) estimates of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.

  5. The case for 6-component ground motion observations in planetary seismology

    Science.gov (United States)

    Joshi, Rakshit; van Driel, Martin; Donner, Stefanie; Nunn, Ceri; Wassermann, Joachim; Igel, Heiner

    2017-04-01

    The imminent INSIGHT mission will place a single seismic station on Mars to learn more about the structure of the Martian interior. Due to cost and difficulty, only single stations are currently feasible for planetary missions. We show that future single station missions should also measure rotational ground motions, in addition to the classic 3 components of translational motion. The joint, collocated, 6 component (6C) observations offer access to additional information that can otherwise only be obtained through seismic array measurements or are associated with large uncertainties. An example is the access to local phase velocity information from measurements of amplitude ratios of translations and rotations. When surface waves are available, this implies (in principle) that 1D velocity models can be estimated from Love wave dispersion curves. In addition, rotational ground motion observations can distinguish between Love and Rayleigh waves as well as S and P type motions. Wave propagation directions can be estimated by maximizing (or minimizing) coherence between translational and rotational motions. In combination with velocity-depth estimates, locations of seismic sources can be determined from a single station with little or no prior knowledge of the velocity structure. We demonstrate these points with both theoretical and real data examples using the vertical component of motion from ring laser recordings at Wettzell and all components of motion from the ROMY ring near Munich. Finally, we present the current state of technology concerning portable rotation sensors and discuss the relevance to planetary seismology.

  6. Precipitation of radiation belt electrons by EMIC waves, observed from ground and space

    Energy Technology Data Exchange (ETDEWEB)

    Jordanova, Vania K [Los Alamos National Laboratory; Miyoski, Y [NAGOYA UNIV; Sakaguchi, K [NAGOYA UNIV; Shiokawa, K [NAGOYA UNIV; Evans, D S [NOAA, BOULDER; Albert, Jay [AFRL; Connors, M [UNIV OF ATHABASCA

    2008-01-01

    We show evidence that left-hand polarised electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere. Our unique set of ground and satellite observations shows coincident precipitation of ions with energies of tens of keY and of relativistic electrons into an isolated proton aurora. The coincident precipitation was produced by wave-particle interactions with EMIC waves near the plasmapause. The estimation of pitch angle diffusion coefficients supports that the observed EMIC waves caused coincident precipitation ofboth ions and relativistic electrons. This study clarifies that ions with energies of tens of ke V affect the evolution of relativistic electrons in the radiation belts via cyclotron resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's.

  7. Global impacts of a Foreshock Bubble: Magnetosheath, magnetopause and ground-based observations

    CERN Document Server

    Archer, Martin; Eastwood, Jonathan; Schwartz, Steven; Horbury, Timothy

    2014-01-01

    Using multipoint observations we show, for the first time, that Foreshock Bubbles (FBs) have a global impact on Earth's magnetosphere. We show that an FB, a transient kinetic phenomenon due to the interaction of backstreaming suprathermal ions with a discontinuity, modifies the total pressure upstream of the bow shock showing a decrease within the FB's core and sheath regions. Magnetosheath plasma is accelerated towards the the intersection of the FB's current sheet with the bow shock resulting in fast, sunward, flows as well as outward motion of the magnetopause. Ground-based magnetometers also show signatures of this magnetopause motion simultaneously across at least 7 hours of magnetic local time, corresponding to a distance of 21.5 RE transverse to the Sun-Earth line along the magnetopause. These observed global impacts of the FB are in agreement with previous simulations and in stark contrast to the known localised, smaller scale effects of Hot Flow Anomalies (HFAs).

  8. Ground-based Gamma-Ray Observations of Pulsars and their Nebulae: Towards a New Order

    CERN Document Server

    De Jager, O C

    2005-01-01

    The excellent sensitivity and high resolution capability of wide FoV ground-based imaging atmospheric Cerenkov telescopes allow us for the first time to resolve the morphological structures of pulsar wind nebulae (PWN) which are older and more extended than the Crab Nebula. VHE gamma-ray observations of such extended nebulae (with field strengths below ~ 20 micro Gauss) probe the electron component corresponding to the unseen extreme ultraviolet (EUV) synchrotron component, which measures electron injection from earlier evolutionary epochs. VHE observations of PWN therefore introduce a new window on PWN research. This review paper also identifies conditions for maximal VHE visbility of PWN. Regarding pulsar pulsed emission, it is becoming clear that the threshold energies of current telescopes are not sufficient to probe the pulsed gamma-ray component from canonical pulsars. Theoretical estimates of pulsed gamma-ray emission from millisecond pulsars seem to converge and it becomes clear that such detections w...

  9. Assessment of the temperature variability at the snow-ground interface - concept and first results

    Science.gov (United States)

    Hiller, Clemens; Keuschnig, Markus; Hartmeyer, Ingo; Götz, Joachim

    2014-05-01

    Bottom temperatures of the winter snow cover (BTS) represent the thermal conditions at the snow-ground interface and serve as a proxy for local permafrost ocurrence. The BTS method has been used in numerous studies to investigate local permafrost evidence and to validate larger scale permafrost distribution models. However, former studies have shown a relatively strong scattering between single measurements indicating that BTS values are sensitive to further factors. In order to identify the spatial and temporal variability and mentioned sources of irritation and to better understand their influence we applied repeated BTS measurements on a small scale test site situated below the Maurerkogel (2990 m) nearby the Kitzsteinhorn, Hohe Tauern Range, Austria. The site (c. 2000 m2) shows fairly homogenous surface conditions in terms of roughness and morphometry (bedrock with thin layer of fine-grained talus, slightly inclined to N). The measurement setup consists of a BTS grid with a minimum spacing of 5 m. Four campaigns with a total of 94 measurements were carried out from March 2012 to April 2013. Universal Temperature Logger (UTL), snow profiles and meteorological data from automatic weather stations are used to interpret the BTS values. The standard deviations of BTS values for each campaign range between 0.4 and 0.9 °C. The mean BTS value within the overall period is -3.1 °C. The near surface temperature logger shows a mean temperature of -3.7 °C in 10 cm depth covering four campaign days. Both, the correlation between near surface temperatures and BTS values as well as the low standard deviation between the BTS values demonstrate the applicability of the method under appropriate conditions.

  10. Simulation of submillimetre atmospheric spectra for characterising potential ground-based remote sensing observations

    Science.gov (United States)

    Turner, Emma C.; Withington, Stafford; Newnham, David A.; Wadhams, Peter; Jones, Anna E.; Clancy, Robin

    2016-11-01

    The submillimetre is an understudied region of the Earth's atmospheric electromagnetic spectrum. Prior technological gaps and relatively high opacity due to the prevalence of rotational water vapour lines at these wavelengths have slowed progress from a ground-based remote sensing perspective; however, emerging superconducting detector technologies in the fields of astronomy offer the potential to address key atmospheric science challenges with new instrumental methods. A site study, with a focus on the polar regions, is performed to assess theoretical feasibility by simulating the downwelling (zenith angle = 0°) clear-sky submillimetre spectrum from 30 mm (10 GHz) to 150 µm (2000 GHz) at six locations under annual mean, summer, winter, daytime, night-time and low-humidity conditions. Vertical profiles of temperature, pressure and 28 atmospheric gases are constructed by combining radiosonde, meteorological reanalysis and atmospheric chemistry model data. The sensitivity of the simulated spectra to the choice of water vapour continuum model and spectroscopic line database is explored. For the atmospheric trace species hypobromous acid (HOBr), hydrogen bromide (HBr), perhydroxyl radical (HO2) and nitrous oxide (N2O) the emission lines producing the largest change in brightness temperature are identified. Signal strengths, centre frequencies, bandwidths, estimated minimum integration times and maximum receiver noise temperatures are determined for all cases. HOBr, HBr and HO2 produce brightness temperature peaks in the mK to µK range, whereas the N2O peaks are in the K range. The optimal submillimetre remote sensing lines for the four species are shown to vary significantly between location and scenario, strengthening the case for future hyperspectral instruments that measure over a broad wavelength range. The techniques presented here provide a framework that can be applied to additional species of interest and taken forward to simulate retrievals and guide the

  11. THEMIS ground-space observations during the development of auroral spirals

    Directory of Open Access Journals (Sweden)

    A. Keiling

    2009-11-01

    Full Text Available A simultaneous observation of an auroral spiral and its generator region in the near-Earth plasma sheet is rather unlikely. Here we present such observations using the THEMIS spacecraft as well as the THEMIS ground network of all-sky imagers and magnetometers. Two consecutive auroral spirals separated by approximately 14 min occurred during a substorm on 19 February 2008. The spirals formed during the expansion phase and a subsequent intensification, and were among the brightest features in the aurora with diameters of 200–300 km. The duration for the formation and decay of each spiral was less than 60 s. Both spirals occurred shortly after the formation of two oppositely rotating plasma flow vortices in space, which were also accompanied by dipolarizations and ion injections, at ~11 RE geocentric distance. Observations and model calculations also give evidence for a magnetic-field-aligned current generation of approximately 0.1 MA via the flow vortices, connecting the generator region of the spirals with the ionosphere, during the formation of both spirals. In the ionosphere, a pair of equivalent ionospheric current (EIC vortices with opposite rotations (corresponding to upward and downward currents was present during both auroral spirals with enhanced EICs and ionospheric flows at the locations of the auroral spirals and along the auroral arcs. The combined ground and space observations suggest that each auroral spiral was powered by two oppositely rotating plasma flow vortices that caused a current enhancement in the substorm current wedge.

  12. Geocenter Coordinates from a Combined Processing of LEO and Ground-based GPS Observations

    Science.gov (United States)

    Männel, Benjamin; Rothacher, Markus

    2017-04-01

    The GPS observations provided by the global IGS (International GNSS Service) tracking network play an important role for the realization of a unique terrestrial reference frame that is accurate enough to allow the monitoring of the Earth's system. Combining these ground-based data with GPS observations tracked by high-quality dual-frequency receivers on-board Low Earth Orbiters (LEO) might help to further improve the realization of the terrestrial reference frame and the estimation of the geocenter coordinates, GPS satellite orbits and Earth rotation parameters (ERP). To assess the scope of improvement, we processed a network of 50 globally distributed and stable IGS-stations together with four LEOs (GRACE-A, GRACE-B, OSTM/Jason-2 and GOCE) over a time interval of three years (2010-2012). To ensure fully consistent solutions the zero-difference phase observations of the ground stations and LEOs were processed in a common least-square adjustment, estimating GPS orbits, LEO orbits, station coordinates, ERPs, site-specific tropospheric delays, satellite and receiver clocks and ambiguities. We present the significant impact of the individual LEOs and a combination of all four LEOs on geocenter coordinates derived by using a translational approach (also called network shift approach). In addition, we present geocenter coordinates derived from the same set of GPS observations by using a unified approach. This approach combines the translational and the degree-one approach by estimating translations and surface deformations simultaneously. Based on comparisons against each other and against geocenter time series derived by other techniques the effect of the selected approach is assessed.

  13. Investigating a newly discovered firn aquifer on Disko Ice Cap, west Greenland: Insights from ground observations, remote sensing, and modeling

    Science.gov (United States)

    Trusel, L. D.; Das, S. B.; Smith, B.; Kuipers Munneke, P.; Evans, M. J.; Frey, K. E.; Osman, M.; York, A.

    2015-12-01

    Expanding and intensifying surface melt have accelerated contributions from Greenland to global sea level rise in recent decades. Yet, important questions remain regarding the evolution and eventual fate of this meltwater over time and space, a fact underscored by recent observations of expansive aquifers within the Greenland Ice Sheet firn. In April 2015 we observed liquid water retained at depth in an ice cap on Disko Island, central west Greenland. Two adjacent ~20 m firn/ice cores were collected before intercepting a layer saturated with liquid water as evident by water drainage from our cores. Borehole temperature profiling confirms increasing temperature with depth, revealing 0°C isothermal firn below ~10 m depth. Detailed physical stratigraphic analyses conducted on these cores allow us to assess firn properties and their small scale (1 m) and likely impermeable refrozen melt horizons exist above the inferred aquifer surface, raising questions about processes of aquifer formation. To discern the spatial character of the observed firn liquid water and melt stratigraphy, we utilize ground penetrating radar collected in 2014, as well as airborne radar data collected through NASA Operation IceBridge in 2012 and 12 days prior to our field observations in 2015. Glaciochemical analyses on our ice cores reveal preservation of an annual signal allowing derivation of net snow accumulation rates. Combined with surface mass balance modeled by RACMO2.3 and melt assessed via microwave remote sensing, we investigate the recently prevailing climatic and glaciological conditions on Disko. This work will provide new insights into mechanisms of firn aquifer formation and sustenance more broadly, as well as the representation of aquifers in existing radar observations and firn models.

  14. Hubble Space Telescope and Ground-Based Observations of the Type Iax Supernovae SN 2005hk and SN 2008A

    CERN Document Server

    McCully, Curtis; Foley, Ryan J; Chornock, Ryan; Holtzman, Jon A; Balam, David D; Branch, David; Filippenko, Alexei V; Frieman, Joshua; Fynbo, Johan; Galbany, Lluis; Ganeshalingam, Mohan; Garnavich, Peter M; Graham, Melissa L; Hsiao, Eric Y; Leloudas, Giorgos; Leonard, Douglas C; Li, Weidong; Riess, Adam G; Sako, Masao; Schneider, Donald P; Silverman, Jeffrey M; Sollerman, Jesper; Steele, Thea N; Thomas, Rollin C; Wheeler, J Craig; Zheng, Chen

    2013-01-01

    We present Hubble Space Telescope (HST) and ground-based optical and near-infrared observations of SN 2005hk and SN 2008A, typical members of the Type Iax class of supernovae (SNe). These objects are peculiar cousins of normal Type Ia SNe, with SN 2002cx as the prototype. Here we focus on late-time observations, where these objects deviate most dramatically from normal SNe Ia. Instead of the dominant nebular emission lines that are observed in normal SNe Ia at late phases (and indeed, in SNe of all other types), spectra of SNe 2005hk and 2008A show lines of Fe II, Ca II, and Fe I more than a year past maximum light, along with narrow [Fe II] and [Ca II] emission. We use spectral features to constrain the temperature and density of the ejecta, and find high densities at late times, with n_e >~ 10^9 cm^-3. Such high densities should yield enhanced cooling of the ejecta, making these objects good candidates to observe the expected "infrared catastrophe," a generic feature of SN Ia models. However, our HST photom...

  15. Green Bank Telescope Observations of Interstellar Glycolaldehyde: Low Temperature Sugar

    Science.gov (United States)

    Hollis, J. M.; Jewell, P. R.; Lovas, F. J.; Remijan, A.

    2004-01-01

    Interstellar glycolaldehyde (CH20HCHO) has been detected with the 100-m Green Bank Telescope (GBT) toward the star-forming region Sagittarius B2(N) by means of the 1(sub 10)-1(sub 01),2(sub 11)-2(sub 02),3(sub 12)-3(sub 0), and 4(sub 13)-4(sub 04) rotational transitions at 13.48, 15.18, 17.98, and 22.14 GHz, respectively. An analysis of these four high signal- to-noise rotational transitions yields a glycolaldehyde state temperature of 8 K. Previously reported emission line detections of glycolaldehyde with the NRAO 12-m telescope at mm-wavelengths (71 GHz to 103 GHz) are characterized by a state temperature of -50 K. By comparison the GBT detections are surprisingly strong and seen in emission at 13.48 GHz, emission and absorption at 15.18 GHz, and absorption at 17.98 GHz and 22.14 GHz. We attribute the strong absorption observed by the GBT at the higher frequencies to the correspondingly smaller GBT beams coupling better to the continuum source(s) in Sagittarius B2(N). A possible model for the two-temperature regions of glycolaldehyde is discussed.

  16. Ground-based Observations of the Solar Sources of Space Weather

    Science.gov (United States)

    Veronig, A. M.; Pötzi, W.

    2016-04-01

    Monitoring of the Sun and its activity is a task of growing importance in the frame of space weather research and awareness. Major space weather disturbances at Earth have their origin in energetic outbursts from the Sun: solar flares, coronal mass ejections and associated solar energetic particles. In this review we discuss the importance and complementarity of ground-based and space-based observations for space weather studies. The main focus is drawn on ground-based observations in the visible range of the spectrum, in particular in the diagnostically manifold Hα spectral line, which enables us to detect and study solar flares, filaments (prominences), filament (prominence) eruptions, and Moreton waves. Existing Hα networks such as the GONG and the Global High-Resolution Hα Network are discussed. As an example of solar observations from space weather research to operations, we present the system of real-time detection of Hα flares and filaments established at Kanzelhöhe Observatory (KSO; Austria) in the frame of the space weather segment of the ESA Space Situational Awareness programme (swe.ssa.esa.int). An evaluation of the system, which is continuously running since July 2013 is provided, covering an evaluation period of almost 2.5 years. During this period, KSO provided 3020 hours of real-time Hα observations at the ESA SWE portal. In total, 824 Hα flares were detected and classified by the real-time detection system, including 174 events of Hα importance class 1 and larger. For the total sample of events, 95 % of the automatically determined flare peak times lie within ±5 min of the values given in the official optical flares reports (by NOAA and KSO), and 76 % of the start times. The heliographic positions determined are better than ±5°. The probability of detection of flares of importance 1 or larger is 95 %, with a false alarm rate of 16 %. These numbers confirm the high potential of automatic flare detection and alerting from ground

  17. System-level view of geospace dynamics: Challenges for high-latitude ground-based observations

    Science.gov (United States)

    Donovan, E.

    2014-12-01

    Increasingly, research programs including GEM, CEDAR, GEMSIS, GO Canada, and others are focusing on how geospace works as a system. Coupling sits at the heart of system level dynamics. In all cases, coupling is accomplished via fundamental processes such as reconnection and plasma waves, and can be between regions, energy ranges, species, scales, and energy reservoirs. Three views of geospace are required to attack system level questions. First, we must observe the fundamental processes that accomplish the coupling. This "observatory view" requires in situ measurements by satellite-borne instruments or remote sensing from powerful well-instrumented ground-based observatories organized around, for example, Incoherent Scatter Radars. Second, we need to see how this coupling is controlled and what it accomplishes. This demands quantitative observations of the system elements that are being coupled. This "multi-scale view" is accomplished by networks of ground-based instruments, and by global imaging from space. Third, if we take geospace as a whole, the system is too complicated, so at the top level we need time series of simple quantities such as indices that capture important aspects of the system level dynamics. This requires a "key parameter view" that is typically provided through indices such as AE and DsT. With the launch of MMS, and ongoing missions such as THEMIS, Cluster, Swarm, RBSP, and ePOP, we are entering a-once-in-a-lifetime epoch with a remarkable fleet of satellites probing processes at key regions throughout geospace, so the observatory view is secure. With a few exceptions, our key parameter view provides what we need. The multi-scale view, however, is compromised by space/time scales that are important but under-sampled, combined extent of coverage and resolution that falls short of what we need, and inadequate conjugate observations. In this talk, I present an overview of what we need for taking system level research to its next level, and how

  18. New spectral functions of the near-ground albedo derived from aircraft diffraction spectrometer observations

    Directory of Open Access Journals (Sweden)

    C. A. Varotsos

    2013-06-01

    Full Text Available The airborne spectral observations of the upward and downward irradiances are revisited to investigate the dependence of the near-ground albedo as a function of wavelength in the entire solar spectrum for different surfaces (sand, water, snow and in different conditions (clear or cloudy sky. The radiative upward and downward fluxes were determined by a diffraction spectrometer flown on a research aircraft that was performing multiple flight paths near ground. The results obtained show that the near-ground albedo does not generally increase with increasing wavelengths for all kinds of surfaces as is widely believed today. Particularly, in the case of water surfaces we found that the albedo in the ultraviolet region is more or less independent of the wavelength on a long-term basis. Interestingly, in the visible and near-infrared spectra the water albedo obeys an almost constant power-law relationship with wavelength. In the case of sand surfaces we found that the sand albedo is a quadratic function of wavelength, which becomes more accurate, if the ultraviolet wavelengths are neglected. Finally, we found that the spectral dependence of snow albedo behaves similarly to that of water, i.e. both decrease from the ultraviolet to the near-infrared wavelengths by 20–50%, despite of the fact that their values differ by one order of magnitude (water albedo being lower. In addition, the snow albedo versus ultraviolet wavelength is almost constant, while in the visible-near infrared spectrum the best simulation is achieved by a second-order polynomial, as in the case of sand, but with opposite slopes.

  19. Comparison of OMI UV observations with ground-based measurements at high northern latitudes

    Directory of Open Access Journals (Sweden)

    G. Bernhard

    2015-03-01

    Full Text Available The Dutch-Finnish Ozone Monitoring Instrument (OMI on board NASA's Aura spacecraft provides estimates of erythemal (sunburning ultraviolet (UV dose rates and erythemal daily doses. These data were compared with ground-based measurements at 13 stations located throughout the Arctic and Scandinavia from 60 to 83° N. The study corroborates results from earlier work, but is based on a longer time series (eight vs. two years and considers additional data products, such as the erythemal dose rate at the time of the satellite overpass. Furthermore, systematic errors in satellite UV data resulting from inaccuracies in the surface albedo climatology used in the OMI UV algorithm are systematically assessed. At times when the surface albedo is correctly known, OMI data typically exceed ground-based measurements by 0–11%. When the OMI albedo climatology exceeds the actual albedo, OMI data may be biased high by as much as 55%. In turn, when the OMI albedo climatology is too low, OMI data can be biased low by up to 59%. Such large negative biases may occur when reflections from snow and ice, which increase downwelling UV irradiance, are misinterpreted as reflections from clouds, which decrease the UV flux at the surface. Results suggest that a better OMI albedo climatology would greatly improve the accuracy of OMI UV data products even if year-to-year differences of the actual albedo cannot be accounted for. A pathway for improving the OMI albedo climatology is discussed. Results also demonstrate that ground-based measurements from the center of Greenland, where high, homogenous surface albedo is observed year round, are ideally suited to detect systematic problems or temporal drifts in estimates of surface UV irradiance from space.

  20. Ground surface temperature histories in northern Ontario and Québec for the past 500 years

    Science.gov (United States)

    Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-04-01

    We have used 19 temperature-depth profiles measured in boreholes from eastern Canada to reconstruct the ground surface temperature histories of the region. The boreholes are located north of 51oN, and west and east of James Bay in northern Ontario and Québec. The 8 boreholes in northern Ontario come from 3 sites in a region of extensive discontinuous permafrost, while the 11 holes from Québec come from 6 sites in a region of sporadic discontinuous permafrost. The depths of the holes range between 400 and 800 m, allowing a reconstruction of the ground surface temperature histories for the past 500 years. Present ground surface temperatures are higher in Québec, perhaps because the region receives more snowfall as shown by meteorological records and proxy data. The ground surface temperature histories indicate a present-day warming of ˜2-2.5oC in Ontario and ˜1-1.5oC in Québec relative to the reference surface temperature 500 years BP. These results are in agreement with available proxy data for the recent warming in eastern North America. Furthermore, they suggest that the higher snowfall and strong cooling during the Little Ice Age could have muted the borehole temperature record of climate change in Québec.

  1. Global Fine Particulate Matter Concentrations and Trends Inferred from Satellite Observations, Modeling, and Ground-Based Measurements

    Science.gov (United States)

    Martin, Randall; van Donkelaar, Aaron; Boys, Brian; Philip, Sajeev; Lee, Colin; Snider, Graydon; Weagle, Crystal

    2014-05-01

    Outdoor fine particulate matter (PM2.5) is a leading environmentally-related cause of premature mortality worldwide. However, ground-level PM2.5 monitors remain sparse in many regions of the world. Satellite remote sensing from MODIS, MISR, and SeaWiFS yields a powerful global data source to address this issue. Global modeling (GEOS-Chem) plays a critical role in relating these observations to ground-level concentrations. The resultant satellite-based estimates of PM2.5 indicate dramatic variation around the world, with implications for global public health. A new ground-based aerosol network (SPARTAN) offers valuable measurements to understand the relationship between satellite observations of aerosol optical depth and ground-level PM2.5 concentrations. This talk will highlight recent advances in combining satellite remote sensing, global modeling, and ground-based measurements to improve understanding of global population exposure to outdoor fine particulate matter.

  2. Retrieving the ground state of spin glasses using thermal noise: Performance of quantum annealing at finite temperatures

    Science.gov (United States)

    Nishimura, Kohji; Nishimori, Hidetoshi; Ochoa, Andrew J.; Katzgraber, Helmut G.

    2016-09-01

    We study the problem to infer the ground state of a spin-glass Hamiltonian using data from another Hamiltonian with interactions disturbed by noise from the original Hamiltonian, motivated by the ground-state inference in quantum annealing on a noisy device. It is shown that the average Hamming distance between the inferred spin configuration and the true ground state is minimized when the temperature of the noisy system is kept at a finite value, and not at zero temperature. We present a spin-glass generalization of a well-established result that the ground state of a purely ferromagnetic Hamiltonian is best inferred at a finite temperature in the sense of smallest Hamming distance when the original ferromagnetic interactions are disturbed by noise. We use the numerical transfer-matrix method to establish the existence of an optimal finite temperature in one- and two-dimensional systems. Our numerical results are supported by mean-field calculations, which give an explicit expression of the optimal temperature to infer the spin-glass ground state as a function of variances of the distributions of the original interactions and the noise. The mean-field prediction is in qualitative agreement with numerical data. Implications on postprocessing of quantum annealing on a noisy device are discussed.

  3. Conjugate ground and multisatellite observations of compression-related EMIC Pc1 waves and associated proton precipitation

    National Research Council Canada - National Science Library

    M. E. Usanova; I. R. Mann; Z. C. Kale; I. J. Rae; R. D. Sydora; M. Sandanger; F. Søraas; K.-H. Glassmeier; K.-H. Fornacon; H. Matsui; P. A. Puhl-Quinn; A. Masson; X. Vallières

    2010-01-01

    ...) waves from 25 September 2005. On the ground, dayside structured EMIC wave activity was observed by the CARISMA and STEP magnetometer arrays for several hours during the period of maximum compression...

  4. Precise Ground-In-the-Loop Orbit Control for Low Earth Observation Satellites

    Science.gov (United States)

    Arbinger, C.; D'Amico, S.; Eineder, M.

    The growing interest in earth observation missions equipped with space-borne optical and synthetic aperture radar (SAR) sensors drives the accuracy requirements with respect to orbit determination and control. Especially SAR interferometry with its capability to resolve the velocity of on-ground objects (e.g. for traffic monitoring, ocean currents and glacier monitoring) and to determine highly precise digital elevation models is of significant interest for scientific applications. These goals may be achieved using along-track and repeat-pass interferometry with a satellite formation, based on the precise orbit control of one satellite with respect to the osculating trajectory of the second satellite. Such a control concept will be realized by the German TerraSAR-X mission, with an expected launch in 2006, using a virtual formation, where a single satellite will be controlled in a tight manner with respect to a predefined osculating reference trajectory. This is very challenging, since common orbit disturbances, like for close twin formations, do not cancel out in this scenario. The predefined trajectory in the TerraSAR-X case could also be the orbit of a second satellite. The paper describes the generation of such a virtual reference orbit, discusses the ground-in-the-loop control concept and presents results from a long-term simulation.

  5. Reducing multisensor monthly mean aerosol optical depth uncertainty: 2. Optimal locations for potential ground observation deployments

    Science.gov (United States)

    Li, Jing; Li, Xichen; Carlson, Barbara E.; Kahn, Ralph A.; Lacis, Andrew A.; Dubovik, Oleg; Nakajima, Teruyuki

    2017-04-01

    Surface remote sensing of aerosol properties provides "ground truth" for satellite and model validation and is an important component of aerosol observation system. Due to the different characteristics of background aerosol variability, information obtained at different locations usually has different spatial representativeness, implying that the location should be carefully chosen so that its measurement could be extended to a greater area. In this study, we present an objective observation array design technique that automatically determines the optimal locations with the highest spatial representativeness based on the Ensemble Kalman Filter (EnKF) theory. The ensemble is constructed using aerosol optical depth (AOD) products from five satellite sensors. The optimal locations are solved sequentially by minimizing the total analysis error variance, which means that observations at these locations will reduce the background error variance to the largest extent. The location determined by the algorithm is further verified to have larger spatial representativeness than some other arbitrary location. In addition to the existing active Aerosol Robotic Network (AERONET) sites, the 40 selected optimal locations are mostly concentrated on regions with both high AOD inhomogeneity and its spatial representativeness, namely, the Sahel, South Africa, East Asia, and North Pacific Islands. These places should be the focuses of establishing future AERONET sites in order to further reduce the uncertainty in the monthly mean AOD. Observations at these locations contribute to approximately 50% of the total background uncertainty reduction.

  6. Eight-component retrievals from ground-based MAX-DOAS observations

    Directory of Open Access Journals (Sweden)

    H. Irie

    2011-06-01

    Full Text Available We attempt for the first time to retrieve lower-tropospheric vertical profile information for 8 quantities from ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS observations. The components retrieved are the aerosol extinction coefficients at two wavelengths, 357 and 476 nm, and NO2, HCHO, CHOCHO, H2O, SO2, and O3 volume mixing ratios. A Japanese MAX-DOAS profile retrieval algorithm, version 1 (JM1, is applied to observations performed at Cabauw, the Netherlands (51.97° N, 4.93° E, in June–July 2009 during the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI. Of the retrieved profiles, we focus here on the lowest-layer data (mean values at altitudes 0–1 km, where the sensitivity is usually highest owing to the longest light path. In support of the capability of the multi-component retrievals, we find reasonable overall agreement with independent data sets, including a regional chemical transport model (CHIMERE and in situ observations performed near the surface (2–3 m and at the 200-m height level of the tall tower in Cabauw. Plumes of enhanced HCHO and SO2 were likely affected by biogenic and ship emissions, respectively, and an improvement in their emission strengths is suggested for better agreement between CHIMERE simulations and MAX-DOAS observations. Analysis of air mass factors indicates that the horizontal spatial representativeness of MAX-DOAS observations is about 3–15 km (depending mainly on aerosol extinction, comparable to or better than the spatial resolution of current UV-visible satellite observations and model calculations. These demonstrate that MAX-DOAS provides multi-component data useful for the evaluation of satellite observations and model calculations and can play an important role in bridging different data sets having different spatial resolutions.

  7. Eight-component retrievals from ground-based MAX-DOAS observations

    Directory of Open Access Journals (Sweden)

    H. Irie

    2011-01-01

    Full Text Available We attempt for the first time to retrieve lower-tropospheric vertical profile information for 8 quantities from ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS observations. The components retrieved are the aerosol extinction coefficients at two wavelengths, 357 and 476 nm and NO2, HCHO, CHOCHO, H2O, SO2, and O3 volume mixing ratios. A Japanese MAX-DOAS profile retrieval algorithm, version 1 (JM1, is applied to observations performed at Cabauw, the Netherlands (51.97° N, 4.93° E, in June–July 2009 during the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI. Of the retrieved profiles, we focus here on the lowest-layer data (mean values at altitudes 0–1 km, where the sensitivity is usually highest owing to the longest light path. In support of the capability of the multi-component retrievals, we find reasonable overall agreement with independent data sets, including a regional chemical transport model (CHIMERE and in situ observations performed at the 3 and 200 m height levels of the tall tower in Cabauw. Plumes of enhanced HCHO and SO2 were likely affected by biogenic and ship emissions, respectively, and an improvement in their emission strengths is suggested for better agreement between CHIMERE simulations and MAX-DOAS observations. Analysis of air mass factors indicates that the horizontal spatial representativeness of MAX-DOAS observations is about 3–15 km (depending mainly on aerosol extinction, comparable to or better than the spatial resolution of current UV-visible satellite observations and model calculations. These demonstrate that MAX-DOAS provides multi-component data useful for the evaluation of satellite observations and model calculations and can play an important role in bridging different data sets having different spatial resolutions.

  8. Eight-component retrievals from ground-based MAX-DOAS observations

    Science.gov (United States)

    Irie, H.; Takashima, H.; Kanaya, Y.; Boersma, K. F.; Gast, L.; Wittrock, F.; Brunner, D.; Zhou, Y.; van Roozendael, M.

    2011-06-01

    We attempt for the first time to retrieve lower-tropospheric vertical profile information for 8 quantities from ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations. The components retrieved are the aerosol extinction coefficients at two wavelengths, 357 and 476 nm, and NO2, HCHO, CHOCHO, H2O, SO2, and O3 volume mixing ratios. A Japanese MAX-DOAS profile retrieval algorithm, version 1 (JM1), is applied to observations performed at Cabauw, the Netherlands (51.97° N, 4.93° E), in June-July 2009 during the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI). Of the retrieved profiles, we focus here on the lowest-layer data (mean values at altitudes 0-1 km), where the sensitivity is usually highest owing to the longest light path. In support of the capability of the multi-component retrievals, we find reasonable overall agreement with independent data sets, including a regional chemical transport model (CHIMERE) and in situ observations performed near the surface (2-3 m) and at the 200-m height level of the tall tower in Cabauw. Plumes of enhanced HCHO and SO2 were likely affected by biogenic and ship emissions, respectively, and an improvement in their emission strengths is suggested for better agreement between CHIMERE simulations and MAX-DOAS observations. Analysis of air mass factors indicates that the horizontal spatial representativeness of MAX-DOAS observations is about 3-15 km (depending mainly on aerosol extinction), comparable to or better than the spatial resolution of current UV-visible satellite observations and model calculations. These demonstrate that MAX-DOAS provides multi-component data useful for the evaluation of satellite observations and model calculations and can play an important role in bridging different data sets having different spatial resolutions.

  9. Estimating Temperature Fields from MODIS Land Surface Temperature and Air Temperature Observations in a Sub-Arctic Alpine Environment

    Directory of Open Access Journals (Sweden)

    Scott N. Williamson

    2014-01-01

    Full Text Available Spatially continuous satellite infrared temperature measurements are essential for understanding the consequences and drivers of change, at local and regional scales, especially in northern and alpine environments dominated by a complex cryosphere where in situ observations are scarce. We describe two methods for producing daily temperature fields using MODIS “clear-sky” day-time Land Surface Temperatures (LST. The Interpolated Curve Mean Daily Surface Temperature (ICM method, interpolates single daytime Terra LST values to daily means using the coincident diurnal air temperature curves. The second method calculates daily mean LST from daily maximum and minimum LST (MMM values from MODIS Aqua and Terra. These ICM and MMM models were compared to daily mean air temperatures recorded between April and October at seven locations in southwest Yukon, Canada, covering characteristic alpine land cover types (tundra, barren, glacier at elevations between 1,408 m and 2,319 m. Both methods for producing mean daily surface temperatures have advantages and disadvantages. ICM signals are strongly correlated with air temperature (R2 = 0.72 to 0.86, but have relatively large variability (RMSE = 4.09 to 4.90 K, while MMM values had a stronger correlation to air temperature (R2 = 0.90 and smaller variability (RMSE = 2.67 K. Finally, when comparing 8-day LST averages, aggregated from the MMM method, to air temperature, we found a high correlation (R2 = 0.84 with less variability (RMSE = 1.54 K. Where the trend was less steep and the y-intercept increased by 1.6 °C compared to the daily correlations. This effect is likely a consequence of LST temperature averages being differentially affected by cloud cover over warm and cold surfaces. We conclude that satellite infrared skin temperature (e.g., MODIS LST, which is often aggregated into multi-day composites to mitigate data reductions caused by cloud cover, changes in its relationship to air temperature

  10. Simulation of polar atmospheric microwave and sub-millimetre spectra for characterizing potential new ground-based observations

    Science.gov (United States)

    Newnham, David; Turner, Emma; Ford, George; Pumphrey, Hugh; Withington, Stafford

    2016-04-01

    Advanced detector technologies from the fields of astronomy and telecommunications are offering the potential to address key atmospheric science challenges with new instrumental methods. Adoption of these technologies in ground-based passive microwave and sub-millimetre radiometry could allow new measurements of chemical species and winds in the polar middle atmosphere for verifying meteorological data-sets and atmospheric models. A site study to assess the feasibility of new polar observations is performed by simulating the downwelling clear-sky submillimetre spectrum over 10-2000 GHz (30 mm to 150 microns) at two Arctic and two Antarctic locations under different seasonal and diurnal conditions. Vertical profiles for temperature, pressure and 28 atmospheric gases are constructed by combining radiosonde, meteorological reanalysis, and atmospheric chemistry model data. The sensitivity of the simulated spectra to the choice of water vapour continuum model and spectroscopic line database is explored. For the atmospheric trace species hypobromous acid (HOBr), hydrogen bromide (HBr), perhydroxyl radical (HO2) and nitrous oxide (N2O) the emission lines producing the largest change in brightness temperature are identified and minimum integration times and maximum receiver noise temperatures estimated. The optimal lines for all species are shown to vary significantly between location and scenario, strengthening the case for future hyperspectral instruments that measure over a broad frequency range. We also demonstrate the feasibility of measuring horizontal wind profiles above Halley station, Antarctica with time resolution as high as 0.5hr using simulated spectroradiometric observations of Doppler-shifted ozone (O3) and carbon monoxide (CO) lines in the 230-250 GHz region. The techniques presented provide a framework that can be applied to the retrieval of additional atmospheric parameters and be taken forward to simulate and guide the design of future microwave and sub

  11. Ground-Based Sub-Millimagnitude CCD Photometry of Bright Stars using Snapshot Observations

    CERN Document Server

    Mann, Andrew W; Aldering, Greg

    2011-01-01

    We demonstrate ground-based sub-millimagnitude (10^7 electrons) to be acquired in a single integration; (iii) pointing the telescope so that all stellar images fall on the same detector pixels; and (iv) using a region of the CCD detector that is free of non-linear or aberrant pixels. We describe semi-automated observations with the Supernova Integrated Field Spectrograph (SNIFS) on the University of Hawaii 2.2m telescope on Mauna Kea, with which we achieved photometric precision as good as 5.2x10^-4 (0.56 mmag) with a 5 minute cadence over a two hour interval. In one experiment, we monitored 8 stars, each separated by several degrees, and achieved sub-mmag precision with a cadence (per star) of ~17 min. Our snapshot technique is suitable for automated searches for planetary transits among multiple, bright-stars.

  12. Earth's albedo variations 1998-2014 as measured from ground-based earthshine observations

    CERN Document Server

    Palle, E; Montanes-Rodriguez, P Pilar; Shumko, A; Gonzalez-Merino, B; Lombilla, C Martinez; Jimenez-Ibarra, F; Shumko, S; Sanroma, E; Hulist, A; Miles-Paez, P; Murgas, F; Nowak, G; Koonin, SE

    2016-01-01

    The Earth's albedo is a fundamental climate parameter for understanding the radiation budget of the atmosphere. It has been traditionally measured from space platforms, but also from the ground for sixteen years from Big Bear Solar Observatory by observing the Moon. The photometric ratio of the dark (earthshine) to the bright (moonshine) sides of the Moon is used to determine nightly anomalies in the terrestrial albedo, with the aim is of quantifying sustained monthly, annual and/or decadal changes. We find two modest decadal scale cycles in the albedo, but with no significant net change over the sixteen years of accumulated data. Within the evolution of the two cycles, we find periods of sustained annual increases, followed by comparable sustained decreases in albedo. The evolution of the earthshine albedo is in remarkable agreement with that from the CERES instruments, although each method measures different slices of the Earth's Bond albedo.

  13. Earth's albedo variations 1998-2014 as measured from ground-based earthshine observations

    Science.gov (United States)

    Palle, E.; Goode, P. R.; Montañés-Rodríguez, P.; Shumko, A.; Gonzalez-Merino, B.; Lombilla, C. Martinez; Jimenez-Ibarra, F.; Shumko, S.; Sanroma, E.; Hulist, A.; Miles-Paez, P.; Murgas, F.; Nowak, G.; Koonin, S. E.

    2016-05-01

    The Earth's albedo is a fundamental climate parameter for understanding the radiation budget of the atmosphere. It has been traditionally measured not only from space platforms but also from the ground for 16 years from Big Bear Solar Observatory by observing the Moon. The photometric ratio of the dark (earthshine) to the bright (moonshine) sides of the Moon is used to determine nightly anomalies in the terrestrial albedo, with the aim of quantifying sustained monthly, annual, and/or decadal changes. We find two modest decadal scale cycles in the albedo, but with no significant net change over the 16 years of accumulated data. Within the evolution of the two cycles, we find periods of sustained annual increases, followed by comparable sustained decreases in albedo. The evolution of the earthshine albedo is in remarkable agreement with that from the Clouds and the Earth's Radiant Energy System instruments, although each method measures different slices of the Earth's Bond albedo.

  14. Ground deformation near Gada ‘Ale Volcano, Afar, observed by radar interferometry

    Science.gov (United States)

    Amelung, Falk; Oppenheimer, Clive; Segall, P.; Zebker, H.

    2000-10-01

    Radar interferometric measurements of ground-surface displacement using ERS data show a change in radar range, corresponding to up to 12 cm of subsidence near Gada ‘Ale volcano in northern Afar, Ethiopia, that occurred between June 1993 and May 1996. This is the area of lowest topography within the Danakil Depression (-126 m). Geodetic inverse modeling and geological evidence suggest a volcanic origin of the observed deformation; it was probably caused by a combined process of magma withdrawal from a larger reservoir and normal faulting. There is no evidence of subaerial eruption. This is the only identifiable deformation event during June 1993-October 1997 in the 80 km long Erta ‘Ale volcanic range, indicating surprising inactivity elsewhere in the range.

  15. Ground and surface temperature variability for remote sensing of soil moisture in a heterogeneous landscape

    Science.gov (United States)

    Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Finn, M.

    2009-01-01

    At the Little River Watershed (LRW) heterogeneous landscape near Tifton Georgia US an in situ network of stations operated by the US Department of Agriculture-Agriculture Research Service-Southeast Watershed Research Lab (USDA-ARS-SEWRL) was established in 2003 for the long term study of climatic and soil biophysical processes. To develop an accurate interpolation of the in situ readings that can be used to produce distributed representations of soil moisture (SM) and energy balances at the landscape scale for remote sensing studies, we studied (1) the temporal and spatial variations of ground temperature (GT) and infra red temperature (IRT) within 30 by 30 m plots around selected network stations; (2) the relationship between the readings from the eight 30 by 30 m plots and the point reading of the network stations for the variables SM, GT and IRT; and (3) the spatial and temporal variation of GT and IRT within agriculture landuses: grass, orchard, peanuts, cotton and bare soil in the surrounding landscape. The results showed high correlations between the station readings and the adjacent 30 by 30 m plot average value for SM; high seasonal independent variation in the GT and IRT behavior among the eight 30 by 30 m plots; and site specific, in-field homogeneity in each 30 by 30 m plot. We found statistical differences in the GT and IRT between the different landuses as well as high correlations between GT and IRT regardless of the landuse. Greater standard deviations for IRT than for GT (in the range of 2-4) were found within the 30 by 30 m, suggesting that when a single point reading for this variable is selected for the validation of either remote sensing data or water-energy models, errors may occur. The results confirmed that in this landscape homogeneous 30 by 30 m plots can be used as landscape spatial units for soil moisture and ground temperature studies. Under this landscape conditions small plots can account for local expressions of environmental

  16. Coincident Observation of Lightning using Spaceborne Spectrophotometer and Ground-Level Electromagnetic Sensors

    Science.gov (United States)

    Adachi, Toru; Cohen, Morris; Li, Jingbo; Cummer, Steve; Blakeslee, Richard; Marshall, THomas; Stolzenberg, Maribeth; Karunarathne, Sumedhe; Hsu, Rue-Ron; Su, Han-Tzong; Chen, Alfred; Takahashi, Yukihiro; Frey, Harald; Mende, Stephen

    2012-01-01

    The present study aims at assessing a possible new way to reveal the properties of lightning flash, using spectrophotometric data obtained by FORMOSAT-2/ISUAL which is the first spaceborne multicolor lightning detector. The ISUAL data was analyzed in conjunction with ground ]based electromagnetic data obtained by Duke magnetic field sensors, NLDN, North Alabama Lightning Mapping Array (LMA), and Kennedy Space Center (KSC) electric field antennas. We first classified the observed events into cloud ]to ]ground (CG) and intra ]cloud (IC) lightning based on the Duke and NLDN measurements and analyzed ISUAL data to clarify their optical characteristics. It was found that the ISUAL optical waveform of CG lightning was strongly correlated with the current moment waveform, suggesting that it is possible to evaluate the electrical properties of lightning from satellite optical measurement to some extent. The ISUAL data also indicated that the color of CG lightning turned to red at the time of return stroke while the color of IC pulses remained unchanged. Furthermore, in one CG event which was simultaneously detected by ISUAL and LMA, the observed optical emissions slowly turned red as the altitude of optical source gradually decreased. All of these results indicate that the color of lightning flash depends on the source altitude and suggest that spaceborne optical measurement could be a new tool to discriminate CG and IC lightning. In the presentation, we will also show results on the comparison between the ISUAL and KSC electric field data to clarify characteristics of each lightning process such as preliminary breakdown, return stroke, and subsequent upward illumination.

  17. Evaluation of satellite soil moisture products over Norway using ground-based observations

    Science.gov (United States)

    Griesfeller, A.; Lahoz, W. A.; Jeu, R. A. M. de; Dorigo, W.; Haugen, L. E.; Svendby, T. M.; Wagner, W.

    2016-03-01

    In this study we evaluate satellite soil moisture products from the advanced SCATterometer (ASCAT) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over Norway using ground-based observations from the Norwegian water resources and energy directorate. The ASCAT data are produced using the change detection approach of Wagner et al. (1999), and the AMSR-E data are produced using the VUA-NASA algorithm (Owe et al., 2001, 2008). Although satellite and ground-based soil moisture data for Norway have been available for several years, hitherto, such an evaluation has not been performed. This is partly because satellite measurements of soil moisture over Norway are complicated owing to the presence of snow, ice, water bodies, orography, rocks, and a very high coastline-to-area ratio. This work extends the European areas over which satellite soil moisture is validated to the Nordic regions. Owing to the challenging conditions for soil moisture measurements over Norway, the work described in this paper provides a stringent test of the capabilities of satellite sensors to measure soil moisture remotely. We show that the satellite and in situ data agree well, with averaged correlation (R) values of 0.72 and 0.68 for ASCAT descending and ascending data vs in situ data, and 0.64 and 0.52 for AMSR-E descending and ascending data vs in situ data for the summer/autumn season (1 June-15 October), over a period of 3 years (2009-2011). This level of agreement indicates that, generally, the ASCAT and AMSR-E soil moisture products over Norway have high quality, and would be useful for various applications, including land surface monitoring, weather forecasting, hydrological modelling, and climate studies. The increasing emphasis on coupled approaches to study the earth system, including the interactions between the land surface and the atmosphere, will benefit from the availability of validated and improved soil moisture satellite datasets, including those

  18. An assessment of the performance of global rainfall estimates without ground-based observations

    Directory of Open Access Journals (Sweden)

    C. Massari

    2017-09-01

    Full Text Available Satellite-based rainfall estimates over land have great potential for a wide range of applications, but their validation is challenging due to the scarcity of ground-based observations of rainfall in many areas of the planet. Recent studies have suggested the use of triple collocation (TC to characterize uncertainties associated with rainfall estimates by using three collocated rainfall products. However, TC requires the simultaneous availability of three products with mutually uncorrelated errors, a requirement which is difficult to satisfy with current global precipitation data sets. In this study, a recently developed method for rainfall estimation from soil moisture observations, SM2RAIN, is demonstrated to facilitate the accurate application of TC within triplets containing two state-of-the-art satellite rainfall estimates and a reanalysis product. The validity of different TC assumptions are indirectly tested via a high-quality ground rainfall product over the contiguous United States (CONUS, showing that SM2RAIN can provide a truly independent source of rainfall accumulation information which uniquely satisfies the assumptions underlying TC. On this basis, TC is applied with SM2RAIN on a global scale in an optimal configuration to calculate, for the first time, reliable global correlations (vs. an unknown truth of the aforementioned products without using a ground benchmark data set. The analysis is carried out during the period 2007–2012 using daily rainfall accumulation products obtained at 1° × 1° spatial resolution. Results convey the relatively high performance of the satellite rainfall estimates in eastern North and South America, southern Africa, southern and eastern Asia, eastern Australia, and southern Europe, as well as complementary performances between the reanalysis product and SM2RAIN, with the first performing reasonably well in the Northern Hemisphere and the second providing very good performance in the Southern

  19. The 8-component retrievals from ground-based MAX-DOAS observations

    Science.gov (United States)

    Irie, H.; Takashima, H.; Kanaya, Y.; Boersma, F.; Gast, L.; Wittrock, F.; van Roozendael, M.

    2010-12-01

    We first attempt to retrieve lower-tropospheric vertical profile information on 8 components from ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations. Components retrieved are aerosol extinction coefficients (AEC) at two wavelengths 357 and 476 nm, NO2, HCHO, CHOCHO, H2O, SO2, and O3 volume mixing ratios (VMRs). A Japanese MAX-DOAS profile retrieval algorithm version 1 (JM1) is applied to observations performed at Cabauw, the Netherlands (51.97N, 4.93E) in June-July 2009 during the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI). Of retrieved profiles, we focus here on the lowest layer data (mean values at altitudes 0-1 km), where the sensitivity is usually highest owing to the longest light path. In support of the capability of the multi-component retrievals, overall we find reasonable agreement with independent data sets, including a regional chemical transport model (CHIMERE) and in situ observations performed at 3- and 200-m height levels of a tower placed in Cabauw. Enhanced HCHO and SO2 plumes were likely affected by biogenic and ship emissions, respectively, but an improvement in their emission strengths was suggested for better agreement. Analysis of air mass factors indicates that the horizontal representativeness of MAX-DOAS observation is about 3-15 km, comparable to or better than the spatial resolution of relevant UV-visible satellite observations and model calculations. These demonstrate that MAX-DOAS provides multi-component data useful for evaluation of satellite observations and model calculations and plays a role in bridging different data sets having different spatial resolutions.

  20. Effects of temperature and ground-state coherence decay on enhancement and amplification in a Delta atomic system

    CERN Document Server

    Manjappa, Manukumara; Karigowda, Asha; Narayanan, Andal; Sanders, Barry C

    2014-01-01

    We study phase-sensitive amplification of electromagnetically induced transparency in a warm $^{85}$Rb vapor wherein a microwave driving field couples the two lower energy states of a $\\Lambda$ energy-level system thereby transforming into a $\\Delta$ system. Our theoretical description includes effects of ground-state coherence decay and temperature effects. In particular, we demonstrate that driving-field enhanced electromagnetically induced transparency is robust against significant loss of coherence between ground states. We also show, that for specific field intensities, a threshold rate of ground-state coherence decay exists at every temperature. This threshold separates the probe-transmittance behavior into two regimes: probe amplification vs. probe attenuation. Thus, electromagnetically induced transparency plus amplification is possible at any temperature in a $\\Delta$ system.

  1. Ground observation and AMIE-TIEGCM modeling of a large-scale traveling ionospheric disturbance

    Science.gov (United States)

    Shiokawa, K.; Lu, G.; Nishitani, N.; Sato, N.

    We show comparison of ground observation and modeling of a prominent large-scale traveling ionospheric disturbance (LSTID) observed in Japan during the major magnetic storm of March 31, 2001 (Shiokawa et al., JGR, 2003). The LSTID was detected as an enhancement of the 630-nm airglow intensity, an enhancement of GPS-TEC, a decrease of F-layer virtual height, and an increase of foF2. They moved equatorward with a velocity of 400-500 m/s. These results suggest that an enhancement of poleward neutral wind (propagating equatorward as a traveling atmospheric wave) caused the observed ionospheric features of the LSTID. The ion drift measurement by the MU radar and Doppler wind measurement by a Fabry-Perot interferometer (630-nm and 558-nm airglow) at Shigaraki actually showed poleward wind enhancement during the LSTID event. To model this LSTID event, we used the assimilative mapping of ionospheric electrodynamics (AMIE) technique as inputs to the thermosphere-ionosphere-electrodynamics general circulation model (TIEGCM). The model shows fine structures of the poleward wind enhancement both propagated from the auroral zone and generated directly at midlatitudes.

  2. Characterization of absorbing aerosol types using ground and satellites based observations over an urban environment

    Science.gov (United States)

    Bibi, Samina; Alam, Khan; Chishtie, Farrukh; Bibi, Humera

    2017-02-01

    In this paper, for the first time, an effort has been made to seasonally characterize the absorbing aerosols into different types using ground and satellite based observations. For this purpose, optical properties of aerosol retrieved from AErosol RObotic NETwork (AERONET) and Ozone Monitoring Instrument (OMI) were utilized over Karachi for the period 2012 to 2014. Firstly, OMI AODabs was validated with AERONET AODabs and found to have a high degree of correlation. Then, based on this validation, characterization was conducted by analyzing aerosol Fine Mode Fraction (FMF), Angstrom Exponent (AE), Absorption Angstrom Exponent (AAE), Single Scattering Albedo (SSA) and Aerosol Index (AI) and their mutual correlation, to identify the absorbing aerosol types and also to examine the variability in seasonal distribution. The absorbing aerosols were characterized into Mostly Black Carbon (BC), Mostly Dust and Mixed BC & Dust. The results revealed that Mostly BC aerosols contributed dominantly during winter and postmonsoon whereas, Mostly Dust were dominant during summer and premonsoon. These types of absorbing aerosol were also confirmed with MODerate resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations.

  3. First ground-based 200-um observing with THUMPER on JCMT - sky characterisation and planet maps

    CERN Document Server

    Ward-Thompson, D; Araujo, H; Coulson, I; Cox, J; Davis, G R; Evans, R; Griffin, M J; Gear, W K; Hargrave, P; Hargreaves, P; Hayton, D; Kiernan, B J; Leeks, S J; Mauskopf, P; Naylor, D; Potter, N; Rinehart, S A; Sudiwala, R; Tucker, C R; Walker, R J; Wadtkin, S L

    2005-01-01

    We present observations that were carried out with the Two HUndred Micron PhotometER (THUMPER) mounted on the James Clerk Maxwell Telescope (JCMT) in Hawaii, at a wavelength of 200 um (frequency 1.5 THz). The observations utilise a small atmospheric window that opens up at this wavelength under very dry conditions at high-altitude observing sites. The atmosphere was calibrated using the sky-dipping method and a relation was established between the optical depth, tau, at 1.5 THz and that at 225 GHz: tau_1.5THz = (95 +/- 10)*tau_225GHz. Mars and Jupiter were mapped from the ground at this wavelength for the first time, and the system characteristics measured. A noise equivalent flux density (NEFD) of ~65 +/- 10 Jy (1 sigma 1 second) was measured for the THUMPER-JCMT combination, consistent with predictions based upon our laboratory measurements. The main-beam resolution of 14 arcsec was confirmed and an extended error-beam detected at roughly two-thirds of the magnitude of the main beam. Measurements of the Sun...

  4. Using Aoristic Analysis to Link Remote and Ground-Level Phenological Observations

    Science.gov (United States)

    Henebry, G. M.

    2013-12-01

    Phenology is about observing events in time and space. With the advent of publically accessible geospatial datastreams and easy to use mapping software, specifying where an event occurs is much less of a challenge than it was just two decades ago. In contrast, specifying when an event occurs remains a nontrivial function of a population of organismal responses, sampling interval, compositing period, and reporting precision. I explore how aoristic analysis can be used to analyzing spatiotemporal events for which the location is known to acceptable levels of precision but for which temporal coordinates are poorly specified or only partially bounded. Aoristic analysis was developed in the late 1990s in the field of quantitative criminology to leverage temporally imprecise geospatial data of crime reports. Here I demonstrate how aoristic analysis can be used to link remotely sensed observations of land surface phenology to ground-level observations of organismal phenophase transitions. Explicit representation of the windows of temporal uncertainty with aoristic weights enables cross-validation exercises and forecasting efforts to avoid false precision.

  5. The Effect of Pulsar Timing Noise and Glitches on Timing Analysis for Ground Based Telescopes Observation

    Science.gov (United States)

    Oña-Wilhelmi, E.; de Jager, O. C.; Contreras, J. L.; de los Reyes, R.; Fonseca, V.; López, M.; Lucarelli, F.; MAGIC Collaboration

    2003-07-01

    Pulsed emission from a number of gamma-ray pulsars is expected to be detectable with next generation ground-based gamma-ray telescopes such as MAGIC and possibly H.E.S.S. within a few hours of observations. The sensitivity is however not sufficient to enable a detection within a few seconds as reached by radio surveys. In some cases we may be fortunate to do a period search given a few hours' data, but if the signal is marginal, the correct period parameters must be known to allow a folding of the gamma-ray arrival times. The residual phases are then sub jected to a test for uniformity from which the significance of a signal can be assessed. If contemporary radio parameters are not available, we have to extrap olate archival radio parameters to the observation time in question. Such an extrap olation must then be accurate enough to avoid significant pulse smearing. The pulsar ephemerides from the archival data of HartRAO and Princeton (b etween 1989 and 1998) provide an excellent opportunity to study the accuracy of extrap olations of such ephemerides to the present moment, if an appropriate time shift is intro duced. The aim of this study is to investigate the smear in the gamma-ray pulse profile during a single night of observations.

  6. Multi-instrument observations of midlatitude summer nighttime anomaly from satellite and ground

    Science.gov (United States)

    Yamamoto, Mamoru; Thampi, Smitha V.; Liu, Huixin; Lin, Charles

    "Midlatitude Summer Nighttime Anomaly (MSNA)" is a phenomenon that the nighttime elec-tron densities exceed the daytime values on almost all days in summer over latitudes of 33-34N of more. We recently found the MSNA over the northeast Asian region from multi-instrument observations. The observations include the tomography analysis based on the chain of digital beacon receivers at Shionomisaki (33.45N, 135.8E), Shigaraki (34.85N, 136.1E), and Fukui (36.06N,136E), the ionosonde network over Japan (especially data from Wakkanai (45.4N, 141.7E)), ground-based GPS TEC observations using the GEONET. Also from satellites, CHAMP in situ electron density measurements, and Formosat3/COSMIC (F3/C) occultation measurements are useful to confirm the presence of MSNA over this region. In the presen-tation we show detailed features of the MSNA based on these multi-instrument, and discuss importance of the neutral atmosphere as a driver of the phenomenon.

  7. Conjugate ground and multisatellite observations of compression-related EMIC Pc1 waves and associated proton precipitation

    Science.gov (United States)

    Usanova, M. E.; Mann, I. R.; Kale, Z. C.; Rae, I. J.; Sydora, R. D.; Sandanger, M.; Søraas, F.; Glassmeier, K.-H.; Fornacon, K.-H.; Matsui, H.; Puhl-Quinn, P. A.; Masson, A.; Vallières, X.

    2010-07-01

    We present coordinated ground satellite observations of solar wind compression-related dayside electromagnetic ion cyclotron (EMIC) waves from 25 September 2005. On the ground, dayside structured EMIC wave activity was observed by the CARISMA and STEP magnetometer arrays for several hours during the period of maximum compression. The EMIC waves were also registered by the Cluster satellites for half an hour, as they consecutively crossed the conjugate equatorial plasmasphere on their perigee passes at L ˜ 5. Simultaneously, conjugate to Cluster, NOAA 17 passed through field lines supporting EMIC wave activity and registered a localized enhancement of precipitating protons with energies >30 keV. Our observations suggest that generation of the EMIC waves and consequent loss of energetic protons may last for several hours while the magnetosphere remains compressed. The EMIC waves were confined to the outer plasmasphere region, just inside the plasmapause. Analysis of lower-frequency Pc5 waves observed both by the Cluster electron drift instrument (EDI) and fluxgate magnetometer (FGM) instruments and by the ground magnetometers show that the repetitive structure of EMIC wave packets observed on the ground cannot be explained by the ultra low frequency (ULF) wave modulation theory. However, the EMIC wave repetition period on the ground was close to the estimated field-aligned Alfvénic travel time. For a short interval of time, there was some evidence that EMIC wave packet repetition period in the source region was half of that on the ground, which further suggests bidirectional propagation of wave packets.

  8. Evaluation of atmospheric dust prediction models using ground-based observations

    Science.gov (United States)

    Terradellas, Enric; María Baldasano, José; Cuevas, Emilio; Basart, Sara; Huneeus, Nicolás; Camino, Carlos; Dundar, Cinhan; Benincasa, Francesco

    2013-04-01

    An important step in numerical prediction of mineral dust is the model evaluation aimed to assess its performance to forecast the atmospheric dust content and to lead to new directions in model development and improvement. The first problem to address the evaluation is the scarcity of ground-based routine observations intended for dust monitoring. An alternative option would be the use of satellite products. They have the advantage of a large spatial coverage and a regular availability. However, they do have numerous drawbacks that make the quantitative retrievals of aerosol-related variables difficult and imprecise. This work presents the use of different ground-based observing systems for the evaluation of dust models in the Regional Center for Northern Africa, Middle East and Europe of the World Meteorological Organization (WMO) Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS). The dust optical depth at 550 nm forecast by different models is regularly compared with the AERONET measurements of Aerosol Optical Depth (AOD) for 40 selected stations. Photometric measurements are a powerful tool for remote sensing of the atmosphere allowing retrieval of aerosol properties, such as AOD. This variable integrates the contribution of different aerosol types, but may be complemented with spectral information that enables hypotheses about the nature of the particles. Comparison is restricted to cases with low Ångström exponent values in order to ensure that coarse mineral dust is the dominant aerosol type. Additionally to column dust load, it is important to evaluate dust surface concentration and dust vertical profiles. Air quality monitoring stations are the main source of data for the evaluation of surface concentration. However they are concentrated in populated and industrialized areas around the Mediterranean. In the present contribution, results of different models are compared with observations of PM10 from the Turkish air quality network for

  9. Comparison of stratospheric temperature profiles from a ground-based microwave radiometer with lidar, radiosonde and satellite data

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2015-04-01

    The importance of the knowledge of the temperature structure in the atmosphere has been widely recognized. Temperature is a key parameter for dynamical, chemical and radiative processes in the atmosphere. The cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming ( [1] and references therein). However, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. Stratospheric long-term datasets are sparse and obtained trends differ from one another [1]. Therefore it is important that in the future such datasets are generated. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. TEMPERA (TEMPERature RAdiometer) is a newly developed ground-based microwave radiometer designed, built and operated at the University of Bern. The instrument and the retrieval of temperature profiles has been described in detail in [2]. TEMPERA is measuring a pressure broadened oxygen line at 53.1 GHz in order to determine stratospheric temperature profiles. The retrieved profiles of TEMPERA cover an altitude range of approximately 20 to 45 km with a vertical resolution in the order of 15 km. The lower limit is given by the instrumental baseline and the bandwidth of the measured spectrum. The upper limit is given by the fact that above 50 km the oxygen lines are splitted by the Zeeman effect in the terrestrial magnetic field. In this study we present a comparison of stratospheric

  10. Fine spectral structures in Jovian decametric radio emission observed by ground-based radio telescope.

    Science.gov (United States)

    Panchenko, M.; Brazhenko, A. I.; Shaposhnikov, V. E.; Konovalenko, A. A.; Rucker, H. O.

    2014-04-01

    Jupiter with the largest planetary magnetosphere in the solar system emits intense coherent non-thermal radio emission in a wide frequency range. This emission is a result of a complicated interaction between the dynamic Jovian magnetosphere and energetic particles supplying the free energy from planetary rotation and the interaction between Jupiter and the Galilean moons. Decametric radio emission (DAM) is the strongest component of Jovian radiation observed in a frequency range from few MHz up to 40 MHz. This emission is generated via cyclotron maser mechanism in sources located along Jovian magnetic field lines. Depending on the time scales the Jovian DAMexhibits different complex spectral structures. We present the observations of the Jovian decametric radio emission using the large ground-based radio telescope URAN- 2 (Poltava, Ukraine) operated in the decametric frequency range. This telescope is one of the largest low frequency telescopes in Europe equipped with high performance digital radio spectrometers. The antenna array of URAN-2 consists of 512 crossed dipoles with an effective area of 28 000m2 and beam pattern size of 3.5 x 7 deg. (at 25 MHz). The instrument enables continuous observations of the Jovian radio during long period of times. Jovian DAM was observed continuously since Sep. 2012 (depending on Jupiter visibility) with relatively high time-frequency resolution (4 kHz - 100ms) in the broad frequency range (8-32MHz). We have detected a big amount of the fine spectral structures in the dynamic spectra of DAM such as trains of S-bursts, quasi-continuous narrowband emission, narrow-band splitting events and zebra stripe-like patterns. We analyzed mainly the fine structures associated with non-Io controlled DAM. We discuss how the observed narrowband structures which most probably are related to the propagation of the decametric radiation in the Jupiter's ionosphere can be used to study the plasma parameters in the inner Jovian magnetosphere.

  11. Cloud Structure of Galactic OB Cluster Forming Regions from Combining Ground and Space Based Bolometric Observations

    CERN Document Server

    Lin, Yuxin; Li, Di; Zhang, Zhiyu; Ginsburg, Adam; Pineda, Jaime E; Qian, Lei; Galván-Madrid, Roberto; McLeod, Anna Faye; Rosolowsky, Erik; Dale, James E; Immer, Katharina; Koch, Eric; Longmore, Steve; Walker, Daniel; Testi, Leonardo

    2016-01-01

    We have developed an iterative procedure to systematically combine the millimeter and submillimeter images of OB cluster-forming molecular clouds, which were taken by ground based (CSO, JCMT, APEX, IRAM-30m) and space telescopes (Herschel, Planck). For the seven luminous ($L$$>$10$^{6}$ $L_{\\odot}$) Galactic OB cluster-forming molecular clouds selected for our analyses, namely W49A, W43-Main, W43-South, W33, G10.6-0.4, G10.2-0.3, G10.3-0.1, we have performed single-component, modified black-body fits to each pixel of the combined (sub)millimeter images, and the Herschel PACS and SPIRE images at shorter wavelengths. The $\\sim$10$"$ resolution dust column density and temperature maps of these sources revealed dramatically different morphologies, indicating very different modes of OB cluster-formation, or parent molecular cloud structures in different evolutionary stages. The molecular clouds W49A, W33, and G10.6-0.4 show centrally concentrated massive molecular clumps that are connected with approximately radia...

  12. NDACC UV-visible total ozone measurements: improved retrieval and comparison with correlative satellite and ground-based observations

    Directory of Open Access Journals (Sweden)

    F. Hendrick

    2010-08-01

    tropospheric ozone column being ignored by zonal climatologies. For those measurements sensitive to stratospheric temperature like TOMS, OMI-TOMS, Dobson and Brewer, the application of a temperature correction results in the almost complete removal of the seasonal difference with SAOZ, improving significantly the consistency between all ground-based and satellite total ozone observations.

  13. The use of products from ground-based GNSS observations in meteorological nowcasting

    Science.gov (United States)

    Terradellas, E.; Callado, A.; Pascual, R.; Téllez, B.

    2009-09-01

    Heavy rainfall is often focalized in areas of moisture convergence. A close relationship between precipitation and fast variations of vertically-integrated water vapour (IWV) has been found in numerous cases. Furthermore, a latency of several tens of minutes of the precipitation relative to a rapid increase of the water vapour contents appears to be a common truth. Therefore, continuous monitoring of atmospheric humidity and its spatial distribution is crucial to the operational forecaster for a proper nowcasting of heavy rainfall events. Radiosonde releases yield measurements of atmospheric humidity, but they are very sparse and present a limited time resolution of 6 to 12 hours. The microwave signals continuously broadcasted by the Global Navigation Satellite System (GNSS) satellites are influenced by the water vapour as they travel through the atmosphere to ground-based receivers. The total zenith delay (ZTD) of these signals, a by-product of the geodetic processing, is already operationally assimilated into numerical weather prediction (NWP) models and has positive impact on the prediction of precipitation events, as it has been reported after the analysis of parallel runs. Estimates of IWV retrieved from ground-based GNSS observations may also constitute a source of information on the horizontal distribution and the time evolution of atmospheric humidity that can be presented to the forecaster. Several advantages can be attributed to the ground-based GNSS as a meteorological observing system. First, receiving networks can be built and maintained at a relatively low cost, which it can, additionally, be shared among different users. Second, the quality of the processed observations is insensitive to the weather conditions and, third, the temporal resolution of its products is very high. On the other hand, the current latency of the data disposal, ranging between one and two hours, is acceptable for the NWP community, but appears to be excessive for nowcasting

  14. THE 2011 JUNE 23 STELLAR OCCULTATION BY PLUTO: AIRBORNE AND GROUND OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Person, M. J.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Sallum, S. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139-4307 (United States); Dunham, E. W.; Collins, P.; Bida, T.; Bright, L. [Lowell Observatory, Flagstaff, AZ (United States); Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Amrhein, D. [Williams College-Hopkins Observatory, Williamstown, MA (United States); Tholen, D. J. [Institute for Astronomy, University of Hawaii, Manoa, HI (United States); Taylor, B. [Boston University, Boston, MA (United States); Wolf, J.; Pfueller, E. [Deutsches SOFIA Institut, Universitaet Stuttgart, Pfaffenwaldring 29, D-70569 Stuttgart (Germany); Meyer, A., E-mail: mjperson@mit.edu [SOFIA Science Center, NASA Ames Research Center, MS 211-1, Moffett Field, CA 94035 (United States); and others

    2013-10-01

    On 2011 June 23, stellar occultations by both Pluto (this work) and Charon (future analysis) were observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 with the Kuiper Airborne Observatory resulted in the best occultation chords recorded for the event, in three visible wavelength bands. The data obtained from SOFIA are combined with chords obtained from the ground at the IRTF, the U.S. Naval Observatory Flagstaff Station, and Leeward Community College to give the detailed state of the Pluto-Charon system at the time of the event with a focus on Pluto's atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee or kink in the light curve separating them as was observed in 1988, rather than the smoothly transitioning bowl-shaped light curves of recent years. The upper atmosphere is analyzed by fitting a model to all of the light curves, resulting in a half-light radius of 1288 {+-} 1 km. The lower atmosphere is analyzed using two different methods to provide results under the differing assumptions of particulate haze and a strong thermal gradient as causes for the lower atmospheric diminution of flux. These results are compared with those from past occultations to provide a picture of Pluto's evolving atmosphere. Regardless of which lower atmospheric structure is assumed, results indicate that this part of the atmosphere evolves on short timescales with results changing the light curve structures between 1988 and 2006, and then reverting these changes in 2011 though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again except for the overall pressure changes. No evidence of onset of atmospheric collapse predicted by frost migration models is seen, and the atmosphere appears to be remaining at a stable pressure level, suggesting it

  15. Rosetta in context: Ground-based observations of 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Snodgrass, C.

    2014-04-01

    collaboration with the large and enthusiastic community of amateur comet observers, especially in 2015 when the comet is brighter (see also talks in the proamsessions at EPSC). The comet has been recovered (in late February 2014), with early indications from VLT photometry suggesting that activity had indeed already started beyond 4 AU from the Sun, as predicted[1]. Its activity level, as measured by the dust brightness, will be followed all year and used to make further predictions about the future activity. The comet is observable until November 2014 using large telescopes (primarily in the Southern hemisphere), and is getting brighter as it approaches the Sun. In addition to photometric observations, visible wavelength spectroscopy will be attempted during 2014, to constrain gas emissions. Polarimetric observations and high resolution imaging with the HST are also proposed. A wide range of observational techniques and wavelength ranges will be covered by the campaign in 2015 as the comet reaches perihelion. I will present an update on the ground-based observation campaign in support of the Rosetta mission, the current status of various observation programmes at the time of the EPSC conference, and results on the 2014 activity of the comet, for comparison with early Rosetta results. I will also discuss how well the 2014 observations match with our earlier predictions, and make an assessment of how active the comet appears to be relative to previous orbits. I will also describe what further observations are planned in 2015, and how these will support the primary 'escort' phase of the mission.

  16. Subtropical and Polar Cirrus Clouds Characterized by Ground-Based Lidars and CALIPSO/CALIOP Observations

    Directory of Open Access Journals (Sweden)

    Córdoba-Jabonero Carmen

    2016-01-01

    Full Text Available Cirrus clouds are product of weather processes, and then their occurrence and macrophysical/optical properties can vary significantly over different regions of the world. Lidars can provide height-resolved measurements with a relatively good both vertical and temporal resolutions, making them the most suitable instrumentation for high-cloud observations. The aim of this work is to show the potential of lidar observations on Cirrus clouds detection in combination with a recently proposed methodology to retrieve the Cirrus clouds macrophysical and optical features. In this sense, a few case studies of cirrus clouds observed at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements are carried out in two stations: the Metropolitan city of Sao Paulo (MSP, Brazil, 23.3°S 46.4°W, located at subtropical latitudes, and the Belgrano II base (BEL, Argentina, 78ºS 35ºW in the Antarctic continent. Optical (COD-cloud optical depth and LR-Lidar Ratio and macrophysical (top/base heights and thickness properties of both the subtropical and polar cirrus clouds are reported. In general, subtropical Cirrus clouds present lower LR values and are found at higher altitudes than those detected at polar latitudes. In general, Cirrus clouds are detected at similar altitudes by CALIOP. However, a poor agreement is achieved in the LR retrieved between ground-based lidars and space-borne CALIOP measurements, likely due to the use of a fixed (or low-variable LR value in CALIOP inversion procedures.

  17. Subtropical and Polar Cirrus Clouds Characterized by Ground-Based Lidars and CALIPSO/CALIOP Observations

    Science.gov (United States)

    Córdoba-Jabonero, Carmen; Lopes, Fabio J. S.; Landulfo, Eduardo; Ochoa, Héctor; Gil-Ojeda, Manuel

    2016-06-01

    Cirrus clouds are product of weather processes, and then their occurrence and macrophysical/optical properties can vary significantly over different regions of the world. Lidars can provide height-resolved measurements with a relatively good both vertical and temporal resolutions, making them the most suitable instrumentation for high-cloud observations. The aim of this work is to show the potential of lidar observations on Cirrus clouds detection in combination with a recently proposed methodology to retrieve the Cirrus clouds macrophysical and optical features. In this sense, a few case studies of cirrus clouds observed at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements are carried out in two stations: the Metropolitan city of Sao Paulo (MSP, Brazil, 23.3°S 46.4°W), located at subtropical latitudes, and the Belgrano II base (BEL, Argentina, 78ºS 35ºW) in the Antarctic continent. Optical (COD-cloud optical depth and LR-Lidar Ratio) and macrophysical (top/base heights and thickness) properties of both the subtropical and polar cirrus clouds are reported. In general, subtropical Cirrus clouds present lower LR values and are found at higher altitudes than those detected at polar latitudes. In general, Cirrus clouds are detected at similar altitudes by CALIOP. However, a poor agreement is achieved in the LR retrieved between ground-based lidars and space-borne CALIOP measurements, likely due to the use of a fixed (or low-variable) LR value in CALIOP inversion procedures.

  18. HiRISE observations of new impact craters exposing Martian ground ice

    Science.gov (United States)

    Dundas, Colin M.; Byrne, Shane; McEwen, Alfred S.; Mellon, Michael T.; Kennedy, Megan R.; Daubar, Ingrid J.; Saper, Lee

    2014-01-01

    Twenty small new impact craters or clusters have been observed to excavate bright material inferred to be ice at mid and high latitudes on Mars. In the northern hemisphere, the craters are widely distributed geographically and occur at latitudes as low as 39°N. Stability modeling suggests that this ice distribution requires a long-term average atmospheric water vapor content around 25 precipitable microns, more than double the present value, which is consistent with the expected effect of recent orbital variations. Alternatively, near-surface humidity could be higher than expected for current column abundances if water vapor is not well-mixed with atmospheric CO2, or the vapor pressure at the ice table could be lower due to salts. Ice in and around the craters remains visibly bright for months to years, indicating that it is clean ice rather than ice-cemented regolith. Although some clean ice may be produced by the impact process, it is likely that the original ground ice was excess ice (exceeding dry soil pore space) in many cases. Observations of the craters suggest small-scale heterogeneities in this excess ice. The origin of such ice is uncertain. Ice lens formation by migration of thin films of liquid is most consistent with local heterogeneity in ice content and common surface boulders, but in some cases nearby thermokarst landforms suggest large amounts of excess ice that may be best explained by a degraded ice sheet.

  19. Observation of the bottomonium ground state in the decay Upsilon(3S)-->gammaetab.

    Science.gov (United States)

    Aubert, B; Bona, M; Karyotakis, Y; Lees, J P; Poireau, V; Prencipe, E; Prudent, X; Tisserand, V; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Cahn, R N; Jacobsen, R G; Kerth, L T; Kolomensky, Yu G; Lynch, G; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Hawkes, C M; Soni, N; Watson, A T; Koch, H; Schroeder, T; Walker, D; Asgeirsson, D J; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Blinov, V E; Bukin, A D; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Gary, J W; Liu, F; Long, O; Shen, B C; Vitug, G M; Yasin, Z; Zhang, L; Sharma, V; Campagnari, C; Hong, T M; Kovalskyi, D; Mazur, M A; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Martinez, A J; Schalk, T; Schumm, B A; Seiden, A; Wilson, M G; Winstrom, L O; Cheng, C H; Doll, D A; Echenard, B; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Bloom, P C; Ford, W T; Gaz, A; Hirschauer, J F; Nagel, M; Nauenberg, U; Smith, J G; Ulmer, K A; Wagner, S R; Ayad, R; Soffer, A; Toki, W H; Wilson, R J; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Karbach, M; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Kobel, M J; Mader, W F; Nogowski, R; Schubert, K R; Schwierz, R; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Verderi, M; Clark, P J; Playfer, S; Watson, J E; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Adametz, A; Marks, J; Schenk, S; Uwer, U; Klose, V; Lacker, H M; Bard, D J; Dauncey, P D; Nash, J A; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; da Costa, J Firmino; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Clarke, C K; George, K A; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Schott, G; Alwyn, K E; Bailey, D; Barlow, R J; Chia, Y M; Edgar, C L; Jackson, G; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Dallapiccola, C; Li, X; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Sciolla, G; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Lista, L; Monorchio, D; Onorato, G; Sciacca, C; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; LoSecco, J M; Wang, W F; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Castelli, G; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; del Amo Sanchez, P; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; Hamon, O; Leruste, Ph; Ocariz, J; Perez, A; Prendki, J; Sitt, S; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Lopes Pegna, D; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Baracchini, E; Cavoto, G; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Gioi, L Li; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Escalier, M; Esteve, L; Ganzhur, S F; de Monchenault, G Hamel; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Benitez, J F; Bertsche, K; Cai, Y; Cenci, R; Coleman, J P; Convery, M R; Decker, F J; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Ecklund, S; Erickson, R; Field, R C; Fisher, A; Fox, J; Gabareen, A M; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Innes, W R; Iverson, R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Kulikov, A; Leith, D W G S; Li, S; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; Neal, H; Nelson, S; Novokhatski, A; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Ratcliff, B N; Rivetta, C; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Seeman, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Van Winkle, D; Wagner, A P; Weaver, M; West, C A; Wienands, U; Wisniewski, W J; Wittgen, M; Wittmer, W; Wright, D H; Wulsin, H W; Yan, Y; Yarritu, A K; Yi, K; Yocky, G; Young, C C; Ziegler, V; Burchat, P R; Edwards, A J; Majewski, S A; Miyashita, T S; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Ernst, J A; Pan, B; Saeed, M A; Zain, S B; Spanier, S M; Wogsland, B J; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Drummond, B W; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Choi, H H F; Hamano, K; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Gershon, T J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Pan, Y; Pierini, M; Prepost, R; Vuosalo, C O; Wu, S L

    2008-08-15

    We report the results of a search for the bottomonium ground state etab(1S) in the photon energy spectrum with a sample of (109+/-1) million of Upsilon(3S) recorded at the Upsilon(3S) energy with the BABAR detector at the PEP-II B factory at SLAC. We observe a peak in the photon energy spectrum at Egamma=921.2(-2.8)+2.1(stat)+/-2.4(syst) MeV with a significance of 10 standard deviations. We interpret the observed peak as being due to monochromatic photons from the radiative transition Upsilon(3S)-->gammaetab(1S). This photon energy corresponds to an etab(1S) mass of 9388.9(-2.3)+3.1(stat)+/-2.7(syst) MeV/c2. The hyperfine Upsilon(1S)-etab(1S) mass splitting is 71.4(-3.1)+2.3(stat)+/-2.7(syst) MeV/c2. The branching fraction for this radiative Upsilon(3S) decay is estimated to be [4.8+/-0.5(stat)+/-1.2(syst)]x10(-4).

  20. Some unusual discrete VLF emissions observed at a low-latitude ground station at Agra

    Directory of Open Access Journals (Sweden)

    B. Singh

    Full Text Available A detailed analysis of the VLF emissions data obtained during occasional whistler campaigns at the low-latitude ground station Agra (geomagnetic latitude 17°1' N, L = 1.15 has yielded some unusual discrete VLF emissions of the rising type. These include (1 emissions occurring at time intervals increasing in ge ommetrical progression, (2 emissions occuring simulta neously in different frequency ranges and (3 emissions observed during daytime. In the present study, the observed characteristics of these emissions are described and interpreted. It is shown that the increasing time delay between different components of the emissions match closely with the propagation time delays between different hops of a whistler of dispersion 19 s1/2, the unusual occurrence of the emissions in two different frequency ranges approximately at the same time may possibly be linked with their generation at two different locations, and the occurrence of emissions during daytime may be due to propagation under the influence of equatorial anomaly.

  1. PSC and volcanic aerosol routine observations in Antarctica by UV-visible ground-based spectrometry

    Science.gov (United States)

    Sarkissian, A.; Pommereau, J. P.; Goutail, F.

    1994-01-01

    Polar statospheric clouds (PSC) and stratospheric aerosol can be observed by ground-based UV-visible spectrometry by looking at the variation of the color of the sky during twilight. A radiative transfer model shows that reddenings are caused by high altitude (22-28 km) thin layers of scatterers, while low altitude (12-20 km) thick ones result in blueings. The color index method applied on 4 years of observations at Dumont d'Urville (67 deg S), from 1988 to 1991, shows that probably because the station is located at the edge of the vortex, dense PSC are uncommon. More unexpected is the existence of a systematic seasonal variation of the color of the twilight sky - bluer at spring - which reveals the formation of a dense scattering layer at or just above the tropopause at the end of the winter. Large scattering layers are reported above the station in 1991, first in August around 12-14 km, later in September at 22-24 km. They are attributed to volcanic aerosol from Mt Hudson and Mt Pinatubo respectively, which erupted in 1991. Inspection of the data shows that the lowest entered rapidly into the polar vortex but not the highest which remained outside, demonstrating that the vortex was isolated at 22-26 km.

  2. Astrometric star catalogues as combination of Hipparcos/Tycho catalogues with ground-based observations

    Directory of Open Access Journals (Sweden)

    Vondrák J.

    2004-01-01

    Full Text Available The successful ESA mission Hipparcos provided very precise parallaxes positions and proper motions of many stars in optical wavelength. Therefore it is a primary representation of International Celestial Reference System in this wavelength. However, the shortness of the mission (less than four years causes some problems with proper motions of the stars that are double or multiple. Therefore, a combination of the positions measured by Hipparcos satellite with ground-based observations with much longer history provides a better reference frame that is more stable in time. Several examples of such combinations are presented (ACT, TYCHO-2, FK6, GC+HIP, TYC2+HIP, ARIHIP and briefly described. The stress is put on the most recent Earth Orientation Catalogue (EOC that uses about 4.4 million optical observations of latitude/universal time variations (made during the twentieth century at 33 observatories in Earth orientation programmes, in combination with some of the above mentioned combined catalogues. The second version of the new catalogue EOC-2 contains 4418 objects, and the precision of their proper motions is far better than that of Hipparcos Catalogue.

  3. Low Earth orbit satellite-to-ground optical scintillation: comparison of experimental observations and theoretical predictions.

    Science.gov (United States)

    Yura, Harold T; Kozlowski, David A

    2011-07-01

    Scintillation measurements of a 1064 nm laser at a 5 kHz sampling rate were made by an optical ground station at the European Space Agency observatory in Tenerife, Spain while tracking a low Earth orbit satellite during the spring and summer of 2010. The scintillation index (SI), the variance of irradiance normalized to the square of the mean, and power spectra measurements were compared to theoretical predictions based on the Kolmogorov spectrum, the Maui3 nighttime turbulence profile, weak scintillation finite-beam wave theory, included receiver, and source aperture averaging with no free-fitting parameters. Good agreement was obtained, not only for the magnitude of the observed fluctuations, but also for the corresponding elevation angle dependence and shape of the power spectra. Little variation was seen for the SI between daytime and nighttime links. For all elevation angles, ascending and descending, the observed scintillation over extensive regions of the atmosphere is consistent with log-normal statistics. Additionally, it appears from the results presented here that the nighttime turbulence profile for the atmosphere above the observatory in Tenerife is similar to that above Haleakala in Maui, Hawaii.

  4. Sub-Seasonal Variability of Tropical Rainfall Observed by TRMM and Ground-based Polarimetric Radar

    Science.gov (United States)

    Dolan, Brenda; Rutledge, Steven; Lang, Timothy; Cifelli, Robert; Nesbitt, Stephen

    2010-05-01

    Studies of tropical precipitation characteristics from the TRMM-LBA and NAME field campaigns using ground-based polarimetric S-band data have revealed significant differences in microphysical processes occurring in the various meteorological regimes sampled in those projects. In TRMM-LMA (January-February 1999 in Brazil; a TRMM ground validation experiment), variability is driven by prevailing low-level winds. During periods of low-level easterlies, deeper and more intense convection is observed, while during periods of low-level westerlies, weaker convection embedded in widespread stratiform precipitation is common. In the NAME region (North American Monsoon Experiment, summer 2004 along the west coast of Mexico), strong terrain variability drives differences in precipitation, with larger drops and larger ice mass aloft associated with convection occurring over the coastal plain compared to convection over the higher terrain of the Sierra Madre Occidental, or adjacent coastal waters. Comparisons with the TRMM precipitation radar (PR) indicate that such sub-seasonal variability in these two regions are not well characterized by the TRMM PR reflectivity and rainfall statistics. TRMM PR reflectivity profiles in the LBA region are somewhat lower than S-Pol values, particularly in the more intense easterly regime convection. In NAME, mean reflectivities are even more divergent, with TRMM profiles below those of S-Pol. In both regions, the TRMM PR does not capture rain rates above 80 mm hr-1 despite much higher rain rates estimated from the S-Pol polarimetric data, and rain rates are generally lower for a given reflectivity from TRMM PR compared to S-Pol. These differences between TRMM PR and S-Pol may arise from the inability of Z-R relationships to capture the full variability of microphysical conditions or may highlight problems with TRMM retrievals over land. In addition to the TRMM-LBA and NAME regions, analysis of sub-seasonal precipitation variability and

  5. Coupled Effect of Elevated Temperature and Cooling Conditions on the Properties of Ground Clay Brick Mortars

    Science.gov (United States)

    Ali Abd El Aziz, Magdy; Abdelaleem, Salh; Heikal, Mohamed

    2013-12-01

    When a concrete structure is exposed to fire and cooling, some deterioration in its chemical resistivity and mechanical properties takes place. This deterioration can reach a level at which the structure may have to be thoroughly renovated or completely replaced. In this investigation, four types of cement mortars, ground clay bricks (GCB)/sand namely 0/3, 1/2, 2/1 and 3/0, were used. Three different cement contents were used: 350, 400 and 450 kg/m3. All the mortars were prepared and cured in tap water for 3 months and then kept in laboratory atmospheric conditions up to 6 months. The specimens were subjected to elevated temperatures up to 700°C for 3h and then cooled by three different conditions: water, furnace, and air cooling. The results show that all the mortars subjected to fire, irrespective of cooling mode, suffered a significant reduction in compressive strength. However, the mortars cooled in air exhibited a relativity higher reduction in compressive strength rather than those water or furnace cooled. The mortars containing GCB/sand (3/0) and GCB/sand (1/2) exhibited a relatively higher thermal stability than the others.

  6. Validation of NH3 satellite observations by ground-based FTIR measurements

    Science.gov (United States)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem

    2016-04-01

    Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.

  7. Quantifying the effect of riming on snowfall using ground-based observations

    Science.gov (United States)

    Moisseev, Dmitri; von Lerber, Annakaisa; Tiira, Jussi

    2017-04-01

    Ground-based observations of ice particle size distribution and ensemble mean density are used to quantify the effect of riming on snowfall. The rime mass fraction is derived from these measurements by following the approach that is used in a single ice-phase category microphysical scheme proposed for the use in numerical weather prediction models. One of the characteristics of the proposed scheme is that the prefactor of a power law relation that links mass and size of ice particles is determined by the rime mass fraction, while the exponent does not change. To derive the rime mass fraction, a mass-dimensional relation representative of unrimed snow is also determined. To check the validity of the proposed retrieval method, the derived rime mass fraction is converted to the effective liquid water path that is compared to microwave radiometer observations. Since dual-polarization radar observations are often used to detect riming, the impact of riming on dual-polarization radar variables is studied for differential reflectivity measurements. It is shown that the relation between rime mass fraction and differential reflectivity is ambiguous, other factors such as change in median volume diameter need also be considered. Given the current interest on sensitivity of precipitation to aerosol pollution, which could inhibit riming, the importance of riming for surface snow accumulation is investigated. It is found that riming is responsible for 5% to 40% of snowfall mass. The study is based on data collected at the University of Helsinki field station in Hyytiälä during U.S. Department of Energy Biogenic Aerosols Effects on Clouds and Climate (BAECC) field campaign and the winter 2014/2015. In total 22 winter storms were analyzed, and detailed analysis of two events is presented to illustrate the study.

  8. Corrosion of dissimilar metal crevices in simulated concentrated ground water solutions at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, B.M.; Quinn, M.J

    2003-01-01

    The disposal of high-level nuclear waste in the Yucca Mountain, Nevada is under consideration by the US Department of Energy. The proposed facility will be located in the unsaturated zone approximately 300 m below the surface and 300 m above the water table. The proposed waste container consists of an outer corrosion-resistant Alloy 22 shell surrounding a 316 NG stainless steel structural inner container that encapsulates the used nuclear fuel waste. A titanium drip shield is proposed to protect the waste container from ground water seepage arid rock-fail. A cycle of dripping/evaporation could result in the generation of concentrated aggressive solutions, which could contact the waste container. The waste container material could be susceptible to crevice corrosion from such solutions. The experiments described in this report support the modeling of waste package degradation processes. The intent was to provide parameter values that are required to model crevice corrosion chemistry, as it relates to hydrogen pick-up, and stress corrosion cracking for selected candidate waste package materials. The purpose of the experiments was to study the crevice corrosion behavior of various candidate materials under near freely corroding conditions and to determine the pH developed in crevice solutions. Experimental results of crevice corrosion of dissimilar metal pairs (Alloy 22, Grade-7 and -16 titanium and 316 stainless steel) immersed in a simulated concentrated ground water at {approx}90{sup o}C are reported. The corrosion potential was measured during exposure periods of between 330 and 630 h. Following the experiments, the pH of the crevice solution was measured. The results indicate that a limited degree of crevice acidification occurred during the experiment. The values for corrosion potential suggest that crevice corrosion may have initiated. The total corrosion was limited, with little visible evidence for crevice corrosion being observed on the sample coupon faces

  9. RadioAstron Observations of the Quasar 3C273: a Challenge to the Brightness Temperature Limit

    CERN Document Server

    Kovalev, Y Y; Kellermann, K I; Lobanov, A P; Johnson, M D; Gurvits, L I; Voitsik, P A; Zensus, J A; Anderson, J M; Bach, U; Jauncey, D L; Ghigo, F; Ghosh, T; Kraus, A; Kovalev, Yu A; Lisakov, M M; Petrov, L Yu; Romney, J D; Salter, C J; Sokolovsky, K V

    2016-01-01

    Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of $10^{11.5}$ K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of $10^{13}$ K are inaccessible using ground-based very long baseline interferometry (VLBI) at any wavelength. We present observations of the quasar 3C273, made with the space VLBI mission RadioAstron on baselines up to 171,000 km, which directly reveal the presence of angular structure as small as 26 $\\mu$as (2.7 light months) and brightness temperature in excess of $10^{13}$ K. These measurements challenge our understanding of the non-thermal continuum emission in the vicinity of supermassive black holes and require much higher jet speeds than are observed.

  10. High-resolution wind and temperature observations from aircraft tracked by Mode-S air traffic control radar

    Science.gov (United States)

    de Haan, S.

    2011-05-01

    Wind, temperature, and humidity observations from radiosonde and aircraft are the main sources of upper air information for meteorology. For mesoscale meteorology, the horizontal coverage of radiosondes is too sparse. Aircraft observations through Aircraft Meteorological Data Relay (AMDAR) sample an atmospheric profile in the vicinity of airports. However, not all aircraft are equipped with AMDAR or have the system activated. Observations inferred from an enhanced tracking and ranging (TAR) air traffic control radar can fill this gap. These radars follows all aircraft in the airspace visible to the radar for air traffic management. The TAR radar at Schiphol airport in Netherlands has a range of 270 km. This Mode-S radar contacts each aircraft every 4 s on which the transponder in the aircraft responds with a message that contains information on flight level, direction, and speed. Combined with the ground track of an aircraft, meteorological information on temperature and wind can be inferred from this information. Because all aircraft are required to respond to the TAR radar, the data volume is extremely large, being around 1.5 million observations per day. Note that there are no extra costs for this data link. The quality of these observations is assessed by comparison to numerical weather prediction (NWP) model information, AMDAR observations, and radiosonde observations. A preprocessing step is applied to enhance the quality of wind and temperature observations, albeit with a reduced time frequency of one observation of horizontal wind vector and temperature per aircraft per minute. Nevertheless, the number of observations per day is still very large. In this paper it is shown that temperature observations from Mode-S, even after corrections, are not very good; an RMS which is twice as large as AMDAR is observed when compared to NWP. In contrast to the temperature observations, the quality found for wind after correction and calibration is good; it is comparable

  11. Lidar-Based Estimates of Above-Ground Biomass in the Continental US and Mexico Using Ground, Airborne, and Satellite Observations

    Science.gov (United States)

    Nelson, Ross; Margolis, Hank; Montesano, Paul; Sun, Guoqing; Cook, Bruce; Corp, Larry; Andersen, Hans-Erik; DeJong, Ben; Pellat, Fernando Paz; Fickel, Thaddeus; Kauffman, Jobriath; Prisley, Stephen

    2016-01-01

    Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar measurements. Two sets of models are generated, the first relating ground estimates of AGB to airborne laser scanning (ALS) measurements and the second set relating ALS estimates of AGB (generated using the first model set) to GLAS measurements. GLAS then, is used as a sampling tool within a hybrid estimation framework to generate stratum-, state-, and national-level AGB estimates. A two-phase variance estimator is employed to quantify GLAS sampling variability and, additively, ALS-GLAS model variability in this current, three-phase (ground-ALS-space lidar) study. The model variance component characterizes the variability of the regression coefficients used to predict ALS-based estimates of biomass as a function of GLAS measurements. Three different types of predictive models are considered in CONUS to determine which produced biomass totals closest to ground-based national forest inventory estimates - (1) linear (LIN), (2) linear-no-intercept (LNI), and (3) log-linear. For CONUS at the national level, the GLAS LNI model estimate (23.95 +/- 0.45 Gt AGB), agreed most closely with the US national forest inventory ground estimate, 24.17 +/- 0.06 Gt, i.e., within 1%. The national biomass total based on linear ground-ALS and ALS-GLAS models (25.87 +/- 0.49 Gt) overestimated the national ground-based estimate by 7.5%. The comparable log-linear model result (63.29 +/-1.36 Gt) overestimated ground results by 261%. All three national biomass GLAS estimates, LIN, LNI, and log-linear, are based on 241,718 pulses collected on 230 orbits. The US national forest inventory (ground) estimates are based on 119

  12. Continuous ground-based aerosol Lidar observation during seasonal pollution events at Wuxi, China

    Science.gov (United States)

    Wong, Man Sing; Qin, Kai; Lian, Hong; Campbell, James R.; Lee, Kwon Ho; Sheng, Shijie

    2017-04-01

    Haze pollution has long been a significant research topic and challenge in China, with adverse effects on air quality, agricultural production, as well as human health. In coupling with ground-based Lidar measurements, air quality observation, meteorological data, and backward trajectories model, two typical haze events at Wuxi, China are analyzed respectively, depicting summer and winter scenarios. Results indicate that the winter haze pollution is a compound pollution process mainly affected by calm winds that induce pollution accumulation near the surface. In the summer case, with the exception of influence from PM2.5 concentrations, ozone is the main pollutant and regional transport is also a significant influencing factor. Both events are marked by enhanced PM2.5 concentrations, driven by anthropogenic emissions of pollutants such as vehicle exhaust and factory fumes. Meteorological factors such as wind speed/direction and relative humidity are also contributed. These results indicate how the vertical profile offered by routine regional Lidar monitoring helps aid in understanding local variability and trends, which may be adapted for developing abatement strategies that improve air quality.

  13. Study on Zero-Doppler Centroid Control for GEO SAR Ground Observation

    Directory of Open Access Journals (Sweden)

    Yicheng Jiang

    2014-01-01

    Full Text Available In geosynchronous Earth orbit SAR (GEO SAR, Doppler centroid compensation is a key step for imaging process, which could be performed by the attitude steering of a satellite platform. However, this zero-Doppler centroid control method does not work well when the look angle of radar is out of an expected range. This paper primarily analyzes the Doppler properties of GEO SAR in the Earth rectangular coordinate. Then, according to the actual conditions of the GEO SAR ground observation, the effective range is presented by the minimum and maximum possible look angles which are directly related to the orbital parameters. Based on the vector analysis, a new approach for zero-Doppler centroid control in GEO SAR, performing the attitude steering by a combination of pitch and roll rotation, is put forward. This approach, considering the Earth’s rotation and elliptical orbit effects, can accurately reduce the residual Doppler centroid. All the simulation results verify the correctness of the range of look angle and the proposed steering method.

  14. Precipitable Water Vapor Estimates in the Australian Region from Ground-Based GPS Observations

    Directory of Open Access Journals (Sweden)

    Suelynn Choy

    2015-01-01

    Full Text Available We present a comparison of atmospheric precipitable water vapor (PWV derived from ground-based global positioning system (GPS receiver with traditional radiosonde measurement and very long baseline interferometry (VLBI technique for a five-year period (2008–2012 using Australian GPS stations. These stations were selectively chosen to provide a representative regional distribution of sites while ensuring conventional meteorological observations were available. Good agreement of PWV estimates was found between GPS and VLBI comparison with a mean difference of less than 1 mm and standard deviation of 3.5 mm and a mean difference and standard deviation of 0.1 mm and 4.0 mm, respectively, between GPS and radiosonde measurements. Systematic errors have also been discovered during the course of this study, which highlights the benefit of using GPS as a supplementary atmospheric PWV sensor and calibration system. The selected eight GPS sites sample different climates across Australia covering an area of approximately 30° NS/EW. It has also shown that the magnitude and variation of PWV estimates depend on the amount of moisture in the atmosphere, which is a function of season, topography, and other regional climate conditions.

  15. Ground-based Optical Observations of Geophysical Phenomena: Aurora Borealis and Meteors

    Science.gov (United States)

    Samara, Marilia

    2010-10-01

    Advances in low-light level imaging technology have enabled significant improvements in the ground based study of geophysical phenomena. In this talk we focus on two such phenomena that occur in the Earth's ionosphere: aurorae and meteors. Imaging the aurora which is created by the interplay of the Earth's magnetosphere, ionosphere and atmosphere, provides a tool for remote sensing physical processes that are otherwise very difficult to study. By quantifying the intensities, scale sizes and lifetimes of auroral structures, we can gain significant insight into the physics behind the generation of the aurora and the interaction of the magnetosphere with the solar wind. Additionally, the combination of imaging with radars provides complimentary data and therefore more information than either method on its own. Meteor observations are a perfect example of this because the radar can accurately determine only the line-of-sight component of velocity, while imaging provides the direction of motion, the perpendicular velocity and brightness (a proxy for mass), therefore enabling a much more accurate determination of the full velocity vector and mass.

  16. Ground-Based Observations of Saturn's North Polar Spot and Hexagon.

    Science.gov (United States)

    Sanchez-Lavega, A; Lecacheux, J; Colas, F; Laques, P

    1993-04-16

    Ground-based observations of two conspicuous features near the north pole of Saturn, the polar vortex and the hexagonal wave structure, were made from July 1990 to October 1991, 10 years after their discovery. During this period the polar spot drifted in longitude, relative to system III, by -0.0353 degrees per day on average. Superimposed on this mean motion, the spot also underwent short-term rapid excursions in longitude of up to approximately 14 degrees at rates of up to approximately 1 degrees per day. The spot also exhibited irregular variations in its latitude location. A combination of these data together with those obtained by Voyager 1 and 2 in 1980 and 1981 shows that the spot drifted -0.0577 degrees per day for the 11-year interval from 1980 to 1991. The large lifetime of both features indicates that they are insensitive to the strong variations in the seasonal heating of the cloud layers in the upper polar atmosphere.

  17. OGLE-2015-BLG-0196: Ground-based Gravitational Microlens Parallax Confirmed By Space-Based Observation

    CERN Document Server

    Han, C; Gould, A; Zhu, Wei; Szymański, M K; Soszyński, I; Skowron, J; Mróz, P; Poleski, R; Pietrukowicz, P; Kozłowski, S; Ulaczyk, K; Pawlak, M; Yee, J C; Beichman, C; Novati, S Calchi; Carey, S; Bryden, C; Fausnaugh, M; Gaudi, B S; Henderson, Calen B; Shvartzvald, Y; Wibking, B

    2016-01-01

    In this paper, we present the analysis of the binary gravitational microlensing event OGLE-2015-BLG-0196. The event lasted for almost a year and the light curve exhibited significant deviations from the lensing model based on the rectilinear lens-source relative motion, enabling us to measure the microlens parallax. The ground-based microlens parallax is confirmed by the data obtained from space-based microlens observations using the {\\it Spitzer} telescope. By additionally measuring the angular Einstein radius from the analysis of the resolved caustic crossing, the physical parameters of the lens are determined up to the two-fold degeneracy: $u_00$ solutions caused by the well-known "ecliptic" degeneracy. It is found that the binary lens is composed of two M dwarf stars with similar masses $M_1=0.38\\pm 0.04\\ M_\\odot$ ($0.50\\pm 0.05\\ M_\\odot)$ and $M_2=0.38\\pm 0.04\\ M_\\odot$ ($0.55\\pm 0.06\\ M_\\odot$) and the distance to the lens is $D_{\\rm L}=2.77\\pm 0.23$ kpc ($3.30\\pm 0.29$ kpc). Here the physical parameter...

  18. Observations of Atmospheric Temperature Structure from an Airborne Microwave Temperature Profiler

    Science.gov (United States)

    Haggerty, J. A.; Schick, K. E.; Young, K.; Lim, B.; Ahijevych, D.

    2014-12-01

    A newly-designed Microwave Temperature Profiler (MTP) was developed at JPL for the NSF-NCAR Gulfstream-V aircraft. The MTP is a scanning microwave radiometer that measures thermal emission in the 50-60 GHz oxygen complex. It scans from near-zenith to near-nadir, measuring brightness temperatures forward, above, and below the aircraft at 17 s intervals. A statistical retrieval method derives temperature profiles from the measurements, using proximate radiosonde profiles as a priori information. MTP data examples from recent experiments, comparisons with simultaneous temperature profiles from the Airborne Vertical Atmospheric Profiling System (AVAPS), and a method for blending MTP and AVAPS temperature profiles will be presented. The Mesoscale Predictability Experiment (MPEX; May-June, 2013) investigated the utility of sub-synoptic observations to extend convective-scale predictability and otherwise enhance skill in regional numerical weather prediction over short forecast periods. This project relied on MTP and AVAPS profiles to characterize atmospheric structure on fine spatial scales. Comparison of MTP profiles with AVAPS profiles confirms uncertainty specifications of MTP. A profile blending process takes advantage of the high resolution of AVAPS profiles below the aircraft while utilizing MTP profiles above the aircraft. Ongoing research with these data sets examines double tropopause structure in association with the sub-tropical jet, mountain lee waves, and fluxes at the tropopause. The attached figure shows a mountain lee wave signature in the MTP-derived isentrope field along the flight track during an east-west segment over the Rocky Mountains. A vertically propagating wave with westward tilt is evident on the leeward side of the mountains at around 38 ksec. The Deep Propagating Gravity Wave Experiment over New Zealand (DEEPWAVE; June-July, 2014) investigated the dynamics of gravity waves from the surface to the lower thermosphere. MTP and AVAPS

  19. Dust forecast over North Africa: verification with satellite and ground based observations

    Science.gov (United States)

    Singh, Aditi; Kumar, Sumit; George, John P.

    2016-05-01

    Arid regions of North Africa are considered as one of the major dust source. Present study focuses on the forecast of aerosol optical depth (AOD) of dust over different regions of North Africa. NCMRWF Unified Model (NCUM) produces dust AOD forecasts at different wavelengths with lead time upto 240 hr, based on 00UTC initial conditions. Model forecast of dust AOD at 550 nm up to 72 hr forecast, based on different initial conditions are verified against satellite and ground based observations of total AOD during May-June 2014 with the assumption that except dust, presence of all other aerosols type are negligible. Location specific and geographical distribution of dust AOD forecast is verified against Aerosol Robotic Network (AERONET) station observations of total and coarse mode AOD. Moderate Resolution Imaging Spectroradiometer (MODIS) dark target and deep blue merged level 3 total aerosol optical depth (AOD) at 550 nm and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrieved dust AOD at 532 nm are also used for verification. CALIOP dust AOD was obtained by vertical integration of aerosol extinction coefficient at 532 nm from the aerosol profile level 2 products. It is found that at all the selected AERONET stations, the trend in dust AODs is well predicted by NCUM up to three days advance. Good correlation, with consistently low bias (~ +/-0.06) and RMSE (~ 0.2) values, is found between model forecasts and point measurements of AERONET, except over one location Cinzana (Mali). Model forecast consistently overestimated the dust AOD compared to CALIOP dust AOD, with a bias of 0.25 and RMSE of 0.40.

  20. Mesoscale ionospheric electrodynamics of omega bands determined from ground-based electromagnetic and satellite optical observations

    Directory of Open Access Journals (Sweden)

    O. Amm

    2005-02-01

    Full Text Available We present ground-based electromagnetic data from the MIRACLE and BEAR networks and satellite optical observations from the UVI and PIXIE instruments on the Polar satellite of an omega band event over Northern Scandinavia on 26 June 1998, which occured close to the morning side edge of a substorm auroral bulge. Our analysis of the data concentrates on one omega band period from 03:18-03:27 UT, for which we use the method of characteristics combined with an analysis of the UVI and PIXIE data to derive a time series of instantaneous, solely data-based distributions of the mesoscale ionospheric electrodynamic parameters with a 1-min time resolution. In addition, the AMIE method is used to derive global Hall conductance patterns. Our results show that zonally alternating regions of enhanced ionospheric conductances ("tongues" up to ~60S and low conductance regions are associated with the omega bands. The tongues have a poleward extension of ~400km from their base and a zonal extension of ~380km. While they are moving coherently eastward with a velocity of ~770ms-1, the structures are not strictly stationary. The current system of the omega band can be described as a superposition of two parts: one consists of anticlockwise rotating Hall currents around the tongues, along with Pedersen currents, with a negative divergence in their centers. The sign of this system is reversing in the low conductance areas. It causes the characteristic ground magnetic signature. The second part consists of zonally aligned current wedges of westward flowing Hall currents and is mostly magnetically invisible below the ionosphere. This system dominates the field-aligned current (FAC pattern and causes alternating upward and downward FAC at the flanks of the tongues with maximum upward FAC of ~25µA m-2. The total FAC of ~2MA are comparable to the ones diverted inside a westward traveling surge. Throughout the event, the overwhelming part of the FAC

  1. PERSPECTIVE Working towards a community-wide understanding of satellite skin temperature observations

    Science.gov (United States)

    Shreve, Cheney

    2010-12-01

    cover, water vapor, cloud cover), they show that skin temperature is clearly a different physical parameter from air temperature and varies from air temperature in magnitude, response to atmospheric conditions, and diurnal phase. Although the accuracy of skin temperature (Tskin) algorithms has improved to within 0.5-1°C for field measurements and clear-sky satellite observations (Becker and Li 1995, Goetz et al 1995, Wan and Dozier 1996), general confusion regarding the physical definition of 'surface temperature' and how it can be used for climate studies has persisted throughout the scientific community and limited the applications of these data (Jin and Dickinson 2010). For example, satellite sea surface temperature was used as evidence of global climate change instead of skin temperature in the IPCC 2001 and 2007 reports (Jin and Dickinson 2010). This work provides clarity in the theoretical definition of temperature variables, demonstrates the difference between air and skin temperature, and aids the understanding of the MODIS Tskin product, which could be very beneficial for future climate studies. As outlined by Jin and Dickinson, 'surface temperature' is a vague term commonly used in reference to air temperature, aerodynamic temperature, and skin temperature. Air temperature (Tair), or thermodynamic temperature, is measured by an in situ instrument usually 1.5-2 m above the ground. Aerodynamic temperature (Taero) refers to the temperature at the height of the roughness length of heat. Satellite derived skin temperature (Tskin) is the radiometric temperature derived from the inverse of Planck's function. While these different temperature variables are typically correlated, they differ as a result of environmental conditions (e.g. land cover and sky conditions; Jin and Dickinson 2010). With an extensive network of Tair measurements, some have questioned the benefits of using Tskin at all (Peterson et al 1997, 1998). Tskin and Tair can vary depending on land cover

  2. Temperature dependence of intracellular free calcium in cardiac myocytes from rat and ground squirrel measured by confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    王世强; 周曾铨; 钱洪

    1999-01-01

    The temperature-dependence of infraeeliular free caleimn (Ca) was investigated in mdo-1 loaded ventricular myocytes from the ral, a non-hibernator, and from the ground squirrel, a hibernator. The dissociation constant of indo-l at different temperatures was calibrated both al pll-tat and at @-stat . and the result demonstrated that the @-stat ralibration should be prettrred . Analysis of the fluoreseent image showed a striking increase of Ca2 as well as spontaneous caleiuni waves in ral cells, indicating an overloaded cakuum. In contrast, cardiac myocytes of the ground sqnirraf were found to keep a constant (Ca2+) without caleium overload regardless of temperature variation. It is be-lieved that understanding of the mechanisms underlying the interccllular caleima homeostasis of hibrernators may lead to solutions of some medical questions .

  3. Below-ground carbon flux and partitioning: global patterns and response to temperature

    Science.gov (United States)

    C.M. Litton; C.P. Giardina

    2008-01-01

    1. The fraction of gross primary production (GPP) that is total below-ground carbon flux (TBCF) and the fraction of TBCF that is below-ground net primary production (BNPP) represent globally significant C fluxes that are fundamental in regulating ecosystem C balance. However, global estimates of the partitioning of GPP to TBCF and of TBCF to BNPP, as well as the...

  4. Assessment of MTI Water Temperature Retrievals with Ground Truth from the Comanche Peak Steam Electric Station Cooling Lake

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.J.

    2002-12-09

    Surface water temperatures calculated from Multispectral Thermal Imager (MTI) brightness temperatures and the robust retrieval algorithm, developed by the Los Alamos National Laboratory (LANL), are compared with ground truth measurements at the Squaw Creek reservoir at the Comanche Peak Steam Electric Station near Granbury Texas. Temperatures calculated for thirty-four images covering the period May 2000 to March 2002 are compared with water temperatures measured at 10 instrumented buoy locations supplied by the Savannah River Technology Center. The data set was used to examine the effect of image quality on temperature retrieval as well as to document any bias between the sensor chip arrays (SCA's). A portion of the data set was used to evaluate the influence of proximity to shoreline on the water temperature retrievals. This study found errors in daytime water temperature retrievals of 1.8 C for SCA 2 and 4.0 C for SCA 1. The errors in nighttime water temperature retrievals were 3.8 C for SCA 1. Water temperature retrievals for nighttime appear to be related to image quality with the largest positive bias for the highest quality images and the largest negative bias for the lowest quality images. The daytime data show no apparent relationship between water temperature retrieval error and image quality. The average temperature retrieval error near open water buoys was less than corresponding values for the near-shore buoys. After subtraction of the estimated error in the ground truth data, the water temperature retrieval error was 1.2 C for the open-water buoys compared to 1.8 C for the near-shore buoys. The open-water error is comparable to that found at Nauru.

  5. Observing the Agulhas Current with sea surface temperature and altimetry data: challenges and perspectives

    CSIR Research Space (South Africa)

    Krug, Marjolaine, J

    2014-06-01

    Full Text Available -Red Sea Surface Temperature datasets still suffer from inadequate cloud masking algorithms, particularly in regions of strong temperature gradient. Despite both Sea Surface Height and Sea Surface Temperature observations being severely compromised...

  6. MAD-4-MITO, a Multi Array of Detectors for ground-based mm/submm SZ observations

    CERN Document Server

    Lamagna, L; Melchiorri, F; Battistelli, E S; De Grazia, M; Luzzi, G; Orlando, A E; Savini, G

    2002-01-01

    The last few years have seen a large development of mm technology and ultra-sensitive detectors devoted to microwave astronomy and astrophysics. The possibility to deal with large numbers of these detectors assembled into multi--pixel imaging systems has greatly improved the performance of microwave observations, even from ground--based stations, especially combining the power of multi--band detectors with their new imaging capabilities. Hereafter, we will present the development of a multi--pixel solution devoted to Sunyaev--Zel'dovich observations from ground--based telescopes, that is going to be operated from the Millimetre and Infrared Testagrigia Observatory.

  7. Temperature variability during delirium in ICU patients: an observational study.

    Directory of Open Access Journals (Sweden)

    Arendina W van der Kooi

    Full Text Available INTRODUCTION: Delirium is an acute disturbance of consciousness and cognition. It is a common disorder in the intensive care unit (ICU and associated with impaired long-term outcome. Despite its frequency and impact, delirium is poorly recognized by ICU-physicians and -nurses using delirium screening tools. A completely new approach to detect delirium is to use monitoring of physiological alterations. Temperature variability, a measure for temperature regulation, could be an interesting component to monitor delirium, but whether temperature regulation is different during ICU delirium has not yet been investigated. The aim of this study was to investigate whether ICU delirium is related to temperature variability. Furthermore, we investigated whether ICU delirium is related to absolute body temperature. METHODS: We included patients who experienced both delirium and delirium free days during ICU stay, based on the Confusion Assessment method for the ICU conducted by a research- physician or -nurse, in combination with inspection of medical records. We excluded patients with conditions affecting thermal regulation or therapies affecting body temperature. Daily temperature variability was determined by computing the mean absolute second derivative of the temperature signal. Temperature variability (primary outcome and absolute body temperature (secondary outcome were compared between delirium- and non-delirium days with a linear mixed model and adjusted for daily mean Richmond Agitation and Sedation Scale scores and daily maximum Sequential Organ Failure Assessment scores. RESULTS: Temperature variability was increased during delirium-days compared to days without delirium (β(unadjusted=0.007, 95% confidence interval (CI=0.004 to 0.011, p<0.001. Adjustment for confounders did not alter this result (β(adjusted=0.005, 95% CI=0.002 to 0.008, p<0.001. Delirium was not associated with absolute body temperature (β(unadjusted=-0.03, 95% CI=-0.17 to 0

  8. EVALUATION OF TUNA FISHING GROUND IN SOUTHERN COAST OF JAVA - SUMBAWA SEA USING SATELLITE OBSERVED DATA

    Directory of Open Access Journals (Sweden)

    MOKHLAS SATIBI

    2012-11-01

    Full Text Available Potential fishery in territorial water of South Java - Sumbawa Sea has not been exploited maximally. Tuna is one of fisherypotency in the territorial water of South Java - Sumbawa. Tuna is the important economic value because it represent one ofexporting commodity enthused by overseas consumer.Research was conducted in the Southern Java – Sumbawa, Indian Ocean 90 S - 160 S; 1060 E - 1210 E, using fish catch data2003 – 2006. Research location is in the inclusive Region of Fishery Management IX (DKP and PKSPL, 2003. Data weretaken from a daily fish catch of PT. Perikanan Samudra Besar (PSB Benoa Bali 2003 - 2006.Sea level anomaly (SLA data were estimated from Altimetry satellite (Jason 1, wind speed data was from Scatterometersatellite and sea surface temperature (SST data was from Microwave satellite.Based on the result of this research, sea level anomaly of southern coast of Java-Sumbawa was fluctuated according tomonsoon. The highest bigeye tuna fish catched was 40 tuna in June 2003 and the lowest bigeye tuna fish was 2 tuna inNovember 2005. Maximum SLA observe during southeast monsoon was 21.77 cm in august 2005, while minimum SLAobserved during southeast monsoon was -18.15 cm in October 2003. Sea surface temperature of southern coast of Java-Sumbawa also fluctuated according to monsoon. Maximum SST observed during northwest monsoon was 30.450 C in March2006, while minimum SST observed during southeast monsoon was 25.050 C in August 2006. The highest wind speed was10.20 m/sec in June 2004 and the lowest was 2.00 m/sec in October 2004. Wind direction was reversely changed according tomonsoon. Northwest wind monsoon flew eastward and southeast wind monsoon flew westward.Fish production in PT PSB had been done over 4 years since 2003, in northwest and southwest monsoon in constant areaand correlation of linier regression among estimate of fish catching using SLA, SST and wind speed had no correlation. Withfish production during southwest

  9. TGF Ground Observations from a Winter Thunderstorm in Japan: First Ground Observation of a Multipulse TGF & Evidence of Neutron Production from a TGF

    Science.gov (United States)

    Bowers, G. S.; Smith, D. M.; Kelley, N. A.; Takahashi, S.; Ishikawa, A.; Kamogawa, M.; Heckman, S.; Cummer, S.

    2016-12-01

    On December 23rd, during a Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowship Program, the instrument GODOT (Gamma Ray Observations During Overhead Thunderstorms) observed two Terrestrial Gamma-ray Flash (TGF) events in Uchinada, Ishikawa prefecture, Japan. During the first event at 1706 UTC, 7 bursts of radiation were observed in 3 scintillator detectors over an 8 ms interval, with each burst 100 μs in duration consisting of 15-250 scintillator counts with some energies exceeding 10 MeV. Approximately 20 ms before this, we observed a smaller burst in the 3 detectors with 20 μs duration and 15 counts up to several MeV corresponding to the strongest VLF signal observed for these bursts by the Earth Networks Total Lightning Network (ENTLN) and VLF receivers operated by our collaborators at Tokyo Gakugei University. Nearby LF radio data show that each gamma ray feature corresponds to a distinct radio burst. The second event at 2020 UTC was a single, very bright burst with a decaying tail lasting > 65 ms, showing evidence of a flux of thermal neutrons via the neutron capture line at 2.2 MeV, the capture being presumably on protons in the plastic scintillation material of the detector itself. This flash included an upward positive leader from a lightning protection tower next to the Uchinada wind turbine. We will present observations of both events with constraints on the production of relativistic electrons from Monte Carlo simulations.

  10. Permafrost Changes along the Alaska Highway Corridor, Southern Yukon, from Ground Temperature Measurements and DC Electrical Resistivity Tomography

    Science.gov (United States)

    Duguay, M. A.; Lewkowicz, A. G.; Smith, S.

    2011-12-01

    A natural gas pipeline running across permafrost terrain from Prudhoe Bay, Alaska, through Canada to US markets was first proposed more than 30 years ago. In the intervening period, mean annual air temperatures in the region have risen by 0.5-1.0°C and it is probable that the ground has also warmed. Renewed interest in the pipeline has meant that information on permafrost and geotechnical conditions within the Alaska Highway Corridor of the southern Yukon must be updated for engineering design and the assessment of environmental impacts. To accomplish this goal, results from 1977-1981 drilling and ground temperature monitoring programs within the proposed pipeline corridor were used in combination with air photo analysis to select sites potentially sensitive to climate change. The sites are distributed across the extensive and sporadic discontinuous permafrost zones over a distance of 475 km between Beaver Creek and Whitehorse. To date, 11 targeted boreholes with permafrost have been found and cased to permit renewed ground temperature monitoring. By the end of summer 2011, it is expected that another 7 will have been instrumented. Measurable temperature increases relative to the 1970s are expected, except where values were previously just below 0°C. In the latter case, if the sites are still in permafrost, latent heat effects may have substantially moderated the temperature increase. Electrical resistivity tomography surveys are also being conducted to characterize the local permafrost distribution and geotechnical conditions. These 2D resistivity profiles will be used with the ground temperatures to examine current conditions and response to climate change and vegetation disturbance.

  11. Ground-Based Centimeter, Millimeter, and Submillimeter Observations of Comet 103P/Hartley 2

    Science.gov (United States)

    Milam, S. N.; Charnley, S. B.; Chuang, Y.-L.; Kuan, Y.-J.; Coulson, I. M.; Remijan, A. R.

    2011-01-01

    Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth [1]. Comets are comprised of molecular ices, that may be pristine interstellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula [2]. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection [3]. We have conducted observations, at primarily millimeter and submillimeter wavelengths, where molecular emission is easily resolved, towards comets to determine important cosmogonic quantities, such as the ortl1o:pal'a ratio and isotope ratios, as well as probe the origin of cometary organics. Comets provide important clues to the processes that occurred during the formation and early evolution of the Solar System. Past observations, as well as laboratory measurements of cometary material obtained from Stardust, have shown that comets appear to contain a mixture of the products from both interstellar and nebular chemistries. A major observational challenge in cometary science is to quantify the extent to which chemical compounds can be linked to either reservoir.

  12. Ground-based Observational Characterization of Transiting Hot-Jupiter Atmosphere

    Science.gov (United States)

    Chen, G.

    2016-09-01

    Transiting exoplanets are currently among the most favorable targets for atmospheric studies of exoplanets. Such special orbital geometry enables transits and secondary eclipses to be observable, which refer to the events when planets move in front of or behind host stars. Corresponding observations would result in transmission spectroscopy or emission spectroscopy, which are extremely powerful in the investigation of atmospheric compositions and temperature structures. Based on these two techniques, this thesis presents photometric observations on the secondary eclipses of three hot Jupiters using GROND (Gamma-Ray Burst Optical and Near-infrared Detector) mounted on the MPG 2.2 m telescope, and spectroscopic observations on the transits of another two hot Jupiters using DBSP (Double Spectrograph), TSpec (Triple Spectrograph), and COSMIC (Carnegie Observatories Spectroscopic Multislit and Imaging Camera) mounted on the Palomar 5.1 Hale telescope. The primary goal is to search for any detectable signals of atmospheric origin, and to study potential atmospheric diversity among hot Jupiters with various physical properties. The photometric observations on the secondary eclipses of WASP-5 b, WASP-46 b, and WASP-43 b are detailed in Chapter 3, 4, and 5, respectively. The dips of secondary eclipse have been significantly detected for all three hot Jupiters in the K band, along with some possible detection or 3σ upper limit in the J or H band. These near-infrared eclipse detection measures the thermal emission from the deep dayside atmosphere. It is the first time to detect any thermal emission in the near infrared for WASP-5 b and WASP-46 b. Our GROND measurements indicate a roughly isothermal temperature profile of around 2700 K in the deep layers of WASP-5 b's dayside atmosphere. Together with Spitzer observations, which probe higher layers with a temperature of around 1900 K, a temperature inversion is ruled out in the probed pressure range. While an oxygen

  13. Improving the estimation of hydrothermal state variables in the active layer of frozen ground by assimilating in situ observations and SSM/I data

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The active layer of frozen ground data assimilation system adopts the SHAW (Simulteneous Heat and Water) model as the model operator. It employs an ensemble kalman filter to fuse state variables predicted by the SHAW model with in situ observation and the SSM/I 19 GHz brightness temperature for the purpose of optimizing model hydrothermal state variables. When there is little water movement in the frozen soil during the winter season, the unfrozen water content depends primarily on soil temperature. Thus, soil temperature is the crucial state variable to be improved. In contrast, soil moisture is heavily influenced by precipitation during the summer season. The simulation accuracy of soil moisture has a strong and direct impact on the soil temperature. In this case, the crucial state variable to be improved is soil moisture. One-dimensional assimilation experiments that have been carried out at AMDO station show that land data assimilation method can improve the estimation of hydrothermal state variables in the soil by fusing model information and observation information. The reasonable model error covariance matrix plays a key role in transferring the optimized surface state information to the deep soil, and it provides improved estimations of whole soil state profiles. After assimilating the 4-cm soil temperature by in situ observation, the soil temperature RMSE (Root Mean Square Error) of each soil layer decreased by 0.96℃ on average relative to the SHAW simulation. After assimilating the 4-cm soil moisture in situ observation, the soil moisture RMSE of each soil layer decreased by 0.020 m3·m-3. When assimilating the SSM/I 19 GHz brightness temperature, the soil temperature RMSE of each soil layer during the winter decreased by 0.76℃, while the soil moisture RMSE of each soil layer during the summer decreased by 0.018 m3·m-3.

  14. The Irregular Shape of (21) Lutetia as Determined from Ground-based Observations

    Science.gov (United States)

    Conrad, A.; Carry, B.; Merline, W. J.; Drummond, J. D.; Chapman, C. R.; Tamblyn, P. M.; Christou, J. C.; Dumas, C.; Weaver, H. A.; Rosetta OSIRIS Instument Team

    2010-12-01

    We report the results of our campaign to improve our understanding of the physical characteristics of asteroid (21) Lutetia ahead of the Rosetta flyby in 2010 July. This included measurements of shape, size, pole, density, and a search for satellites. We utilized primarily adaptive optics (AO) on large ground-based telescopes (Keck, Gemini, and VLT). We coordinated these efforts with HST observations (Weaver et al. 2010, A&A 518, A4), made in support of Rosetta’s ALICE UV spectrometer. Preliminary results were supplied to Rosetta mission teams in fall of 2009 to assist in planning for the mission. Observations and analyses were complete and submitted for publication before the flyby (Drummond et al. 2010, A&A, in press; Carry et al. 2010, A&A, in press). Using more than 300 AO images of Lutetia, which subtended only slightly more than two resolution-elements (0.10”) for these large telescopes, we were able to derive accurate size and shape information, as well as a pole and spin period. We modeled the size and shape using both a triaxial-ellipsoid model and a 3D radius-vector model. The radius-vector model used our new technique of multi-dataset inversion, called KOALA (for Knitted Occultation, Adaptive optics, and Lightcurve Analysis), in which we utilized not only our AO imaging, but also 50 lightcurves spanning 48 years. We combined the best aspects of each model to produce our best-estimate 3D shape model, a hybrid having ellipsoid-equivalent dimensions of 124 x 101 x 93 km (± 5 x 4 x 13 km) and effective diameter 105 ± 7 km. We found the spin axis of Lutetia to lie within 5 deg of [long, lat (52,-6)] or [RA DEC (52,+12)] and determined an improved sidereal period of 8.168270 ± 0.000001 h. We predicted the geometry of Lutetia during the flyby and showed that the southern hemisphere would be in seasonal shadow at that time. The model suggested the presence of several concavities and irregularities that may be associated with large impacts. The model

  15. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    Directory of Open Access Journals (Sweden)

    Sungdae Sim

    2012-12-01

    Full Text Available Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  16. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    Science.gov (United States)

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-12-12

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  17. C/NOFS satellite observations of equatorial ionospheric plasma structures supported by multiple ground-based diagnostics in October 2008

    Science.gov (United States)

    Nishioka, M.; Basu, Su.; Basu, S.; Valladares, C. E.; Sheehan, R. E.; Roddy, P. A.; Groves, K. M.

    2011-10-01

    In early October 2008, the C/NOFS satellite orbited near the magnetic equator at its perigee altitude of ˜400 km at dusk in the Peruvian sector. This provided an ideal opportunity for a comparison, under the current very low solar flux condition, of equatorial ionospheric disturbances observed with the Communication/Navigation Outage Forecasting System (C/NOFS) in situ measurements and ground-based observations available near Jicamarca Observatory. The primary objective was the comparison of plasma density disturbances measured by a Planar Langmuir Probe (PLP) instrument on the C/NOFS satellite with VHF scintillation activity at Ancon near Jicamarca for this period. Here we discuss in detail two extreme cases: one in which severe in situ disturbances were accompanied by mild scintillation on a particular day, namely, 10 October while there was little in situ disturbance with strong scintillation on 5 October. This apparent contradiction was diagnosed further by a latitudinal ground-based GPS network at Peruvian longitudes, a Digisonde, and the incoherent scatter radar (ISR) at Jicamarca. The crucial distinction was provided by the behavior of the equatorial ionization anomaly (EIA). The EIA was well-developed on the day having severe in situ disturbances (10 Oct). This led to lower equatorial plasma density and total electron content (TEC) at the equator and consequently reduced the scintillations detected at Ancon. On the other hand, on the day with severe scintillations (5 Oct), the EIA was not so well developed as on 10 October, leading to relatively higher equatorial plasma density and TEC. Consequently the severe scintillations at Ancon were likely caused by ionospheric structure located below the altitude of C/NOFS. The NRL SAMI2 model was utilized to gain a greater understanding of the role of neutral winds and electric fields in reproducing the TEC as a function of latitude for both classes of irregularities. Spectral studies with high resolution in situ

  18. Observations on syntactic landmine detection using impulse ground-penetrating radar

    Science.gov (United States)

    Nasif, Ahmed O.; Hintz, Kenneth J.

    2011-06-01

    We discuss some results and observations on applying syntactic pattern recognition (SPR) methodology for landmine detection using impulse ground-penetrating radar (GPR). In the SPR approach, the GPR A-scans are first converted into binary-valued strings by inverse filtering, followed by concavity detection to identify the peaks and valleys representing the locations of impedance discontinuities in the return signal. During the training phase, the characteristic binary strings for a particular landmine are found by looking at all the exemplars of that mine and selecting the collection of strings that yield the best detection results on these exemplars. These characteristic strings can be detected very efficiently using finite state machines (FSMs). Finally, the FSM detections are clustered to assign confidence to each detection, and discard sparse detections. Provided that the impulse GPR provides enough resolution in range, the SPR method can be a robust and high-speed solution for landmine detection and classification, because it aims to exploit the impedance discontinuity profile of the target, which is a description of the internal material structure of the target and little affected by external clutter. To evaluate the proposed methodology, the SPR scheme is applied to a set of impulse GPR data taken at a government test site. We suggest that coherent frequency-agile radar may be a better option for the SPR approach, since it addresses some of the drawbacks of a non-coherent impulse GPR caused by internally non-coherent within-channel signals which necessitate non-coherent integration and its attendant longer integration times, and non-coherent adjacent channels which severely limit the ability to do spatial, or at a minimum, cross-range processing if the GPR is in a linear array antenna.

  19. Study on the influence of ground and satellite observations on the numerical air-quality for PM10 over Romanian territory

    Science.gov (United States)

    Dumitrache, Rodica Claudia; Iriza, Amalia; Maco, Bogdan Alexandru; Barbu, Cosmin Danut; Hirtl, Marcus; Mantovani, Simone; Nicola, Oana; Irimescu, Anisoara; Craciunescu, Vasile; Ristea, Alina; Diamandi, Andrei

    2016-10-01

    The numerical forecast of particulate matter concentrations in general, and PM10 in particular is a theme of high socio-economic relevance. The aim of this study was to investigate the impact of ground and satellite data assimilation of PM10 observations into the Weather Research and Forecasting model coupled with Chemistry (WRF-CHEM) numerical air quality model for Romanian territory. This is the first initiative of the kind for this domain of interest. Assimilation of satellite information - e.g. AOT's in air quality models is of interest due to the vast spatial coverage of the observations. Support Vector Regression (SVR) techniques are used to estimate the PM content from heterogeneous data sources, including EO products (Aerosol Optical Thickness), ground measurements and numerical model data (temperature, humidity, wind, etc.). In this study we describe the modeling framework employed and present the evaluation of the impact from the data assimilation of PM10 observations on the forecast of the WRF-CHEM model. Integrations of the WRF-CHEM model in data assimilation enabled/disabled configurations allowed the evaluation of satellite and ground data assimilation impact on the PM10 forecast performance for the Romanian territory. The model integration and evaluation were performed for two months, one in winter conditions (January 2013) and one in summer conditions (June 2013).

  20. Coupling of ground biosensor networks for water monitoring with satellite observations in assessing Leptospirosis

    Science.gov (United States)

    Skouloudis, A. N.; Rickerby, D. G.

    2012-12-01

    mapping is reliant on the identification of location where such networks could be of use. Systematic monitoring from satellite images are utilized for increasing the potential areas of application, for assessing the geographical representativeness on the measurements of the sensors and proposing the methodology on assessing the environmental conditions that are associated with outbreaks of leptospirosis. Unfortunately, several combined deployments of earth observations with ground sensors are required before for the understanding of the connections between hydrology and the human health. Ultimately this will lead to the establishment of early warning system that might investigate the effectiveness of key control measures, including vaccine (when they will become available) and affront the water decontamination, and animal control issues.

  1. Observations of basin ground motions from a dense seismic array in San Jose, California

    Science.gov (United States)

    Frankel, A.; Carver, D.; Cranswick, E.; Bice, T.; Sell, R.; Hanson, S.

    2001-01-01

    We installed a dense array of 41 digital seismographs in San Jose, California, to evaluate in detail the effects of a deep sedimentary basin and shallow sedimentary deposits on earthquake ground motions. This urban array is located near the eastern edge of the Santa Clara Valley and spans the Evergreen sedimentary basin identified by gravity data. Average station spacing is 1 km, with three stations initially spaced 110 m apart. Despite the high-noise urban environment, the stations of the array successfully triggered on and recorded small local earthquakes (M 2.5-2.8 at 10-25 km distance) and larger regional events such as the M 5.0 Bolinas earthquake (90 km distance), M 4.6-5.6 earthquakes near Mammoth Lakes (270 km distance), M 4.9-5.6 events in western Nevada (420 km distance) and the M 7.1 Hector Mine earthquake (590 km distance). Maps of spectral ratios across the array show that the highest amplitudes in all frequency bands studied (0.125-8 Hz) are generally observed at stations farther from the eastern edge of the Santa Clara Valley. Larger spectral amplitudes are often observed above the western edge of the Evergreen Basin. Snapshots of the recorded wavefield crossing the array for regional events to the east reveal that large, low-frequency (0.125-0.5 Hz) arrivals after the S-wave travel from south to north across the array. A moving-window, cross-correlation analysis finds that these later arrivals are surface waves traveling from the south. The timing and propagation direction of these arrivals indicates that they were likely produced by scattering of incident S waves at the border of the Santa Clara Valley to the south of the array. It is remarkable that the largest low-frequency phases at many of the valley sites for regional events to the east are basin surface waves coming from a direction about 70 degrees different from that of the epicenters. Basin surface waves emanating from the eastern edge of the valley are also identified by the cross

  2. Satellite and Ground Based Thermal Observation of the 2014 Effusive Eruption at Stromboli Volcano

    Directory of Open Access Journals (Sweden)

    Klemen Zakšek

    2015-12-01

    Full Text Available As specifically designed platforms are still unavailable at this point in time, lava flows are usually monitored remotely with the use of meteorological satellites. Generally, meteorological satellites have a low spatial resolution, which leads to uncertain results. This paper presents the first long term satellite monitoring of active lava flows on Stromboli volcano (August–November 2014 at high spatial resolution (160 m and relatively high temporal resolution (~3 days. These data were retrieved by the small satellite Technology Experiment Carrier-1 (TET-1, which was developed and built by the German Aerospace Center (DLR. The satellite instrument is dedicated to high temperature event monitoring. The satellite observations were accompanied by field observations conducted by thermal cameras. These provided short time lava flow dynamics and validation for satellite data. TET-1 retrieved 27 datasets over Stromboli during its effusive activity. Using the radiant density approach, TET-1 data were used to calibrate the MODVOLC data and estimate the time averaged lava discharge rate. With a mean output rate of 0.87 m3/s during the three-month-long eruption, we estimate the total erupted volume to be 7.4 × 106 m3.

  3. Ground motion observations of the South Napa earthquake (M6.0 August 24, 2014)

    Science.gov (United States)

    Baltay, A.

    2014-12-01

    The South Napa earthquake generated peak ground motions in excess of 50%g and 50 cm/s in Napa Valley and also along strike to the south, and was recorded at 17 stations within 20 km rupture distance (Rrup) of the finite fault plane, 115 stations within 50 km, and 246 within 100 km. We compare the densely recorded ground motions to existing ground motion prediction equations (GMPEs) to understand both the spatial distribution of ground-motion amplitudes and also the relative excitation and attenuation terms from the earthquake. Using the ground-motion data as reported by ShakeMap, we examine the peak ground acceleration (PGA) and velocity, as well as the pseudo-spectral acceleration (PSA) at 0.3, 1.0 and 3.0 seconds, adjusted empirically to a single site condition of 760 m/s. Overall, the ground motions on the north-south components are larger than those on the east-west, consistent with both the generally north-south strike of the fault and the rupture directivity. At the higher frequencies (PGA and PSA of 0.3 s), the close data are very consistent with the GMPEs, implying a median stress drop near 5 MPa. For the longer period data, the GMPEs underpredict the data at close stations. At all frequencies, the distance attenuation seems to be stronger than the GMPEs would predict, which could either be a station coverage bias, given that most of the stations are to the south of the epicenter, or may indicate that the attenuation structure in the Napa and delta region is stronger than the average attenuation in California, on which the GMPEs were built. The spatial plot of the ground motion residuals is positive to the north, in both Napa and Sonoma Valley, consistent with both the directivity and basin effect. More interestingly, perhaps, is that there is strong ground motion to the south, as well, in the along-strike direction, particularly for PSA at 1.0s. These strongly positive residuals align along an older, Quaternary fault structure associated with the Franklin

  4. Observing Muostakh Island disappear: erosion of a ground-ice-rich coast in response to summer warming and sea ice reduction on the East Siberian shelf

    Directory of Open Access Journals (Sweden)

    F. Günther

    2013-08-01

    Full Text Available Observations of coastline retreat using contemporary very high resolution satellite and historical aerial imagery were compared to measurements of open water fractions and summer air temperatures. We analyzed seasonal and interannual variations of thawing-induced cliff top retreat (thermo-denudation and marine abrasion (thermo-abrasion on Muostakh Island in the southern central Laptev Sea. The island is composed of ground-ice-rich permafrost deposits of Ice Complex type that render it particularly susceptible to erosion along the coast, resulting in land loss. Based on topographic reference measurements during field campaigns, we generated digital elevation models using stereophotogrammetry, in order to block adjust and ortho-rectify aerial photographies from 1951 and GeoEye, QuickBird, WorldView-1, and WorldView-2 imagery from 2010 to 2012 for change detection. Coastline retreat for erosive segments ranged from −13 to −585 m and was −109 ± 81 m (–1.8 ± 1.3 m a−1 on average during the historical period. Current seasonal dynamics of cliff top retreat revealed rapid thermo-denudation rates of –10.2 ± 4.5 m a−1 in mid summer and –4.1 ± 2.0 m a−1 on average during the 2010–2012 observation period. Using sea ice concentration data from the Special Sensor Microwave Imager (SSM/I and air temperature time series from Tiksi, we calculated seasonal duration available for thermo-abrasion, expressed as open water days, and for thermo-denudation, based on thawing degree days. Geomorphometric analysis revealed that total ground ice content on Muostakh is made up of equal amounts of intrasedimentary and macro ground ice, while its vertical hourglass distribution provides favorable local preconditions for subsidence and the acceleration of coastal thermo-erosion under intensifying environmental forcings. Our results showed a~close relationship between mean summer air temperature and coastal thermo-erosion rates, in agreement with

  5. TEMPERATURE DEPENDANT BEHAVIOUR OBSERVED IN THE AFIP-6 IRRADIATION TEST

    Energy Technology Data Exchange (ETDEWEB)

    A. B. Robinson; D. M. Wachs; P. Medvedev; S.J. Miller; F. J. Rice; M. K. Meyer; D. M. Perez

    2012-03-01

    The AFIP-6 test assembly was irradiated for one cycle in the Advanced Test Reactor at Idaho National Laboratory. The experiment was designed to test two monolithic fuel plates at power and burn-ups which bounded the operating conditions of both ATR and HFIR driver fuel. Both plates contained a solid U-Mo fuel foil with a zirconium diffusion barrier between 6061-aluminum cladding plates bonded by hot isostatic pressing. The experiment was designed with an orifice to restrict the coolant flow in order to obtain prototypic coolant temperature conditions. While these coolant temperatures were obtained, the reduced flow resulted in a sufficiently low heat transfer coefficient that failure of the fuel plates occurred. The increased fuel temperature led to significant variations in the fission gas retention behaviour of the U-Mo fuel. These variations in performance are outlined herein.

  6. Reconciling anthropogenic climate change with observed temperature 1998-2008.

    Science.gov (United States)

    Kaufmann, Robert K; Kauppi, Heikki; Mann, Michael L; Stock, James H

    2011-07-19

    Given the widely noted increase in the warming effects of rising greenhouse gas concentrations, it has been unclear why global surface temperatures did not rise between 1998 and 2008. We find that this hiatus in warming coincides with a period of little increase in the sum of anthropogenic and natural forcings. Declining solar insolation as part of a normal eleven-year cycle, and a cyclical change from an El Nino to a La Nina dominate our measure of anthropogenic effects because rapid growth in short-lived sulfur emissions partially offsets rising greenhouse gas concentrations. As such, we find that recent global temperature records are consistent with the existing understanding of the relationship among global surface temperature, internal variability, and radiative forcing, which includes anthropogenic factors with well known warming and cooling effects.

  7. High spatio-temporal resolution observations of crater lake temperatures at Kawah Ijen volcano, East Java, Indonesia

    Science.gov (United States)

    Lewicki, Jennifer L.; Caudron, Corentin; van Hinsberg, Vincent J.; Hilley, George E.

    2016-08-01

    The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to date have not resolved how the lake's thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater lake apparent surface ("skin") temperatures at high spatial (˜32 cm) and temporal (every 2 min) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ˜21 to 33 °C. At two locations, apparent skin temperatures were ˜4 and 7 °C less than in situ lake temperature measurements at 1.5 and 5-m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as the evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.

  8. Low latitude electron temperature observed by the CHAMP satellite

    DEFF Research Database (Denmark)

    Stolle, Claudia; Truhlik, V.; Richards, P.;

    2012-01-01

    km, although this was not predicted by earlier models. The temperature peaks coincides with the density peaks and are increased during high solar flux. Even more extended possibilities in investigating the ionosphere/thermosphere system are expected from the ESA Swarm satellite constellation mission...

  9. Precipitation and microphysical processes observed by three polarimetric X-band radars and ground-based instrumentation during HOPE

    OpenAIRE

    Xie, Xinxin; Evaristo, Raquel; Simmer, Clemens; Handwerker, Jan; Trömel, Silke

    2016-01-01

    This study presents a first analysis of precipitation and related microphysical processes observed by three polarimetric X-band Doppler radars (BoXPol, JuXPol and KiXPol) in conjunction with a ground-based network of disdrometers, rain gauges and vertically pointing micro rain radars (MRRs) during the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) during April and May 2013 in Germany. While JuXPol...

  10. Numerical simulation of vertical ground-water flux of the Rio Grande from ground-water temperature profiles, central New Mexico

    Science.gov (United States)

    Bartolino, James R.; Niswonger, Richard G.

    1999-01-01

    An important gap in the understanding of the hydrology of the Middle Rio Grande Basin, central New Mexico, is the rate at which water from the Rio Grande recharges the Santa Fe Group aquifer system. Several methodologies-including use of the Glover-Balmer equation, flood pulses, and channel permeameters- have been applied to this problem in the Middle Rio Grande Basin. In the work presented here, ground-water temperature profiles and ground-water levels beneath the Rio Grande were measured and numerically simulated at four sites. The direction and rate of vertical ground-water flux between the river and underlying aquifer was simulated and the effective vertical hydraulic conductivity of the sediments underlying the river was estimated through model calibration. Seven sets of nested piezometers were installed during July and August 1996 at four sites along the Rio Grande in the Albuquerque area, though only four of the piezometer nests were simulated. In downstream order, these four sites are (1) the Bernalillo site, upstream from the New Mexico State Highway 44 bridge in Bernalillo (piezometer nest BRN02); (2) the Corrales site, upstream from the Rio Rancho sewage treatment plant in Rio Rancho (COR01); (3) the Paseo del Norte site, upstream from the Paseo del Norte bridge in Albuquerque (PDN01); and (4) the Rio Bravo site, upstream from the Rio Bravo bridge in Albuquerque (RBR01). All piezometers were completed in the inner-valley alluvium of the Santa Fe Group aquifer system. Ground-water levels and temperatures were measured in the four piezometer nests a total of seven times in the 24-month period from September 1996 through August 1998. The flux between the surface- and ground-water systems at each of the field sites was quantified by one-dimensional numerical simulation of the water and heat exchange in the subsurface using the heat and water transport model VS2DH. Model calibration was aided by the use of PEST, a model-independent computer program that uses

  11. OMI satellite observations of decadal changes in ground-level sulfur dioxide over North America

    Science.gov (United States)

    Kharol, Shailesh K.; McLinden, Chris A.; Sioris, Christopher E.; Shephard, Mark W.; Fioletov, Vitali; van Donkelaar, Aaron; Philip, Sajeev; Martin, Randall V.

    2017-05-01

    Sulfur dioxide (SO2) has a significant impact on the environment and human health. We estimated ground-level sulfur dioxide (SO2) concentrations from the Ozone Monitoring Instrument (OMI) using SO2 profiles from the Global Environmental Multi-scale - Modelling Air quality and CHemistry (GEM-MACH) model over North America for the period of 2005-2015. OMI-derived ground-level SO2 concentrations (r = 0. 61) and trends (r = 0. 74) correlated well with coincident in situ measurements from air quality networks over North America. We found a strong decreasing trend in coincidently sampled ground-level SO2 from OMI (-81 ± 19 %) and in situ measurements (-86 ± 13 %) over the eastern US for the period of 2005-2015, which reflects the implementation of stricter pollution control laws, including flue-gas desulfurization (FGD) devices in power plants. The spatially and temporally contiguous OMI-derived ground-level SO2 concentrations can be used to assess the impact of long-term exposure to SO2 on the health of humans and the environment.

  12. Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations

    NARCIS (Netherlands)

    Di Noia, A.; Hasekamp, O.P.; Harten, G. van; Rietjens, J.H.H.; Smit, J.M.; Snik, F.; Henzing, J.S.; Boer, J. de; Keller, C.U.; Volten, H.

    2015-01-01

    In this paper, the use of a neural network algorithm for the retrieval of the aerosol properties from ground-based spectropolarimetric measurements is discussed. The neural network is able to retrieve the aerosol properties with an accuracy that is almost comparable to that of an iterative retrieval

  13. Conjugate observations of a remarkable quasiperiodic event by the low-altitude DEMETER spacecraft and ground-based instruments

    Science.gov (United States)

    Němec, F.; Bezděková, B.; Manninen, J.; Parrot, M.; Santolík, O.; Hayosh, M.; Turunen, T.

    2016-09-01

    We present a detailed analysis of a long-lasting quasiperiodic (QP) event observed simultaneously by the low-altitude DEMETER spacecraft and on the ground by the instrumentation of the Sodankylä Geophysical Observatory, Finland. The event was observed on 26 February 2008. It lasted for several hours, and it was detected both in the Northern and Southern Hemispheres. The time intervals when the event was observed on board the satellite and/or on the ground provide us with an estimate of the event dimensions. When the event is detected simultaneously by the satellite and on the ground, the observed frequency-time structure is generally the same. However, the ratio of detected intensities varies significantly as a function of the spacecraft latitude, indicating the wave guiding along the plasmapause. Moreover, there is a delay as large as about 13 s between the times when individual QP elements are detected by the spacecraft and on the ground. This appears to be related to the azimuthal separation of the instruments, and it is highly relevant to the identification of a possible source mechanism. We suggest that it is due to an azimuthally propagating ULF wave which periodically modulates the azimuthally extended source region. Finally, we find that at the times when the intensity of the QP event suddenly increases, there is a distinct increase of the amplitude of Alfvénic ULF pulsations measured on the ground at high latitudes. This might indicate that the source region is located at L shells larger than about 7.1.

  14. Validation of five years (2003–2007 of SCIAMACHY CO total column measurements using ground-based spectrometer observations

    Directory of Open Access Journals (Sweden)

    A. M. Poberovskii

    2010-10-01

    Full Text Available This paper presents a validation study of SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY carbon monoxide (CO total column measurements from the Iterative Maximum Likelihood Method (IMLM algorithm using ground-based spectrometer observations from twenty surface stations for the five year time period of 2003–2007. Overall we find a good agreement between SCIAMACHY and ground-based observations for both mean values as well as seasonal variations. For high-latitude Northern Hemisphere stations absolute differences between SCIAMACHY and ground-based measurements are close to or fall within the SCIAMACHY CO 2σ precision of 0.2 × 1018 molecules/cm2 (∼10% indicating that SCIAMACHY can observe CO accurately at high Northern Hemisphere latitudes. For Northern Hemisphere mid-latitude stations the validation is complicated due to the vicinity of emission sources for almost all stations, leading to higher ground-based measurements compared to SCIAMACHY CO within its typical sampling area of 8° × 8°. Comparisons with Northern Hemisphere mountain stations are hampered by elevation effects. After accounting for these effects, the validation provides satisfactory results. At Southern Hemisphere mid- to high latitudes SCIAMACHY is systematically lower than the ground-based measurements for 2003 and 2004, but for 2005 and later years the differences between SCIAMACHY and ground-based measurements fall within the SCIAMACHY precision. The 2003–2004 bias is consistent with previously reported results although its origin remains under investigation. No other systematic spatial or temporal biases could be identified based on the validation presented in this paper. Validation results are robust with regard to the choices of the instrument-noise error filter, sampling area, and time averaging required for the validation of SCIAMACHY CO total column measurements. Finally, our results show that the spatial coverage of the ground

  15. Preliminary results on the comparison between satellite derived ground temperature and in-situ measurement of soil CO2 flux and soil temperature at Solfatara of Pozzuoli (Naples, Italy)

    Science.gov (United States)

    Cardellini, Carlo; Silvestri, Malvina; Chiodini, Giovanni; Fabrizia Buongiorno, Maria

    2014-05-01

    In this work we want to analyze the comparison between the ground temperature acquired with in-situ campaigns and the ground temperature obtained by processing remote sensing data with particular attention to ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) data. Moreover we have studied the possible correlation between the CO2 measurements and the ground temperature. Test site area has been the Solfatara volcano, situated to the west of Naples, Italy. The Solfatara crater has a persistent volcanic-hydrothermal activity as demonstrate by ground deformation, seismicity and variations of the chemical-physical characteristics of the fluids emitted from fumaroles. Solfatara crater is characterized by a large soil diffuse degassing structure (Solfatara DDS, abot 0.8 km2), from where a CO2 flux in the order of 1000-1500 t/d is released by the soil. Solfatara DDS is also characterized by anomalous soil temperature. The correspondence between high CO2 fluxes and soil temperature has been interpreted as the results of the condensation of CO2-rich steam, rising from the hydrothermal system, in the uppermost part of the soil (Chiodini et al., 2001; 2005). The energy dissipated daily by the degassing at Solfatara DDS is the main source of energy release in the entire Campi Flegrei caldera in the current period (Chiodini et al., 2001; 2005). Concerning the satellite data, to monitor the thermal state of volcanic areas it is necessary to use TIR sensors with high spatial resolution in order to obtain detailed information on the areas where there are significant changes. Thanks to ASTER thermal infrared (TIR, 5 bands, 90 m spatial resolution) regions of the electromagnetic spectrum we have obtained the temperature ground map on the volcano area. For this study we have considered the ASTER's night observations that show well defined episodes of increasing thermal emission of crater thanks to a more uniform background temperature. CO2 fluxes and soil

  16. Comparison of Ground- and Space-based Radar Observations with Disdrometer Measurements During the PECAN Field Campaign

    Science.gov (United States)

    Torres, A. D.; Rasmussen, K. L.; Bodine, D. J.; Dougherty, E.

    2015-12-01

    Plains Elevated Convection At Night (PECAN) was a large field campaign that studied nocturnal mesoscale convective systems (MCSs), convective initiation, bores, and low-level jets across the central plains in the United States. MCSs are responsible for over half of the warm-season precipitation across the central U.S. plains. The rainfall from deep convection of these systems over land have been observed to be underestimated by satellite radar rainfall-retrieval algorithms by as much as 40 percent. These algorithms have a strong dependence on the generally unmeasured rain drop-size distribution (DSD). During the campaign, our group measured rainfall DSDs, precipitation fall velocities, and total precipitation in the convective and stratiform regions of MCSs using Ott Parsivel optical laser disdrometers. The disdrometers were co-located with mobile pod units that measured temperature, wind, and relative humidity for quality control purposes. Data from the operational NEXRAD radar in LaCrosse, Wisconsin and space-based radar measurements from a Global Precipitation Measurement satellite overpass on July 13, 2015 were used for the analysis. The focus of this study is to compare DSD measurements from the disdrometers to radars in an effort to reduce errors in existing rainfall-retrieval algorithms. The error analysis consists of substituting measured DSDs into existing quantitative precipitation estimation techniques (e.g. Z-R relationships and dual-polarization rain estimates) and comparing these estimates to ground measurements of total precipitation. The results from this study will improve climatological estimates of total precipitation in continental convection that are used in hydrological studies, climate models, and other applications.

  17. The Venus ground-based image Active Archive: a database of amateur observations of Venus in ultraviolet and infrared light

    CERN Document Server

    Barentsen, Geert

    2013-01-01

    The Venus ground-based image Active Archive is an online database designed to collect ground-based images of Venus in such a way that they are optimally useful for science. The Archive was built to support ESA's Venus Amateur Observing Project, which utilises the capabilities of advanced amateur astronomers to collect filtered images of Venus in ultraviolet, visible and near-infrared light. These images complement the observations of the Venus Express spacecraft, which cannot continuously monitor the northern hemisphere of the planet due to its elliptical orbit with apocentre above the south pole. We present the first set of observations available in the Archive and assess the usability of the dataset for scientific purposes.

  18. Observed Effects of Vegetation Growth on Temperature in the Early Summer over the Northeast China Plain

    Directory of Open Access Journals (Sweden)

    Xiaxiang Li

    2017-05-01

    Full Text Available The effect of vegetation on temperature is an emerging topic in the climate science community. Existing studies have mostly examined the effects of vegetation on daytime temperature (Tmax, whereas this study investigates the effects on nighttime temperature (Tmin. Ground measurements from 53 sites across northeastern China (NEC from 1982 to 2006 show that early summer (June Tmax and Tmin increased at mean rates of approximately 0.61 °C/10 year and 0.67 °C/10 year, respectively. Over the same period, the satellite-based Normalized Difference Vegetation Index (NDVI decreased by approximately 0.10 (accounting for 18% of the climatological NDVI for 1982–1991. It is highlighted that a larger increase in Tmax (Tmin co-occurred spatially with a larger (smaller decrease in NDVI. Deriving from such spatial co-occurrences, we found that the spatial variability of changes in Tmax (i.e., ΔTmax is negatively correlated with the spatial variability of changes in NDVI (i.e., ΔNDVI, while the spatial variability of changes in Tmin (i.e., ΔTmin is positively correlated (r2 = 0.10; p < 0.05 with that of ΔNDVI. Similarly, we detected significant positive correlations between the spatial variability of ΔNDVI and the change in surface latent heat flux (r2 = 0.16; p < 0.01 and in surface air specific humidity (r2 = 0.28; p < 0.001. These findings on the spatial co-occurrences suggest that the vegetation growth intensifies the atmospheric water vapor through evapotranspiration, which enhances the atmospheric downward longwave radiation and strengthens the greenhouse warming effects at night. Thereby, the positive correlation between ΔNDVI and ΔTmin is better understood. These results indicate that vegetation growth may not only exert effects on daytime temperature but also exert warming effects on nighttime temperature by increasing atmospheric water vapor and thus intensifying the local greenhouse effect. This study presents new observation evidence of the

  19. Comparison of MTI and Ground Truth Sea Surface Temperatures at Nauru

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.

    2002-09-05

    This report evaluates MTI-derived surface water temperature near the tropical Pacific island of Nauru. The MTI sea-surface temperatures were determined by the Los Alamos National Laboratory based on the robust retrieval.

  20. Observations of Blazar S5 0716+714 With Ground Based Telescopes and the Spitzer Infrared Space Telescope

    Science.gov (United States)

    Adkins, Jeffery; Lacy, M.; Morton, A.; Travagli, T.; Mulaveesala, M.; Santiago, J.; Rapp, S.; Stefaniak, L.

    2006-12-01

    The Gamma-Ray Large Area Space Telescope (GLAST) to be launched in 2007 has a proposed observing list that includes AGNs and Polars bright enough to be observed optically by amateurs and students. This observing list is maintained by the Global Telescope Network (GTN). One of our targets, S5 0716+714, was observed with the Spitzer Space Telescope MIPS and IRAC instruments and also using ground based telescopes. Observations were made in seven infrared bands with Spitzer. Additional observations made from the ground by students, amateur astronomers, and college observatories in R,V, and I were nearly simultaneous with the Spitzer observations. This data were used to construct light curves over the course of the observation and the Spectral Energy Distribution (SED) of the target using all the sources. These data were compared to models of the dust emission from the torus, synchrotron emission from the radio core, and thermal emission from the accretion disk to determine the relative importance of the different emission mechanisms in this object as a function of wavelength. Results were compared to observations of 4C 29.45 made last year. This research was supported by the Spitzer Science Center, the National Optical Astronomy Observatory, and the California Department of Education's Specialized Secondary Program.

  1. First retrievals of methane isotopologues from FTIR ground-based observations

    Science.gov (United States)

    Bader, Whitney; Strong, Kimberly; Walker, Kaley; Buzan, Eric

    2017-04-01

    Whitney Bader has received funding from the European Union's Horizon2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement n˚ 704951, and from the University of Toronto through a Faculty of Arts & Science Postdoctoral Fellowship Award. References Bader, W., Bovy, B., Conway, S., Strong, K., Smale, D., Turner, A. J., Blumenstock, T., Boone, C., Coulon, A., Garcia, O., Griffith, D. W. T., Hase, F., Hausmann, P., Jones, N., Krummel, P., Murata, I., Morino, I., Nakajima, H., O'Doherty, S., Paton-Walsh, C., Robinson, J., Sandrin, R., Schneider, M., Servais, C., Sussmann, R. and Mahieu, E.: Ten years of atmospheric methane from ground-based NDACC FTIR observations, Atmos. Chem. Phys. Discuss., 1-31, doi:10.5194/acp-2016-699, 2016. Buzan, E. M., Beale, C. A., Boone, C. D. and Bernath, P. F.: Global stratospheric measurements of the isotopologues of methane from the Atmospheric Chemistry Experiment Fourier transform spectrometer, Atmos. Meas. Tech., 9(3), 1095-1111, doi:10.5194/amt-9-1095-2016, 2016. Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N. and Polvani, L. M.: Climate Change from 1850 to 2005 Simulated in CESM1(WACCM), J. Clim., 26(19), 7372-7391, doi:10.1175/JCLI-D-12-00558.1, 2013. Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P. F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L. R., Campargue, A., Chance, K., Cohen, E. A., Coudert, L. H., Devi, V. M., Drouin, B. J., Fayt, A., Flaud, J.-M., Gamache, R. R., Harrison, J. J., Hartmann, J.-M., Hill, C., Hodges, J. T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R. J., Li, G., Long, D. A., Lyulin, O. M., Mackie, C. J., Massie, S. T., Mikhailenko, S., Müller, H. S. P., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E. R., Richard, C., Smith, M. A. H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G. C., Tyuterev, V. G. and Wagner, G.: The HITRAN2012 molecular spectroscopic

  2. RISR Observations of High Ion Temperatures: A Case Study

    Science.gov (United States)

    Akbari, H.; Semeter, J. L.

    2015-12-01

    Incoherent scatter radars (ISRs) measure the frequency spectrum of the scattered signal from random thermal fluctuations in the ionospheric plasma. Once fitted to a theoretical model, the shape of the spectrum provides estimates to a number of plasma parameters including the ion temperature. The theoretical models of the frequency spectrum of the scattered signal have been often developed based on a set of assumptions on the state of the plasma. One of the most common assumptions is that the plasma is in thermal equilibrium consisting of electron and ion populations that can be described by Maxwellian distributions. Such an assumption, however, is commonly violated at high latitudes where the interactions between the ionosphere and the magnetosphere result in a very dynamic plasma environment. One example of such violations occurs on the edge of auroral arcs when the presence of strong electric fields (Joule heating and investigate the possible role of ISR misfitting (caused by deviation of the ion distribution from Maxwellian) in over estimating the ion temperature.

  3. Observations on the leader-return stroke of cloud-to-ground lightning with the broadband interferometer

    Institute of Scientific and Technical Information of China (English)

    董万胜; 刘欣生; 张义军; 张广庶

    2002-01-01

    Radio frequency observations of cloud-to-ground lightning (CG) were made in 1999 in Guangdong Province with the broadband lightning interferometer. In this paper, radiation source locations and electric field waveforms are analyzed for different types of breakdown events, including the preliminary breakdown of in-cloud activities, the stepped leaders of initial strokes to ground and activities during and following return strokes. It is shown that the structure and development of lightning discharges and associated breakdown processes can be reconstructed by using this new type of lightning radiation source location system. The detectable radiation of lightning was primarily produced by the negative breakdown process. The channel was concentrated with few branches during the preliminary breakdown stage of CG lightning flashes. The radiation sources appeared generally at the tip of the channel. During the late period of the stepped leader, the radiation sources were dispersed with branches extended away from the main channel. The radiation sources were in a certain length segment of the channel and the altitude of the segment descended along with the propagation of the leader to the ground. During the preliminary breakdown and the stepped leader of initial strokes to the ground, a sequence of fast negative streamers were observed to start continually from or farther away the lightning-initiated region and propagate along the developed leader channel, which may supply negative charge that assisted the leader's development. The progression speed of fast negative streamers was about ten times faster than the average speed of lightning channel.

  4. The Influence of Earth Temperature on the Dynamic Characteristics of Frozen Soil and the Parameters of Ground Motion on Sites of Permafrost

    Institute of Scientific and Technical Information of China (English)

    Wang Lanmin; Zhang Dongli; Wu Zhijian; Ma Wei; Li Xiaojun

    2004-01-01

    Earth temperature is one of the most important factors influencing the mechanical properties of frozen soil. Based on the field investigation of the characteristics of ground deformation and ground failure caused by the Ms8.1 earthquake in the west of the Kuniun Mountain Pass,China, the influence of temperature on the dynamic constitutive relationship, dynamic elastic modulus, damping ratio and dynamic strength of frozen soil was quantitatively studied by means of the dynamic triaxial test. Moreover, the characteristics of ground motion on a permafrost site under different temperatures were analyzed for the four profiles of permafrost along the Qinghai-Xizang (Tibet) Railway using the time histories of ground motion acceleration with 3 exceedance probabilities of the Kunlun Mountains area. The influences of temperature on the seismic displacement, velocity, acceleration and response spectrum on permafrost ground were studied quantitatively. A scientific basis was presented for earthquake disaster mitigation for engineering foundations, highways and underground engineering in permafrost areas.

  5. Comparison of Precipitation Observations from a Prototype Space-based Cloud Radar and Ground-based Radars

    Institute of Scientific and Technical Information of China (English)

    LIU Liping; ZHANG Zhiqiang; YU Danru; YANG Hu; ZHAO Chonghui; ZHONG Lingzhi

    2012-01-01

    A prototype space-based cloud radar has been developed and was installed on an airplane to observe a precipitation system over Tianjin,China in July 2010.Ground-based S-band and Ka-band radars were used to examine the observational capability of the prototype. A cross-comparison algorithm between different wavelengths,spatial resolutions and platform radars is presented.The reflectivity biases,correlation coefficients and standard deviations between the radars are analyzed.The equivalent reflectivity bias between the S- and Ka-band radars were simulated with a given raindrop size distribution.The results indicated that reflectivity bias between the S- and Ka-band radars due to scattering properties was less than 5 dB,and for weak precipitation the bias was negligible. The prototype space-based cloud radar was able to measure a reasonable vertical profile of reflectivity,but the reflectivity below an altitude of 1.5 km above ground level was obscured by ground clutter.The measured reflectivity by the prototype space-based cloud radar was approximately 10.9 dB stronger than that by the S-band Doppler radar (SA radar),and 13.7 dB stronger than that by the ground-based cloud radar.The reflectivity measured by the SA radar was 0.4 dB stronger than that by the ground-based cloud radar.This study could provide a method for the quantitative examination of the observation ability for space-based radars.

  6. Cross Calibration of TOMS, SBUV/2 and SCIAMACHY Radiances from Ground Observations

    Science.gov (United States)

    Hilsenrath, Ernest; Bhartia, P. K.; Bojkov, B.; Kowaleski, M.; Labow, G.; Ahmad, Z.

    2002-01-01

    We have shown that validation of radiances is a very effective means for correcting absolute accuracy and long term drifts of backscatter type satellite measurements. This method by-passes the algorithms used for both satellite and ground based measurements which are normally used to validate and correct the satellite data. A new method for satellite validation is planned which will compliment measurements from the existing ground-based networks. This method will employ very accurate comparisons between ground based zenith sky radiances and satellite nadir radiances. These comparisons will rely heavily on the experience derived from the Shuttle SBUV (SSBUV) program which provided a reference standard of radiance measurements for SBUV/2, TOMS, and GOME. This new measurement program, called 'Skyrad', employs two well established capabilities at the Goddard Space Flight Center, 1) the SSBUV calibration facilities and 2) the radiative transfer codes used for the TOMS and SBUV/2 algorithms and their subsequent refinements. Radiative transfer calculations show that ground based zenith sky and satellite nadir backscatter ultraviolet comparisons can be made very accurately under certain viewing conditions. The Skyrad instruments (SSBUV, Brewer spectrophotometers, and possibly others) will be calibrated and maintained to a precision of a few tenths of a percent. Skyrad data will then enable long term calibration of upcoming satellite instruments such as QuickTOMS, SBUV/2s and SCIAMACHY with a high degree of precision. This technique can be further employed to monitor the performance of future instruments such as GOMEZ, OMI, and OMPS. Additional information is included in the original extended abstract.

  7. Validation of Atmosphere/Ionosphere Signals Associated with Major Earthquakes by Multi-Instrument Space-Borne and Ground Observations

    Science.gov (United States)

    Ouzounov, Dimitar; Pulinets, Sergey; Hattori, Katsumi; Parrot, Michel; Liu, J. Y.; Yang, T. F.; Arellano-Baeza, Alonso; Kafatos, M.; Taylor, Patrick

    2012-01-01

    The latest catastrophic earthquake in Japan (March 2011) has renewed interest in the important question of the existence of pre-earthquake anomalous signals related to strong earthquakes. Recent studies have shown that there were precursory atmospheric/ionospheric signals observed in space associated with major earthquakes. The critical question, still widely debated in the scientific community, is whether such ionospheric/atmospheric signals systematically precede large earthquakes. To address this problem we have started to investigate anomalous ionospheric / atmospheric signals occurring prior to large earthquakes. We are studying the Earth's atmospheric electromagnetic environment by developing a multisensor model for monitoring the signals related to active tectonic faulting and earthquake processes. The integrated satellite and terrestrial framework (ISTF) is our method for validation and is based on a joint analysis of several physical and environmental parameters (thermal infrared radiation, electron concentration in the ionosphere, lineament analysis, radon/ion activities, air temperature and seismicity) that were found to be associated with earthquakes. A physical link between these parameters and earthquake processes has been provided by the recent version of Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model. Our experimental measurements have supported the new theoretical estimates of LAIC hypothesis for an increase in the surface latent heat flux, integrated variability of outgoing long wave radiation (OLR) and anomalous variations of the total electron content (TEC) registered over the epicenters. Some of the major earthquakes are accompanied by an intensification of gas migration to the surface, thermodynamic and hydrodynamic processes of transformation of latent heat into thermal energy and with vertical transport of charged aerosols in the lower atmosphere. These processes lead to the generation of external electric currents in specific

  8. Evidence of transverse magnetospheric field line oscillations as observed from Cluster and ground magnetometers

    Directory of Open Access Journals (Sweden)

    A. K. Sinha

    2005-03-01

    Full Text Available The dynamic spectrum of ULF waves from magnetic field data obtained by the elliptically orbiting Cluster satellites (with an apogee of 119000km, perigee of 19000km and the orbital period of 57h have been prepared in the frequency range 0 to 120mHz when the satellite was near its perigee. The existence of field line oscillations, with increasing frequency in the inbound sector and decreasing frequency in the outbound sector, is seen in the transverse components, indicating the presence of independently oscillating local magnetic flux tubes in the form of transverse standing Alfvén waves. The results show that toroidal and poloidal modes are excited simultaneously. The analysis of simultaneous ground magnetometer data at the footprint of the satellite suggests that these modes are also excited due to coupling to magnetospheric waveguide modes. The clear signature of a resonant fundamental mode is seen in the ground data whereas Cluster detects a harmonic of this frequency. Lower frequency modes indicative of waveguide oscillations are seen in both the ground data and the compressional field at Cluster.

  9. Ground-Based Centimeter, Millimeter, and Submillimeter Observations of Recent Comets

    Science.gov (United States)

    Milam, S. N.; Chuang, Y.-L.; Charnley, S. B.; Kuan, Y. -J.; Villanueva, G. L.; Coulson, I. M.; Remijan. A. R.

    2012-01-01

    Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth [I]. Comets are comprised of molecular ices, that may be pristine interstellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula [2]. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection [3]. In the classical picture, the long-period comets probably formed in the nebular disk across the giant planet formation region (5-40 AU) with the majority of them originating from the Uranus-Neptune region. They were subsequently scattered out to the Oort Cloud (OC) by Jupiter. The short-period comets (also known as ecliptic or Jupiter Family Comets - JFC) reside mainly in the Edgeworth-Kuiper belt where they were formed. Given the gradient in physical conditions expected across this region of the nebula, chemical diversity in this comet population is to be expected [4,5]. We have conducted observations of comets I 03P/Hartley 2 (JFC) and C/2009 PI (Garradd) (OC), at primarily millimeter and submillimeter wavelengths, to determine important cosmogonic quantities, such as the ortho:para ratio and isotope ratios, as well as probe the origin of cometary organics and if they vary between the two dynamic reservoirs.

  10. Soil temperatures and stability of ice-cemented ground in the McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    McKay, C; Mellon, M T; Friedmann, E I

    1998-03-01

    Year-round temperature measurements at 1600 m elevation during 1994 in the Asgard Range Antarctica, indicate that the mean annual frost point of the ice-cemented ground, 25 cm below the surface, is -21.7 +/- 0.2 degrees C and the mean annual frost point of the atmosphere is -27.5 +/- 1.0 degrees C. The corresponding mean annual temperatures are -24.9 degrees C and -23.3 degrees C. These results imply that there is a net flux of water vapour from the ice to the atmosphere resulting in a recession of the ice-cemented ground by about 0.4-0.6 mm yr-1. The level of the ice-cemented permafrost is about 12 cm below the level of dry permafrost. The summer air temperatures would have to increase about 7 degrees C for thawing temperatures to just reach the top of the subsurface ice. Either subsurface ice at this location is evaporating over time or there are sporadic processes that recharge the ice and maintain equilibrium over long timescales.

  11. Comprehensive study of ULF upstream waves observed in the topside ionosphere by CHAMP and on the ground

    Directory of Open Access Journals (Sweden)

    B. Heilig

    2007-03-01

    Full Text Available Based on magnetic field measurements from the satellite CHAMP, a detailed picture could be obtained of the upstream wave (UW distribution in the topside ionosphere. The low, near-polar orbit of CHAMP, covering all local times, allows the global distribution of this type of pulsation to be revealed. The observations from space are compared to recordings of the ground-based MM100 meridional array covering the latitude range 66° to 42° in magnetic coordinates. UWs show up very clearly in the compressional component of the satellite magnetic field data, whereas on the ground, their signature is found in the H component, but it is mixed with oscillations from field line resonant pulsations. Here we first introduce a procedure for an automated detection of UW signatures, both in ground and space data. Then a statistical analysis is presented of UW pulsations recorded during a 132-day period, centred on the autumn 2001 equinox. Observations in the top-side ionosphere reveal a clear latitudinal distribution of the amplitudes. Largest signals are observed at the equator. Minima show up at about 40° latitude. The coherence between ground and satellite wave signatures is high over wide latitude and longitude ranges. We make suggestions about the entry mechanism of UWs from the foreshock region into the magnetosphere. The clear UW signature in satellite recordings between −60° and 60° latitude allows for detailed investigations of the dependence on solar wind conditions. We test the control of solar wind speed, interplanetary magnetic field strength and cone angle on UWs. For the first time, it is possible to derive details of the Doppler-shift effect by modifying the UW frequency from direct observations. The results reconcile foreshock wave generation predictions with near-Earth observations.

  12. Influence of Component Temperature Derivation from Dual Angle Thermal Infrared Observations on TSEB Flux Estimates Over an Irrigated Vineyard

    Directory of Open Access Journals (Sweden)

    Andreu Ana

    2015-12-01

    Full Text Available A two-source model for deriving surface energy fluxes and their soil and canopy components was evaluated using multi-angle airborne observations. In the original formulation (TSEB1, a single temperature observation, Priestley-Taylor parameterization and the vegetation fraction are used to derive the component fluxes. When temperature observations are made from different angles, soil and canopy temperatures can be extracted directly. Two dual angle model versions are compared versus TSEB1: one incorporating the Priestley-Taylor parameterization (TSEB2I and one using the component temperatures directly (TSEB2D, for which data from airborne campaigns over an agricultural area in Spain are used. Validation of TSEB1 versus ground measurements showed RMSD values of 28 and 10 Wm-2 for sensible and latent heat fluxes, respectively. Reasonable agreement between TSEB1 and TSEB2I was found, but a rather low correlation between TSEB1 and TSEB2D was observed. The TSEB2D estimates appear to be more realistic under the given conditions.

  13. Correlation between Change Rates of GRACE-derived Density and Ground-measured Temperature in Tibetan Plateau, 2004-2008

    Science.gov (United States)

    Zhang, K.; Ma, J.

    2011-12-01

    The amount of mountain glaciers on the Tibetan plateau accounts for 81.6% of the total glacial volume in China, and thus they become origination of Asia's seven major rivers including the Yangtze River, Yellow River, Ganges River, Indus River, Yarlung Zangbo River, and Nujiang River. Unfortunately, with the climate warming since the 20th century, most glaciers are retreating at a rate of 7.0 percent annually. The fast rate of glacier melt has meant more water runoff from the plateau which might exacerbate soil erosion, trigger drought and lead to sandstorms and desertification in the downstream regions. Thus, quantitive estimation and understanding of these glaciers' mass balance will be helpful to long-term sustainability of agriculture and hazard mitigation and give insights into climate change. As the primary factor for the glacier ice melting, the rising temperature should be correlated with the losing ice mass in the Tibetan plateau. However, quantification of glacier mass losses has been challenged, limited by temporarily and spatially sparse measurements using conventional data types and also due to the significant variations in glaciers' melting rates from region to region, and among glaciers in the same region. Nevertheless, the particular sensitivity of mountain glaciers to climate change makes it possible to estimate their mass change rates using GRACE even though the limited resolution. GRACE observations in southeastern Alaska, Patagonia and Tibet provided independent supports for the ability of glaciers' ice loss rates there (e.g., Matsuo and Heki, 2010). Here we expected to examine the correlation between Temperature Change Rates (TCRs) and Mass Change Rates (MCRs) and thus we computed the monthly density change and obtained the yearly Density Change Rates (DCRs) in Tibetan plateau of latitudes from 27N to 38N and longitudes ranging from 75E to 103E, and compared TCRs of ground-measured temperatures at 52 stations higher than 3000m with GRACE

  14. C-H complex in Si observed at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, L.; Lavrov, E.V.; Bech Nielsen, B. [Aarhus Univ. (Denmark). Inst. for Fysik og Astronomi

    1999-02-12

    Local vibrational modes of a carbon-hydrogen complex have been identified with infrared absorption spectroscopy. After implantation of protons or deuterons at {approx}20 K a carbon mode at 596 cm{sup -1} and a hydrogen mode at 1884 cm{sup -1} are observed in the sample annealed at 180 K. The two modes originate from the same defect, which is tentatively identified as bond centred hydrogen in the vicinity of a nearby substitutional carbon atom. (orig.) 10 refs.

  15. Development of geothermal field following the 2000 eruption of Usu volcano as revealed by ground temperature, resistivity and self-potential variations

    Directory of Open Access Journals (Sweden)

    T. Mogi

    2007-06-01

    Full Text Available The 2000 eruption of Usu volcano, NE Japan, took place on the foot of the somma, and formed a cryptodome of 65 m high accompanying numerous faults. We made repeated measurements of ground temperature, Self-Potential (SP and electrical resistivity, in order to clarify the mechanism of development of the newly formed geothermal field on the fault zone. Prior to the expansion of the geothermal field, we detected a resistive zone at the center of the geothermal zone and it supposed to evidence that the zone involving dry steam phase had been formed beneath the fault zone. A rapid expansion of the geothermal field followed along the fault zone away from the craters. The place of maximum amplitude of the SP field also migrated following the expansion of the high ground temperature zone. The high resistive part has shrunk as a consequence of the progress of condensation to warm the surroundings. Based on the observations, we delineated the process of the hydrothermal circulation. Considering the topographic effect of the SP field observed on the highly permeable zone in the Usu somma, the potential flow along the slope of the soma was expected to play an important role to promote the rapid expansion of the geothermal field and the migration of the most active part.

  16. Comprehensive observation and modeling of earthquake and temperature-related seismic velocity changes in northern Chile with passive image interferometry

    Science.gov (United States)

    Richter, Tom; Sens-Schönfelder, Christoph; Kind, Rainer; Asch, Günter

    2014-06-01

    We report on earthquake and temperature-related velocity changes in high-frequency autocorrelations of ambient noise data from seismic stations of the Integrated Plate Boundary Observatory Chile project in northern Chile. Daily autocorrelation functions are analyzed over a period of 5 years with passive image interferometry. A short-term velocity drop recovering after several days to weeks is observed for the Mw 7.7 Tocopilla earthquake at most stations. At the two stations PB05 and PATCX, we observe a long-term velocity decrease recovering over the course of around 2 years. While station PB05 is located in the rupture area of the Tocopilla earthquake, this is not the case for station PATCX. Station PATCX is situated in an area influenced by salt sediment in the vicinity of Salar Grande and presents a superior sensitivity to ground acceleration and periodic surface-induced changes. Due to this high sensitivity, we observe a velocity response of several regional earthquakes at PATCX, and we can show for the first time a linear relationship between the amplitude of velocity drops and peak ground acceleration for data from a single station. This relationship does not hold true when comparing different stations due to the different sensitivity of the station environments. Furthermore, we observe periodic annual velocity changes at PATCX. Analyzing data at a temporal resolution below 1 day, we are able to identify changes with a period of 24 h, too. The characteristics of the seismic velocity with annual and daily periods indicate an atmospheric origin of the velocity changes that we confirm with a model based on thermally induced stress. This comprehensive model explains the lag time dependence of the temperature-related seismic velocity changes involving the distribution of temperature fluctuations, the relationship between temperature, stress and velocity change, plus autocorrelation sensitivity kernels.

  17. 16 year climatology of cirrus clouds over a tropical station in southern India using ground and space-based lidar observations

    Directory of Open Access Journals (Sweden)

    A. K. Pandit

    2015-06-01

    Full Text Available 16 year (1998–2013 climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness and optical properties (cloud optical thickness observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E, India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from seven and half years (June 2006–December 2013 of Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and difference in sampling frequencies. Nearly 50–55% of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect more number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between −50 to −70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. Also, the fraction of sub-visible cirrus cloud is found to be increasing during the last sixteen years (1998 to 2013 which has implications to the temperature and water vapour budget in the tropical tropopause layer.

  18. Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to very Low Enthalpy Geothermal Energy Systems

    Directory of Open Access Journals (Sweden)

    José Manuel Andújar Márquez

    2016-02-01

    Full Text Available This paper presents a methodology and instrumentation system for the indirect measurement of the thermal diffusivity of a soil at a given depth from measuring its temperature at that depth. The development has been carried out considering its application to the design and sizing of very low enthalpy geothermal energy (VLEGE systems, but it can has many other applications, for example in construction, agriculture or biology. The methodology is simple and inexpensive because it can take advantage of the prescriptive geotechnical drilling prior to the construction of a house or building, to take at the same time temperature measurements that will allow get the actual temperature and ground thermal diffusivity to the depth of interest. The methodology and developed system have been tested and used in the design of a VLEGE facility for a chalet with basement at the outskirts of Huelva (a city in the southwest of Spain. Experimental results validate the proposed approach.

  19. Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to very Low Enthalpy Geothermal Energy Systems.

    Science.gov (United States)

    Andújar Márquez, José Manuel; Martínez Bohórquez, Miguel Ángel; Gómez Melgar, Sergio

    2016-02-29

    This paper presents a methodology and instrumentation system for the indirect measurement of the thermal diffusivity of a soil at a given depth from measuring its temperature at that depth. The development has been carried out considering its application to the design and sizing of very low enthalpy geothermal energy (VLEGE) systems, but it can has many other applications, for example in construction, agriculture or biology. The methodology is simple and inexpensive because it can take advantage of the prescriptive geotechnical drilling prior to the construction of a house or building, to take at the same time temperature measurements that will allow get the actual temperature and ground thermal diffusivity to the depth of interest. The methodology and developed system have been tested and used in the design of a VLEGE facility for a chalet with basement at the outskirts of Huelva (a city in the southwest of Spain). Experimental results validate the proposed approach.

  20. Precipitation and microphysical processes observed by three polarimetric X-band radars and ground-based instrumentation during HOPE

    Science.gov (United States)

    Xie, Xinxin; Evaristo, Raquel; Simmer, Clemens; Handwerker, Jan; Trömel, Silke

    2016-06-01

    This study presents a first analysis of precipitation and related microphysical processes observed by three polarimetric X-band Doppler radars (BoXPol, JuXPol and KiXPol) in conjunction with a ground-based network of disdrometers, rain gauges and vertically pointing micro rain radars (MRRs) during the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) during April and May 2013 in Germany. While JuXPol and KiXPol were continuously observing the central HOPE area near Forschungszentrum Jülich at a close distance, BoXPol observed the area from a distance of about 48.5 km. MRRs were deployed in the central HOPE area and one MRR close to BoXPol in Bonn, Germany. Seven disdrometers and three rain gauges providing point precipitation observations were deployed at five locations within a 5 km × 5 km region, while three other disdrometers were collocated with the MRR in Bonn. The daily rainfall accumulation at each rain gauge/disdrometer location estimated from the three X-band polarimetric radar observations showed very good agreement. Accompanying microphysical processes during the evolution of precipitation systems were well captured by the polarimetric X-band radars and corroborated by independent observations from the other ground-based instruments.

  1. High-stability temperature control for ST-7/LISA Pathfinder gravitational reference sensor ground verification testing

    Science.gov (United States)

    Higuchi, S.; Allen, G.; Bencze, W.; Byer, R.; Dang, A.; DeBra, D. B.; Lauben, D.; Dorlybounxou, S.; Hanson, J.; Ho, L.; Huffman, G.; Sabur, F.; Sun, K.; Tavernetti, R.; Rolih, L.; Van Patten, R.; Wallace, J.; Williams, S.

    2006-03-01

    This article demonstrates experimental results of a thermal control system developed for ST-7 gravitational reference sensor (GRS) ground verification testing which provides thermal stability δT control of the LISA spacecraft to compensate solar irradiate 1/f fluctuations. Although for ground testing these specifications can be met fairly readily with sufficient insulation and thermal mass, in contrast, for spacecraft the very limited thermal mass calls for an active control system which can simultaneously meet disturbance rejection and stability requirements in the presence of long time delay; a considerable design challenge. Simple control laws presently provide ~ 1mK/surdHz for >24 hours. Continuing development of a model predictive feedforward control algorithm will extend performance to <1 mK/surdHz at f < 0.01 mHz and possibly lower, extending LISA coverage of super massive black hole mergers.

  2. Cloud Structure of Galactic OB Cluster-forming Regions from Combining Ground- and Space-based Bolometric Observations

    Science.gov (United States)

    Lin, Yuxin; Liu, Hauyu Baobab; Li, Di; Zhang, Zhi-Yu; Ginsburg, Adam; Pineda, Jaime E.; Qian, Lei; Galván-Madrid, Roberto; McLeod, Anna Faye; Rosolowsky, Erik; Dale, James E.; Immer, Katharina; Koch, Eric; Longmore, Steve; Walker, Daniel; Testi, Leonardo

    2016-09-01

    We have developed an iterative procedure to systematically combine the millimeter and submillimeter images of OB cluster-forming molecular clouds, which were taken by ground-based (CSO, JCMT, APEX, and IRAM-30 m) and space telescopes (Herschel and Planck). For the seven luminous (L\\gt {10}6 L ⊙) Galactic OB cluster-forming molecular clouds selected for our analyses, namely W49A, W43-Main, W43-South, W33, G10.6-0.4, G10.2-0.3, and G10.3-0.1, we have performed single-component, modified blackbody fits to each pixel of the combined (sub)millimeter images, and the Herschel PACS and SPIRE images at shorter wavelengths. The ˜10″ resolution dust column density and temperature maps of these sources revealed dramatically different morphologies, indicating very different modes of OB cluster-formation, or parent molecular cloud structures in different evolutionary stages. The molecular clouds W49A, W33, and G10.6-0.4 show centrally concentrated massive molecular clumps that are connected with approximately radially orientated molecular gas filaments. The W43-Main and W43-South molecular cloud complexes, which are located at the intersection of the Galactic near 3 kpc (or Scutum) arm and the Galactic bar, show a widely scattered distribution of dense molecular clumps/cores over the observed ˜10 pc spatial scale. The relatively evolved sources G10.2-0.3 and G10.3-0.1 appear to be affected by stellar feedback, and show a complicated cloud morphology embedded with abundant dense molecular clumps/cores. We find that with the high angular resolution we achieved, our visual classification of cloud morphology can be linked to the systematically derived statistical quantities (i.e., the enclosed mass profile, the column density probability distribution function (N-PDF), the two-point correlation function of column density, and the probability distribution function of clump/core separations). In particular, the massive molecular gas clumps located at the center of G10.6-0.4 and

  3. Observations of coupled seismicity and ground deformation at El Hierro Island (2011-2014)

    Science.gov (United States)

    Gonzalez, P. J.

    2015-12-01

    New insights into the magma storage and evolution at oceanic island volcanoes are now being achieved using remotely sensed space geodetic techniques, namely satellite radar interferometry. Differential radar interferometry is a technique tracking, at high spatial resolution, changes in the travel-time (distance) from the satellites to the ground surface, having wide applications in Earth sciences. Volcanic activity usually is accompanied by surface ground deformation. In many instances, modelling of surface deformation has the great advantage to estimate the magma volume change, a particularly interesting parameter prior to eruptions. Jointly interpreted with petrology, degassing and seismicity, it helps to understand the crustal magmatic systems as a whole. Current (and near-future) radar satellite missions will reduce the revisit time over global sub-aerial volcanoes to a sub-weekly basis, which will increase the potential for its operational use. Time series and filtering processing techniques of such streaming data would allow to track subsurface magma migration with high precision, and frequently update over vast areas (volcanic arcs, large caldera systems, etc.). As an example for the future potential monitoring scenario, we analyze multiple satellite radar data over El Hierro Island (Canary Islands, Spain) to measure and model surface ground deformation. El Hierro has been active for more than 3 years (2011 to 2014). Initial phases of the unrest culminated in a submarine eruption (late 2011 - early 2012). However, after the submarine eruption ended, its magmatic system still active and affected by pseudo-regular energetic seismic swarms, accompanied by surface deformation without resumed eruptions. Such example is a great opportunity to understand the crustal magmatic systems in low magma supply-rate oceanic island volcanoes. This new approach to measure surface deformation processes is yielding an ever richer level of information from volcanology to

  4. Ground-based and spaceborn observations of the type II burst with developed fine structure

    Science.gov (United States)

    Dorovskyy, V.; Melnik, V.; Konovalenko, A.; Brazhenko, A.; Rucker, H.; Stanislavskyy, A.; Panchenko, M.

    2012-09-01

    The combination of two huge ground-based radio telescopes (UTR-2 and URAN-2) operated in decameter wavelengths with three spatially separated spacecrafts (SOHO, STEREO-A and STEREO-B) equipped with white light coronagraphs, UV telescopes and decameter-hectometer band radio telescopes created a unique opportunity to investigate the high energy solar transients, such as CMEs and their manifestations in radio bands - type II bursts. In this paper we made detailed analysis of the powerful and complex event occurred on 7 June 2011 consisted of Halo-CME and type II burst with rich fine structure.

  5. Interplanetary Charged Dust Magnetic Clouds Striking the Magnetosphere: Coordinated Space-based and Ground-based Observations

    Science.gov (United States)

    Russell, C. T.; Chi, Peter; Lai, Hairong

    In general, asteroids, meteoroids and dust do not interact with the plasma structures in the solar system, but after a collision between fast moving bodies the debris cloud contains nanoscale dust particles that are charged and behave like heavy ions. Dusty magnetic clouds are then accelerated to the solar wind speed. While they pose no threat to spacecraft because of the particle size, the coherency imposed by the magnetization of the cloud allows the cloud to interact with the Earth’s magnetosphere as well as the plasma in the immediate vicinity of the cloud. We call these clouds Interplanetary Field Enhancements (IFEs). These IFEs are a unique class of interplanetary field structures that feature cusp-shaped increases and decreases in the interplanetary magnetic field and a thin current sheet. The occurrence of IFEs is attributed to the interaction between the solar wind and dust particles produced in inter-bolide collisions. Previous spacecraft observations have confirmed that IFEs move with the solar wind. When IFEs strike the magnetosphere, they may distort the magnetosphere in several possible ways, such as producing a small indentation, a large scale compression, or a glancing blow. In any event if the IFE is slowed by the magnetosphere, the compression of the Earth’s field should be seen in the ground-based magnetic records that are continuously recorded. Thus it is important to understand the magnetospheric response to IFE arrival. In this study, we investigate the IFE structure observed by spacecraft upstream of the magnetosphere and the induced magnetic field perturbations observed by networks of ground magnetometers, including the THEMIS, CARISMA, McMAC arrays in North America and the IMAGE array in Europe. We find that, in a well-observed IFE event on December 24, 2006, all ground magnetometer stations observed an impulse at approximately 1217 UT when the IFE was expected to arrive at the Earth’s magnetopause. These ground stations spread across

  6. Ambient temperature during torpor affects NREM sleep EEG during arousal episodes in hibernating European ground squirrels

    NARCIS (Netherlands)

    Strijkstra, AM; Daan, S

    1997-01-01

    Ambient temperature (T-a) systematically affects the frequency of arousal episodes in mammalian hibernation. This variation might hypothetically be attributed to temperature effects on the rate of sleep debt increase in torpor. We studied this rate by recording sleep electroencephalogram (EEG) in

  7. Characterisation of Seasonal Temperature Variation in a Shallow, Urban Aquifer: Implications for the Sustainable Development of Ground Source Heating Systems

    Science.gov (United States)

    Patton, Ashley M.; Farr, Gareth J.; Boon, David P.; James, David R.

    2017-04-01

    Groundwater thermally enhanced by the Urban Heat Island effect can be utilised by ground source heating systems (GSHSs). However, the near subsurface is subject to seasonal temperature variation reflected in shallow groundwater that can differ by several degrees throughout the year. To sustainably manage the near surface thermal resource an understanding of factors which control variation in groundwater temperature and how these are transmitted through the aquifer is needed. We show that even in relatively small urban areas (Cardiff, U.K., situated on a shallow gravel aquifer) the Zone of Seasonal Fluctuation (ZSF) can vary in depth by 8m. GSHSs are more efficient if they are sited below the ZSF, where temperatures are more stable. In Spring 2014, 48 groundwater monitoring boreholes were profiled at a 1m resolution to measure groundwater temperature across Cardiff. These were reprofiled that Autumn and compared to the Spring temperatures, defining the ZSF. The average depth to the base of the ZSF was 9.5mbgl but ranged from 7.1-15.5mbgl. The amplitude of the differences between Spring and Autumn temperatures also varied. To better understand the high spatial variability 60 boreholes were instrumented with in situ temperature loggers, recording at half-hourly intervals. The first year's data revealed the amplitudes of temperature variation within boreholes with loggers at similar depths were not always consistent. It was also noted that lag times between air temperature and groundwater temperature were not uniform across the sites. The data also showed that where gravels occurred at shallower depths the ZSF tended to be shallower and lag times shorter. The wide spatial variability of the ZSF may be partially explained by differing landuse. Those boreholes in open, grassed areas showed a deeper ZSF than those in built-up areas but built-up areas generally showed the greatest variation between Spring and Autumn temperature profiles, suggesting heat loss from buildings

  8. Comparison of the remotely sensed start of the season and ground phenology observations of the cereal crops

    Science.gov (United States)

    Bohovic, Roman; Hlavinka, Petr; Semerádová, Daniela; Bálek, Jan; Trnka, Mirek

    2015-04-01

    Phenology monitoring such as start of the season of agricultural crops are important characteristics observed on the ground basis by the farmers and authorities already for the long time. Due to costs, coverage, site disparities and time demands of ground observations is remote sensing phenology an interesting option. Satellite observations enable monitoring of the ground vegetation already at sufficient resolution and in country and regional scale at the same time. However, ground and remote sensing phenology differ in nature of its object. First is focused on single species and limited individuals at the observation spot. Remote sensing is from its construction definition able to monitor area-wide vegetation communities. To understand these differences and to set the procedures to overcome it is the aim of this study. Case study area covers Czech Republic in Central Europe with typical four season temperate climate that strongly influence the vegetation. Daily MODIS (Moderate Resolution Imaging Spectroradiometer) remote sensing data in 250 by 250 meters resolution were used to compute NDVI (normalized difference vegetation index). Iterative developed method for the filtering of NDVI time series since 2000 up till now is crucial for overcoming missing periods mainly due to atmospheric conditions. From improved curve of NDVI start of the season is derived as absolute threshold value of 50% NDVI. Comparison of remotely sensed start of the season with observations of emergence of spring barley and beginning of leaf sheath elongation for winter wheat was done. Data were correlated at 90 ground stations across Czech Republic between the years 2000 and 2012. Correlations at original 250x250 meters resolution and aggregations of 5x5 km were investigated. Different land cover classes were considered for aggregated areas. Correlation of start of the season shows lower results for spring barley caused by strong influence of winter signal and crop sowing date by farmers

  9. Different Multifractal Scaling of the 0 cm Average Ground Surface Temperature of Four Representative Weather Stations over China

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2013-01-01

    Full Text Available The temporal scaling properties of the daily 0 cm average ground surface temperature (AGST records obtained from four selected sites over China are investigated using multifractal detrended fluctuation analysis (MF-DFA method. Results show that the AGST records at all four locations exhibit strong persistence features and different scaling behaviors. The differences of the generalized Hurst exponents are very different for the AGST series of each site reflecting the different scaling behaviors of the fluctuation. Furthermore, the strengths of multifractal spectrum are different for different weather stations and indicate that the multifractal behaviors vary from station to station over China.

  10. The 2006 SPIE Symposium on Astronomical Telescopes and Instrumentation ? Observing the Universe from Ground and Space

    Science.gov (United States)

    Moorwood, A.

    2006-06-01

    The most recent of these biennial SPIE (The International Society for Optical Engineering) Symposia was held from 24-31 May in the Orlando World Center Marriott Resort & Convention Center in Florida, USA. Over the last decade, these meetings have grown to become the main forum for presenting and discussing all aspects of ground-based, airborne and space telescopes and their instrumentation, including associated advances in technology, software, operations and even astronomical results. As a consequence the meetings are large and well attended by people at all levels in the process of initiating, approving, implementing and operating astronomical projects and facilities. This year there were ~ 1700 registered participants who presented ~ 1600 papers and posters in the following 12 parallel conferences which formed the heart of the meeting.

  11. Fractional Vegetation Cover of East African Wetlands Observed on Ground and from Space

    Science.gov (United States)

    Schmidt, M.; Amler, E.; Guerschmann, J. P.; Scarth, P.; Behn, K.; Thonfeld, F.

    2016-08-01

    Wetlands are important ecosystems providing numerous ecosystem services. They are of particular importance to communities in East Africa where agriculture is the most important economic sector and where food availability to households critical. During an intensive field campaign in the dry season of 2013 were Fractional Vegetation Cover (FVC) measurements, botanical vegetation cover and vegetation structure estimates acquired in three wetland test sites within the East African region. FVC cover data were collated in three strata: ground layer, midstorey and overstorey (woody vegetation greater than 2 m). Fractional cover estimates for the green and no-green vegetative fraction were calculated for Landsat MODIS imagery. These FVC data products were evaluated a) with FVC field data and b) relative to each other for their usability in the East African region. First results show some promise for further studies.

  12. Ground Observation and Correction of P-band Radar Imaging Ionospheric Effects

    Directory of Open Access Journals (Sweden)

    Zhao Ning

    2014-02-01

    Full Text Available For high resolution space-borne P-band SAR system, ionospheric effects could cause serious phase errors. These errors are causally related to the radar frequency and the TEC of ionosphere and make the image quality degraded. To guarantee the image quality, the ionosphere errors must be emended. Based on the mismatched filter model caused by ionosphere, it is pointed out that accurate ionosphere TEC is the key for phase error correction, a high precision ionosphere TEC measurement method is further put forward by using the phase errors of SAR echoes, which is validated by processing the data of a ground based P-band radar with well focused radar image of the international space station obtained. The results indicate that the method can effectively increase the accuracy of ionosphere TEC estimation, and thus improve the radar imaging quality, it is applicable to low frequency space-borne SAR systems for reducing the ionosphere effects.

  13. Interannaul variations of the vertical and their possible influence on the star catalogs derived from ground-based astrometric observations

    Science.gov (United States)

    Li, Z. X.

    The efforts at Shanghai Observatory since 1991, in response to the Resolution of IAU Comm.19: "Applications of optical astrometry time and latitude programs", is described in the paper, especially the studies concerned with the interannual variations of the vertical and their influence on the astronomical studies. It is clear now that there is a component of the order 0.01 - 0.02" on an interannual time scale in latitude residuals which is correlated with geophysical phenomena on the Earth. A recent study has confirmed that the component discovered is actually the variation of the vertical, related to ground-based observation in astronomy. So, it should be emphasized now that the variation of the vertical is significant enough to be considered in astronomy from now on. Its influence on the past studies, including the star catalogs already published and the ERP before 1980 when optical astrometry observations were still used, should be studied in the future. In comparing the HIPPARCOS catalog with those derived by the past observations, we should keep in mind the existence of this error in an astrometric observation and its influence on the star catalogs and other results derived from ground-based astrometric observations.

  14. VALIDATION OF COOKING TIMES AND TEMPERATURES FOR THERMAL INACTIVATION OF YERSINIA PESTIS STRAINS KIM5 AND CDC-A1112 IN GROUND BEEF

    Science.gov (United States)

    The thermal stability of Yersinia pestis inoculated into retail ground beef (25 per cent fat) and heated in a temperature-controlled water bath or cooked on commercial grills was evaluated. Irradiated ground beef (3-g portions) was inoculated with ca. 6.7 log10 CFU/g of Y. pestis strain KIM5 and hea...

  15. Observation of TGFs onboard "Vernov" satellite and TGEs in ground-based experiments

    Science.gov (United States)

    Bogomolov, Vitaly; Panasyuk, Mikhail; Svertilov, Sergey; Garipov, Gali; Iyudin, Anatoly; Klimov, Pavel; Morozenko, Violetta; Maximov, Ivan; Mishieva, Tatiana; Klimov, Stanislav; Pozanenko, Alexey; Rothkaehl, Hanna

    2016-04-01

    "Vernov" satellite with RELEC experiment on-board was launched on 2014 July, 8 into a polar solar-synchronous orbit. The payload includes DRGE gamma-ray spectrometer providing measurements in 10-3000 keV energy range with four detectors directed to atmosphere. Total area of DRGE detectors is ~500 cm2. The data were recorded both in monitoring and gamma by gamma modes with timing accuracy ~15 us. Several TGF candidates with 10-40 gammas in a burst with duration instruments on-board "Vernov" satellite shows the absence of significant electromagnetic pulses around correspondent time moments. Comparison with WWLLN lightning network data base also indicates that there were no thunderstorms connected with most of detected TGF candidates. Possible connection of these flashes with electron precipitations is discussed. Ground-based experiments, with similar gamma-spectrometers were conducted, to study the spectral, temporal and spatial characteristics of TGEs in 20-3000 keV energy range, as well, as to search the fast hard X-ray and gamma-ray flashes possibly appearing at the moment of lightning. The time of each gamma-quantum interaction was recorded with an ~15 us s accuracy together with detailed spectral data. Measurements were done on the ground at Moscow region, and at mountain altitude in Armenia at Aragatz station. During the time interval covering spring, summer and autumn of 2015 a number of TGEs were detected. Measured low-energy gamma-ray spectra usually contain a set of lines that can be interpreted as radiation of Rn-222 daughter isotopes. The increase of Rn-222 radiation was detected during rainfalls with thunderstorm, as well, as during rainy weather without thunderstorms. Variations of Rn-222 radiation dominate at low energies (measure low energy gamma-radiation from the electrons accelerated in thunderclouds. There were no significant flashes with duration of ~1ms detected in coincidence with a nearby lightnings.

  16. Mesospheric CO above Troll station, Antarctica observed by a ground based microwave radiometer

    Directory of Open Access Journals (Sweden)

    C. Straub

    2013-01-01

    Full Text Available This paper presents mesospheric carbon monoxide (CO data acquired by the ground-based microwave radiometer of the British Antarctic Survey (BAS radiometer stationed at Troll station in Antarctica (72° S, 2.5° E, 1270 a.m.s.l.. The data set covers the period from February 2008 to January 2010, however, due to very low CO concentrations below approximately 80 km altitude in summer, profiles can only be retrieved during Antarctic winter. CO is measured for approximately 2 h each day and profiles are retrieved approximately every half hour. The retrieved profiles, covering the pressure range from 1 to 0.01 hPa (approximately 48 to 80 km, are compared to measurements from Aura/MLS and SD-WACCM. This intercomparison reveals a low bias of 0.5 to 1 ppmv at 0.1 hPa (approximately 64 km and 2.5 to 3.5 ppmv at 0.01 hPa (approximately 80 km of the BAS microwave radiometer compared to both reference datasets. One explanation for this low bias could be the known high bias of MLS which is in the same order of magnitude. The ground based radiometer shows high and significant correlation (coefficients higher than 0.9/0.65 compared to MLS/SD-WACCM at all altitudes compared with both reference datasets. doi:10.5285/DE3E2092-406D-47A9-9205-3971A8DFB4A9

  17. Mesospheric CO above Troll station, Antarctica observed by a ground based microwave radiometer

    Directory of Open Access Journals (Sweden)

    C. Straub

    2013-06-01

    Full Text Available This paper presents mesospheric carbon monoxide (CO data acquired by the ground-based microwave radiometer of the British Antarctic Survey (BAS radiometer stationed at Troll station in Antarctica (72° S, 2.5° E, 1270 m a.s.l.. The dataset covers the period from February 2008 to January 2010, however, due to very low CO concentrations below approximately 80 km altitude in summer, profiles are only presented during the Antarctic winter. CO is measured for approximately 2 h each day and profiles are retrieved approximately every half hour. The retrieved profiles, covering the pressure range from 1 to 0.01 hPa (approximately 48 to 80 km, are compared to measurements from Microwave Limb Sounder on the Aura satellite (Aura/MLS and Whole Atmosphere Community Climate Model with Specified Dynamics (SD-WACCM. This intercomparison reveals a low bias of 0.5 to 1 ppmv at 0.1 hPa (approximately 64 km and 2.5 to 3.5 ppmv at 0.01 hPa (approximately 80 km of the BAS microwave radiometer compared to both reference datasets. One explanation for this low bias could be the known high bias of MLS which is on the same order of magnitude. The ground based radiometer shows high and significant correlation (coefficients higher than 0.9/0.7 compared to MLS/SD-WACCM at all altitudes compared with both reference datasets. The dataset can be accessed under http://dx.doi.org/10/mhq.

  18. Open-loop GPS signal tracking at low elevation angles from a ground-based observation site

    Science.gov (United States)

    Beyerle, Georg; Zus, Florian

    2017-01-01

    A 1-year data set of ground-based GPS signal observations aiming at geometric elevation angles below +2° is analysed. Within the "GLESER" measurement campaign about 2600 validated setting events were recorded by the "OpenGPS" open-loop tracking receiver at an observation site located at 52.3808° N, 13.0642° E between January and December 2014. The measurements confirm the feasibility of open-loop signal tracking down to geometric elevation angles of -1 to -1.5° extending the corresponding closed-loop tracking range by up to 1°. The study is based on the premise that observations of low-elevation events by a ground-based receiver may serve as test cases for space-based radio occultation measurements, even if the latter proceed at a significantly faster temporal scale. The results support the conclusion that the open-loop Doppler model has negligible influence on the derived carrier frequency profile for strong signal-to-noise density ratios above about 30 dB Hz. At lower signal levels, however, the OpenGPS receiver's dual-channel design, which tracks the same signal using two Doppler models differing by 10 Hz, uncovers a notable bias. The repeat patterns of the GPS orbit traces in terms of azimuth angle reveal characteristic signatures in both signal amplitude and Doppler frequency with respect to the topography close to the observation site. Mean vertical refractivity gradients, extracted from ECMWF meteorological fields, correlate weakly to moderately with observed signal amplitude fluctuations at geometric elevation angles between +1 and +2°. Results from multiple phase screen simulations support the interpretation that these fluctuations are at least partly produced by atmospheric multipath; at negative elevation angles diffraction at the ground surface seems to contribute.

  19. Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km

    Energy Technology Data Exchange (ETDEWEB)

    Nedeljkovic, D.; Hauchecorne, A.; Chanin, M.L. (CNRS, Verrieres le Buisson (France))

    1993-01-01

    The authors describe in this paper a lidar method using the anti-Stokes rotational lines of N[sub 2] and O[sub 2] Raman spectrum to determine the temperature of the atmosphere up to 30 km. The method uses the variation with the temperature of the envelop of the intensities of the backscattered rotational Raman spectrum, or more precisely the variations of the ratio of the intensities at two close-by wavelengths. For each temperature of the gas, the ratio of the fluxes through two narrow and close-by filters takes a definite value directly related to the temperature. The difficulty of eliminating the near-by contribution of the Mie backscattering was solved by doubling the filters to produce a rejection factor of 10[sub +8] at the central wavelength. The validity of the method was illustrated by comparing a number of temperature profiles obtained simultaneously with radiosonde and by this new Raman lidar. The theoretical calculation of the method led to an analytic calibration function which, once adjusted with a radiosonde, can provide the temperature on successive days of measurement in the height range 50 to 25 km.

  20. Climate Prediction Center (CPC) U.S. Daily Minimum Air Temperature Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observational reports of daily air temperature (1200 UTC to 1200 UTC) are made by members of the NWS Automated Surface Observing Systems (ASOS) network; NWS...

  1. Climate Prediction Center (CPC) U.S. Daily Maximum Air Temperature Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observational reports of daily air temperature (1200 UTC to 1200 UTC) are made by members of the NWS Automated Surface Observing Systems (ASOS) network; NWS...

  2. Seismo-traveling ionospheric disturbances of earthquake and tsunami waves observed by space- and ground-based GPS receivers

    Science.gov (United States)

    Liu, J. Y. G.; Chen, C. Y.; Lin, C. H.

    2015-12-01

    FORMOSAT-3/COSMIC (F3/C) is a constellation of six microsatellites launched on April 15, 2006 and has been orbiting with 72° inclination at 700 to 800 km above the earth since December 2007. The main payload of the F3/C is the GPS Occultation eXperiment (GOX) which carries out probing the radio occultation (RO) total electron content between GPS satellite and F3/C. Therefore, F3/C provides us an excellent opportunity to vertically scan ionospheric electron density from 100 up to 800 km altitude. On the other hand, worldwide ground-based GPS receivers can be employed to observe traveling ionospheric disturbances of the TEC. Here, we present the ionosphere response to seismic and tsunami waves by means of F3/C RO TEC and worldwide ground-based GPS TEC as well as existing data of infrasondes, magnetometers, and Doppler sounding systems during the 11 March 2011 M9.0 Tohoku earthquake.

  3. GIPL1.3 simulated mean annual ground temperature (MAGT) in Celsius averaged for particular decade for the entire Alaskan permafrost domain. NAD83, Alaska Albers projection

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated mean annual ground temperature (MAGT) in...

  4. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations

    Directory of Open Access Journals (Sweden)

    C. Vigouroux

    2008-12-01

    Full Text Available Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network, six ground-based stations in Western Europe, from 79° N to 28° N, all equipped with Fourier Transform infrared (FTIR instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC, have joined their efforts to evaluate the trends of several direct and indirect greenhouse gases over the period 1995–2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar. The observed total column ozone trends are in agreement with previous studies: 1 no total column ozone trend is seen at the lowest latitude station Izaña (28° N; 2 slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47° N, only one of them being significant; 3 the highest latitude stations Harestua (60° N, Kiruna (68° N and Ny-Ålesund (79° N show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10–18 km, 18–27 km, and 27–42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground-10 km layer for five out of the six ground-based stations. We find significant positive trends for the lowermost

  5. Development of a microbial model for the combined effect of temperature and pH on spoilage of ground meat, and validation of the model under dynamic temperature conditions.

    Science.gov (United States)

    Koutsoumanis, K; Stamatiou, A; Skandamis, P; Nychas, G-J E

    2006-01-01

    The changes in microbial flora and sensory characteristics of fresh ground meat (beef and pork) with pH values ranging from 5.34 to 6.13 were monitored at different isothermal storage temperatures (0 to 20 degrees C) under aerobic conditions. At all conditions tested, pseudomonads were the predominant bacteria, followed by Brochothrix thermosphacta, while the other members of the microbial association (e.g., lactic acid bacteria and Enterobacteriaceae) remained at lower levels. The results from microbiological and sensory analysis showed that changes in pseudomonad populations followed closely sensory changes during storage and could be used as a good index for spoilage of aerobically stored ground meat. The kinetic parameters (maximum specific growth rate [mu(max)] and the duration of lag phase [lambda]) of the spoilage bacteria were modeled by using a modified Arrhenius equation for the combined effect of temperature and pH. Meat pH affected growth of all spoilage bacteria except that of lactic acid bacteria. The "adaptation work," characterized by the product of mu(max) and lambda(mu(max) x lambda) was found to be unaffected by temperature for all tested bacteria but was affected by pH for pseudomonads and B. thermosphacta. For the latter bacteria, a negative linear correlation between ln(mu(max) x lambda) and meat pH was observed. The developed models were further validated under dynamic temperature conditions using different fluctuating temperatures. Graphical comparison between predicted and observed growth and the examination of the relative errors of predictions showed that the model predicted satisfactorily growth under dynamic conditions. Predicted shelf life based on pseudomonads growth was slightly shorter than shelf life observed by sensory analysis with a mean difference of 13.1%. The present study provides a "ready-to-use," well-validated model for predicting spoilage of aerobically stored ground meat. The use of the model by the meat industry can

  6. Rayleigh Lidar observed atmospheric temperature characteristics over a western Indian location: intercomparison with satellite observations and models

    Science.gov (United States)

    Sharma, Som; Vaishnav, Rajesh; Shukla, Krishna K.; Lal, Shyam; Chandra, Harish; Acharya, Yashwant B.

    2017-07-01

    General characteristics of sub-tropical middle atmospheric temperature structure over a high altitude station, Mt. Abu (24.5°N, 72.7°E, altitude 1670 m, above mean sea level (amsl)) are presented using about 150 nights observational datasets of Rayleigh Lidar. The monthly mean temperature contour plot shows two distinct maxima in the stratopause region ( 45-55 km), occurring during February-March and September-October, a seasonal dependence similar to that reported for mid- and high-latitudes respectively. Semi-Annual Oscillation (SAO) are stronger at an altitude 60 km in the mesospheric temperature in comparison to stratospheric region. A comparison with the satellite (Halogen Occultation Experiment, (HALOE)) data shows qualitative agreement, but quantitatively a significant difference is found between the observation and satellite. The derived temperatures from Lidar observations are warmer 2-3 K in the stratospheric region and 5-10 K in the mesospheric region than temperatures observed from the satellite. A comparison with the models, COSPAR International Reference Atmosphere (CIRA)-86 and Mass Spectrometer Incoherent Scatter Extended (MSISE)-90, showed differences of 3 K in the stratosphere and 5-10 K in the mesosphere, with deviations somewhat larger for CIRA-86. In most of the months and in all altitude regions model temperatures were lower than the Lidar observed temperature except in the altitude range of 40-50 km. MSISE-90 Model temperature overestimates as compared to Lidar temperature during December-February in the altitude region of 50-60 km. In the altitude region of 55-70 km both models deviate significantly, with differences exceeding 10-12 K, particularly during equinoctial periods. An average heating rate of 2.5 K/month during equinoxes and cooling rate of 4 K/month during November-December are found in altitude region of 50-70 km, relatively less heating and cooling rates are found in the altitude range of 30-50 km. The stratospheric

  7. Calculation of gas content in coal seam influenced by in-situ stress grads and ground temperature

    Institute of Scientific and Technical Information of China (English)

    王宏图; 李时雨; 吴再生; 杨晓峰; 秦大亮; 杜云贵

    2002-01-01

    On the basis of the analysis of coal-bed gas pressure in deep mine, and the coal-bed permeability (k) and the characteristic of adsorption parameter (b) changing with temperature, the author puts forward a new calculating method of gas content in coal seam influenced by in-situ stress grads and ground temperature. At the same time, the contrast of the measuring results of coal-bed gas pressure with the computing results of coal-bed gas pressure and gas content in coal seam in theory indicate that the computing method can well reflect the authenticity of gas content in coal seam,and will further perfect the computing method of gas content in coal seam in theory,and have important value in theory on analyzing gas content in coal seam and forecasting distribution law of gas content in coal seam in deep mine.

  8. CMAQ simulation of atmospheric CO2 concentration in East Asia: Comparison with GOSAT observations and ground measurements

    Science.gov (United States)

    Li, Rong; Zhang, Meigen; Chen, Liangfu; Kou, Xingxia; Skorokhod, Andrei

    2017-07-01

    Satellite observations are widely used in global CO2 assimilations, but their quality for use in regional assimilation systems has not yet been thoroughly determined. Validation of satellite observations and model simulations of CO2 is crucial for carbon flux inversions. In this study, we focus on evaluating the uncertainties of model simulations and satellite observations. The atmospheric CO2 distribution in East Asia during 2012 was simulated using a regional chemical transport model (RAMS-CMAQ) and compared with both CO2 column density (XCO2) from the Gases Observing SATellite (GOSAT) and CO2 concentrations from the World Data Centre for Greenhouse Gases (WDCGG). The results indicate that simulated XCO2 is generally lower than GOSAT XCO2 by 1.19 ppm on average, and their monthly differences vary from 0.05 to 2.84 ppm, with the corresponding correlation coefficients ranging between 0.1 and 0.67. CMAQ simulations are good to capture the CO2 variation as ground-based observations, and their correlation coefficients are from 0.62 to 0.93, but the average value of CMAQ simulation is 2.4 ppm higher than ground-based observation. Thus, we inferred that the GOSAT retrievals may overestimate XCO2, which is consistent with the validation of GOSAT XCO2 using Total Carbon Column Observing Network measurements. The near-surface CO2 concentration was obviously overestimated in GOSAT XCO2. Compared with the relatively small difference between CMAQ and GOSAT XCO2, the large difference in CO2 near surface or their vertical profiles indicates more improvements are needed to reduce the uncertainties in both satellite observations and model simulations.

  9. Seasonal variations of infrasonic arrivals from long-term ground truth observations in Nevada and implication for event location

    Science.gov (United States)

    Negraru, Petru; Golden, Paul

    2017-04-01

    Long-term ground truth observations were collected at two infrasound arrays in Nevada to investigate how seasonal atmospheric variations affect the detection, traveltime and signal characteristics (azimuth, trace velocity, frequency content and amplitudes) of infrasonic arrivals at regional distances. The arrays were located in different azimuthal directions from a munition disposal facility in Nevada. FNIAR, located 154 km north of the source has a high detection rate throughout the year. Over 90 per cent of the detonations have traveltimes indicative of stratospheric arrivals, while tropospheric waveguides are observed from only 27 per cent of the detonations. The second array, DNIAR, located 293 km southeast of the source exhibits strong seasonal variations with high stratospheric detection rates in winter and the virtual absence of stratospheric arrivals in summer. Tropospheric waveguides and thermospheric arrivals are also observed for DNIAR. Modeling through the Naval Research Laboratory Ground to Space atmospheric sound speeds leads to mixed results: FNIAR arrivals are usually not predicted to be present at all (either stratospheric or tropospheric), while DNIAR arrivals are usually correctly predicted, but summer arrivals show a consistent traveltime bias. In the end, we show the possible improvement in location using empirically calibrated traveltime and azimuth observations. Using the Bayesian Infrasound Source Localization we show that we can decrease the area enclosed by the 90 per cent credibility contours by a factor of 2.5.

  10. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network

    Science.gov (United States)

    Sprovieri, Francesca; Pirrone, Nicola; Bencardino, Mariantonia; D'Amore, Francesco; Carbone, Francesco; Cinnirella, Sergio; Mannarino, Valentino; Landis, Matthew; Ebinghaus, Ralf; Weigelt, Andreas; Brunke, Ernst-Günther; Labuschagne, Casper; Martin, Lynwill; Munthe, John; Wängberg, Ingvar; Artaxo, Paulo; Morais, Fernando; Barbosa, Henrique de Melo Jorge; Brito, Joel; Cairns, Warren; Barbante, Carlo; Diéguez, María del Carmen; Garcia, Patricia Elizabeth; Dommergue, Aurélien; Angot, Helene; Magand, Olivier; Skov, Henrik; Horvat, Milena; Kotnik, Jože; Read, Katie Alana; Mendes Neves, Luis; Gawlik, Bernd Manfred; Sena, Fabrizio; Mashyanov, Nikolay; Obolkin, Vladimir; Wip, Dennis; Feng, Xin Bin; Zhang, Hui; Fu, Xuewu; Ramachandran, Ramesh; Cossa, Daniel; Knoery, Joël; Marusczak, Nicolas; Nerentorp, Michelle; Norstrom, Claus

    2016-09-01

    Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (gmos.eu" target="_blank">http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.

  11. Seasonal variations of infrasonic arrivals from long term ground truth observations in Nevada and implication for event location

    Science.gov (United States)

    Negraru, Petru; Golden, Paul

    2017-01-01

    SUMMARYLong term ground truth observations were collected at two infrasound arrays in Nevada to investigate how seasonal atmospheric variations affect the detection, travel time and signal characteristics (azimuth, trace velocity, frequency content and amplitudes) of infrasonic arrivals at regional distances. The arrays were located in different azimuthal directions from a munition disposal facility in Nevada. FNIAR, located 154 km north of the source has a high detection rate throughout the year. Over 90% of the detonations have travel times indicative of stratospheric arrivals, while tropospheric waveguides are observed from only 27% of the detonations. The second array, DNIAR, located 293 km southeast of the source exhibits strong seasonal variations with high stratospheric detection rates in winter and the virtual absence of stratospheric arrivals in summer. Tropospheric waveguides and thermospheric arrivals are also observed for DNIAR. Modelling through the Naval Research Laboratory Ground to Space (G2S) atmospheric sound speeds leads to mixed results: FNIAR arrivals are usually not predicted to be present at all (either stratospheric or tropospheric), while DNIAR arrivals are usually correctly predicted, but summer arrivals show a consistent travel time bias. In the end we show the possible improvement in location using empirically calibrated travel time and azimuth observations. Using the Bayesian Infrasound Source Localization we show that we can decrease the area enclosed by the 90% credibility contours by a factor of 2.5.

  12. Observation of an Aligned Gas - Solid "Eutectic" during Controlled Directional Solidification Aboard the International Space Station - Comparison with Ground-based Studies

    Science.gov (United States)

    Grugel, R. N.; Anilkumar, A.

    2005-01-01

    Direct observation of the controlled melting and solidification of succinonitrile was conducted in the glovebox facility of the International Space Station (ISS). The experimental samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) in an atmosphere of nitrogen at 450 millibar pressure for eventual processing in the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) on board the ISS. Real time visualization during controlled directional melt back of the sample showed nitrogen bubbles emerging from the interface and moving through the liquid up the imposed temperature gradient. Over a period of time these bubbles disappear by dissolving into the melt. Translation is stopped after melting back of about 9 cm of the sample, with an equilibrium solid-liquid interface established. During controlled re-solidification, aligned tubes of gas were seen growing perpendicular to the planar solid/liquid interface, inferring that the nitrogen previously dissolved into the liquid SCN was now coming out at the solid/liquid interface and forming the little studied liquid = solid + gas eutectic-type reaction. The observed structure is evaluated in terms of spacing dimensions, interface undercooling, and mechanisms for spacing adjustments. Finally, the significance of processing in a microgravity environment is ascertained in view of ground-based results.

  13. Coordinated polar spacecraft, geosynchronous spacecraft, and ground-based observations of magnetopause processes and their coupling to the ionosphere

    Directory of Open Access Journals (Sweden)

    G. Le

    2004-12-01

    Full Text Available In this paper, we present in-situ observations of processes occurring at the magnetopause and vicinity, including surface waves, oscillatory magnetospheric field lines, and flux transfer events, and coordinated observations at geosynchronous orbit by the GOES spacecraft, and on the ground by CANOPUS and 210° Magnetic Meridian (210MM magnetometer arrays. On 7 February 2002, during a high-speed solar wind stream, the Polar spacecraft was skimming the magnetopause in a post-noon meridian plane for ~3h. During this interval, it made two short excursions and a few partial crossings into the magnetosheath and observed quasi-periodic cold ion bursts in the region adjacent to the magnetopause current layer. The multiple magnetopause crossings, as well as the velocity of the cold ion bursts, indicate that the magnetopause was oscillating with an ~6-min period. Simultaneous observations of Pc5 waves at geosynchronous orbit by the GOES spacecraft and on the ground by the CANOPUS magnetometer array reveal that these magnetospheric pulsations were forced oscillations of magnetic field lines directly driven by the magnetopause oscillations. The magnetospheric pulsations occurred only in a limited longitudinal region in the post-noon dayside sector, and were not a global phenomenon, as one would expect for global field line resonance. Thus, the magnetopause oscillations at the source were also limited to a localized region spanning ~4h in local time. These observations suggest that it is unlikely that the Kelvin-Helmholz instability and/or fluctuations in the solar wind dynamic pressure were the direct driving mechanisms for the observed boundary oscillations. Instead, the likely mechanism for the localized boundary oscillations was pulsed reconnection at the magnetopause occurring along the X-line extending over the same 4-h region. The Pc5 band pressure fluctuations commonly seen in high-speed solar wind streams may modulate the reconnection rate as

  14. K-12 Students as Ground Observers of Contrails in Support of Scientific Research

    Science.gov (United States)

    Chambers, Lin H.; Moore, Susan W.; Fischer, Joyce D.; Sepulveda, Roberto; Clark, C.

    2004-01-01

    Scientists are very interested in the formation of contrails, both the type and the coverage. To be detected by a satellite-born instrument, the contrail must be of a certain size, which means that some contrails go undetected. The K-12 education community is assisting with the study of contrails by participating in a network of student observers. To provide a venue for student contrail observations, the GLOBE Contrails protocol was developed as part of the GLOBE Atmospheric Science protocols. The first year of observations has provided a rich resource for researcher.

  15. A statistical method to get surface level air-temperature from satellite observations of precipitable water

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Shikauchi, A.; Sugimori, Y.; Kubota, M.

    Vol. 49, pp. 551 to 558. 1993 A Statistical Method to Get Surface Level Air-Temperature from Satellite Observations of Precipitable Water PANKAJAKSHAN THADATHIL*, AKIRA SHIKAUCHI, YASUHIRO SUGIMORI and MASAHISA KUBOTA School of Marine Science... observations for getting the estimates of heat flux across the air-sea boundary (Miller, 1981; Liu, 1988). Bulk method has widely been used for this purpose and the parameters required are: sea surface temperature, and wind speed, air-temperature and specific...

  16. Ground-based near-infrared observations of water vapour in the Venus troposphere

    CERN Document Server

    Chamberlain, S; Crisp, D; Meadows, V S; 10.1016/j.icarus.2012.11.014

    2012-01-01

    We present a study of water vapour in the Venus troposphere obtained by modelling specific water vapour absorption bands within the 1.18 \\mu m window. We compare the results with the normal technique of obtaining the abundance by matching the peak of the 1.18 \\mu m window. Ground-based infrared imaging spectroscopy of the night side of Venus was obtained with the Anglo-Australian Telescope and IRIS2 instrument with a spectral resolving power of R ~ 2400. The spectra have been fitted with modelled spectra simulated using the radiative transfer model VSTAR. We find a best fit abundance of 31 ppmv (-6 + 9 ppmv), which is in agreement with recent results by B\\'ezard et al. 2011 using VEX/SPICAV (R ~ 1700) and contrary to prior results by B\\'ezard et al. 2009 of 44 ppmv (+/-9 ppmv) using VEX/VIRTIS-M (R ~ 200) data analyses. Comparison studies are made between water vapour abundances determined from the peak of the 1.18 \\mu m window and abundances determined from different water vapour absorption features within t...

  17. Somma Vesuvius volcano: ground deformations from CGPS observations (2001-2012

    Directory of Open Access Journals (Sweden)

    Umberto Tammaro

    2013-11-01

    Full Text Available This paper is a contribution to the evaluation of ground deformations at Somma-Vesuvius volcano by means GPS measurements from 2001 to 2012. In this study we use a dataset from nine continuous GPS stations of the Neapolitan Volcanoes Continuous GPS network (NeVoCGPS, which covers the Neapolitan volcanic area, and is operated by the Istituto Nazionale di Geofisica e Vulcanologia. The GPS data processing is performed by the Bernese software v. 5.0. The results of the data processing show that the dynamics of the Somma-Vesuvio volcano, between 2001 and 2012, is characterized by a general subsidence, with maximum values on the Gran Cono at BKNO (−11.7 ± 0.65 mm/year and BKE1 (−4.92 ± 0.36 mm/year stations. The subsidence decrease from the crater down to the coast and the horizontal displacements are concentrated in Gran Cono area, the youngest part of the volcano. The parameters of the principal strain components indicate that Somma-Vesuvius is affected by a predominant contraction phase, which is concentrated in the areas with the greatest altitudes.

  18. Monitoring and analysis of ground temperature and deformation within Qinghai-Tibet Highway subgrade in permafrost region

    Institute of Scientific and Technical Information of China (English)

    YaHu Tian; YuPeng Shen; WenBing Yu; JianHong Fang

    2015-01-01

    In order to study the stability of the Qinghai-Tibet Highway embankment at Chumaerhe in the permafrost region of northwest China, the ground temperature and deformation at different depths were monitored under the left and right shoulders of the embankment where thermosyphons were set up only on the left shoulder. Based on the monitored data, characteristics of ground temperature and deformation of the left and right shoulders are analyzed and discussed. The results show that the start time of freezing or thawing of the seasonal active layer was about one to two months later than that of the embankment body itself. The stability of each shoulder was mainly controlled by the settlement of different soil layers, whereas frost heave of soil had scarcely any effect on the stability of the embankment. For the left shoulder, the settlement was mainly influenced by the seasonal active layer and then by the embankment body itself, due to freeze-thaw cycles which may change the soil properties; however, the permafrost layer remained fairly stable. For the right shoulder, creep of the warm permafrost layer was the main influence factor on its stability, followed by settlement of embankment body itself, and finally settlement of the seasonal active layer. Compared with the deformation of the left shoulder, the permafrost layer under the right shoulder was less stable, which indicates that the thermosyphons had a significantly positive effect on the stability of warm permafrost.

  19. Temperature rise in objects due to optical focused beam through atmospheric turbulence near ground and ocean surface

    Science.gov (United States)

    Stoneback, Matthew; Ishimaru, Akira; Reinhardt, Colin; Kuga, Yasuo

    2013-03-01

    We consider an optical beam propagated through the atmosphere and incident on an object causing a temperature rise. In clear air, the physical characteristics of the optical beam transmitted to the object surface are influenced primarily by the effect of atmospheric turbulence, which can be significant near the ground or ocean surface. We use a statistical model to quantify the expected power transfer through turbulent atmosphere and provide guidance toward the threshold of thermal blooming for the considered scenarios. The bulk thermal characteristics of the materials considered are used in a thermal diffusion model to determine the net temperature rise at the object surface due to the incident optical beam. These results of the study are presented in graphical form and are of particular interest to operators of high power laser systems operating over large distances through the atmosphere. Numerical examples include a CO2 laser (λ=10.6 μm) with: aperture size of 5 cm, varied pulse duration, and propagation distance of 0.5 km incident on 0.1-mm copper, 10-mm polyimide, 1-mm water, and 10-mm glass/resin composite targets. To assess the effect of near ground/ocean laser propagation, we compare turbulent (of varying degrees) and nonturbulent atmosphere.

  20. Effects of Satellite Spectral Resolution and Atmospheric Water Vapor on Retrieval of Near-Ground Temperatures

    Science.gov (United States)

    1993-04-28

    alternate low-level water vapor profile was considered. This " dry " water vapor profile (dashed in Fig. I) was specified to be equal to the "basic...the dry water vapor profile for the night situation. As expected, the unresolvable perturbations of surface temperature were smaller for the dry

  1. Response of atmospheric ground level temperatures to changes in the total solar irradiance

    CERN Document Server

    Erlykin, Anatoly

    2015-01-01

    The attribution of part of global warming to changes in the total solar irradiance (TSI) is an important topic which is not, yet, fully understood. Here, we examine the TSI induced temperature (T) changes on a variety of time scales, from one day to centuries and beyond, using a variety of assumptions. Also considered is the latitude variation of the T-TSI correlations, where it appears that over most of the globe there is a small increase in the sensitivity of temperature to TSI in time. It is found that the mean global sensitivity (alpha)measured in K(Wm-2)-1 varies from about 0.003 for 1 day, via 0.05 for 11-years to about 0.2 for decades to centuries. We conclude that mean global temperature changes related to TSI are not significant from 1975 onwards. Before 1975, when anthropogenic gases were less important, many of the temperature changes can be attributed to TSI variations. Over much longer periods of time, from Kyear to Myear, the TSI changes are more efficient still, the sensitivity alpha increasing...

  2. Force Restore Technique for Ground Surface Temperature and Moisture Content in a Dry Desert System

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Berkowicz, S.

    2000-01-01

    The level of the surface temperature as well as surface moisture content is important for the turbulent transports of sensible and latent heat, respectively, but this level is also crucial for the survival of shrubs, plants, insects, and small animals in a desert environment. To estimate the surface

  3. Exploring the Potential of Integral Field Spectroscopy for Observing Extrasolar Planet Transits: Ground-based Observations of the Atmospheric Na in HD 209458b

    Science.gov (United States)

    Arribas, Santiago; Gilliland, Ronald L.; Sparks, William B.; López-Martín, Luis; Mediavilla, Evencio; Gómez-Alvarez, Pedro

    2006-01-01

    We explore the use of integral field spectroscopy (IFS) for observing extrasolar planet transits. Although this technique should find its full potential in space-based observations (e.g., James Webb Space Telescope, Terrestrial Planet Finder), we have tested its basics with ground-based time-series observations of HD 209458b obtained with the William Herschel Telescope optical fiber system INTEGRAL during a transit in 2004 August 17/18. For this analysis we have used 5550 spectra (from a potential of ~30,000) obtained in 150 exposures during a period of more than 7 hr. We have found that IFS offers three fundamental advantages with respect to previously used methods (based on imaging or standard slit spectroscopy). First, it improves the effective signal-to-noise ratio in photon-limited observations by distributing the light coming from the star into the two dimensions of the detector. Second, this type of IFS data allows us to ``autocalibrate'' instrumental and background effects. Third, since the star image characteristics (i.e., seeing, spatial shifts, etc.) as well as its photometric properties are extracted from the same data cube, it is possible to decorrelate photometric instabilities induced by point-spread function (or instrument) variations. These data have also allowed us to explore the accuracy limits of ground-based relative spectrophotometry. This was done using a photometric index that probes the Na D lines, for which we obtained a nominal 1 σ error of ~1.0 × 10-4. This result, based on observations of only one transit, indicates that this type of ground observation can constrain the characterization of the transmission spectrum of extrasolar planets, especially if they cover multiple transits under good weather conditions. The present observations are compatible with no extra Na D depression during the transit. Although this result seems to be inconsistent with the recently reported Hubble Space Telescope STIS findings, we point out its limited

  4. Coupling of Pi2 wave energy in the inner magnetosphere as inferred from low-latitude ground observations

    Institute of Scientific and Technical Information of China (English)

    HAN DeSheng; YANG HuiGen; CHEN ZhuoTian; C. P. NIELSEN

    2008-01-01

    Taking advantage of high time-resolution (1 s) geomagnetic field measurements obtained at low-latitude stations, we investigated frequency differences of Pi2 pul-sations between the dayside and the nightside. Firstly, we examined two Pi2 cases globally observed by multiple ground stations and found that the dominant fre-quency peaks at the dayside showed latitudinal dependence, I.e., the higher (lower) frequency peak was predominant at lower (higher) latitude. We also noticed that the dominant Pi2 frequency on the nightaide was apparently higher than that on the dayside. We argue that the multiple frequency peaks observed on the ground are harmonics of a plasmaspheric cavity resonance mode (CRM) and that the latitu-dinal dependence of the dominant frequency peaks may result from the energy coupling between the CRM and field line resonance (FLR) occurred in the near Earth space. We also argue that the frequency difference between the dayside and the nightaide could be caused by the reason that a higher harmonic was observed in the nightaide plasmasphere but was not effectively observed in the dayside. In addition, we statistically examined 829 Pi2 events that were simultaneously re-corded at Kakioka (KAK, Maglat=27.2°) and Jicamarca (JIC, Maglat=0.0°), the two stations separated by~10 h in local time (LT) and one of them (JIC) is located at the dip equator. We found that the Pi2 frequency observed at KAK on the nightside was higher than that observed at JIC on the dayside on average. After investigating the occurrence histogram of the frequency difference (△f=fJIC-fKAK) for the events si-multaneously observed at KAK and JIC, we found that close to half of the events had the identical frequency (|△f|<1.0 mHz). The statistical results are consistent with the facts reflected by case studies.

  5. Coupling of Pi2 wave energy in the inner magnetosphere as inferred from low-latitude ground observations

    Institute of Scientific and Technical Information of China (English)

    C.; P.; NIELSEN

    2008-01-01

    Taking advantage of high time-resolution (1 s) geomagnetic field measurements obtained at low-latitude stations, we investigated frequency differences of Pi2 pul-sations between the dayside and the nightside. Firstly, we examined two Pi2 cases globally observed by multiple ground stations and found that the dominant fre-quency peaks at the dayside showed latitudinal dependence, i.e., the higher (lower) frequency peak was predominant at lower (higher) latitude. We also noticed that the dominant Pi2 frequency on the nightside was apparently higher than that on the dayside. We argue that the multiple frequency peaks observed on the ground are harmonics of a plasmaspheric cavity resonance mode (CRM) and that the latitu-dinal dependence of the dominant frequency peaks may result from the energy coupling between the CRM and field line resonance (FLR) occurred in the near Earth space. We also argue that the frequency difference between the dayside and the nightside could be caused by the reason that a higher harmonic was observed in the nightside plasmasphere but was not effectively observed in the dayside. In addition, we statistically examined 829 Pi2 events that were simultaneously re-corded at Kakioka (KAK, Maglat=27.2°) and Jicamarca (JIC, Maglat=0.0°), the two stations separated by ~10 h in local time (LT) and one of them (JIC) is located at the dip equator. We found that the Pi2 frequency observed at KAK on the nightside was higher than that observed at JIC on the dayside on average. After investigating the occurrence histogram of the frequency difference (△f=fJIC-fKAK) for the events si-multaneously observed at KAK and JIC, we found that close to half of the events had the identical frequency (|△f |<1.0 mHz). The statistical results are consistent with the facts reflected by case studies.

  6. A comparison of climatological observing windows and their impact on detecting daily temperature extrema

    Science.gov (United States)

    Žaknić-Ćatović, Ana; Gough, William A.

    2017-02-01

    Climatological observing window (COW) is defined as a time frame over which continuous or extreme air temperature measurements are collected. A 24-h time interval, ending at 00UTC or shifted to end at 06UTC, has been associated with difficulties in characterizing daily temperature extrema. A fixed 24-h COW used to obtain the temperature minima leads to potential misidentification due to fragmentation of "nighttime" into two subsequent nighttime periods due to the time discretization interval. The correct identification of air temperature extrema is achievable using a COW that identifies daily minimum over a single nighttime period and maximum over a single daytime period, as determined by sunrise and sunset. Due to a common absence of hourly air temperature observations, the accuracy of the mean temperature estimation is dependent on the accuracy of determination of diurnal air temperature extrema. Qualitative and quantitative criteria were used to examine the impact of the COW on detecting daily air temperature extrema. The timing of the 24-h observing window occasionally affects the determination of daily extrema through a mischaracterization of the diurnal minima and by extension can lead to errors in determining daily mean temperature. Hourly air temperature data for the time period from year 1987 to 2014, obtained from Toronto Buttonville Municipal Airport weather station, were used in analysis of COW impacts on detection of daily temperature extrema and calculation of annual temperature averages based on such extrema.

  7. Initiation and propagation of cloud-to-ground lightning observed with a high-speed video camera

    Science.gov (United States)

    Tran, M. D.; Rakov, V. A.

    2016-12-01

    Complete evolution of a lightning discharge, from its initiation at an altitude of about 4 km to its ground attachment, was optically observed for the first time at the Lightning Observatory in Gainesville, Florida. The discharge developed during the late stage of a cloud flash and was initiated in a decayed branch of the latter. The initial channel section was intermittently illuminated for over 100 ms, until a bidirectionally extending channel (leader) was formed. During the bidirectional leader extension, the negative end exhibited optical and radio-frequency electromagnetic features expected for negative cloud-to-ground strokes developing in virgin air, while the positive end most of the time appeared to be inactive or showed intermittent channel luminosity enhancements. The development of positive end involved an abrupt creation of a 1-km long, relatively straight branch with a streamer corona burst at its far end. This 1-km jump appeared to occur in virgin air at a remarkably high effective speed of the order of 106 m/s. The positive end of the bidirectional leader connected to another bidirectional leader to form a larger bidirectional leader, whose negative end attached to the ground and produced a 36-kA return stroke.

  8. Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations

    Directory of Open Access Journals (Sweden)

    A. Boynard

    2009-08-01

    Full Text Available In this paper, we present measurements of total and tropospheric ozone, retrieved from infrared radiance spectra recorded by the Infrared Atmospheric Sounding Interferometer (IASI, which was launched on board the MetOp-A European satellite in October 2006. We compare IASI total ozone columns to Global Ozone Monitoring Experiment-2 (GOME-2 observations and ground-based measurements from the Dobson and Brewer network for one full year of observations (2008. The IASI total ozone columns are shown to be in good agreement with both GOME-2 and ground-based data, with correlation coefficients of about 0.9 and 0.85, respectively. On average, IASI ozone retrievals exhibit a positive bias of about 9 DU (3.3% compared to both GOME-2 and ground-based measurements. In addition to total ozone columns, the good spectral resolution of IASI enables the retrieval of tropospheric ozone concentrations. Comparisons of IASI tropospheric columns to 490 collocated ozone soundings available from several stations around the globe have been performed for the period of June 2007–August 2008. IASI tropospheric ozone columns compare well with sonde observations, with correlation coefficients of 0.95 and 0.77 for the [surface–6 km] and [surface–12 km] partial columns, respectively. IASI retrievals tend to overestimate the tropospheric ozone columns in comparison with ozonesonde measurements. Positive average biases of 0.15 DU (1.2% and 3 DU (11% are found for the [surface–6 km] and for the [surface–12 km] partial columns respectively.

  9. Ozone tropospheric and stratospheric trends (1995-2008) over Western Europe from ground-based FTIR network observations

    Science.gov (United States)

    Vigouroux, Corinne; Demoulin, Philippe; Blumenstock, Thomas; Schneider, Matthias; Klyft, Jon; Palm, Mathias; Gardiner, Tom

    2010-05-01

    Five ground-based stations in Western Europe, from 79°N to 28°N, all part of the Network for the Detection of Atmospheric Composition Change (NDACC), have joined their efforts to homogenize and optimize the retrievals of ozone profiles from FTIR (Fourier transform infrared) solar absorption spectra. Using the optimal estimation method, distinct vertical information can be obtained in four layers: ground--10 km, 10--18 km, 18--27 km, and 27--42 km, in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends1. Vigouroux et al. (2008)2 applied this method to the ozone data and discussed the trends of the total columns and of the partial columns in the above four layers, over the period 1995-2004. Here, we present and discuss an update of this analysis for the 1995-2008 period. We obtain, among others, that at all the stations, the ozone total columns trends are non significant while the trends in the upper stratospheric layer (27-42 km) are significantly positive. 1 Gardiner, T., Forbes, A., Woods, P., De Mazière, M., Vigouroux, C., Mahieu, E., Demoulin, P., Velazco, V., Notholt, J., Blumenstock, T., Hase, F., Kramer, I., Sussmann, R., Stremme, W., Mellqvist, J., Strandberg, A., Ellingsen, K., and Gauss, M.: Method for evaluating trends in greenhouse gases from ground-based remote FTIR measurements over Europe, ACP, 8, 6719-6727, 2008. 2 Vigouroux, C., De Mazière, M., Demoulin, P., Servais, C., Hase, F., Blumenstock, T., Kramer, I., Schneider, M., Mellqvist, J., Strandberg, A., Velazco, V., Notholt, J., Sussmann, R., Stremme, W., Rockmann, A., Gardiner, T., Coleman, M., and Woods, P. : Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations, ACP, 8, 6865-6886, 2008.

  10. First Ground-Based Observation of Sprites Over Southern Africa and Estimation of Their Physical and Optical Characteristics

    Science.gov (United States)

    Nnadih, O.; Martinez, P.; Kosch, M.; Lotz, S.; Fullekrug, M.

    2016-12-01

    We present the first ground-based observations of sprites over convective thunderstorms in southern Africa. The observations, acquired during the austral summer of 2015/16. show sprites with dendritic, carrot, angel and jellyfish-like shapes. The sprite locations are compared with lightning locations and peak amplitudes determined from the lightning detection network operated by the South African Weather Service, and also with the lightning locations reported by the World Wide Lightning Location Network (WLLN) and Low Frequency radio waveforms of the electric field strength recorded in the conjugate hemisphere in South-West England. The charge moment of the lightning discharges causing sprites is inferred from Extremely Low Frequency magnetic field measurements recorded at remote distances. These measurements reveal that a number of the sprites that we observed were triggered below and above the charge moment threshold for sprite production.

  11. A multi-scale analysis of Namibian rainfall over the recent decade – comparing TMPA satellite estimates and ground observations

    Directory of Open Access Journals (Sweden)

    Xuefei Lu

    2016-12-01

    New hydrological insights for the region: The agreement between ground and satellite rainfall data was generally good at annual/monthly scales but large variations were observed at the daily scale. Results showed a spatial variability of rainfall trends across the rainfall gradient. We observed significant changes in frequency along with insignificant changes in intensity and no changes in total amount for the driest location, but no changes in any of the rainfall parameters were observed for the three wetter locations. The results also showed increased rainfall variability for the driest location. This study provided a useful approach of using TMPA data associated with trend analysis to extend the data record for ecohydrological studies for similar data scarce conditions. The results of this study will also help constrain IPCC predictions in this region.

  12. Urban flood modelling combining top-view LiDAR data with ground-view SfM observations

    Science.gov (United States)

    Meesuk, Vorawit; Vojinovic, Zoran; Mynett, Arthur E.; Abdullah, Ahmad F.

    2015-01-01

    Remote Sensing technologies are capable of providing high-resolution spatial data needed to set up advanced flood simulation models. Amongst them, aerial Light Detection and Ranging (LiDAR) surveys or Airborne Laser Scanner (ALS) systems have long been used to provide digital topographic maps. Nowadays, Remote Sensing data are commonly used to create Digital Terrain Models (DTMs) for detailed urban-flood modelling. However, the difficulty of relying on top-view LiDAR data only is that it cannot detect whether passages for floodwaters are hidden underneath vegetated areas or beneath overarching structures such as roads, railroads, and bridges. Such (hidden) small urban features can play an important role in urban flood propagation. In this paper, a complex urban area of Kuala Lumpur, Malaysia was chosen as a study area to simulate the extreme flooding event that occurred in 2003. Three different DTMs were generated and used as input for a two-dimensional (2D) urban flood model. A top-view LiDAR approach was used to create two DTMs: (i) a standard LiDAR-DTM and (ii) a Filtered LiDAR-DTM taking into account specific ground-view features. In addition, a Structure from Motion (SfM) approach was used to detect hidden urban features from a sequence of ground-view images; these ground-view SfM data were then combined with top-view Filtered LiDAR data to create (iii) a novel Multidimensional Fusion of Views-Digital Terrain Model (MFV-DTM). These DTMs were then used as a basis for the 2D urban flood model. The resulting dynamic flood maps are compared with observations at six measurement locations. It was found that when applying only top-view DTMs as input data, the flood simulation results appear to have mismatches in both floodwater depths and flood propagation patterns. In contrast, when employing the top-ground-view fusion approach (MFV-DTM), the results not only show a good agreement in floodwater depth, but also simulate more correctly the floodwater dynamics around

  13. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations

    Directory of Open Access Journals (Sweden)

    C. Vigouroux

    2008-03-01

    Full Text Available Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network, six ground-based stations in Western Europe, from 79° N to 28° N, all equipped with Fourier Transform infrared (FTIR instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC, have joined their efforts to evaluate the trend of several direct and indirect greenhouse gases over the period 1995–2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar. The observed total column ozone trends are in agreement with previous studies: 1 no total column ozone trend is seen at the lowest latitude station Izaña (28° N; 2 slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47° N, only one of them being significant; 3 the highest latitude stations Harestua (60° N, Kiruna (68° N and Ny-Ålesund (79° N show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10–18 km, 18–27 km, and 27–42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground–10 km layer for five out of the six ground-based stations. We find significant positive trends for the lowermost

  14. Estimating Daily Maximum and Minimum Land Air Surface Temperature Using MODIS Land Surface Temperature Data and Ground Truth Data in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Phan Thanh Noi

    2016-12-01

    Full Text Available This study aims to evaluate quantitatively the land surface temperature (LST derived from MODIS (Moderate Resolution Imaging Spectroradiometer MOD11A1 and MYD11A1 Collection 5 products for daily land air surface temperature (Ta estimation over a mountainous region in northern Vietnam. The main objective is to estimate maximum and minimum Ta (Ta-max and Ta-min using both TERRA and AQUA MODIS LST products (daytime and nighttime and auxiliary data, solving the discontinuity problem of ground measurements. There exist no studies about Vietnam that have integrated both TERRA and AQUA LST of daytime and nighttime for Ta estimation (using four MODIS LST datasets. In addition, to find out which variables are the most effective to describe the differences between LST and Ta, we have tested several popular methods, such as: the Pearson correlation coefficient, stepwise, Bayesian information criterion (BIC, adjusted R-squared and the principal component analysis (PCA of 14 variables (including: LST products (four variables, NDVI, elevation, latitude, longitude, day length in hours, Julian day and four variables of the view zenith angle, and then, we applied nine models for Ta-max estimation and nine models for Ta-min estimation. The results showed that the differences between MODIS LST and ground truth temperature derived from 15 climate stations are time and regional topography dependent. The best results for Ta-max and Ta-min estimation were achieved when we combined both LST daytime and nighttime of TERRA and AQUA and data from the topography analysis.

  15. Traveling magnetopause distortion related to a large-scale magnetosheath plasma jet: THEMIS and ground-based observations

    CERN Document Server

    Dmitriev, A V; 10.1029/2011JA016861

    2013-01-01

    Here, we present a case study of THEMIS and ground-based observations on the dayside magnetopause, and geomagnetic field perturbations related to the interaction of an interplanetary directional discontinuity (DD), as observed by ACE, within the magnetosphere on 16 June 2007. The interaction resulted in a large-scale local magnetopause distortion of an 'expansion-compression-expansion' (ECE) sequence that lasted for 15 min. The compression was caused by a very dense, cold, and fast high-beta magnetosheath plasma flow, a so-called plasma jet, whose kinetic energy was approximately three times higher than the energy of the incident solar wind. The plasma jet resulted in the effective penetration of the magnetosheath plasma inside the magnetosphere. A strong distortion of the Chapman-Ferraro current in the ECE sequence generated a tripolar magnetic pulse 'decrease-peak-decrease' (DPD) that was observed at low and middle latitudes by the INTERMAGNET network of ground-based magnetometers. The characteristics of th...

  16. Roles of Ground-based Solar Observations of Hida Observatory toward the Solar-C Era

    Science.gov (United States)

    Ueno, S.; Shibata, K.; Ichimoto, K.; Nagata, S.; Dorotovič, I.; Shahamatnia, E.; Ribeiro, R. A.; Fonseca, J. M.

    2016-04-01

    For the realization of the Solar-C satellite, discussions about scientific themes and preliminary observations are internationally carried out now. At Hida Observatory of Kyoto University, we will play the following roles toward the Solar-C era by utilizing the Domeless Solar Telescope (DST) and the international solar chromospherirc full-disk observation network (CHAIN project) that includes the Solar Magnetic Activity Research Telescope (SMART) with international collaborations, for example, such as the development of image-analysis software by UNINOVA (Portugal) and so on.

  17. High spatio-temporal resolution observations of crater-lake temperatures at Kawah Ijen volcano, East Java, Indonesia

    Science.gov (United States)

    Lewicki, Jennifer L.; Corentin Caudron,; Vincent van Hinsberg,; George Hilley,

    2016-01-01

    The crater lake of Kawah Ijen volcano, East Java, Indonesia, has displayed large and rapid changes in temperature at point locations during periods of unrest, but measurement techniques employed to-date have not resolved how the lake’s thermal regime has evolved over both space and time. We applied a novel approach for mapping and monitoring variations in crater-lake apparent surface (“skin”) temperatures at high spatial (~32 cm) and temporal (every two minutes) resolution at Kawah Ijen on 18 September 2014. We used a ground-based FLIR T650sc camera with digital and thermal infrared (TIR) sensors from the crater rim to collect (1) a set of visible imagery around the crater during the daytime and (2) a time series of co-located visible and TIR imagery at one location from pre-dawn to daytime. We processed daytime visible imagery with the Structure-from-Motion photogrammetric method to create a digital elevation model onto which the time series of TIR imagery was orthorectified and georeferenced. Lake apparent skin temperatures typically ranged from ~21 to 33oC. At two locations, apparent skin temperatures were ~ 4 and 7 oC less than in-situ lake temperature measurements at 1.5 and 5 m depth, respectively. These differences, as well as the large spatio-temporal variations observed in skin temperatures, were likely largely associated with atmospheric effects such as evaporative cooling of the lake surface and infrared absorption by water vapor and SO2. Calculations based on orthorectified TIR imagery thus yielded underestimates of volcanic heat fluxes into the lake, whereas volcanic heat fluxes estimated based on in-situ temperature measurements (68 to 111 MW) were likely more representative of Kawah Ijen in a quiescent state. The ground-based imaging technique should provide a valuable tool to continuously monitor crater-lake temperatures and contribute insight into the spatio-temporal evolution of these temperatures associated with volcanic activity.

  18. Effects of low temperature on breathing pattern and ventilatory responses during hibernation in the golden-mantled ground squirrel.

    Science.gov (United States)

    Webb, Cheryl L; Milsom, William K

    2017-07-01

    During entrance into hibernation in golden-mantled ground squirrels (Callospermophilus lateralis), ventilation decreases as metabolic rate and body temperature fall. Two patterns of respiration occur during deep hibernation. At 7 °C body temperature (T b ), a breathing pattern characterized by episodes of multiple breaths (20.6 ± 1.9 breaths/episode) separated by long apneas or nonventilatory periods (T nvp ) (mean = 11.1 ± 1.2 min) occurs, while at 4 °C T b , a pattern in which breaths are evenly distributed and separated by a relatively short T nvp (0.5 ± 0.05 min) occurs. Squirrels exhibiting each pattern have similar metabolic rates and levels of total ventilation (0.2 and 0.23 ml O2/hr/kg and 0.11 and 0.16 ml air/min/kg, respectively). Squirrels at 7 °C T b exhibit a significant hypoxic ventilatory response, while squirrels at 4 °C T b do not respond to hypoxia at any level of O2 tested. Squirrels at both temperatures exhibit a significant hypercapnic ventilatory response, but the response is significantly reduced in the 4 °C T b squirrels. Carotid body denervation has little effect on the breathing patterns or on the hypercapnic ventilatory responses. It does reduce the magnitude and threshold for the hypoxic ventilatory response. Taken together the data suggest that (1) the fundamental rhythm generator remains functional at low temperatures; (2) the hypercapnic ventilatory response arises from central chemoreceptors that remain functional at very low temperatures; (3) the hypoxic ventilatory response arises from both carotid body and aortic chemoreceptors that are silenced at lower temperatures; and (4) there is a strong correlation between breathing pattern and chemosensitivity.

  19. Atmospheric Circulation of Hot Jupiters: Dayside-Nightside Temperature Differences. II. Comparison with Observations

    CERN Document Server

    Komacek, Thaddeus D; Tan, Xianyu

    2016-01-01

    The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing fractional dayside-nightside brightness temperature difference with increasing incident stellar flux, both averaged across the infrared and in each individual wavelength band. The analytic theory of Komacek & Showman (2016) shows that this trend is due to the decreasing ability with increasing incident stellar flux of waves to propagate from day to night and erase temperature differences. Here, we compare the predictions of this theory to observations, showing that it explains well the shape of the trend of increasing dayside-nightside temperature difference with increasing equilibrium temperature. Applied to individual planets, the theory matches well with observations at high equilibrium temperatures but systematically under-predicts the dayside-nightside brightness temperature differences at equilibrium temperatures less than $2000 \\ \\mathrm{K}$. We interpret this as likely due to as the effects of clouds m...

  20. The Gaia spectrophotometric standard stars survey -II. Instrumental effects of six ground-based observing campaigns

    CERN Document Server

    Altavilla, G; Pancino, E; Galleti, S; Ragaini, S; Bellazzini, M; Cocozza, G; Bragaglia, A; Carrasco, J M; Castro, A; Di Fabrizio, L; Federici, L; Figueras, F; Gebran, M; Jordi, C; Masana, E; Schuster, W; Valentini, G; Voss, H

    2015-01-01

    The Gaia SpectroPhotometric Standard Stars (SPSS) survey started in 2006, it was awarded almost 450 observing nights, and accumulated almost 100,000 raw data frames, with both photometric and spectroscopic observations. Such large observational effort requires careful, homogeneous, and automated data reduction and quality control procedures. In this paper, we quantitatively evaluate instrumental effects that might have a significant (i.e.,$\\geq$1%) impact on the Gaia SPSS flux calibration. The measurements involve six different instruments, monitored over the eight years of observations dedicated to the Gaia flux standards campaigns: DOLORES@TNG in La Palma, EFOSC2@NTT and ROSS@REM in La Silla, CAFOS@2.2m in Calar Alto, BFOSC@Cassini in Loiano, and LaRuca@1.5m in San Pedro Martir. We examine and quantitatively evaluate the following effects: CCD linearity and shutter times, calibration frames stability, lamp flexures, second order contamination, light polarization, and fringing. We present methods to correct ...

  1. Particle precipitations during NEIAL events: simultaneous ground based observations at Svalbard

    Directory of Open Access Journals (Sweden)

    J. Lunde

    2007-06-01

    Full Text Available In this paper we present Naturally Enhanced Ion Acoustic Lines (NEIALs observed with the EISCAT Svalbard Radar (ESR. For the first time, long sequences of NEIALs are recorded, with more than 50 events within an hour, ranging from 6.4 to 140 s in duration. The events took place from ~08:45 to 10:00 UT, 22 January 2004. We combine ESR data with observations of optical aurora by a meridian scanning photometer at wavelengths 557.7, 630.0, 427.8, and 844.6 nm, as well as records from a magnetometer and an imaging riometer. The large numbers of observed NEIALs together with these additional observations, enable us to characterise the particle precipitation during the NEIAL events. We find that the intensities in all optical lines studied must be above a certain level for the NEIALs to appear. We also find that the soft particle precipitation is associated with the down-shifted shoulder in the incoherent scatter spectrum, and that harder precipitation may play a role in the enhancement of the up-shifted shoulder. The minimum energy flux during NEIAL events found in this study was ~3.5 mW/m2 and minimum characteristic energy around 50 eV.

  2. Particle precipitation during NEIAL events: simultaneous ground based nighttime observations at Svalbard

    Directory of Open Access Journals (Sweden)

    J. Lunde

    2009-05-01

    Full Text Available In this paper we present Naturally Enhanced Ion Acoustic Lines (NEIALs observed with the EISCAT Svalbard Radar (ESR together with auroral emissions observed with the Meridian Scanning Photometer (MSP. This is the first report of NEIALs observed during nighttime at Svalbard. Previously, NEIALs have been associated with a strong red line intensity (>10 kR, which exceeds the green line intensities. The high intensity in the red line emission is a sign of abundant low energy electron precipitation. In our observations, one of the NEIAL events was accompanied by the red line emissions far below the previously reported intensities. This happened when the green line intensity exceeds the red line intensity. In this work we discuss the behaviour of electron precipitation characteristics and optical emissions during NEIAL events on the nightside, and we suggest that intensity enhancements in the 844.6 nm emission line could be a better candidate than the 630.0 nm emission as an optical signature for NEIALs.

  3. Multiple asteroid systems : Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations

    NARCIS (Netherlands)

    Marchis, F.; Enriquez, J. E.; Emery, J. P.; Mueller, M.; Baek, M.; Pollock, J.; Assafin, M.; Vieira Martins, R.; Berthier, J.; Vachier, F.; Cruikshank, D. P.; Lim, L. F.; Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; LaCluyze, A. P.

    2012-01-01

    We collected mid-IR spectra from 5.2 to 38 μm using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups. Photometric lightcurves were also obtained for 14 of them during the Spitzer observations to provide the context of the

  4. A comparison of Ne (h model profiles with ground-based and topside sounder observations

    Directory of Open Access Journals (Sweden)

    V. K. Depuev

    2000-06-01

    Full Text Available Monthly median empirical models IRI-95 and NeUoG were compared with incoherent scatter EISCAT and Millstone Hill observations as well as with El Arenosillo Digisonde N e (h bottomside profiles. A comparison was made for various seasons, levels of solar activity, daytime and night-time hours. The results on the topside comparison: 1 the IRI-95 model systematically and strongly overestimates the Ne (h effective scale height both for daytime and night-time periods especially during maximum and middle solar activity both at EISCAT and Millstone Hill; 2 the NeUoG model on the contrary systematically underestimates the scale height at all levels of solar activity. But the NeUoG model provides much better overall agreement with SD being less by a factor of 1.5-1.7 in comparison with the IRI-95 model results. The results on the bottom-side comparison: 1 the IRI-95 accuracy is different for daytime and night-time hours, being much worse for the night-time; 2 the NeUoG model similar to IRI-95 demonstrates much worse accuracy for the night-time hours; 3 the NeUoG model demonstrates no advantages over the IRI-95 model in the bottomside N e (h description. A new simple TopN e model for the N e (h topside distribution based on the EISCAT and Millstone Hill observations is proposed. The model is supposed to be normalized by the observed hmF 2 and NmF 2 values and is valid below a 600 km height. The TopN e model provides good approximation accuracy over EISCAT and Millstone Hill observations. A comparison with the independent Intercosmos-19 topside sounder observations is given.

  5. Observed and simulated ground motions in the San Bernardino basin region for the Hector Mine, California, earthquake

    Science.gov (United States)

    Graves, R.W.; Wald, D.J.

    2004-01-01

    surface wave energy is confined to the region north of this structure, consistent with the observations. The SCEC version 3 model, lacking the basin geometry complexity present in the other two models, fails to provide a satisfactory match to the characteristics of the observed motions. Our study demonstrates the importance of using detailed and accurate basin geometry for predicting ground motions and also highlights the utility of integrating geological, geophysical, and seismological observations in the development and validation of 3D velocity models.

  6. Testing the inversion of asteroids' Gaia photometry combined with ground-based observations

    CERN Document Server

    Santana-Ros, T; Michałowski, T; Tanga, P; Cellino, A

    2015-01-01

    We investigated the reliability of the genetic algorithm which will be used to invert the photometric measurements of asteroids collected by the European Space Agency Gaia mission. To do that, we performed several sets of simulations for 10 000 asteroids having different spin axis orientations, rotational periods and shapes. The observational epochs used for each simulation were extracted from the Gaia mission simulator developed at the Observatoire de la C\\^{o}te d'Azur, while the brightness was generated using a Z-buffer standard graphic method. We also explored the influence on the inversion results of contaminating the data set with Gaussian noise with different $\\sigma$ values. The research enabled us to determine a correlation between the reliability of the inversion method and the asteroid's pole latitude. In particular, the results are biased for asteroids having quasi-spherical shapes and low pole latitudes. This effect is caused by the low lightcurve amplitude observed under such circumstances, as t...

  7. The Spectrum of Earthshine A Pale Blue Dot Observed from the Ground

    CERN Document Server

    Woolf, N J; Traub, W A; Jucks, K W

    2002-01-01

    We report the visible reflection spectrum of the integrated Earth, illuminated as it would be seen as an spatially-unresolved extrasolar planet. The spectrum was derived from observation of lunar earthshine in the range 4800 to 9200 Angstrom at a spectral resolution of about 600. We observe absorption features of ozone, molecular oxygen and water. We see enhanced reflectivity at short wavelengths from Rayleigh scattering, and apparently negligible contributions from aerosol and ocean water scattering. We also see enhanced reflectivity at long wavelengths starting at about 7300 Angstrom, corresponding to the well-known red reflectivity edge of vegetation due to its chlorophyll content; however this signal is not conclusive, due to the breakdown of our simple model at wavelengths beyond 7900 Angstrom.

  8. A Bayesian kriging approach for blending satellite and ground precipitation observations

    Science.gov (United States)

    Verdin, Andrew; Rajagopalan, Balaji; Kleiber, William; Funk, Chris

    2015-02-01

    Drought and flood management practices require accurate estimates of precipitation. Gauge observations, however, are often sparse in regions with complicated terrain, clustered in valleys, and of poor quality. Consequently, the spatial extent of wet events is poorly represented. Satellite-derived precipitation data are an attractive alternative, though they tend to underestimate the magnitude of wet events due to their dependency on retrieval algorithms and the indirect relationship between satellite infrared observations and precipitation intensities. Here we offer a Bayesian kriging approach for blending precipitation gauge data and the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates for Central America, Colombia, and Venezuela. First, the gauge observations are modeled as a linear function of satellite-derived estimates and any number of other variables—for this research we include elevation. Prior distributions are defined for all model parameters and the posterior distributions are obtained simultaneously via Markov chain Monte Carlo sampling. The posterior distributions of these parameters are required for spatial estimation, and thus are obtained prior to implementing the spatial kriging model. This functional framework is applied to model parameters obtained by sampling from the posterior distributions, and the residuals of the linear model are subject to a spatial kriging model. Consequently, the posterior distributions and uncertainties of the blended precipitation estimates are obtained. We demonstrate this method by applying it to pentadal and monthly total precipitation fields during 2009. The model's performance and its inherent ability to capture wet events are investigated. We show that this blending method significantly improves upon the satellite-derived estimates and is also competitive in its ability to represent wet events. This procedure also provides a means to estimate a full conditional distribution

  9. Ground-Truth Observations of Ice-Covered North Slope Lakes Imaged by Radar

    Science.gov (United States)

    1981-10-01

    Cold regions Radar Ice Water supplies 2 A STRACT ( Candu s revers ebb N necoew ad identli by block numbet) Field observations support the interpretation...strong returns (depths > 1.7 m). Inspection of the base maps used to prepare thisfigure (U.S. Geological Survey Maps Teshekpuk C-1, C-2, D-1, D-2 [1...search and Engineering Laboratory; Springfield, Va.: available from National Technical Information Service , 1981. iii, 20 p., illus.; 28 cm. ( CRREL

  10. A technique for estimating ground-water levels at sites in Rhode Island from observation-well data

    Science.gov (United States)

    Socolow, Roy S.; Frimpter, Michael H.; Turtora, Michael; Bell, Richard W.

    1994-01-01

    Estimates of future high, median, and low ground- water levels are needed for engineering and architectural design decisions and for appropriate selection of land uses. For example, the failure of individual underground sewage-disposal systems due to high ground-water levels can be prevented if accurate water-level estimates are available. Estimates of extreme or average conditions are needed because short duration preconstruction obser- vations are unlikely to be adequately represen- tative. Water-level records for 40 U.S. Geological Survey observation wells in Rhode Island were used to describe and interpret water-level fluctuations. The maximum annual range of water levels average about 6 feet in sand and gravel and 11 feet in till. These data were used to develop equations for estimating future high, median, and low water levels on the basis of any one measurement at a site and records of water levels at observation wells used as indexes. The estimating technique relies on several assumptions about temporal and spatial variations: (1) Water levels will vary in the future as they have in the past, (2) Water levels fluctuate seasonally (3) Ground-water fluctuations are dependent on site geology, and (4) Water levels throughout Rhode Island are subject to similar precipitation and climate. Comparison of 6,697 estimates of high, median, and low water levels (depth to water level exceeded 95, 50, and 5 percent of the time, respectively) with the actual measured levels exceeded 95, 50, and 5 percent of the time at 14 sites unaffected by pumping and unknown reasons, yielded mean squared errors ranging from 0.34 to 1.53 square feet, 0.30 to 1.22 square feet, and 0.32 to 2.55 square feet, respectively. (USGS)

  11. Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations

    CERN Document Server

    Marchis, F; Emery, J P; Mueller, M; Baek, M; Pollock, J; Assafin, M; Martins, R Vieira; Berthier, J; Vachier, F; Cruikshank, D P; Lim, L; Reichart, D; Ivarsen, K; Haislip, J; LaCluyz, A

    2016-01-01

    Photometric lightcurves were also obtained for 14 of them during the Spitzer observations to provide the context of the observations and reliable estimates of their absolute magnitudes. The extracted mid-IR spectra were analyzed using a modified standard thermal model (STM) and a thermophysical model (TPM) that takes into account the shape and geometry of the large primary at the time of the Spitzer observation. We derived a reliable estimate of the size, albedo, and beaming factor for each of these asteroids, representing three main taxonomic groups: C, S, and X. For large (volume-equivalent system diameter Deq $\\lt$ 130 km) binary asteroids, the TPM analysis indicates a low thermal inertia ($\\Gamma$ < $\\sim$100 J s-1/2K-1m-2) and their emissivity spectra display strong mineral features, implying that they are covered with a thick layer of thermally insulating regolith. The smaller (surface-equivalent system diameter Deff $\\lt$17 km) asteroids also show some emission lines of minerals, but they are signif...

  12. A comparison of PMSE and other ground-based observations during the NLC-91 campaign

    Science.gov (United States)

    Kirkwood, S.; Cho, J.; Hall, C. M.; Hoppe, U.-P.; Murtagh, D. P.; Stegman, J.; Swartz, W. E.; Van Eyken, A. P.; Wannberg, G.; Witt, G.

    1995-01-01

    During the period July-August 1991, observations were made of Polar Mesospheric Summer Echoes (PMSE) at 46.9 MHz and 224 MHz by the CUPRI and EISCAT radars, respectively, at two sites in northern Scandinavia. Those observations are compared here with observations of noctilucent clouds, nergetic particle precipitation and magnetic disturbances. The appearance and morphology of PMSE are found to be closely correlated at the two frequencies and the two sites, 200 km apart. No correlation is found between PMSE and noctilucent clouds or magnetic disturbance. No correlation is found between energetic particle precipitation and the appearance of PMSE at 46.9 MHz for the whole time period. At 224 MHz, there is no evidence for a correlation before the beginning of August and only one event suggesting a possible correlation after the beginning of August. A minimum in occurrence for PMSE is found between 16 and 21 UT (17-22 LST) which may be related to an expected minimum in background wind strength in that time interval.

  13. Long-term Changes Of Global Gravity Waves Derived From SABER Temperature Observations

    Science.gov (United States)

    Yue, J.; Liu, X.; Xu, J.; Garcia, R. R.; Russell, J. M., III; Mlynczak, M. G.; Wu, D. L.

    2016-12-01

    The global gravity wave (GW) potential energy (PE) per unit mass is derived from SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) temperatures profiles over the past 14 years (2002-2015). Since the SABER data cover longer than one solar cycle, multivariate linear regression is applied to calculate the long-term changes of global GWs and the responses of global GWs to the solar activity, to the QBO (quasi-biennial oscillation) and to the ENSO (El Niño-Southern Oscillation). We find a significant positive long-term change of GW PE at around 60°N in July at 75-90 km, in agreement with the ground radar observations at a similar latitude and height range. Both the monthly and the annual mean long-term changes of GWs are significant at around 60°S. Specifically, the annual mean positive long-term change has a peak of 12-15% per decade at 45°S-60°S and below 80 km, which suggests that eddy diffusion coefficient is increasing in some places. A significant positive long-term change of GWs at around 60°S could be supported by the stronger polar stratospheric jets derived from MERRA (Modern Era Retrospective-analysis for Research and Applications). The response of GWs to solar activity is negative in the lower and middle latitudes and is positive in the higher latitudes. The response of GWs to QBO (as indicated by 30 mb zonal winds over the equator) is negative in the tropical upper stratosphere and extending to higher latitudes at higher altitudes. The response of GWs to ENSO (as indicated by the MEI index) is positive in the tropical upper stratosphere.

  14. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations

    Directory of Open Access Journals (Sweden)

    S. Guinehut

    2012-10-01

    Full Text Available This paper describes an observation-based approach that efficiently combines the main components of the global ocean observing system using statistical methods. Accurate but sparse in situ temperature and salinity profiles (mainly from Argo for the last 10 yr are merged with the lower accuracy but high-resolution synthetic data derived from satellite altimeter and sea surface temperature observations to provide global 3-D temperature and salinity fields at high temporal and spatial resolution. The first step of the method consists in deriving synthetic temperature fields from altimeter and sea surface temperature observations, and salinity fields from altimeter observations, through multiple/simple linear regression methods. The second step of the method consists in combining the synthetic fields with in situ temperature and salinity profiles using an optimal interpolation method. Results show the revolutionary nature of the Argo observing system. Argo observations now allow a global description of the statistical relationships that exist between surface and subsurface fields needed for step 1 of the method, and can constrain the large-scale temperature and mainly salinity fields during step 2 of the method. Compared to the use of climatological estimates, results indicate that up to 50% of the variance of the temperature fields can be reconstructed from altimeter and sea surface temperature observations and a statistical method. For salinity, only about 20 to 30% of the signal can be reconstructed from altimeter observations, making the in situ observing system essential for salinity estimates. The in situ observations (step 2 of the method further reduce the differences between the gridded products and the observations by up to 20% for the temperature field in the mixed layer, and the main contribution is for salinity and the near surface layer with an improvement up to 30%. Compared to estimates derived using in situ observations only, the

  15. AATSR Land Surface Temperature Product Validation Using Ground Measurements in China and Implications for SLSTR

    Science.gov (United States)

    Zhou, Ji; Zmuda, Andy; Desnos, Yves-Louis; Ma, Jin

    2016-08-01

    Land surface temperature (LST) is one of the most important parameters at the interface between the earth's surface and the atmosphere. It acts as a sensitive indicator of climate change and is an essential input parameter for land surface models. Because of the intense variability at different spatial and temporal scales, satellite remote sensing provides the sole opportunity to acquire LSTs over large regions. Validation of the LST products is an necessary step before their applications conducted by scientific community and it is essential for the developers to improve the LST products.

  16. Long-term ground-based microwave radiometric measurements of atmospheric brightness temperature in SKYNET Hefei (31.90N, 117.17E) site

    Science.gov (United States)

    Wang, Zhenzhu; Liu, Dong; Xie, Chenbo; Wang, Bangxin; Zhong, Zhiqing; Wang, Yingjian; Chen, Bin

    2017-02-01

    A dual-frequency, ground-based microwave radiometer (WVR-1100) is used to investigate the behavior of the atmosphere in terms of zenith brightness temperature (TB) at 23.8 and 31.4 GHz respectively. Some experimental findings in SKYNET Hefei site from September 2002 to August 2012 are presented. The cumulative distributions of TB at both frequencies for all sky conditions show four different regions, while only two regions can be identified for clear, lightly cloudy and cloudy condition. Annual cycle of TB at 23.8 GHz is apparently remarkable, indicating the large annual cycle of atmospheric water vapor. Regular seasonal variations of TB are observed with the strongest value in summer and the weakest in winter.

  17. On the use of a regression model for trend estimates from ground-based atmospheric observations in the Southern hemisphere

    CSIR Research Space (South Africa)

    Bencherif, H

    2010-09-01

    Full Text Available The present reports on the use of a multi-regression model adapted at Reunion University for temperature and ozone trend estimates. Depending on the location of the observing site, the studied geophysical signal is broken down in form of a sum...

  18. Estimation of ground heat flux from soil temperature over a bare soil

    Science.gov (United States)

    An, Kedong; Wang, Wenke; Wang, Zhoufeng; Zhao, Yaqian; Yang, Zeyuan; Chen, Li; Zhang, Zaiyong; Duan, Lei

    2017-08-01

    Ground soil heat flux, G 0, is a difficult-to-measure but important component of the surface energy budget. Over the past years, many methods were proposed to estimate G 0; however, the application of these methods was seldom validated and assessed under different weather conditions. In this study, three popular models (force-restore, conduction-convection, and harmonic) and one widely used method (plate calorimetric), which had well performance in publications, were investigated using field data to estimate daily G 0 on clear, cloudy, and rainy days, while the gradient calorimetric method was regarded as the reference for assessing the accuracy. The results showed that harmonic model was well reproducing the G 0 curve for clear days, but it yielded large errors on cloudy and rainy days. The force-restore model worked well only under rainfall condition, but it was poor to estimate G 0 under rain-free conditions. On the contrary, the conduction-convection model was acceptable to determine G 0 under rain-free conditions, but it generated large errors on rainfall days. More importantly, the plate calorimetric method was the best to estimate G 0 under different weather conditions compared with the three models, but the performance of this method is affected by the placement depth of the heat flux plate. As a result, the heat flux plate was recommended to be buried as close as possible to the surface under clear condition. But under cloudy and rainy conditions, the plate placed at depth of around 0.075 m yielded G 0 well. Overall, the findings of this paper provide guidelines to acquire more accurate estimation of G 0 under different weather conditions, which could improve the surface energy balance in field.

  19. Very-low-frequency resistivity, self-potential and ground temperature surveys on Taal volcano (Philippines): Implications for future activity

    Science.gov (United States)

    Zlotnicki, J.; Vargemezis, G.; Johnston, M. J. S.; Sasai, Y.; Reniva, P.; Alanis, P.

    2017-06-01

    Taal volcano is one of the most dangerous volcanoes in the Philippines. Thirty-three eruptions have occurred through historical time with several exhibiting cataclysmic phases. Most recent eruptions are confined to Volcano Island located within the prehistoric Taal collapse caldera that is now filled by Taal Lake. The last eruptive activity from 1965 to 1977 took place from Mt. Tabaro, about 2 km to the southwest of the Main Crater center. Since this time, episodes of seismic activity, ground deformation, gas release, surface fissuring, fumarole activity and temperature changes are recorded periodically around the main crater, but no major eruption has occurred. This period of quiescence is the third longest period without eruptive activity since 1572. In March 2010, a campaign based on Very-Low-Frequency (VLF) resistivity surveys together with repeated surveys of self-potential, ground temperature and fissure activity was intensified and the results compared to a large-scale Electrical Resistivity Tomography experiment. This work fortunately occurred before, within and after a new seismovolcanic crisis from late April 2010 to March 2011. The joint analysis of these new data, together with results from previous magnetotelluric soundings, allows a better description of the electrical resistivity and crustal structure beneath the Main Crater down to a depth of several kilometers. No indication of growth of the two geothermal areas located on both sides of the northern crater rim was apparent from 2005 to March 2010. These areas appear controlled by active fissures, opened during the 1992 and 1994 crises, that dip downward towards the core of the hydrothermal system located at about 2.5 km depth beneath the crater. Older mineralized fissures at lower elevations to the North of the geothermal areas also dip downward under the crater. Repeated self-potential and ground temperature surveys completed between 2005 and 2015 show new geothermal and hydrothermal activity in

  20. Haze in Pluto's atmosphere: Results from SOFIA and ground-based observations of the 2015 June 29 Pluto occultation

    Science.gov (United States)

    Bosh, A. S.; Person, M. J.; Zuluaga, C. A.; Sickafoose, A. A.; Levine, S. E.; Pasachoff, J. M.; Babcock, B. A.; Dunham, E. W.; McLean, I.; Wolf, J.; Abe, F.; Becklin, E.; Bida, T. A.; Bright, L. P.; Brothers, T.; Christie, G.; Collins, P. L.; Durst, R. F.; Gilmore, A. C.; Hamilton, R.; Harris, H. C.; Johnson, C.; Kilmartin, P. M.; Kosiarek, M. R.; Leppik, K.; Logsdon, S. E.; Lucas, R.; Mathers, S.; Morley, C. J. K.; Nelson, P.; Ngan, H.; Pfüller, E.; Natusch, T.; Röser, H.-P.; Sallum, S.; Savage, M.; Seeger, C. H.; Siu, H.; Stockdale, C.; Suzuki, D.; Thanathibodee, T.; Tilleman, T.; Tristram, P. J.; Van Cleve, J.; Varughese, C.; Weisenbach, L. W.; Widen, E.; Wiedemann, M.

    2015-11-01

    We observed the 29 June 2015 occultation by Pluto from SOFIA and several ground-based sites in New Zealand. Pre-event astrometry (described in Zuluaga et al., this conference) allowed us to navigate SOFIA into Pluto's central flash (Person et al., this conference). Fortuitously, the central flash also fell over the Mt. John University Observatory (Pasachoff et al., this conference). We combine all of our airborne and ground-based data to produce a geometric solution for the occultation and to investigate the state of Pluto's atmosphere just two weeks before the New Horizons spacecraft's close encounter with Pluto. We find that the atmosphere parameters at half-light are unchanged from our observations in 2011 (Person et al. 2013) and 2013 (Bosh et al. 2015). By combining our light-curve inversion with recent radius measurements from New Horizons, we find strong evidence for an extended haze layer in Pluto's atmosphere. See also Sickafoose et al. (this conference) for an evaluation of the particle sizes and properties.SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Support for this work was provided by NASA SSO grants NNX15AJ82G (Lowell Observatory), NNX10AB27G (MIT), and NNX12AJ29G (Williams College), and by the National Research Foundation of South Africa.

  1. Model Predictions and Ground-based Observations for Jupiter's Magnetospheric Environment: Application to the JUICE and Juno Missions

    Science.gov (United States)

    Achilleos, Nicholas; Guio, Patrick; Arridge, Christopher S.; Ray, Licia C.; Yates, Japheth N.; Fossey, Stephen J.; Savini, Giorgio; Pearson, Mick; Fernando, Nathalie; Gerasimov, Roman; Murat, Thomas

    2016-10-01

    The advent of new missions to the Jovian system such as Juno (recently arrived) and JUICE (scheduled for 2022 launch) makes timely the provision of model-based predictions for the physical conditions to be encountered by these spacecraft; as well as the planning of simultaneous, ground-based observations of the Jovian system.Using the UCL Jovian magnetodisc model, which calculates magnetic field and plasma distributionsaccording to Caudal's (1986) force-balance formalism, we provide predictions of the following quantities along representative Juno / JUICE orbits through the middle magnetosphere: (i) Magnetic field strength and direction; (ii) Density and / or pressure of the 'cold' and 'hot' particle populations; (iii) Plasma angular velocity.The characteristic variation in these parameters is mainly influenced by the periodic approaches towards and recessions from the magnetodisc imposed on the 'synthetic spacecraft' by the planet's rotating, tilteddipole field. We also include some corresponding predictions for ionospheric / thermospheric conditions at the magnetic footpoint of the spacecraft, using the JASMIN model (Jovian Atmospheric Simulatorwith Magnetosphere, Ionosphere and Neutrals).We also present preliminary imaging results from 'IoSpot', a planned, ground-based programme of observations based at the University College London Observatory (UCLO) which targets ionized sulphur emissions from the Io plasma torus. Such programmes, conducted simultaneously with the above missions, will provide valuable context for the overall physical conditions within the Jovian magnetosphere, for which Io's volcanoes are the principal source of plasma.

  2. X-ray observations of complex temperature structure in the cool-core cluster A85

    Energy Technology Data Exchange (ETDEWEB)

    Schenck, David E.; Datta, Abhirup; Burns, Jack O. [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Science, University of Colorado, Boulder, CO 80309 (United States); Skillman, Sam [Kavli Fellow, Kavli Institute for Particle Astrophysics and Cosmology, SLAC, CA 94025 (United States)

    2014-07-01

    X-ray observations were used to examine the complex temperature structure of A85, a cool-core galaxy cluster. Temperature features can provide evidence of merging events which shock heat the intracluster gas. Temperature maps were made from both Chandra and XMM-Newton observations. The combination of a new, long-exposure XMM observation and an improved temperature map binning technique produced the highest fidelity temperature maps of A85 to date. Hot regions were detected near the subclusters to the south and southwest in both the Chandra and XMM temperature maps. The presence of these structures implies A85 is not relaxed. The hot regions may indicate the presence of shocks. The Mach numbers were estimated to be ∼1.9 at the locations of the hot spots. Observational effects will tend to systematically reduce temperature jumps, so the measured Mach numbers are likely underestimated. Neither temperature map showed evidence for a shock in the vicinity of the presumed radio relic near the southwest subcluster. However, the presence of a weak shock cannot be ruled out. There was tension between the temperatures measured by the two instruments.

  3. Sedimentary basin effects in Seattle, Washington: Ground-motion observations and 3D simulations

    Science.gov (United States)

    Frankel, Arthur; Stephenson, William; Carver, David

    2009-01-01

    Seismograms of local earthquakes recorded in Seattle exhibit surface waves in the Seattle basin and basin-edge focusing of S waves. Spectral ratios of Swaves and later arrivals at 1 Hz for stiff-soil sites in the Seattle basin show a dependence on the direction to the earthquake, with earthquakes to the south and southwest producing higher average amplification. Earthquakes to the southwest typically produce larger basin surface waves relative to S waves than earthquakes to the north and northwest, probably because of the velocity contrast across the Seattle fault along the southern margin of the Seattle basin. S to P conversions are observed for some events and are likely converted at the bottom of the Seattle basin. We model five earthquakes, including the M 6.8 Nisqually earthquake, using 3D finite-difference simulations accurate up to 1 Hz. The simulations reproduce the observed dependence of amplification on the direction to the earthquake. The simulations generally match the timing and character of basin surface waves observed for many events. The 3D simulation for the Nisqually earth-quake produces focusing of S waves along the southern margin of the Seattle basin near the area in west Seattle that experienced increased chimney damage from the earthquake, similar to the results of the higher-frequency 2D simulation reported by Stephenson et al. (2006). Waveforms from the 3D simulations show reasonable agreement with the data at low frequencies (0.2-0.4 Hz) for the Nisqually earthquake and an M 4.8 deep earthquake west of Seattle.

  4. Ground-based multiwavelength observations of comet 103P/Hartley 2

    Energy Technology Data Exchange (ETDEWEB)

    Gicquel, A.; Villanueva, G. L.; Cordiner, M. A. [Catholic University of America, Physics Department, 620 Michigan Avenue NE, Washington, DC (United States); Milam, S. N.; Charnley, S. B. [Goddard Center for Astrobiology, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Remijan, A. J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Coulson, I. M. [Joint Astronomy Centre, 660 North A' ohoku Place University Park, Hilo, HI 96720 (United States); Chuang, Y.-L.; Kuan, Y.-J., E-mail: adeline.gicquel@nasa.gov, E-mail: stefanie.n.milam@nasa.gov, E-mail: geronimo.l.villanueva@nasa.gov, E-mail: steven.b.charnley@nasa.gov, E-mail: martin.a.cordiner@nasa.gov, E-mail: aremijan@nrao.edu, E-mail: i.coulson@jach.hawaii.edu, E-mail: ylchuang@std.ntnu.edu.tz, E-mail: kuan@ntnu.edu.tw [National Taiwan Normal University, 88 Sec. 4 Ting-Chou Road, Taipei 116, Taiwan (China)

    2014-10-10

    The Jupiter-family comet 103P/Hartley 2 (103P) was the target of the NASA EPOXI mission. In support of this mission, we conducted observations from radio to submillimeter wavelengths of comet 103P in the three weeks preceding the spacecraft rendezvous on UT 2010 November 4.58. This time period included the passage at perihelion and the closest approach of the comet to the Earth. Here, we report detections of HCN, H{sub 2}CO, CS, and OH and upper limits for HNC and DCN toward 103P using the Arizona Radio Observatory Kitt Peak 12 m telescope (ARO 12 m) and submillimeter telescope (SMT), the James Clerk Maxwell Telescope (JCMT), and the Green Bank Telescope (GBT). The water production rate, Q{sub H{sub 2O}} = (0.67-1.07) × 10{sup 28} s{sup –1}, was determined from the GBT OH data. From the average abundance ratios of HCN and H{sub 2}CO relative to water (0.13 ± 0.03% and 0.14 ± 0.03%, respectively), we conclude that H{sub 2}CO is depleted and HCN is normal with respect to typically observed cometary mixing ratios. However, the abundance ratio of HCN with water shows a large diversity with time. Using the JCMT data, we measured an upper limit for the DCN/HCN ratio <0.01. Consecutive observations of ortho-H{sub 2}CO and para-H{sub 2}CO on November 2 (from data obtained at the JCMT) allowed us to derive an ortho:para ratio (OPR) of ≈2.12 ± 0.59 (1σ), corresponding to T {sub spin} > 8 K (2σ).

  5. Solar g-mode oscillations: Comparison of SMM-ACRIM and ground-based observations

    Science.gov (United States)

    Scherrer, Philip H.

    1989-01-01

    Progress was made in access to data and in developing programs for its analysis. The difficulties in completing the work in the planned time can be traced to several factors. The correction of the Stanford oscillation using gridded intensity data was not successful. It was concluded that due to poor continuity of the 1985 and 1986 data due to clouds, that a joint analysis with the ACRIM data (best solar oscillation data to date) on the summer 1987 observations should be performed. The 1988 Stanford oscillation data are being examined and the cross comparison of the ACRIM spectrum with the Standford spectrum for 1987 in the g-mode regime will shortly begin.

  6. Multi-component ground-based observation of ULF waves: goals and methods

    Directory of Open Access Journals (Sweden)

    E. N. Fedorov

    1998-06-01

    Full Text Available A revival of the combined magnetic and telluric electric measurements at magnetic observatories is suggested.A number of problems, where such observations might be very helpful, are outlined: 1 the account for the resonance structure of the ULF field during the magnetotelluric probing of low-conductive geoelectrical structures; 2 the hydromagnetic diagnostics of the magnetospheric plasma distribution; 3 the discrimination of ionospheric and seismic contributions in anomalous ULF signals possibly related with earthquakes. The experimental apparatus for telluric current measurements, which has recently been installed at the observatories of Borok (Russia and L'Aquila (Italy, is described.

  7. High Resolution 3-D temperature and salinity fields derived from in situ and satellite observations

    Directory of Open Access Journals (Sweden)

    S. Guinehut

    2012-03-01

    Full Text Available This paper describes an observation-based approach that combines efficiently the main components of the global ocean observing system using statistical methods. Accurate but sparse in situ temperature and salinity profiles (mainly from Argo for the last 10 years are merged with the lower accuracy but high-resolution synthetic data derived from altimeter and sea surface temperature satellite observations to provide global 3-D temperature and salinity fields at high temporal and spatial resolution. The first step of the method consists in deriving synthetic temperature fields from altimeter and sea surface temperature observations and salinity fields from altimeter observations through multiple/simple linear regression methods. The second step of the method consists in combining the synthetic fields with in situ temperature and salinity profiles using an optimal interpolation method. Results show the revolution of the Argo observing system. Argo observations now allow a global description of the statistical relationships that exist between surface and subsurface fields needed for step 1 of the method and can constrain the large-scale temperature and mainly salinity fields during step 2 of the method. Compared to the use of climatological estimates, results indicate that up to 50 % of the variance of the temperature fields can be reconstructed from altimeter and sea surface temperature observations and a statistical method. For salinity, only about 20 to 30 % of the signal can be reconstructed from altimeter observations, making the in situ observing system mandatory for salinity estimates. The in situ observations (step 2 of the method reduce additionally the error by up to 20 % for the temperature field in the mixed layer and the main contribution is for salinity and the near surface layer with an improvement up to 30 %. Compared to estimates derived using in situ observations only, the merged fields provide a better reconstruction of the high

  8. Double Star, Cluster, and ground-based observations of magnetic reconnection during an interval of duskward oriented IMF: preliminary results

    Directory of Open Access Journals (Sweden)

    J. A. Wild

    2005-11-01

    Full Text Available We present a space- and ground-based study exploiting data from the coordinated Cluster and Double Star missions in order to investigate dayside magnetic reconnection under BY+ dominated IMF conditions. In-situ observations of magnetosheath flux transfer events combined with measurements of pulsed poleward and dawnward directed flows in the pre-noon sector high-latitude northern hemisphere ionosphere are interpreted as indications of pulsed magnetic reconnection during an interval in which the IMF remained relatively steady. Observations of newly-reconnected magnetic flux tubes anchored in the northern hemisphere both at mid-latitudes and in the vicinity of the subsolar point suggests that during BY+ dominated IMF, reconnection is not, as proposed previously, limited to the high-latitude magnetopause.

  9. Sub-seasonal pressure, geometry and sediment transport changes observed in subglacial channels from the analysis of seismic ground motion

    Science.gov (United States)

    Gimbert, F.; Tsai, V. C.; Amundson, J. M.; Bartholomaus, T. C.; Walter, J. I.

    2016-12-01

    Water from ice melt and precipitation that flows to and pressurizes the base of glaciers contributes to glacier and ice sheet acceleration. Predicting acceleration and its impact on ice mass loss and sea-level rise under global climate warming therefore requires knowledge of subglacial channel evolution and water pressurization, which remains limited by a lack of observations. Here we show that ground motion caused by subglacial channel flow at Mendenhall Glacier (Alaska) can be used to recover simultaneously basal water pressure, channel geometry and sediment transport throughout the melt season. We provide observations of the interplay between these physical quantities and discuss the implications for glacier sliding and erosion. By constraining the physics of subglacial hydrology, our framework and its application to outlet glaciers of the Greenland and Antarctic ice sheets may lead to more reliable predictions of ice flow, sea level rise and subglacial erosion rates.

  10. Observation of gamma ray bursts at ground level under the thunderclouds

    Science.gov (United States)

    Kuroda, Y.; Oguri, S.; Kato, Y.; Nakata, R.; Inoue, Y.; Ito, C.; Minowa, M.

    2016-07-01

    We observed three γ-ray bursts related to thunderclouds in winter using the prototype of anti-neutrino detector PANDA made of 360-kg plastic scintillator deployed at Ohi Power Station at the coastal area of the Japan Sea. The maximum rate of the events which deposited the energy higher than 3 MeV was (5.5 ± 0.1) ×102 /s. Monte Carlo simulation showed that electrons with approximately monochromatic energy falling downwards from altitudes of order 100 m roughly produced the observed total energy spectra of the bursts. It is supposed that secondary cosmic-ray electrons, which act as seed, were accelerated in electric field of thunderclouds and multiplied by relativistic runaway electron avalanche. We actually found that the γ-rays of the bursts entered into the detector from the direction close to the zenith. The direction stayed constant during the burst within the detector resolution. In addition, taking advantage of the delayed coincidence detection of the detector, we found neutron events in one of the bursts at the maximum rate of ∼ 14 ± 5 /s.

  11. The Impact of Time Difference between Satellite Overpass and Ground Observation on Cloud Cover Performance Statistics

    Directory of Open Access Journals (Sweden)

    Jędrzej S. Bojanowski

    2014-12-01

    Full Text Available Cloud property data sets derived from passive sensors onboard the polar orbiting satellites (such as the NOAA’s Advanced Very High Resolution Radiometer have global coverage and now span a climatological time period. Synoptic surface observations (SYNOP are often used to characterize the accuracy of satellite-based cloud cover. Infrequent overpasses of polar orbiting satellites combined with the 3- or 6-h SYNOP frequency lead to collocation time differences of up to 3 h. The associated collocation error degrades the cloud cover performance statistics such as the Hanssen-Kuiper’s discriminant (HK by up to 45%. Limiting the time difference to 10 min, on the other hand, introduces a sampling error due to a lower number of corresponding satellite and SYNOP observations. This error depends on both the length of the validated time series and the SYNOP frequency. The trade-off between collocation and sampling error call for an optimum collocation time difference. It however depends on cloud cover characteristics and SYNOP frequency, and cannot be generalized. Instead, a method is presented to reconstruct the unbiased (true HK from HK affected by the collocation differences, which significantly (t-test p < 0.01 improves the validation results.

  12. Ground-based Multiwavelength Observations of Comet 103P/Hartley 2

    CERN Document Server

    Gicquel, A; Villanueva, G L; Remijan, A J; Coulson, I M; Chuang, Y -L; Charnley, S B; Cordiner, M A; Kuan, Y -J

    2014-01-01

    The Jupiter-family comet 103P/Hartley 2 (103P) was the target of the NASA EPOXI mission. In support of this mission, we conducted observations from radio to submillimeter wavelengths of comet 103P in the three weeks preceding the spacecraft rendezvous on UT 2010 November 4.58. This time period included the passage at perihelion and the closest approach of the comet to the Earth. Here we report detections of HCN, H2CO, CS, and OH and upper limits for HNC and DCN towards 103P, using the Arizona Radio Observatory Kitt Peak 12m telescope (ARO 12m) and submillimeter telescope (SMT), the James Clerk Maxwell Telescope (JCMT) and the Greenbank Telescope (GBT). The water production rate, QH2O = (0.67 - 1.07) x 10^28 s^-1, was determined from the GBT OH data. From the average abundance ratios of HCN and H2CO relative to water (0.13 +/- 0.03 % and 0.14 +/- 0.03 %, respectively), we conclude that H2CO is depleted and HCN is normal with respect to typically-observed cometary mixing ratios. However, the abundance ratio of ...

  13. Observation of gamma ray bursts at ground level under the thunderclouds

    CERN Document Server

    Kuroda, Y; Kato, Y; Nakata, R; Inoue, Y; Ito, C; Minowa, M

    2016-01-01

    We observed three $\\gamma$-ray bursts related to thunderclouds in winter using the prototype of anti-neutrino detector PANDA made of 360-kg plastic scintillator deployed at Ohi Power Station at the coastal area of the Japan Sea. The maximum rate of the events which deposited the energy higher than 3 MeV was $(5.5 \\pm 0.1) \\times 10^2 {\\rm /s}$. Monte Carlo simulation showed that the observed total energy spectra of the bursts are well described by the bremsstrahlung $\\gamma$-rays by electrons with approximately monochromatic energy falling downwards from altitudes of order $100\\,$m. It is supposed that secondary cosmic-ray electrons, which act as seed, were accelerated in electric field of thunderclouds and multiplied by relativistic runaway electron avalanche. We actually found that the $\\gamma$-rays of the bursts entered into the detector from the direction close to the zenith. The direction stayed constant during the burst within the detector resolution. In addition, taking advantage of the delayed coincid...

  14. Requirements for sea surface temperature ground truth in the Indonesian region

    Science.gov (United States)

    Penrose, J.

    1985-01-01

    The comparatively low density of ship and XBT observations in large areas of the Southern Hemisphere and the tropics limits the extent to which satellite SST estimates can be validated on a global basis. These limitations are discussed, and some recommendations for correction are given.

  15. Coordinated ground-based and Cluster observations of large amplitude global magnetospheric oscillations during a fast solar wind speed interval

    Directory of Open Access Journals (Sweden)

    I. R. Mann

    Full Text Available We present magnetospheric observations of very large amplitude global scale ULF waves, from 9 and 10 December 2000 when the upstream solar wind speed exceeded 600 km/s. We characterise these ULF waves using ground-based magnetometer, radar and optical instrumentation on both the dawn and dusk flanks; we find evidence to support the hypothesis that discrete frequency field line resonances (FLRs were being driven by magnetospheric waveguide modes. During the early part of this interval, Cluster was on an outbound pass from the northern dusk side magnetospheric lobe into the magnetosheath, local-time conjugate to the Canadian sector. In situ magnetic fluctuations, observed by Cluster FGM, show evidence of quasi-periodic motion of the magnetosheath boundary layer with the same period as the ULF waves seen on the ground. Our observations represent the first simultaneous magnetometer, radar and optical observations of the characteristics of FLRs, and confirm the potential importance of ULF waves for magnetosphere-ionosphere coupling, particularly via the generation and modulation of electron precipitation into the ionosphere. The in situ Cluster measurements support the hypothesis that, during intervals of fast solar wind speed, the Kelvin-Helmholtz instability (KHI can excite magnetospheric waveguide modes which bathe the flank magnetosphere with discrete frequency ULF wave power and drive large amplitude FLRs. 

    Paper submitted to the special issue devoted to "Cluster: First scientific results", Ann. Geophysicae, 19, 10/11/12, 2001.

    Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; MHD waves and instabilities; solar wind-magnetosphere interactions

  16. Methods for characterizing fine particulate matter using ground observations and remotely sensed data: potential use for environmental public health surveillance.

    Science.gov (United States)

    Al-Hamdan, Mohammad Z; Crosson, William L; Limaye, Ashutosh S; Rickman, Douglas L; Quattrochi, Dale A; Estes, Maurice G; Qualters, Judith R; Sinclair, Amber H; Tolsma, Dennis D; Adeniyi, Kafayat A; Niskar, Amanda Sue

    2009-07-01

    This study describes and demonstrates different techniques for surface fitting daily environmental hazards data of particulate matter with aerodynamic diameter less than or equal to 2.5 microm (PM2.5) for the purpose of integrating respiratory health and environmental data for the Centers for Disease Control and Prevention (CDC) pilot study of Health and Environment Linked for Information Exchange (HELIX)-Atlanta. It presents a methodology for estimating daily spatial surfaces of ground-level PM2.5 concentrations using the B-Spline and inverse distance weighting (IDW) surface-fitting techniques, leveraging National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectrometer (MODIS) data to complement U.S. Environmental Protection Agency (EPA) ground observation data. The study used measurements of ambient PM2.5 from the EPA database for the year 2003 as well as PM2.5 estimates derived from NASA's satellite data. Hazard data have been processed to derive the surrogate PM2.5 exposure estimates. This paper shows that merging MODIS remote sensing data with surface observations of PM,2. not only provides a more complete daily representation of PM,2. than either dataset alone would allow, but it also reduces the errors in the PM2.5-estimated surfaces. The results of this study also show that although the IDW technique can introduce some numerical artifacts that could be due to its interpolating nature, which assumes that the maxima and minima can occur only at the observation points, the daily IDW PM2.5 surfaces had smaller errors in general, with respect to observations, than those of the B-Spline surfaces. Finally, the methods discussed in this paper establish a foundation for environmental public health linkage and association studies for which determining the concentrations of an environmental hazard such as PM2.5 with high accuracy is critical.

  17. Ground-based Transit Observation of the Habitable-zone Super-Earth K2-3d

    Science.gov (United States)

    Fukui, Akihiko; Livingston, John; Narita, Norio; Hirano, Teruyuki; Onitsuka, Masahiro; Ryu, Tsuguru; Kusakabe, Nobuhiko

    2016-12-01

    We report the first ground-based transit observation of K2-3d, a 1.5 R ⊕ planet supposedly within the habitable zone around a bright M-dwarf host star, using the Okayama 188 cm telescope and the multi(grz)-band imager MuSCAT. Although the depth of the transit (0.7 mmag) is smaller than the photometric precisions (1.2, 0.9, and 1.2 mmag per 60 s for the g, r, and z bands, respectively), we marginally but consistently identify the transit signal in all three bands, by taking advantage of the transit parameters from K2, and by introducing a novel technique that leverages multi-band information to reduce the systematics caused by second-order extinction. We also revisit previously analyzed Spitzer transit observations of K2-3d to investigate the possibility of systematic offsets in transit timing, and find that all the timing data can be explained well by a linear ephemeris. We revise the orbital period of K2-3d to be 44.55612 ± 0.00021 days, which corrects the predicted transit times for 2019, i.e., the era of the James Webb Space Telescope, by ∼80 minutes. Our observation demonstrates that (1) even ground-based, 2 m class telescopes can play an important role in refining the transit ephemeris of small-sized, long-period planets, and (2) a multi-band imager is useful to reduce the systematics of atmospheric origin, in particular for bluer bands and for observations conducted at low-altitude observatories.

  18. An Environmental and Economic Assessment for Selecting the Optimal Ground Heat Exchanger by Considering the Entering Water Temperature

    Directory of Open Access Journals (Sweden)

    Jimin Kim

    2015-07-01

    Full Text Available In order to solve environmental problems such as global warming and resource depletion in the construction industry, interest in new renewable energy (NRE systems has increased. The ground source heat pump (GSHP system is the most efficient system among NRE systems. However, since the initial investment cost of the GSHP is quite expensive, a feasibility study needs to be conducted from the life-cycle perspective. Meanwhile, the efficiency of GSHP depends most significantly on the entering water temperature (EWT of the ground heat exchanger (GHE. Therefore, this study aims to assess the environmental and economic effects of the use of GHE for selecting the optimal GHE. This study was conducted in three steps: (i establishing the basic information and selecting key factors affecting GHE performances; (ii making possible alternatives of the GHE installation by considering EWT; and (iii using life-cycle assessment and life-cycle cost, as well as comprehensive evaluation of the environmental and economic effects on the GHE. These techniques allow for easy and accurate determination of the optimal design of the GHE from the environmental and economic effects in the early design phase. In future research, a multi-objective decision support model for the GSHP will be developed.

  19. Ground-based millimeter-wave observation of stratospheric ClO over Atacama, Chile in the mid-latitude Southern Hemisphere

    Directory of Open Access Journals (Sweden)

    T. Kuwahara

    2012-11-01

    Full Text Available We have performed ground-based measurements of stratospheric chlorine monoxide (ClO during the summer in 2009 over the Atacama highland, Chile, a new observing site in the mid-latitude region in the Southern Hemisphere, by using a millimeter-wave spectroscopic radiometer. The radiometer, equipped with a superconducting receiver and a digital Fourier spectrometer, was developed by Nagoya University, and the new observing system provides us high sensitivity and stable performance to measure the very weak ClO lines. The receiver noise temperature of the superconducting receiver is 170 K in DSB. To reveal the diurnal variation of ClO, we retrieved the vertical mixing ratio profiles by the weighted-damped least-squares algorithm applied for the spectral data at 203 GHz obtained between 5 and 16 December 2009. The total error on the retrieval is estimated to be 20% to 30% in an altitude range from 40 km to 50 km. The amplitude of the diurnal variation is estimated as 33% of the daytime average at 40 km. The observed time variation shows a pattern similar to that of the previous works observed in the northern mid-latitude region.

  20. The Palomar Kernel Phase Experiment: Testing Kernel Phase Interferometry for Ground-based Astronomical Observations

    CERN Document Server

    Pope, Benjamin; Hinkley, Sasha; Ireland, Michael J; Greenbaum, Alexandra; Latyshev, Alexey; Monnier, John D; Martinache, Frantz

    2015-01-01

    At present, the principal limitation on the resolution and contrast of astronomical imaging instruments comes from aberrations in the optical path, which may be imposed by the Earth's turbulent atmosphere or by variations in the alignment and shape of the telescope optics. These errors can be corrected physically, with active and adaptive optics, and in post-processing of the resulting image. A recently-developed adaptive optics post-processing technique, called kernel phase interferometry, uses linear combinations of phases that are self-calibrating with respect to small errors, with the goal of constructing observables that are robust against the residual optical aberrations in otherwise well-corrected imaging systems. Here we present a direct comparison between kernel phase and the more established competing techniques, aperture masking interferometry, point spread function (PSF) fitting and bispectral analysis. We resolve the alpha Ophiuchi binary system near periastron, using the Palomar 200-Inch Telesco...

  1. Robust parameter estimation for compact binaries with ground-based gravitational-wave observations using LALInference

    CERN Document Server

    Veitch, John; Farr, Benjamin; Farr, Will M; Graff, Philip; Vitale, Salvatore; Aylott, Ben; Blackburn, Kent; Christensen, Nelson; Coughlin, Michael; Del Pozzo, Walter; Feroz, Farhan; Gair, Jonathan; Haster, Carl-Johan; Kalogera, Vicky; Littenberg, Tyson; Mandel, Ilya; O'Shaughnessy, Richard; Pitkin, Matthew; Rodriguez, Carl; Röver, Christian; Sidery, Trevor; Smith, Rory; Van Der Sluys, Marc; Vecchio, Alberto; Vousden, Will; Wade, Leslie

    2014-01-01

    The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary coalescence (CBC) signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We are able to show using three independent sampling algorithms that our implementation consistently converges on the same results, giving confidence in the parameter estimates thus obtained. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star, a neutron star-black hole binary and a bin...

  2. Geotail observations of temperature anisotropy of the two-component protons in the dusk plasma sheet

    Directory of Open Access Journals (Sweden)

    M. N. Nishino

    2007-03-01

    Full Text Available In search for clues towards the understanding of the cold plasma sheet formation under northward IMF, we study the temperature anisotropy of the two-component protons in the plasma sheet near the dusk low-latitude boundary observed by the Geotail spacecraft. The two-component protons result from mixing of the cold component from the solar wind and the hot component of the magnetospheric origin, and may be the most eloquent evidence for the transport process across the magnetopause. The cold component occasionally has a strong anisotropy in the dusk flank, and the sense of the anisotropy depends on the observed locations: the parallel temperature is enhanced in the tail flank while the perpendicular temperature is enhanced on the dayside. The hot component is nearly isotropic in the tail while the perpendicular temperature is enhanced on the dayside. We discuss possible mechanism that can lead to the observed temperature anisotropies.

  3. Water balance-based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous United States

    Science.gov (United States)

    Wan, Zhanming; Zhang, Ke; Xue, Xianwu; Hong, Zhen; Hong, Yang; Gourley, Jonathan J.

    2015-08-01

    The objective of this study is to produce an observationally based monthly evapotranspiration (ET) product using the simple water balance equation across the conterminous United States (CONUS). We adopted the best quality ground and satellite-based observations of the water budget components, i.e., precipitation, runoff, and water storage change, while ET is computed as the residual. Precipitation data are provided by the bias-corrected PRISM observation-based precipitation data set, while runoff comes from observed monthly streamflow values at 592 USGS stream gauging stations that have been screened by strict quality controls. We developed a land surface model-based downscaling approach to disaggregate the monthly GRACE equivalent water thickness data to daily, 0.125° values. The derived ET computed as the residual from the water balance equation is evaluated against three sets of existing ET products. The similar spatial patterns and small differences between the reconstructed ET in this study and the other three products show the reliability of the observationally based approach. The new ET product and the disaggregated GRACE data provide a unique, important hydro-meteorological data set that can be used to evaluate the other ET products as a benchmark data set, assess recent hydrological and climatological changes, and terrestrial water and energy cycle dynamics across the CONUS. These products will also be valuable for studies and applications in drought assessment, water resources management, and climate change evaluation.

  4. Galileo SSI and Cassini ISS Observations of Io's Pele Hotspot: Temperatures, Areas, and Variation with Time

    Science.gov (United States)

    Radebaugh, J.; McEwen, A. S.; Milazzo, M.; Davies, A. G.; Keszthelyi, L. P.; Geissler, P.

    2002-01-01

    Temperatures of Io's Pele hotspot were found using dual-filter observations from Galileo and Cassini. Temperatures average 1375 K, but vary widely over tens of minutes. Dropoff in emission with rotation consistent with lava fountaining at a lava lake. Additional information is contained in the original extended abstract.

  5. Galileo SSI and Cassini ISS Observations of Io's Pele Hotspot: Temperatures, Areas, and Variation with Time

    Science.gov (United States)

    Radebaugh, J.; McEwen, A. S.; Milazzo, M.; Davies, A. G.; Keszthelyi, L. P.; Geissler, P.

    2002-01-01

    Temperatures of Io's Pele hotspot were found using dual-filter observations from Galileo and Cassini. Temperatures average 1375 K, but vary widely over tens of minutes. Dropoff in emission with rotation consistent with lava fountaining at a lava lake. Additional information is contained in the original extended abstract.

  6. Impact of urban expansion on meteorological observation data and overestimation to regional air temperature in China

    Institute of Scientific and Technical Information of China (English)

    SHAO Quanqin; SUN Chaoyang; LIU Jiyuan; HE Jianfeng; KUANG Wenhui; TAO Fulu

    2011-01-01

    Since the implementation of the reform and opening up policy in China in the late 1970s,some meteorological stations 'entered' cities passively due to urban expansion.Changes in the surface and built environment around the stations have influenced observations of air temperature.When the observational data from urban stations are applied in the interpolation of national or regional scale air temperature dataset,they could lead to overestimation of regional air temperature and inaccurate assessment of warming.In this study,the underlying surface surrounding 756 meteorological stations across China was identified based on remote sensing images over a number of time intervals to distinguish the rural stations that 'entered' into cities.Then,after removing the observational data from these stations which have been influenced by urban expansion,a dataset of background air temperatures was generated by interpolating the observational data from the remaining rural stations.The mean urban heat island effect intensity since 1970 was estimated by comparing the original observational records from urban stations with the background air temperature interpolated.The result shows that urban heat island effect does occur due to urban expansion,with a higher intensity in winter than in other seasons.Then the overestimation of regional air temperature is evaluated by comparing the two kinds of grid datasets of air temperature which are respectively interpolated by all stations' and rural stations' observational data.Spatially,the overestimation is relatively higher in eastern China than in the central part of China; however,both areas exhibit a much higher effect than is observed in western China.We concluded that in the last 40 years the mean temperature in China increased by about 1.58℃,of which about 0.01℃ was attributed to urban expansion,with a contribution of up to 0.09℃ in the core areas from the overestimation of air temperature.

  7. Ground-based transit observations of the super-Earth GJ 1214b

    CERN Document Server

    Caceres, Claudio; Hoyer, Sergio; Ivanov, Valentin D; Rojo, Patricio; Girard, Julien H; Kempton, Eliza Miller-Ricci; Fortney, Jonathan J; Minniti, Dante

    2014-01-01

    GJ 1214b is one of the few known transiting super-Earth-sized exoplanets with a measured mass and radius. It orbits an M-dwarf, only 14.55 pc away, making it a favorable candidate for follow-up studies. However, the composition of GJ 1214b's mysterious atmosphere has yet to be fully unveiled. Our goal is to distinguish between the various proposed atmospheric models to explain the properties of GJ 1214b: hydrogen-rich or hydrogen-He mix, or a heavy molecular weight atmosphere with reflecting high clouds, as latest studies have suggested. Wavelength-dependent planetary radii measurements from the transit depths in the optical/NIR are the best tool to investigate the atmosphere of GJ 1214b. We present here (i) photometric transit observations with a narrow-band filter centered on 2.14 microns and a broad-band I-Bessel filter centered on 0.8665 microns, and (ii) transmission spectroscopy in the H and K atmospheric windows that cover three transits. The obtained photometric and spectrophotometric time series were...

  8. Molecular abundance profiles characterization of Jupiter'satmosphere using ground-based observations at 5 microns

    Science.gov (United States)

    Doriann, Blain; Fouchet, Thierry; Encrenaz, Therese A.; Drossart, Pierre; Greathouse, Thomas K.; Fletcher, Leigh N.; Orton, Glenn S.

    2016-10-01

    We report on early results of an observational campaign to support the Juno mission. At the beginning of this year, using TEXES (Texas Echelon cross-dispersed Echelle Spectrograph), mounted on the NASA Infrared Telescope Facility (IRTF), we obtained maps of Jupiter in several spectral ranges between 1800 and 2200 cm-1 which probes the atmosphere in the 1-4 bar region, with a spectral resolution of R ≈ 7000 and an angular resolution of ≈ 1.5''. This dataset is analyzed by a code which combines a line-by-line radiative transfer model with a non-linear optimal estimation inversion method. The inversion takes into account the abundance profiles of AsH3 , CO, GeH4 and H2O, as well as clouds contribution, in addtion to the abundance profiles of NH3 and PH3 . We will present the inverted abundance profiles, their significance for the understanding of Jupiter's atmospheric dynamics, and how they will be useful for the determination of water abundance up to 200 bars, which is one of the main objectives of the instrument MWR (MicroWave Radiometer) mounted on the Juno spacecraft. This work will also be useful to prepare the analysis of the JIRAM (Jovian InfraRed Auroral Mapper) 5-microns data aboard Juno.

  9. Multiple ground-based observations at Zhongshan Station during the April/May 1998 solar events

    Institute of Scientific and Technical Information of China (English)

    LIU; Ruiyuan(刘瑞源); HU; Hongqiao(胡红桥); HE; Longsong(贺龙松); LIU; Yonghua(刘勇华); LIU; Shunlin(刘顺林); LI; Shenggui(李胜桂); N.; Sato; B.; J.; Fraser

    2002-01-01

    Simultaneous observations at Zhongshan Station, Antarctica, during May 1-7, 1998 are presented to show the responses of the polar ionosphere to the April/May 1998 solar events. One of the main geo-effects of the solar events resulted in the major magnetic storm on May 4. At the storm onset on May 2 the ionosphere F2 layer abruptly increased in altitude, the geomagnetic H-component started negative deviation and the spectral amplitude of the ULF wave intensified. Both large isolated riometer absorption and large negative deviation of the geomagnetic H-component occurred at about 0639UT. There was a time lag of about one hour and ten minutes between the storm onset and the IMF southward turning, as measured by the WIND satellite. The polar ionosphere was highly disturbed, as shown by frequent large deviations of the geomagnetic H-component, large riometer absorption events and strong ULF waves in all the courses of the storm. The absorption increased greatly causing the digisonde to be blackout most of the time. However, the data still showed a substantial decrease in the F2 electron density and oscillation of the F2 layer peak height with an amplitude exceeding 200 km.

  10. New England observed and predicted median August stream/river temperature points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted median August stream/river temperatures in New England based on a spatial statistical network...

  11. Ground-based microwave weather radar observations and retrievals during the 2014 Holuhraun eruption (Bárðarbunga, Iceland)

    Science.gov (United States)

    Mereu, Luigi; Silvio Marzano, Frank; Barsotti, Sara; Montopoli, Mario; Yeo, Richard; Arngrimsson, Hermann; Björnsson, Halldór; Bonadonna, Costanza

    2015-04-01

    During an eruptive event the real-time forecasting of ash dispersal into the atmosphere is a key factor to prevent air traffic disasters. The ash plume is extremely hazardous to aircraft that inadvertently may fly through it. Real-time monitoring of such phenomena is crucial, particularly to obtain specific data for the initialization of eruption and dispersion models in terms of source parameters. The latter, such as plume height, ash concentration, mass flow rate and size spectra, are usually very difficult to measure or to estimate with a relatively good accuracy. Over the last years different techniques have been developed to improved ash plume detection and retrieval. Satellite-based observations, using multi-frequency visible and infrared radiometers, are usually exploited for monitoring and measuring dispersed ash clouds. The observations from geostationary orbit suffer from a relatively poor spatial resolution, whereas the low orbit level has a relatively poor temporal resolution. Moreover, the field-of-view of infrared radiometric measurements may be reduced by obstructions caused by water and ice clouds lying between the ground and the sensor's antenna. Weather radar-based observations represent an emerging technique to detect and, to a certain extent, mitigate the hazard from the ash plumes. Ground-based microwave scanning radar systems can provide the three-dimensional information about the detected ash volume with a fairly high spatial resolution every few minutes and in all weather conditions. Methodological studies have recently investigated the possibility of using single-polarization and dual-polarization ground-based radar for the remote sensing of volcanic ash cloud. In this respect, radar observations can be complementary to satellite observations. A microphysical electromagnetic characterization of volcanic ash was carried out in terms of dielectric properties, composition, size and orientation of ash particles. An extended Volcanic Ash Radar

  12. Ground temperature regime and periglacial dynamics in three different sites from the summit area in Sierra Nevada (southern Spain) from 2006 to 2012

    Science.gov (United States)

    Salvador-Franch, Ferran; Oliva, Marc; Salva-Catarineu, Montserrat; Gómez-Ortiz, Antonio

    2013-04-01

    Ground temperatures and its control on snow cover are crucial factors conditioning the activity of current periglacial processes in the highest lands of Sierra Nevada (Betique Range, Iberian Peninsula). We present summary results of the monitoring period from September 2006 to August 2012 in three sites with contrasting topography, aspect and snow cover. Temperatures loggers have recorded data at 2 hours time lapse at: a) Veleta glacial cirque, an environment with marginal permafrost and a small active rock glacier in it (3107 m asl), b) the flat summit plateau of Collado de los Machos (3297 m) characterized by the existence of inactive sorted circles with scarce snow cover, and c) the southern cirque of Rio Seco, an area with moderate snow cover and widespread solifluction lobes (3105 m). We discuss the periglacial activity in the three study sites in relation with ground temperatures. Results show evidence of the decisive control played by snow cover (duration and thickness) in the thermal regime of the ground (rhythm, depth and intensity of freezing). Only the site in the Veleta cirque has revealed the existence of permafrost, which is inexistent at the summit plateaus and southern cirques. The freezing and thawing of the ground depends substantially on the geographical characteristics of the sites, although a common pattern is detected: the thawing occurs more rapidly than the freezing and the number of freeze-thaw cycles in air temperatures is substantially higher than in ground temperatures.

  13. Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy

    Science.gov (United States)

    Smith, R. L.; Kostiuk, T.; Livengood, T. A.; Fast, K. E.; Hewagama, T.; Delgado, J. D.; Sonnabend, G.

    2010-01-01

    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.

  14. Integrating Satellite, Aircraft, and Ground-Based Observations to Improve a GHG Inventory Network

    Science.gov (United States)

    Midzik, M.; Abbate, J.; Raheja, G.

    2016-12-01

    Methane (CH4) is the second-most effective greenhouse gas, with a global warming potential up to 70 times that of carbon dioxide (CO2) over the span of 25 years. With a majority of these emissions attributed to livestock, landfill, and wastewater treatment, CH4 emissions are a concern for both urban and rural landscapes. Though Earth-observing satellites can effectively monitor mid-t