WorldWideScience

Sample records for ground temperature measurements

  1. In Situ Measurement of the Undisturbed Ground Temperature for Ground Source Heat Pump System

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ya-su

    2008-01-01

    The undisturbed ground are important for design of the ground heat exchangers in ground source heat pump (GSHP) systems. In this paper, the undisturbed ground temperatures measured in two different methods are presented. The investigation was carried out in two cases. The temperature measured with the direct method is assumed to give the correct undisturbed ground temperature profile. The temperature measured with indirect method overestimates the undisturbed ground temperature by 2.1℃ and 1.7℃. This difference is mainly caused by the circulation pump and ambient air to the fluid. Therefore, the results that are decreased about 2℃ as compared with the indirect measured are recommended to estimate the undisturbed ground temperature in situ measuring. A smaller pump or deeper borehole or mild weather would result in a more correct temperature. Because the undisturbed ground temperature is affected by many factors. Whether or not these conclusions are correct to other areas, this would need further investigation.

  2. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    OpenAIRE

    2010-01-01

    We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight cal...

  3. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  4. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    Directory of Open Access Journals (Sweden)

    Miguel Ramos

    2010-10-01

    Full Text Available We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS Ground Temperature Sensor (GTS, an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.

  5. Comparison of MTI Water Temperatures with Ground Truth Measurements at Crater Lake, OR

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.J.

    2002-12-09

    Water surface temperatures calculated with the Los Alamos National Laboratory Robust algorithm were compared with ground truth water temperature measurements near the Oregon State University buoy in Crater Lake, OR. Bulk water measurements at the OSU buoy were corrected for the skin temperature depression and temperature gradient in the top 10 cm of the water to find the water surface temperature for 18 MTI images for June 2000 to Feb 2002. The MTI robust temperatures were found to be biased by 0.1C, with an RMS error of 1.9C compared with the ground truth water surface temperatures. When corrected for the errors in the buoy temperatures the RMS was reduced to 1.3C. This RMS difference is greater than the 1C found at the Pacific Island of Nauru because of the greater variability in the lake temperature and the atmosphere at Crater Lake and the much smaller target area used in the comparison.

  6. Inferring snow pack ripening and melt out from distributed ground surface temperature measurements

    Directory of Open Access Journals (Sweden)

    M.-O. Schmid

    2012-02-01

    Full Text Available The seasonal snow cover and its melting are heterogeneous both in space and time. Describing and modelling this variability are important because it affects divers phenomena such as runoff, ground temperatures or slope movements. This study investigates the derivation of melting characteristics based on spatial clusters of temperature measurements. Results are based on data from Switzerland where ground surface temperatures were measured with miniature loggers (iButtons at 40 locations, referred to as footprints. At each footprint, ten iButtons have been distributed randomly few cm below the ground surface over an area of 10 m × 10 m. Footprints span elevations of 2100–3300 m a.s.l. and slope angles of 0–55°, as well as diverse slope expositions and types of surface cover and ground material. Based on two years of temperature data, the basal ripening date and the melt-out date are determined for each iButton, aggregated to the footprint level and further analysed. The date of melt out could be derived for nearly all iButtons, the ripening date could be extracted for only approximately half of them because it requires ground freezing below the snow pack. The variability within a footprint is often considerable and one to three weeks difference between melting or ripening of the points in one footprint is not uncommon. The correlation of mean annual ground surface temperatures, ripening date and melt-out date is moderate, making them useful intuitive complementary measured for model evaluation.

  7. Ground-based microwave measuring of middle atmosphere ozone and temperature profiles during sudden stratospheric warming

    Science.gov (United States)

    Feigin, A. M.; Shvetsov, A. A.; Krasilnikov, A. A.; Kulikov, M. Y.; Karashtin, D. A.; Mukhin, D.; Bolshakov, O. S.; Fedoseev, L. I.; Ryskin, V. G.; Belikovich, M. V.; Kukin, L. M.

    2012-12-01

    We carried out the experimental campaign aimed to study the response of middle atmosphere on a sudden stratospheric warming in winter 2011-2012 above Nizhny Novgorod, Russia (56N, 44E). We employed the ground-based microwave complex for remote sensing of middle atmosphere developed in the Institute of Applied Physics of the Russian Academy of Science. The complex combines two room-temperature radiometers, i.e. microwave ozonometer and the stratospheric thermometer. Ozonometer is a heterodyne spectroradiometer, operating in a range of frequencies that include the rotation transition of ozone molecules with resonance frequency 110.8 GHz. Operating frequency range of the stratospheric thermometer is 52.5-5.4 GHz and includes lower frequency edge of 5 mm molecular oxygen absorption bands and among them two relatively weak lines of O2 emission. Digital fast Fourier transform spectrometers developed by "Acqiris" are employed for signal spectral analysis. The spectrometers have frequency range 0.05-1 GHz and realizes the effective resolution about 61 KHz. For retrieval vertical profiles of ozone and temperature from radiometric data we applied novel method based on Bayesian approach to inverse problem solution, which assumed a construction of probability distribution of the characteristics of retrieved profiles with taking into account measurement noise and available a priori information about possible distributions of ozone and temperature in the middle atmosphere. Here we introduce the results of the campaign in comparison with Aura MLS data. Presented data includes one sudden stratospheric warming event which took place in January 13-14 and was accompanied by temperature increasing up to 310 K at 45 km height. During measurement period, ozone and temperature variations were (almost) anti-correlated, and total ozone abundance achieved a local maxima during the stratosphere cooling phase. In general, results of ground-based measurements are in good agreement with

  8. Assessment of the quality of OSIRIS mesospheric temperatures using satellite and ground-based measurements

    Directory of Open Access Journals (Sweden)

    P. E. Sheese

    2012-12-01

    Full Text Available The Optical Spectrograph and InfraRed Imaging System (OSIRIS on the Odin satellite is currently in its 12th year of observing the Earth's limb. For the first time, continuous temperature profiles extending from the stratopause to the upper mesosphere have been derived from OSIRIS measurements of Rayleigh-scattered sunlight. Through most of the mesosphere, OSIRIS temperatures are in good agreement with coincident temperature profiles derived from other satellite and ground-based measurements. In the altitude region of 55–80 km, OSIRIS temperatures are typically within 4–5 K of those from the SABER, ACE-FTS, and SOFIE instruments on the TIMED, SciSat-I, and AIM satellites, respectively. The mean differences between individual OSIRIS profiles and those of the other satellite instruments are typically within the combined uncertainties and previously reported biases. OSIRIS temperatures are typically within 2 K of those from the University of Western Ontario's Purple Crow Lidar in the altitude region of 52–79 km, where the mean differences are within combined uncertainties. Near 84 km, OSIRIS temperatures exhibit a cold bias of 10–15 K, which is due to a cold bias in OSIRIS O2 A-band temperatures at 85 km, the upper boundary of the Rayleigh-scatter derived temperatures; and near 48 km OSIRIS temperatures exhibit a cold bias of 5–15 K, which is likely due to multiple-scatter effects that are not taken into account in the retrieval.

  9. New Measurements from Old Boreholes: A Look at Interaction Between Surface Air Temperature and Ground Surface Temperature

    Science.gov (United States)

    Heinle, S. M.; Gosnold, W. D.

    2007-12-01

    We recently logged new field measurements of several boreholes throughout the Midwest, including North Dakota, South Dakota, and Nebraska. We then compared these new measurements against measurements previously obtained. Our comparisons included inverse modeling of past and recent measurements as well as climate modeling based on past surface air temperatures obtained from the weather stations. The data show a good correlation between climate warming in the last century and ground surface warming. Of particular importance is that cooling of air temperatures beginning in the mid 1990s reflects in the ground surface temperatures. The boreholes included in the study consist of three boreholes located in north central North Dakota, including two deeper than 200 meters. Two boreholes in the southwestern part of South Dakota, and two from southeastern South Dakota, all approximately 180 meters deep. Also included, were two boreholes (135 meters and over 200 meters deep) located in southwestern Nebraska, and two boreholes in the panhandle of Nebraska, each over 100 meters deep. We obtained historical surface air temperature from climate stations located near the boreholes, both from the United States Historical Climatology Network and from the Western Regional Climate Center.

  10. Simultaneous MSL REMS and Mars Odyssey THEMIS ground temperature measurements in Gale crater, Mars

    Science.gov (United States)

    Hamilton, Victoria; Vasavada, Ashwin; Christensen, Philip; Ramos, Miguel; de Pablo, Miguel Angel

    2014-05-01

    Ground temperature measurements and thermal models have been used extensively to infer physical properties of the Martian surface such as effective mean particle size [1], rock abundance [2], the presence of lateral or vertical heterogeneity [e.g., 3], degree of induration or cementation [4], etc. Knowledge of these physical properties is valuable for interpreting Mars' geologic history at a variety of spatial scales from local to global, as well as providing important insight into the safety and trafficability of landing sites, both prior to [e.g., 5, 6] and during landed mission operations. The Ground Temperature Sensor (GTS) of the Rover Environmental Monitoring Station (REMS) onboard the Mars Science Laboratory Curiosity provides the first in situ observations of ground temperature throughout the diurnal cycle [7]. We have compared GTS-measured temperatures and derived thermal inertias through sol 414 with simultaneously acquired data obtained from the Thermal Emission Imaging System (THEMIS) onboard the Mars Odyssey orbiter [8]. These measurements enable us to: 1) compare orbital and in situ temperature observations, 2) compare thermal inertias derived from single time-of-day measurements to those derived from a full diurnal temperature cycle, and 3) validate interpretations of thermophysical data with visual observations of local terrain. Surface temperatures measured by GTS and THEMIS at locations along Curiosity's traverse show a good correlation and deviations from a perfect fit are expected based on the instruments' spatial resolution differences. Local imaging (e.g., Mastcam clast survey images) show that, not surprisingly, the relatively small GTS field of view can be heavily biased by small-scale, local thermophysical features. THEMIS thermal inertias appear to be somewhat higher than their GTS-derived counterparts overall. However, much of this difference can be attributed to the difference in the spatial resolution of the instruments, particularly at

  11. A comparison of ground-based hydroxyl airglow temperatures with SABER/TIMED measurements over 23° N, India

    Science.gov (United States)

    Parihar, Navin; Singh, Dupinder; Gurubaran, Subramanian

    2017-03-01

    Ground-based observations of OH (6, 2) Meinel band nightglow were carried out at Ranchi (23.3° N, 85.3° E), India, during January-March 2011, December 2011-May 2012 and December 2012-March 2013 using an all-sky imaging system. Near the mesopause, OH temperatures were derived from the OH (6, 2) Meinel band intensity information. A limited comparison of OH temperatures (TOH) with SABER/TIMED measurements in 30 cases was performed by defining almost coincident criterion of ±1.5° latitude-longitude and ±3 min of the ground-based observations. Using SABER OH 1.6 and 2.0 µm volume emission rate profiles as the weighing function, two sets of OH-equivalent temperature (T1. 6 and T2. 0 respectively) were estimated from its kinetic temperature profile for comparison with OH nightglow measurements. Overall, fair agreement existed between ground-based and SABER measurements in the majority of events within the limits of experimental errors. Overall, the mean value of OH-derived temperatures and SABER OH-equivalent temperatures were 197.3 ± 4.6, 192.0 ± 10.8 and 192.7 ± 10.3 K, and the ground-based temperatures were 4-5 K warmer than SABER values. A difference of 8 K or more is noted between two measurements when the peak of the OH emission layer lies in the vicinity of large temperature inversions. A comparison of OH temperatures derived using different sets of Einstein transition probabilities and SABER measurements was also performed; however, OH temperatures derived using Langhoff et al. (1986) transition probabilities were found to compare well.

  12. Interpreting Ground Temperature Measurements for Thermophysical Properties on Complex Surfaces of the Moon and Mars

    Science.gov (United States)

    Vasavada, A. R.; Hamilton, V. E.; Team, M.

    2013-12-01

    With the successful deployments of the Diviner radiometer on the Lunar Reconnaissance Orbiter and the REMS ground temperature sensor on the Curiosity Mars rover, records of ground temperature with high accuracy and finely sampled diurnal and seasonal cycles have become available. The detailed shapes of these temperature profiles allow inferences beyond just bulk thermophysical properties. Subtle (or sometime significant) effects of surface roughness, slope, and lateral and vertical heterogeneity may be identified in the surface brightness temperature data. For example, changes in thermal or physical properties with depth in the shallow subsurface affect the conduction and storage of thermal energy. These affect the surface energy balance and therefore surface temperatures, especially the rate of cooling at night. Making unique determinations of subsurface soil properties requires minimizing the uncertainties introduced by other effects. On Mars, atmospheric aerosol opacity and wind-driven sensible heat fluxes also affect the diurnal and annual temperature profiles. On both bodies, variations in thermal inertia, slopes, roughness, albedo, and emissivity within the radiometer footprint will cause the composite brightness temperature to differ from a kinetic temperature. Nevertheless, we have detected potential effects of complex surfaces in the temperature data from both Diviner and Curiosity. On the Moon, the results reveal a nearly ubiquitous surface structure, created mechanically by impact gardening, that controls the thermal response of the surface. On Mars, the thermal response is controlled primarily by grain size, cementation, lithification, and composition. However, the secondary effects of near-surface layering aid in the interpretation of stratigraphy and in the identification of geologic processes that have altered the surface.

  13. Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km

    Energy Technology Data Exchange (ETDEWEB)

    Nedeljkovic, D.; Hauchecorne, A.; Chanin, M.L. (CNRS, Verrieres le Buisson (France))

    1993-01-01

    The authors describe in this paper a lidar method using the anti-Stokes rotational lines of N[sub 2] and O[sub 2] Raman spectrum to determine the temperature of the atmosphere up to 30 km. The method uses the variation with the temperature of the envelop of the intensities of the backscattered rotational Raman spectrum, or more precisely the variations of the ratio of the intensities at two close-by wavelengths. For each temperature of the gas, the ratio of the fluxes through two narrow and close-by filters takes a definite value directly related to the temperature. The difficulty of eliminating the near-by contribution of the Mie backscattering was solved by doubling the filters to produce a rejection factor of 10[sub +8] at the central wavelength. The validity of the method was illustrated by comparing a number of temperature profiles obtained simultaneously with radiosonde and by this new Raman lidar. The theoretical calculation of the method led to an analytic calibration function which, once adjusted with a radiosonde, can provide the temperature on successive days of measurement in the height range 50 to 25 km.

  14. Permafrost Changes along the Alaska Highway Corridor, Southern Yukon, from Ground Temperature Measurements and DC Electrical Resistivity Tomography

    Science.gov (United States)

    Duguay, M. A.; Lewkowicz, A. G.; Smith, S.

    2011-12-01

    A natural gas pipeline running across permafrost terrain from Prudhoe Bay, Alaska, through Canada to US markets was first proposed more than 30 years ago. In the intervening period, mean annual air temperatures in the region have risen by 0.5-1.0°C and it is probable that the ground has also warmed. Renewed interest in the pipeline has meant that information on permafrost and geotechnical conditions within the Alaska Highway Corridor of the southern Yukon must be updated for engineering design and the assessment of environmental impacts. To accomplish this goal, results from 1977-1981 drilling and ground temperature monitoring programs within the proposed pipeline corridor were used in combination with air photo analysis to select sites potentially sensitive to climate change. The sites are distributed across the extensive and sporadic discontinuous permafrost zones over a distance of 475 km between Beaver Creek and Whitehorse. To date, 11 targeted boreholes with permafrost have been found and cased to permit renewed ground temperature monitoring. By the end of summer 2011, it is expected that another 7 will have been instrumented. Measurable temperature increases relative to the 1970s are expected, except where values were previously just below 0°C. In the latter case, if the sites are still in permafrost, latent heat effects may have substantially moderated the temperature increase. Electrical resistivity tomography surveys are also being conducted to characterize the local permafrost distribution and geotechnical conditions. These 2D resistivity profiles will be used with the ground temperatures to examine current conditions and response to climate change and vegetation disturbance.

  15. Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to very Low Enthalpy Geothermal Energy Systems

    Directory of Open Access Journals (Sweden)

    José Manuel Andújar Márquez

    2016-02-01

    Full Text Available This paper presents a methodology and instrumentation system for the indirect measurement of the thermal diffusivity of a soil at a given depth from measuring its temperature at that depth. The development has been carried out considering its application to the design and sizing of very low enthalpy geothermal energy (VLEGE systems, but it can has many other applications, for example in construction, agriculture or biology. The methodology is simple and inexpensive because it can take advantage of the prescriptive geotechnical drilling prior to the construction of a house or building, to take at the same time temperature measurements that will allow get the actual temperature and ground thermal diffusivity to the depth of interest. The methodology and developed system have been tested and used in the design of a VLEGE facility for a chalet with basement at the outskirts of Huelva (a city in the southwest of Spain. Experimental results validate the proposed approach.

  16. Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to very Low Enthalpy Geothermal Energy Systems.

    Science.gov (United States)

    Andújar Márquez, José Manuel; Martínez Bohórquez, Miguel Ángel; Gómez Melgar, Sergio

    2016-02-29

    This paper presents a methodology and instrumentation system for the indirect measurement of the thermal diffusivity of a soil at a given depth from measuring its temperature at that depth. The development has been carried out considering its application to the design and sizing of very low enthalpy geothermal energy (VLEGE) systems, but it can has many other applications, for example in construction, agriculture or biology. The methodology is simple and inexpensive because it can take advantage of the prescriptive geotechnical drilling prior to the construction of a house or building, to take at the same time temperature measurements that will allow get the actual temperature and ground thermal diffusivity to the depth of interest. The methodology and developed system have been tested and used in the design of a VLEGE facility for a chalet with basement at the outskirts of Huelva (a city in the southwest of Spain). Experimental results validate the proposed approach.

  17. AATSR Land Surface Temperature Product Validation Using Ground Measurements in China and Implications for SLSTR

    Science.gov (United States)

    Zhou, Ji; Zmuda, Andy; Desnos, Yves-Louis; Ma, Jin

    2016-08-01

    Land surface temperature (LST) is one of the most important parameters at the interface between the earth's surface and the atmosphere. It acts as a sensitive indicator of climate change and is an essential input parameter for land surface models. Because of the intense variability at different spatial and temporal scales, satellite remote sensing provides the sole opportunity to acquire LSTs over large regions. Validation of the LST products is an necessary step before their applications conducted by scientific community and it is essential for the developers to improve the LST products.

  18. Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models

    Science.gov (United States)

    Elise Pendall; Scott Bridgham; Paul J. Hanson; Bruce Hungate; David W. Kicklighter; Dale W. Johnson; Beverly E. Law; Yiqi Luo; J. Patrick Megonigal; Maria Olsrud; Michael G. Ryan; Shiqiang Wan

    2004-01-01

    Rising atmospheric CO2 and temperatures are probably altering ecosystem carbon cycling, causing both positive and negative feedbacks to climate. Below-ground processes play a key role in the global carbon (C) cycle because they regulate storage of large quantities of C, and are potentially very sensitive to direct and indirect effects of elevated...

  19. Temperature dependence of intracellular free calcium in cardiac myocytes from rat and ground squirrel measured by confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    王世强; 周曾铨; 钱洪

    1999-01-01

    The temperature-dependence of infraeeliular free caleimn (Ca) was investigated in mdo-1 loaded ventricular myocytes from the ral, a non-hibernator, and from the ground squirrel, a hibernator. The dissociation constant of indo-l at different temperatures was calibrated both al pll-tat and at @-stat . and the result demonstrated that the @-stat ralibration should be prettrred . Analysis of the fluoreseent image showed a striking increase of Ca2 as well as spontaneous caleiuni waves in ral cells, indicating an overloaded cakuum. In contrast, cardiac myocytes of the ground sqnirraf were found to keep a constant (Ca2+) without caleium overload regardless of temperature variation. It is be-lieved that understanding of the mechanisms underlying the interccllular caleima homeostasis of hibrernators may lead to solutions of some medical questions .

  20. Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements

    Directory of Open Access Journals (Sweden)

    C. Suresh Raju

    2007-10-01

    Full Text Available Estimation of precipitable water (PW in the atmosphere from ground-based Global Positioning System (GPS essentially involves modeling the zenith hydrostatic delay (ZHD in terms of surface Pressure (Ps and subtracting it from the corresponding values of zenith tropospheric delay (ZTD to estimate the zenith wet (non-hydrostatic delay (ZWD. This further involves establishing an appropriate model connecting PW and ZWD, which in its simplest case assumed to be similar to that of ZHD. But when the temperature variations are large, for the accurate estimate of PW the variation of the proportionality constant connecting PW and ZWD is to be accounted. For this a water vapor weighted mean temperature (Tm has been defined by many investigations, which has to be modeled on a regional basis. For estimating PW over the Indian region from GPS data, a region specific model for Tm in terms of surface temperature (Ts is developed using the radiosonde measurements from eight India Meteorological Department (IMD stations spread over the sub-continent within a latitude range of 8.5°–32.6° N. Following a similar procedure Tm-based models are also evolved for each of these stations and the features of these site-specific models are compared with those of the region-specific model. Applicability of the region-specific and site-specific Tm-based models in retrieving PW from GPS data recorded at the IGS sites Bangalore and Hyderabad, is tested by comparing the retrieved values of PW with those estimated from the altitude profile of water vapor measured using radiosonde. The values of ZWD estimated at 00:00 UTC and 12:00 UTC are used to test the validity of the models by estimating the PW using the models and comparing it with those obtained from radiosonde data. The region specific Tm-based model is found to be in par with if not better than a

  1. Correlation between Change Rates of GRACE-derived Density and Ground-measured Temperature in Tibetan Plateau, 2004-2008

    Science.gov (United States)

    Zhang, K.; Ma, J.

    2011-12-01

    The amount of mountain glaciers on the Tibetan plateau accounts for 81.6% of the total glacial volume in China, and thus they become origination of Asia's seven major rivers including the Yangtze River, Yellow River, Ganges River, Indus River, Yarlung Zangbo River, and Nujiang River. Unfortunately, with the climate warming since the 20th century, most glaciers are retreating at a rate of 7.0 percent annually. The fast rate of glacier melt has meant more water runoff from the plateau which might exacerbate soil erosion, trigger drought and lead to sandstorms and desertification in the downstream regions. Thus, quantitive estimation and understanding of these glaciers' mass balance will be helpful to long-term sustainability of agriculture and hazard mitigation and give insights into climate change. As the primary factor for the glacier ice melting, the rising temperature should be correlated with the losing ice mass in the Tibetan plateau. However, quantification of glacier mass losses has been challenged, limited by temporarily and spatially sparse measurements using conventional data types and also due to the significant variations in glaciers' melting rates from region to region, and among glaciers in the same region. Nevertheless, the particular sensitivity of mountain glaciers to climate change makes it possible to estimate their mass change rates using GRACE even though the limited resolution. GRACE observations in southeastern Alaska, Patagonia and Tibet provided independent supports for the ability of glaciers' ice loss rates there (e.g., Matsuo and Heki, 2010). Here we expected to examine the correlation between Temperature Change Rates (TCRs) and Mass Change Rates (MCRs) and thus we computed the monthly density change and obtained the yearly Density Change Rates (DCRs) in Tibetan plateau of latitudes from 27N to 38N and longitudes ranging from 75E to 103E, and compared TCRs of ground-measured temperatures at 52 stations higher than 3000m with GRACE

  2. A method for the retrieval of atomic oxygen density and temperature profiles from ground-based measurements of the O(+)(2D-2P) 7320 A twilight airglow

    Science.gov (United States)

    Fennelly, J. A.; Torr, D. G.; Richards, P. G.; Torr, M. R.; Sharp, W. E.

    1991-01-01

    This paper describes a technique for extracting thermospheric profiles of the atomic-oxygen density and temperature, using ground-based measurements of the O(+)(2D-2P) doublet at 7320 and 7330 A in the twilight airglow. In this method, a local photochemical model is used to calculate the 7320-A intensity; the method also utilizes an iterative inversion procedure based on the Levenberg-Marquardt method described by Press et al. (1986). The results demonstrate that, if the measurements are only limited by errors due to Poisson noise, the altitude profiles of neutral temperature and atomic oxygen concentration can be determined accurately using currently available spectrometers.

  3. Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to very Low Enthalpy Geothermal Energy Systems

    OpenAIRE

    José Manuel Andújar Márquez; Miguel Ángel Martínez Bohórquez; Sergio Gómez Melgar

    2016-01-01

    This paper presents a methodology and instrumentation system for the indirect measurement of the thermal diffusivity of a soil at a given depth from measuring its temperature at that depth. The development has been carried out considering its application to the design and sizing of very low enthalpy geothermal energy (VLEGE) systems, but it can has many other applications, for example in construction, agriculture or biology. The methodology is simple and inexpensive because it ...

  4. Time series analysis of ground-based microwave measurements at K- and V-bands to detect temporal changes in water vapor and temperature profiles

    Science.gov (United States)

    Panda, Sibananda; Sahoo, Swaroop; Pandithurai, Govindan

    2017-01-01

    Ground-based microwave measurements performed at water vapor and oxygen absorption line frequencies are widely used for remote sensing of tropospheric water vapor density and temperature profiles, respectively. Recent work has shown that Bayesian optimal estimation can be used for improving accuracy of radiometer retrieved water vapor and temperature profiles. This paper focuses on using Bayesian optimal estimation along with time series of independent frequency measurements at K- and V-bands. The measurements are used along with statistically significant but short background data sets to retrieve and sense temporal variations and gradients in water vapor and temperature profiles. To study this capability, the Indian Institute of Tropical Meteorology (IITM) deployed a microwave radiometer at Mahabubnagar, Telangana, during August 2011 as part of the Integrated Ground Campaign during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX-IGOC). In this study, temperature profiles for the first time have been estimated using short but statistically significant background information so as to improve the accuracy of the retrieved profiles as well as to be able to detect gradients. Estimated water vapor and temperature profiles are compared with those taken from the reanalysis data updated by the Earth System Research Laboratory, National Oceanic and Atmospheric Administration (NOAA), to determine the range of possible errors. Similarly, root mean square errors are evaluated for a month for water vapor and temperature profiles to estimate the accuracy of the retrievals. It is found that water vapor and temperature profiles can be estimated with an acceptable accuracy by using a background information data set compiled over a period of 1 month.

  5. Climate control based on temperature measurement in the animal-occupied zone of a pig room with ground channel ventilation

    NARCIS (Netherlands)

    Wagenberg, van A.V.; Aerts, J.M.; Brecht, van A.; Vranken, E.; Leroy, T.; Berckmans, D.

    2005-01-01

    It is known that there can be a significant temperature difference between the position of the climate controller sensor (room temperature) and the animal-occupied zone (AOZ) in a pig room. This study explores the advantages of using AOZ temperature in climate control. The objectives were: (1) to ev

  6. A numerical model for ground temperature determination

    Science.gov (United States)

    Jaszczur, M.; Polepszyc, I.; Biernacka, B.; Sapińska-Śliwa, A.

    2016-09-01

    The ground surface temperature and the temperature with respect to depth are one of the most important issues for geotechnical and environmental applications as well as for plants and other living organisms. In geothermal systems, temperature is directly related to the energy resources in the ground and it influences the efficiency of the ground source system. The ground temperature depends on a very large number of parameters, but it often needs to be evaluated with good accuracy. In the present work, models for the prediction of the ground temperature with a focus on the surface temperature at which all or selected important ground and environmental phenomena are taken into account have been analysed. It has been found that the simplest models and the most complex model may result in a similar temperature variation, yet at a very low depth and for specific cases only. A detailed analysis shows that taking into account different types of pavement or a greater depth requires more complex and advanced models.

  7. Measurements of radar ground returns

    NARCIS (Netherlands)

    Loor, G.P. de

    1974-01-01

    The ground based measurement techniques for the determination of the radar back-scatter of vegetation and soils as used in The Netherlands will be described. Two techniques are employed: one covering a large sample area (> 1000 m2) but working at low grazing angels only and one (short range) coverin

  8. Can satellite land surface temperature data be used similarly to ground discharge measurements for distributed hydrological model calibration?

    NARCIS (Netherlands)

    Corbari, C.; Mancini, M.; Li, J.; Su, Zhongbo

    2015-01-01

    This study proposes a new methodology for the calibration of distributed hydrological models at basin scale by constraining an internal model variable using satellite data of land surface temperature. The model algorithm solves the system of energy and mass balances in terms of a representative equi

  9. Preliminary results on the comparison between satellite derived ground temperature and in-situ measurement of soil CO2 flux and soil temperature at Solfatara of Pozzuoli (Naples, Italy)

    Science.gov (United States)

    Cardellini, Carlo; Silvestri, Malvina; Chiodini, Giovanni; Fabrizia Buongiorno, Maria

    2014-05-01

    In this work we want to analyze the comparison between the ground temperature acquired with in-situ campaigns and the ground temperature obtained by processing remote sensing data with particular attention to ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) data. Moreover we have studied the possible correlation between the CO2 measurements and the ground temperature. Test site area has been the Solfatara volcano, situated to the west of Naples, Italy. The Solfatara crater has a persistent volcanic-hydrothermal activity as demonstrate by ground deformation, seismicity and variations of the chemical-physical characteristics of the fluids emitted from fumaroles. Solfatara crater is characterized by a large soil diffuse degassing structure (Solfatara DDS, abot 0.8 km2), from where a CO2 flux in the order of 1000-1500 t/d is released by the soil. Solfatara DDS is also characterized by anomalous soil temperature. The correspondence between high CO2 fluxes and soil temperature has been interpreted as the results of the condensation of CO2-rich steam, rising from the hydrothermal system, in the uppermost part of the soil (Chiodini et al., 2001; 2005). The energy dissipated daily by the degassing at Solfatara DDS is the main source of energy release in the entire Campi Flegrei caldera in the current period (Chiodini et al., 2001; 2005). Concerning the satellite data, to monitor the thermal state of volcanic areas it is necessary to use TIR sensors with high spatial resolution in order to obtain detailed information on the areas where there are significant changes. Thanks to ASTER thermal infrared (TIR, 5 bands, 90 m spatial resolution) regions of the electromagnetic spectrum we have obtained the temperature ground map on the volcano area. For this study we have considered the ASTER's night observations that show well defined episodes of increasing thermal emission of crater thanks to a more uniform background temperature. CO2 fluxes and soil

  10. Monitoring middle-atmospheric dynamics using independent ground-based wind and temperature measurements at Reunion Island

    Science.gov (United States)

    Le Pichon, Alexis; Hauchecorne, Alain; Keckhut, Philippe; Khaykin, Sergey; Camas, Jean Pierre; Payen, Guillaume; Kämpfer, Niklaus; Rüfenacht, Rolf; Ceranna, Lars

    2016-04-01

    There are very few multi-instrumented sites in the tropics and particularly in the Southern Hemisphere. In these regions, developing atmospheric sounding methods in the middle and high-atmosphere provides valuable means to improve the physical representation of deep convection in atmospheric models (breaking of gravity waves, coupling between layers) and to better characterize large-scale atmospheric perturbations (cyclones, storms, tropical convection). The Maïdo observatory at Reunion Island (21°S, 55°E) offers trans-national access to host experiments or measurement campaigns for high resolution measurements of dynamic atmospheric processes in a wide range of altitude such as Rayleigh lidar, Doppler lidar, Modem radiosonde, or microwave Doppler spectro-radiometer (WIRA, operated by Institute of Applied Physics, University of Bern). Collocated to the existing instruments, a small aperture infrasound array (CEA) has been operating continuously since 2014. In the 0.1-1 Hz band, the coherent energy is dominated by microbarom signals resulting from the non-linear interaction of large swells systems which circulate along the Antarctic Circumpolar Current (ACC). The seasonal transition in the bearings along with the stratospheric general circulation between summer and winter is clearly noted. Interestingly, the semiannual oscillation (SAO) of the zonal stratospheric wind is well captured by infrasound measurements. It manifests by opposite ducts between 30 and 60 km that persist for several weeks during the equinox period. For the ARISE project (http://arise-project.eu/), this multi-technology site opens new perspectives to study the climatology of SAO as well as poorly resolved atmospheric disturbances of the tropical middle atmosphere where data coverage is sparse.

  11. Sensitivities and uncertainties of modeled ground temperatures in mountain environments

    Directory of Open Access Journals (Sweden)

    S. Gubler

    2013-08-01

    Full Text Available Model evaluation is often performed at few locations due to the lack of spatially distributed data. Since the quantification of model sensitivities and uncertainties can be performed independently from ground truth measurements, these analyses are suitable to test the influence of environmental variability on model evaluation. In this study, the sensitivities and uncertainties of a physically based mountain permafrost model are quantified within an artificial topography. The setting consists of different elevations and exposures combined with six ground types characterized by porosity and hydraulic properties. The analyses are performed for a combination of all factors, that allows for quantification of the variability of model sensitivities and uncertainties within a whole modeling domain. We found that model sensitivities and uncertainties vary strongly depending on different input factors such as topography or different soil types. The analysis shows that model evaluation performed at single locations may not be representative for the whole modeling domain. For example, the sensitivity of modeled mean annual ground temperature to ground albedo ranges between 0.5 and 4 °C depending on elevation, aspect and the ground type. South-exposed inclined locations are more sensitive to changes in ground albedo than north-exposed slopes since they receive more solar radiation. The sensitivity to ground albedo increases with decreasing elevation due to shorter duration of the snow cover. The sensitivity in the hydraulic properties changes considerably for different ground types: rock or clay, for instance, are not sensitive to uncertainties in the hydraulic properties, while for gravel or peat, accurate estimates of the hydraulic properties significantly improve modeled ground temperatures. The discretization of ground, snow and time have an impact on modeled mean annual ground temperature (MAGT that cannot be neglected (more than 1 °C for several

  12. A ship-borne meteorological station for ground truth measurements

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Desa, B.A.E.

    Oceanographic upwelling studies required ground truth measurements of meteorological parameters and sea surface temperature to be made from a research vessel which did not have the necessary facilities. A ship-borne station was therefore designed...

  13. Temperature measurement and control

    CERN Document Server

    Leigh, JR

    1988-01-01

    This book treats the theory and practice of temperature measurement and control and important related topics such as energy management and air pollution. There are no specific prerequisites for the book although a knowledge of elementary control theory could be useful. The first half of the book is an application oriented survey of temperature measurement techniques and devices. The second half is concerned mainly with temperature control in both simple and complex situations.

  14. Revealing of major factors in the directional thermal radiation of ground objects--A new way for improving the precision of directional radiant temperature measuring and data analysis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper is devoted to eliminating the noise from the measuring of directional thermal radiation for ground objects.Specifically,we think that the noise is mainly due to the variance of components in the field of view of the sensor with the view angle changing and to the heat balance change on the ground during the period of measurement.The authors present two new observation methods named as "constant area method by thermal camera" and "concurrent method by dual sensors" respectively.The experiments show that the data obtained by these methods abide by some regularly directional distribution,which is totally different from the data from the former methods.The analysis of the major factors in the directionality of thermal radiation is also made in the paper.

  15. Ambulatory Measurement of Ground Reaction Forces

    NARCIS (Netherlands)

    Veltink, Petrus H.; Liedtke, C.B.; Droog, Adriaan

    2004-01-01

    The measurement of ground reaction forces is important in the biomechanical analysis of gait and other motor activities. It is the purpose of this study to show the feasibility of ambulatory measurement of ground reaction forces using two six degrees of freedom sensors mounted under the shoe. One

  16. Measurement of ground motion in various sites

    Energy Technology Data Exchange (ETDEWEB)

    Bialowons, W.; Amirikas, R.; Bertolini, A.; Kruecker, D.

    2007-04-15

    Ground vibrations may affect low emittance beam transport in linear colliders, Free Electron Lasers (FEL) and synchrotron radiation facilities. This paper is an overview of a study program to measure ground vibrations in various sites which can be used for site characterization in relation to accelerator design. Commercial broadband seismometers have been used to measure ground vibrations and the resultant database is available to the scientific community. The methodology employed is to use the same equipment and data analysis tools for ease of comparison. This database of ground vibrations taken in 19 sites around the world is first of its kind. (orig.)

  17. Long-term ground-based microwave radiometric measurements of atmospheric brightness temperature in SKYNET Hefei (31.90N, 117.17E) site

    Science.gov (United States)

    Wang, Zhenzhu; Liu, Dong; Xie, Chenbo; Wang, Bangxin; Zhong, Zhiqing; Wang, Yingjian; Chen, Bin

    2017-02-01

    A dual-frequency, ground-based microwave radiometer (WVR-1100) is used to investigate the behavior of the atmosphere in terms of zenith brightness temperature (TB) at 23.8 and 31.4 GHz respectively. Some experimental findings in SKYNET Hefei site from September 2002 to August 2012 are presented. The cumulative distributions of TB at both frequencies for all sky conditions show four different regions, while only two regions can be identified for clear, lightly cloudy and cloudy condition. Annual cycle of TB at 23.8 GHz is apparently remarkable, indicating the large annual cycle of atmospheric water vapor. Regular seasonal variations of TB are observed with the strongest value in summer and the weakest in winter.

  18. Sensitivities and uncertainties of modeled ground temperatures in mountain environments

    Directory of Open Access Journals (Sweden)

    S. Gubler

    2013-02-01

    balance correctly is hence crucial in any physically-based permafrost model, and a separate evaluation of the energy fluxes could substantially improve the results of permafrost models. The sensitivity in the hydraulic properties change considerably for different ground types: rock or clay for instance are not sensitive while gravel or peat, accurate measurements of the hydraulic properties could significantly improve modeled ground temperatures. Further, the discretization of ground, snow and time have an impact on modeled MAGT that cannot be neglected (more than 1°C for several discretization parameters. We show that the temporal resolution should be at least one hour to ensure errors less than 0.2°C in modeled MAGT, and the uppermost ground layer should at most be 20 mm thick. Within the topographic setting, the total parametric output uncertainties expressed as the standard deviation of the Monte Carlo model simulations range from 0.1 to 0.5°C for clay, silt and rock, and from 0.1 to 0.8°C for peat, sand and gravel. These uncertainties are comparable to the variability of ground surface temperatures measured within 10 m × 10 m grids in Switzerland. The increased uncertainties for sand, peat and gravel is largely due to the high hydraulic conductivity.

  19. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  20. Skin Temperature Measurement

    OpenAIRE

    Sarjoghian, Siamak

    2017-01-01

    This report represents the design and implementation of a skin temperature measurement system. The system aims to measure the skin temperature from a sensor and send it to the PC using a USB cable to display on screen. The data needs to be updated every second. The PIC18F4550 microcontroller has been used in this project to obtain data from the sensor and send it to the PC using USB 2.0 that has been built into the microcontroller. The microcontroller has a 10-bit Analog Digital Converting ac...

  1. Room temperature skyrmion ground state stabilized through interlayer exchange coupling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gong, E-mail: gchenncem@gmail.com; Schmid, Andreas K. [NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Mascaraque, Arantzazu [Depto. Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Unidad Asociada IQFR (CSIC) - UCM, 28040 Madrid (Spain); N' Diaye, Alpha T. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-15

    Possible magnetic skyrmion device applications motivate the search for structures that extend the stability of skyrmion spin textures to ambient temperature. Here, we demonstrate an experimental approach to stabilize a room temperature skyrmion ground state in chiral magnetic films via exchange coupling across non-magnetic spacer layers. Using spin polarized low-energy electron microscopy to measure all three Cartesian components of the magnetization vector, we image the spin textures in Fe/Ni films. We show how tuning the thickness of a copper spacer layer between chiral Fe/Ni films and perpendicularly magnetized Ni layers permits stabilization of a chiral stripe phase, a skyrmion phase, and a single domain phase. This strategy to stabilize skyrmion ground states can be extended to other magnetic thin film systems and may be useful for designing skyrmion based spintronics devices.

  2. Ambulatory measurement of ground reaction forces

    NARCIS (Netherlands)

    Veltink, Petrus H.; Liedtke, C.B.; Droog, Adriaan; van der Kooij, Herman

    2005-01-01

    The measurement of ground reaction forces is important in the biomechanical analysis of gait and other motor activities. Many applications require full ambulatory measurement of these forces, but this is not supported by current measurement systems. We propose the use of two six-degrees-of-freedom f

  3. Near InfraRed Imaging Spectrograph (NIRIS) for ground-based mesospheric OH(6-2) and O2(0-1) intensity and temperature measurements

    Indian Academy of Sciences (India)

    Ravindra P Singh; Duggirala Pallamraju

    2017-08-01

    This paper describes the development of a new Near InfraRed Imaging Spectrograph (NIRIS) which is capable of simultaneous measurements of OH(6-2) Meinel and O2(0-1) atmospheric band nightglow emission intensities. In this spectrographic technique, rotational line ratios are obtained to derive temperatures corresponding to the emission altitudes of 87 and 94 km. NIRIS has been commissioned for continuous operation from optical aeronomy observatory, Gurushikhar, Mount Abu (24.6∘N, 72.8∘E) since January 2013. NIRIS uses a diffraction grating of 1200 lines mm−1 and 1024×1024 pixels thermoelectrically cooled CCD camera and has a large field-of-view (FOV) of 80∘ along the slit orientation. The data analysis methodology adopted for the derivation of mesospheric temperatures is also described in detail. The observed NIRIS temperatures show good correspondence with satellite (SABER) derived temperatures and exhibit both tidal and gravity waves (GW) like features. From the time taken for phase propagation in the emission intensities between these two altitudes, vertical phase speed of gravity waves, $c_{z}$, is calculated and along with the coherent GW time period ‘$\\tau$’, the vertical wavelength, $\\lambda _{z}$, is obtained. Using large FOV observations from NIRIS, the meridional wavelengths, $\\lambda _{y}$, are also calculated. We have used one year of data to study the possible cause(s) for the occurrences of mesospheric temperature inversions (MTIs). From the statistics obtained for 234 nights, it appears that in situ chemical heating is mainly responsible for the observed MTIs than the vertical propagation of the waves. Thus, this paper describes a novel near infrared imaging spectrograph, its working principle, data analysis method for deriving OH and O2 emission intensities and the corresponding rotational temperatures at these altitudes, derivation of gravity wave parameters ($\\tau$, $c_{z}$, $\\lambda _{z}$, and $\\lambda _{y}$), and results on the

  4. Near InfraRed Imaging Spectrograph (NIRIS) for ground-based mesospheric OH(6-2) and O2(0-1) intensity and temperature measurements

    Science.gov (United States)

    Singh, Ravindra P.; Pallamraju, Duggirala

    2017-08-01

    This paper describes the development of a new Near InfraRed Imaging Spectrograph (NIRIS) which is capable of simultaneous measurements of OH(6-2) Meinel and O2(0-1) atmospheric band nightglow emission intensities. In this spectrographic technique, rotational line ratios are obtained to derive temperatures corresponding to the emission altitudes of 87 and 94 km. NIRIS has been commissioned for continuous operation from optical aeronomy observatory, Gurushikhar, Mount Abu (24.6°N, 72.8°E) since January 2013. NIRIS uses a diffraction grating of 1200 lines mm^{-1} and 1024× 1024 pixels thermoelectrically cooled CCD camera and has a large field-of-view (FOV) of 80° along the slit orientation. The data analysis methodology adopted for the derivation of mesospheric temperatures is also described in detail. The observed NIRIS temperatures show good correspondence with satellite (SABER) derived temperatures and exhibit both tidal and gravity waves (GW) like features. From the time taken for phase propagation in the emission intensities between these two altitudes, vertical phase speed of gravity waves, cz, is calculated and along with the coherent GW time period `τ ', the vertical wavelength, λ z, is obtained. Using large FOV observations from NIRIS, the meridional wavelengths, λ y, are also calculated. We have used one year of data to study the possible cause(s) for the occurrences of mesospheric temperature inversions (MTIs). From the statistics obtained for 234 nights, it appears that in situ chemical heating is mainly responsible for the observed MTIs than the vertical propagation of the waves. Thus, this paper describes a novel near infrared imaging spectrograph, its working principle, data analysis method for deriving OH and O2 emission intensities and the corresponding rotational temperatures at these altitudes, derivation of gravity wave parameters (τ , cz, λ z, and λ y), and results on the statistical study of MTIs that exist in the earth's mesospheric

  5. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Reiner

    2007-08-07

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000–2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  6. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006

    Science.gov (United States)

    Reiner, Steven R.

    2007-01-01

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000-2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  7. The thermal regime beneath cultural blocky materials: Ground temperature measurements in and around the Scythian Kurgans of the Russian Altay Mountains.

    Science.gov (United States)

    van de Kerchove, Ruben; Goossens, Rudi

    2010-05-01

    difference in surface thermal regime between the kurgans and their immediate vicinity and differences with comparable natural surfaces (e.g. rock glaciers, blocky tallus). Furthermore the first results of an archaeological/periglacial experiment carried out in the Ulandryk Valley are outlined: an in 1972 excavated kurgan, reconstructed by archaeologist A.V. Ebel (Gorno Altaisk State University) in 2008, and equipped with temperature sensors, allowed us to simulate relative temperature anomalies comparable to the situation created after an original Scythian burial ritual. Measurements were performed inside and just outside the kurgan at several depths and clearly showed the dramatic temperature lowering effect during winter months. Finally also the different installations at the Ukok-Plateau, an area known for its frozen burial mounds, made during the 2009 expedition are outlined and discussed.

  8. Transfer function models to quantify the delay between air and ground temperatures in thawed active layers

    Directory of Open Access Journals (Sweden)

    E. Zenklusen Mutter

    2011-10-01

    Full Text Available Air temperatures influence ground temperatures with a certain delay, which increases with depth. Borehole temperatures measured at 0.5 m depth in Alpine permafrost and air temperatures measured at or near the boreholes have been used to model this dependency. Statistical transfer function models have been fitted to the daily difference series of air and ground temperatures measured at seven different permafrost sites in the Swiss Alps.

    The relation between air and ground temperature is influenced by various factors such as ground surface cover, snow depth, water or ground ice content. To avoid complications induced by the insulating properties of the snow cover and by phase changes in the ground, only the mostly snow-free summer period when the ground at 0.5 m depth is thawed has been considered here. All summers from 2006 to 2009 have been analysed, with the main focus on summer 2006.

    The results reveal that in summer 2006 daily air temperature changes influence ground temperatures at 0.5 m depth with a delay ranging from one to six days, depending on the site. The fastest response times are found for a very coarse grained, blocky rock glacier site whereas slower response times are found for blocky scree slopes with smaller grain sizes.

  9. Solar Array at Very High Temperatures: Ground Tests

    Science.gov (United States)

    Vayner, Boris

    2016-01-01

    Solar array design for any spacecraft is determined by the orbit parameters. For example, operational voltage for spacecraft in Low Earth Orbit (LEO) is limited by significant differential charging due to interactions with low temperature plasma. In order to avoid arcing in LEO, solar array is designed to generate electrical power at comparatively low voltages (below 100 volts) or to operate at higher voltages with encapsulation of all suspected discharge locations. In Geosynchronous Orbit (GEO) differential charging is caused by energetic electrons that produce differential potential between the coverglass and the conductive spacecraft body in a kilovolt range. In such a case, the weakly conductive layer over coverglass, indium tin oxide (ITO) is one of the possible measures to eliminate dangerous discharges on array surface. Temperature variations for solar arrays in both orbits are measured and documented within the range of minus150 degrees Centigrade to plus 1100 degrees Centigrade. This wide interval of operational temperatures is regularly reproduced in ground tests with radiative heating and cooling inside a shroud with flowing liquid nitrogen. The requirements to solar array design and tests turn out to be more complicated when planned trajectory crosses these two orbits and goes closer to the Sun. The conductive layer over coverglass causes a sharp increase in parasitic current collected from LEO plasma, high temperature may cause cracks in encapsulating (Room Temperature Vulcanizing (RTV) material; radiative heating of a coupon in vacuum chamber becomes practically impossible above 1500 degrees Centigrade; conductivities of glass and adhesive go up with temperature that decrease array efficiency; and mechanical stresses grow up to critical magnitudes. A few test arrangements and respective results are presented in current paper. Coupons were tested against arcing in simulated LEO and GEO environments under elevated temperatures up to 2000 degrees

  10. Ground surface temperature and humidity, ground temperature cycles and the ice table depths in University Valley, McMurdo Dry Valleys of Antarctica

    Science.gov (United States)

    Fisher, David A.; Lacelle, Denis; Pollard, Wayne; Davila, Alfonso; McKay, Christopher P.

    2016-11-01

    In the upper McMurdo Dry Valleys, 90% of the measured ice table depths range from 0 to 80 cm; however, numerical models predict that the ice table is not in equilibrium with current climate conditions and should be deeper than measured. This study explored the effects of boundary conditions (air versus ground surface temperature and humidity), ground temperature cycles, and their diminishing amplitude with depth and advective flows (Darcy flow and wind pumping) on water vapor fluxes in soils and ice table depths using the REGO vapor diffusion model. We conducted a series of numerical experiments that illustrated different hypothetical scenarios and estimated the water vapor flux and ice table depth using the conditions in University Valley, a small high elevation valley. In situ measurements showed that while the mean annual ground surface temperature approximates that in the air, the mean annual ground surface relative humidity (>85%ice) was significantly higher than in the atmosphere ( 50%ice). When ground surface temperature and humidity were used as boundary conditions, along with damping diurnal and annual temperature cycles within the sandy soil, REGO predicted that measured ice table depths in the valley were in equilibrium with contemporary conditions. Based on model results, a dry soil column can become saturated with ice within centuries. Overall, the results from the new soil data and modeling have implications regarding the factors and boundary conditions that affect the stability of ground ice in cold and hyperarid regions where liquid water is rare.

  11. 7 CFR 1755.402 - Ground resistance measurements.

    Science.gov (United States)

    2010-01-01

    ... ground resistance of electronic equipment such as span line repeaters, carrier terminal equipment... Protection Grounding Fundamentals,” for a comprehensive discussion of ground resistance measurements. (d... electronic equipment, the ground resistance shall not exceed 25 ohms. Where the measured ground...

  12. Surface temperature measurements of diamond

    CSIR Research Space (South Africa)

    Masina, BN

    2006-07-01

    Full Text Available ) and the waist position (z0) 3. TEMPERATURE MEASUREMENTS There are many methods to measure the temperature of a body. Here we used a thermocou- ple and a pyrometer, while future plans involve emission spectroscopy. A thermocouple is a temperature... sensor that consists of two wires con- nected together made from different metals, which produces an electrical voltage that is dependant on tem- perature. A Newport electronic thermocou- ple was used to meas- ured temperature. It can measure...

  13. Difference Analysis of Two Types of Thermometers for Measuring Extreme Ground Temperature%自动与人工测温仪器观测地温极值差值分析

    Institute of Scientific and Technical Information of China (English)

    张久山; 苗凤梅; 张殿芳

    2012-01-01

    The differences between the extreme ground temperature measured by two different types of temperatures sensors (automatic and manual observation) from 2004 to 2009 at the Mentougou weather station are analyzed. The monthly average differences between the maximum ground temperatures vary from -2.5 °C to 2.0 °C with obviously seasonal and annual variations, but the difference values have an average rate of 17.5% exceeding the mean value of 2 °C and the exceeding ratios decrease year by year. The monthly average differences between the minimum ground temperatures vary from -0.5℃ to 2.0 ℃ with obviously seasonal and annual variations, and the difference values have an average exceeding-average rate of 3.8%. The influencing factors, such as the intrinsic errors of the platinum resistance thermometers and glass liquid thermometers, soil condition, rainfall, etc. are analyzed. The influences of the different soil environment, installation state, solar radiation intensity, weather conditions, and other external factors are more significant than the errors caused by the instrument itself. The suggestions on reducing human-induced errors during ground temperature observation are given, which are helpful to the maintenance and quality improvement of ground temperature observation.%对门头沟气象站2004-2009年不同温度传感器(自动和人工)在地温测量中得到的日极值差值序列的特征分析发现:地面最高温度月均差值在-2.5~2.0℃之间,并呈现季节和年际波动,平均差值超标率为17.5%,但呈现逐年下降趋势;地面最低温度月均差值在-0.5~2.0℃之间,并呈现季节和年际变化,平均差值超标率为3.8%.分析了铂电阻温度表和玻璃液体温度表仪器自身误差和土壤状态、降水等因素对差值的影响.由地温表接触的土壤环境、安装状态、太阳辐射强度、天气条件等外部因素影响所产生的误差比仪器自身原因引起的误差要显著;外部

  14. Ground robotic measurement of aeolian processes

    Science.gov (United States)

    Qian, Feifei; Jerolmack, Douglas; Lancaster, Nicholas; Nikolich, George; Reverdy, Paul; Roberts, Sonia; Shipley, Thomas; Van Pelt, R. Scott; Zobeck, Ted M.; Koditschek, Daniel E.

    2017-08-01

    Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These devices are often cumbersome and logistically difficult to set up and maintain, especially near steep or vegetated dune surfaces. Significant advances in instrumentation are needed to provide the datasets that are required to validate and improve mechanistic models of aeolian sediment transport. Recent advances in robotics show great promise for assisting and amplifying scientists' efforts to increase the spatial and temporal resolution of many environmental measurements governing sediment transport. The emergence of cheap, agile, human-scale robotic platforms endowed with increasingly sophisticated sensor and motor suites opens up the prospect of deploying programmable, reactive sensor payloads across complex terrain in the service of aeolian science. This paper surveys the need and assesses the opportunities and challenges for amassing novel, highly resolved spatiotemporal datasets for aeolian research using partially-automated ground mobility. We review the limitations of existing measurement approaches for aeolian processes, and discuss how they may be transformed by ground-based robotic platforms, using examples from our initial field experiments. We then review how the need to traverse challenging aeolian terrains and simultaneously make high-resolution measurements of critical variables requires enhanced robotic capability. Finally, we conclude with a look to the future, in which robotic platforms may operate with increasing autonomy in harsh conditions. Besides expanding the completeness of terrestrial datasets, bringing ground-based robots to the aeolian research community may lead to unexpected discoveries that generate new hypotheses to expand the science

  15. In-situ Microwave Brightness Temperature Variability from Ground-based Radiometer Measurements at Dome C in Antarctica Induced by Wind-formed Features

    Science.gov (United States)

    Royer, A.; Picard, G.; Arnaud, L.; Brucker, L.; Fily, M..

    2014-01-01

    Space-borne microwave radiometers are among the most useful tools to study snow and to collect information on the Antarctic climate. They have several advantages over other remote sensing techniques: high sensitivity to snow properties of interest (temperature, grain size, density), subdaily coverage in the polar regions, and their observations are independent of cloud conditions and solar illumination. Thus, microwave radiometers are widely used to retrieve information over snow-covered regions. For the Antarctic Plateau, many studies presenting retrieval algorithms or numerical simulations have assumed, explicitly or not, that the subpixel-scale heterogeneity is negligible and that the retrieved properties were representative of whole pixels. In this presentation, we investigate the spatial variations of brightness temperature over arange of a few kilometers in the Dome C area (Antarctic Plateau).

  16. 7 CFR 1755.406 - Shield or armor ground resistance measurements.

    Science.gov (United States)

    2010-01-01

    ... or armor ground resistance measurements shall be made on completed lengths of copper cable and wire... miles (km) of the cable or wire under test. (4)(i) The objective shield or armor ground resistance may... armor to ground resistance due to temperature. The variations can, however, be substantial for...

  17. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    Science.gov (United States)

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  18. DETERMINING UNDISTURBED GROUND TEMPERATURE AS PART OF SHALLOW GEOTHERMAL RESOURCES ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2010-12-01

    Full Text Available The undisturbed ground temperature is one of the key thermogeological parameters for the assessment and utilization of shallow geothermal resources. Geothermal energy is the type of energy which is stored in the ground where solar radiation has no effect. The depth at which the undisturbed ground temperature occurs, independent of seasonal changes in the surface air temperature, is functionally determined by climate parameters and thermogeological properties. In deeper layers, the increase of ground temperature depends solely on geothermal gradient. Determining accurate values of undisturbed ground temperature and depth of occurrence is crucial for the correct sizing of a borehole heat exchanger as part of the ground-source heat pump system, which is considered the most efficient technology for utilising shallow geothermal resources. The purpose of this paper is to define three specific temperature regions, based on the measured ground temperature data collected from the main meteorological stations in Croatia. The three regions are: Northern Croatia, Adriatic region, and the regions of Lika and Gorski Kotar.

  19. North American regional climate reconstruction from ground surface temperature histories

    Science.gov (United States)

    Jaume-Santero, Fernando; Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-12-01

    Within the framework of the PAGES NAm2k project, 510 North American borehole temperature-depth profiles were analyzed to infer recent climate changes. To facilitate comparisons and to study the same time period, the profiles were truncated at 300 m. Ground surface temperature histories for the last 500 years were obtained for a model describing temperature changes at the surface for several climate-differentiated regions in North America. The evaluation of the model is done by inversion of temperature perturbations using singular value decomposition and its solutions are assessed using a Monte Carlo approach. The results within 95 % confidence interval suggest a warming between 1.0 and 2.5 K during the last two centuries. A regional analysis, composed of mean temperature changes over the last 500 years and geographical maps of ground surface temperatures, show that all regions experienced warming, but this warming is not spatially uniform and is more marked in northern regions.

  20. Attribution of precipitation changes on ground-air temperature offset: Granger causality analysis

    Science.gov (United States)

    Cermak, Vladimir; Bodri, Louise

    2016-06-01

    This work examines the causal relationship between the value of the ground-air temperature offset and the precipitation changes for monitored 5-min data series together with their hourly and daily averages obtained at the Sporilov Geophysical Observatory (Prague). Shallow subsurface soil temperatures were monitored under four different land cover types (bare soil, sand, short-cut grass and asphalt). The ground surface temperature (GST) and surface air temperature (SAT) offset, ΔT(GST-SAT), is defined as the difference between the temperature measured at the depth of 2 cm below the surface and the air temperature measured at 5 cm above the surface. The results of the Granger causality test did not reveal any evidence of Granger causality for precipitation to ground-air temperature offsets on the daily scale of aggregation except for the asphalt pavement. On the contrary, a strong evidence of Granger causality for precipitation to the ground-air temperature offsets was found on the hourly scale of aggregation for all land cover types except for the sand surface cover. All results are sensitive to the lag choice of the autoregressive model. On the whole, obtained results contain valuable information on the delay time of ΔT(GST-SAT) caused by the rainfall events and confirmed the importance of using autoregressive models to understand the ground-air temperature relationship.

  1. Grounding the randomness of quantum measurement.

    Science.gov (United States)

    Jaeger, Gregg

    2016-05-28

    Julian Schwinger provided to physics a mathematical reconstruction of quantum mechanics on the basis of the characteristics of sequences of measurements occurring at the atomic level of physical structure. The central component of this reconstruction is an algebra of symbols corresponding to quantum measurements, conceived of as discrete processes, which serve to relate experience to theory; collections of outcomes of identically circumscribed such measurements are attributed expectation values, which constitute the predictive content of the theory. The outcomes correspond to certain phase parameters appearing in the corresponding symbols, which are complex numbers, the algebra of which he finds by a process he refers to as 'induction'. Schwinger assumed these (individually unpredictable) phase parameters to take random, uniformly distributed definite values within a natural range. I have previously suggested that the 'principle of plenitude' may serve as a basis in principle for the occurrence of the definite measured values that are those members of the collections of measurement outcomes from which the corresponding observed statistics derive (Jaeger 2015Found. Phys.45, 806-819. (doi:10.1007/s10701-015-9893-6)). Here, I evaluate Schwinger's assumption in the context of recent critiques of the notion of randomness and explicitly relate the randomness of these phases with the principle of plenitude and, in this way, provide a fundamental grounding for the objective, physically irreducible probabilities, conceived of as graded possibilities, that are attributed to measurement outcomes by quantum mechanics.

  2. Temperature Measurements in the Magnetic Measurement Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Zachary

    2010-12-13

    Several key LCLS undulator parameter values depend strongly on temperature primarily because of the permanent magnet material the undulators are constructed with. The undulators will be tuned to have specific parameter values in the Magnetic Measurement Facility (MMF). Consequently, it is necessary for the temperature of the MMF to remain fairly constant. Requirements on undulator temperature have been established. When in use, the undulator temperature will be in the range 20.0 {+-} 0.2 C. In the MMF, the undulator tuning will be done at 20.0 {+-} 0.1 C. For special studies, the MMF temperature set point can be changed to a value between 18 C and 23 C with stability of {+-}0.1 C. In order to ensure that the MMF temperature requirements are met, the MMF must have a system to measure temperatures. The accuracy of the MMF temperature measurement system must be better than the {+-}0.1 C undulator tuning temperature tolerance, and is taken to be {+-}0.01 C. The temperature measurement system for the MMF is under construction. It is similar to a prototype system we built two years ago in the Sector 10 alignment lab at SLAC. At that time, our goal was to measure the lab temperature to {+-}0.1 C. The system has worked well for two years and has maintained its accuracy. For the MMF system, we propose better sensors and a more extensive calibration program to achieve the factor of 10 increase in accuracy. In this note we describe the measurement system under construction. We motivate our choice of system components and give an overview of the system. Most of the software for the system has been written and will be discussed. We discuss error sources in temperature measurements and show how these errors have been dealt with. The calibration system is described in detail. All the LCLS undulators must be tuned in the Magnetic Measurement Facility at the same temperature to within {+-}0.1 C. In order to ensure this, we are building a system to measure the temperature of the

  3. Radiometric temperature measurements fundamentals

    CERN Document Server

    Zhang, Zhuomin M; Machin, Graham

    2009-01-01

    This book describes the theory of radiation thermometry, both at a primary level and for a variety of applications, such as in the materials processing industries and remote sensing. This book is written for those who will apply radiation thermometry in industrial practice; use radiation thermometers for scientific research; the radiation thermometry specialist in a national measurement institute; developers of radiation thermometers who are working to innovate products for instrument manufacturers, and developers of non-contact thermometry methods to address challenging thermometry problems.

  4. Low Temperature Emissivity Measurement System

    Directory of Open Access Journals (Sweden)

    Jignesh A. Patel

    2014-05-01

    Full Text Available The emissivity of a material is the relative ability of its surface to emit energy by radiation. It is the ratio of energy radiated by a particular material to energy radiated by a black body at the same temperature. Knowledge about the low temperature emissivity of materials and coatings can be essential to the design of fusion cryoplants and in the thermal modeling for space satellite missions. The emittance of materials at cryogenics temperatures often cannot be predicted from room temperature data, but for computing radiative loads and infrared backgrounds this cryogenic data is often required. Measurement of the cryogenic emissivity of a highly reflective surface is a significant challenge: little thermal power is radiated from the sample, and the background radiation. However some researchers have measured emissivity at various low temperature ranges. Present work reports, the various emissivity measurement setup and their considerations.

  5. Temperature measurement in the sea

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnamacharyulu, R.J.; Rao, L.V.G.

    ), their advantages and limitations are also touched upon. Calibration of various instruments used for temperature measurement in the sea and the special setup/facilities needed for this purpose are also discussed...

  6. Uncertainties and shortcomings of ground surface temperature histories derived from inversion of temperature logs

    OpenAIRE

    Hartmann, Andreas; Rath, Volker

    2008-01-01

    Analysing borehole temperature data in terms of ground surface history can add useful information to reconstructions of past climates. Therefore, a rigorous assessment of uncertainties and error sources is a necessary prerequisite for the meaningful interpretation of such ground surface temperature histories. This study analyses the most prominent sources of uncertainty. The diffusive nature of the process makes the inversion relatively robust against incomplete knowledge of the thermal diffu...

  7. A Cognitively Grounded Measure of Pronunciation Distance

    Science.gov (United States)

    Wieling, Martijn; Nerbonne, John; Bloem, Jelke; Gooskens, Charlotte; Heeringa, Wilbert; Baayen, R. Harald

    2014-01-01

    In this study we develop pronunciation distances based on naive discriminative learning (NDL). Measures of pronunciation distance are used in several subfields of linguistics, including psycholinguistics, dialectology and typology. In contrast to the commonly used Levenshtein algorithm, NDL is grounded in cognitive theory of competitive reinforcement learning and is able to generate asymmetrical pronunciation distances. In a first study, we validated the NDL-based pronunciation distances by comparing them to a large set of native-likeness ratings given by native American English speakers when presented with accented English speech. In a second study, the NDL-based pronunciation distances were validated on the basis of perceptual dialect distances of Norwegian speakers. Results indicated that the NDL-based pronunciation distances matched perceptual distances reasonably well with correlations ranging between 0.7 and 0.8. While the correlations were comparable to those obtained using the Levenshtein distance, the NDL-based approach is more flexible as it is also able to incorporate acoustic information other than sound segments. PMID:24416119

  8. A cognitively grounded measure of pronunciation distance.

    Science.gov (United States)

    Wieling, Martijn; Nerbonne, John; Bloem, Jelke; Gooskens, Charlotte; Heeringa, Wilbert; Baayen, R Harald

    2014-01-01

    In this study we develop pronunciation distances based on naive discriminative learning (NDL). Measures of pronunciation distance are used in several subfields of linguistics, including psycholinguistics, dialectology and typology. In contrast to the commonly used Levenshtein algorithm, NDL is grounded in cognitive theory of competitive reinforcement learning and is able to generate asymmetrical pronunciation distances. In a first study, we validated the NDL-based pronunciation distances by comparing them to a large set of native-likeness ratings given by native American English speakers when presented with accented English speech. In a second study, the NDL-based pronunciation distances were validated on the basis of perceptual dialect distances of Norwegian speakers. Results indicated that the NDL-based pronunciation distances matched perceptual distances reasonably well with correlations ranging between 0.7 and 0.8. While the correlations were comparable to those obtained using the Levenshtein distance, the NDL-based approach is more flexible as it is also able to incorporate acoustic information other than sound segments.

  9. A cognitively grounded measure of pronunciation distance.

    Directory of Open Access Journals (Sweden)

    Martijn Wieling

    Full Text Available In this study we develop pronunciation distances based on naive discriminative learning (NDL. Measures of pronunciation distance are used in several subfields of linguistics, including psycholinguistics, dialectology and typology. In contrast to the commonly used Levenshtein algorithm, NDL is grounded in cognitive theory of competitive reinforcement learning and is able to generate asymmetrical pronunciation distances. In a first study, we validated the NDL-based pronunciation distances by comparing them to a large set of native-likeness ratings given by native American English speakers when presented with accented English speech. In a second study, the NDL-based pronunciation distances were validated on the basis of perceptual dialect distances of Norwegian speakers. Results indicated that the NDL-based pronunciation distances matched perceptual distances reasonably well with correlations ranging between 0.7 and 0.8. While the correlations were comparable to those obtained using the Levenshtein distance, the NDL-based approach is more flexible as it is also able to incorporate acoustic information other than sound segments.

  10. Non-contact temperature measurement

    Science.gov (United States)

    Nordine, Paul C.; Krishnan, Shankar; Weber, J. K. R.; Schiffman, Robert A.

    Three methods for noncontact temperature measurement are presented. Ideal gas thermometry is realized by using laser-induced fluorescence to measure the concentration of mercury atoms in a Hg-Ar mixture in the vicinity of hot specimens. Emission polarimetry is investigated by measuring the spatially resolved intensities of polarized light from a hot tungsten sphere. Laser polarimetry is used to measure the optical properties, emissivity, and, in combination with optical pyrometry, the temperature of electromagnetically levitated liquid aluminum. The precision of temperature measurements based on the ideal gas law is + or - 2.6 percent at 1500-2000 K. The polarized emission technique is found to have the capability to determine optical properties and/or spectral emissivities of specimens over a wide range of wavelengths with quite simple instruments.

  11. Integrated Emissivity And Temperature Measurement

    Science.gov (United States)

    Poulsen, Peter

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  12. Michelson interferometer for measuring temperature

    OpenAIRE

    Xie, Dong; Xu, Chunling; Wang, Anmin

    2016-01-01

    We investigate that temperature can be measured by a modified Michelson interferometer, where at least one reflected mirror is replaced by a thermalized sample. Both of two mirrors replaced by the corresponding two thermalized samples can help to approximatively improve the resolution of temperature up to twice than only one mirror replaced by a thermalized sample. For further improving the precision, a nonlinear medium can be employed. The Michelson interferometer is embedded in a gas displa...

  13. Ground strain measuring system using optical fiber sensors

    Science.gov (United States)

    Sato, Tadanobu; Honda, Riki; Shibata, Shunjiro; Takegawa, Naoki

    2001-08-01

    This paper presents a device to measure the dynamic horizontal shear strain of the ground during earthquake. The proposed device consists of a bronze plate with fiber Bragg grating sensors attached on it. The device is vertically installed in the ground, and horizontal shear strain of the ground is measured as deflection angle of the plate. Employment of optical fiber sensors makes the proposed device simple in mechanism and highly durable, which makes it easy to install our device in the ground. We conducted shaking table tests using ground model to verify applicability of the proposed device.

  14. Earthquake Ground Motion Measures for Seismic Response Evaluation of Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In-Kil; Ahn, Seong-Moon; Choun, Young-Sun; Seo, Jeong-Moon

    2007-03-15

    This study used the assessment results of failure criteria - base shear, story drift, top acceleration and top displacement - for a PSC containment building subjected to 30 sets of near-fault ground motions to evaluate the earthquake ground motion intensity measures. Seven intensity measures, peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(Sa), velocity(Sv), spectrum intensity for acceleration(SIa), velocity(SIv) and displacement(SId), were used to represent alternative ground motion. The regression analyses of the failure criteria for a PSC containment building were carried out to evaluate a proper intensity measure by using two regression models and seven ground motion parameters. The regression analysis results demonstrate the correlation coefficients of the failure criteria in terms of the candidate IM. From the results, spectral acceleration(Sa) is estimated as the best parameter for a evaluation of the structural safety for a seismic PSA.

  15. Dynamic tire pressure sensor for measuring ground vibration.

    Science.gov (United States)

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L

    2012-11-07

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.

  16. Martian Surface Temperature and Spectral Response from the MSL REMS Ground Temperature Sensor

    Science.gov (United States)

    Martin-Torres, Javier; Martínez-Frías, Jesús; Zorzano, María-Paz; Serrano, María; Mendaza, Teresa; Hamilton, Vicky; Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; REMS Team

    2013-04-01

    The Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory (MSL) offers the opportunity to explore the near surface atmospheric conditions and, in particular will shed new light into the heat budget of the Martian surface. This is important for studies of the atmospheric boundary layer (ABL), as the ground and air temperatures measured directly by REMS control the coupling of the atmosphere with the surface [Zurek et al., 1992]. This coupling is driven by solar insolation. The ABL plays an important role in the general circulation and the local atmospheric dynamics of Mars. One of the REMS sensors, the ground temperature sensor (GTS), provides the data needed to study the thermal inertia properties of the regolith and rocks beneath the MSL rover. The GTS includes thermopile detectors, with infrared bands of 8-14 µm and 16-20 µm [Gómez-Elvira et al., 2012]. These sensors are clustered in a single location on the MSL mast and the 8-14 µm thermopile sounds the surface temperature. The infrared radiation reaching the thermopile is proportional to the emissivity of the surface minerals across these thermal wavelengths. We have developed a radiative transfer retrieval method for the REMS GTS using a database of thermal infrared laboratory spectra of analogue minerals and their mixtures. [Martín Redondo et al. 2009, Martínez-Frías et al. 2012 - FRISER-IRMIX database]. This method will be used to assess the perfomance of the REMS GTS as well as determine, through the error analysis, the surface temperature and emissivity values where MSL is operating. Comparisons with orbiter data will be performed. References Gómez-Elvira et al. [2012], REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover, Space Science Reviews, Volume 170, Issue 1-4, pp. 583-640. Martín-Redondo et al. [2009] Journal of Environmental Monitoring 11:, pp. 1428-1432. Martínez-Frías et al. [2012] FRISER-IRMIX database http

  17. Revealing of major factors in the directional thermal radiation of ground objects——A new way for improving the precision of directional radiant temperature measuring and data analysis

    Institute of Scientific and Technical Information of China (English)

    张仁华; 孙晓敏; 李召良; 苏红波; 唐新斋; M.P.Stoll

    2000-01-01

    This paper is devoted to eliminating the noise from the measuring of directional thermal radiation for ground objects. Specifically, we think that the noise is mainly due to the variance of components in the field of view of the sensor with the view angle changing and to the heat balance change on the ground during the period of measurement. The authors present two new observation methods named as "constant area method by thermal camera" and "concurrent method by dual sensors" respectively. The experiments show that the data obtained by these methods abide by some regularly directional distribution, which is totally different from the data from the former methods. The analysis of the major factors in the directionality of thermal radiation is also made in the paper.

  18. Casimir Free Energy at High Temperatures: Grounded vs Isolated Conductors

    CERN Document Server

    Fosco, C D; Mazzitelli, F D

    2016-01-01

    We evaluate the difference between the Casimir free energies corresponding to either grounded or isolated perfect conductors, at high temperatures. We show that a general and simple expression for that difference can be given, in terms of the electrostatic capacitance matrix for the system of conductors. For the case of close conductors, we provide approximate expressions for that difference, by evaluating the capacitance matrix using the proximity force approximation. Since the high-temperature limit for the Casimir free energy for a medium described by a frequency-dependent conductivity diverging at zero frequency coincides with that of an isolated conductor, our results may shed light on the corrections to the Casimir force in the presence of real materials.

  19. Eruption column height: a comparison between ground and satellite measurements

    Science.gov (United States)

    Scollo, Simona; Prestifilippo, Michele; Pecora, Emilio; Corradini, Stefano; Merucci, Luca; Spata, Gaetano; Coltelli, Mauro

    2014-05-01

    The eruption column height estimation is an essential parameter to evaluate the total mass eruption rate, the gas and aerosol plume dispersal and retrievals. The column height may be estimated using different systems (e.g. satellite, aircraft and ground observations) which may present marked differences. In this work we use the calibrated images collected by the video-surveillance system of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, from the visible camera located in Catania, 27 km from the vent. The analysis is carried out on twenty lava fountains from the New South East Crater during the recent Etna explosive activity. Firstly, we calibrated the camera to estimate its intrinsic parameters and the full camera model. Furthermore, we selected the images which recorded the maximum phase of the eruptive activity. Hence, we applied an appropriate correction to take into account the wind effect. The column height was also evaluated using SEVIRI and MODIS satellite images collected at the same time of the video camera measurements. The satellite column height retrievals is realized by comparing the 11 μm brightness temperature of the most opaque plume pixels with the atmospheric temperature profile measured at Trapani WMO Meteo station (the nearest WMO station to the Etnean area). The comparison between satellite and ground data show a good agreement and the column altitudes ranges between 7.5 and 9 km (upper limit of the camera system). For nine events we evaluated also the thickness of the volcanic plumes in the umbrella region (near the vent) which ranges between 2 and 3 km. The proposed approach help to quantitatively evaluate the column height that may be used by volcanic ash dispersal and sedimentation models for improving forecasts and reducing risks to aviation during volcanic crisis.

  20. Noninvasive Temperature Measurement Based on Microwave Temperature Sensor

    OpenAIRE

    Shoucheng Ding

    2013-01-01

    In this study, we have a research of the noninvasive temperature measurement based on microwave temperature sensor. Moreover, in order to solve the surface temperature measurement for designing microwave temperature sensor, the microwave was issued by the transmitting antenna. Microwave encountered by the measured object to return back to the measured object and then convert it into electrical signals, the use of the quantitative relationship between this signal and input noise temperature to...

  1. Temperature adaptation of active sodium-potassium transport and of passive permeability in erythrocytes of ground squirrels.

    Science.gov (United States)

    Kimzey, S. L.; Willis, J. S.

    1971-01-01

    Unidirectional active and passive fluxes of K-42 and Na-24 were measured in red blood cells of ground squirrels (hibernators) and guinea pigs (nonhibernators). As the temperature was lowered, ?active' (ouabain-sensitive) K influx and Na efflux were more considerably diminished in guinea pig cells than in those of ground squirrels. The fraction of total K influx which is ouabain-sensitive in red blood cells of ground squirrels was virtually constant at all temperatures, whereas it decreased abruptly in guinea pig cells as temperature was lowered.

  2. Thermophysical properties along Curiosity's traverse in Gale crater, Mars, derived from the REMS ground temperature sensor

    Science.gov (United States)

    Vasavada, Ashwin R.; Piqueux, Sylvain; Lewis, Kevin W.; Lemmon, Mark T.; Smith, Michael D.

    2017-03-01

    The REMS instrument onboard the Mars Science Laboratory rover, Curiosity, has measured ground temperature nearly continuously at hourly intervals for two Mars years. Coverage of the entire diurnal cycle at 1 Hz is available every few martian days. We compare these measurements with predictions of surface-atmosphere thermal models to derive the apparent thermal inertia and thermally derived albedo along the rover's traverse after accounting for the radiative effects of atmospheric water ice during fall and winter, as is necessary to match the measured seasonal trend. The REMS measurements can distinguish between active sand, other loose materials, mudstone, and sandstone based on their thermophysical properties. However, the apparent thermal inertias of bedrock-dominated surfaces (∼350-550 J m-2 K-1 s-½) are lower than expected. We use rover imagery and the detailed shape of the diurnal ground temperature curve to explore whether lateral or vertical heterogeneity in the surface materials within the sensor footprint might explain the low inertias. We find that the bedrock component of the surface can have a thermal inertia as high as 650-1700 J m-2 K-1 s-½ for mudstone sites and ∼700 J m-2 K-1 s-½ for sandstone sites in models runs that include lateral and vertical mixing. Although the results of our forward modeling approach may be non-unique, they demonstrate the potential to extract information about lateral and vertical variations in thermophysical properties from temporally resolved measurements of ground temperature.

  3. Relevant Analysis of Grassland Temperature and Ground Net Radiation in Guilin

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the relevance of grassland temperature and ground net radiation in Guilin.[Method] By dint of ground observation data and net radiation of national benchmark climate station in Guilin from 2007 to 2009,the changes of grassland temperature and ground net radiation were expounded and their relations were pointed out.[Result] The annual changes trends of grassland temperature and ground net radiation in Guilin were basically the same.Monthly average maximum value all appeared i...

  4. A Cognitively Grounded Measure of Pronunciation Distance

    NARCIS (Netherlands)

    Wieling, M.; Nerbonne, J.; Bloem, J.; Gooskens, C.; Heeringa, W.; Baayen, R.H.

    2014-01-01

    In this study we develop pronunciation distances based on naive discriminative learning (NDL). Measures of pronunciation distance are used in several subfields of linguistics, including psycholinguistics, dialectology and typology. In contrast to the commonly used Levenshtein algorithm, NDL is groun

  5. High temperature skin friction measurement

    Science.gov (United States)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  6. Ground and Airborne Methane Measurements with an Optical Parametric Amplifier

    Science.gov (United States)

    Numata, Kenji

    2012-01-01

    We report on ground and airborne atmospheric methane measurements with a differential absorption lidar using an optical parametric amplifier (OPA). Methane is a strong greenhouse gas on Earth and its accurate global mapping is urgently needed to understand climate change. We are developing a nanosecond-pulsed OPA for remote measurements of methane from an Earth-orbiting satellite. We have successfully demonstrated the detection of methane on the ground and from an airplane at approximately 11-km altitude.

  7. GIFTS EDU Ground-based Measurement Experiment

    Science.gov (United States)

    Zhou, Daniel K.; Smith, W. L., Sr.; Zollinger, L. J.; Huppi, R. J.; Reisse, R. A.; Larar, A. M.; Liu, X.; Tansock, J. J., Jr.; Jensen, S. M.; Revercomb, H. E.; Feltz, W. F.; Bingham, G. E.

    2007-01-01

    Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) is an imaging infrared spectrometer designed for atmospheric soundings. The EDU groundbased measurement experiment was held in Logan, Utah during September 2006 to demonstrate its extensive capabilities for geosynchronous and other applications.

  8. Ground-Water Temperature, Noble Gas, and Carbon Isotope Data from the Espanola Basin, New Mexico

    Science.gov (United States)

    Manning, Andrew H.

    2009-01-01

    Ground-water samples were collected from 56 locations throughout the Espanola Basin and analyzed for general chemistry (major ions and trace elements), carbon isotopes (delta 13C and 14C activity) in dissolved inorganic carbon, noble gases (He, Ne, Ar, Kr, Xe, and 3He/4He ratio), and tritium. Temperature profiles were measured at six locations in the southeastern part of the basin. Temperature profiles suggest that ground water generally becomes warmer with distance from the mountains and that most ground-water flow occurs at depths 50 years old, consistent with the 14C ages. Terrigenic He (Heterr) concentrations in ground water are high (log Delta Heterr of 2 to 5) throughout much of the basin. High Heterr concentrations are probably caused by in situ production in the Tesuque Formation from locally high concentrations of U-bearing minerals (Northeast zone only), or by upward diffusive/advective transport of crustal- and mantle-sourced He possibly enhanced by basement piercing faults, or by both. The 3He/4He ratio of Heterr (Rterr) is commonly high (Rterr/Ra of 0.3-2.0, where Ra is the 3He/4He ratio in air) suggesting that Espanola Basin ground water commonly contains mantle-sourced He. The 3He/4He ratio of Heterr is generally the highest in the western and southern parts of the basin, closest to the western border fault system and the Quaternary to Miocene volcanics of the Jemez Mountains and Cerros del Rio.

  9. Orientation effect on ground motion measurement for Mexican subduction earthquakes

    Institute of Scientific and Technical Information of China (English)

    H.P Hong; A. Pozos-Estrada; R. Gomez

    2009-01-01

    The existence of the principal directions of the ground motion based on Arias intensity is well-known. These principal directions do not necessarily coincide with the orientations of recording sensors or with the orientations along which the ground motion parameters such as the peak ground acceleration and the pseudo-spectral acceleration (PSA) are maximum. This is evidenced by the fact that the maximum PSA at different natural vibration periods for horizontal excitations do not correspond to the same orientation. A recent analysis carried out for California earthquake records suggests that an orientation-dependent ground motion measurement for horizontal excitations can be developed. The main objective of this study is to investigate and provide seismic ground motion measurements in the horizontal plane, including bidirectional horizontal ground motions, for Mexican interplate and inslab earthquake records. Extensive statistical analyses of PSA are conducted for the assessment, The analysis results suggest that similar to the case of California records, the average behavior of the ratio of the PSA to the maximum resulting PSA can be approximated by a quarter of an ellipse in one quadrant; and that the ratio can be considered to be independent of the value of the maximum resulting PSA, earthquake magnitude, earthquake distance and the focal depth. Sets of response ratios and attenuation relationships that can be used to represent a bidirectional horizontal ground motion measurement for Mexican interplate and inslab earthquakes were also developed.

  10. Ground-Based Aerosol Measurements | Science Inventory ...

    Science.gov (United States)

    Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomon et al. 2014) as well as in research studies. In this approach, air, at a specified flow rate and time period, is typically drawn through an inlet, usually a size selective inlet, and then drawn through filters, 1 INTRODUCTION Atmospheric particulate matter (PM) is a complex chemical mixture of liquid and solid particles suspended in air (Seinfeld and Pandis 2016). Measurements of this complex mixture form the basis of our knowledge regarding particle formation, source-receptor relationships, data to test and verify complex air quality models, and how PM impacts human health, visibility, global warming, and ecological systems (EPA 2009). Historically, PM samples have been collected on filters or other substrates with subsequent chemical analysis in the laboratory and this is still the major approach for routine networks (Chow 2005; Solomo

  11. Assessment of MTI Water Temperature Thermal Discharge Retrievals with Ground Truth

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.J.

    2002-12-06

    Surface water temperatures calculated from Multispectral Thermal Imager (MTI) brightness temperatures and the robust retrieval algorithm, developed by the Los Alamos National Laboratory (LANL), are compared with ground truth measurements at a mid-latitude cold-water site along the Atlantic coast near Plymouth, MA. In contrast to the relative uniformity of the sea-surface temperature in the open ocean the water temperature near Pilgrim exhibits strong spatial gradients and temporal variability. This made it critical that all images be accurately registered in order to extract temperature values at the six buoy locations. Sixteen images during a one-year period from August 2000 to July 2001 were selected for the study. The RMS error of Pilgrim water temperature is about 3.5 C for the 4 buoys located in open water. The RMS error of the combined temperatures from 3 of the open-water buoys is 2.8 C. The RMS error includes errors in the ground truth. The magnitude of this error is estimated to range between 0.8 and 2.3 C. The two main components of this error are warm-layer effect and spatial variability. The actual error in the MTI retrievals for Pilgrim daytime conditions is estimated to be between 2.7 and 3.4 C for individual buoys and between 1.7 and 2.7 C for the combined open-water buoys.

  12. Preliminary results of ground reflectivity measurements using noise radar

    Science.gov (United States)

    Maślikowski, Łukasz; Krysik, Piotr; Dąbrowska-Zielińska, Katarzyna; Kowalik, Wanda; Bartold, Maciej

    2011-10-01

    The paper describes experimental L-band ground reflectivity measurement using noise radar demonstrator working as a scatterometer. The radar ground return is usually described with a scattering coefficient, a quantity that is independent from the scatterometer system. To calculate the coefficient in a function of incidence angle, range profile values obtained after range compression were used. In order to improve dynamic range of the measurement, antenna cross-path interference was removed using lattice filter. The ground return was measured at L band both for HH and VV polarizations of radar wave as well as for HV and VH crosspolarizations using log-periodic antennas placed at a 10 m high mast directed towards a meadow surface. In the paper the theoretical considerations, noise radar setup, measurement campaign and the results are described.

  13. New algorithm for extreme temperature measurements

    NARCIS (Netherlands)

    Damean, N.

    2000-01-01

    A new algorithm for measurement of extreme temperature is presented. This algorithm reduces the measurement of the unknown temperature to the solving of an optimal control problem, using a numerical computer. Based on this method, a new device for extreme temperature measurements is projected. It co

  14. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  15. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  16. Ground-based lidar for atmospheric boundary layer ozone measurements.

    Science.gov (United States)

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  17. [Measurement and management of body temperature].

    Science.gov (United States)

    Iwashita, Hironobu; Matsukawa, Takashi

    2012-01-01

    Body temperature regulation is at the basis of life maintenance and for humans to maintain the central body temperature within the range of 37 +/- 0.2 degrees Celsius. In the case of anesthesia, a patient would have a high possibility of lower body temperature and also could have more complications with low body temperature. In addition, it would generate more complications and extend a period of hospitalization. For that reason, anesthetists must pay full attention to body temperature management during surgery. Measurement for central body temperature is necessary as a monitor for body temperature measurement and the measurement for nasopharyngeal temperature, tympanic temperature, and lung artery temperature is effective for this purpose. Therapeutic hypothermia for brain injury is receiving attention recently as a preventive method for brain disorder and the method is utilized in hospital facilities. In future, it is expected to attain the most suitable treatment method by clinical studies on low body temperature.

  18. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  19. Noninvasive Temperature Measurement Based on Microwave Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Shoucheng Ding

    2013-01-01

    Full Text Available In this study, we have a research of the noninvasive temperature measurement based on microwave temperature sensor. Moreover, in order to solve the surface temperature measurement for designing microwave temperature sensor, the microwave was issued by the transmitting antenna. Microwave encountered by the measured object to return back to the measured object and then convert it into electrical signals, the use of the quantitative relationship between this signal and input noise temperature to real-time calibration. In order to calculate the antenna brightness temperature and then after signal conditioning circuit, which can show the temperature value, in order to achieve the detection of microwave temperature. Microwave-temperature measurement system hardware based on 89C51 microcontroller consists of the microwave temperature sensor, signal conditioning circuitry and chip control circuit, AD converter circuit and display circuit. The system software is by the main program, the AD conversion routines, subroutines and delay subprogram. The microwave temperature measurement characterize has: without gain fluctuations, without the impact of changes in the noise of the machine, to provide continuous calibration, wide dynamic range.

  20. Measuring Specific Heats at High Temperatures

    Science.gov (United States)

    Vandersande, Jan W.; Zoltan, Andrew; Wood, Charles

    1987-01-01

    Flash apparatus for measuring thermal diffusivities at temperatures from 300 to 1,000 degrees C modified; measures specific heats of samples to accuracy of 4 to 5 percent. Specific heat and thermal diffusivity of sample measured. Xenon flash emits pulse of radiation, absorbed by sputtered graphite coating on sample. Sample temperature measured with thermocouple, and temperature rise due to pulse measured by InSb detector.

  1. SUPERFUND GROUND WATER ISSUE - ACCURACY OF DEPTH TO WATER MEASUREMENTS

    Science.gov (United States)

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge of discharge, the hydraulic characteristics of aquifers, or the effects of manmade...

  2. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...

  3. Validation of stratospheric temperature profiles from a ground-based microwave radiometer with other techniques

    Science.gov (United States)

    Navas, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2016-04-01

    Vertical profiles of atmospheric temperature trends has become recognized as an important indicator of climate change, because different climate forcing mechanisms exhibit distinct vertical warming and cooling patterns. For example, the cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming. Despite its importance, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. One of the main reason is because stratospheric long-term datasets are sparse and obtained trends differ from one another. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. This study presents an evaluation of the stratospheric temperature profiles from a newly ground-based microwave temperature radiometer (TEMPERA) which has been built and designed at the University of Bern. The measurements from TEMPERA are compared with the ones from other different techniques such as in-situ (radiosondes), active remote sensing (lidar) and passive remote sensing on board of Aura satellite (MLS) measurements. In addition a statistical analysis of the stratospheric temperature obtained from TEMPERA measurements during four years of data has been performed. This analysis evidenced the capability of TEMPERA radiometer to monitor the temperature in the stratosphere for a long-term. The detection of some singular sudden stratospheric warming (SSW) during the analyzed period shows the necessity of these

  4. Evaluation of brightness temperature from a forward model of ground-based microwave radiometer

    Indian Academy of Sciences (India)

    S Rambabu; J S Pillai; A Agarwal; G Pandithurai

    2014-06-01

    Ground-based microwave radiometers are getting great attention in recent years due to their capability to profile the temperature and humidity at high temporal and vertical resolution in the lower troposphere. The process of retrieving these parameters from the measurements of radiometric brightness temperature () includes the inversion algorithm, which uses the background information from a forward model. In the present study, an algorithm development and evaluation of this forward model for a ground-based microwave radiometer, being developed by Society for Applied Microwave Electronics Engineering and Research (SAMEER) of India, is presented. Initially, the analysis of absorption coefficient and weighting function at different frequencies was made to select the channels. Further the range of variation of for these selected channels for the year 2011, over the two stations Mumbai and Delhi is discussed. Finally the comparison between forward-model simulated s and radiometer measured s at Mahabaleshwar (73.66°E and 17.93°N) is done to evaluate the model. There is good agreement between model simulations and radiometer observations, which suggests that these forward model simulations can be used as background for inversion models for retrieving the temperature and humidity profiles.

  5. AMS Ground Truth Measurements: Calibration and Test Lines

    Energy Technology Data Exchange (ETDEWEB)

    Wasiolek, P. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2013-11-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima nuclear power plant (NPP) accident in March-May 2011. To map ground contamination a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count rate data expressed in counts per second (cps) needs to be converted to the terrestrial component of the exposure rate 1 m above ground, or surface activity of isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, as the production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish very early into the event a common calibration line. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements. This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  6. Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux

    NARCIS (Netherlands)

    Bense, V.F.; Read, T.; Verhoef, A.

    2016-01-01

    We present one of the first studies of the use of distributed temperature sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer

  7. Axillary and rectal temperature measurements in infants.

    OpenAIRE

    Morley, C J; Hewson, P H; Thornton, A. J.; Cole, T J

    1992-01-01

    Rectal and axillary temperatures were measured during the daytime in 281 infants seen randomly at home and 656 at hospital under 6 months old, using mercury-in-glass thermometers. The normal temperature range derived from the babies at home was 36.7-37.9 degrees C for rectal temperature and 35.6-37.2 degrees C for axillary temperature. Rectal temperature was higher than axillary in 98% of the measurements. The mean (SD) difference between rectal and axillary temperatures was 0.7 (0.5) degrees...

  8. How Does Measuring Generate Evidence? The Problem of Observational Grounding

    Science.gov (United States)

    Tal, Eran

    2016-11-01

    The epistemology of measurement is an area of philosophy that studies the relationships between measurement and knowledge. One of its central aims is to explain how measurement can function as a reliable source of scientific evidence. Key to such explanation is a clear characterization of the dependence of measurement on observation, but such characterization has remained elusive. This article traces the recent historical trajectory of views on the observational grounding of measurement, clarifies the current state of the problem, and proposes new directions for progress. Specifically, I argue in favour of viewing measurement outcomes as the best predictors of observed instrument indications under a given theoretical-statistical model of the measurement process. The evidential efficacy of measurement outcomes is explained by their relatively high epistemic security, rather than by their inferential or structural closeness to observation.

  9. Temperature measurements in cavitation bubbles

    Science.gov (United States)

    Coutier-Delgosha, Olivier

    2016-11-01

    Cavitation is usually a nearly isothermal process in the liquid phase, but in some specific flow conditions like hot water or cryogenic fluids, significant temperature variations are detected. In addition, a large temperature increase happens inside the cavitation bubbles at the very end of their collapse, due to the fast compression of the gas at the bubble core, which is almost adiabatic. This process is of primary interest in various biomedical and pharmaceutical applications, where the mechanisms of bubble collapse plays a major role. To investigate the amplitude and the spatial distribution of these temperature variations inside and outside the cavitation bubbles, a system based on cold wires has been developed. They have been tested in a configuration of a single bubble obtained by submitting a small air bubble to a large amplitude pressure wave. Some promising results have been obtained after the initial validation tests. This work is funded by the Office of Naval Research Global under Grant N62909-16-1-2116, Dr. Salahuddin Ahmed & Ki-Han Kim program managers.

  10. Field of Temperature Measurement by Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Libor HARGAŠ

    2009-01-01

    Full Text Available This paper introduces about temperature determination for given dot of picture through image analysis. Heat transfer is the transition of thermal energy from a heated item to a cooler item. Main method of measurement of temperature in image is Pattern Matching, color scale detection and model detection. We can measure temperature dependency at time for selected point of thermo vision images. This measurement gives idea about the heat transfer at time dependences.

  11. An analysis of the numerical model influence on the ground temperature profile determination

    Science.gov (United States)

    Jaszczur, Marek; Polepszyc, Inga; Sapińska-Śliwa, Aneta; Gonet, Andrzej

    2017-02-01

    The estimation of the ground temperature profile with respect to the depth and time is the key issue in many engineering applications which use the ground as a source of thermal energy. In the present work, the influence of the model components on the calculated ground temperature distribution has been analysed in order to develop an accurate and robust model for the prediction of the ground temperature profile. The presented mathematical model takes into account all the key phenomena occurring in the soil and on its top surface. The impact of individual model elements on the temperature of the soil has been analysed. It has been found that the simplest models and the most complex model result in a similar temperature variation over the simulation period, but only at a low depth. A detailed analysis shows that a larger depth requires more complex models and the calculation with the use of simple models results in an incorrect temperature and a theoretical COP estimation.

  12. Radiative and temperature effects of aerosol simulated by the COSMO-Ru model for different atmospheric conditions and their testing against ground-based measurements and accurate RT simulations

    Science.gov (United States)

    Chubarova, Nataly; Poliukhov, Alexei; Shatunova, Marina; Rivin, Gdali; Becker, Ralf; Muskatel, Harel; Blahak, Ulrich; Kinne, Stefan; Tarasova, Tatiana

    2017-04-01

    We use the operational Russian COSMO-Ru weather forecast model (Ritter and and Geleyn, 1991) with different aerosol input data for the evaluation of radiative and temperature effects of aerosol in different atmospheric conditions. Various aerosol datasets were utilized including Tegen climatology (Tegen et al., 1997), updated Macv2 climatology (Kinne et al., 2013), Tanre climatology (Tanre et al., 1984) as well as the MACC data (Morcrette et al., 2009). For clear sky conditions we compare the radiative effects from the COSMO-Ru model over Moscow (55.7N, 37.5E) and Lindenberg/Falkenberg sites (52.2N, 14.1E) with the results obtained using long-term aerosol measurements. Additional tests of the COSMO RT code were performed against (FC05)-SW model (Tarasova T.A. and Fomin B.A., 2007). The overestimation of about 5-8% of COSMO RT code was obtained. The study of aerosol effect on temperature at 2 meters has revealed the sensitivity of about 0.7-1.1 degree C per 100 W/m2 change in shortwave net radiation due to aerosol variations. We also discuss the radiative impact of urban aerosol properties according to the long-term AERONET measurements in Moscow and Moscow suburb as well as long-term aerosol trends over Moscow from the measurements and Macv2 dataset. References: Kinne, S., O'Donnel D., Stier P., et al., J. Adv. Model. Earth Syst., 5, 704-740, 2013. Morcrette J.-J.,O. Boucher, L. Jones, eet al, J.GEOPHYS. RES.,VOL. 114, D06206, doi:10.1029/2008JD011235, 2009. Ritter, B. and Geleyn, J., Monthly Weather Review, 120, 303-325, 1992. Tanre, D., Geleyn, J., and Slingo, J., A. Deepak Publ., Hampton, Virginia, 133-177, 1984. Tarasova, T., and Fomin, B., Journal of Atmospheric and Oceanic Technology, 24, 1157-1162, 2007. Tegen, I., Hollrig, P., Chin, M., et al., Journal of Geophysical Research- Atmospheres, 102, 23895-23915, 1997.

  13. Ground surface temperature histories in northern Ontario and Québec for the past 500 years

    Science.gov (United States)

    Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-04-01

    We have used 19 temperature-depth profiles measured in boreholes from eastern Canada to reconstruct the ground surface temperature histories of the region. The boreholes are located north of 51oN, and west and east of James Bay in northern Ontario and Québec. The 8 boreholes in northern Ontario come from 3 sites in a region of extensive discontinuous permafrost, while the 11 holes from Québec come from 6 sites in a region of sporadic discontinuous permafrost. The depths of the holes range between 400 and 800 m, allowing a reconstruction of the ground surface temperature histories for the past 500 years. Present ground surface temperatures are higher in Québec, perhaps because the region receives more snowfall as shown by meteorological records and proxy data. The ground surface temperature histories indicate a present-day warming of ˜2-2.5oC in Ontario and ˜1-1.5oC in Québec relative to the reference surface temperature 500 years BP. These results are in agreement with available proxy data for the recent warming in eastern North America. Furthermore, they suggest that the higher snowfall and strong cooling during the Little Ice Age could have muted the borehole temperature record of climate change in Québec.

  14. NO2 DOAS measurements from ground and space: comparison of ground based measurements and OMI data in Mexico City

    Science.gov (United States)

    Rivera, C.; Stremme, W.; Grutter, M.

    2012-04-01

    The combination of satellite data and ground based measurements can provide valuable information about atmospheric chemistry and air quality. In this work we present a comparison between measured ground based NO2 differential columns at the Universidad Nacional Autónoma de México (UNAM) in Mexico City, using the Differential Optical Absorption Spectroscopy (DOAS) technique and NO2 total columns measured by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite using the same measurement technique. From these data, distribution maps of average NO2 above the Mexico basin were constructed and hot spots inside the city could be identified. In addition, a clear footprint was detected from the Tula industrial area, ~50 km northwest of Mexico City, where a refinery, a power plant and other industries are located. A less defined footprint was identified in the Cuernavaca basin, South of Mexico City, and the nearby cities of Toluca and Puebla do not present strong enhancements in the NO2 total columns. With this study we expect to cross-validate space and ground measurements and provide useful information for future studies.

  15. Temperature standards, what and where: resources for effective temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, W.W. Jr.

    1982-01-01

    Many standards have been published to describe devices, methods, and other topics. How they are developed and by whom are briefly described, and an attempt is made to extract most of those relating to temperature measurements. A directory of temperature standards and their sources is provided.

  16. Measuring Moduli Of Elasticity At High Temperatures

    Science.gov (United States)

    Wolfenden, Alan

    1993-01-01

    Shorter, squatter specimens and higher frequencies used in ultrasonic measurement technique. Improved version of piezo-electric ultrasonic composite oscillator technique used to measure moduli of elasticity of solid materials at high temperatures.

  17. Optimal ground motion intensity measure for long-period structures

    Science.gov (United States)

    Guan, Minsheng; Du, Hongbiao; Cui, Jie; Zeng, Qingli; Jiang, Haibo

    2015-10-01

    This paper aims to select the most appropriate ground motion intensity measure (IM) that is used in selecting earthquake records for the dynamic time history analysis of long-period structures. For this purpose, six reinforced concrete frame-core wall structures, designed according to modern seismic codes, are studied through dynamic time history analyses with a set of twelve selected earthquake records. Twelve IMs and two types of seismic damage indices, namely, the maximum seismic response-based and energy-based parameters, are chosen as the examined indices. Selection criteria such as correlation, efficiency, and proficiency are considered in the selection process. The optimal IM is identified by means of a comprehensive evaluation using a large number of data of correlation, efficiency, and proficiency coefficients. Numerical results illustrate that peak ground velocity is the optimal one for long-period structures and peak ground displacement is also a close contender. As compared to previous reports, the spectral-correlated parameters can only be taken as moderate IMs. Moreover, the widely used peak ground acceleration in the current seismic codes is considered inappropriate for long-period structures.

  18. Long term attenuation measurements on optical ground wires

    Energy Technology Data Exchange (ETDEWEB)

    Lamarche, L.; Gagnon, D.; Miron, M. [Hydro-Quebec, Varennes, Quebec1 (Canada)

    1996-11-01

    The attenuation stability of optical fibers integrated in optical ground wires (OPGW) cables over temperature and time is of paramount importance in the planning of long distance links. The authors report here a mean thermal attenuation dependence of 5.5{center_dot}10{sup {minus}5} dB/(km{center_dot}C) at 1,550 nm, on a 220 km span of dispersion shifted (DS) fibers of an installed OPGW cable. This optical link is installed in the James Bay region over a 735 kV power line where temperature varies from {minus}40 C to +30 C annually. The data sample presented covers 1.5 year starting December 1993. The data sample presented covers 1.5 year starting December 1993. During that period, the authors also observed a temporal evolution of the attenuation described by the empirical relation A = A{sub 0} (t{minus}t{sub 0}){sup 0.00394}.

  19. COMPARISON OF THE GROUND AND SATELLITE TEMPERATURE DATA, CASE OF WRANGELL ISLAND

    Directory of Open Access Journals (Sweden)

    M. Y. Grishchenko

    2016-01-01

    Full Text Available In modern times, in the country many remote areas are characterized by low density of weather stations, which reduces the accuracy of synoptic forecasts for territories remoted from the weather stations. In this regard, the use of thermal infrared satellite images for simulation of some climatic parameters is considered by the authors as a promising area of science. The article presents the results of comparing the land surface temperature values calculated from Landsat satellites images and ground-measured air temperature values. For the considered seasons the indicators are characterized by a pronounced linear relationship with a high correlation coefficient.

  20. Ground-based Measurements of Next Generation Spectroradiometric Standard Stars

    Science.gov (United States)

    McGraw, John T.

    2013-01-01

    Accurate, radiometric standards are essential to the future of ground- and space-based astronomy and astrophysics. While astronomers tend to think of “standard stars” as available calibration sources, progress at NIST to accurately calibrate inexpensive, easy to use photodiode detectors as spectroradiometric standards from 200 nm to 1800 nm allows referencing astronomical measurements to these devices. Direction-, time-, and wavelength-dependent transmission of Earth’s atmosphere is the single largest source of error for ground-based radiometric measurement of astronomical objects. Measurements and impacts of atmospheric extinction - scattering and absorption - on imaging radiometric and spectroradiometric measurements are described. The conclusion is that accurate real-time measurement of extinction in the column of atmosphere through which standard star observations are made, over the spectral region being observed and over the field of view of the telescope are required. New techniques to directly and simultaneously measure extinction in the column of atmosphere through which observations are made are required. Our direct extinction measurement solution employs three small facility-class instruments working in parallel: a lidar to measure rapidly time variable transmission at three wavelengths with uncertainty of 0.25% per airmass, a spectrophotometer to measure rapidly wavelength variable extinction with sub-1% precision per nanometer resolution element from 350 to 1050nm, and a wide-field camera to measure angularly variable extinction over the field of view. These instruments and their operation will be described. We assert that application of atmospheric metadata provided by this instrument suite corrects for a significant fraction of systematic errors currently limiting radiometric precision, and provides a major step towards measurements that are provably dominated by random noise.

  1. Systematic review of ground reaction force measurements in cats.

    Science.gov (United States)

    Schnabl, E; Bockstahler, B

    2015-10-01

    Although orthopaedic abnormalities in cats are frequently observed radiographically, they remain clinically underdiagnosed, and kinetic motion analysis, a fundamental aspect of orthopaedic research in dogs and horses, is not commonly performed. More information obtained with non-invasive measurement techniques to assess normal and abnormal gait in cats would provide a greater insight into their locomotion and biomechanics and improve the objective measurement of disease alterations and treatment modalities. In this systematic review, 12 previously performed studies that investigated ground reaction force measurements in cats during locomotion were evaluated. The aims of these studies, the measurement methods and equipment used, and the outcomes of parameters used to assess both sound and diseased cats are summarised and discussed. All reviewed studies used pressure sensitive walkways to gain data and all provided an acclimatisation period as a prerequisite for measurements. In sound cats during walking, the forelimb peak vertical force was greater than in the hindlimb and the peak vertical force in the hindlimb was greater in cats than in dogs. This review confirms that ground reaction forces can be used to evaluate lameness and treatment effects in the cat.

  2. Interannual changes in snow cover and its impact on ground surface temperatures in Livingston Island (Antarctica)

    Science.gov (United States)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2015-04-01

    In permafrost areas the seasonal snow cover is an important factor on the ground thermal regime. Snow depth and timing are important in ground insulation from the atmosphere, creating different snow patterns and resulting in spatially variable ground temperatures. The aim of this work is to characterize the interactions between ground thermal regimes and snow cover and the influence on permafrost spatial distribution. The study area is the ice-free terrains of northwestern Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". Air and ground temperatures and snow thickness data where analysed from 4 sites along an altitudinal transect in Hurd Peninsula from 2007 to 2012: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). The data covers 6 cold seasons showing different conditions: i) very cold with thin snow cover; ii) cold with a gradual increase of snow cover; iii) warm with thick snow cover. The data shows three types of periods regarding the ground surface thermal regime and the thickness of snow cover: a) thin snow cover and short-term fluctuation of ground temperatures; b) thick snow cover and stable ground temperatures; c) very thick snow cover and ground temperatures nearly constant at 0°C. a) Thin snow cover periods: Collado Ramos and Ohridski sites show frequent temperature variations, alternating between short-term fluctuations and stable ground temperatures. Nuevo Incinerador displays during most of the winter stable ground temperatures; b) Cold winters with a gradual increase of the snow cover: Nuevo Incinerador, Collado Ramos and Ohridski sites show similar behavior, with a long period of stable ground temperatures; c) Thick snow cover periods: Collado Ramos and Ohridski show long periods of stable ground, while Nuevo Incinerador shows temperatures close to 0°C since the beginning of the winter, due to early snow cover

  3. Evaluation of Grounding Impedance of a Complex Lightning Protective System Using Earth Ground Clamp Measurements and ATP Modeling

    Science.gov (United States)

    Mata, Carlos T.; Rakov, V. A.; Mata, Angel G.

    2010-01-01

    A new Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC), Florida, which consists of a catenary wire system (at a height of about 181 meters above ground level) supported by three insulators installed atop three towers in a triangular configuration. A total of nine downconductors (each about 250 meters long, on average) are connected to the catenary wire system. Each of the nine downconductors is connected to a 7.62-meter radius circular counterpoise conductor with six equally spaced 6-meter long vertical grounding rods. Grounding requirements at LC39B call for all underground and above ground metallic piping, enclosures, raceways, and cable trays, within 7.62 meters of the counterpoise, to be bounded to the counterpoise, which results in a complex interconnected grounding system, given the many metallic piping, raceways, and cable trays that run in multiple direction around LC39B. The complexity of this grounding system makes the fall of potential method, which uses multiple metallic rods or stakes, unsuitable for measuring the grounding impedances of the downconductors. To calculate the downconductors grounding impedance, an Earth Ground Clamp (a stakeless grounding resistance measuring device) and a LPS Alternative Transient Program (ATP) model are used. The Earth Ground Clamp is used to measure the loop impedance plus the grounding impedance of each downconductor and the ATP model is used to calculate the loop impedance of each downconductor circuit. The grounding impedance of the downconductors is then calculated by subtracting the ATP calculated loop impedances from the Earth Ground Clamp measurements.

  4. Acoustic CT system for temperature distribution measurement

    Institute of Scientific and Technical Information of China (English)

    Shinji Ohyama; Toyofumi Oga; Kazuo Oshima; Junya Takayama

    2008-01-01

    In this paper,a measurement method for crosssectional temperature distribution is addressed. A novel method based on an acoustic CT technique is proposed. Specifically,the temperature distributions are estimated using the time of flight data of several ultrasonic propagation paths. The times of the flight data contain both temperature and wind effect,and the method to select only temperature component is introduced. A filtered back projection method is applied to reconstruct the temperature distributions from the time of flight data. An experimental system was designed and fabricated to realize simultaneous temperature and wind velocity distribution measurements. Through this system,the effectiveness of the proposed measurement method is confirmed.

  5. Assessment of the temperature variability at the snow-ground interface - concept and first results

    Science.gov (United States)

    Hiller, Clemens; Keuschnig, Markus; Hartmeyer, Ingo; Götz, Joachim

    2014-05-01

    Bottom temperatures of the winter snow cover (BTS) represent the thermal conditions at the snow-ground interface and serve as a proxy for local permafrost ocurrence. The BTS method has been used in numerous studies to investigate local permafrost evidence and to validate larger scale permafrost distribution models. However, former studies have shown a relatively strong scattering between single measurements indicating that BTS values are sensitive to further factors. In order to identify the spatial and temporal variability and mentioned sources of irritation and to better understand their influence we applied repeated BTS measurements on a small scale test site situated below the Maurerkogel (2990 m) nearby the Kitzsteinhorn, Hohe Tauern Range, Austria. The site (c. 2000 m2) shows fairly homogenous surface conditions in terms of roughness and morphometry (bedrock with thin layer of fine-grained talus, slightly inclined to N). The measurement setup consists of a BTS grid with a minimum spacing of 5 m. Four campaigns with a total of 94 measurements were carried out from March 2012 to April 2013. Universal Temperature Logger (UTL), snow profiles and meteorological data from automatic weather stations are used to interpret the BTS values. The standard deviations of BTS values for each campaign range between 0.4 and 0.9 °C. The mean BTS value within the overall period is -3.1 °C. The near surface temperature logger shows a mean temperature of -3.7 °C in 10 cm depth covering four campaign days. Both, the correlation between near surface temperatures and BTS values as well as the low standard deviation between the BTS values demonstrate the applicability of the method under appropriate conditions.

  6. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    Science.gov (United States)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  7. [Temperature Measurement with Bluetooth under Android Platform].

    Science.gov (United States)

    Wang, Shuai; Shen, Hao; Luo, Changze

    2015-03-01

    To realize the real-time transmission of temperature data and display using the platform of intelligent mobile phone and bluetooth. Application of Arduino Uno R3 in temperature data acquisition of digital temperature sensor DS18B20 acquisition, through the HC-05 bluetooth transmits the data to the intelligent smart phone Android system, realizes transmission of temperature data. Using Java language to write applications program under Android development environment, can achieve real-time temperature data display, storage and drawing temperature fluctuations drawn graphics. Temperature sensor is experimentally tested to meet the body temperature measurement precision and accuracy. This paper can provide a reference for other smart phone mobile medical product development.

  8. Accurate measurement of unsteady state fluid temperature

    Science.gov (United States)

    Jaremkiewicz, Magdalena

    2017-03-01

    In this paper, two accurate methods for determining the transient fluid temperature were presented. Measurements were conducted for boiling water since its temperature is known. At the beginning the thermometers are at the ambient temperature and next they are immediately immersed into saturated water. The measurements were carried out with two thermometers of different construction but with the same housing outer diameter equal to 15 mm. One of them is a K-type industrial thermometer widely available commercially. The temperature indicated by the thermometer was corrected considering the thermometers as the first or second order inertia devices. The new design of a thermometer was proposed and also used to measure the temperature of boiling water. Its characteristic feature is a cylinder-shaped housing with the sheath thermocouple located in its center. The temperature of the fluid was determined based on measurements taken in the axis of the solid cylindrical element (housing) using the inverse space marching method. Measurements of the transient temperature of the air flowing through the wind tunnel using the same thermometers were also carried out. The proposed measurement technique provides more accurate results compared with measurements using industrial thermometers in conjunction with simple temperature correction using the inertial thermometer model of the first or second order. By comparing the results, it was demonstrated that the new thermometer allows obtaining the fluid temperature much faster and with higher accuracy in comparison to the industrial thermometer. Accurate measurements of the fast changing fluid temperature are possible due to the low inertia thermometer and fast space marching method applied for solving the inverse heat conduction problem.

  9. Ground based measurements of particulate emissions from supersonic transports. Concorde olympus engine

    Energy Technology Data Exchange (ETDEWEB)

    Whitefield, Ph.D.; Hagen, D.E. [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H.V. [McDonnell Douglas Corp., St. Louis, MO (United States)

    1997-12-31

    The application of a mobile aerosol monitoring facility, the Mobile Aerosol Sampling System (MASS) is described to characterize engine aerosol emissions from the Rolls Royce Olympus Engine. The multi-configurational MASS has been employed in both ground and airborne field operations. It has been successfully flown on research aircrafts. In ground tests the MASS has participated in numerous jet engine related ground tests, and has been deployed to resolve aerosol generation problems in a high power chemical laser system. In all cases the measurements were made on samples taken from a harsh physical and chemical environment, with both high and low temperature and pressure, and in the presence of highly reactive gases. (R.P.) 9 refs.

  10. Dynamic temperature measurements with embedded optical sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01

    This report summarizes LDRD project number 151365, \\Dynamic Temperature Measurements with Embedded Optical Sensors". The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  11. Monitoring rock glacier dynamics and ground temperatures in the semiarid Andes (Chile, 30°S)

    Science.gov (United States)

    Brenning, Alexander; Azócar, Guillermo F.; Bodin, Xavier

    2013-04-01

    Rock glaciers and mountain permafrost are widespread in the high semiarid Andes of Chile, where they concentrate greater amounts of ice than glaciers. Rock glaciers are of particular interest because in some cases the permafrost they contain might be in a degrading in response to climatic warming. This could result in increased dynamics and even to destabilization, which has been observed on some rock glaciers in the studied area. Displacement rates and active-layer temperatures of two rock glaciers as well as ground surface temperatures of the periglacial environment in the upper Elqui valley have been monitored since summer 2009/10 with funding from the Chilean Dirección General de Aguas. Differential GPS measurements of 115 points on the surface of two rock glaciers since April 2010 showed horizontal displacements of up to 1.3 m/a on the Llano de las Liebres rock glacier and up to 1.2 m/a on the Tapado rock glacier. General velocity patterns are consistent with the morphological evidence of activity (e.g., front slopes, looseness of debris) and for the Tapado complex, a clearly distinct activity from the debris-covered glacier was observed. Temperature measurements in four boreholes indicate active-layer depths of about 2.5 m at the highest locations on the Tapado rock glacier (~4400 m a.s.l.) and about 8 m near the front of the Llano rock glacier (3786 m a.s.l.). Spatial patterns of mean ground surface temperature (MGST) were analyzed with regards to influences of elevation, potential incoming solar radiation, location on ice-debris landforms (rock and debris-covered glaciers), and snow cover duration using linear mixed-effects models. While accounting for the other variables, sites with long-lasting snow patches had ~0.4°C lower MGST, and ice-debris landforms had ~0.4-0.6°C lower MGST than general debris surfaces, highlighting important local modifications to the general topographic variation of ground thermal conditions.

  12. Measuring temperature rise during orthopaedic surgical procedures.

    Science.gov (United States)

    Manoogian, Sarah; Lee, Adam K; Widmaier, James C

    2016-09-01

    A reliable means for measuring temperatures generated during surgical procedures is needed to recommend best practices for inserting fixation devices and minimizing the risk of osteonecrosis. Twenty four screw tests for three surgical procedures were conducted using the four thermocouples in the bone and one thermocouple in the screw. The maximum temperature rise recorded from the thermocouple in the screw (92.7±8.9°C, 158.7±20.9°C, 204.4±35.2°C) was consistently higher than the average temperature rise recorded in the bone (31.8±9.3°C, 44.9±12.4°C, 77.3±12.7°C). The same overall trend between the temperatures that resulted from three screw insertion procedures was recorded with significant statistical analyses using either the thermocouple in the screw or the average of several in-bone thermocouples. Placing a single thermocouple in the bone was determined to have limitations in accurately comparing temperatures from different external fixation screw insertion procedures. Using the preferred measurement techniques, a standard screw with a predrilled hole was found to have the lowest maximum temperatures for the shortest duration compared to the other two insertion procedures. Future studies evaluating bone temperature increase need to use reliable temperature measurements for recommending best practices to surgeons.

  13. The XRS Low Temperature Cryogenic System: Ground Performance Test Results

    Science.gov (United States)

    Breon, Susan; Sirron, Peter; Boyle, Robert; Canavan, Ed; DiPirro, Michael; Serlemitsos, Aristides; Tuttle, James; Whitehouse, Paul

    1998-01-01

    The X-Ray Spectrometer (XRS) instrument is part of the Astro-E mission scheduled to launch early in 2000. Its cryogenic system is required to cool a 32-element square array of x-ray microcalorimeters to 60-65 mK over a mission lifetime of at least 2 years. This is accomplished using an adiabatic demagnetization refrigerator (ADR) contained within a two-stage superfluid helium/solid neon cooler. Goddard Space Flight Center is providing the ADR and helium dewar. The flight system was assembled in Sept. 1997 and subjected to extensive thermal performance tests. This paper presents test results at both the system and component levels. In addition, results of the low temperature topoff performed in Japan with the engineering unit neon and helium dewars are discussed.

  14. New Measuring Temperature Setup with Optical Probe①

    Institute of Scientific and Technical Information of China (English)

    HOUPeiguo; LIUJianming

    1997-01-01

    A new setup of measuring temperature is developed,which the probe is a micro-power consumptive one with CMOS circuit and is driven by optical power.For transmitting the measured signal and optical signal in a long distance,the fiber technology is applied in this setup.

  15. Assessment of MTI Water Temperature Retrievals with Ground Truth from the Comanche Peak Steam Electric Station Cooling Lake

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.J.

    2002-12-09

    Surface water temperatures calculated from Multispectral Thermal Imager (MTI) brightness temperatures and the robust retrieval algorithm, developed by the Los Alamos National Laboratory (LANL), are compared with ground truth measurements at the Squaw Creek reservoir at the Comanche Peak Steam Electric Station near Granbury Texas. Temperatures calculated for thirty-four images covering the period May 2000 to March 2002 are compared with water temperatures measured at 10 instrumented buoy locations supplied by the Savannah River Technology Center. The data set was used to examine the effect of image quality on temperature retrieval as well as to document any bias between the sensor chip arrays (SCA's). A portion of the data set was used to evaluate the influence of proximity to shoreline on the water temperature retrievals. This study found errors in daytime water temperature retrievals of 1.8 C for SCA 2 and 4.0 C for SCA 1. The errors in nighttime water temperature retrievals were 3.8 C for SCA 1. Water temperature retrievals for nighttime appear to be related to image quality with the largest positive bias for the highest quality images and the largest negative bias for the lowest quality images. The daytime data show no apparent relationship between water temperature retrieval error and image quality. The average temperature retrieval error near open water buoys was less than corresponding values for the near-shore buoys. After subtraction of the estimated error in the ground truth data, the water temperature retrieval error was 1.2 C for the open-water buoys compared to 1.8 C for the near-shore buoys. The open-water error is comparable to that found at Nauru.

  16. High Temperature Superconducting Maglev Measurement System

    OpenAIRE

    Wang, Jia-Su; Wang, Su-Yu

    2010-01-01

    Three high temperature superconducting (HTS) Maglev measurement systems were successfully developed in the Applied Superconductivity Laboratory (ASCLab) of Southwest Jiaotong University, P. R. China. These systems include liquid nitrogen vessel, Permanent Magnet Guideway (PMG), data collection and processing, mechanical drive and Autocontrol features. This chapter described the three different measuring systems along with their theory of operations and workflow. The SCML-01 HTS Maglev measure...

  17. Does an instrumented treadmill correctly measure the ground reaction forces?

    Directory of Open Access Journals (Sweden)

    Patrick A. Willems

    2013-11-01

    Since the 1990s, treadmills have been equipped with multi-axis force transducers to measure the three components of the ground reaction forces during walking and running. These measurements are correctly performed if the whole treadmill (including the motor is mounted on the transducers. In this case, the acceleration of the treadmill centre of mass relative to the reference frame of the laboratory is nil. The external forces exerted on one side of the treadmill are thus equal in magnitude and opposite in direction to the external forces exerted on the other side. However, uncertainty exists about the accuracy of these measures: due to friction between the belt and the tread-surface, due to the motor pulling the belt, some believe that it is not possible to correctly measure the horizontal components of the forces exerted by the feet on the belt. Here, we propose a simple model of an instrumented treadmill and we demonstrate (1 that the forces exerted by the subject moving on the upper part of the treadmill are accurately transmitted to the transducers placed under it and (2 that all internal forces – including friction – between the parts of the treadmill are cancelling each other.

  18. Turbine gas temperature measurement and control system

    Science.gov (United States)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  19. Measured ground-surface movements, Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Massey, B.L.

    1981-01-01

    The Cerro Prieto geothermal area in the Mexicali Valley, 30 kilometers southeast of Mexicali, Baja California, incurred slight deformation because of the extraction of hot water and steam, and probably, active tectonism. During 1977 to 1978, the US Geological Survey established and measured two networks of horizontal control in an effort to define both types of movement. These networks consisted of: (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from stations on an existing US Geological Survey crustal-strain network north of the international border; and (2) a local net tied to stations in the regional net and encompassing the present and planned geothermal production area. Electronic distance measuring instruments were used to measure the distances between stations in both networks in 1978, 1979 and 1981. Lines in the regional net averaged 25 km. in length and the standard deviation of an individual measurement is estimated to be approx. 0.3 part per million of line length. The local network was measured using different instrumentation and techniques. The average line length was about 5 km. and the standard deviation of an individual measurement approached 3 parts per million per line length. Ground-surface movements in the regional net, as measured by both the 1979 and 1981 resurveys, were small and did not exceed the noise level. The 1979 resurvey of the local net showed an apparent movement of 2 to 3 centimeters inward toward the center of the production area. This apparent movement was restricted to the general limits of the production area. The 1981 resurvey of the local net did not show increased movement attributable to fluid extraction.

  20. Modeling short wave radiation and ground surface temperature: a validation experiment in the Western Alps

    Science.gov (United States)

    Pogliotti, P.; Cremonese, E.; Dallamico, M.; Gruber, S.; Migliavacca, M.; Morra di Cella, U.

    2009-12-01

    Permafrost distribution in high-mountain areas is influenced by topography (micro-climate) and high variability of ground covers conditions. Its monitoring is very difficult due to logistical problems like accessibility, costs, weather conditions and reliability of instrumentation. For these reasons physically-based modeling of surface rock/ground temperatures (GST) is fundamental for the study of mountain permafrost dynamics. With this awareness a 1D version of GEOtop model (www.geotop.org) is tested in several high-mountain sites and its accuracy to reproduce GST and incoming short wave radiation (SWin) is evaluated using independent field measurements. In order to describe the influence of topography, both flat and near-vertical sites with different aspects are considered. Since the validation of SWin is difficult on steep rock faces (due to the lack of direct measures) and validation of GST is difficult on flat sites (due to the presence of snow) the two parameters are validated as independent experiments: SWin only on flat morphologies, GST only on the steep ones. The main purpose is to investigate the effect of: (i) distance between driving meteo station location and simulation point location, (ii) cloudiness, (iii) simulation point aspect, (iv) winter/summer period. The temporal duration of model runs is variable from 3 years for the SWin experiment to 8 years for the validation of GST. The model parameterization is constant and tuned for a common massive bedrock of crystalline rock like granite. Ground temperature profile is not initialized because rock temperature is measured at only 10cm depth. A set of 9 performance measures is used for comparing model predictions and observations (including: fractional mean bias (FB), coefficient of residual mass (CMR), mean absolute error (MAE), modelling efficiency (ME), coefficient of determination (R2)). Results are very encouraging. For both experiments the distance (Km) between location of the driving meteo

  1. Cutting temperature measurement and material machinability

    Directory of Open Access Journals (Sweden)

    Nedić Bogdan P.

    2014-01-01

    Full Text Available Cutting temperature is very important parameter of cutting process. Around 90% of heat generated during cutting process is then away by sawdust, and the rest is transferred to the tool and workpiece. In this research cutting temperature was measured with artificial thermocouples and question of investigation of metal machinability from aspect of cutting temperature was analyzed. For investigation of material machinability during turning artificial thermocouple was placed just below the cutting top of insert, and for drilling thermocouples were placed through screw holes on the face surface. In this way was obtained simple, reliable, economic and accurate method for investigation of cutting machinability.

  2. High resolution temperature measurement technique for measuring marine heat flow

    Institute of Scientific and Technical Information of China (English)

    QIN; YangYang; YANG; XiaoQiu; WU; BaoZhen; SUN; ZhaoHua; SHI; XiaoBin

    2013-01-01

    High resolution temperature measurement technique is one of the key techniques for measuring marine heat flow. Basing on Pt1000 platinum resistance which has the characteristics of high accuracy and good stability, we designed a bridge reversal excitation circuit for high resolution temperature measurement. And the deep ocean floor in-situ test results show that: (1) temperature deviation and peak-to-peak resolution of the first version circuit board (V1) are 1.960-1.990 mK and 0.980-0.995 m Kat 1.2-2.7°C, respectively; and temperature deviation and peak-to-peak resolution of the second circuit board (V2) are 2.260mK and 1.130 mK at 1.2-1.3°C, respectively; (2) During the 2012NSFC-IndOcean cruise, seafloor geothermal gradient at Ind2012HF03,-07 and-12 stations (water depth ranges from 3841 to 4541 m) were successfully measured, the values are 59.1,75.1 and 71.6°C/km, respectively. And the measurement errors of geothermal gradient at these three stations are less than 3.0% in terms of the peak-to-peak resolution. These indicate that the high resolution temperature measurement technique based on Pt1000 platinum resistance in this paper can be applied to marine heat flow measurement to obtain high precision geothermal parameters.

  3. [Flame temperature distribution measurement of solid propellants].

    Science.gov (United States)

    Zhao, Wen-hua; Zhu, Shu-guang; Li, Yan; Fang, Zhong-yan; Yang, Rong-jie; Li, Yu-ping; Zhang, Jie; Liu, Yun-fei

    2004-09-01

    Many high temperature bodies such as flame, in which chemical reactions are very complex, emit their own spectra. These emission spectra usually consist of the spectral lines, spectral bands and the continuous spectra. In some cases, the spectral lines gather together. It is very difficult to find the right single spectral line when the spectral line intensity method is used. To deal with this problem, the idea that the single spectral line intensity is replaced by the total intensity of many spectral lines to measure the temperature is mentioned. And the relative intensity method is also changed to deal with this idea. The measurement of the temperature distribution based on this improved method is successful, and the measurement results are compared with the results of the thermocouple method.

  4. Ground and Airborne Methane Measurements Using Optical Parametric Amplifiers

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James Brice; Dawsey, Martha; Ramanathan, Anand

    2011-01-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from c1athrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 micrometers and 1.65 micrometers. We have demonstrated detection of methane at 3.3 micrometers and 1650 nanometers in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 micrometers.

  5. Slot Antenna for Wireless Temperature Measurement Systems

    DEFF Research Database (Denmark)

    Acar, Öncel; Jakobsen, Kaj Bjarne

    2016-01-01

    This paper presents a novel clover-slot antenna for a surface-acoustic-wave sensor based wireless temperature measurement system. The slot is described by a parametric locus curve that has the shape of a clover. The antenna is operated at high temperatures, in rough environments, and has a 43......% fractional bandwidth at the 2.4 GHz ISM-band. The slot antenna has been optimized for excitation by a passive chip soldered onto it. Measurement results are compared with simulation results and show good agreements....

  6. Two-temperature method for measuring emissivity

    Science.gov (United States)

    Watson, K.

    1992-01-01

    Spectral emissivity can be uniquely determined from radiance measurements if the object can be observed at two different temperatures. The advantage of this approach is that the spectral emissivity is determined without a priori assumptions about spectral shape. Because the different temperatures are obtained by observing the scene at two times in the diurnal cycle (optimally after midday and midnight), the method assumes that emissivity is temporally invariant. This is valid for rocks and dry soils, not well established for vegetation, and not true when changes in soil moisture occur between the measurements. Accurate image registration and satisfactory signal:noise are critical factors that limit extensive use of this method. ?? 1992.

  7. Ion temperature measurements in the Maryland Spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Gauvreau, J.L.

    1992-12-31

    Initial spectroscopic data from MS showed evidence of ion heating as deduced from the line widths of different ion species. Detailed measurements of OIV spectral emission line profiles in space and time revealed that heating takes place at early time, before spheromak formation and is occurring within the current discharge. The measured ion temperature is several times the electron temperature and cannot be explained by classical (Spitzer) resistivity. Classically, ions are expected to have lower temperatures than the electrons and therefore, lower temperatures than observed. High ion temperatures have been observed in different RFP`s and Spheromaks but are usually associated with relaxation to the Taylor state and occur in the sustainment phase. During formation, the current delivered to start the discharge is not axisymmetric and as a consequence, X-points appear in the magnetic flux. A two dimensional analysis predicts that magnetic reconnection occurring at an X-point can give rise to high ion heating rates. A simple 0-dimensional calculation showed that within the first 20 {mu}s, a conversion of mass flow kinetic energy into ion temperature could take place due to viscosity.

  8. The potential of ground gravity measurements to validate GRACE data

    Directory of Open Access Journals (Sweden)

    D. Crossley

    2003-01-01

    Full Text Available New satellite missions are returning high precision, time-varying, satellite measurements of the Earth’s gravity field. The GRACE mission is now in its calibration/- validation phase and first results of the gravity field solutions are imminent. We consider here the possibility of external validation using data from the superconducting gravimeters in the European sub-array of the Global Geodynamics Project (GGP as ‘ground truth’ for comparison with GRACE. This is a pilot study in which we use 14 months of 1-hour data from the beginning of GGP (1 July 1997 to 30 August 1998, when the Potsdam instrument was relocated to South Africa. There are 7 stations clustered in west central Europe, and one station, Metsahovi in Finland. We remove local tides, polar motion, local and global air pressure, and instrument drift and then decimate to 6-hour samples. We see large variations in the time series of 5–10µgal between even some neighboring stations, but there are also common features that correlate well over the 427-day period. The 8 stations are used to interpolate a minimum curvature (gridded surface that extends over the geographical region. This surface shows time and spatial coherency at the level of 2– 4µgal over the first half of the data and 1–2µgal over the latter half. The mean value of the surface clearly shows a rise in European gravity of about 3µgal over the first 150 days and a fairly constant value for the rest of the data. The accuracy of this mean is estimated at 1µgal, which compares favorably with GRACE predictions for wavelengths of 500 km or less. Preliminary studies of hydrology loading over Western Europe shows the difficulty of correlating the local hydrology, which can be highly variable, with large-scale gravity variations.Key words. GRACE, satellite gravity, superconducting gravimeter, GGP, ground truth

  9. Neutral thermospheric temperature from ion concentration measurements

    Science.gov (United States)

    Breig, E. L.; Donaldson, J. S.; Hanson, W. B.; Hoffman, J. H.; Power, R. A.; Kayser, D. C.; Spencer, N. W.; Wharton, L. E.

    1981-01-01

    A technique for extracting information on neutral temperature from in situ F region measurements of O(+) and H(+) ion concentrations is analyzed and evaluated. Advantage is taken of the condition of charge-exchange equilibrium of these species in the neighborhood of 320 km to infer the associated relative abundances of neutral oxygen and hydrogen. Results are shown to be generally consistent with other concurrent in situ measurements.

  10. Overview and Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program

    Science.gov (United States)

    Fritts, D. C.

    2015-12-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements spanning a longer interval. The NSF/NCAR GV employed standard flight-level measurements and new airborne lidar and imaging measurements of gravity waves (GWs) from sources at lower altitudes throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-105 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) and two IR "wing" cameras imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar measuring radial winds below the Falcon. DEEPWAVE also included extensive ground-based measurements in New Zealand, Tasmania, and Southern Ocean Islands. DEEPWAVE performed 26 GV flights and 13 Falcon flights, and ground-based measurements occurred whether or not the aircraft were flying. Collectively, many diverse cases of GW forcing, propagation, refraction, and dissipation spanning altitudes of 0-100 km were observed. Examples include strong mountain wave (MW) forcing and breaking in the lower and middle stratosphere, weak MW forcing yielding MW penetration into the MLT having very large amplitudes and momentum fluxes, MW scales at higher altitudes ranging from ~10-250 km, large-scale trailing waves from orography refracting into the polar vortex and extending to high altitudes, GW generation by deep convection, large-scale GWs arising from jet stream sources, and strong MWs in the MLT arising from strong surface flow over a small island. DEEPWAVE yielded a number of surprises, among

  11. Electronic ground state OH(X) radical in a low-temperature atmospheric pressure plasma jet

    Science.gov (United States)

    Fuh, Che A.; Clark, Shane M.; Wu, Wei; Wang, Chuji

    2016-10-01

    The wide applicability of atmospheric pressure plasma jets in biomedicine stems from the presence of reactive nitrogen and oxygen species generated in these plasma jets. Knowing the absolute concentration of these reactive species is of utmost importance as it is critical, along with the particle flux obtained from the plasma feed gas flow rate to ensure that the correct dosage is applied during applications. In this study, we investigate and report the ground state OH(X) number density acquired using cavity ringdown spectroscopy, along the propagation axis (z-axis) of a cold atmospheric pressure helium plasma plume. The jet was generated by a repetitively pulsed mono-polar square wave of duration 1 μs running at a frequency of 9.9 kHz. The voltage supplied was 6.5 kV with the helium flow rate fixed at 3.6 standard liters per minute. The rotational and vibrational temperatures are simulated from the second positive system of nitrogen, N 2(C3πu-B3πg) , with the rotational temperature being spatially constant at 300 K along the propagation axis of the atmospheric pressure plasma jet while the vibrational temperature is 3620 K at the beginning of the plume and is observed to decrease downstream. The OH(A) emission intensity obtained via optical emission spectroscopy was observed to decrease downstream of the plasma jet. The OH(X) number density along the propagation axis was initially 2.2 × 1013 molecules cm-3 before increasing to a peak value of 2.4 × 1013 molecules cm-3, from which the number density was observed to decrease to 2.2 × 1013 molecules cm-3 downstream of the plasma jet. The total OH(A, X) in the plasma jet remained relatively constant along the propagation axis of the plasma jet before falling off at the tip of the jet. The increase in vibrational temperature downstream and the simultaneous measurements of both the excited state OH(A) and the ground state OH(X) reported in this study provide insights into the formation and consumption of this

  12. Use of Ground-water Temperature Patterns to Determine the Hydraulic Conductance of the Streambed Along the Middle Reaches of the Russian River, CA

    Science.gov (United States)

    Su, G. W.; Constantz, J.; Jasperse, J.; Seymour, D.

    2002-12-01

    Along the Russian River in Sonoma County, the alluvial aquifer is the preferred source of drinking water because sediments and other constituents in the river water would require additional treatment. From late spring to early winter, an inflatable dam is erected to raise the river stage and passively recharge the alluvial aquifer. The raised stage also permits diversion of river water to a series of recharge ponds located near the dam along the river. Improved understanding of stream exchanges with ground water is needed to better manage available water resources. Heat is used as a tracer of shallow ground-water movement for detailed hydraulic parameter estimation along the middle reaches of the river. Water-levels and ground-water temperatures were measured in a series of observations wells and compared to the river stage and surface-water temperatures. Hydraulic conductivities were predicted by optimizing simulated ground-water temperatures using VS2DHI, a heat and water transport model, to observed temperatures in the aquifer. These conductivity values will be used in a stream/ground-water model of this region being developed using MODFLOW. Temperature-based estimates of streambed conductance will be inserted in the STREAM package of the model to constrain this parameter. Although temperature-based predictions of hydraulic conductivity vary significantly along the reach, the results generally suggest that an anisotropy of 5 to 1 (horizontal to vertical) provides the best hydraulic conductivity matches for predicted versus observed ground-water temperatures.

  13. Quantum Cohesion Oscillation of Electron Ground State in Low Temperature Laser Plasma

    Science.gov (United States)

    Zhao, Qingxun; Zhang, Ping; Dong, Lifang; Zhang, Kaixi

    1996-01-01

    The development of radically new technological and economically efficient methods for obtaining chemical products and for producing new materials with specific properties requires the study of physical and chemical processes proceeding at temperature of 10(exp 3) to 10(exp 4) K, temperature range of low temperature plasma. In our paper, by means of Wigner matrix of quantum statistical theory, a formula is derived for the energy of quantum coherent oscillation of electron ground state in laser plasma at low temperature. The collective behavior would be important in ion and ion-molecule reactions.

  14. Evaluation of the ground surface Enthalpy balance from bedrock shallow borehole temperatures (Livingston Island, Maritime Antarctic

    Directory of Open Access Journals (Sweden)

    M. Ramos

    2008-03-01

    Full Text Available The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic is studied. The borehole is 2.4 m deep and is located in a quartzite outcrop in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth hourly temperature profiles from: (i the cooling periods of the frost seasons of 2000 to 2005, and (ii the warming periods of the thaw seasons of 2002–2003, 2003–2004 and 2004–2005, were studied. In this modelling approach, heat gains and losses across ground surface are considered to be the causes for the 0°C isotherm movement. A methodological approach to calculate the Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density is considered to be constant in the borehole and initial isothermal conditions at 0°C are assumed to run the model. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima.

  15. Evaluation of the ground surface Enthalpy balance from bedrock shallow borehole temperatures (Livingston Island, Maritime Antarctic)

    Science.gov (United States)

    Ramos, M.; Vieira, G.

    2008-03-01

    The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic) is studied. The borehole is 2.4 m deep and is located in a quartzite outcrop in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth) hourly temperature profiles from: (i) the cooling periods of the frost seasons of 2000 to 2005, and (ii) the warming periods of the thaw seasons of 2002-2003, 2003-2004 and 2004-2005, were studied. In this modelling approach, heat gains and losses across ground surface are considered to be the causes for the 0°C isotherm movement. A methodological approach to calculate the Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density is considered to be constant in the borehole and initial isothermal conditions at 0°C are assumed to run the model. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima).

  16. Variable-Temperature Critical-Current Measurements

    Energy Technology Data Exchange (ETDEWEB)

    L. F. Goodrich; T. C. Stauffer

    2009-05-19

    This is the final report of a three year contract that covered 09/19/2005 to 07/14/2008. We requested and received a no cost time extension for the third year, 07/15/2007 to 07/14/2008, to allow DoE to send us funds if they became available during that year. It turned out that we did not receive any funding for the third year. The following paper covers our variable-temperature critical-current measurements. We made transport critical-current (Ic) measurements on commercial multifilamentary Nb3Sn strands at temperatures (T) from 4 to 17 K and magnetic fields (H) from 0 to 14 T. One of the unique features of our measurements is that we can cover a wide range of critical currents from less than 0.1 A to over 700 A.

  17. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  18. [The importance of temperature on storage of ground natural spices (author's transl)].

    Science.gov (United States)

    Koller, W D

    1976-02-27

    Several factors influencing the ingredients of volative oils of some ground natural spices have been investigated during storage. The effects on the aroma have been characterized sensorically; relations between the analytical and sensorical results are explained using anise as an example. Of the influencing factors studied such as packaging material, storage temperature and storage duration, the storage temperature must be regarded as the most important.

  19. Observing Tsunamis in the Ionosphere Using Ground Based GPS Measurements

    Science.gov (United States)

    Galvan, D. A.; Komjathy, A.; Song, Y. Tony; Stephens, P.; Hickey, M. P.; Foster, J.

    2011-01-01

    Ground-based Global Positioning System (GPS) measurements of ionospheric Total Electron Content (TEC) show variations consistent with atmospheric internal gravity waves caused by ocean tsunamis following recent seismic events, including the Tohoku tsunami of March 11, 2011. We observe fluctuations correlated in time, space, and wave properties with this tsunami in TEC estimates processed using JPL's Global Ionospheric Mapping Software. These TEC estimates were band-pass filtered to remove ionospheric TEC variations with periods outside the typical range of internal gravity waves caused by tsunamis. Observable variations in TEC appear correlated with the Tohoku tsunami near the epicenter, at Hawaii, and near the west coast of North America. Disturbance magnitudes are 1-10% of the background TEC value. Observations near the epicenter are compared to estimates of expected tsunami-driven TEC variations produced by Embry Riddle Aeronautical University's Spectral Full Wave Model, an atmosphere-ionosphere coupling model, and found to be in good agreement. The potential exists to apply these detection techniques to real-time GPS TEC data, providing estimates of tsunami speed and amplitude that may be useful for future early warning systems.

  20. Ground-based measurements of UV Index (UVI at Helwan

    Directory of Open Access Journals (Sweden)

    H. Farouk

    2012-12-01

    Full Text Available On October 2010 UV Index (UVI ground-based measurements were carried out by weather station at solar laboratory in NRIAG. The daily variation has maximum values in spring and summer days, while minimum values in autumn and winter days. The low level of UVI between 2.55 and 2.825 was found in December, January and February. The moderate level of UVI between 3.075 and 5.6 was found in March, October and November. The high level of UVI between 6.7 and 7.65 was found in April, May and September. The very high level of UVI between 8 and 8.6 was found in June, July and August. High level of radiation over 6 months per year including 3 months with a very high level UVI. According to the equation {UVI=a[SZA]b} the UVI increases with decreasing SZA by 82% on a daily scale and 88% on a monthly scale. Helwan exposure to a high level of radiation over 6 months per year including 3 months with a very high level UVI, so it is advisable not to direct exposure to the sun from 11 am to 2:00 pm.

  1. Effect of low-temperature aging on the mechanical behavior of ground Y-TZP

    NARCIS (Netherlands)

    Pereira, G.K.R.; Amaral, M.; Cesar, P.F.; Bottino, M.C.; Kleverlaan, C.J.; Valandro, L.F.

    2015-01-01

    This study evaluated the effects of low-temperature aging on the surface topography, phase transformation, biaxial flexural strength, and structural reliability of a ground Y-TZP ceramic. Disc-shaped specimens were manufactured and divided according to two factors: "grinding" - without grinding

  2. Thermoluminescence measurement technique using millisecond temperature pulses.

    Science.gov (United States)

    Manfred, Michael E; Gabriel, Nicholas T; Yukihara, Eduardo G; Talghader, Joseph J

    2010-06-01

    A measurement technique, pulsed thermoluminescence, is described which uses short thermal pulses to excite trapped carriers leading to radiative recombination. The pulses are obtained using microstructures with approximately 500 micros thermal time constants. The technique has many of the advantages of pulsed optically stimulated luminescence without the need for optical sources and filters to isolate the luminescent signal. Charge carrier traps in alpha-Al(2)O(3):C particles on microheaters were filled using 205 nm light. Temperature pulses of 10 and 50 ms were applied to the heaters and compared with a standard thermoluminescence curve taken at a ramp rate of 5 K s(-1). This produced curves of intensity verses temperature similar to standard thermoluminescence except shifted to higher temperatures. The luminescence of single particles was read multiple times with negligible loss of population. The lower limit of the duration of useful pulses appears to be limited by particle size and thermal contact between the particle and heater.

  3. Centimeter Cosmo-Skymed Range Measurements for Monitoring Ground Displacements

    Science.gov (United States)

    Fratarcangeli, F.; Nascetti, A.; Capaldo, P.; Mazzoni, A.; Crespi, M.

    2016-06-01

    The SAR (Synthetic Aperture Radar) imagery are widely used in order to monitor displacements impacting the Earth surface and infrastructures. The main remote sensing technique to extract sub-centimeter information from SAR imagery is the Differential SAR Interferometry (DInSAR), based on the phase information only. However, it is well known that DInSAR technique may suffer for lack of coherence among the considered stack of images. New Earth observation SAR satellite sensors, as COSMO-SkyMed, TerraSAR-X, and the coming PAZ, can acquire imagery with high amplitude resolutions too, up to few decimeters. Thanks to this feature, and to the on board dual frequency GPS receivers, allowing orbits determination with an accuracy at few centimetres level, the it was proven by different groups that TerraSAR-X imagery offer the capability to achieve, in a global reference frame, 3D positioning accuracies in the decimeter range and even better just exploiting the slant-range measurements coming from the amplitude information, provided proper corrections of all the involved geophysical phenomena are carefully applied. The core of this work is to test this methodology on COSMO-SkyMed data acquired over the Corvara area (Bolzano - Northern Italy), where, currently, a landslide with relevant yearly displacements, up to decimeters, is monitored, using GPS survey and DInSAR technique. The leading idea is to measure the distance between the satellite and a well identifiable natural or artificial Persistent Scatterer (PS), taking in account the signal propagation delays through the troposphere and ionosphere and filtering out the known geophysical effects that induce periodic and secular ground displacements. The preliminary results here presented and discussed indicate that COSMO-SkyMed Himage imagery appear able to guarantee a displacements monitoring with an accuracy of few centimetres using only the amplitude data, provided few (at least one) stable PS's are available around the

  4. Global rainbow refractometry for droplet temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Pascal Lemaitre; Emmanuel Porcheron; Amandine Nuboer; Philippe Brun; Pierre Cornet; Jeanne Malet; Jacques Vendel; Laurent Bouilloux [Institut de Radioprotection et de Surete Nucleaire DSU/SERAC, BP 68, 91192 Gif-sur-Yvette Cedex (France); Gerard Grehan [UMR 6614 CORIA, Laboratoire d' Electromagnetisme et Systemes Particulaires Site Universitaire du Madrillet, Avenue de l' universite BP 12, 76 801 Saint Etienne du Rouvray Cedex, (France)

    2005-07-01

    Full text of publication follows: In order to establish an accurate database to characterize the heat and mass transfers between a spray and the atmosphere with thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident in the containment enclosure of a pressurized water reactor (PWR), the French Institut de Radioprotection et de Surete Nucleaire (IRSN) has developed the TOSQAN experimental facility. This experiment is highly instrumented with non-intrusive diagnostics allowing to measure droplet size and velocity and gas concentrations [1]. The aim of this work is to present the Global Rainbow Thermometry (GRT), which is an advanced non-intrusive optical diagnostic, developed to measure the mean temperature of a set of falling droplets, in a measurement volume of 1 cm{sup 3}. The final paper will be divided in three parts. In the first one, we will explain the principle of the rainbow formation and how droplet temperature can be deduced from the rainbow analysis [2]. This part will be illustrated with the theoretical background on the rainbow and numerical simulations of the global rainbow. The second part will be devoted to present the global rainbow experimental set-up we have developed on optical table, its experimental qualification and finally its implementation on the TOSQAN facility [3]. Finally, we will present the temperature measurements achieved in TOSQAN for thermal-hydraulic conditions representative of a hypothetical nuclear reactor accident. These measurements are useful to characterize the heat and mass transfers between the spraying droplets and the air-steam mixture composing the atmosphere. This analysis will be exposed in a two companion papers. References: [1] E. Porcheron, P. Brun, P. Cornet, J. Malet, J. Vendel. Optical diagnostics applied for single and multi-phase flow characterization in the TOSQAN facility dedicated for thermal hydraulic containment studies. NURETH-10 Seoul, Korea, October 5-9, 2003. [2] P

  5. FSR: a field portable spectral reflectometer to measure ground from NIR to LWIR

    Science.gov (United States)

    Moreau, Louis; Bourque, Hugo; Ouellet, Réal; Prel, Florent; Roy, Claude; Vallieres, Christian; Thériault, Guillaume

    2011-11-01

    ABB Bomem has recently designed a field-deployable reflectometer. The Full Spectrum Reflectometer (FSR) measures the diffuse reflectance of surfaces in the 0.7 μm to 13.5 μm spectral range. The spectral resolution is adjustable from 32 to 4 cm-1. The instrument is portable, battery-operated and designed for field usage in a single, lightweight and ruggedized package. In its simplest mode, the instrument is automated and can be operated by non-specialist personnel with minimal training. The FSR has a laboratory mode to measure targets brought to the instrument in a sampling cup and a field mode with automated measurement sequence. To facilitate the measurement of various ground surfaces, the instrument is packaged in a three-point mount for easy target access and stability. One of the mount is the sampling port. The instrument has its own built-in NIR and LWIR infrared sources to illuminate the ground area to be measured. The instrument includes two built-in references for calibration: a Spectralon diffuser and an Infragold diffuser. The first units were commissioned to build a spectral database of surfaces in various conditions (humidity, temperature, texture, mixing, etc.) and in the presence of interfering chemicals (oils, solvents, etc.) but the instrument can also serve other purposes such as the identification of unknown materials.

  6. Ground and Airborne Methane Measurements using Optical Parametric Amplifiers

    Science.gov (United States)

    Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James; Dawsey, Martha; Ramanathan, Anand

    2012-01-01

    constant methane mixing ratio of 1.8 parts per million. The in-situ spectrometer did not show any significant deviations from the ambient concentrations. Further analysis using meteorological data from the Global Modeling and Assimilation Office (http://gmao.gsfc.nasa.gov/) to derive the theoretical optical depth also showed good agreement with the experimentally derived values. The OPA lidar system with slight modifications has also been used to measure CO2, water vapor, and CO in the near and mid-infrared spectral regions on the ground.

  7. Evaluation of the ground surface Enthalpy balance from bedrock temperatures (Livingston Island, Maritime Antarctic)

    Science.gov (United States)

    Ramos, M.; Vieira, G.

    2009-05-01

    The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic) is studied. The borehole is 2.4 m deep and is located in a massive quartzite outcrop with negligible water content, in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth) hourly temperature profiles from: (i) the cooling periods of the frost season of 2000 to 2005, and (ii) the warming periods of the thaw season of 2002-2003, 2003-2004 and 2004-2005, were studied. In this modelling approach, heat gains and losses across the ground surface are assumed to be the causes for the 0°C isotherm movement. A methodological approach to calculate the ground Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change into the rock is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density and thermal conductivity are considered to be constant and initial isothermal conditions at 0°C are assumed (based in collected data and local meteorological conditions in this area) to run the model in the beginning of each season. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima). The application of this method avoids error propagation induced by the heat exchange calculations from multiple sensors using the Fourier method.

  8. Evaluation of the ground surface Enthalpy balance from bedrock temperatures (Livingston Island, Maritime Antarctic

    Directory of Open Access Journals (Sweden)

    M. Ramos

    2009-05-01

    Full Text Available The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic is studied. The borehole is 2.4 m deep and is located in a massive quartzite outcrop with negligible water content, in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth hourly temperature profiles from: (i the cooling periods of the frost season of 2000 to 2005, and (ii the warming periods of the thaw season of 2002–2003, 2003–2004 and 2004–2005, were studied. In this modelling approach, heat gains and losses across the ground surface are assumed to be the causes for the 0°C isotherm movement. A methodological approach to calculate the ground Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change into the rock is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density and thermal conductivity are considered to be constant and initial isothermal conditions at 0°C are assumed (based in collected data and local meteorological conditions in this area to run the model in the beginning of each season. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima. The application of this method avoids error propagation induced by the heat exchange calculations from multiple sensors using the Fourier method.

  9. CENTIMETER COSMO-SKYMED RANGE MEASUREMENTS FOR MONITORING GROUND DISPLACEMENTS

    Directory of Open Access Journals (Sweden)

    F. Fratarcangeli

    2016-06-01

    Full Text Available The SAR (Synthetic Aperture Radar imagery are widely used in order to monitor displacements impacting the Earth surface and infrastructures. The main remote sensing technique to extract sub-centimeter information from SAR imagery is the Differential SAR Interferometry (DInSAR, based on the phase information only. However, it is well known that DInSAR technique may suffer for lack of coherence among the considered stack of images. New Earth observation SAR satellite sensors, as COSMO-SkyMed, TerraSAR-X, and the coming PAZ, can acquire imagery with high amplitude resolutions too, up to few decimeters. Thanks to this feature, and to the on board dual frequency GPS receivers, allowing orbits determination with an accuracy at few centimetres level, the it was proven by different groups that TerraSAR-X imagery offer the capability to achieve, in a global reference frame, 3D positioning accuracies in the decimeter range and even better just exploiting the slant-range measurements coming from the amplitude information, provided proper corrections of all the involved geophysical phenomena are carefully applied. The core of this work is to test this methodology on COSMO-SkyMed data acquired over the Corvara area (Bolzano – Northern Italy, where, currently, a landslide with relevant yearly displacements, up to decimeters, is monitored, using GPS survey and DInSAR technique. The leading idea is to measure the distance between the satellite and a well identifiable natural or artificial Persistent Scatterer (PS, taking in account the signal propagation delays through the troposphere and ionosphere and filtering out the known geophysical effects that induce periodic and secular ground displacements. The preliminary results here presented and discussed indicate that COSMO-SkyMed Himage imagery appear able to guarantee a displacements monitoring with an accuracy of few centimetres using only the amplitude data, provided few (at least one stable PS’s are

  10. The Pseudo Radiation Energy Amplifier (PREA) and the mean earth s ground temperature

    CERN Document Server

    Boucenna, Ahmed

    2008-01-01

    From the radiation balance diagram illustrating the IPCC reports one can estimate the power received by Earth from the sun at Pin = 342 W/m2 and the power consumed, remitted and reflected by the earth and its atmosphere at Pout = 599 kW/m2. It seems that the earth emits more power than it receives. The earth s ground mean temperature is estimated at 15 C. A calculation based on the black body radiation theory gives an earth s ground mean temperature of the order of -18 C which is much lower than 15 C. The important gap between these calculated and estimated temperature mean values requires an explanation. Here we show that a gray body separated from vacuum by an interface and submitted to outside incident radiation can behave like a Pseudo Radiation Energy Amplifier. The Earth which is a gray body separated from the space by an interface, behaves like a Pseudo Radiation Energy Amplifier. The balance of the energy exchanged between Earth and outer space is reconsidered and the 15 C Earth s ground temperature m...

  11. Regional ground deformation and its controlling measures in China

    Science.gov (United States)

    Zhou, Zhifang; Zhu, Haisheng; Huang, Yong

    2006-12-01

    With the development of construction of China Cities, there exist a lot of environmental geological problems involved in the geofracture, land subsidence, collapse, landslide, devolution, mudrock flow, floating sand, piping and soft ground deformation. Of big cities whose population is over one million in China, about 30 cities appears the land subsidence region. Other cities locate in the regions of collapse yellow earth or expand soil of strong swell-shrink charasteristic, soft ground and karst. In the paper, the cause and hazard of regionality ground deformation is summed up. The causes of regional land deformation caused by the natural geological effect and activities of human being are analyzed. According to the length of deformation course and endanger of society, economy and life, land deformation involves three types, that is, the delay, rapid and break land deformation. And the concrete countermeasure and method are provided.

  12. [Temperature measurements during abrasive water jet osteotomy].

    Science.gov (United States)

    Schmolke, S; Pude, F; Kirsch, L; Honl, M; Schwieger, K; Krömer, S

    2004-01-01

    Working on bone is a major aspect of orthopaedic surgery. Despite its well-known appreciable thermal effects on the edges of the bone cut, the oscillating bone saw blade the oscillating saw remains the standard instrument both for cutting long bones and creating a bed for an endoprosthesis. The application of abrasive water jets offers the possibility of achieving an extremely precise curved cut in bone with no accompanying thermal effect. The thermographically measured absolute temperature increase at the cut edges seen with the water jet was 13 K maximum. The small process forces permit the application in automated handling systems.

  13. Mesospheric minor species determinations from rocket and ground-based i.r. measurements

    Science.gov (United States)

    Ulwick, J. C.; Baker, K. D.; Baker, D. J.; Steed, A. J.; Pendleton, W. R.; Grossmann, K.; Brückelmann, H. G.

    As part of the MAP/WINE campaign the infrared hydroxyl airglow layer was investigated at Kiruna, Sweden, by simultaneous measurements with rocket probes of OH ≠ and O2( a1Δg) infrared emissions and concentrations of odd oxygen species (O and O 3). Coordinated measurements of OH ≠ and O2( a1Δg) zenith radiance and emission spectra and their time histories were made from the ground. The rocket-borne Λ = 1.55 μm radiometer ( ΔΛ ≊ 0.23 μm) provided volume emission rates for OH for both rocket ascent and descent, showing a peak near 87 km with a maximum of nearly 10 6 photons sec -1 cm -3. The atomic oxygen distribution showed a concentration of about 10 11 cm -3 between 88 and 100 km, dropping off sharply below 85 km. The ground-based radiometer at Λ = 1.56 μm, which had a similar filter bandpass to the rocket-borne instrument, yielded an equivalent of 130 kR for the total OH Δv = 2 sequence, which is consistent with the zenith-corrected rocket-based sequence radiance value of ≌ 110 kR. The rotational temperature of the OH night airglow obtained from the rotational structure of the OH M (3,1) band observed by the ground-based interferometer was about 195K at the time of the rocket measurement. Atomic oxygen concentrations were calculated from the OH profile and show agreement with the directly measured values. Atomic hydrogen concentrations of a few times 10 7 cm -3 near 85 km were inferred from the data set.

  14. Soil temperatures and stability of ice-cemented ground in the McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    McKay, C; Mellon, M T; Friedmann, E I

    1998-03-01

    Year-round temperature measurements at 1600 m elevation during 1994 in the Asgard Range Antarctica, indicate that the mean annual frost point of the ice-cemented ground, 25 cm below the surface, is -21.7 +/- 0.2 degrees C and the mean annual frost point of the atmosphere is -27.5 +/- 1.0 degrees C. The corresponding mean annual temperatures are -24.9 degrees C and -23.3 degrees C. These results imply that there is a net flux of water vapour from the ice to the atmosphere resulting in a recession of the ice-cemented ground by about 0.4-0.6 mm yr-1. The level of the ice-cemented permafrost is about 12 cm below the level of dry permafrost. The summer air temperatures would have to increase about 7 degrees C for thawing temperatures to just reach the top of the subsurface ice. Either subsurface ice at this location is evaporating over time or there are sporadic processes that recharge the ice and maintain equilibrium over long timescales.

  15. Apparatus for accurately measuring high temperatures

    Science.gov (United States)

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  16. Symmetry breaking in noncommutative finite temperature λphi4 theory with a nonuniform ground state

    Science.gov (United States)

    Hernández, J. M.; Ramírez, C.; Sánchez, M.

    2014-05-01

    We consider the CJT effective action at finite temperature for a noncommutative real scalar field theory, with noncommutativity among space and time variables. We study the solutions of a stripe type nonuniform background, which depends on space and time. The analysis in the first approximation shows that such solutions appear in the planar limit, but also under normal anisotropic noncommutativity. Further we show that the transition from the uniform ordered phase to the non uniform one is first order and that the critical temperature depends on the nonuniformity of the ground state.

  17. Spatial variation in near-ground radiation and low temperature. Interactions with forest vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, K.

    1997-10-01

    Low temperature has a large impact on the survival and distribution of plants. Interactive effects with high irradiance lead to cold-induced photo inhibition, which may impact on the establishment and growth of tree seedlings. In this thesis, novel approaches are applied for relating the spatial variability in low temperature and irradiance to photosynthetic performance and growth of tree seedlings, and for modelling the micro- and local-scale spatial variations in low temperature for heterogeneous terrain. The methodologies include the development and use of a digital image analysis system for hemispherical photographs, the use of Geographic Information Systems (GIS) and statistical methods, field data acquisition of meteorological elements, plant structure, growth and photosynthetic performance. Temperature and amounts of intercepted direct radiant energy for seedlings on clear days (IDRE) were related to chlorophyll a fluorescence, and the dry weight of seedlings. The combination of increased IDRE with reduced minimum temperatures resulted in persistent and strong photo inhibition as the season progressed, with likely implications for the establishment of tree seedlings at forest edges, and within shelter wood. For models of spatial distribution of low air temperature, the sky view factor was used to parameterize the radiative cooling, whilst drainage, ponding and stagnation of cold air, and thermal properties of the ground were all considered. The models hint at which scales and processes govern the development of spatial variations in low temperature for the construction of corresponding mechanistic models. The methodology is well suited for detecting areas that will be frost prone after clearing of forest and for comparing the magnitudes of impacts on low air temperature of forest management practices, such as shelter wood and soil preparation. The results can be used to formulate ground rules for use in practical forestry 141 refs, 5 figs, 1 tab

  18. Investigation of tropical cirrus cloud properties using ground based lidar measurements

    Science.gov (United States)

    Dhaman, Reji K.; Satyanarayana, Malladi; Krishnakumar, V.; Mahadevan Pillai, V. P.; Jayeshlal, G. S.; Raghunath, K.; Venkat Ratnam, M.

    2016-05-01

    Cirrus clouds play a significant role in the Earths radiation budget. Therefore, knowledge of geometrical and optical properties of cirrus cloud is essential for the climate modeling. In this paper, the cirrus clouds microphysical and optical properties are made by using a ground based lidar measurements over an inland tropical station Gadanki (13.5°N, 79.2°E), Andhra Pradesh, India. The variation of cirrus microphysical and optical properties with mid cloud temperature is also studied. The cirrus clouds mean height is generally observed in the range of 9-17km with a peak occurrence at 13- 14km. The cirrus mid cloud temperature ranges from -81°C to -46°C. The cirrus geometrical thickness ranges from 0.9- 4.5km. During the cirrus occurrence days sub-visual, thin and dense cirrus were at 37.5%, 50% and 12.5% respectively. The monthly cirrus optical depth ranges from 0.01-0.47, but most (extinction ranges from 2.8E-06 to 8E-05 and depolarization ratio and lidar ratio varies from 0.13 to 0.77 and 2 to 52 sr respectively. A positive correlation exists for both optical depth and extinction with the mid-cloud temperature. The lidar ratio shows a scattered behavior with mid-cloud temperature.

  19. Numerical simulation of vertical ground-water flux of the Rio Grande from ground-water temperature profiles, central New Mexico

    Science.gov (United States)

    Bartolino, James R.; Niswonger, Richard G.

    1999-01-01

    An important gap in the understanding of the hydrology of the Middle Rio Grande Basin, central New Mexico, is the rate at which water from the Rio Grande recharges the Santa Fe Group aquifer system. Several methodologies-including use of the Glover-Balmer equation, flood pulses, and channel permeameters- have been applied to this problem in the Middle Rio Grande Basin. In the work presented here, ground-water temperature profiles and ground-water levels beneath the Rio Grande were measured and numerically simulated at four sites. The direction and rate of vertical ground-water flux between the river and underlying aquifer was simulated and the effective vertical hydraulic conductivity of the sediments underlying the river was estimated through model calibration. Seven sets of nested piezometers were installed during July and August 1996 at four sites along the Rio Grande in the Albuquerque area, though only four of the piezometer nests were simulated. In downstream order, these four sites are (1) the Bernalillo site, upstream from the New Mexico State Highway 44 bridge in Bernalillo (piezometer nest BRN02); (2) the Corrales site, upstream from the Rio Rancho sewage treatment plant in Rio Rancho (COR01); (3) the Paseo del Norte site, upstream from the Paseo del Norte bridge in Albuquerque (PDN01); and (4) the Rio Bravo site, upstream from the Rio Bravo bridge in Albuquerque (RBR01). All piezometers were completed in the inner-valley alluvium of the Santa Fe Group aquifer system. Ground-water levels and temperatures were measured in the four piezometer nests a total of seven times in the 24-month period from September 1996 through August 1998. The flux between the surface- and ground-water systems at each of the field sites was quantified by one-dimensional numerical simulation of the water and heat exchange in the subsurface using the heat and water transport model VS2DH. Model calibration was aided by the use of PEST, a model-independent computer program that uses

  20. Simple method to measure effects of horizontal atmospherical turbulence at ground level

    Science.gov (United States)

    Tíjaro Rojas, Omar J.; Galeano Traslaviña, Yuber A.; Torres Moreno, Yezid

    2016-09-01

    The Kolmogorov's theory has been used to explain physical phenomena like the vertical turbulence in atmosphere, others recent works have made new advances and have improved K41 theory. In addition, this theory has been applied to studying different issues associated to measure atmospheric effects, and have special interest to find answers in optics to questions as e.g. at ground level, Could it find edges of two or more close objects, from a distant observer? (Classic resolution problem). Although this subject is still open, we did a model using the statistics of the centroid and the diameter of the laser beam propagated under horizontal turbulence at ground level until the object plane. The goal is to measure efficiently the turbulence effects in the long horizontal path propagation of electromagnetic wave. Natural movement of laser beam within the cavity needs be subtracted from the total transversal displacement in order to obtain a best approach. This simple proposed method is used to find the actual statistics of the centroid and beam diameter on the object plane where the turbulence introduces an additional transversal shift. And it has been tested for different values of horizontal distances under non-controlled environment in a synchronized acquisition scheme. Finally, we show test results in open very strong turbulence with high controlled temperature. This paper presents the implemented tests mainly into laboratory and discuss issues to resolve.

  1. High temperature hall effect measurement system design, measurement and analysis

    Science.gov (United States)

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non

  2. Radiometric modeling and calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) ground based measurement experiment

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-12-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data

  3. [Physical meaning of temperature measured by spectral line intensity method].

    Science.gov (United States)

    Zhao, Wen-Hua; Tang, Huang-Zai; Shen, Yan; Shi, Yong; Hou, Ling-Yun

    2007-11-01

    The difference between electron temperature and excitation temperature is analyzed in the aspect of statistics thermodynamics. It is presented clearly that the temperature acquired by spectral line intensity method is not free electron temperature, but internal electronic excitation temperature of heavy particle. Under thermal equilibrium condition, the excitation temperature is equal to the electron temperature, while under non-thermal equilibrium condition, the excitation temperature is not equal to the electron temperature. In the study of arc jet plume in vacuum chamber, spectral line intensity method was employed to measure the apparent excitation temperature of arc jet plume, and Langmuir probe was employed to measure the electron temperature of arcjet plume. The big difference between the excitation temperature and the electron temperature proved that the temperature acquired by spectral line intensity method is not free electron temperature.

  4. On the Interpretation of Gravity Wave Measurements by Ground-Based Lidars

    Directory of Open Access Journals (Sweden)

    Andreas Dörnbrack

    2017-03-01

    Full Text Available This paper asks the simple question: How can we interpret vertical time series of middle atmosphere gravity wave measurements by ground-based temperature lidars? Linear wave theory is used to show that the association of identified phase lines with quasi-monochromatic waves should be considered with great care. The ambient mean wind has a substantial effect on the inclination of the detected phase lines. The lack of knowledge about the wind might lead to a misinterpretation of the vertical propagation direction of the observed gravity waves. In particular, numerical simulations of three archetypal atmospheric mountain wave regimes show a sensitivity of virtual lidar observations on the position relative to the mountain and on the scale of the mountain.

  5. Calculation of gas content in coal seam influenced by in-situ stress grads and ground temperature

    Institute of Scientific and Technical Information of China (English)

    王宏图; 李时雨; 吴再生; 杨晓峰; 秦大亮; 杜云贵

    2002-01-01

    On the basis of the analysis of coal-bed gas pressure in deep mine, and the coal-bed permeability (k) and the characteristic of adsorption parameter (b) changing with temperature, the author puts forward a new calculating method of gas content in coal seam influenced by in-situ stress grads and ground temperature. At the same time, the contrast of the measuring results of coal-bed gas pressure with the computing results of coal-bed gas pressure and gas content in coal seam in theory indicate that the computing method can well reflect the authenticity of gas content in coal seam,and will further perfect the computing method of gas content in coal seam in theory,and have important value in theory on analyzing gas content in coal seam and forecasting distribution law of gas content in coal seam in deep mine.

  6. Rocket-borne measurements of electron temperature and density with the Electron Retarding Potential Analyzer instrument

    Science.gov (United States)

    Cohen, I. J.; Widholm, M.; Lessard, M. R.; Riley, P.; Heavisides, J.; Moen, J. I.; Clausen, L. B. N.; Bekkeng, T. A.

    2016-07-01

    Determining electron temperature in the ionosphere is a fundamentally important measurement for space science. Obtaining measurements of electron temperatures at high altitudes (>700 km) is difficult because of limitations on ground-based radar and classic spacecraft instrumentation. In light of these limitations, the rocket-borne Electron Retarding Potential Analyzer (ERPA) was developed to allow for accurate in situ measurement of ionospheric electron temperature with a simple and low-resource instrument. The compact ERPA, a traditional retarding potential analyzer with multiple baffle collimators, allows for a straightforward calculation of electron temperature. Since its first mission in 2004, it has amassed significant flight heritage and obtained data used in multiple studies investigating a myriad of phenomena related to magnetosphere-ionosphere coupling. In addition to highlighting the scientific contributions of the ERPA instrument, this paper outlines its theory and operation, the methodology used to obtain electron temperature measurements, and a comparative study suggesting that the ERPA can also provide electron density measurements.

  7. Characterisation of Seasonal Temperature Variation in a Shallow, Urban Aquifer: Implications for the Sustainable Development of Ground Source Heating Systems

    Science.gov (United States)

    Patton, Ashley M.; Farr, Gareth J.; Boon, David P.; James, David R.

    2017-04-01

    Groundwater thermally enhanced by the Urban Heat Island effect can be utilised by ground source heating systems (GSHSs). However, the near subsurface is subject to seasonal temperature variation reflected in shallow groundwater that can differ by several degrees throughout the year. To sustainably manage the near surface thermal resource an understanding of factors which control variation in groundwater temperature and how these are transmitted through the aquifer is needed. We show that even in relatively small urban areas (Cardiff, U.K., situated on a shallow gravel aquifer) the Zone of Seasonal Fluctuation (ZSF) can vary in depth by 8m. GSHSs are more efficient if they are sited below the ZSF, where temperatures are more stable. In Spring 2014, 48 groundwater monitoring boreholes were profiled at a 1m resolution to measure groundwater temperature across Cardiff. These were reprofiled that Autumn and compared to the Spring temperatures, defining the ZSF. The average depth to the base of the ZSF was 9.5mbgl but ranged from 7.1-15.5mbgl. The amplitude of the differences between Spring and Autumn temperatures also varied. To better understand the high spatial variability 60 boreholes were instrumented with in situ temperature loggers, recording at half-hourly intervals. The first year's data revealed the amplitudes of temperature variation within boreholes with loggers at similar depths were not always consistent. It was also noted that lag times between air temperature and groundwater temperature were not uniform across the sites. The data also showed that where gravels occurred at shallower depths the ZSF tended to be shallower and lag times shorter. The wide spatial variability of the ZSF may be partially explained by differing landuse. Those boreholes in open, grassed areas showed a deeper ZSF than those in built-up areas but built-up areas generally showed the greatest variation between Spring and Autumn temperature profiles, suggesting heat loss from buildings

  8. High-temperature archeointensity measurements from Mesopotamia

    Science.gov (United States)

    Gallet, Yves; Le Goff, Maxime

    2006-01-01

    We present new archeointensity results obtained from 127 potsherds and baked brick fragments dated from the last four millennia BC which were collected from different Syrian archeological excavations. High temperature magnetization measurements were carried out using a laboratory-built triaxial vibrating sample magnetometer (Triaxe), and ancient field intensity determinations were derived from the experimental procedure described by Le Goff and Gallet [Le Goff and Gallet. Earth Planet. Sci. Lett. 229 (2004) 31-43]. As some of the studied samples were previously analyzed using the classical Thellier and Thellier [Thellier and Thellier . Ann. Geophys. 15 (1959) 285-376] method revised by Coe [Coe. J. Geophys. Res. 72 (1967) 3247-3262], a comparison of the results is made from the two methods. The differences both at the fragment and site levels are mostly within ± 5%, which strengthens the validity of the experimental procedure developed for the Triaxe. The new data help to better constrain the geomagnetic field intensity variations in Mesopotamia during archeological times, with the probable occurrence of an archeomagnetic jerk around 2800-2600 BC.

  9. Temperature and energy deficit in the ground during operation and recovery phases of closed-loop ground source heat pump system: Effect of the groundwater flow

    Science.gov (United States)

    Erol, Selcuk; Francois, Bertrand

    2016-04-01

    The advection/dispersion mechanism of the groundwater flow in the ground has a significant effect on a borehole heat exchanger (BHE) to enhance its thermal performance. However, the amount of energy extracted from the ground never disappears and only shifts with the magnitude of the effective thermal velocity in the infinite domain. In this work, we focus on the temperature and the energy balance of the ground in an advection/dispersion dominated heat transfer system during the operation period of a BHE and the subsequent recovery phase when the system is idle. The problem is treated with single BHE and multi-BHEs systems, for different representative geology and different groundwater flow velocity. In order to assess the thermal energy deficit due to heat extraction from the ground, we used the finite line source analytical model, developed recently (Erol et al., 2015) that provides the temperature distributions around the boreholes for discontinuous heat extraction. The model is developed based on the Green's function, which is the solution of heat conduction/advection/dispersion equation in porous media, for discontinuous heat extraction by analytically convoluting rectangular function or pulses in time domain. The results demonstrate the significant positive impact of the groundwater flow for the recovery in terms of temperature deficit at the location of the borehole. However, the total thermal energy deficit is not affected by the groundwater movement. The energy balance of the ground is the same no matter the prevailing heat transfer system, which can be only conduction or advection/dispersion. In addition, the energy balance of the ground is not based on either the duration of the production period operation or of the recovery phase, but depends on the total amount of heat that is extracted and on the bulk volumetric heat capacity of the ground.

  10. Low temperature fiber optic pyrometer for fast time resolved temperature measurements

    Science.gov (United States)

    Willsch, M.; Bosselmann, T.; Gaenshirt, D.; Kaiser, J.; Villnow, M.; Banda, M.

    2016-05-01

    Low temperature Pyrometry at temperatures beyond 150°C is limited in the measurement speed due to slow pyroelectric detectors. To detect the circumferential temperature distribution of fast rotating machines a novel Fiber Optical Pyrometer Type is presented here.

  11. Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere

    Science.gov (United States)

    Bernhardt, P. A.; Ballenthin, J. O.; Baumgardner, J. L.; Bhatt, A.; Boyd, I. D.; Burt, J. M.; Caton, R. G.; Coster, A.; Erickson, P. J.; Huba, J. D.; Earle, G. D.; Kaplan, C. R.; Foster, J. C.; Groves, K. M.; Haaser, R. A.; Heelis, R. A.; Hunton, D. E.; Hysell, D. L.; Klenzing, J. H.; Larsen, M. F.; Lind, F. D.; Pedersen, T. R.; Pfaff, R. F.; Stoneback, R. A.; Roddy, P. A.; Rodriguez, S. P.; San Antonio, G. S.; Schuck, P. W.; Siefring, C. L.; Selcher, C. A.; Smith, S. M.; Talaat, E. R.; Thomason, J. F.; Tsunoda, R. T.; Varney, R. H.

    2013-01-01

    On-orbit firings of both liquid and solid rocket motors provide localized disturbances to the plasma in the upper atmosphere. Large amounts of energy are deposited to ionosphere in the form of expanding exhaust vapors which change the composition and flow velocity. Charge exchange between the neutral exhaust molecules and the background ions (mainly O+) yields energetic ion beams. The rapidly moving pickup ions excite plasma instabilities and yield optical emissions after dissociative recombination with ambient electrons. Line-of-sight techniques for remote measurements rocket burn effects include direct observation of plume optical emissions with ground and satellite cameras, and plume scatter with UHF and higher frequency radars. Long range detection with HF radars is possible if the burns occur in the dense part of the ionosphere. The exhaust vapors initiate plasma turbulence in the ionosphere that can scatter HF radar waves launched from ground transmitters. Solid rocket motors provide particulates that become charged in the ionosphere and may excite dusty plasma instabilities. Hypersonic exhaust flow impacting the ionospheric plasma launches a low-frequency, electromagnetic pulse that is detectable using satellites with electric field booms. If the exhaust cloud itself passes over a satellite, in situ detectors measure increased ion-acoustic wave turbulence, enhanced neutral and plasma densities, elevated ion temperatures, and magnetic field perturbations. All of these techniques can be used for long range observations of plumes in the ionosphere. To demonstrate such long range measurements, several experiments were conducted by the Naval Research Laboratory including the Charged Aerosol Release Experiment, the Shuttle Ionospheric Modification with Pulsed Localized Exhaust experiments, and the Shuttle Exhaust Ionospheric Turbulence Experiments.

  12. A Preliminary Evaluation of the DOE-2.1E Ground Vertical Well Model Using Maxey School Measured Data

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.A.; McLain, H.A.

    1999-06-19

    A new ground source heat pump routine has been incorporated in the DOE-2 building simulation program, but field validation of this routine is limited. Measured data are available for the operation of a ground source heat pump system for Maxey School, located in Lincoln, NE. Temperatures of the propylene glycol solution flowing in and out of the heat pump system vertical well field as predicted by the DOE-2 routine were compared with the measured data. The results showed a need for improvement in the routine, and a number of improvements were made. These changes helped, but some of the input parameters still had to be adjusted to obtain a reasonably good fit to the measured data. Future areas of investigation were suggested and a course of action was recommended.

  13. GPS Multipath Fade Measurements to Determine L-Band Ground Reflectivity Properties

    Science.gov (United States)

    Kavak, Adnan; Xu, Guang-Han; Vogel, Wolfhard J.

    1996-01-01

    In personal satellite communications, especially when the line-of-sight is clear, ground specular reflected signals along with direct signals are received by low gain, almost omni-directional subscriber antennas. A six-channel, C/A code processing, GPS receiver with an almost omni-directional patch antenna was used to take measurements over three types of ground to characterize 1.575 GHz specular ground reflections and ground dielectric properties. Fade measurements were taken over grass, asphalt, and lake water surfaces by placing the antenna in a vertical position at a fixed height from the ground. Electrical characteristics (conductivity and dielectric constant) of these surfaces (grass, asphalt, lake water) were obtained by matching computer simulations to the experimental results.

  14. EPA True NO2 ground site measurements – multiple sites, TCEQ ground site measurements of meteorological and air pollution parameters – multiple sites ,GeoTASO NO2 Vertical Column

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA True NO2 ground site measurements – multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; TCEQ ground site measurements of...

  15. Ground-Based Lidar Measurements During the CALIPSO and Twilight Zone (CATZ) Campaign

    Science.gov (United States)

    Berkoff, Timothy; Qian, Li; Kleidman, Richard; Stewart, Sebastian; Welton, Ellsworth; Li, Zhu; Holbem, Brent

    2008-01-01

    The CALIPSO and Twilight Zone (CATZ) field campaign was carried out between June 26th and August 29th of 2007 in the multi-state Maryland-Virginia-Pennsylvania region of the U.S. to study aerosol properties and cloud-aerosol interactions during overpasses of the CALIPSO satellite. Field work was conducted on selected days when CALIPSO ground tracks occurred in the region. Ground-based measurements included data from multiple Cimel sunphotometers that were placed at intervals along a segment of the CALIPSO ground-track. These measurements provided sky radiance and AOD measurements to enable joints inversions and comparisons with CALIPSO retrievals. As part of this activity, four ground-based lidars provided backscatter measurements (at 523 nm) in the region. Lidars at University of Maryland Baltimore County (Catonsville, MD) and Goddard Space Flight Center (Greenbelt, MD) provided continuous data during the campaign, while two micro-pulse lidar (MPL) systems were temporarily stationed at various field locations directly on CALIPSO ground-tracks. As a result, thirteen on-track ground-based lidar observations were obtained from eight different locations in the region. In some cases, nighttime CALIPSO coincident measurements were also obtained. In most studies reported to date, ground-based lidar validation efforts for CALIPSO rely on systems that are at fixed locations some distance away from the satellite ground-track. The CATZ ground-based lidar data provide an opportunity to examine vertical structure properties of aerosols and clouds both on and off-track simultaneously during a CALIPSO overpass. A table of available ground-based lidar measurements during this campaign will be presented, along with example backscatter imagery for a number of coincident cases with CALIPSO. Results indicate that even for a ground-based measurements directly on-track, comparisons can still pose a challenge due to the differing spatio-temporal properties of the ground and satellite

  16. Two decades of temperature-time monitoring experiment: air - ground surface - shallow subsurface interactions

    Science.gov (United States)

    Cermak, Vladimir; Dedecek, Petr; Safanda, Jan; Kresl, Milan

    2014-05-01

    Long-term observations (1994-2013) of air and shallow ground temperatures at borehole Prague-Sporilov (50º02'28.5"E, 14º28'40.2"N, 274 m a.s.l.) have been thoroughly analyzed to understand the relationship between these quantities and to describe the mechanism of heat transport at the land-atmosphere boundary layer. Data provided a surprisingly small mean ground-air temperature offset of only 0.31 K with no clear annual course and with the offset value changing irregularly even on a daily scale. Such value is substantially lower than similar values (1-2 K and more) found elsewhere, but may well characterize a mild temperate zone, when all so far available information referred rather to southern locations. Borehole data were correlated with similar observations in a polygon-site under four types of surface conditions (grass, soil, sand and asphalt) completed with registration of meteorological variables (wind direction & velocity, air & soil humidity, direct & reflected solar radiation, precipitation and snow cover). The "thermal orbits" technique proved to be an effective tool for the fast qualitative diagnostics of the thermal regime in the subsurface (conductive versus non-conductive).

  17. Soil moisture characterization of the Valencia anchor station. Ground, aircraft measurements and simulations

    DEFF Research Database (Denmark)

    Lopez-Baeza, E; Antolin, M C; Balling, Jan E.

    2009-01-01

    , soil type, lithology, geology, elevation, slope and vegetation cover conditions. Complementary to the ground measurements, flight operations were performed over this control area using the Helsinki University of Technology TKK Short Skyvan research aircraft which contained onboard a payload constituted...

  18. Ground-based intercomparison of two isoprene measurement techniques

    Directory of Open Access Journals (Sweden)

    E. Leibrock

    2003-01-01

    Full Text Available An informal intercomparison of two isoprene (C5H8 measurement techniques was carried out during Fall of 1998 at a field site located approximately 3 km west of Boulder, Colorado, USA. A new chemical ionization mass spectrometric technique (CIMS was compared to a well-established gas chromatographic technique (GC. The CIMS technique utilized benzene cation chemistry to ionize isoprene. The isoprene levels measured by the CIMS were often larger than those obtained with the GC. The results indicate that the CIMS technique suffered from an anthropogenic interference associated with air masses from the Denver, CO metropolitan area as well as an additional interference occurring in clean conditions. However, the CIMS technique is also demonstrated to be sensitive and fast. Especially after introduction of a tandem mass spectrometric technique, it is therefore a candidate for isoprene measurements in remote environments near isoprene sources.

  19. Measurement of cloud point temperature in polymer solutions.

    Science.gov (United States)

    Mannella, G A; La Carrubba, V; Brucato, V

    2013-07-01

    A temperature-controlled turbidity measurement apparatus for the characterization of polymer solutions has been instrumented and set up. The main features are the coupled temperature-light transmittance measurement and the accurate temperature control, achieved by means of peltier cells. The apparatus allows to measure cloud point temperatures by adopting different cooling protocols: low rate for quasi-equilibrium measurements and high rate for detect kinetic effects. A ternary polymeric solution was adopted as case study system showing that cooling rate affects the measured cloud point temperature.

  20. Comparison of stratospheric temperature profiles from a ground-based microwave radiometer with lidar, radiosonde and satellite data

    Science.gov (United States)

    Navas-Guzmán, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain

    2015-04-01

    The importance of the knowledge of the temperature structure in the atmosphere has been widely recognized. Temperature is a key parameter for dynamical, chemical and radiative processes in the atmosphere. The cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming ( [1] and references therein). However, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. Stratospheric long-term datasets are sparse and obtained trends differ from one another [1]. Therefore it is important that in the future such datasets are generated. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. TEMPERA (TEMPERature RAdiometer) is a newly developed ground-based microwave radiometer designed, built and operated at the University of Bern. The instrument and the retrieval of temperature profiles has been described in detail in [2]. TEMPERA is measuring a pressure broadened oxygen line at 53.1 GHz in order to determine stratospheric temperature profiles. The retrieved profiles of TEMPERA cover an altitude range of approximately 20 to 45 km with a vertical resolution in the order of 15 km. The lower limit is given by the instrumental baseline and the bandwidth of the measured spectrum. The upper limit is given by the fact that above 50 km the oxygen lines are splitted by the Zeeman effect in the terrestrial magnetic field. In this study we present a comparison of stratospheric

  1. Ground-temperature controlling effects of duct-ventilated railway embankment in permafrost regions

    Institute of Scientific and Technical Information of China (English)

    NIU; Fujun; CHENG; Guodong

    2004-01-01

    Based on observed data from field-testing embankment of the Qinghai-Tibet Railway, ground-temperature controlling effect of duct-ventilated embankment is studied in this paper.The results show that ventilation ducts can effectively cool the soils surrounding the ducts of the embankment, and the heat budget of the ambient soils in a year shows as heat release. Temperature status of the permafrost below the embankment with ducts buried in the relatively high position is similar to that of the common embankment. The permafrost processes warming all along in the two freezing-thawing cycles when the embankment was constructed. However, the temperature of the frozen soils below the embankment, in which the ducts buried in the relatively low position, rises a little in the initial stage. After that, it cools down gradually. At the same time,ventilation ducts can effectively reduce the thermal disturbance caused by the filled soils. The frozen soils below the common embankment and that with high-posited ducts absorb heat all along in the initial two cycles. While the soils below the embankment with low-posited ducts begin to release heat in the second cycle. This phenomenon proves that the ventilation embankment with low-posited ducts shows efficient temperature-controlling effect. Such embankment can actively cool the subgrade soils and therefore keeps the roadbed thermally stable.

  2. Dust optical properties retrieved from ground-based polarimetric measurements.

    Science.gov (United States)

    Li, Zhengqiang; Goloub, Philippe; Blarel, Luc; Damiri, Bahaiddin; Podvin, Thierry; Jankowiak, Isabelle

    2007-03-20

    We have systematically processed one year of sunphotometer measurements (recorded at five AERONET/PHOTONS sites in Africa) in order to assess mineral dust optical properties with the use of a new polarimetry-based algorithm. We consider the Cimel CE318 polarized sunphotometer version to obtain single-scattering albedo, scattering phase matrix elements F(11) and F(12) for dust aerosols selected with Angström exponents ranging from -0.05 to 0.25. Retrieved F(11) and F(12) differ significantly from those of spherical particles. The degree of linear polarization -F(12)/F(11) for single scattering of atmospheric total column dust aerosols in the case of unpolarized incident light is systematically retrieved for the first time to our knowledge from sunphotometer measurements and shows consistency with previous laboratory characterizations of nonspherical particles.

  3. BOREAS RSS-11 Ground Network of Sunphotometer Measurements

    Science.gov (United States)

    Markham, Brian L.; Hall, Forrest G. (Editor); Nickerson, Jaime (Editor); Schafer, Joel; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS RSS-11 team operated a network of five automated (Cimel) and two hand-held (Miami) solar radiometers from 1994 to 1996 during the BOREAS field campaigns. The data provide aerosol optical depth measurements, size distribution, phase function, and column water vapor amounts over points in northern Saskatchewan and Manitoba, Canada. The data are useful for the correction of remotely sensed aircraft and satellite images. The data are provided in tabular ASCII files.

  4. Measurement of Giant Dipole Resonance width at low temperature: A new experimental perspective

    CERN Document Server

    Mukhopadhyay, S; Pal, Surajit; Bhattacharya, Srijit; De, A; Bhattacharya, S; Bhattacharya, C; Banerjee, K; Kundu, S; Rana, T K; Mukherjee, G; Pandey, R; Gohil, M; Pai, H; Meena, J K; Banerjee, S R

    2011-01-01

    The systematic evolution of the giant dipole resonance (GDR) width in the temperature region of 0.9 ~ 1.4 MeV has been measured experimentally for 119Sb using alpha induced fusion reaction and employing the LAMBDA high energy photon spectrometer. The temperatures have been precisely determined by simultaneously extracting the vital level density parameter from the neutron evaporation spectrum and the angular momentum from gamma multiplicity filter using a realistic approach. The systematic trend of the data seems to disagree with the thermal shape fluctuation model (TSFM). The model predicts the gradual increase of GDR width from its ground state value for T > 0 MeV whereas the measured GDR widths appear to remain constant at the ground state value till T ~ 1 MeV and increase thereafter indicating towards a failure of the adiabatic assumption of the model at low temperature.

  5. A noncontact temperature measurement method in polymerase chain reaction reactors

    Science.gov (United States)

    Sochivko, D. G.; Varlamov, D. A.; Fedorov, A. A.; Kurochkin, V. E.

    2016-04-01

    A new noncontact method for measuring temperatures of liquids, which is based on the fluorescent probes, is proposed. The method is intended for measuring temperatures of reaction media in reactors of devices for polymerase chain reactions in real time and can be used for determining dynamic temperature parameters.

  6. Estimating Daily Maximum and Minimum Land Air Surface Temperature Using MODIS Land Surface Temperature Data and Ground Truth Data in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Phan Thanh Noi

    2016-12-01

    Full Text Available This study aims to evaluate quantitatively the land surface temperature (LST derived from MODIS (Moderate Resolution Imaging Spectroradiometer MOD11A1 and MYD11A1 Collection 5 products for daily land air surface temperature (Ta estimation over a mountainous region in northern Vietnam. The main objective is to estimate maximum and minimum Ta (Ta-max and Ta-min using both TERRA and AQUA MODIS LST products (daytime and nighttime and auxiliary data, solving the discontinuity problem of ground measurements. There exist no studies about Vietnam that have integrated both TERRA and AQUA LST of daytime and nighttime for Ta estimation (using four MODIS LST datasets. In addition, to find out which variables are the most effective to describe the differences between LST and Ta, we have tested several popular methods, such as: the Pearson correlation coefficient, stepwise, Bayesian information criterion (BIC, adjusted R-squared and the principal component analysis (PCA of 14 variables (including: LST products (four variables, NDVI, elevation, latitude, longitude, day length in hours, Julian day and four variables of the view zenith angle, and then, we applied nine models for Ta-max estimation and nine models for Ta-min estimation. The results showed that the differences between MODIS LST and ground truth temperature derived from 15 climate stations are time and regional topography dependent. The best results for Ta-max and Ta-min estimation were achieved when we combined both LST daytime and nighttime of TERRA and AQUA and data from the topography analysis.

  7. Temperature measurement of contact resistance based on infrared detection

    Science.gov (United States)

    En, De; Feng, Jieyu

    2010-11-01

    For science and technology, the level of science and technology is determined by the measurement accuracy and efficiency to some extent. Contact resistance can not be ignored in precise measurement. Because the measured object is not directly contacted with infrared measurement device, there is no friction. Infrared measurement has the advantage of high sensitivity, fast response and so on. In this paper, the reasons for the temperature rising of the contact resistance and its harm and the importance of measuring the temperature of the contact resistance in precise measurement are analyzed firstly; then some theories of the infrared detection technology are introduced; finally, an infrared temperature measurement system based on SCM is designed.

  8. Design of High Precision Temperature Measurement System based on Labview

    OpenAIRE

    Weimin Zhu; Jin Liu; Haima Yang; Chaochao Yan

    2015-01-01

    Using the LabVIEW software platform, a high precision temperature measuring device is designed based on the principle of the thermocouple. The system uses the STM32 MCU as the main control chip, using AD7076 analog digital converter. The converter has 8 channel, synchronous sampling, and bipolar input. Improving the precision of temperature measurement by cold end compensation, fitting and other measures. The test results show that, the device temperature measurement precision can reach ±0.1 ...

  9. Large Scale Evaluation of AMSR-E Soil Moisture Products Based on Ground Soil Moisture Network Measurements

    Science.gov (United States)

    Gruhier, C.; de Rosnay, P.; Richaume, P.; Kerr, Y.; Rudiger, C.; Boulet, G.; Walker, J. P.; Mougin, E.; Ceschia, E.; Calvet, J.

    2007-05-01

    This paper presents an evaluation of AMSR-E (Advanced Microwave Scanning Radiometer for EOS) soil moisture products, based on a comparison with three ground soil moisture networks. The selected ground sites are representative of various climatic, hydrologic and environmental conditions in temperate and semi-arid areas. They are located in the south-west of France, south-east of Australia and the Gourma region of the Sahel. These sites were respectively implemented in the framework of the projects SMOSREX (Surface Monitoring Of Soil Reservoir Experiment), SASMAS/GoREx (Scaling and Assimilation of Soil Moisture and Streamflow in the Goulburn River Experimental catchment) and AMMA (African Monsoon Multidisciplinary Analysis). In all cases, the arrangement of the soil moisture measuring sites was specifically designed to address the validation of remotely sensed soil moisture in the context of the preparation of the SMOS (Soil Moisture and Ocean Salinity) project. For the purpose of this study, 25km AMSR-E products were used, including brightness temperatures at 6.9 and 10.7 GHz, and derived soil moisture. The study is focused on the year 2005. It is based on ground soil moisture network measurements from 4 stations for SMOSREX extended to the SUDOUEST project of CESBIO, 12 stations for GoRex, and 4 stations for AMMA. Temporal and spatial features of soil moisture variability and stability is a critical issue to be addressed for remotely sensed soil moisture validation. While ground measurements provide information on soil moisture dynamics at local scale and high temporal resolution (hourly), satellite measurements are sparser in time (up to several days), but cover a larger region (25km x 25km for AMSR-E). First, a statistical analysis, including mean relative difference and Spearman rank, is conducted for the three soil moisture networks. This method is mainly based on the approach proposed by Cosh et al. (2004) for the purpose of the use of ground networks for

  10. Measuring Method for Lightning Channel Temperature

    Science.gov (United States)

    Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.

    2016-01-01

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5–50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8–10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases. PMID:27665937

  11. Measuring Method for Lightning Channel Temperature

    Science.gov (United States)

    Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.

    2016-09-01

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.

  12. Measuring Method for Lightning Channel Temperature.

    Science.gov (United States)

    Li, X; Zhang, J; Chen, L; Xue, Q; Zhu, R

    2016-09-26

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.

  13. LRO Diviner Soil Composition Measurements - Lunar Sample Ground Truth

    Science.gov (United States)

    Allen, Carlton C.; Greenhagen, Benjamin T.; Paige, David A.

    2010-01-01

    The Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter [1,2] includes three thermal infrared channels spanning the wavelength ranges 7.55-8.05 microns 8.10-8.40 microns, and 8.38-8.68 microns. These "8 micron" bands were specifically selected to measure the "Christiansen feature". The wavelength location of this feature, referred to herein as CF, is particularly sensitive to silicate minerals including plagioclase, pyroxene, and olivine the major crystalline components of lunar rocks and soil. The general trend is that lower CF values are correlated with higher silica content and higher CF values are correlated with lower silica content. In a companion abstract, Greenhagen et al. [3] discuss the details of lunar mineral identification using Diviner data.

  14. Pyrometric temperature measurements in the solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, H.-R; Mueller, Ch.

    2000-07-01

    Surface temperatures are key parameters in many applications of concentrated solar radiation. Pyrometric temperature determination is here hampered by the reflected solar radiation. Two approaches to solve this problem were experimentally tested with the TREMPER reactor in the solar furnace at PSI: the flash assisted multiwavelength pyrometry (FAMP) developed at PSI and a so called 'solar-blind' pyrometer developed by IMPAC Electronic GmbH in Frankfurt, Germany, in collaboration with PSI. Performance, advantages and disadvantages of the two different pyrometers are reported and discussed. (authors)

  15. Measuring soil frost depth in forest ecosystems with ground penetrating radar

    Science.gov (United States)

    John R. Butnor; John L. Campbell; James B. Shanley; Stanley. Zarnoch

    2014-01-01

    Soil frost depth in forest ecosystems can be variable and depends largely on early winter air temperatures and the amount and timing of snowfall. A thorough evaluation of ecological responses to seasonally frozen ground is hampered by our inability to adequately characterize the frequency, depth, duration and intensity of soil frost events. We evaluated the use of...

  16. Restore good conditions of Incore temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Solanas, A.; Izquierdo, J.

    2014-07-01

    In the frame of life time extension of Nuclear Power plants, operators have to face numerous problems. Loss of too many incore temperature lines, for aging or obsolescence reasons, can be one of them. In such situation, large numbers of thermocouples could have to be replaced before starting this new operating period. (Author)

  17. An intelligent instrument for measuring exhaust temperature of marine engine

    Institute of Scientific and Technical Information of China (English)

    MA Nan-qi; SU Hua; LIU Jun

    2006-01-01

    Exhaust temperature of the marine engine is commonly measured through thermocouple.Measure deviation will occur after using the thermocouple for some time due to nonlinearity of thermocouple itself, high temperature and chemical corrosion of measure point. Frequent replacement of thermocouple will increase the operating cost. This paper designs a new intelligent instrument for solving the above-mentioned problems of the marine engine temperature measurement, which combines the conventional thermocouple temperature measurement technology and SCM(single chip microcomputer).The reading of the thermocouple is simple and precise and the calibration can be made automatically and manually..

  18. Design of High Precision Temperature Measurement System based on Labview

    Directory of Open Access Journals (Sweden)

    Weimin Zhu

    2015-06-01

    Full Text Available Using the LabVIEW software platform, a high precision temperature measuring device is designed based on the principle of the thermocouple. The system uses the STM32 MCU as the main control chip, using AD7076 analog digital converter. The converter has 8 channel, synchronous sampling, and bipolar input. Improving the precision of temperature measurement by cold end compensation, fitting and other measures. The test results show that, the device temperature measurement precision can reach ±0.1 °C, has the advantages of small size, high precision, and reliable performance, this high precision temperature measurement can be widely used in industrial production.

  19. Pinatubo Global- to Micro-Scale Evolution: A Unified Picture from Space, Air, and Ground Measurements

    Science.gov (United States)

    Russell, Philip B.; Livingston, J. M.; Puesche, R. F.; Pollack, J. B.; Brooks, S.; Hamill, P.; Hughes, J.; Thomason, L.; Stowe, L.; Deshler, T.; Podolske, James R. (Technical Monitor)

    1995-01-01

    We combine space, air, and ground measurements to develop a composite picture of the post-Pinatubo aerosol, and assess the consistency and uncertainties of various measurement and retrieval techniques. impactor and optical counter measurements, as well as retrievals from optical depth spectra, paint a generally consistent picture of the evolution of particle effective radii, R(sub eff). In the first month after the eruption, although particle numbers increased by orders of magnitude, R(sub eff) was similar to the preeruption value of 4.2 micrometers, because both small (r less than 0.25 micrometers) and large (r greater than 0.6 micrometers) particles increased in number, Over the next 3-6 months, R(sub eff) increased rapidly to about 0.5 micrometers. In general, R(sub eff) continued to increase for about a year after the eruption. The peak wavelength of optical depth spectra increased from initial values of less than 0.42 micrometers to values between 0.78 and 1 micrometer. This coupled evolution in particle size distribution and optical depth spectra helps explain the relationship between the global maps of 0.5 and 1.0-micrometer optical depth derived from the AVHRR and SAGE satellite measurements. It also sets a context for evaluating remaining uncertainties in each of these satellite data products. We also make consensus recommendations for particle composition, shape, and temperature- and wavelength-dependent refractive index, and show how the latter effect on backscatter spectra can influence particle sizes retrieved from multiwavelength lidar measurements.

  20. Nanosecond-resolved temperature measurements using magnetic nanoparticles

    Science.gov (United States)

    Xu, Wenbiao; Liu, Wenzhong; Zhang, Pu

    2016-05-01

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  1. Influence of Sensor Ingestion Timing on Consistency of Temperature Measures

    Science.gov (United States)

    2009-01-01

    Copyright @ 200 by the American College of Sports Medicine. Unauthorized reproduction of this article is prohibited.9 Influence of Sensor Ingestion ... Ingestion Timing on Consistency of Temperature Measures. Med. Sci. Sports Exerc., Vol. 41, No. 3, pp. 597–602, 2009. Purpose: The validity and the...reliability of using intestinal temperature (Tint) via ingestible temperature sensors (ITS) to measure core body temperature have been demonstrated. However

  2. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Science.gov (United States)

    Thein, Pyi Soe; Pramumijoyo, Subagyo; Brotopuspito, Kirbani Sri; Wilopo, Wahyu; Kiyono, Junji; Setianto, Agung; Putra, Rusnardi Rahmat

    2015-04-01

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green's function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  3. Designed microtremor array based actual measurement and analysis of strong ground motion at Palu city, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Thein, Pyi Soe, E-mail: pyisoethein@yahoo.com [Geology Department, Yangon University (Myanmar); Pramumijoyo, Subagyo; Wilopo, Wahyu; Setianto, Agung [Geological Engineering Department, Gadjah Mada University (Indonesia); Brotopuspito, Kirbani Sri [Physics Department, Gadjah Mada University (Indonesia); Kiyono, Junji; Putra, Rusnardi Rahmat [Graduate School of Global Environmental Studies, Kyoto University (Japan)

    2015-04-24

    In this study, we investigated the strong ground motion characteristics under Palu City, Indonesia. The shear wave velocity structures evaluated by eight microtremors measurement are the most applicable to determine the thickness of sediments and average shear wave velocity with Vs ≤ 300 m/s. Based on subsurface underground structure models identified, earthquake ground motion was estimated in the future Palu-Koro earthquake by using statistical green’s function method. The seismic microzonation parameters were carried out by considering several significant controlling factors on ground response at January 23, 2005 earthquake.

  4. Infrared measurement and simulation of magnesium alloy welding temperature field

    Institute of Scientific and Technical Information of China (English)

    LIU Liming; CHI Mingsheng; HUANG Ruisheng; SONG Gang; ZHOU Yang

    2005-01-01

    The welding temperature field of magnesium alloy AZ31 welded by TIG was measured with the uncooled infrared (IR) thermal imaging technology. The variables in the mathematic mode of welding temperature fields were revised by IR temperature data. Based on the results of simulation, the loss of temperature fields caused by arc interfered was compensated, and a whole temperature field was achieved, which provided a precise and powerful foundation for the investigation of microstructure of the joints.

  5. An All Fiber White Light Interferometric Absolute Temperature Measurement System

    Directory of Open Access Journals (Sweden)

    Jeonggon Harrison Kim

    2008-11-01

    Full Text Available Recently the author of this article proposed a new signal processing algorithm for an all fiber white light interferometer. In this article, an all fiber white light interferometric absolute temperature measurement system is presented using the previously proposed signal processing algorithm. Stability and absolute temperature measurement were demonstrated. These two tests demonstrated the feasibility of absolute temperature measurement with an accuracy of 0.015 fringe and 0.0005 fringe, respectively. A hysteresis test from 373K to 873K was also presented. Finally, robustness of the sensor system towards laser diode temperature drift, AFMZI temperature drift and PZT non-linearity was demonstrated.

  6. 46 CFR 154.1340 - Temperature measuring devices.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Temperature measuring devices. 154.1340 Section 154.1340... Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the... level allowed under § 154.1844. (b) Each device required by paragraph (a) must have a readout at...

  7. Measuring the Electron Temperature in the Corona

    Science.gov (United States)

    Davila, Joseph; SaintCyr, Orville C.; Reginald, Nelson

    2008-01-01

    We report on an experiment to demonstrate the feasibility of a new method to obtain the electron temperature and flow speed in the solar corona by observing the visible Kcoronal spectrum during the total solar eclipse on 29 March 2006 in Libya. Results show that this new method is indeed feasible, giving electron temperatures and speeds of 1.10 $\\pm$ 0.05 MK, 103.0 $\\pm$ 92.0 $kmsA{-l}$; 0.98 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-1)s; 0.70 $\\pm$ 0.08 MK, 0.0 + 10.0 $kmsA{-l)$ at l.l{\\it R)$ {\\odot}$ in the solar north, east and west, respectively, and 0.93 $\\pm$ 0.12 MK, 0.0 + 10.0 $kmsA{-l}$ at 1.2{\\it R}$ {\\odot}$ in the solar east. This new technique could be easily used from a space-based platform in a coronagraph to produce two dimensional maps of the electron temperature and bulk flow speed at the base of the solar wind useful for the study of heliospheric structure and space weather.

  8. Retrieving the ground state of spin glasses using thermal noise: Performance of quantum annealing at finite temperatures

    Science.gov (United States)

    Nishimura, Kohji; Nishimori, Hidetoshi; Ochoa, Andrew J.; Katzgraber, Helmut G.

    2016-09-01

    We study the problem to infer the ground state of a spin-glass Hamiltonian using data from another Hamiltonian with interactions disturbed by noise from the original Hamiltonian, motivated by the ground-state inference in quantum annealing on a noisy device. It is shown that the average Hamming distance between the inferred spin configuration and the true ground state is minimized when the temperature of the noisy system is kept at a finite value, and not at zero temperature. We present a spin-glass generalization of a well-established result that the ground state of a purely ferromagnetic Hamiltonian is best inferred at a finite temperature in the sense of smallest Hamming distance when the original ferromagnetic interactions are disturbed by noise. We use the numerical transfer-matrix method to establish the existence of an optimal finite temperature in one- and two-dimensional systems. Our numerical results are supported by mean-field calculations, which give an explicit expression of the optimal temperature to infer the spin-glass ground state as a function of variances of the distributions of the original interactions and the noise. The mean-field prediction is in qualitative agreement with numerical data. Implications on postprocessing of quantum annealing on a noisy device are discussed.

  9. Validation of VIIRS Cloud Base Heights at Night Using Ground and Satellite Measurements over Alaska

    Science.gov (United States)

    NOH, Y. J.; Miller, S. D.; Seaman, C.; Forsythe, J. M.; Brummer, R.; Lindsey, D. T.; Walther, A.; Heidinger, A. K.; Li, Y.

    2016-12-01

    Knowledge of Cloud Base Height (CBH) is critical to describing cloud radiative feedbacks in numerical models and is of practical significance to aviation communities. We have developed a new CBH algorithm constrained by Cloud Top Height (CTH) and Cloud Water Path (CWP) by performing a statistical analysis of A-Train satellite data. It includes an extinction-based method for thin cirrus. In the algorithm, cloud geometric thickness is derived with upstream CTH and CWP input and subtracted from CTH to generate the topmost layer CBH. The CBH information is a key parameter for an improved Cloud Cover/Layers product. The algorithm has been applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi NPP spacecraft. Nighttime cloud optical properties for CWP are retrieved from the nighttime lunar cloud optical and microphysical properties (NLCOMP) algorithm based on a lunar reflectance model for the VIIRS Day/Night Band (DNB) measuring nighttime visible light such as moonlight. The DNB has innovative capabilities to fill the polar winter and nighttime gap of cloud observations which has been an important shortfall from conventional radiometers. The CBH products have been intensively evaluated against CloudSat data. The results showed the new algorithm yields significantly improved performance over the original VIIRS CBH algorithm. However, since CloudSat is now operational during daytime only due to a battery anomaly, the nighttime performance has not been fully assessed. This presentation will show our approach to assess the performance of the CBH algorithm at night. VIIRS CBHs are retrieved over the Alaska region from October 2015 to April 2016 using the Clouds from AVHRR Extended (CLAVR-x) processing system. Ground-based measurements from ceilometer and micropulse lidar at the Atmospheric Radiation Measurement (ARM) site on the North Slope of Alaska are used for the analysis. Local weather conditions are checked using temperature and precipitation

  10. Measured Aperture-Array Noise Temperature of the Mark II Phased Array Feed for ASKAP

    CERN Document Server

    Chippendale, A P; Beresford, R J; Hampson, G A; Shaw, R D; Hayman, D B; Macleod, A; Forsyth, A R; Hay, S G; Leach, M; Cantrall, C; Brothers, M L; Hotan, A W

    2015-01-01

    We have measured the aperture-array noise temperature of the first Mk. II phased array feed that CSIRO has built for the Australian Square Kilometre Array Pathfinder telescope. As an aperture array, the Mk. II phased array feed achieves a beam equivalent noise temperature less than 40 K from 0.78 GHz to 1.7 GHz and less than 50 K from 0.7 GHz to 1.8 GHz for a boresight beam directed at the zenith. We believe these are the lowest reported noise temperatures over these frequency ranges for ambient-temperature phased arrays. The measured noise temperature includes receiver electronics noise, ohmic losses in the array, and stray radiation from sidelobes illuminating the sky and ground away from the desired field of view. This phased array feed was designed for the Australian Square Kilometre Array Pathfinder to demonstrate fast astronomical surveys with a wide field of view for the Square Kilometre Array.

  11. Acoustic temperature measurement in a rocket noise field.

    Science.gov (United States)

    Giraud, Jarom H; Gee, Kent L; Ellsworth, John E

    2010-05-01

    A 1 μm diameter platinum wire resistance thermometer has been used to measure temperature fluctuations generated during a static GEM-60 rocket motor test. Exact and small-signal relationships between acoustic pressure and acoustic temperature are derived in order to compare the temperature probe output with that of a 3.18 mm diameter condenser microphone. After preliminary plane wave tests yielded good agreement between the transducers within the temperature probe's ∼2 kHz bandwidth, comparison between the temperature probe and microphone data during the motor firing show that the ±∼3 K acoustic temperature fluctuations are a significant contributor to the total temperature variations.

  12. [Welding arc temperature field measurements based on Boltzmann spectrometry].

    Science.gov (United States)

    Si, Hong; Hua, Xue-Ming; Zhang, Wang; Li, Fang; Xiao, Xiao

    2012-09-01

    Arc plasma, as non-uniform plasma, has complicated energy and mass transport processes in its internal, so plasma temperature measurement is of great significance. Compared with absolute spectral line intensity method and standard temperature method, Boltzmann plot measuring is more accurate and convenient. Based on the Boltzmann theory, the present paper calculates the temperature distribution of the plasma and analyzes the principle of lines selection by real time scanning the space of the TIG are measurements.

  13. A Feasible Approach for Improving Accuracy of Ground Deformation Measured by D-InSAR

    Institute of Scientific and Technical Information of China (English)

    CHANG Zhan-qiang; GONG Hui-li; ZHANG Jing-fa; GONG Li-xia

    2007-01-01

    D-InSAR is currently one of the most popular research tools in the field of Microwave Remote Sensing. It is unrivaled in its aspect of measuring ground deformation due to its advantages such as high resolution, continuous spatial-coverage and dynamics. However, there are still a few major problems to be solved urgently as a result of the intrinsic complexity of this technique. One of the problems deals with improving the accuracy of measured ground deformation. In this paper, various factors affecting the accuracy of ground deformation measured by D-InSAR are systematically analyzed and investigated by means of the law of measurement error propagation. At the same time, we prove that the ground deformation error not only depends on the errors of perpendicular baselines as well as the errors of the interferometric phase for topographic pair and differential pair, but also on the combination of the relationship of perpendicular baselines for topographic pairs and differential pairs. Furthermore, a feasible approach for improving the accuracy of measured ground deformation is proposed, which is of positive significance in the practical application of D-InSAR.

  14. Measurement of magnetic properties at cryogenic temperatures

    CERN Multimedia

    1977-01-01

    This picture shows part of the low-mu permeameter to measure permeability of stainless steels and other low-mu materials used in superconducting magnets. The sample, a 5 mm diam., 45 mm long rod, is suspended to long leads before being inserted in the test cryostat. For the measurement the sample is surrounded by a flux- measuring coil and placed in the field of a superconducting solenoid. At a given field the sample is removed.During the removal, the voltage induced in the flux-measuring coil is time integrated giving the flux variation. This equipment was developed to select stainless steels and other low-mu materials used in the ISR Prototype Superconducting Qaudrupole. The person is W.Ansorge.

  15. Air Temperature Measurements Using Dantec Draught Probes

    DEFF Research Database (Denmark)

    Kristensen, Martin Heine; Jensen, Jakob Søland; Jensen, Rasmus Lund

    This technical report is written based on investigations of Dantec measurement equipment used in a master thesis project by the authors in the period September 2014 to June 2015 (Kristensen & Jensen, 2015)....

  16. Solar energy control system. [temperature measurement

    Science.gov (United States)

    Currie, J. R. (Inventor)

    1981-01-01

    A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.

  17. An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement.

    Science.gov (United States)

    Muyskens, Mark A.

    1997-01-01

    Describes the application of an integrated-circuit (IC) chip which provides an easy-to-use, inexpensive, rugged, computer-interfaceable temperature sensor for calorimetry and differential temperature measurement. Discusses its design and advantages. (JRH)

  18. Inter-Comparison of In-Situ Sensors for Land Surface Temperature Measurements

    Science.gov (United States)

    Krishnan, P.; Kochendorfer, J.; Meyers, T. P.; Guillevic, P. C.; Hook, S. J.

    2014-12-01

    Land Surface Temperature (LST) is a key variable in the determination of land surface processes from local to global scales. It has been identified as one of the most important environmental data records and is widely used in meteorological, climatological, hydrological, ecological, biophysical, and biochemical studies. Despite its importance, accurate in-situ measurements of LST are not yet available for the whole globe and are not routinely conducted at weather stations along with standard meteorological observations, with few exceptions including NOAA's United States Climate Reference Network. Even though satellite radiometric measurements of LST are a powerful tool, there are still large uncertainties associated with the retrieval of remotely sensed LST measurements. To improve confidence in the methods, algorithms, and parameters used to derive remotely sensed LST, validation of satellite data using high-quality ground-based measurements is required. With the objective of improving the quality of in situ measurements of LST and to evaluate the quantitative uncertainties in the ground-based measurements, intensive experiments were conducted at NOAA/ATDD in Oak ridge, TN from September 2013 to 2014. During the study period, multiple measurements of land surface skin temperature were made using infra-red temperature sensors - including the JPL radiometer, two models of Apogee infrared radiometers, and thermocouples embedded in the ground surface. In addition, aspirated air temperature and four-band net radiation measurements were also made. Overall the in situ LST measurements from the different sensors were in good agreement with each other, with a correlation coefficient of ~1 and root mean square error of <1 oC.

  19. Ground and surface temperature variability for remote sensing of soil moisture in a heterogeneous landscape

    Science.gov (United States)

    Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Finn, M.

    2009-01-01

    At the Little River Watershed (LRW) heterogeneous landscape near Tifton Georgia US an in situ network of stations operated by the US Department of Agriculture-Agriculture Research Service-Southeast Watershed Research Lab (USDA-ARS-SEWRL) was established in 2003 for the long term study of climatic and soil biophysical processes. To develop an accurate interpolation of the in situ readings that can be used to produce distributed representations of soil moisture (SM) and energy balances at the landscape scale for remote sensing studies, we studied (1) the temporal and spatial variations of ground temperature (GT) and infra red temperature (IRT) within 30 by 30 m plots around selected network stations; (2) the relationship between the readings from the eight 30 by 30 m plots and the point reading of the network stations for the variables SM, GT and IRT; and (3) the spatial and temporal variation of GT and IRT within agriculture landuses: grass, orchard, peanuts, cotton and bare soil in the surrounding landscape. The results showed high correlations between the station readings and the adjacent 30 by 30 m plot average value for SM; high seasonal independent variation in the GT and IRT behavior among the eight 30 by 30 m plots; and site specific, in-field homogeneity in each 30 by 30 m plot. We found statistical differences in the GT and IRT between the different landuses as well as high correlations between GT and IRT regardless of the landuse. Greater standard deviations for IRT than for GT (in the range of 2-4) were found within the 30 by 30 m, suggesting that when a single point reading for this variable is selected for the validation of either remote sensing data or water-energy models, errors may occur. The results confirmed that in this landscape homogeneous 30 by 30 m plots can be used as landscape spatial units for soil moisture and ground temperature studies. Under this landscape conditions small plots can account for local expressions of environmental

  20. Effects of temperature and ground-state coherence decay on enhancement and amplification in a Delta atomic system

    CERN Document Server

    Manjappa, Manukumara; Karigowda, Asha; Narayanan, Andal; Sanders, Barry C

    2014-01-01

    We study phase-sensitive amplification of electromagnetically induced transparency in a warm $^{85}$Rb vapor wherein a microwave driving field couples the two lower energy states of a $\\Lambda$ energy-level system thereby transforming into a $\\Delta$ system. Our theoretical description includes effects of ground-state coherence decay and temperature effects. In particular, we demonstrate that driving-field enhanced electromagnetically induced transparency is robust against significant loss of coherence between ground states. We also show, that for specific field intensities, a threshold rate of ground-state coherence decay exists at every temperature. This threshold separates the probe-transmittance behavior into two regimes: probe amplification vs. probe attenuation. Thus, electromagnetically induced transparency plus amplification is possible at any temperature in a $\\Delta$ system.

  1. Body Temperature Measurements for Metabolic Phenotyping in Mice.

    Science.gov (United States)

    Meyer, Carola W; Ootsuka, Youichirou; Romanovsky, Andrej A

    2017-01-01

    Key Points Rectal probing is subject to procedural bias. This method is suitable for first-line phenotyping, provided probe depth and measurement duration are standardized. It is also useful for detecting individuals with out-of-range body temperatures (during hypothermia, torpor).The colonic temperature attained by inserting the probe >2 cm deep is a measure of deep (core) body temperature.IR imaging of the skin is useful for detecting heat leaks and autonomous thermoregulatory alterations, but it does not measure body temperature.Temperature of the hairy or shaved skin covering the inter-scapular brown adipose tissue can be used as a measure of BAT thermogenesis. However, obtaining such measurements of sufficient quality is very difficult, and interpreting them can be tricky. Temperature differences between the inter-scapular and lumbar areas can be a better measure of the thermogenic activity of inter-scapular brown adipose tissue.Implanted probes for precise determination of BAT temperature (changes) should be fixed close to the Sulzer's vein. For measurement of BAT thermogenesis, core body temperature and BAT temperature should be recorded simultaneously.Tail temperature is suitable to compare the presence or absence of vasoconstriction or vasodilation.Continuous, longitudinal monitoring of core body temperature is preferred over single probing, as the readings are taken in a non-invasive, physiological context.Combining core body temperature measurements with metabolic rate measurements yields insights into the interplay between heat production and heat loss (thermal conductance), potentially revealing novel thermoregulatory phenotypes. Endothermic organisms rely on tightly balanced energy budgets to maintain a regulated body temperature and body mass. Metabolic phenotyping of mice, therefore, often includes the recording of body temperature. Thermometry in mice is conducted at various sites, using various devices and measurement practices, ranging from

  2. Finger temperature controller for non-invasive blood glucose measurement

    Science.gov (United States)

    Zhang, Xiqin; Ting, Choon Meng; Yeo, Joon Hock

    2010-11-01

    Blood glucose level is an important parameter for doctors to diagnose and treat diabetes. The Near-Infra-Red (NIR) spectroscopy method is the most promising approach and this involves measurement on the body skin. However it is noted that the skin temperature does fluctuate with the environmental and physiological conditions and we found that temperature has important influences on the glucose measurement. In-vitro and in-vivo investigations on the temperature influence on blood glucose measurement have been carried out. The in-vitro results show that water temperature has significant influence on water absorption. Since 90% of blood components are water, skin temperature of measurement site has significant influence on blood glucose measurement. Also the skin temperature is related to the blood volume, blood volume inside capillary vessels changes with skin temperature. In this paper the relationship of skin temperature and signal from the skin and inside tissue was studied at different finger temperatures. Our OGTT (oral glucose tolerance test) trials results show the laser signals follow the skin temperature trend and the correlation of signal and skin temperature is much stronger than the correlation of signal and glucose concentration. A finger heater device is designed to heat and maintain the skin temperature of measurement site. The heater is controlled by an electronic circuit according to the skin temperature sensed by a thermocouple that is put close to the measurement site. In vivo trials were carried out and the results show that the skin temperature significantly influences the signal fluctuations caused by pulsate blood and the average signal value.

  3. Microwave radiometric system for biomedical 'true temperature' and emissivity measurements.

    Science.gov (United States)

    Lüdeke, K M; Köhler, J

    1983-09-01

    A novel type of radiometer is described, which solves the problem of emissivity-(mismatch)-independent noise temperature measurements by simultaneous registration of an object's apparent temperature and its reflectivity with just one microwave receiver and real-time calculation of the object's emissivity and its actual temperature.

  4. Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return

    Directory of Open Access Journals (Sweden)

    S. Ishii

    2013-05-01

    Full Text Available The National Institute of Information and Communications Technology (NICT has made a great deal of effort to develop a coherent 2 μm differential absorption and wind lidar (Co2DiaWiL for measuring CO2 and wind speed. First, coherent Integrated Path Differential Absorption (IPDA lidar experiments were conducted using the Co2DiaWiL and a foothill target (tree and ground surface located about 7.12 km south of NICT on 11, 27, and 28 December 2010. The detection sensitivity of a 2 μm IPDA lidar was examined in detail using the CO2 concentration measured by the foothill reflection. The precisions of CO2 measurements for the foothill target and 900, 4500 and 27 000 shot pairs were 6.5, 2.8, and 1.2%, respectively. The results indicated that a coherent IPDA lidar with a laser operating at a high pulse repetition frequency of a few tens of KHz is necessary for XCO2 (column-averaged dry air mixing ratio of CO2 measurement with a precision of 1–2 ppm in order to observe temporal and spatial variations in the CO2. Statistical comparisons indicated that, although a small amount of in situ data and the fact that they were not co-located with the foothill target made comparison difficult, the CO2 volume mixing ratio obtained by the Co2DiaWiL measurements for the foothill target and atmospheric returns was about −5 ppm lower than the 5 min running averages of the in situ sensor. Not only actual difference of sensing volume or the natural variability of CO2 but also the fluctuations of temperature could cause this difference. The statistical results indicated that there were no biases between the foothill target and atmospheric return measurements. The 2 μm coherent IPDA lidar can detect the CO2 volume mixing ratio change of 3% in the 5 min signal integration. In order to detect the position of the foothill target, to measure a range with a high SNR (signal-to-noise ratio, and to reduce uncertainty due to the presence of aerosols and clouds, it is

  5. Correlation study between ground motion intensity measure parameters and deformation demands for bilinear SDOF systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The correlation between ground motion intensity measures (IM) and single-degree-of-freedom (SDOF) deformation demands is described in this study. Peak ground acceleration (APG), peak ground velocity (VPG), peak ground displacement (DPG), spectral acceleration at the first-mode period of vibration [As(T1)] and ratio of VPG to APG are used as IM parameters, and the correlation is characterized by correlation coefficients ρ. The numerical results obtained by nonlinear dynamic analyses have shown good correlation between As(T1) or VPG and deformation demands. Furthermore, the effect of As(T1) and VPG as IM on the dispersion of the mean value of deformation demands is also investigated for SDOF systems with three different periods T=0.3 s, 1.0 s, 3.0 s respectively.

  6. Comparative Study of Ground Measured, Satellite-Derived, and Estimated Global Solar Radiation Data in Nigeria

    Directory of Open Access Journals (Sweden)

    Boluwaji M. Olomiyesan

    2016-01-01

    Full Text Available In this study, the performance of three global solar radiation models and the accuracy of global solar radiation data derived from three sources were compared. Twenty-two years (1984–2005 of surface meteorological data consisting of monthly mean daily sunshine duration, minimum and maximum temperatures, and global solar radiation collected from the Nigerian Meteorological (NIMET Agency, Oshodi, Lagos, and the National Aeronautics Space Agency (NASA for three locations in North-Western region of Nigeria were used. A new model incorporating Garcia model into Angstrom-Prescott model was proposed for estimating global radiation in Nigeria. The performances of the models used were determined by using mean bias error (MBE, mean percentage error (MPE, root mean square error (RMSE, and coefficient of determination (R2. Based on the statistical error indices, the proposed model was found to have the best accuracy with the least RMSE values (0.376 for Sokoto, 0.463 for Kaduna, and 0.449 for Kano and highest coefficient of determination, R2 values of 0.922, 0.938, and 0.961 for Sokoto, Kano, and Kaduna, respectively. Also, the comparative study result indicates that the estimated global radiation from the proposed model has a better error range and fits the ground measured data better than the satellite-derived data.

  7. A ground-based measurement of the relativistic beaming effect in a detached double WD binary

    CERN Document Server

    Shporer, Avi; Steinfadt, Justin D R; Bildsten, Lars; Howell, Steve B; Mazeh, Tsevi

    2010-01-01

    We report on the first ground-based measurement of the relativistic beaming effect (aka Doppler boosting). We observed the beaming effect in the detached, non-interacting eclipsing double white dwarf (WD) binary NLTT 11748. Our observations were motivated by the system's high mass ratio and low luminosity ratio, leading to a large beaming-induced variability amplitude at the orbital period of 5.6 hr. We observed the system during 3 nights at the 2.0m Faulkes Telescope North with the SDSS-g' filter, and fitted the data simultaneously for the beaming, ellipsoidal and reflection effects. Our fitted relative beaming amplitude is (3.0 +/- 0.4) x 10^(-3), consistent with the expected amplitude from a blackbody spectrum given the photometric primary radial velocity amplitude and effective temperature. This result is a first step in testing the relation between the photometric beaming amplitude and the spectroscopic radial velocity amplitude in NLTT 11748 and similar systems. We did not identify any variability due t...

  8. Heavy precipitation retrieval from combined satellite observations and ground-based lightning measurements

    Science.gov (United States)

    Mugnai, A.; Dietrich, S.; Casella, D.; di Paola, F.; Formenton, M.; Sanò, P.

    2010-09-01

    We have developed a series of algorithms for the retrieval of precipitation (especially, heavy precipitation) over the Mediterranean area using satellite observations from the available microwave (MW) radiometers onboard low Earth orbit (LEO) satellites and from the visible-infrared (VIS-IR) SEVIRI radiometer onboard the European geosynchronous (GEO) satellite Meteosat Second Generation (MSG), in conjunction with lightning data from ground-based networks - such as ZEUS and LINET. These are: • A new approach for precipitation retrieval from space (which we call the Cloud Dynamics and Radiation Database approach, CDRD) that incorporates lightning and environmental/dynamical information in addition to the upwelling microwave brightness temperatures (TB’s) so as to reduce the retrieval uncertainty and improve the retrieval performance; • A new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique), that uses passive-microwave (PM) retrievals in conjunction with lightning information and the Global Convection Detection (GCD) technique to discriminate deep convective clouds within the GEO observations; • A new morphing approach (which we call the Lightning-based Precipitation Evolving Technique, L-PET) that uses the available lightning measurements for propagating the rainfall estimates from satellite-borne MW radiometers to a much higher time resolution than the MW observations. We will present and discuss our combined MW/IR/lightning precipitation algorithms and analyses with special reference to some case studies over the western Mediterranean.

  9. Measurement of improved pressure dependence of superconducting transition temperature

    Science.gov (United States)

    Karmakar, S.

    2013-06-01

    We describe a technique for making electrical transport measurements in a diamond anvil cell at liquid helium temperature having in situ pressure measurement option, permitting accurate pressure determination at any low temperature during the resistance measurement scan. In general, for four-probe resistivity measurements on a polycrystalline sample, four fine gold wires are kept in contact with the sample with the help of the compression from the soft solid (usually alkali halides such as NaCl, KCl, etc.) acting as a pressure-transmitting medium. The actual pressure on the sample is underestimated if not measured from a ruby sphere placed adjacent to the sample and at that very low temperature. Here, we demonstrate the technique with a quasi-four-probe resistance measurement on an Fe-based superconductor in the temperature range 1.2-300 K and pressures up to 8 GPa to find an improved pressure dependence of the superconducting transition temperature.

  10. Initial Results from the DEEPWAVE Airborne and Ground-Based Measurement Program in New Zealand in 2014

    Science.gov (United States)

    Fritts, Dave; Smith, Ron; Taylor, Mike; Doyle, Jim; Eckermann, Steve; Dörnbrack, Andreas; Rapp, Markus; Williams, Biff; Bossert, Katrina; Pautet, Dominique

    2015-04-01

    The deep-propagating gravity wave experiment (DEEPWAVE) was performed on and over New Zealand, Tasmania, the Tasman Sea, and the Southern Ocean with core airborne measurements extending from 5 June to 21 July 2014 and supporting ground-based measurements beginning in late May and extending beyond the airborne component. DEEPWAVE employed two aircraft, the NSF/NCAR GV and the German DLR Falcon. The GV carried the standard flight-level instruments, dropsondes, and the Microwave Temperature Profiler (MTP). It also hosted new airborne lidar and imaging instruments built specifically to allow quantification of gravity waves (GWs) from sources at lower altitudes (e.g., orography, convection, jet streams, fronts, and secondary GW generation) throughout the stratosphere and into the mesosphere and lower thermosphere (MLT). The new GV lidars included a Rayleigh lidar measuring atmospheric density and temperature from ~20-60 km and a sodium resonance lidar measuring sodium density and temperature at ~75-100 km. An airborne Advanced Mesosphere Temperature Mapper (AMTM) was also developed for the GV, and together with additional IR "wing" cameras, imaged the OH airglow temperature and/or intensity fields extending ~900 km across the GV flight track. The DLR Falcon was equipped with its standard flight-level instruments and an aerosol Doppler lidar able to measure radial winds below the Falcon where aerosol backscatter was sufficient. Additional ground-based instruments included a 449 MHz boundary layer radar, balloons at multiple sites, two ground-based Rayleigh lidars, a second ground-based AMTM, a Fabry Perot interferometer measuring winds and temperatures at ~87 and 95 km, and a meteor radar measuring winds from ~80-100 km. DEEPWAVE performed 26 GV flights, 13 Falcon flights, and an extensive series of ground-based measurements whether or not the aircraft were flying. Together, these observed many diverse cases of GW forcing, propagation, refraction, and dissipation

  11. Measurement and temperature effect on soil thermal conductivity in Changchun area

    Institute of Scientific and Technical Information of China (English)

    Liliang GONG; Yanjun ZHANG; Liqing ZHAO; Long ZHAO; Ziwang YU; Jihua HU; Cheng WANG

    2007-01-01

    The study on soil thermal conductivity (STC) was an important side of research on ground source heat pump technique,geological disposal of high-level radioactive wastes,heat distribution of buried cable. Especially owing to technical requirement for shallow terrestrial heat recently, it directly influenced the design and solution in engineering problems. The authors measured the STC in the studied area with QTM-D2 and discussed the effect of samples in size, the measurement error between the samples in lab and in site. The results indicate measuring STC by heat pole method with less influence upon the samples in size, and measuring results on the different geometry size approach very much. The STC is fit for the empirical relation between the temperature and TC under the condition of normal temperature. It is significance for understanding STC in northern China and simulation of temperature field.

  12. Portable optical fiber probe for in vivo brain temperature measurements.

    Science.gov (United States)

    Musolino, Stefan; Schartner, Erik P; Tsiminis, Georgios; Salem, Abdallah; Monro, Tanya M; Hutchinson, Mark R

    2016-08-01

    This work reports on the development of an optical fiber based probe for in vivo measurements of brain temperature. By utilizing a thin layer of rare-earth doped tellurite glass on the tip of a conventional silica optical fiber a robust probe, suitable for long-term in vivo measurements of temperature can be fabricated. This probe can be interrogated using a portable optical measurement setup, allowing for measurements to be performed outside of standard optical laboratories.

  13. Validation of Aura OMI by Aircraft and Ground-Based Measurements

    Science.gov (United States)

    McPeters, R. D.; Petropavlovskikh, I.; Kroon, M.

    2006-12-01

    Both aircraft-based and ground-based measurements have been used to validate ozone measurements by the OMI instrument on Aura. Three Aura Validation Experiment (AVE) flights have been conducted, in November 2004 and June 2005 with the NASA WB57, and in January/February 2005 with the NASA DC-8. On these flights, validation of OMI was primarily done using data from the CAFS (CCD Actinic Flux Spectroradiometer) instrument, which is used to measure total column ozone above the aircraft. These measurements are used to differentiate changes in stratospheric ozone from changes in total column ozone. Also, changes in ozone over high clouds measured by OMI were checked in a flight over tropical storm Arlene on a flight on June 11th. Ground-based measurements were made during the SAUNA campaign in Sodankyla, Finland, in March and April 2006. Both total column ozone and the ozone vertical distribution were validated.

  14. Airborne and ground based lidar measurements of the atmospheric pressure profile

    Science.gov (United States)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  15. Improved Measurements of the Temperature and Polarization of the Cosmic Microwave Background from QUaD

    OpenAIRE

    Brown, M L; Ade, P.; Bock, J.; Bowden, M.; Cahill, G.; Castro, P.G. (Patricia Garrido); Church, S.; Culverhouse, T.; Friedman, R. B.; Ganga, K.; Gear, W.K.; S. Gupta; Hinderks, J.; Kovac, John M.; Lange, A. E.

    2009-01-01

    We present an improved analysis of the final data set from the QUaD experiment. Using an improved technique to remove ground contamination, we double the effective sky area and hence increase the precision of our cosmic microwave background (CMB) power spectrum measurements by ~30% versus that previously reported. In addition, we have improved our modeling of the instrument beams and have reduced our absolute calibration uncertainty from 5% to 3.5% in temperature. The robustness of our result...

  16. Non-contact temperature measurement requirements for electronic materials processing

    Science.gov (United States)

    Lehoczky, S. L.; Szofran, F. R.

    1988-01-01

    The requirements for non-contact temperature measurement capabilities for electronic materials processing in space are assessed. Non-contact methods are probably incapable of sufficient accuracy for the actual absolute measurement of temperatures in most such applications but would be useful for imaging in some applications.

  17. Optically Powered Temperature Measuring Instrument for Big Rotor①

    Institute of Scientific and Technical Information of China (English)

    ZHENGDezhong

    1997-01-01

    A micro-power consumption non-contact temperature measuring instrument for big rotos is introduced.As it solver very well the signal coupling under high speed rotation and power supply problem for probe,the instrument can realize persistent on-line temperature measurement for big rotor drived by the ordinary light transmitted by optical fiber under the room light.

  18. Measurement of Temperature Fields in Long Span Concrete Bridges

    Directory of Open Access Journals (Sweden)

    J. Římal

    2001-01-01

    Full Text Available This paper deals with assesing of the influence of climate temperatures on deformations and stresses in a cross section of the Nusle Bridge. The main purpose is to describe the measurement of the thermal fields, to compare measured and computed temperature fields, and to provide a real estimation of the stresses that occur.

  19. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...

  20. Luminous Flame Temperature Distribution Measurement Using the Emission Method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Flame temperature distribution is one of the most important characteristic parameters in combustion research. The emission method is a good way to measure the luminous flame temperature field. The maximum entropy method is introduced to the temperature distribution measurement of a luminous flame using the emission method. A simplified mathematical model was derived by combining the thermal radiation theory, reconstruction algorithm and maximum entropy method. Suitable parameters were selected in the computing process. Good experimental results were obtained with pulverized coal flames.

  1. Measurement of relative permittivity of LTCC ceramic at different temperatures

    Science.gov (United States)

    Tan, Qiulin; Kang, Hao; Qin, Li; Xiong, Jijun; Zhou, Zhaoying; Zhang, Wendong; Luo, Tao; Xue, Chenyang; Liu, Jun

    2014-03-01

    Devices based on LTCC (low-temperature co-fired ceramic) technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C) with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  2. Measurement of relative permittivity of LTCC ceramic at different temperatures

    Directory of Open Access Journals (Sweden)

    Qiulin Tan

    2014-02-01

    Full Text Available Devices based on LTCC (low-temperature co-fired ceramic technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  3. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    Science.gov (United States)

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  4. Measuring Temperature in Pipe Flow with Non-Homogeneous Temperature Distribution

    Science.gov (United States)

    Klason, P.; Kok, G. J.; Pelevic, N.; Holmsten, M.; Ljungblad, S.; Lau, P.

    2014-04-01

    Accurate temperature measurements in flow lines are critical for many industrial processes. It is normally more a rule than an exception in such applications to obtain water flows with inhomogeneous temperature distributions. In this paper, a number of comparisons were performed between different 100 ohm platinum resistance thermometer (Pt-100) configurations and a new speed-of-sound-based temperature sensor used to measure the average temperature of water flows with inhomogeneous temperature distributions. The aim was to achieve measurement deviations lower than 1 K for the temperature measurement of water flows with inhomogeneous temperature distributions. By using a custom-built flow injector, a water flow with a hot-water layer on top of a cold-water layer was created. The temperature difference between the two layers was up to 32 K. This study shows that the deviations to the temperature reference for the average temperature of four Pt-100s, the multisensor consisting of nine Pt-100s, and the new speed-of-sound sensors are remarkably lower than the deviation for a single Pt-100 under the same conditions. The aim of reaching a deviation lower than 1 K was achieved with the speed-of-sound sensors, the configuration with four Pt-100s, and the multisensor. The promising results from the speed-of sound temperature sensors open the possibility for an integrated flow and temperature sensor. In addition, the immersion depth of a single Pt-100 was also investigated at three different water temperatures.

  5. Estimating the ground-state probability of a quantum simulation with product-state measurements

    Directory of Open Access Journals (Sweden)

    Bryce eYoshimura

    2015-10-01

    Full Text Available .One of the goals in quantum simulation is to adiabatically generate the ground state of a complicated Hamiltonian by starting with the ground state of a simple Hamiltonian and slowly evolving the system to the complicated one. If the evolution is adiabatic and the initial and final ground states are connected due to having the same symmetry, then the simulation will be successful. But in most experiments, adiabatic simulation is not possible because it would take too long, and the system has some level of diabatic excitation. In this work, we quantify the extent of the diabatic excitation even if we do not know {it a priori} what the complicated ground state is. Since many quantum simulator platforms, like trapped ions, can measure the probabilities to be in a product state, we describe techniques that can employ these simple measurements to estimate the probability of being in the ground state of the system after the diabatic evolution. These techniques do not require one to know any properties about the Hamiltonian itself, nor to calculate its eigenstate properties. All the information is derived by analyzing the product-state measurements as functions of time.

  6. Solar cell junction temperature measurement of PV module

    KAUST Repository

    Huang, B.J.

    2011-02-01

    The present study develops a simple non-destructive method to measure the solar cell junction temperature of PV module. The PV module was put in the environmental chamber with precise temperature control to keep the solar PV module as well as the cell junction in thermal equilibrium with the chamber. The open-circuit voltage of PV module Voc is then measured using a short pulse of solar irradiation provided by a solar simulator. Repeating the measurements at different environment temperature (40-80°C) and solar irradiation S (200-1000W/m2), the correlation between the open-circuit voltage Voc, the junction temperature Tj, and solar irradiation S is derived.The fundamental correlation of the PV module is utilized for on-site monitoring of solar cell junction temperature using the measured Voc and S at a short time instant with open circuit. The junction temperature Tj is then determined using the measured S and Voc through the fundamental correlation. The outdoor test results show that the junction temperature measured using the present method, Tjo, is more accurate. The maximum error using the average surface temperature Tave as the junction temperature is 4.8 °C underestimation; while the maximum error using the present method is 1.3 °C underestimation. © 2010 Elsevier Ltd.

  7. Corrosion of dissimilar metal crevices in simulated concentrated ground water solutions at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, B.M.; Quinn, M.J

    2003-01-01

    The disposal of high-level nuclear waste in the Yucca Mountain, Nevada is under consideration by the US Department of Energy. The proposed facility will be located in the unsaturated zone approximately 300 m below the surface and 300 m above the water table. The proposed waste container consists of an outer corrosion-resistant Alloy 22 shell surrounding a 316 NG stainless steel structural inner container that encapsulates the used nuclear fuel waste. A titanium drip shield is proposed to protect the waste container from ground water seepage arid rock-fail. A cycle of dripping/evaporation could result in the generation of concentrated aggressive solutions, which could contact the waste container. The waste container material could be susceptible to crevice corrosion from such solutions. The experiments described in this report support the modeling of waste package degradation processes. The intent was to provide parameter values that are required to model crevice corrosion chemistry, as it relates to hydrogen pick-up, and stress corrosion cracking for selected candidate waste package materials. The purpose of the experiments was to study the crevice corrosion behavior of various candidate materials under near freely corroding conditions and to determine the pH developed in crevice solutions. Experimental results of crevice corrosion of dissimilar metal pairs (Alloy 22, Grade-7 and -16 titanium and 316 stainless steel) immersed in a simulated concentrated ground water at {approx}90{sup o}C are reported. The corrosion potential was measured during exposure periods of between 330 and 630 h. Following the experiments, the pH of the crevice solution was measured. The results indicate that a limited degree of crevice acidification occurred during the experiment. The values for corrosion potential suggest that crevice corrosion may have initiated. The total corrosion was limited, with little visible evidence for crevice corrosion being observed on the sample coupon faces

  8. On the measurements of the moon's infrared temperature and its relation to the phase angle

    Science.gov (United States)

    Maghrabi, A. H.

    2014-01-01

    Radiometric measurements of the thermal radiation originating from the moon's surface were obtained using an infrared detector operating at wavelengths between 8 and 14 μm. The measurements cover a full moon cycle. The variation of the moon's temperature with the lunar phase angle was established. The lunar temperatures were 391 ± 2.0 K for the full moon, 240 ± 3.5 K for the first quarter, and 236 ± 3 K for the last quarter. For the rest of the phase angles, the lunar temperature varied between 170 and 380 K. Our results are comparable with those obtained previously at these phase angles. For the new moon phase, the obtained temperature was between 120 and 133 K. With the exception of the new moon phase, our measurements at all the phase angles were consistent with those obtained using Earth-based data and those obtained by the Diviner experiment and the Clementine spacecraft. At the new phase, our measurements were comparable with those obtained from the ground but were significantly higher than those obtained by the Diviner and Clementine data. We attribute this inconsistency to either the calibration curve of our detector, which does not perform well at very low temperatures, or to infrared emission from the atmosphere. A simple linear model to predict the lunar temperature as a function of the phase angle was proposed. The experimental errors that affect the measured temperatures are discussed.

  9. Study on a transient optical fiber high temperature measurement system

    Science.gov (United States)

    Cai, Lulu; Liu, Yusha; Wang, Yutian

    2009-07-01

    High temperature is one of the most important parameters in the fields of scientific research and industrial production. At present, thermocouple, thermo resistive and radiance thermometer are already technologically mature which can be adopted to measure the general temperature, but when it comes to the transient high temperature that changes pretty quickly in wretched conditions, those traditional pyrometers can not meet the requirements any more. In this paper, we designed a transient optical high temperature measurement system. First, design of the temperature measurement probe. The system took blackbody cavity sensor together with optical fiber to receive the measured signal, here, the integrated emissivity model of the blackbody cavity was established and the optimum structure parameters were confirmed. Secondly, design of the entire temperature measurement system. A contact-noncontact measurement method was applied, which is to make the blackbody cavity and the measured high-temperature source contact, the fiber probe and the blackbody cavity noncontact, as a result, the error caused by contact measurement is overcame and the precision is guaranteed at the same time. In addition, a fiber grating was introduced as the wavelength filter device which can realize the dynamic filter of narrow-band signals and reduce the impact of background light. Thirdly, signal processing. In this part, we applied labVIEW software and wavelet analysis method. All of the signal acquisition and processing were realized in the labVIEW environment. Through calling matlab in labVIEW, the signals from optical fiber detector were wavelet denoised and decomposed, thus the temperature information was extracted, and the temperature value was obtained. On basis of wavelet transformation, the paper adopted the 4dB wavelet with horizontal scale of 5 to realize the feature extraction and noise removal, parts of the signals before and after the wavelet noise removal were given and analyzed

  10. Temperature lags of luminescence measurements in a commercial luminescence reader

    Energy Technology Data Exchange (ETDEWEB)

    Kitis, George [Aristotle University of Thessaloniki, Nuclear Physics Laboratory, 54124 Thessaloniki (Greece); Kiyak, Nafiye G. [ISIK University, Faculty of Science and Arts, Physics Department, Sile, 34980 Istanbul (Turkey); Polymeris, George S., E-mail: gspolymeris@ankara.edu.tr [Ankara University, Institute of Nuclear Sciences, Beşevler, 06100 Ankara (Turkey)

    2015-09-15

    The temperature recorded in thermoluminescence and optically stimulated luminescence equipments is not the temperature of the sample but that of the heating element on which the thermocouple is attached. Depending upon the rate of heating, a temperature difference appears between the samples and the heating element, termed as temperature lag, which could have serious effects on the curve shapes and trapping parameters. In the present work the temperature lag effect is studied in a newly developed luminescence equipment measuring both thermoluminescence and optically stimulated luminescence. It is found that the temperature lag could be large for heating rates above 2 K/s and it is strongly dependent upon the sample holder. A simple approximation method is proposed in order to both predict as well as correct for temperature lag effects in luminescence measurements.

  11. Fast Response Temperature Measurements in Stirling Cycle Cryocooler Components

    Science.gov (United States)

    Kar, K.; Dadd, M. W.; Bailey, P. B.; Stone, C. R.

    2008-03-01

    One reason that heat transfer processes are not well understood is the difficulty of obtaining reliable temperature measurements when gas temperatures vary rapidly. In the work described here gas temperatures have been measured using a fine wire resistance thermometer with a 3.8 micron active sensor. The equipment represented the basic elements of a cryocooler: a clearance seal linear compressor and a wire mesh regenerator. Both were operated close to ambient temperature, with gas temperatures being measured close to the regenerator. The test rig was run at different volume ratios, frequencies (8-50 Hz), gases and filling pressures (1-26 bar). The waveforms of the gas temperature were found to vary dramatically for differing flow regimes. The results suggested that the thermometer was measuring the temperatures of two distinct volumes of gas, and that the gas must remain stratified in the compression space. A flow transition was identified from the cycle-by-cycle variations in temperature. The critical Reynolds number was determined to be 9.6-11. At the critical condition, the temperature was so unstable that fluctuations up to 250 Hz were observed. A series of validation tests have confirmed that the observed temperatures were not artifacts.

  12. Thermo-voltage measurements of atomic contacts at low temperature

    Directory of Open Access Journals (Sweden)

    Ayelet Ofarim

    2016-05-01

    Full Text Available We report the development of a novel method to determine the thermopower of atomic-sized gold contacts at low temperature. For these measurements a mechanically controllable break junction (MCBJ system is used and a laser source generates a temperature difference of a few kelvins across the junction to create a thermo-voltage. Since the temperature difference enters directly into the Seebeck coefficient S = −ΔV/ΔT, the determination of the temperature plays an important role. We present a method for the determination of the temperature difference using a combination of a finite element simulation, which reveals the temperature distribution of the sample, and the measurement of the resistance change due to laser heating of sensor leads on both sides next to the junction. Our results for the measured thermopower are in agreement with recent reports in the literature.

  13. 浙北地区地源热泵土壤换热性能测试研究%Study on Measurement of Heat Transfer Characteristics of Ground Source in a Ground Source Heat Pump System in Northern Zhejiang

    Institute of Scientific and Technical Information of China (English)

    刘晓勤; 郑锦龙; 郑翀

    2011-01-01

    The heat transfer characteristics of ground source in Ground Source Heat Pump (GSHP) in Northem Zhejiang were experimentally measured. The experimental results showed that the initial ground source temperature in the coldest month was approximately 17.0℃, which was significantly higher than the temperature of the outside environment. The mean thermal conductivity of the ground source was 1.73W/(m· ℃). It indicated that the ground source had good heat transfer capacity and could be used for the ground source heat pump system. The experimental measurement of the heat transfer coefficient was also conducted on a single U type underground heat exchanger at the depth of 60 m. The experimental results showed that the heat dissipating capacity of the single pipe were 3666W in summer and 2508 W in winter, respectively. The heat dissipating capacity could meet the requirement of the ground source heat pump system.%对浙北地区某地源热泵工程土壤换热性能进行了实验测试,结果显示,浙北地区冬季最冷月地下土壤初始温度稳定在17.0℃左右,远高于室外环境温度;土壤的平均导热系数为1.73W/(m·℃),有较强的地下换热能力,适合做地源热泵系统;对60m深的单U形式地下换热器进行换热性能测试,夏季单根盘管散热量3666W,冬季单根盘管散热量2508W,能满足系统工作要求。

  14. Coupled Effect of Elevated Temperature and Cooling Conditions on the Properties of Ground Clay Brick Mortars

    Science.gov (United States)

    Ali Abd El Aziz, Magdy; Abdelaleem, Salh; Heikal, Mohamed

    2013-12-01

    When a concrete structure is exposed to fire and cooling, some deterioration in its chemical resistivity and mechanical properties takes place. This deterioration can reach a level at which the structure may have to be thoroughly renovated or completely replaced. In this investigation, four types of cement mortars, ground clay bricks (GCB)/sand namely 0/3, 1/2, 2/1 and 3/0, were used. Three different cement contents were used: 350, 400 and 450 kg/m3. All the mortars were prepared and cured in tap water for 3 months and then kept in laboratory atmospheric conditions up to 6 months. The specimens were subjected to elevated temperatures up to 700°C for 3h and then cooled by three different conditions: water, furnace, and air cooling. The results show that all the mortars subjected to fire, irrespective of cooling mode, suffered a significant reduction in compressive strength. However, the mortars cooled in air exhibited a relativity higher reduction in compressive strength rather than those water or furnace cooled. The mortars containing GCB/sand (3/0) and GCB/sand (1/2) exhibited a relatively higher thermal stability than the others.

  15. Temperature Distribution Measurement of The Wing Surface under Icing Conditions

    Science.gov (United States)

    Isokawa, Hiroshi; Miyazaki, Takeshi; Kimura, Shigeo; Sakaue, Hirotaka; Morita, Katsuaki; Japan Aerospace Exploration Agency Collaboration; Univ of Notre Dame Collaboration; Kanagawa Institute of Technology Collaboration; Univ of Electro-(UEC) Team, Comm

    2016-11-01

    De- or anti-icing system of an aircraft is necessary for a safe flight operation. Icing is a phenomenon which is caused by a collision of supercooled water frozen to an object. For the in-flight icing, it may cause a change in the wing cross section that causes stall, and in the worst case, the aircraft would fall. Therefore it is important to know the surface temperature of the wing for de- or anti-icing system. In aerospace field, temperature-sensitive paint (TSP) has been widely used for obtaining the surface temperature distribution on a testing article. The luminescent image from the TSP can be related to the temperature distribution. (TSP measurement system) In icing wind tunnel, we measured the surface temperature distribution of the wing model using the TSP measurement system. The effect of icing conditions on the TSP measurement system is discussed.

  16. RS trigger based relaxation oscillator for temperature measurement circuit

    Institute of Scientific and Technical Information of China (English)

    ZOU Zhi-ge; ZOU Xue-cheng; JIAN Wen-xiang; LEI Jian-ming

    2008-01-01

    Resistance-to-time converter is always used for digital temperature measurement. An reset-set (RS) trigger based, relaxation oscillator based temperature measurement circuit, which is used to convert the change of thermistor sensor into a frequency signal for later processing, has been presented in this article. The RS trigger, which is composed of two inverters designed with distinct logical transition threshold voltages by changing the metal-oxide-semiconductor (MOS) transistor gains, has the same function as the Schmitt trigger in the relaxation oscillator. The advantage of the RS trigger based Schmitt trigger is that it reduces the dependence to supply voltage, chip temperature, and process variation. This temperature measurement circuit has been applied in a clinical thermometer chip that can measure temperature to an accuracy of better than 0.05℃ down to 1.1 V battery voltage. It is fabricated in 0.5double metal single poly complementary MOS (CMOS) process.

  17. A Theory-Grounded Measure of Adolescents' Response to a Media Literacy Intervention

    Science.gov (United States)

    Greene, Kathryn; Yanovitzky, Itzhak; Carpenter, Amanda; Banerjee, Smita C.; Magsamen-Conrad, Kate; Hecht, Michael L.; Elek, Elvira

    2015-01-01

    Media literacy interventions offer promising avenues for the prevention of risky health behaviors among children and adolescents, but current literature remains largely equivocal about their efficacy. The primary objective of this study was to develop and test theoretically-grounded measures of audiences' degree of engagement with the content of…

  18. Ground penetrating radar antenna measurements based on plane-wave expansions

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of the system consisting of the ground penetrating radar (GPR) antenna and the air-soil interface is measured using a loop buried in the soil. The plane-wave spectrum is used to determine various parameters characterizing the radiation of the GPR antenna...

  19. A Theory-Grounded Measure of Adolescents' Response to a Media Literacy Intervention

    Science.gov (United States)

    Greene, Kathryn; Yanovitzky, Itzhak; Carpenter, Amanda; Banerjee, Smita C.; Magsamen-Conrad, Kate; Hecht, Michael L.; Elek, Elvira

    2015-01-01

    Media literacy interventions offer promising avenues for the prevention of risky health behaviors among children and adolescents, but current literature remains largely equivocal about their efficacy. The primary objective of this study was to develop and test theoretically-grounded measures of audiences' degree of engagement with the content of…

  20. Portable Ground Measurement & Control System%便携式地面测控系统

    Institute of Scientific and Technical Information of China (English)

    罗珊; 陈睿璟; 路引; 张哲聪

    2012-01-01

    为适应无人机地面测控技术的发展要求,设计一种便携式无人机地面控制系统.分析便携式无人机控制系统的基本技术和原理,着重探究便携式地面测控系统的工作原理,通过采用操纵杆和键盘指令由测控计算机完成向无人机靶机发送遥控指令.试验和测试结果表明,所设计的无人机靶机地面测控系统具有一定的可行性.%In order to meet the development requirement of UAV ground measurement & control technology, design a portable UVA ground control system. Analyze the basic technology and principle of portable UAV control system. Pay much attention to working principle of the UAV ground measurement and control system. Realize measurement and control computer sending remote command to UAV target drone by using joy stick and keyboard command. The test results show that the design of the UAV target drone ground measurement & control system is feasible.

  1. Measurement of Plane-Wave Spectra of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of a ground penetrating radar (GPR) loop antenna close to the air-soil interface is measured by means of a probe buried in soil. Probe correction is implemented based upon knowledge about the complex permittivity of the soil and the current distribution...

  2. Alaskan permafrost groundwater storage changes derived from GRACE and ground measurements

    Science.gov (United States)

    Reginald R. Muskett; Vladimir E. Romanovsky

    2011-01-01

    The Arctic is in transition from climate-driven thawing of permafrost. We investigate satellite-derived water equivalent mass changes, snow water equivalent with in situ measurements of runoff and ground-survey derived geoid models from 1999 through 2009. The Alaskan Arctic coastal plain groundwater storage (including wetland bog, thaw pond and lake) is increasing by 1...

  3. Comparison of buried soil sensors, surface chambers and above ground measurements of carbon dioxide fluxes

    Science.gov (United States)

    Soil carbon dioxide (CO2) flux is an important component of the terrestrial carbon cycle. Accurate measurements of soil CO2 flux aids determinations of carbon budgets. In this study, we investigated soil CO2 fluxes with time and depth and above ground CO2 fluxes in a bare field. CO2 concentrations w...

  4. Derivation of the radiation budget at ground level from satellite measurements

    Science.gov (United States)

    Raschke, E.

    1982-01-01

    Determination of the Earth radiaton budget and progress in measurement of the budget components and in the treatment of imaging data from satellites are described. Methods for calculating the radiation budget in a general circulation model, radiative transfer characteristics of clouds, computation of solar radiation at ground level using meteorological data and development of a 10-channel radiometer are discussed.

  5. Measurement of Plane-Wave Spectra of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of a ground penetrating radar (GPR) loop antenna close to the air-soil interface is measured by means of a probe buried in soil. Probe correction is implemented based upon knowledge about the complex permittivity of the soil and the current distribution...

  6. Application of Phosphor Thermometry to a Galvanneal Temperature Measurement System

    Energy Technology Data Exchange (ETDEWEB)

    Beshears, D.L.; Allison, S.W.; Andrews, W.H.; Cates, M.R.; Grann, E.B.; Manges, W.W.; McIntyre, T.J.; Scudiere, M.B.; Simpson, M.L.; Childs, R.M.; Vehec, J.; Zhang, L.

    1999-06-01

    The Galvanneal Temperature Measurement System (GTMS) was developed for the American Iron and Steel Institute by the Oak Ridge National Laboratory through a partnership with the National Steel Midwest Division in Portage, Indiana. The GTMS provides crucial on-line thermal process control information during the manufacturing of galvanneal steel. The system has been used with the induction furnaces to measure temperatures ranging from 840 to 1292 F with an accuracy of better than {+-}9 F. The GTMS provides accurate, reliable temperature information thus ensuring a high quality product, reducing waste, and saving energy. The production of uniform, high-quality galvanneal steel is only possible through strict temperature control.

  7. Measurements of temperature profiles at the exit of small rockets.

    Science.gov (United States)

    Griggs, M; Harshbarger, F C

    1966-02-01

    The sodium line reversal technique was used to determine the reversal temperature profile across the exit of small rockets. Measurements were made on one 73-kg thrust rocket, and two 23-kg thrust rockets with different injectors. The large rocket showed little variation of reversal temperature across the plume. However, the 23-kg rockets both showed a large decrease of reversal temperature from the axis to the edge of the plume. In addition, the sodium line reversal technique of temperature measurement was compared with an infrared technique developed in these laboratories.

  8. Response of atmospheric ground level temperatures to changes in the total solar irradiance

    CERN Document Server

    Erlykin, Anatoly

    2015-01-01

    The attribution of part of global warming to changes in the total solar irradiance (TSI) is an important topic which is not, yet, fully understood. Here, we examine the TSI induced temperature (T) changes on a variety of time scales, from one day to centuries and beyond, using a variety of assumptions. Also considered is the latitude variation of the T-TSI correlations, where it appears that over most of the globe there is a small increase in the sensitivity of temperature to TSI in time. It is found that the mean global sensitivity (alpha)measured in K(Wm-2)-1 varies from about 0.003 for 1 day, via 0.05 for 11-years to about 0.2 for decades to centuries. We conclude that mean global temperature changes related to TSI are not significant from 1975 onwards. Before 1975, when anthropogenic gases were less important, many of the temperature changes can be attributed to TSI variations. Over much longer periods of time, from Kyear to Myear, the TSI changes are more efficient still, the sensitivity alpha increasing...

  9. High-temperature strain measurement techniques: Current developments and challenges

    Science.gov (United States)

    Lemcoe, M. M.

    1992-01-01

    Since 1987, a very substantial amount of R&D has been conducted in an attempt to develop reliable strain sensors for the measurements of structural strains during ground testing and hypersonic flight, at temperatures up to at least 2000 deg F. Much of the effort has been focused on requirements of the NASP Program. This presentation is limited to the current sensor development work and characterization studies carried out within that program. It is basically an assessment as to where we are now and what remains to be done in the way of technical accomplishments to meet the technical challenges posed by the requirements and constraints established for the NASP Program. The approach for meeting those requirements and constraints has been multi-disciplinary in nature. It was recognized early on that no one sensor could meet all these requirements and constraints, largely because of the large temperature range (cryogenic to at least 2000 deg F) and many other factors, including the most challenging requirement that the sensor system be capable of obtaining valid 'first cycle data'. Present candidate alloys for resistance-type strain gages include Fe-Cr-Al and Pd-Cr. Although they have superior properties regarding withstanding very high temperatures, they exhibit large apparent strains that must either be accounted for or cancelled out by various techniques, including the use of a dual-element, half-bridge dummy gage, or electrical compensation networks. A significant effort is being devoted to developing, refining, and evaluating the effectiveness of those techniques over a broad range in temperature and time. In the quest to obtain first-cycle data, ways must be found to eliminate the need to prestabilize or precondition the strain gage, before it is attached to the test article. It should be noted that present NASP constraints do not permit prestabilization of the sensor, in situ. Gages are currently being 'heat treated' during manufacture in both the wire- and foil

  10. An anatomically realistic temperature phantom for radiofrequency heating measurements.

    Science.gov (United States)

    Graedel, Nadine N; Polimeni, Jonathan R; Guerin, Bastien; Gagoski, Borjan; Wald, Lawrence L

    2015-01-01

    An anthropomorphic phantom with realistic electrical properties allows for a more accurate reproduction of tissue current patterns during excitation. A temperature map can then probe the worst-case heating expected in the unperfused case. We describe an anatomically realistic human head phantom that allows rapid three-dimensional (3D) temperature mapping at 7T. The phantom was based on hand-labeled anatomical imaging data and consists of four compartments matching the corresponding human tissues in geometry and electrical properties. The increases in temperature resulting from radiofrequency excitation were measured with MR thermometry using a temperature-sensitive contrast agent (TmDOTMA(-)) validated by direct fiber optic temperature measurements. Acquisition of 3D temperature maps of the full phantom with a temperature accuracy better than 0.1°C was achieved with an isotropic resolution of 5 mm and acquisition times of 2-4 minutes. Our results demonstrate the feasibility of constructing anatomically realistic phantoms with complex geometries incorporating the ability to measure accurate temperature maps in the phantom. The anthropomorphic temperature phantom is expected to provide a useful tool for the evaluation of the heating effects of both conventional and parallel transmit pulses and help validate electromagnetic and temperature simulations. © 2014 Wiley Periodicals, Inc.

  11. Neptune at Summer Solstice: Zonal Mean Temperatures from Ground-Based Observations 2003-2007

    CERN Document Server

    Fletcher, Leigh N; Orton, Glenn S; Hammel, Heidi B; Sitko, Michael L; Irwin, Patrick G J

    2013-01-01

    Imaging and spectroscopy of Neptune's thermal infrared emission is used to assess seasonal changes in Neptune's zonal mean temperatures between Voyager-2 observations (1989, heliocentric longitude Ls=236) and southern summer solstice (2005, Ls=270). Our aim was to analyse imaging and spectroscopy from multiple different sources using a single self-consistent radiative-transfer model to assess the magnitude of seasonal variability. Globally-averaged stratospheric temperatures measured from methane emission tend towards a quasi-isothermal structure (158-164 K) above the 0.1-mbar level, and are found to be consistent with spacecraft observations of AKARI. This remarkable consistency, despite very different observing conditions, suggests that stratospheric temporal variability, if present, is $\\pm$5 K at 1 mbar and $\\pm$3 K at 0.1 mbar during this solstice period. Conversely, ethane emission is highly variable, with abundance determinations varying by more than a factor of two. The retrieved C2H6 abundances are e...

  12. Fully automated setup for high temperature Seebeck coefficient measurement

    CERN Document Server

    Patel, Ashutosh

    2016-01-01

    In this work, we report the fabrication of fully automated experimental setup for high temperature Seebeck coefficient ($\\alpha$) measurement. The K-type thermocouples are used to measure the average temperature of the sample and Seebeck voltage (SV) across it. The temperature dependence of the Seebeck coefficients of the thermocouple and its negative leg is taken care by using the integration method. Steady state based differential technique is used for $\\alpha$ measurement. Use of limited component and thin heater simplify the sample holder design and minimize the heat loss. The power supplied to the heater decides temperature difference across the sample and measurement is carried out by achieving the steady state. The LabVIEW based program is built to automize the whole measurement process. The complete setup is fabricated by using commonly available materials in the market. This instrument is standardized for materials with a wide range of $\\alpha$ and for the wide range of $\\Delta T$ across the specimen...

  13. The definition analyses of radiation temperature measurement area

    Institute of Scientific and Technical Information of China (English)

    Fu Tairan; Cheng Xiaofang; Zhong Maohua

    2008-01-01

    In the research of primary spectrum pyrometry, this paper discussed the definition problem of radiation tem-perature measurement area based on the measurement coordinates. For the linear spectrum emissivity model and im-proved monotonic spectrum emissivity model, the characteristics of radiation temperature measurement area restricted by the measurement coordinates were theoretically analyzed, through the investigations of the temperature and emissivity co-ordinate axes. Choosing the specific primary spectrum pyrometer as an example in applications, the theoretical area of radiation temperature measurement of this pyrometer was given and it was verified through blackbody experiments. The discussions of this paper will provide the necessary foundation for the theory research development of primary spectrum pyrometry and the realization of technical applications.

  14. Tropospheric profiles of wet refractivity and humidity from the combination of remote sensing data sets and measurements on the ground

    Directory of Open Access Journals (Sweden)

    F. Hurter

    2013-11-01

    Full Text Available We reconstruct atmospheric wet refractivity profiles for the western part of Switzerland with a least-squares collocation approach from data sets of (a zenith path delays that are a byproduct of the GPS (global positioning system processing, (b ground meteorological measurements, (c wet refractivity profiles from radio occultations whose tangent points lie within the study area, and (d radiosonde measurements. Wet refractivity is a parameter partly describing the propagation of electromagnetic waves and depends on the atmospheric parameters temperature and water vapour pressure. In addition, we have measurements of a lower V-band microwave radiometer at Payerne. It delivers temperature profiles at high temporal resolution, especially in the range from ground to 3000 m a.g.l., though vertical information content decreases with height. The temperature profiles together with the collocated wet refractivity profiles provide near-continuous dew point temperature or relative humidity profiles at Payerne for the study period from 2009 to 2011. In the validation of the humidity profiles, we adopt a two-step procedure. We first investigate the reconstruction quality of the wet refractivity profiles at the location of Payerne by comparing them to wet refractivity profiles computed from radiosonde profiles available for that location. We also assess the individual contributions of the data sets to the reconstruction quality and demonstrate a clear benefit from the data combination. Secondly, the accuracy of the conversion from wet refractivity to dew point temperature and relative humidity profiles with the radiometer temperature profiles is examined, comparing them also to radiosonde profiles. For the least-squares collocation solution combining GPS and ground meteorological measurements, we achieve the following error figures with respect to the radiosonde reference: maximum median offset of relative refractivity error is −16% and quartiles are 5% to

  15. Measuring and monitoring to understand and reduce the fall-of-ground risk

    CSIR Research Space (South Africa)

    Vogt, D

    2013-10-01

    Full Text Available -1 ICSMRI 2013: 35th International Conference of Safety in Mines Research Institutes, Central Hall, Westminster, London, UK, 15-17 October 2013 Measuring and monitoring to understand and reduce the fall-of-ground risk Declan Vogt, CSIR Centre...-of-ground still constitute the single largest cause of fatalities. The data show that small falls of between 4 m2 and 10 m2, affecting single people, are the major cause of fatalities. The critical parameters that characterize the risk of rockfalls are: rock...

  16. [Calculation of infrared temperature measurement on non-Lambertian objects].

    Science.gov (United States)

    Yang, Zhen; Zhang, Shi-cheng; Yang, Li

    2010-08-01

    According to the theory of infrared radiation and principles of temperature measurement using infrared imager, a universal mathematical model of infrared imager is established. Based on the normal emissivity characteristics of measured surface, the mathematical model is simplified, and the formula of temperature measurement using infrared imager is obtained. Through the relevant experiment, it is proved that the sum of emissivity and reflectivity of objects remained basically unchanged in a certain temperature range. The sum of emissivity and reflectivity of objects is relevant to the object types, surface conditions and the object temperature. The closer an object to Lambertian objects, the greater the sum is and the closer it is to 1. The farther the surface conditions deviate from the Lambertian surface, or the smoother the surface, the smaller the sum is. Experimental results show that if the object is close to Lambertian objects, it could be regarded as Lambertian, without the need for amendments to the actual objects. For non-Lambertian body (especially the smooth surfaces and low-emissivity objects), the amendment is necessary, or the temperature measurement error will increase, or even the obtained temperature is very far away from its true temperature. The study shows that, through the amendment, infrared temperature measurement on non-Lambertian objects is available.

  17. Axillary temperature measurement: a less stressful alternative for hospitalised cats?

    Science.gov (United States)

    Girod, M; Vandenheede, M; Farnir, F; Gommeren, K

    2016-02-20

    Rectal temperature measurement (RTM) can promote stress and defensive behaviour in hospitalised cats. The aim of this study was to assess if axillary temperature measurement (ATM) could be a reliable and less stressful alternative for these animals. In this prospective study, paired rectal and axillary temperatures were measured in 42 cats, either by a veterinarian or a student. To assess the impact of these procedures on the cat's stress state, their heart rate was checked and a cat stress score (CSS) was defined and graded from 1 (relaxed) to 5 (terrified). A moderate correlation was found between RTM and ATM (r=0.52; Pcats.

  18. SUPPORTING PROCEDURE AND FIELD MEASUREMENT IN THE SHAFT THROUGH GLIDING TECTONIC GROUND

    Institute of Scientific and Technical Information of China (English)

    XIAJianzhong; TENGNianbao

    1995-01-01

    The paper describes mechanical properties and deformation features of shaft adjoining rocks in gliding tectonic ground and presents the shaft-fupporting procedure of smooth-wall cushion blasting ,preliminary bolting and shotcreting and pouring reinforced concrete liner in one-time-whole-section in the basis of adjoining rock deformations measured dynamically in site ,Field measurements of the pressure exerted on shaft wall show that this supporting procedure has enough safety reserve to meet the safety repuirements in mining production.

  19. Calorimetric Measurements at Low Temperatures in Toluene Glass and Crystal

    Science.gov (United States)

    Alvarez-Ney, C.; Labarga, J.; Moratalla, M.; Castilla, J. M.; Ramos, M. A.

    2017-04-01

    The specific heat of toluene in glass and crystal states has been measured both at low temperatures down to 1.8 K (using the thermal relaxation method) and in a wide temperature range up to the liquid state (using a quasiadiabatic continuous method). Our measurements therefore extend earlier published data to much lower temperatures, thereby allowing to explore the low-temperature "glassy anomalies" in the case of toluene. Surprisingly, no indication of the existence of tunneling states is found, at least within the temperature range studied. At moderate temperatures, our data either for the glass or for the crystal show good agreement with those found in the literature. Also, we have been able to prepare bulk samples of toluene glass by only doping with 2% mol ethanol instead of with higher impurity doses used by other authors.

  20. A comparative study of satellite estimation for solar insolation in Albania with ground measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mitrushi, Driada, E-mail: driadamitrushi@yahoo.com; Berberi, Pëllumb, E-mail: pellumb.berberi@gmail.com; Muda, Valbona, E-mail: vmuda@hotmail.com; Buzra, Urim, E-mail: rimibuzra@yahoo.com [Department of Engineering Physics, Faculty of Engineering Mathematics and Engineering Physics, Polytechnic University of Tirana, Tirana (Albania); Bërdufi, Irma, E-mail: irmaberdufi@gmail.com [Institute of Applied Nuclear Physics, Tirana University, Street “Th. Filipeu”, Tirana (Albania); Topçiu, Daniela, E-mail: topciudaniela@yahoo.com [Department of Physics, Faculty of Natural Physics, “Aleksander Xhuvani” University, Elbasan (Albania)

    2016-03-25

    The main objective of this study is to compare data provided by Database of NASA with available ground data for regions covered by national meteorological net NASA estimates that their measurements of average daily solar radiation have a root-mean-square deviation RMSD error of 35 W/m{sup 2} (roughly 20% inaccuracy). Unfortunately valid data from meteorological stations for regions of interest are quite rare in Albania. In these cases, use of Solar Radiation Database of NASA would be a satisfactory solution for different case studies. Using a statistical method allows to determine most probable margins between to sources of data. Comparison of mean insulation data provided by NASA with ground data of mean insulation provided by meteorological stations show that ground data for mean insolation results, in all cases, to be underestimated compared with data provided by Database of NASA. Converting factor is 1.149.

  1. Protection Measures for Buildings Based on Coordinating Action Theory of Ground, Foundation and Structure

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the theory of coordinating action of building ground, foundation and structure, this paper presents a modified method for calculating additional stresses on buildings in mining areas by considering the joint effect of curvature deformation and horizontal deformation on buildings. It points out that for buildings over the coal pillar, it is advisable to soften the intermediate ground of buildings when they are affected by mining. For buildings over the goaf, it is preferable to soften the ground at both ends of buildings. In order to enhance the ability of a building to resist tensile deformation, the key measure is to reinforce the bottom foundation of the building. In addition, the concept of "angle of break of building" is proposed. It is because of this angle that the protecting coal pillar is left, which is a better solution than prevailing solutions The findings provide a more scientific basis for mining under buildings.

  2. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Energy Technology Data Exchange (ETDEWEB)

    Handayani, Gunawan [The Earth Physics and Complex Systems Research Group (Jl. Ganesa 10 Bandung Indonesia) gunawanhandayani@gmail.com (Indonesia)

    2015-04-16

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  3. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Science.gov (United States)

    Handayani, Gunawan

    2015-04-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  4. Magnetometry and electrical transport measurements of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Mun Keat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-13

    Prior to preparing and performing measurements in pulsed magnetic fields, it is necessary to characterize them. For the cuprates such as HgBa2CuO4+δ (Hg1201), measurements of the superconducting temperature is essential. This experiment comprises just such a characterization of Hg1201 crystals to be used for pulsed magnetic field measurements.

  5. Technology and education: First approach for measuring temperature with Arduino

    Science.gov (United States)

    Carrillo, Alejandro

    2017-04-01

    This poster session presents some ideas and approaches to understand concepts of thermal equilibrium, temperature and heat in order to bulid a man-nature relationship in a harmonious and responsible manner, emphasizing the interaction between science and technology, without neglecting the relationship of the environment and society, an approach to sustainability. It is proposed the development of practices that involve the use of modern technology, of easy access and low cost to measure temperature. We believe that the Arduino microcontroller and some temperature sensors can open the doors of innovation to carry out such practices. In this work we present some results of simple practices presented to a population of students between the ages of 16 and 17 years old. The practices in this proposal are: Zero law of thermodynamics and the concept of temperature, calibration of thermometers and measurement of temperature for heating and cooling of three different substances under the same physical conditions. Finally the student is asked to make an application that involves measuring of temperature and other physical parameters. Some suggestions are: to determine the temperature at which we take some food, measure the temperature difference at different rooms of a house, housing constructions that favour optimal condition, measure the temperature of different regions, measure of temperature trough different colour filters, solar activity and UV, propose applications to understand current problems such as global warming, etc. It is concluded that the Arduino practices and electrical sensors increase the cultural horizon of the students while awaking their interest to understand their operation, basic physics and its application from a modern perspective.

  6. Validation of ACE and OSIRIS ozone and NO2 measurements using ground-based instruments at 80° N

    Directory of Open Access Journals (Sweden)

    A. Pazmino

    2012-05-01

    with the ground-based ozone total columns with mean relative differences of 0.1–7.3%. For NO2, partial columns from 17 km upward were scaled to noon using a photochemical model. Mean relative differences between OSIRIS, ACE-FTS and ground-based NO2 measurements do not exceed 20%. ACE-MAESTRO measures more NO2 than the other instruments, with mean relative differences of 25–52%. Seasonal variation in the differences between NO2 partial columns is observed, suggesting that there are systematic errors in the measurements and/or the photochemical model corrections. For ozone spring-time measurements, additional coincidence criteria based on stratospheric temperature and the location of the polar vortex were found to improve agreement between some of the instruments. For ACE-FTS v2.2 minus Bruker FTIR, the 2007–2009 spring-time mean relative difference improved from −5.0 ± 0.4% to −3.1 ± 0.8% with the dynamical selection criteria. This was the largest improvement, likely because both instruments measure direct sunlight and therefore have well-characterized lines-of-sight compared with scattered sunlight measurements. For NO2, the addition of a ±1° latitude coincidence criterion improved spring-time intercomparison results, likely due to the sharp latitudinal gradient of NO2 during polar sunrise. The differences between satellite and ground-based measurements do not show any obvious trends over the missions, indicating that both the ACE and OSIRIS instruments continue to perform well.

  7. Temperature Effect in Secondary Cosmic Rays (MUONS) Observed at the Ground: Analysis of the Global MUON Detector Network Data

    Science.gov (United States)

    de Mendonça, R. R. S.; Braga, C. R.; Echer, E.; Dal Lago, A.; Munakata, K.; Kuwabara, T.; Kozai, M.; Kato, C.; Rockenbach, M.; Schuch, N. J.; Jassar, H. K. Al; Sharma, M. M.; Tokumaru, M.; Duldig, M. L.; Humble, J. E.; Evenson, P.; Sabbah, I.

    2016-10-01

    The analysis of cosmic ray intensity variation seen by muon detectors at Earth's surface can help us to understand astrophysical, solar, interplanetary and geomagnetic phenomena. However, before comparing cosmic ray intensity variations with extraterrestrial phenomena, it is necessary to take into account atmospheric effects such as the temperature effect. In this work, we analyzed this effect on the Global Muon Detector Network (GMDN), which is composed of four ground-based detectors, two in the northern hemisphere and two in the southern hemisphere. In general, we found a higher temperature influence on detectors located in the northern hemisphere. Besides that, we noticed that the seasonal temperature variation observed at the ground and at the altitude of maximum muon production are in antiphase for all GMDN locations (low-latitude regions). In this way, contrary to what is expected in high-latitude regions, the ground muon intensity decrease occurring during summertime would be related to both parts of the temperature effect (the negative and the positive). We analyzed several methods to describe the temperature effect on cosmic ray intensity. We found that the mass weighted method is the one that best reproduces the seasonal cosmic ray variation observed by the GMDN detectors and allows the highest correlation with long-term variation of the cosmic ray intensity seen by neutron monitors.

  8. Below-ground carbon flux and partitioning: global patterns and response to temperature

    Science.gov (United States)

    C.M. Litton; C.P. Giardina

    2008-01-01

    1. The fraction of gross primary production (GPP) that is total below-ground carbon flux (TBCF) and the fraction of TBCF that is below-ground net primary production (BNPP) represent globally significant C fluxes that are fundamental in regulating ecosystem C balance. However, global estimates of the partitioning of GPP to TBCF and of TBCF to BNPP, as well as the...

  9. Combined NMR moisture, temperature and pressure measurements during heating

    Directory of Open Access Journals (Sweden)

    Pel L.

    2013-09-01

    Full Text Available For model validation, quantitative measurements of the evolution of moisture, temperature, and pressure distributions in time are needed. For this purpose, we have developed an NMR setup to measure the moisture transport in heated building materials. The measured combined moisture content and temperature profiles give a unique insight in the moisture transport and dehydration kinetics inside concrete during fire. These measurements give the first quantitative proof for the build-up of a moisture peak due to the vapor pressure build-up. In this study we have also combined for the first time the measurement of the moisture and temperature profiles with the measurement of the pressure at one position, which show that the pressure build up is directly related to the moisture profiles.

  10. High temperature thermographic measurements of laser heated silica

    Energy Technology Data Exchange (ETDEWEB)

    Elhadj, S; Yang, S T; Matthews, M J; Cooke, D J; Bude, J D; Johnson, M; Feit, M; Draggoo, V; Bisson, S E

    2009-11-02

    In situ spatial and temporal surface temperature profiles of CO{sub 2} laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

  11. High temperature thermographic measurements of laser heated silica

    Science.gov (United States)

    Elhadj, Selim; Yang, Steven T.; Matthews, Manyalibo J.; Cooke, Diane J.; Bude, Jeffrey D.; Johnson, Michael; Feit, Michael; Draggoo, Vaughn; Bisson, Scott E.

    2009-10-01

    In situ spatial and temporal surface temperature profiles of CO2 laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

  12. Comparison of digital holographic interferometry and constant temperature anemometry for measurement of temperature field in fluid

    Science.gov (United States)

    Doleček, Roman; Psota, Pavel; Lédl, Vít.; Vít, Tomáś; Dančová, Petra; Kopecký, Václav

    2015-05-01

    The presented paper shows possibility of using digital holographic interferometry (DHI) for temperature field measurement in moving fluids. This method uses a modified Twymann-Green setup having double sensitivity instead of commonly used Mach-Zehnder type of interferometer in order to obtain sufficient phases change of the field. On the other hand this setup is not light efficient as Mach-Zehnder interferometer. For measurement of the fast periodical phenomenon is not necessary to use always the high speed camera. One can consider this field to coherent phenomenon. With employing one digital camera synchronized to periodic field and external triggered one can capture whole period of the phenomenon. However the projections form one viewing direction of asymmetrical temperature field maybe misguided. Hence for sufficient examination of the asymmetrical field one should capture a large number of the phenomenon's projections from different viewing directions. This projections are later used for 3D tomographic reconstruction of the whole temperature field and its time evolution. One of the commonly used method for temperature field measurement in moving fluids is hot wire method - constant temperature anemometry (CTA). In contrast to whole field measurement of DHI it is an invasive point temperature measurement method. One of the limiting factor of using CTA in moving fluids is frequency of temperature changes. This changes should not exceed 1 kHz. This limitation could be overcome by using of optical methods such as DHI. The results of temperature field measurement achieved by both method are compared in the paper.

  13. Temperature measurement in hollow contacts; Mesure de temperature dans un contact creux

    Energy Technology Data Exchange (ETDEWEB)

    Maftoul, J. [Schneider Electric, Groupe appareillage, Centre de recherches A2, 75 - Paris (France)

    2002-06-01

    When studying the behaviour of electric arcs, specifically as regards interaction with circuit-breaker contacts walls, precise measurements require sensors insensitive to strong electric and magnetic fields. This article discusses optical sensor technology, with optic fibre conveying radiation to a photo-sensor from the surface of the body whose temperature is being measured. Temperature is measured every 100 microseconds at several locations, by interpolation. (author)

  14. Wide-range logarithmic radiometer for measuring high temperatures

    Science.gov (United States)

    Liston, E. M.

    1971-01-01

    Filter radiometer utilizing photomultiplier circuit, in which a direct-coupled amplifier varies dynode voltage to maintain constant anode current, measures rapid variations of temperature of white-hot charred body at 2000 K to 3000 K.

  15. Development of a multispectral sensor for crop canopy temperature measurement

    Science.gov (United States)

    Quantifying spatial and temporal variability in plant stress has precision agriculture applications in controlling variable rate irrigation and variable rate nutrient application. One approach to plant stress detection is crop canopy temperature measurement by the use of thermographic or radiometric...

  16. LIDAR for atmospheric backscatter and temperature measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of this effort are to measure atmospheric backscatter profiles and temperature using a zenith looking lidar, designed for a small lander.The lidar...

  17. Composition Estimation in Dividing-Wall Columns Using Temperature Measurements

    OpenAIRE

    Ghadrdan, Maryam; Ivar J. Halvorsen; Skogestad, Sigurd

    2011-01-01

    In this work, we propose a method to estimate the product compositions in a distillation column section based on a combination of a number of temperature measurements from different locations in the column stages.

  18. Principle study of temperature measurement based on primary colors

    Institute of Scientific and Technical Information of China (English)

    程晓舫; 周洲

    1997-01-01

    The Plank law reflecting the actual radiation of an object is ingeniously combined with the principle of primary colors which is the basis of the object’s color reappearing and the principle of primary colors temperature measurement is established.

  19. Study of Windows Effects for Shock Wave Temperature Measurements

    Energy Technology Data Exchange (ETDEWEB)

    W. D. Turley, G. Stevens, L. Veeser, D. Holtkamp, A. Seifter

    2011-05-25

    Temperature measurements of shocked plutonium are needed for improved understanding of its equation of state (EOS) and will enable better understanding and reliability of the U.S. nuclear weapon stockpile.

  20. Towards the measurement of the ground-state hyperfine splitting of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, Bertalan, E-mail: bertalan.juhasz@oeaw.ac.at [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)

    2012-12-15

    The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, which will consist of a superconducting cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of better than {approx} 10{sup - 6}. The first preliminary measurements of the hyperfine transitions will start in 2011.

  1. Ultrasonic Measurements of Temperature in Aqueous Solutions: Why and How

    Directory of Open Access Journals (Sweden)

    A. Afaneh

    2011-01-01

    Full Text Available The paper describes two different approaches to ultrasonic measurements of temperature in aqueous solutions. The first approach uses two narrowband ultrasonic transducers and support electronics that form an oscillating sensor which output frequency is related to the measured temperature. This low-cost sensor demonstrated sensitivity of about 40 Hz/K at the distance of 190 mm and the operating frequency of about 25 kHz. The second approach utilised pulse-echo mode at the centre frequency of 20 MHz. The reflector featured a cavity that was filled with deionised water. The ultrasound propagation delay in the cavity was related to the temperature in the solution. The experiments were conducted for deionised water, and solutions of sodium persulfate, sodium chloride, and acetic acid with concentrations up to 0.5 M. In the experiments (conducted within the temperature range from 15 to 30°C, we observed increases in the ultrasound velocity for increased temperatures and concentrations as was expected. Measurement results were compared with literature data for pure and seawater. It was concluded that ultrasonic measurements of temperature were conducted with the resolution well below 0.1 K for both methods. Advantages of ultrasonic temperature measurements over conventional thermometers were discussed.

  2. Hysteresis and Temperature Dependency of Moisture Sorption – New Measurements

    DEFF Research Database (Denmark)

    Rode, Carsten; Hansen, Kurt Kielsgaard

    2011-01-01

    It is well known that sorption characteristics of building materials exhibit hysteresis in the way the equilibrium curves develop between adsorption and desorption, and that the sorption curves are also somewhat temperature dependent. However, these two facts are most often neglected in models...... measurements of hysteresis and temperature dependency of the moisture sorption characteristics of three different porous building materials: aerated concrete, cement paste and spruce. Scanning curves are measured for all three materials where periods with adsorption and desorption interrupt each other...

  3. Ring to measure magnetic permeability at cryogenic temperatures

    CERN Multimedia

    1977-01-01

    While for magn. permeability measurements at room temperature a split-coil permeameter is used (see photo 7708553X), for measurements at cryogenic temperatures the excitation and the flux-measuring coils are wound directly on the ring sample by means of a toroidal winding machine. The ring in the picture was made to select the mild steel for the ISR Prototype Superconducting Quadrupole(see photo 7702690X). The excitation coil was wound with 1 mm diam. copper wire and had about 2730 turns. For measurements at 4.2 K a max. current of 90 A was used. See also photos 7708553X,7708100,7708103.

  4. MPPT Technique Based on Current and Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Eduardo Moreira Vicente

    2015-01-01

    Full Text Available This paper presents a new maximum power point tracking (MPPT method based on the measurement of temperature and short-circuit current, in a simple and efficient approach. These measurements, which can precisely define the maximum power point (MPP, have not been used together in other existing techniques. The temperature is measured with a low cost sensor and the solar irradiance is estimated through the relationship of the measured short-circuit current and its reference. Fast tracking speed and stable steady-state operation are advantages of this technique, which presents higher performance when compared to other well-known techniques.

  5. Determining the location of buried plastic water pipes from measurements of ground surface vibration

    Science.gov (United States)

    Muggleton, J. M.; Brennan, M. J.; Gao, Y.

    2011-09-01

    ‘Mapping the Underworld' is a UK-based project, which aims to create a multi-sensor device that combines complementary technologies for remote buried utility service detection and location. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and techniques for detecting buried infrastructure, in particular plastic water pipes, are being investigated. One of the proposed techniques involves excitation of the pipe at some known location with concurrent vibrational mapping of the ground surface in order to infer the location of the remainder of the pipe. In this paper, measurements made on a dedicated pipe rig are reported. Frequency response measurements relating vibrational velocity on the ground to the input excitation were acquired. Contour plots of the unwrapped phase revealed the location of the pipe to within 0.1-0.2 m. Magnitude contour plots revealed the excitation point and also the location of the pipe end. By examining the unwrapped phase gradients along a line above the pipe, it was possible to identify the wave-type within the pipe responsible for the ground surface vibration. Furthermore, changes in the ground surface phase speed computed using this method enabled the location of the end of the pipe to be confirmed.

  6. Measurement of the mechanical loss of a dielectric multilayer reflective coating at low temperature

    CERN Document Server

    Yamamoto, K; Ishitsuka, H; Ito, K; Kuroda, K; Miyoki, S; Numata, K; Ohashi, M; Sato, N; Shintomi, T; Suzuki, T; Tomaru, T; Uchiyama, T; Waseda, K; Watanabe, K; Yamamoto, A; Haruyama, Tomiyoshi; Ishitsuka, Hideki; Ito, Kazuhiko; Kuroda, Kazuaki; Miyoki, Shinji; Numata, Kenji; Ohashi, Masatake; Sato, Nobuaki; Shintomi, Takakazu; Suzuki, Toshikazu; Tomaru, Takayuki; Uchiyama, Takashi; Waseda, Koichi; Watanabe, Koji; Yamamoto, Akira; Yamamoto, Kazuhiro

    2006-01-01

    We have measured the mechanical loss of a dielectric multilayer reflective coating (ion-beam sputtered SiO$_2$ and Ta$_2$O$_5$) in cooled mirrors. The loss was nearly independent of the temperature (4 K $\\sim$ 300 K), frequency, optical loss, and stress caused by the coating, and the details of the manufacturing processes. The loss angle was $(4 \\sim 6) \\times 10^{-4}$. The temperature independence of this loss implies that the amplitude of the coating thermal noise, which is a severe limit in any precise measurement, is proportional to the square root of the temperature. Sapphire mirrors at 20 K satisfy the requirement concerning the thermal noise of even future interferometric gravitational wave detector projects on the ground, for example, LCGT.

  7. Temperature and voltage measurement in quantum systems far from equilibrium

    Science.gov (United States)

    Shastry, Abhay; Stafford, Charles A.

    2016-10-01

    We show that a local measurement of temperature and voltage for a quantum system in steady state, arbitrarily far from equilibrium, with arbitrary interactions within the system, is unique when it exists. This is interpreted as a consequence of the second law of thermodynamics. We further derive a necessary and sufficient condition for the existence of a solution. In this regard, we find that a positive temperature solution exists whenever there is no net population inversion. However, when there is a net population inversion, we may characterize the system with a unique negative temperature. Voltage and temperature measurements are treated on an equal footing: They are simultaneously measured in a noninvasive manner, via a weakly coupled thermoelectric probe, defined by requiring vanishing charge and heat dissipation into the probe. Our results strongly suggest that a local temperature measurement without a simultaneous local voltage measurement, or vice versa, is a misleading characterization of the state of a nonequilibrium quantum electron system. These results provide a firm mathematical foundation for voltage and temperature measurements far from equilibrium.

  8. Temperature measurement methods during direct heat arterial tissue fusion.

    Science.gov (United States)

    Cezo, James D; Kramer, Eric; Taylor, Kenneth D; Ferguson, Virginia; Rentschler, Mark E

    2013-09-01

    Fusion of biological tissues through direct and indirect heating is a growing area of medical research, yet there are still major gaps in understanding this procedure. Several companies have developed devices which fuse blood vessels, but little is known about the tissue's response to the stimuli. The need for accurate measurements of tissue behavior during tissue fusion is essential for the continued development and improvement of energy delivery devices. An experimental study was performed to measure the temperatures experienced during tissue fusion and the resulting burst pressure of the fused arteries. An array of thermocouples was placed in the lumen of a porcine splenic artery segment and sealed using a ConMed Altrus thermal fusion device. The temperatures within the tissue, in the device, and at the tissue-device interface were recorded. These measurements were then analyzed to calculate the temperature profile in the lumen of the artery. The temperature in the artery at the site of tissue fusion was measured to range from 142 to 163 °C using the ConMed Altrus. The corresponding burst pressure for arteries fused at this temperature was measured as 416 ± 79 mmHg. This study represents the first known experimental measurement of temperature at the site of vessel sealing found in the literature.

  9. Wet method for measuring starch gelatinization temperature using electrical conductivity.

    Science.gov (United States)

    Morales-Sanchez, E; Figueroa, J D C; Gaytan-Martínez, M

    2009-09-01

    The objective of the present study was to develop a method for obtaining the gelatinization temperature of starches by using electrical conductivity. Native starches from corn, rice, potato, and wheat were prepared with different proportions of water and heated from room temperature to 90 degrees C, in a device especially designed for monitoring the electrical conductivity as a function of temperature. The results showed a linear trend of the electrical conductivity with the temperature until it reaches the onset gelatinization temperature. After that point, the electrical conductivity presented an increment or decrement depending on the water content in the sample and it was related to starch swelling and gelatinization phenomena. At the end gelatinization temperature, the conductivity becomes stable and linear, indicating that there are no more changes of phase. The starch gelatinization parameter, which was evaluated in the 4 types of starches using the electrical conductivity, was compared with those obtained by using differential scanning calorimeter (DSC). The onset temperature at which the electrical conductivity increased or decreased was found to be similar to that obtained by DSC. Also, the final temperature at which the electrical conductivity returned to linearity matched the end gelatinization temperature of the DSC. Further, a wet method for measuring the onset, peak, and end gelatinization temperatures as a function of temperature using the electrical conductivity curves is presented for a starch-water suspension.

  10. Aluminum flame temperature measurements in solid propellant combustion.

    Science.gov (United States)

    Parigger, Christian G; Woods, Alexander C; Surmick, David M; Donaldson, A B; Height, Jonathan L

    2014-01-01

    The temperature in an aluminized propellant is determined as a function of height and plume depth from diatomic AlO and thermal emission spectra. Higher in the plume, 305 and 508 mm from the burning surface, measured AlO emission spectra show an average temperature with 1σ errors of 2980 ± 80 K. Lower in the plume, 152 mm from the burning surface, an average AlO emission temperature of 2450 ± 100 K is inferred. The thermal emission analysis yields higher temperatures when using constant emissivity. Particle size effects along the plume are investigated using wavelength-dependent emissivity models.

  11. High Accuracy Thermal Expansion Measurement at Cryogenic Temperatures

    Science.gov (United States)

    Tucker, Jim; Despit, Gregory; Stallcup, Michael; Presson, Joan; Nein, Max

    2003-01-01

    A new, interferometer-based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.

  12. Simultaneous measurement of temperature and strain using four connecting wires

    Science.gov (United States)

    Parker, Allen R., Jr.

    1993-01-01

    This paper describes a new signal-conditioning technique for measuring strain and temperature which uses fewer connecting wires than conventional techniques. Simultaneous measurement of temperature and strain has been achieved by using thermocouple wire to connect strain gages to signal conditioning. This signal conditioning uses a new method for demultiplexing sampled analog signals and the Anderson current loop circuit. Theory is presented along with data to confirm that strain gage resistance change is sensed without appreciable error because of thermoelectric effects. Furthermore, temperature is sensed without appreciable error because of voltage drops caused by strain gage excitation current flowing through the gage resistance.

  13. Dielectric properties measurement system at cryogenic temperatures and microwave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Molla, J.; Ibarra, A.; Margineda, J.; Zamarro, J. M.; Hernandez, A.

    1994-07-01

    A system based on the resonant cavity method has been developed to measure the permittivity and loss tangent at 12-18 GHz over the temperature range 80 K to 300 K. Changes of permittivity as low as 0.01 % in the range 1 to 30, and 3 x 10{sup 6} for loss tangent values below 10{sup 2}, can be obtained without requiring temperature stability. The thermal expansion coefficient and resistivity factor of copper have been measured between 80 K and 300 K. Permittivity of sapphire and loss tangent of alumina of 99.9 % purity in the same temperature range are presented. (Author) 23 refs.

  14. [Analyses of spectral emissivity in radiation temperature measurement].

    Science.gov (United States)

    Fu, Tai-Ran; Cheng, Xiao-Fang; Zhong, Mao-Hua; Yang, Zang-Jian

    2008-01-01

    The complexity of the spectral emissivity of actual surfaces is the key point in the research and applications of radiation temperature measurement, resulting in the difficulty in the achievement of the temperature measurement. In the present paper, based on the discussions of the Taylor expansion, the non-dimension wavelength and the exponent, the authors describe the mathematical expression of the spectral emissivity of actual surfaces, and establish the general spectral emissivity function. Through the fitting of experimental data of the spectral emissivities of different metals at different temperatures, the applicability of the spectral emissivity function is verified which especially becomes the fundamental in the research of primary spectrum pyrometry.

  15. Temperature measurement in laminar free convective flow using digital holography.

    Science.gov (United States)

    Hossain, Md Mosarraf; Shakher, Chandra

    2009-04-01

    A method for measurement of temperature in laminar free convection flow of water is presented using digital holographic interferometry. The method is relatively simple and fast because the method uses lensless Fourier transform digital holography, for which the reconstruction algorithm is simple and fast, and also the method does not require use of any extra experimental efforts as in phase shifting. The quantitative unwrapped phase difference is calculated experimentally from two digital holograms recorded in two different states of water--one in the quiescent state, the other in the laminar free convection. Unknown temperature in laminar free convection is measured quantitatively using a known value of temperature in the quiescent state from the unwrapped phase difference, where the equation by Tilton and Taylor describing the variation of refractive index of water with temperature is used to connect the phase with temperature. Experiments are also performed to visualize the turbulent free convection flow.

  16. Vibrational and rotational temperature measurements in a shock tube

    Science.gov (United States)

    Sharma, S. P.

    1992-01-01

    Vibrational and rotational temperatures in nitrogen test gas relaxing behind a normal shock are measured using the emission spectra of N2(+)(1-) and N2(2+) band systems in an electric-arc driven shock tube, at a shock velocity of 6.2 km/sec. The results are compared with similar data obtained by AVCO-Everett Research Laboratory during the 1960s. The vibrational and rotational temperatures in the equilibrium region obtained in the present experiment agreed with those of AVCO, but those in the nonequilibrium region are greatly different from the AVCO results. The measured rotational temperature seems to be in nonequilibrium with the translational temperature, contradicting the two-temperature model widely used in CFD. Also, the relaxation rates for both N2(+) and N2 molecules seem to be of the same order.

  17. [Combustion temperature measurement of solid propellant by remote sensing FTIR].

    Science.gov (United States)

    Li, Yan; Wang, Jun-De; Sun, Xiu-Yun; Zhou, Xue-Tie

    2004-08-01

    The combustion temperature of solid propellant was measured in this paper. Emission spectra of the combustion flame were collected with remote sensing FTIR at the resolution of 4 cm(-1). The combustion temperatures with the burning time were calculated from the maximum spectral line intensity and the molecular rotation-vibration spectra of HF molecule, respectively. Combustion temperatures at each time were all 1 788.8 K from the maximum spectral line intensity method. For comparison, the temperatures calculated from the molecular rotation-vibration spectra were 1 859.7, 1 848. 3, 1 804.0 and 1 782.7 K, respectively. Results show that the two methods are all dependable in measuring combustion temperature of solid propellant. But the maximum spectral line intensity method is more convenient and rapid than the other when the combustion is relatively stable.

  18. Measurement of thermal expansion coefficient of nonuniform temperature specimen

    Institute of Scientific and Technical Information of China (English)

    Jingmin Dai; Chunsuo Kin; Xiaowa He

    2008-01-01

    A new technique is developed to measure the longitudinal thermal expansion coefficient of C/C composite material at high temperature. The measuring principle and components of the apparatus are described in detail. The calculation method is derived from the temperature dependence of the thermal expansion coefficient. The apparatus mainly consists of a high temperature environmental chamber, a power circuit of heating, two high-speed pyrometers, and a laser scanning system. A long solid specimen is resistively heated to a steady high-temperature state by a steady electrical current. The temperature profile of the specimen surface is not uniform because of the thermal conduction and radiation. The temperature profile and the total expansion are measured with a high-speed scanning pyrometer and a laser slit scanning measuring system, respectively. The thermal expansion coefficient in a wide temperature range (1000 - 3800 K) of the specimen can therefore be obtained. The perfect consistency between the present and previous results justifies the validity of this technique.

  19. Body temperature measurements in pigs during general anaesthesia.

    Science.gov (United States)

    Musk, G C; Costa, R S; Tuke, J

    2016-04-01

    The aim was to compare rectal, pharyngeal and oesophageal temperature measurements in anaesthetized pigs. Data were compared using the Bland-Altman method, and correlation coefficients and error measures were calculated. Sixty-six sets of data were collected from 16 pigs weighing 16.2 ± 4.2 kg. The bias (and 95% limit of agreement) for rectal and pharyngeal compared with oesophageal temperature were 0.69 (-1.18 to 2.57) ℃ and 0.22 (-0.84 to 1.28) ℃, respectively. The correlation coefficients for rectal and pharyngeal compared with oesophageal temperature were 0.47 and 0.87, respectively. The absolute error for rectal and pharyngeal compared with oesophageal temperature was 0.7 ± 0.9℃ and 0.2 ± 0.5℃, respectively. Pharyngeal temperature measurement may be more suitable than rectal temperature measurement for estimation of oesophageal temperature during general anaesthesia of pigs.

  20. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy

    Science.gov (United States)

    Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.

    2014-02-01

    A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.

  1. Detecting plant metabolic responses induced by ground shock using hyperspectral remote sensing and physiological contact measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pickles, W.L.; Cater, G.A.

    1996-12-03

    A series of field experiments were done to determine if ground shock could have induced physiological responses in plants and if the level of the response could be observed. The observation techniques were remote sensing techniques and direct contact physiological measurements developed by Carter for detecting pre-visual plant stress. The remote sensing technique was similar to that used by Pickles to detect what appeared to be ground shock induced plant stress above the 1993 Non Proliferation Experiment`s underground chemical explosion. The experiment was designed to provide direct plant physiological measurements and remote sensing ratio images and from the same plants at the same time. The simultaneous direct and remote sensing measurements were done to establish a ground truth dataset to compare to the results of the hyperspectral remote sensing measurements. In addition, the experiment was designed to include data on what was thought to be the most probable interfering effect, dehydration. The experimental design included investigating the relative magnitude of the shock induced stress effects compared to dehydration effects.

  2. Validation of magnetic resonance concentration measurements with adiabatic wall temperature measurements

    Science.gov (United States)

    Sayles, Emily L.; Eaton, John K.

    2016-12-01

    Adiabatic wall temperature measurements were obtained in a high subsonic Mach number airflow experiment and compared with concentration measurements near the surface from a low-speed liquid flow experiment. Excellent agreement between the temperature and concentration measurements validates the investigation of turbulent mixing phenomena in compressible gas flows through the study of incompressible liquid flows with magnetic resonance techniques.

  3. Synergetic ground-based methods for remote measurements of ozone vertical profiles

    Science.gov (United States)

    Timofeyev, Yuriy; Kostsov, Vladimir; Virolainen, Yana

    2013-05-01

    The technique of combining ground-based measurements in infrared and microwave spectral regions in order to achieve higher accuracy of ozone profile retrieval in extensive altitude ranges is described and analyzed. The information content, errors, altitude ranges and vertical resolution of ozone profile retrieval have been studied on the basis of numerical simulation of synergetic experiments. Optimal conditions of measurements are defined and requirements to additional information are formulated. The first results on ozone vertical profile retrieval using groundbased measurements of FTIR-spectrometer and microwave radiometer are given.

  4. Quantitative assessment of impedance tomography for temperature measurements in hyperthermia.

    Science.gov (United States)

    Blad, B; Persson, B; Lindström, K

    1992-01-01

    The objective of this study is a non-invasive assessment of the thermal dose in hyperthermia. Electrical impedance tomography (EIT) has previously been given a first trial as a temperature monitoring method together with microwave-induced hyperthermia treatment, but it has not been thoroughly investigated. In the present work we have examined this method in order to investigate the correlation in vitro between the true spatial temperature distribution and the corresponding measured relative resistivity changes. Different hyperthermia techniques, such as interstitial water tubings, microwave-induced, laser-induced and ferromagnetic seeds have been used. The results show that it is possible to find a correlation between the measured temperature values and the tomographically measured relative resistivity changes in tissue-equivalent phantoms. But the uncertainty of the temperature coefficients, which has been observed, shows that the method has to be improved before it can be applied to clinical in vivo applications.

  5. Device for measurement of thermal emissivity at cryogenic temperatures

    CERN Document Server

    Kralik, Tomas; Musilova, Vera; Srnka, Ales

    2016-01-01

    In the described device, the thermal emissivity or absorptivity of the sample is measured by substitution of the radiative heat flow between two parallel surfaces by thermal output of a heater. Fast measurements of the mutual emissivity for the range of the temperature of the radiating surface 25 K-150 K are possible. The absorbing surface has a temperature between 5 K and 10 K when LHe is used as cryoliquid. The desired measurement sensitivity is 1 mK for temperature and 0.1 {\\mu}W for heat power, respectively. The diameter of the whole device is 50 mm and so it is possible to use a commercial dewar can for the cooling. The form of the sample is a round plate 40 mm in diameter and 1 mm in thickness with one tested side. The emissivity and its temperature dependency for various surface treatments can be checked immediately before application in a cryogenic system.

  6. Modern gas-based temperature and pressure measurements

    CERN Document Server

    Pavese, Franco

    2013-01-01

    This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurem...

  7. Monitoring of the ground surface temperature and the active layer in NorthEastern Canadian permafrost areas using remote sensing data assimilated in a climate land surface scheme.

    Science.gov (United States)

    Marchand, N.; Royer, A.; Krinner, G.; Roy, A.

    2014-12-01

    Projected future warming is particularly strong in the Northern high latitudes where increases of temperatures are up to 2 to 6 °C. Permafrost is present on 25 % of the northern hemisphere lands and contain high quantities of « frozen » carbon, estimated at 1400 Gt (40 % of the global terrestrial carbon). The aim of this study is to improve our understanding of the climate evolution in arctic areas, and more specifically of land areas covered by snow. The objective is to describe the ground temperature year round including under snow cover, and to analyse the active layer thickness evolution in relation to the climate variability. We use satellite data (fusion of MODIS land surface temperature « LST » and microwave AMSR-E brightness temperature « Tb ») assimilated in the Canadian Land Surface Scheme (CLASS) of the Canadian climate model coupled with a simple radiative transfer model (HUT). This approach benefits from the advantages of each of the data type in order to complete two objectives : 1- build a solid methodology for retrieving the ground temperature, with and without snow cover, in taïga and tundra areas ; 2 - from those retrieved ground temperatures, derive the summer melt duration and the active layer depth. We describe the coupling of the models and the methodology that adjusts the meteorological input parameters of the CLASS model (mainly air temperature and precipitations derived from the NARR database) in order to minimise the simulated LST and Tb ouputs in comparison with satellite measurements. Using ground-based meteorological data as validation references in NorthEastern Canadian tundra, the results show that the proposed approach improves the soil temperatures estimates when using the MODIS LST and Tb at 10 and 19 GHz to constrain the model in comparison with the model outputs without satellite data. Error analysis is discussed for the summer period (2.5 - 4 K) and for the snow covered winter period (2 - 3.5 K). Further steps are

  8. High temperature internal friction measurements of 3YTZP zirconia polycrystals. High temperature background and creep

    OpenAIRE

    Simas, P.; Castillo-Rodríguez, Miguel; Nó, M. L.; De-Bernardi, S.; Gómez-García, D.; Domínguez-Rodríguez, Alejandro; San Juan, J.

    2014-01-01

    This work focuses on the high-temperature mechanic properties of a 3 mol % yttria zirconia polycrystals (3YTZP), fabricated by hot-pressureless sintering. Systematic measurements of mechanical loss as a function of temperature and frequency were performed. An analytical method, based on the generalised Maxwell rheological model, has been used to analyse the high temperature internal friction background (HTB). This method has been previously applied to intermetallic compounds...

  9. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  10. Test Operations Procedure (TOP) 02-2-546 Teleoperated Unmanned Ground Vehicle (UGV) Latency Measurements

    Science.gov (United States)

    2017-01-11

    A. Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Defense Technical Information Center (DTIC), AD No.: 14. ABSTRACT...discrete system components or measurements of latency in autonomous systems. 15. SUBJECT TERMS Unmanned Ground Vehicles, Basic Video Latency, End -to... End System Latency, Command-to-Action Latency 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 23 19a

  11. Comparison of NO2 vertical profiles from satellite and ground based measurements over Antarctica

    OpenAIRE

    Kulkarni, Pavan; Bortoli, Daniele; Costa, Maria João; Silva, Ana Maria; Ravegnani, Fabrizio; Giovanelli, Giorgio

    2011-01-01

    The Intercomparison of nitrogen dioxide (NO2) vertical profiles, derived from the satellite based HALogen Occultation Experiment (HALOE) measurements and from the ground based UV-VIS spectrometer GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences) observations at the Mario Zucchelli Station (MZS), in Antarctica, are done for the first time. It is shown here that both datasets are in good agreement showing the same features in terms of magnitude, profile structure, a...

  12. Self-calibrated active pyrometer for furnace temperature measurements

    Science.gov (United States)

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.

    1998-01-01

    Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

  13. Online junction temperature measurement using peak gate current

    DEFF Research Database (Denmark)

    Baker, Nick; Munk-Nielsen, Stig; Iannuzzo, Francesco

    2015-01-01

    A new method for junction temperature measurement of MOS-gated power semiconductor switches is presented. The measurement method involves detecting the peak voltage over the external gate resistor of an IGBT or MOSFET during turn-on. This voltage is directly proportional to the peak gate current...

  14. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi

    2000-05-01

    The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique, addition of a digital recorder to monitor temperature and pressure inside the VLE cell, and a new technique for remote sensing of the liquid level in the cell. VLE data measurements for three binary systems, tetralin-quinoline, benzene--ethylbenzene and ethylbenzene--quinoline, have been completed. The temperature ranges of data measurements were 325 C to 370 C for the first system, 180 C to 300 C for the second system, and 225 C to 380 C for the third system. The smoothed data were found to be fairly well behaved when subjected to thermodynamic consistency tests. SETARAM C-80 calorimeter was used for incremental enthalpy and heat capacity measurements for benzene--ethylbenzene binary liquid mixtures. Data were measured from 30 C to 285 C for liquid mixtures covering the entire composition range. An apparatus has been designed for simultaneous measurement of excess volume and incremental enthalpy of liquid mixtures at temperatures from 30 C to 300 C. The apparatus has been tested and is ready for data measurements. A flow apparatus for measurement of heat of mixing of liquid mixtures at high temperatures has also been designed, and is currently being tested and calibrated.

  15. Pulsed Raman measurements of lattice temperature: Validity tests

    Science.gov (United States)

    Compaan, A.; Lee, M. C.; Lo, H. W.; Trott, G. J.; Aydinli, A.

    1983-10-01

    We measure the temperature dependence of the Raman correction factors and present data on the spot size and transverse beam quality of lasers used in the pulsed Raman measurements of lattice temperature in Si. Recent criticisms are also evaluated and shown to be inappropriate or in error. Finally we measure the shift of the 520-cm-1 Raman line and find it also to be consistent with the observed Stokes/anti-Stokes ratios indicating optic phonon populations characteristic of ˜450 °C.

  16. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2015-01-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the centre of the scanning circle...... lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89m height under different atmospheric stabilities. The measurements show that in comparison to the reference...... cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85 and 101% of the reference turbulence, whereas the VAD method measures between 66 and 87% of the reference turbulence....

  17. A six-beam method to measure turbulence statistics using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Vasiljevic, Nikola

    2014-01-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the center of the scanning circle...... lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89m height under different atmospheric stabilities. The measurements show that in comparison to the reference...... cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85–101% of the reference turbulence, whereas the VAD method measures between 66–87% of the reference turbulence....

  18. Intercomparison of ground-based ozone and NO2 measurements during the MANTRA 2004 campaign

    Directory of Open Access Journals (Sweden)

    K. Strong

    2007-11-01

    Full Text Available The MANTRA (Middle Atmosphere Nitrogen TRend Assessment 2004 campaign took place in Vanscoy, Saskatchewan, Canada (52° N, 107° W from 3 August to 15 September, 2004. In support of the main balloon launch, a suite of five zenith-sky and direct-Sun-viewing UV-visible ground-based spectrometers was deployed, primarily measuring ozone and NO2 total columns. Three Fourier transform spectrometers (FTSs that were part of the balloon payload also performed ground-based measurements of several species, including ozone. Ground-based measurements of ozone and NO2 differential slant column densities from the zenith-viewing UV-visible instruments are presented herein. They are found to partially agree within NDACC (Network for the Detection of Atmospheric Composition Change standards for instruments certified for process studies and satellite validation. Vertical column densities of ozone from the zenith-sky UV-visible instruments, the FTSs, a Brewer spectrophotometer, and ozonesondes are compared, and found to agree within the combined error estimates of the instruments (15%. NO2 vertical column densities from two of the UV-visible instruments are compared, and are also found to agree within combined error (15%.

  19. CARS Temperature and Species Measurements For Air Vehicle Propulsion Systems

    Science.gov (United States)

    Danehy, Paul M.; Gord, James R.; Grisch, Frederic; Klimenko, Dmitry; Clauss, Walter

    2005-01-01

    The coherent anti-Stokes Raman spectroscopy (CARS) method has recently been used in the United States and Europe to probe several different types of propulsion systems for air vehicles. At NASA Langley Research Center in the United States, CARS has been used to simultaneously measure temperature and the mole fractions of N2, O2 and H2 in a supersonic combustor, representative of a scramjet engine. At Wright- Patterson Air Force Base in the United States, CARS has been used to simultaneously measure temperature and mole fractions of N2, O2 and CO2, in the exhaust stream of a liquid-fueled, gas-turbine combustor. At ONERA in France and the DLR in Germany researchers have used CARS to measure temperature and species concentrations in cryogenic LOX-H2 rocket combustion chambers. The primary aim of these measurements has been to provide detailed flowfield information for computational fluid dynamics (CFD) code validation.

  20. [Combustion temperature measurement of solid propellant and the effect of organic compound on combustion temperature].

    Science.gov (United States)

    Zhou, Xue-tie; Li, Yan; Chen, Zuo-ru; Wang, Jun-de

    2003-06-01

    The FTIR emission spectra in the spectral range of 4,500-300 cm-1 for the solid propellants were measured by a remote sensing FTIR system. The P-branch of fine structure of HCl fundamental band lying at 3.46 microns was used for precise combustion temperature measurement of the solid propellant. The effect of the organic compound in the solid propellant on the combustion temperature was discussed.

  1. Innovations in plantar pressure and foot temperature measurements in diabetes.

    Science.gov (United States)

    Bus, S A

    2016-01-01

    Plantar pressure and temperature measurements in the diabetic foot primarily contribute to identifying abnormal values that increase risk for foot ulceration, and they are becoming increasingly more integrated in clinical practice and daily life of the patient. While plantar pressure measurements have long been present, only recently evidence shows their importance in ulcer prevention, as a data-driven approach to therapeutic footwear provision. The long-term monitoring of plantar pressures with the option to provide feedback, when alarming pressure levels occur, is a promising development in this area, although more technical and clinical validation is required. Shear is considered important in ulcer aetiology but is technically difficult to measure. Innovative research is underway to assess if foot temperature can act as a useful surrogate for shear. Because the skin heats up before it breaks down, frequent monitoring of foot temperature can identify these warning signals. This approach has shown to be effective in preventing foot ulcers. Innovation in diagnostic methods for foot temperature monitoring and evidence on cost effectiveness will likely facilitate implementation. Finally, monitoring of adherence to offloading treatment using temperature-based sensors has proven to be a feasible and relevant method with a wide range of possible research and patient care applications. These innovations in plantar pressure and temperature measurements illustrate an important transfer in diabetic foot care from subjective to objective evaluation of the high-risk patient. They demonstrate clinical value and a large potential in helping to reduce the patient and economic burden of diabetic foot disease.

  2. Preliminary Strength Measurements of High Temperature Ash Filter Deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kang, B.S.; Johnson, E.K.; Mallela, R.; Barberio, J.F. [West Virginia Univ., Morgantown, WV (United States). Dept. of Mechanical and Aerospace Engineering

    1996-12-31

    The objective of this study is to develop and evaluate preliminary strength measurement techniques for high temperature candle filter ash deposits. The efficient performance of a high temperature gas filtering system is essential for many of the new thermal cycles being proposed for power plants of the future. These new cycles hold the promise of higher thermal efficiency and lower emissions of pollutants. Many of these cycles involve the combustion or gasification of coal to produce high temperature gases to eventually be used in gas turbines. These high temperature gases must be relatively free of particulates. Today, the candle filter appears to be the leading candidate for high temperature particulate removal. The performance of a candle filter depends on the ash deposits shattering into relatively large particles during the pulse cleaning (back flushing) of the filters. These relatively large particles fall into the ash hopper and are removed from the system. Therefore, these 1247 particles must be sufficiently large so that they will not be re-entrained by the gas flow. The shattering process is dictated by the strength characteristics of the ash deposits. Consequently, the objective of this research is to develop measurements for the desired strength characteristics of the ash deposits. Experimental procedures were developed to measure Young`s modulus of the ash deposit at room temperature and the failure tensile strain of ash deposits from room temperature to elevated temperatures. Preliminary data has been obtained for both soft and hard ash deposits. The qualifier ``preliminary`` is used to indicate that these measurements are a first for this material, and consequently, the measurement techniques are not perfected. In addition, the ash deposits tested are not necessarily uniform and further tests are needed in order to obtain meaningful average data.

  3. Estimation of ground heat flux from soil temperature over a bare soil

    Science.gov (United States)

    An, Kedong; Wang, Wenke; Wang, Zhoufeng; Zhao, Yaqian; Yang, Zeyuan; Chen, Li; Zhang, Zaiyong; Duan, Lei

    2017-08-01

    Ground soil heat flux, G 0, is a difficult-to-measure but important component of the surface energy budget. Over the past years, many methods were proposed to estimate G 0; however, the application of these methods was seldom validated and assessed under different weather conditions. In this study, three popular models (force-restore, conduction-convection, and harmonic) and one widely used method (plate calorimetric), which had well performance in publications, were investigated using field data to estimate daily G 0 on clear, cloudy, and rainy days, while the gradient calorimetric method was regarded as the reference for assessing the accuracy. The results showed that harmonic model was well reproducing the G 0 curve for clear days, but it yielded large errors on cloudy and rainy days. The force-restore model worked well only under rainfall condition, but it was poor to estimate G 0 under rain-free conditions. On the contrary, the conduction-convection model was acceptable to determine G 0 under rain-free conditions, but it generated large errors on rainfall days. More importantly, the plate calorimetric method was the best to estimate G 0 under different weather conditions compared with the three models, but the performance of this method is affected by the placement depth of the heat flux plate. As a result, the heat flux plate was recommended to be buried as close as possible to the surface under clear condition. But under cloudy and rainy conditions, the plate placed at depth of around 0.075 m yielded G 0 well. Overall, the findings of this paper provide guidelines to acquire more accurate estimation of G 0 under different weather conditions, which could improve the surface energy balance in field.

  4. Comparison of different methods of temperature measurement in children

    Directory of Open Access Journals (Sweden)

    Pavlović Momčilo

    2008-01-01

    Full Text Available Introduction The consequences of failing to notice fever in children can be serious. On the other hand, false positive reading can result in unnecessary investigation or diagnostic approach. The aim of this study was to compare different ways of body temperature measurement. Material and methods This prospective study was carried out on Pediatric Department of General Hospital in Subotica during 10 months (March-December 2006. In 263 children aged 1 month to 18 years of age, the body temperature was obtained from 4 measurement sites: tactile assessment, forehead and ear by electronic thermometer, rectal temperature in small children (up to 2 years of age or axillar temperature in older children by mercury thermometer. Tympanic thermometry was considered as a standard for fever detection. Results The sensitivity of rectal temperature to detect fever is 46.67%, while specificity is 92.19%. The sensitivity of fever detection by electronic thermometry on the forehead is lower according to rectal thermometry - 36.08%, while specificity is 95.18%. The lowest values of sensitivity are recorded in axillar thermometry (35.82%, specificity is 90.20%. The correlation coefficient is higher between tympanic and rectal temperature measurement (r=0.5076, p<0.0005, than between tympanic and forehead measurements (r=0.5076, p<0,0005, while the lowest was between tympanic and axillar measurement sites (r=0.4933, p<0.0005. Conclusions The results of our study and literature data show that the most accurate methods of thermometry are rectal measurement of body temperature in small children and tympanic thermometry in children over 2 years of age.

  5. Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels.

    Directory of Open Access Journals (Sweden)

    Allyson G Hindle

    Full Text Available 13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy - wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection. To identify candidate proteins, we applied a sensitive 2D gel electrophoresis method to quantify protein differences among forebrain extracts prepared from ground squirrels in two summer, four winter and fall transition states. Proteins that differed among groups were identified using LC-MS/MS. Only 84 protein spots varied significantly among the defined states of hibernation. Protein changes in the forebrain proteome fell largely into two reciprocal patterns with a strong body temperature dependence. The importance of body temperature was tested in animals from the fall; these fall animals use torpor sporadically with body temperatures mirroring ambient temperatures between 4 and 21°C as they navigate the transition between summer homeothermy and winter heterothermy. Unlike cold-torpid fall ground squirrels, warm-torpid individuals strongly resembled the homeotherms, indicating that the changes observed in torpid hibernators are defined by body temperature, not torpor per se. Metabolic enzymes were largely unchanged despite varied metabolic activity across annual and torpor-arousal cycles. Instead, the majority of the observed changes were cytoskeletal proteins and their regulators. While cytoskeletal structural proteins tended to differ seasonally, i.e., between summer homeothermy and winter heterothermy, their regulatory proteins were more strongly affected by body temperature. Changes in the abundance of various isoforms of the microtubule assembly and disassembly regulatory proteins

  6. The 3-Hour-Interval Prediction of Ground-Level Temperature in South Korea Using Dynamic Linear Models

    Institute of Scientific and Technical Information of China (English)

    Keon-Tae SOHN; Deuk-Kyun RHA; Young-Kyung SEO

    2003-01-01

    The 3-hour-interval prediction of ground-level temperature from +00 h out to +45 h in South Korea(38 stations) is performed using the DLM (dynamic linear model) in order to eliminate the systematicerror of numerical model forecasts. Numerical model forecasts and observations are used as input values ofthe DLM. According to the comparison of the DLM forecasts to the KFM (Kalman filter model) forecastswith RMSE and bias, the DLM is useful to improve the accuracy of prediction.

  7. Density and Temperature Measurements in a Solar Active Region

    Science.gov (United States)

    Warren, Harry P.; Winebarger, Amy R.

    2003-10-01

    We present electron density and temperature measurements from an active region observed above the limb with the Solar Ultraviolet Measurements of Emitted Radiation spectrometer on the Solar and Heliospheric Observatory. Density-sensitive line ratios from Si VIII and S X indicate densities greater than 108 cm-3 as high as 200" (or 145 Mm) above the limb. At these heights, static, uniformly heated loop models predict densities close to 107 cm-3. Differential emission measure analysis shows that the observed plasma is nearly isothermal with a mean temperature of about 1.5 MK and a dispersion of about 0.2 MK. Both the differential emission measure and the Si XI/Si VIII line ratios indicate only small variations in the temperature at the heights observed. These measurements confirm recent observations from the Transition Region and Coronal Explorer of ``overdense'' plasma at temperatures near 1 MK in solar active regions. Time-dependent hydrodynamic simulations suggest that impulsive heating models can account for the large densities, but they have a difficult time reproducing the narrow range of observed temperatures. The observations of overdense, nearly isothermal plasma in the solar corona provide a significant challenge to theories of coronal heating.

  8. Dynamic measurement of temperature using neutron resonance spectroscopy (NRS)

    Energy Technology Data Exchange (ETDEWEB)

    Funk, D.J.; Asay, B.W.; Bennett, B.I.; Bowman, J.D.; Boat, R.M.; Dickson, P.M.; Henson, B.F.; Hull, L.M.; Idar, D.J.; Laabs, G.W.; London, R.K.; Mace, J.L.; Morgan, G.L.; Murk, D.M.; Rabie, R.L.; Ragan, C.E.; Stacy, H.L.; Yuan, V.W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1998-07-01

    Accurate temperature measurements in dynamic systems have been pursued for decades and have usually relied on optical techniques. These approaches are generally hampered by insufficient information regarding the emissivity of the system under study. We are developing NRS techniques to measure temperature in dynamic systems and overcome these limitations. Many neutron resonances have narrow intrinsic Breit-Wigner widths such that the resonance is substantially broadened by the atomic motion even at room temperature. Thus, accurate measurement of the Doppler contribution allows one to infer the material temperature, and for the conditions achieved using standard high explosives, the probe itself is not perturbed by the high temperature and pressure. Experiments are conducted using a pulsed spallation source at LANSCE with time-of-flight measurement of the neutron spectra. In initial experiments, we have demonstrated that measurements with ten percent accuracy are possible. We have fielded dynamic tests, most of which were neutron-flux limited. An overview of the approach and the status of our experimental campaign are discussed. {copyright} {ital 1998 American Institute of Physics.}

  9. Quantification of in situ temperature measurements on a PBI-based high temperature PEMFC unit cell

    DEFF Research Database (Denmark)

    Lebæk, Jesper; Ali, Syed Talat; Møller, Per

    2010-01-01

    The temperature is a very important operating parameter for all types of fuel cells. In the present work distributed in situ temperature measurements are presented on a polybenzimidazole based high temperature PEM fuel cell (HT-PEM). A total of 16 T-type thermocouples were embedded on both...... sensors showed minimal influence on cell performance, this difference seen in performance is believed to be caused by different bipolar plate materials. The measurement method is suitable for obtaining detailed data for validation of computational models, moreover the results indicate that the method can...

  10. Agreement between rectal and vaginal temperature measured with temperature loggers in dairy cows.

    Science.gov (United States)

    Suthar, Vishal; Burfeind, Onno; Maeder, Britta; Heuwieser, Wolfgang

    2013-05-01

    The overall objective of this study was to evaluate agreement between rectal (RT) and vaginal temperature (VT) measured with the same temperature loggers in dairy cows. Three experiments were conducted. The study began with a validation in vitro of 24 temperature loggers comparing them to a calibrated liquid-in-glass thermometer as a reference method. The association and agreement between the 24 temperature loggers with the reference method was r=0.996 (Ptemperature loggers were tested in 11 healthy post-partum cows (Experiment 2) and 12 early post-partum cows with greater body temperature (Experiment 3). Temperature loggers were set to record VT and RT at 1-min intervals. To prevent rectal and vaginal straining and potential expulsion of temperature logger an epidural injection of 2.5 ml of 2% Procain was administered. Association between RT and VT was r=0.92 (Ptemperature in Experiments 2 and 3, respectively. Furthermore the intra-class correlation coefficient between RT and VT measured with identical loggers within cows of Experiments 2 and 3 also demonstrated greater agreements (Ptemperature loggers can be used as a measure of body temperature in dairy cows.

  11. Neptune at summer solstice: Zonal mean temperatures from ground-based observations, 2003-2007

    Science.gov (United States)

    Fletcher, Leigh N.; de Pater, Imke; Orton, Glenn S.; Hammel, Heidi B.; Sitko, Michael L.; Irwin, Patrick G. J.

    2014-03-01

    Imaging and spectroscopy of Neptune’s thermal infrared emission from Keck/LWS (2003), Gemini-N/MICHELLE (2005); VLT/VISIR (2006) and Gemini-S/TReCS (2007) is used to assess seasonal changes in Neptune’s zonal mean temperatures between Voyager-2 observations (1989, heliocentric longitude Ls=236°) and southern summer solstice (2005, Ls=270°). Our aim was to analyse imaging and spectroscopy from multiple different sources using a single self-consistent radiative-transfer model to assess the magnitude of seasonal variability. Globally-averaged stratospheric temperatures measured from methane emission tend towards a quasi-isothermal structure (158-164 K) above the 0.1-mbar level, and are found to be consistent with spacecraft observations of AKARI. This remarkable consistency, despite very different observing conditions, suggests that stratospheric temporal variability, if present, is <±5 K at 1 mbar and <±3 K at 0.1 mbar during this solstice period. Conversely, ethane emission is highly variable, with abundance determinations varying by more than a factor of two (from 500 to 1200 ppb at 1 mbar). The retrieved C2H6 abundances are extremely sensitive to the details of the T(p) derivation, although the underlying cause of the variable ethane emission remains unidentified. Stratospheric temperatures and ethane are found to be latitudinally uniform away from the south pole (assuming a latitudinally-uniform distribution of stratospheric methane), with no large seasonal hemispheric asymmetries evident at solstice. At low and mid-latitudes, comparisons of synthetic Voyager-era images with solstice-era observations suggest that tropospheric zonal temperatures are unchanged since the Voyager 2 encounter, with cool mid-latitudes and a warm equator and pole. A re-analysis of Voyager/IRIS 25-50 μm mapping of tropospheric temperatures and para-hydrogen disequilibrium (a tracer for vertical motions) suggests a symmetric meridional circulation with cold air rising at mid

  12. Airborne compact rotational Raman lidar for temperature measurement.

    Science.gov (United States)

    Wu, Decheng; Wang, Zhien; Wechsler, Perry; Mahon, Nick; Deng, Min; Glover, Brent; Burkhart, Matthew; Kuestner, William; Heesen, Ben

    2016-09-05

    We developed an airborne compact rotational Raman lidar (CRL) for use on the University of Wyoming King Air (UWKA) aircraft to obtain two-dimensional (2D) temperature disman tributions. It obtained fine-scale 2D temperature distributions within 3 km below the aircraft for the first time during the PECAN (Plains Elevated Convection At Night) campaign in 2015. The CRL provided nighttime temperature measurements with a random error of <0.5 K within 800 m below aircraft at 45 m vertical and 1000 m horizontal resolution. The temperatures obtained by the CRL and a radiosonde agreed. Along with water vapor and aerosol measurements, the CRL provides critical parameters on the state of the lower atmosphere for a wide range of atmospheric research.

  13. Antenna characteristics and air-ground interface deembedding methods for stepped-frequency ground-penetrating radar measurements

    DEFF Research Database (Denmark)

    Karlsen, Brian; Larsen, Jan; Jakobsen, Kaj Bjarne;

    2000-01-01

    and phase information in the SF-GPR signal, is used to deembed the characteristics of the antenna. We propose a new air-to-ground interface deembedding technique based on Principal Component Analysis which enables enhancement of the SF-GPR signal from buried objects, e.g., anti-personal landmines...

  14. A Temperature Sensor using a Silicon-on-Insulator (SOI) Timer for Very Wide Temperature Measurement

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis E.

    2008-01-01

    A temperature sensor based on a commercial-off-the-shelf (COTS) Silicon-on-Insulator (SOI) Timer was designed for extreme temperature applications. The sensor can operate under a wide temperature range from hot jet engine compartments to cryogenic space exploration missions. For example, in Jet Engine Distributed Control Architecture, the sensor must be able to operate at temperatures exceeding 150 C. For space missions, extremely low cryogenic temperatures need to be measured. The output of the sensor, which consisted of a stream of digitized pulses whose period was proportional to the sensed temperature, can be interfaced with a controller or a computer. The data acquisition system would then give a direct readout of the temperature through the use of a look-up table, a built-in algorithm, or a mathematical model. Because of the wide range of temperature measurement and because the sensor is made of carefully selected COTS parts, this work is directly applicable to the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program--Jet Engine Distributed Engine Control Task and to the NASA Electronic Parts and Packaging (NEPP) Program. In the past, a temperature sensor was designed and built using an SOI operational amplifier, and a report was issued. This work used an SOI 555 timer as its core and is completely new work.

  15. Efficient ground-state cooling of an ion in a large room-temperature linear Paul trap with a sub-Hertz heating rate

    DEFF Research Database (Denmark)

    Poulsen, Gregers; Miroshnychenko, Yevhen; Drewsen, Michael

    2012-01-01

    We demonstrate efficient resolved sideband laser cooling (99±1% ground-state population) of a single 40Ca+ ion in a large linear Paul trap (electrode spacing of 7 mm) operated at an rf drive frequency of just 3.7 MHz. For ion oscillation frequencies in the range 280–585 kHz, heating rates below...... or about one motional quantum per second have been measured at room temperature. The results, obtained under these unconventional sideband cooling conditions, pave the way for a range of new types of cold ion experiments, including spectroscopy of molecular ions as well as ultracold chemistry....

  16. Temperatures stabilization of a field instrument for uranium enrichment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R.; Wawrowski, S.; Charland, M. [Canberra Industries, Inc., Meriden, CT (United States)] [and others

    1996-12-31

    Enrichment measurements with sodium iodide (NaI) detectors are hampered with a number of problems related to the temperature behavior of NaI crystals and the associated electronics. This problem is of particular concern in applications requiring the use of fixed regions of interest; such applications are used by the International Atomic Energy Agency (IAEA) in Vienna. The Canberra IMCA is a new portable instrument for such applications which can use either a NaI or a Ge detector. In developing the IMCA to meet the IAEA requirements for NaI detectors, Canberra has designed a system with a new temperature stabilization method capable of maintaining the detector stability at 0.5% over a temperature range of -10 to +50{degrees}C. This paper includes a detailed description of this IMCA temperature stabilization system, as well as test results for a range of temperatures using uranium standards.

  17. Snow water content estimation from measured snow temperature

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The vertical temperature profiles of snow and sea ice have been measured in the Arctic during the 2nd Chinese National Arctic Research Expedition in 2003 (CHINARE2003). The high-resolution temperature profile in snow is solved by one-dimensional heat transfer equation. The effective heat diffusivity, internal heat sources are identified. The internal heat source refers to the penetrated solar radiation which usually warms the lower part of the snow layer in summer. By temperature gradient analysis, the zero level can be clarified quantitatively as the boundary of the dry and wet snow. According to the in situ time series of vertical temperature profile, the time series of water content in snow is obtained based on an evaluation method of snow water content associated with the snow and ice physical parameters. The relationship of snow water content and snow temperature and temporal-spatial distribution of snow water content are presented

  18. Temperature calibration of Pico-Rad detectors for radon measurement.

    Science.gov (United States)

    Bem, H; Bem, E M; Chruścielewski, W; Skalski, H

    2000-01-01

    A simple mathematical equation linking the activity of adsorbed radon in the vials to the time and temperature of its exposure is discussed. The calibration coefficient--Ks, defined as activity measured in cpm after saturation time, corresponding to radon air concentration of 1 Bq m-3, was determined for four temperatures: 284, 291, 294 and 298 K. A linear relationship of ln Ks values versus T-1 was found. The relatively high difference in Ks values: 2.12 and 1.24 cpm/Bq m-3 for the temperatures of 284 and 298 K, respectively, was observed. It indicates that temperature fluctuations during Pico-Rad vial exposure may lead to erroneous results if the constant average temperature of exposure is introduced into a commonly used computer programme for calculating Rn concentration.

  19. Time-resolved, local temperature measurements during pulsed laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Kappes, Ralf S; Li Chen; Butt, Hans-Juergen; Gutmann, Jochen S, E-mail: kappes@mpip-mainz.mpg.d [Max Planck Institute for Polymer Research, D-55128 Mainz (Germany)

    2010-08-15

    To analyse processes during laser heating, one needs to be able to measure temperatures of about 1000 K within one microsecond and with micrometre resolution. To achieve this accuracy, we set up a high-performance optical detection system with a microsecond gated camera in combination with selected interference filters to detect the thermal emission spectrum in the visible range. By fitting the emission spectrum to Planck's law, we are able to collect an area temperature profile for time intervals as short as one microsecond. Thus we can show that a polymer film, which is doped with an organic dye for energy conversion, can reach temperatures of at least 900 K, which is high above its 'normal' decomposition temperature. It is, furthermore, possible to relate the temperature to the effect of the laser beam on the polymer film.

  20. TEMPERATURE MEASUREMENT OF REFLECTED SHOCK WAVE BY USING CHEMICAL INDICATOR

    Institute of Scientific and Technical Information of China (English)

    Cui Jiping; He Yuzhong; Wang Su; Wang Jing; Fan Bingcheng

    2000-01-01

    This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube,corresponding to the reservoir temperature of a shock tunnel,based on the chemical reaction of small amount of CF4 premixed in the test gas.The final product C2F4 is used as the temperature indicator,which is sampled and detected by a gas chromatography in the experiment.The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressure P1 and test time γas parameters in the temperature range 3300K<T<5600K,pressure range 5kPa<P1<12kPa andγ≈0.4ms.

  1. Accuracy of PARTwear Inertial Sensor and Optojump Optical Measurement System for Measuring Ground Contact Time During Running.

    Science.gov (United States)

    Ammann, Rahel; Taube, Wolfgang; Wyss, Thomas

    2016-07-01

    Ammann, R, Taube, W, and Wyss, T. Accuracy of PARTwear inertial sensor and Optojump optical measurement system for measuring ground contact time during running. J Strength Cond Res 30(7): 2057-2063, 2016-The aim of this study was to validate the detection of ground contact time (GCT) during running in 2 differently working systems: a small inertial measurement sensor, PARTwear (PW), worn on the shoe laces, and the optical measurement system, Optojump (OJ), placed on the track. Twelve well-trained subjects performed 12 runs each on an indoor track at speeds ranging from 3.0 to 9.0 m·s. GCT of one step per run (total 144) was simultaneously obtained by the PW, the OJ, and a high-speed video camera (HSC), whereby the latter served as reference system. The sampling rate was 1,000 Hz for all methods. Compared with the HSC, the PW and the OJ systems underestimated GCT by -1.3 ± 6.1% and -16.5 ± 6.7% (p-values ≤ 0.05), respectively. The intraclass correlation coefficients between PW and HSC and between OJ and HSC were 0.984 and 0.853 (p-values measurement systems.

  2. Temperature and Density Measurements in a Quiet Coronal Streamer

    Science.gov (United States)

    Warren, Harry P.; Warshall, Andrew D.

    2002-06-01

    Many previous studies have used emission line or broadband filter ratios to infer the presence of temperature gradients in the quiet solar corona. Recently it has been suggested that these temperature gradients are not real, but result from the superposition of isothermal loops with different temperatures and density scale heights along the line of sight. A model describing this hydrostatic weighting bias has been developed by Aschwanden & Acton. In this paper we present the application of the Aschwanden & Acton differential emission measure model to Solar and Heliospheric Observatory Solar Ultraviolet Measurement of Emitted Radiation (SUMER) observations of a quiet coronal streamer. Simultaneous Yohkoh soft X-ray telescope (SXT) observations show increases in the filter ratios with height above the limb, indicating an increase in temperature. The application of the Aschwanden & Acton model to these SUMER data, however, show that the temperature is constant with height and that the distribution of temperatures in the corona is much too narrow for the hydrostatic weighting bias to have any effect on the SXT filter ratios. We consider the possibility that there is a tenuous hot component (~3 MK) that accounts for the SXT observations. We find that a hot plasma with an emission measure sufficient to reproduce the observed SXT fluxes would also produce significant count rates in the high-temperature emission lines in the SUMER wavelength range. These lines are not observed, and we conclude that the SUMER spectra are not consistent with the SXT filter ratio temperatures. Calculations from a hydrodynamic loop model suggest that nonuniform footpoint heating may be consistent with the temperatures and densities observed at most heights, consistent with the recent analysis of relatively cool (~1 MK) active region loops. We also find, however, that at the lowest heights the observed densities are smaller than those predicted by uniform or footpoint heating.

  3. Precise measurement of stellar temperatures using line-depth ratios

    Energy Technology Data Exchange (ETDEWEB)

    Gray, D.F.; Johanson, H.L. (Western Ontario, University, London (Canada))

    1991-05-01

    The ratio of line depth for two spectral lines is used to determine stellar temperatures with a precision = 10 K = 0.2 percent. For stars between late-F and early-K spectral types, the V I 6251 to Fe I 6253 depth ratio is easy to measure. It is also applicable to other temperature regimes if suitable lines can be found. 14 refs.

  4. Digital technique for the simultaneous measurement of velocity and temperature.

    Science.gov (United States)

    Keffer, J F; Budny, R S; Kawall, J G

    1978-09-01

    A computer-oriented, hot-wire anemometer technique for the simultaneous measurement of velocity and temperature in heated turbulent flows is described. This technique involves conversion of analogue anemometer voltage signals into digital forms and processing of these latter on a digital computer, in accordance with the anemometer response equations, to obtain instantaneous temperature and velocity. The technique was tested with a heated plane jet and found to be satisfactory.

  5. Low field magnetic measurements on high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, G.; Murphy, S.D.; Li, Z.Y.; Stewart, A.M.; Bhagat, S.M. (Maryland Univ., College Park, MD (USA). Dept. of Physics and Astronomy)

    1989-09-01

    The authors report dc magnetization and ac susceptibility measurements on both micron size powders and sintered samples of several high temperature superconductors. The powder data confirm previous findings that the materials can be treated as conventional superconductors with s-wave pairing. The ac results on sintered slabs ar interpreted using Bean's model and yield the temperature dependence of the shielding current.

  6. Measurement of Required Power with Human-Powered Aircraft in Take-off Ground Running

    Science.gov (United States)

    Yoshikawa, Toshiaki; Sakamoto, Shinsuke; Hori, Kotono; Kusumoto, Hiroshi; Yamamoto, Yasushi; Hattori, Takashi; Sata, Kouta

    In this paper, we propose the method for the measurement of required power and the adjustment of optimum gear ratio in take-off ground running. To get the values of required power and speed, we measured torque of the left side and the right side of pedals, RPM of pedals, and speed of the cockpit frame. In order to improve the take-off speed, some drums were applied, and the optimum gear ratio of the front drum to the rear drum was determined.

  7. Experimental Photoionization Cross-Section Measurements in the Ground and Metastable State Threshold Region of Se+

    CERN Document Server

    Sterling, N C; Bilodeau, R C; Kilcoyne, A L D; Red, E C; Phaneuf, R A; Aguilar, A

    2010-01-01

    Absolute photoionization cross-section measurements are reported for Se+ in the photon energy range 18.0-31.0 eV, which spans the ionization thresholds of the 4S_{3/2} ground state and the low-lying 2P_{3/2,1/2} and 2D_{5/2,3/2} metastable states. The measurements were performed using the Advanced Light Source synchrotron radiation facility. Strong photoexcitation-autoionization resonances due to 4p-->nd transitions are seen in the cross-section spectrum and identified with a quantum-defect analysis.

  8. Figure-ground organization in real and subjective contours: a new ambiguous figure, some novel measures of ambiguity, and apparent distance across regions of figure and ground.

    Science.gov (United States)

    Shank, M D; Walker, J T

    1989-08-01

    This study was designed to assess the effects of organization, luminance contrast, sector angle, and orientation on a new, highly ambiguous Cs-keyhole figure. Organization and contrast were the most important factors, and sector angle also influenced figure-ground relationships. There was no significant effect of orientation, nor was there any significant interaction between any of the factors. Several new measures of figure-ground organization were developed, such as ambiguity ratios based on reaction times and on ratings of the strength of perceived organizations, providing new quantitative measures of figure-ground relationships. Distances measured across figural regions appeared smaller than equal distances across the ground in the new reversible figure, and also in Rubin's classic vase-face figure presented in real and subjective contours. Inducing a perceptual set to see a particular organization in a reversible figure influenced the apparent distance across that organization. Several possible explanations of the observed effects are considered: (1) an instance of Emmert's law, based on the difference in apparent depth of figure and ground; (2) an aspect of the Müller-Lyer illusion; (3) a feature-detector model of contour attraction; (4) a natural set or predisposition to see a figure as smaller; and (5) framing effects. The first two explanations appear the most promising.

  9. A dual measurement method of strain and temperature

    Institute of Scientific and Technical Information of China (English)

    JIANG Hai-li; SUN Wei-min; ZHANG Cong; LIU Zhi-hai; JIANG Fu-qiang; ZHANG Yang

    2007-01-01

    With the rapid development of China's foreign trade, the coastal and inland waterway transport has been increased rapidly. The potential market for marine engines is more and more obvious.The measurement of the engine temperature and strain becomes very important. The fluorescence fiber sensors are broadly used to measure temperature, concentration, and pH value, etc. The fluorescence sensing systems are based on different principles, namely fluorescence intensity, fluorescence intensity ratio, and fluorescence lifetime. The fluorescence lifetime is an effective parameter for sensing purpose,because it is independent of the intensity of the pumping source and does not need expensive narrow-band filters. An experiment system has been established, in which some samples were produced to measure the fluorescence lifetime and temperature characteristics and the relationship of the strain and temperature versus the fluorescence lifetime was achieved at the same time. The experiment result was fitted and analyzed. The test results show that the fluorescence lifetime decreases with the increasing of temperature. The change of fluorescence lifetime with the strain is inconspicuous comparing to that with the temperature.

  10. Wire position system to consistently measure and record the location change of girders following ground changes

    Science.gov (United States)

    Choi, H. J.; Lee, S. B.; Lee, H. G.; Y Back, S.; Kim, S. H.; Kang, H. S.

    2017-07-01

    Several parts that comprise the large scientific device should be installed and operated at the accurate three-dimensional location coordinates (X, Y, and Z) where they should be subjected to survey and alignment. The location of the aligned parts should not be changed in order to ensure that the electron beam parameters (Energy 10 GeV, Charge 200 pC, and Bunch Length 60 fs, Emittance X/Y 0.481 μm/0.256 μm) of PAL-XFEL (X-ray Free Electron Laser of the Pohang Accelerator Laboratory) remain stable and can be operated without any problems. As time goes by, however, the ground goes through uplift and subsidence, which consequently deforms building floors. The deformation of the ground and buildings changes the location of several devices including magnets and RF accelerator tubes, which eventually leads to alignment errors (∆X, ∆Y, and ∆Z). Once alignment errors occur with regard to these parts, the electron beam deviates from its course and beam parameters change accordingly. PAL-XFEL has installed the Hydrostatic Leveling System (HLS) to measure and record the vertical change of buildings and ground consistently and systematically and the Wire Position System (WPS) to measure the two dimensional changes of girders. This paper is designed to introduce the operating principle and design concept of WPS and discuss the current situation regarding installation and operation.

  11. Radiometric Modeling and Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)Ground Based Measurement Experiment

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-01-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere s thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data

  12. Measurement of deuterium ion temperature profiles at TEXTOR-94

    Energy Technology Data Exchange (ETDEWEB)

    Busche, E.; Euringer, H. [Forschungszentrum Juelich GmbH, EURATOM Association, Juelich (Germany). Inst. fuer Plasmaphysik; Jaspers, R. [FOM Inst. voor Plasmafysica `Rijnhuizen`, Association EURATOM-FOM, Nieuwegein (Netherlands)

    1997-09-01

    Charge-exchange recombination spectroscopy (CXRS) has been used to compare results on ion temperatures from several diagnostics at TEXTOR-94. The question of whether the typically measured width of impurity spectral lines is representative for the main ion temperature T{sub I}, is addressed by applying CXRS to the Balmer-alpha spectrum of deuterium. The importance of the halo effect is found not to be severe for the T{sub I} measurements. T{sub I} is lower than the impurity temperatures for low-density discharges with neutral beam heating. The time evolution of T{sub I} and the toroidal rotation were also measured during sawtooth oscillations. From this a lower bound for the ion heat diffusivity {chi}{sub I}{sup HP} of {approx} 2 m{sup 2} s{sup -1} has been deduced. (author).

  13. On bias of kinetic temperature measurements in complex plasmas

    DEFF Research Database (Denmark)

    Kantor, M.; Moseev, D.; Salewski, Mirko

    2014-01-01

    The kinetic temperature in complex plasmas is often measured using particle tracking velocimetry. Here, we introduce a criterion which minimizes the probability of faulty tracking of particles with normally distributed random displacements in consecutive frames. Faulty particle tracking results...... in a measurement bias of the deduced velocity distribution function and hence the deduced kinetic temperature. For particles with a normal velocity distribution function, mistracking biases the obtained velocity distribution function towards small velocities at the expense of large velocities, i.e., the inferred...... velocity distribution is more peaked and its tail is less pronounced. The kinetic temperature is therefore systematically underestimated in measurements. We give a prescription to mitigate this type of error....

  14. Spatially resolved remote measurement of temperature by neutron resonance absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kockelmann, W.; Pooley, D.E. [STFC, Rutherford Appleton Laboratory, ISIS Facility, Didcot OX11 0QX (United Kingdom); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Road, Sturbridge, MA 01566 (United States)

    2015-12-11

    Deep penetration of neutrons into most engineering materials enables non-destructive studies of their bulk properties. The existence of sharp resonances in neutron absorption spectra enables isotopically-resolved imaging of elements present in a sample, as demonstrated by previous studies. At the same time the Doppler broadening of resonance peaks provides a method of remote measurement of temperature distributions within the same sample. This technique can be implemented at a pulsed neutron source with a short initial pulse allowing for the measurement of the energy of each registered neutron by the time of flight technique. A neutron counting detector with relatively high timing and spatial resolution is used to demonstrate the possibility to obtain temperature distributions across a 100 µm Ta foil with ~millimeter spatial resolution. Moreover, a neutron transmission measurement over a wide energy range can provide spatially resolved sample information such as temperature, elemental composition and microstructure properties simultaneously.

  15. Cryogenic tunnel measurement of total temperature and pressure

    Science.gov (United States)

    Ng, W.-F.; Rosson, J. C.

    1986-01-01

    A newly developed, 3-mm-diam, dual hot-wire aspirating probe was used to measure the time-resolved stagnation temperature and pressure in a transonic cryogenic wind tunnel. Measurements were taken in the freestream of the settling chamber and test section. Data were also obtained in the unsteady wake shed from an airfoil oscillating at 5 Hz. The investigation revealed the presence of large fluctuations in the settling chamber occuring at the blade passing frequency of the driving fan of the tunnel. These fluctuations decrease at the test section. The rms value of the fluctuating stagnation pressure decreased from 17.5 percent in the settling chamber to 3.7 percent in the test section. Fluctuating stagnation temperature decreased from 12.3 percent to 8.4 percent. Measurements in the wake of the oscillating airfoil showed a fluctuating stagnation temperature of as much as 42 K in rms value.

  16. Simultaneous temperature and velocity Lagrangian measurements in turbulent thermal convection

    CERN Document Server

    Liot, O; Zonta, F; Chibbaro, S; Coudarchet, T; Gasteuil, Y; Pinton, J -F; Salort, J; Chillà, F

    2015-01-01

    We report joint Lagrangian velocity and temperature measurements in turbulent thermal convection. Measurements are performed using an improved version (extended autonomy) of the neutrally-buoyant instrumented particle that was used by to performed experiments in a parallelepipedic Rayleigh-Benard cell. The temperature signal is obtained from a RFtransmitter. Simultaneously, we determine particle's position and velocity with one camera, which grants access to the Lagrangian heat flux. Due to the extended autonomy of the present particle, we obtain well converged temperature and velocity statistics, as well as pseudo-eulerian maps of velocity and heat flux. Present experimental results have also been compared with the results obtained by a corresponding campaign of Direct Numerical Simulations and Lagrangian Tracking of massless tracers. The comparison between experimental and numerical results show the accuracy and reliability of our experimental measurements. Finally, the analysis of lagrangian velocity and t...

  17. Interferometric measurements of sea surface temperature and emissivity

    Science.gov (United States)

    Fiedler, Lars; Bakan, Stephan

    1997-09-01

    A new multispectral method to derive sea surface emissivity and temperature by using interferometer measurements of the near surface upwelling radiation in the infrared window region is presented. As reflected sky radiation adds substantial spectral variability to the otherwise spectrally smooth surface radiation, an appropriate estimate of surface emissivity allows the measured upwelling radiation to be corrected for the reflected sky component. The remaining radiation, together with the estimated surface emissivity, yields an estimate of the sea surface temperature. Measurements from an ocean pier in the Baltic Sea in October 1995 indicate an accuracy of about 0.1 K for the sea surface temperature thus derived. A strong sea surface skin effect of about 0.6 K is found in that particular case.

  18. Ground-based SMART-COMMIT Measurements for Studying Aerosol and Cloud Properties

    Science.gov (United States)

    Tsay, Si-Chee

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations cover large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite data sets. The development and deployment of SMARTCOMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile facilities are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instruments fall into three categories: flux radiometer, radiance sensor and in-situ probe. In this paper, we will demonstrate the capability of SMART-COMMIT in recent field campaigns (e.g., CRYSTAL-FACE, UAE 2, BASEASIA, NAMMA) that were designed and executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., biomass-burning smoke, airborne dust) and cirrus clouds. We envision robust approaches in which well-collocated ground-based measurements and space-borne observations will greatly advance our knowledge of extensive aerosols and clouds.

  19. Economic impact and effectiveness of radiation protection measures in aviation during a ground level enhancement

    Directory of Open Access Journals (Sweden)

    Matthiä Daniel

    2015-01-01

    Full Text Available In addition to the omnipresent irradiation from galactic cosmic rays (GCR and their secondary products, passengers and aircraft crew may be exposed to radiation from solar cosmic rays during ground level enhancements (GLE. In general, lowering the flight altitude and changing the flight route to lower latitudes are procedures applicable to immediately reduce the radiation exposure at aviation altitudes. In practice, however, taking such action necessarily leads to modifications in the flight plan and the consequential, additional fuel consumption constrains the mitigating measures. In this work we investigate in a case study of the ground level event of December 13th 2006 how potential mitigation procedures affect the total radiation exposure during a transatlantic flight from Seattle to Cologne taking into account constraints concerning fuel consumption and range.

  20. Drilling and thermal gradient measurements at US Marine Corps Air Ground Combat Center, Twentynine Palms, California. Final report, October 1, 1983-March 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Trexler, D.T.; Flynn, T.; Ghusn, G. Jr.

    1984-01-01

    Seven temperature gradient holes were drilled at the Marine Corps Air Ground Combat Center, Twentynine Palms, California, as part of a cooperative research and development program, jointly funded by the Navy and Department of Energy. The purpose of this program was to assess geothermal resources at selected Department of Defense installations. Drill site selection was based on geophysical anomalies delineated by combined gravity, ground magnetic and aeromagnetic surveys. Temperature gradients ranged from 1.3/sup 0/C/100 m (1/sup 0/F/100 ft.) in hole No. 1 to 15.3/sup 0/C/100 m (8.3/sup 0/F/100 ft.) in temperature gradient hole No. 6. Large, positive geothermal gradients in temperature gradient holes 5 and 6, combined with respective bottom hole temperatures of 51.6/sup 0/C (125/sup 0/F) and 67/sup 0/C (153/sup 0/F), indicate that an extensive, moderate-temperature geothermal resource is located on the MCAGCC. The geothermal reservoir appears to be situated in old, unconsolidated alluvial material and is structurally bounded on the east by the Mesquite Lake fault and on the west by the Surprise Spring fault. If measured temperature gradients continue to increase at the observed rate, temperatures in excess of 80/sup 0/C (178/sup 0/F) can be expected at a depth of 2000 feet.

  1. Comparison of MTI and Ground Truth Sea Surface Temperatures at Nauru

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.

    2002-09-05

    This report evaluates MTI-derived surface water temperature near the tropical Pacific island of Nauru. The MTI sea-surface temperatures were determined by the Los Alamos National Laboratory based on the robust retrieval.

  2. Measuring the electrical properties of soil using a calibrated ground-coupled GPR system

    Science.gov (United States)

    Oden, C.P.; Olhoeft, G.R.; Wright, D.L.; Powers, M.H.

    2008-01-01

    Traditional methods for estimating vadose zone soil properties using ground penetrating radar (GPR) include measuring travel time, fitting diffraction hyperbolae, and other methods exploiting geometry. Additional processing techniques for estimating soil properties are possible with properly calibrated GPR systems. Such calibration using ground-coupled antennas must account for the effects of the shallow soil on the antenna's response, because changing soil properties result in a changing antenna response. A prototype GPR system using ground-coupled antennas was calibrated using laboratory measurements and numerical simulations of the GPR components. Two methods for estimating subsurface properties that utilize the calibrated response were developed. First, a new nonlinear inversion algorithm to estimate shallow soil properties under ground-coupled antennas was evaluated. Tests with synthetic data showed that the inversion algorithm is well behaved across the allowed range of soil properties. A preliminary field test gave encouraging results, with estimated soil property uncertainties (????) of ??1.9 and ??4.4 mS/m for the relative dielectric permittivity and the electrical conductivity, respectively. Next, a deconvolution method for estimating the properties of subsurface reflectors with known shapes (e.g., pipes or planar interfaces) was developed. This method uses scattering matrices to account for the response of subsurface reflectors. The deconvolution method was evaluated for use with noisy data using synthetic data. Results indicate that the deconvolution method requires reflected waves with a signal/noise ratio of about 10:1 or greater. When applied to field data with a signal/noise ratio of 2:1, the method was able to estimate the reflection coefficient and relative permittivity, but the large uncertainty in this estimate precluded inversion for conductivity. ?? Soil Science Society of America.

  3. High temperature strain measurement with a resistance strain gage

    Science.gov (United States)

    Lei, Jih-Fen; Fichtel, ED; Mcdaniel, Amos

    1993-01-01

    A PdCr based electrical resistance strain gage was demonstrated in the laboratory to be a viable sensor candidate for static strain measurement at high temperatures. However, difficulties were encountered while transferring the sensor to field applications. This paper is therefore prepared for recognition and resolution of the problems likely to be encountered with PdCr strain gages in field applications. Errors caused by the measurement system, installation technique and lead wire attachment are discussed. The limitations and some considerations related to the temperature compensation technique used for this gage are also addressed.

  4. Advances in Fast Response Acoustically Derived Air Temperature Measurements

    Science.gov (United States)

    Bogoev, Ivan; Jacobsen, Larry; Horst, Thomas; Conrad, Benjamin

    2016-04-01

    Fast-response accurate air-temperature measurements are required when estimating turbulent fluxes of heat, water and carbon dioxide by open-path eddy-covariance technique. In comparison with contact thermometers like thermocouples, ultra-sonic thermometers do not suffer from solar radiation loading, water vapor condensation and evaporative cooling effects. Consequently they have the potential to provide more accurate true air temperature measurements. The absolute accuracy of the ultrasonic thermometer is limited by the following parameters: the distance between the transducer pairs, transducer delays associated with the electrical-acoustic signal conversion that vary with temperature, components of the wind vector that are normal to the ultrasonic paths, and humidity. The distance between the transducer pairs is commonly obtained by coordinate measuring machine. Improved accuracy demonstrated in this study results from increased stiffness in the anemometer head to better maintain the ultrasonic path-length distances. To further improve accuracy and account for changes in transducer delays and distance as a function of temperature, these parameters are characterized in a zero-wind chamber over the entire operating temperature range. When the sonic anemometer is combined with a co-located fast-response water vapor analyzer, like in the IRGASON instrument, speed of sound can be compensated for humidity effects on a point-by-point basis resulting in a true fast-response air temperature measurement. Laboratory test results show that when the above steps are implemented in the calibration of the ultrasonic thermometer air-temperature accuracy better than ±0.5 degrees Celsius can be achieved over the entire operating range. The approach is also validated in a field inter-comparison with an aspirated thermistor probe mounted in a radiation shield.

  5. Field Measurement of Fracture/Matrix Heat Exchange using Fiber Optic Distributed Temperature Sensing

    Science.gov (United States)

    Hawkins, A.; Becker, M. W.; Tsoflias, G. P.

    2012-12-01

    Highly channelized flow in fractured geologic systems has been blamed for early thermal breakthrough and poor performance of geothermal circulation systems. An experiment is presented in which the effect of channelized flow on fluid/rock heat transfer is measured. Hot water was circulated between two wells (7-14 m separation) completed in a single bedding plane fracture. The elevation of rock matrix temperature was measured using Fiber Optic Distributed Temperature Sensing (DTS). Between wells with good hydraulic connection, heat transfer followed a classic dipole sweep pattern. Between wells with poor hydraulic connection, heat transfer was skewed toward apparent regions of higher transmissivity (or larger aperture). Heat transfer between fracture and matrix was compared with saline tracer circulated between the same wells. Saline distribution was imaged using surface Ground Penetrating Radar. The results suggest that flow channeling can have a significant impact on heat transfer efficiency even in single bedding plane fractures. Temperature rise in the rock matrix above a fracture as a function of time Map view comparison of heat exchange to ground penetrating radar reflection amplitude (a function of fracture aperture). Red is warmer rock, yellow is cooler.

  6. Improved ground-based FTS measurement for column abundance CO2 retrievals(Conference Presentation)

    Science.gov (United States)

    Goo, Tae-Young

    2016-10-01

    The National Institute of Meteorological Sciences has operated a ground-based Fourier Transform Spectrometer (FTS) at Anmyeondo, Korea since December 2012. Anmyeondo FTS site is a designated operational station of Total Carbon Column Observing Network (TCCON) and belongs to regional Global Atmosphere Watch observatory. A Bruker IFS-125HR model, which has a significantly high spectral resolution by 0.02 cm-1, is employed and instrument specification is almost same as the TCCON configuration. such as a spectrum range of 3,800 16,000 cm-1, a resolution of 1 cm-1, InGaAs and Si-Diode detectors and CaF2 beam splitter. It is found that measured spectra have a good agreement with simulated spectra. In order to improve the spectral accuracy and stability, The Operational Automatic System for Intensity of Sunray (OASIS) has been developed. The OASIS can provide consistent photon energy optimized to detector range by controlling the diameter of solar beam reflected from the mirror of suntracker. As a result, monthly modulation efficiency (ME), which indicates the spectral accuracy of FTS measurement, has been recorded the vicinity of 99.9% since Feb 2015. The ME of 98% is regarded as the error of 0.1% in the ground-based in-situ CO2 measurement. Total column abundances of CO2 and CH4 during 2015 are estimated by using GGG v14 and compared with ground-based in-situ CO2 and CH4 measurements at the height of 86 m above sea level. The seasonality of CO2 is well captured by both FTS and in-situ measurements while there is considerable difference on the amplitude of CO2 seasonal variation due to the insensitivity of column CO2 to the surface carbon cycle dynamics in nature as well as anthropogenic sources. Total column CO2 and CH4 approximately vary from 395 ppm to 405 ppm and from 1.82 ppm to 1.88 ppm, respectively. It should be noted that few measurements obtained in July to August because of a lot of cloud and fog. It is found that enhancement of CH4 from the FTS at Anmyeondo

  7. The Influence of Earth Temperature on the Dynamic Characteristics of Frozen Soil and the Parameters of Ground Motion on Sites of Permafrost

    Institute of Scientific and Technical Information of China (English)

    Wang Lanmin; Zhang Dongli; Wu Zhijian; Ma Wei; Li Xiaojun

    2004-01-01

    Earth temperature is one of the most important factors influencing the mechanical properties of frozen soil. Based on the field investigation of the characteristics of ground deformation and ground failure caused by the Ms8.1 earthquake in the west of the Kuniun Mountain Pass,China, the influence of temperature on the dynamic constitutive relationship, dynamic elastic modulus, damping ratio and dynamic strength of frozen soil was quantitatively studied by means of the dynamic triaxial test. Moreover, the characteristics of ground motion on a permafrost site under different temperatures were analyzed for the four profiles of permafrost along the Qinghai-Xizang (Tibet) Railway using the time histories of ground motion acceleration with 3 exceedance probabilities of the Kunlun Mountains area. The influences of temperature on the seismic displacement, velocity, acceleration and response spectrum on permafrost ground were studied quantitatively. A scientific basis was presented for earthquake disaster mitigation for engineering foundations, highways and underground engineering in permafrost areas.

  8. Spatio-temporal variability of satellite derived aerosol optical thickness and ground measurements over East China

    Science.gov (United States)

    Meng, Fei; Shi, Tongguang

    2016-04-01

    Two-year records of Visible Infrared Imaging Radiometer Suite (VIIRS) Intermediate Product (IP) data on the aerosol optical thickness (AOT) at 550 nm were evaluated by comparing them with sun-sky radiometer measurements from the Chinese sun hazemeter network (CSHNET) and the aerosol robotic network (AERONET). The monthly and seasonal variations in the aerosol optical properties over eastern China were then investigated using collocated VIIRS IP data and CSHNET and AERONET measurements.Results show that the performances of the current VIIRS IP AOT retrievals at the provisional stage were consistent with ground measurements. Similar characteristics of seasonal and monthly variations were found among the measurements, though the observational methodologies were different, showing maxima in the summer and spring and minima in the winter and autumn.

  9. A review of turbulence measurements using ground-based wind lidars

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob

    2013-01-01

    pioneered in the first 15 yr, i.e., from 1972–1997, when standard techniques could not be used to measure turbulence. Obtaining unfiltered turbulence statistics from the large probe volume of the lidars has been and still remains the most challenging aspect. Until now, most of the processing algorithms......A review of turbulence measurements using ground-based wind lidars is carried out. Works performed in the last 30 yr, i.e., from 1972–2012 are analyzed. More than 80% of the work has been carried out in the last 15 yr, i.e., from 1997–2012. New algorithms to process the raw lidar data were...... that have been developed have shown that by combining an isotropic turbulence model with raw lidar measurements, we can obtain unfiltered statistics.We believe that an anisotropic turbulence model will provide a more realistic measure of turbulence statistics. Future development in algorithms will depend...

  10. Combining satellite, aerial and ground measurements to assess forest carbon stocks in Democratic Republic of Congo

    Science.gov (United States)

    Beaumont, Benjamin; Bouvy, Alban; Stephenne, Nathalie; Mathoux, Pierre; Bastin, Jean-François; Baudot, Yves; Akkermans, Tom

    2015-04-01

    Monitoring tropical forest carbon stocks changes has been a rising topic in the recent years as a result of REDD+ mechanisms negotiations. Such monitoring will be mandatory for each project/country willing to benefit from these financial incentives in the future. Aerial and satellite remote sensing technologies offer cost advantages in implementing large scale forest inventories. Despite the recent progress made in the use of airborne LiDAR for carbon stocks estimation, no widely operational and cost effective method has yet been delivered for central Africa forest monitoring. Within the Maï Ndombe region of Democratic Republic of Congo, the EO4REDD project develops a method combining satellite, aerial and ground measurements. This combination is done in three steps: [1] mapping and quantifying forest cover changes using an object-based semi-automatic change detection (deforestation and forest degradation) methodology based on very high resolution satellite imagery (RapidEye), [2] developing an allometric linear model for above ground biomass measurements based on dendrometric parameters (tree crown areas and heights) extracted from airborne stereoscopic image pairs and calibrated using ground measurements of individual trees on a data set of 18 one hectare plots and [3] relating these two products to assess carbon stocks changes at a regional scale. Given the high accuracies obtained in [1] (> 80% for deforestation and 77% for forest degradation) and the suitable, but still to be improved with a larger calibrating sample, model (R² of 0.7) obtained in [2], EO4REDD products can be seen as a valid and replicable option for carbon stocks monitoring in tropical forests. Further improvements are planned to strengthen the cost effectiveness value and the REDD+ suitability in the second phase of EO4REDD. This second phase will include [A] specific model developments per forest type; [B] measurements of afforestation, reforestation and natural regeneration processes and

  11. A six-beam method to measure turbulence statistics using ground-based wind lidars

    Directory of Open Access Journals (Sweden)

    A. Sathe

    2014-10-01

    Full Text Available A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the center of the scanning circle, i.e.using a vertical beam at the same height. The scanning configuration is optimized to minimize the sum of the random errors in the measurement of the second-order moments of the components (u,v, w of the wind field. We present this method as an alternative to the so-called velocity azimuth display (VAD method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence. In the VAD method, the high frequency radial velocity measurements are used instead of their variances. The measurements are performed using a pulsed lidar (WindScanner, and the derived turbulence statistics (using both methods such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89 m height under different atmospheric stabilities. The measurements show that in comparison to the reference cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85–101% of the reference turbulence, whereas the VAD method measures between 66–87% of the reference turbulence.

  12. A six-beam method to measure turbulence statistics using ground-based wind lidars

    Science.gov (United States)

    Sathe, A.; Mann, J.; Vasiljevic, N.; Lea, G.

    2015-02-01

    A so-called six-beam method is proposed to measure atmospheric turbulence using a ground-based wind lidar. This method requires measurement of the radial velocity variances at five equally spaced azimuth angles on the base of a scanning cone and one measurement at the centre of the scanning circle, i.e.using a vertical beam at the same height. The scanning configuration is optimized to minimize the sum of the random errors in the measurement of the second-order moments of the components (u,v, w) of the wind field. We present this method as an alternative to the so-called velocity azimuth display (VAD) method that is routinely used in commercial wind lidars, and which usually results in significant averaging effects of measured turbulence. In the VAD method, the high frequency radial velocity measurements are used instead of their variances. The measurements are performed using a pulsed lidar (WindScanner), and the derived turbulence statistics (using both methods) such as the u and v variances are compared with those obtained from a reference cup anemometer and a wind vane at 89 m height under different atmospheric stabilities. The measurements show that in comparison to the reference cup anemometer, depending on the atmospheric stability and the wind field component, the six-beam method measures between 85 and 101% of the reference turbulence, whereas the VAD method measures between 66 and 87% of the reference turbulence.

  13. A lidar system for measuring atmospheric pressure and temperature profiles

    Science.gov (United States)

    Schwemmer, Geary K.; Dombrowski, Mark; Korb, C. Laurence; Milrod, Jeffry; Walden, Harvey

    1987-01-01

    The design and operation of a differential absorption lidar system capable of remotely measuring the vertical structure of tropospheric pressure and temperature are described. The measurements are based on the absorption by atmospheric oxygen of the spectrally narrowband output of two pulsed alexandrite lasers. Detailed laser output spectral characteristics, which are critical to successful lidar measurements, are presented. Spectral linewidths of 0.026 and 0.018 per cm for the lasers were measured with over 99.99 percent of the energy contained in three longitudinal modes.

  14. Ground based mobile isotopic methane measurements in the Front Range, Colorado

    Science.gov (United States)

    Vaughn, B. H.; Rella, C.; Petron, G.; Sherwood, O.; Mielke-Maday, I.; Schwietzke, S.

    2014-12-01

    Increased development of unconventional oil and gas resources in North America has given rise to attempts to monitor and quantify fugitive emissions of methane from the industry. Emission estimates of methane from oil and gas basins can vary significantly from one study to another as well as from EPA or State estimates. New efforts are aimed at reconciling bottom-up, or inventory-based, emission estimates of methane with top-down estimates based on atmospheric measurements from aircraft, towers, mobile ground-based vehicles, and atmospheric models. Attributing airborne measurements of regional methane fluxes to specific sources is informed by ground-based measurements of methane. Stable isotopic measurements (δ13C) of methane help distinguish between emissions from the O&G industry, Confined Animal Feed Operations (CAFO), and landfills, but analytical challenges typically limit meaningful isotopic measurements to individual point sampling. We are developing a toolbox to use δ13CH4 measurements to assess the partitioning of methane emissions for regions with multiple methane sources. The method was applied to the Denver-Julesberg Basin. Here we present data from continuous isotopic measurements obtained over a wide geographic area by using MegaCore, a 1500 ft. tube that is constantly filled with sample air while driving, then subsequently analyzed at slower rates using cavity ring down spectroscopy (CRDS). Pressure, flow and calibration are tightly controlled allowing precise attribution of methane enhancements to their point of collection. Comparisons with point measurements are needed to confirm regional values and further constrain flux estimates and models. This effort was made in conjunction with several major field campaigns in the Colorado Front Range in July-August 2014, including FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment), DISCOVER-AQ, and the Air Water Gas NSF Sustainability Research Network at the University of Colorado.

  15. Characterization of downwelling radiance measured from a ground-based microwave radiometer using numerical weather prediction model data

    Science.gov (United States)

    Ahn, M.-H.; Won, H. Y.; Han, D.; Kim, Y.-H.; Ha, J.-C.

    2016-01-01

    The ground-based microwave sounding radiometers installed at nine weather stations of Korea Meteorological Administration alongside with the wind profilers have been operating for more than 4 years. Here we apply a process to assess the characteristics of the observation data by comparing the measured brightness temperature (Tb) with reference data. For the current study, the reference data are prepared by the radiative transfer simulation with the temperature and humidity profiles from the numerical weather prediction model instead of the conventional radiosonde data. Based on the 3 years of data, from 2010 to 2012, we were able to characterize the effects of the absolute calibration on the quality of the measured Tb. We also showed that when clouds are present the comparison with the model has a high variability due to presence of cloud liquid water therefore making cloudy data not suitable for assessment of the radiometer's performance. Finally we showed that differences between modeled and measured brightness temperatures are unlikely due to a shift in the selection of the center frequency but more likely due to spectroscopy issues in the wings of the 60 GHz absorption band. With a proper consideration of data affected by these two effects, it is shown that there is an excellent agreement between the measured and simulated Tb. The regression coefficients are better than 0.97 along with the bias value of better than 1.0 K except for the 52.28 GHz channel which shows a rather large bias and variability of -2.6 and 1.8 K, respectively.

  16. Measurement of skin temperature after infrared laser stimulation.

    Science.gov (United States)

    Leandri, M; Saturno, M; Spadavecchia, L; Iannetti, G D; Cruccu, G; Truini, A

    2006-01-01

    Several types of lasers are available for eliciting laser evoked responses (LEPs). In order to understand advantages and drawbacks of each one, and to use it properly, it is important that the pattern of skin heating is known and duly considered. This study was aimed at assessing the skin temperature during and immediately after irradiation with pulses by Nd:YAP and CO(2) lasers. The back of the non-dominant hand was irradiated in 8 subjects. Temperatures were measured by a fast analogical pyrometer (5 ms response time). Stimuli were tested on natural colour (white) and blackened skin. Nd:YAP pulses yielded temperatures that were correlated with pulse energy, but not with pulse duration; much higher temperatures were obtained irradiating blackened skin than white skin (ranges 100-194 degrees C vs 35-46 degrees C). Temperature decay was extremely slow in white skin, reaching its basal value in more than 30 s. CO(2) pulses delivered with power of 3W and 6W yielded temperatures of 69-87 degrees C on white skin, and 138-226 degrees C on blackened skin. Temperature decay was very fast (4-8 ms). Differences in peak temperatures and decay times between lasers and tested conditions depend on energy and volume of heated skin. The highest temperatures are reached with lesser degree of penetration, as in the case of CO(2) laser and blackened skin. Taking into account the temperature decay time of the skin, the minimum interstimulus interval to get reliable LEPs should be no less than 10 s for Nd:YAP and 100 ms for CO(2) laser. Another important practical consequence of the heating pattern is that the Nd:YAP pulses will activate warmth receptors more easily than CO(2).

  17. A system for vertical profile measurements of sensible heat and chemical concentrations near the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Hyppoenen, M.; Walden, J.A.

    1996-12-31

    The design, construction and measurements of a computer controlled system applicable to flux measurements of a scalar quantity by the gradient technique are described. Accuracy requirements for the measured variables which are used for flux calculations are considered, together with some practical aspects concerning data storage and control. The construction includes the hardware and the data acquisition, sample intake, and temperature measurement systems. The measurements comprise laboratory tests of the temperature probes and the hardware as well as field tests over wheat and grass land for temperature and wind speed and ozone (O{sub 3}), carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O) concentration profiles. The hardware takes care of most of the operation and only the necessary part is done by the software. The data acquisition system is flexible, accepting the input of either digital and/or analog signals. It also controls the whole system, storing all the data in a single data file. The sample intake unit is designed to take continuous samples in to the monitors as well as grab samples into the canisters. Samples can be selected from one to four levels with no dead volumes in the sampling tubes. The temperature measurement system is constructed using a pair of temperature probes, Pt-100, which are connected to the same signal processing card, in order to remove the offset of the electronic components as well as the bias associated with single probes. This ensures the accuracy of the probes down to 0.005 deg C. According to the field measurements, the relative error limits for the sensible heat fluxes varied from 7 to 20 % in an unstable atmospheric situation. For the ozone flux, the error limits varied from 20 to 100 %, indicating a much poorer accuracy of the monitor compared to the temperature probes. (orig.) 16 refs.

  18. Equipment and Experimental Technique For Temperature Measurements In Deep Boreholes

    Science.gov (United States)

    Khristoforov, A.

    The technique of temperature measurements is highly informative since any dynami- cal processes in the boreholes and in the vicinities are accompanied by thermal effects. Electronics and equipment for remote measurements in the boreholes are briefly dis- cussed in the report. It includes a deep instrument, cable winch and surface recording unit placed onboard a car. The temperature dependent frequency modulated signal is used in deep instrument. A cable of original construction was developed for chute-lift operations. It has a signal and power channel at the same time and play the depth me- ter. The surface recording unit includes power supply for deep instruments, receiver, frequency meter and indicator. A personal computer is used for the measurement nu- merical control. Energy for the electronics is supplied by a car battery. Self sufficiency and high accuracy are specialities of the equipment. Using the technique and equip- ment we made the experimental study of temperature in the boreholes of the East European platform, Middle Asia, West Siberia, Kamchatka and other regions. Most of our temperatures and temperature gradients have been used for mapping.

  19. Real-time temperature field measurement based on acoustic tomography

    Science.gov (United States)

    Bao, Yong; Jia, Jiabin; Polydorides, Nick

    2017-07-01

    Acoustic tomography can be used to measure the temperature field from the time-of-flight (TOF). In order to capture real-time temperature field changes and accurately yield quantitative temperature images, two improvements to the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF collection along multiple ray paths, and an offline iteration reconstruction algorithm. During system operation, all the acoustic transceivers send modulated and filtered wideband Kasami sequences simultaneously to facilitate fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, the iteration process is separated and executed offline beforehand to shorten computation time for online temperature field reconstruction. The feasibility and effectiveness of the developed methods are validated in the simulation study. The simulation results demonstrate that the proposed method can reduce the processing time per frame from 160 ms to 20 ms, while the reconstruction error remains less than 5%. Hence, the proposed method has great potential in the measurement of rapid temperature change with good temporal and spatial resolution.

  20. Measurement of temperature and temperature gradient in millimeter samples by chlorine NQR

    Science.gov (United States)

    Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko

    2009-09-01

    A mini-thermometer based on the 35Cl nuclear quadrupole resonance (NQR) frequency temperature dependence in the chlorates KClO3 and NaClO3 was built and successfully tested by measuring temperature and temperature gradient at 77 K and higher in about 100 mm3 active volume of a mini Joule-Thomson refrigerator. In the design of the tank-circuit coil, an array of small coils connected in series enabled us (a) to achieve a suitable ratio of inductance to capacity in the NQR spectrometer input tank circuit, (b) to use a single crystal of KClO3 or NaClO3 (of 1-2 mm3 size) in one coil as a mini-thermometer with a resolution of 0.03 K and (c) to construct a system for measuring temperature gradients when the spatial coordinates of each chlorate single crystal within an individual coil are known.

  1. Temperature measuring analysis of the nuclear reactor fuel assembly

    Science.gov (United States)

    F., Urban; Ľ., Kučák; Bereznai, J.; Závodný, Z.; Muškát, P.

    2014-08-01

    Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuel assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.

  2. Low temperature magnetoresistance measurements on bismuth nanowire arrays.

    Science.gov (United States)

    Kaiser, Ch; Weiss, G; Cornelius, T W; Toimil-Molares, M E; Neumann, R

    2009-05-20

    We present low temperature resistance R(T) and magnetoresistance measurements for Bi nanowires with diameters between 100 and 500 nm, which are close to being single-crystalline. The nanowires were fabricated by electrochemical deposition in pores of polycarbonate membranes. R(T) varies as T(2) in the low temperature range 1.5 Kwire diameter. An unexpected effect is observed in R(T) when a magnetic field is present. It can be related to the temperature dependence of the magnetoresistance. The transverse magnetoresistance of all samples shows a clear B(1.5) variation. Its size depends strongly on the diameter of the wires but only weakly on temperature. Finally, a steplike increase in the magnetoresistance of our sample with a wire diameter of 100 nm was found and this might be attributed to a transition from one-dimensional to three-dimensional localization.

  3. Temperature calibration of PICO-RAD detectors for radon measurement

    Energy Technology Data Exchange (ETDEWEB)

    Bem, H.; Bem, E.M.; Chruscielewski, W.; Skalski, H. [Politechnika Lodzka, Lodz (Poland)

    1996-10-01

    A simple mathematical equation linking the activity of adsorbed radon in the vials to the time of its exposure has been discussed. The calibration coefficient K{sub s}, defined as a measured activity in cpm after a saturation time, corresponding to a radon air concentration of 1 Bq m{sup -3} has been determined for four temperatures: 284, 291, 294 and 298 K. A linear relationship of ln K{sub s} values versus T{sup -1} has been found. The relatively high difference in K{sub s} values: 2.12 and 1.24 cpm/Bq m{sup 3} for the temperatures of 284 and 298 K, respectively, was observed. It indicates that temperature fluctuations during Pico-Rad vial exposure may lead to erroneous results if the constant average temperature of exposure is introduced into a commonly used computer program for calculating Rn concentration. (author). 6 refs, 4 figs.

  4. Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, B.M.; Finsterle, S.; Onstott, T.C.; Toole, P.; Pratt, L.M.

    2008-10-10

    We have developed a borehole methodology to estimate formation thermal conductivity in situ with a spatial resolution of one meter. In parallel with a fiber-optic distributed temperature sensor (DTS), a resistance heater is deployed to create a controlled thermal perturbation. The transient thermal data is inverted to estimate the formation's thermal conductivity. We refer to this instrumentation as a Distributed Thermal Perturbation Sensor (DTPS), given the distributed nature of the DTS measurement technology. The DTPS was deployed in permafrost at the High Lake Project Site (67 degrees 22 minutes N, 110 degrees 50 minutes W), Nunavut, Canada. Based on DTPS data, a thermal conductivity profile was estimated along the length of a wellbore. Using the thermal conductivity profile, the baseline geothermal profile was then inverted to estimate a ground surface temperature history (GSTH) for the High Lake region. The GSTH exhibits a 100-year long warming trend, with a present-day ground surface temperature increase of 3.0 {+-} 0.8 C over the long-term average.

  5. Nighttime Aerosol Optical Depth Measurements Using a Ground-based Lunar Photometer

    Science.gov (United States)

    Berkoff, Tim; Omar, Ali; Haggard, Charles; Pippin, Margaret; Tasaddaq, Aasam; Stone, Tom; Rodriguez, Jon; Slutsker, Ilya; Eck, Tom; Holben, Brent; hide

    2015-01-01

    In recent years it was proposed to combine AERONET network photometer capabilities with a high precision lunar model used for satellite calibration to retrieve columnar nighttime AODs. The USGS lunar model can continuously provide pre-atmosphere high precision lunar irradiance determinations for multiple wavelengths at ground sensor locations. When combined with measured irradiances from a ground-based AERONET photometer, atmospheric column transmissions can determined yielding nighttime column aerosol AOD and Angstrom coefficients. Additional demonstrations have utilized this approach to further develop calibration methods and to obtain data in polar regions where extended periods of darkness occur. This new capability enables more complete studies of the diurnal behavior of aerosols, and feedback for models and satellite retrievals for the nighttime behavior of aerosols. It is anticipated that the nighttime capability of these sensors will be useful for comparisons with satellite lidars such as CALIOP and CATS in additional to ground-based lidars in MPLNET at night, when the signal-to-noise ratio is higher than daytime and more precise AOD comparisons can be made.

  6. Infrared Thermography for Temperature Measurement and Non-Destructive Testing

    Science.gov (United States)

    Usamentiaga, Rubèn; Venegas, Pablo; Guerediaga, Jon; Vega, Laura; Molleda, Julio; Bulnes, Francisco G.

    2014-01-01

    The intensity of the infrared radiation emitted by objects is mainly a function of their temperature. In infrared thermography, this feature is used for multiple purposes: as a health indicator in medical applications, as a sign of malfunction in mechanical and electrical maintenance or as an indicator of heat loss in buildings. This paper presents a review of infrared thermography especially focused on two applications: temperature measurement and non-destructive testing, two of the main fields where infrared thermography-based sensors are used. A general introduction to infrared thermography and the common procedures for temperature measurement and non-destructive testing are presented. Furthermore, developments in these fields and recent advances are reviewed. PMID:25014096

  7. Method for emissivity measurement of semitransparent coatings at ambient temperature.

    Science.gov (United States)

    Honnerová, Petra; Martan, Jiří; Veselý, Zdeněk; Honner, Milan

    2017-05-03

    Coatings deposited on a material surface are effective way of changing its surface properties. For increasing or decreasing radiation heat transfer, coatings with high or low emissivity are used. Measurement of spectral emissivity is a fundamental step to effective use of coatings for this application. Up to now the measurement methods are focused on bulk samples and mainly opaque ones. Here we present a method enabling measurement of emissivity of semitransparent coating itself, although it is deposited on a substrate. The method is based on measurement of transmittance and reflectance using an integration sphere system and Fourier transform infrared (FTIR) spectrometer for samples with two different coating thicknesses deposited on transparent substrates. Measured transmittance of the coating indicates spectral regions of potential emissivity differences using different substrates. From all the measured values, spectral emissivity can be characterized for different coating thicknesses. The spectral range of the method is from 2 μm to 20 μm. The measurement is done at ambient temperature enabling measurement of samples sensitive to heating like biomedical or nanocoatings. The method was validated on known bulk samples and an example of semitransparent coating measurement is shown on high-temperature high-emissivity coating.

  8. Radon measurements with charcoal canisters temperature and humidity considerations

    Directory of Open Access Journals (Sweden)

    Živanović Miloš Z.

    2016-01-01

    Full Text Available Radon testing by using open-faced charcoal canisters is a cheap and fast screening method. Many laboratories perform the sampling and measurements according to the United States Environmental Protection Agency method - EPA 520. According to this method, no corrections for temperature are applied and corrections for humidity are based on canister mass gain. The EPA method is practiced in the Vinča Institute of Nuclear Sciences with recycled canisters. In the course of measurements, it was established that the mass gain of the recycled canisters differs from mass gain measured by Environmental Protection Agency in an active atmosphere. In order to quantify and correct these discrepancies, in the laboratory, canisters were exposed for periods of 3 and 4 days between February 2015 and December 2015. Temperature and humidity were monitored continuously and mass gain measured. No significant correlation between mass gain and temperature was found. Based on Environmental Protection Agency calibration data, functional dependence of mass gain on humidity was determined, yielding Environmental Protection Agency mass gain curves. The results of mass gain measurements of recycled canisters were plotted against these curves and a discrepancy confirmed. After correcting the independent variable in the curve equation and calculating the corrected mass gain for recycled canisters, the agreement between measured mass gain and Environmental Protection Agency mass gain curves was attained. [Projekat Ministarstva nauke Republike Srbije, br. III43009: New Technologies for Monitoring and Protection of Environment from Harmful Chemical Substances and Radiation Impact

  9. Neutron scattering effects on fusion ion temperature measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Lee (Bechtel/Nevada, Las Vegas, NV); Starner, Jason R.; Cooper, Gary Wayne; Ruiz, Carlos L.; Franklin, James Kenneth (Ktech Corporation, Albuquerque, NM); Casey, Daniel T.

    2006-06-01

    To support the nuclear fusion program at Sandia National Laboratories (SNL), a consistent and verifiable method to determine fusion ion temperatures needs to be developed. Since the fusion temperature directly affects the width in the spread of neutron energies produced, a measurement of the neutron energy width can yield the fusion temperature. Traditionally, the spread in neutron energies is measured by using time-of-flight to convert a spread in neutron energies at the source to a spread in time at detector. One potential obstacle to using this technique at the Z facility at SNL is the need to shield the neutron detectors from the intense bremsstrahlung produced. The shielding consists of eight inches of lead and the concern is that neutrons will scatter in the lead, artificially broaden the neutron pulse width and lead to an erroneous measurement. To address this issue, experiments were performed at the University of Rochester's Laboratory for Laser Energetics, which demonstrated that a reliable ion temperature measurement can be achieved behind eight inches of lead shielding. To further expand upon this finding, Monte Carlo N-Particle eXtended (MCNPX) was used to simulate the experimental geometric conditions and perform the neutron transport. MCNPX was able to confidently estimate results observed at the University of Rochester.

  10. Spectroscopic measurements of electron temperature on VX-10

    Science.gov (United States)

    Sciamma, Ella; Lee, Charles; Bengtson, Roger; Jacobson, Verlin; Lavagni-Bolanos, Frank; McCaskill, Greg

    2004-11-01

    We have made spectroscopic measurements at several locations in the VX-10 experiment in the near UV, visible, and near IR spectral region. We estimate electron temperatures using a collisional radiative model. Residual gas analysis is also performed with plasma discharges. Quantitative estimates of plasma composition are also discussed.

  11. The measured temperature and pressure of EDC37 detonation products

    Science.gov (United States)

    Ferguson, J. W.; Richley, J. C.; Sutton, B. D.; Price, E.; Ota, T. A.

    2017-01-01

    We present the experimentally determined temperature and pressure of the detonation products of EDC37; a HMX based conventional high explosive. These measurements were performed on a series of cylinder tests. The temperature measurements were undertaken at the end of the cylinder with optical fibres observing the bare explosive through a LiF window. The temperature of the products was measured for approximately 2 µs using single colour pyrometry, multicolour pyrometry and also using time integrated optical emission spectroscopy with the results from all three methods being broadly consistent. The peak temperature was found to be ≈ 3600 K dropping to ≈ 2400 K at the end of the measurement window. The spectroscopy was time integrated and showed that the emission spectra can be approximated using a grey body curve between 520 - 800 nm with no emission or absorption lines being observed. The pressure was obtained using an analytical method which requires the velocity of the expanding cylinder wall and the velocity of detonation. The pressure drops from an initial CJ value of ≈ 38 GPa to ≈ 4 GPa after 2 µs.

  12. Measurement of temperature and temperature gradient in millimeter samples by chlorine NQR

    OpenAIRE

    2015-01-01

    A mini-thermometer based on the ▫$^{35}Cl$▫ nuclear quadrupole resonance (NQR) frequency temperature dependence in the chlorates KClO▫$_3$▫ and NaClO▫$_3$▫ was built and successfully tested by measuring temperature and temperature gradient at 77 K and higher in about 100 mm▫$^3$▫ active volume of a mini Joule-Thomson refrigerator. In the design of the tank-circuit coil, an array of small coils connected in series enabled us (a) to achieve a suitable ratio of inductance to capacity in the NQR ...

  13. Electrical measurement of absolute temperature and temperature transients in a buried nanostructure under ultrafast optical heating

    Science.gov (United States)

    Yang, H. F.; Hu, X. K.; Liebing, N.; Böhnert, T.; Costa, J. D.; Tarequzzaman, M.; Ferreira, R.; Sievers, S.; Bieler, M.; Schumacher, H. W.

    2017-06-01

    We report absolute temperature measurements in a buried nanostructure with a sub-nanosecond temporal resolution. For this purpose, we take advantage of the temperature dependence of the resistance of a magnetic tunnel junction (MTJ) as detected by a fast sampling oscilloscope. After calibrating the measurement setup using steady-state electric heating, we are able to quantify temperature changes in the MTJ induced by femtosecond optical heating of the metal contact lying several 100 nm above the MTJ. We find that a femtosecond pulse train with an average power of 400 mW and a repetition rate of 76 MHz leads to a constant temperature increase of 80 K and a temporally varying temperature change of 2 K in the MTJ. The maximum temperature change in the MTJ occurs 4 ns after the femtosecond laser pulses hit the metal contact, which is supported by simulations. Our work provides a scheme to quantitatively study local temperatures in nanoscale structures and might be important for the testing of nanoscale thermal transport simulations.

  14. Estimation of Antarctic ozone loss from Ground-based total column measurements

    Directory of Open Access Journals (Sweden)

    J. Kuttippurath

    2010-03-01

    Full Text Available The passive ozone method is used to estimate ozone loss from ground-based measurements in the Antarctic. A sensitivity study shows that the O3 loss can be estimated within an accuracy of ~4%. The method is then applied to the observations from Amundsen-Scott/South Pole, Arrival Heights, Belgrano, Concordia, Dumont d'Urville, Faraday, Halley, Marambio, Neumayer, Rothera, Syowa and Zhongshan for the diagnosis of ozone loss in the Antarctic. On average, the five-day running mean of the vortex averaged ozone column loss deduced from the ground-based stations shows about 53% in 2009, 59% in 2008, 55% in 2007, 56% in 2006 and 61% in 2005. The observed O3 loss and loss rates are in very good agreement with the satellite observations (Ozone Monitoring Instrument and Sciamachy and are well reproduced by the model (Reprobus and SLIMCAT calculations.

    The historical ground-based total ozone measurements show that the depletion started in the late 1970s, reached a maximum in the early 1990s, stabilising afterwards at this level until present, with the exception of 2002, the year of an early vortex break-up. There is no indication of significant recovery yet.

    At southern mid-latitudes, a total ozone reduction of 40–50% is observed at the newly installed station Rio Gallegos and 25–35% at Kerguelen in October–November of 2008–2009 and 2005–2009 (except 2008 respectively, and of 10–20% at Macquarie Island in July–August of 2006–2009. This illustrates the significance of measurements at the edges of Antarctica.

  15. Comparison of OMI UV observations with ground-based measurements at high northern latitudes

    Directory of Open Access Journals (Sweden)

    G. Bernhard

    2015-03-01

    Full Text Available The Dutch-Finnish Ozone Monitoring Instrument (OMI on board NASA's Aura spacecraft provides estimates of erythemal (sunburning ultraviolet (UV dose rates and erythemal daily doses. These data were compared with ground-based measurements at 13 stations located throughout the Arctic and Scandinavia from 60 to 83° N. The study corroborates results from earlier work, but is based on a longer time series (eight vs. two years and considers additional data products, such as the erythemal dose rate at the time of the satellite overpass. Furthermore, systematic errors in satellite UV data resulting from inaccuracies in the surface albedo climatology used in the OMI UV algorithm are systematically assessed. At times when the surface albedo is correctly known, OMI data typically exceed ground-based measurements by 0–11%. When the OMI albedo climatology exceeds the actual albedo, OMI data may be biased high by as much as 55%. In turn, when the OMI albedo climatology is too low, OMI data can be biased low by up to 59%. Such large negative biases may occur when reflections from snow and ice, which increase downwelling UV irradiance, are misinterpreted as reflections from clouds, which decrease the UV flux at the surface. Results suggest that a better OMI albedo climatology would greatly improve the accuracy of OMI UV data products even if year-to-year differences of the actual albedo cannot be accounted for. A pathway for improving the OMI albedo climatology is discussed. Results also demonstrate that ground-based measurements from the center of Greenland, where high, homogenous surface albedo is observed year round, are ideally suited to detect systematic problems or temporal drifts in estimates of surface UV irradiance from space.

  16. Investigation of An Acoustic Temperature Transducer and its Application for Heater Temperature Measurement

    Directory of Open Access Journals (Sweden)

    Mohammad A.K. Alia

    2007-01-01

    Full Text Available Recent developments in temperature measurement have encouraged researchers to develop low-cost, simple structure, computerized generic transducers for environmental monitoring and industrial process control. The research presents a computerized technique which allows to measure temperature according to the variation of acoustic velocity (frequency in a closed waveguide. Signal conditioning and processing was carried out using labVIEW (G Language VIs. In order to evaluate the time characteristic of the transducer its response was compared with that of a reference detector (PT 100 for the same step input. Static characteristics of the transducer show a quasi-linear relationship between the measured temperature and the resonance frequency. Results of practical experiments show that in order to improve the response curve of the transducer and decrease the rising time interval it is advisable to implement thin-wall glass tubes or another material with lower thermal impedance.

  17. Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Seong W. Lee

    2006-09-30

    The project entitled, ''Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification'', was successfully completed by the Principal Investigator, Dr. S. Lee and his research team in the Center for Advanced Energy Systems and Environmental Control Technologies at Morgan State University. The major results and outcomes were presented in semi-annual progress reports and annual project review meetings/presentations. Specifically, the literature survey including the gasifier temperature measurement, the ultrasonic application in cleaning application, and spray coating process and the gasifier simulator (cold model) testing has been successfully conducted during the first year. The results show that four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. Then the gasifier simulator (hot model) design and the fabrication as well as the systematic tests on hot model were completed to test the significant factors on temperature measurement in the second year. The advanced Industrial analytic methods such as statistics-based experimental design, analysis of variance (ANOVA) and regression methods were applied in the hot model tests. The results show that operational parameters (i.e. air flow rate, water flow rate, fine dust particle amount, ammonia addition) presented significant impact on the temperature measurement inside the gasifier simulator. The experimental design and ANOVA are very efficient way to design and analyze the experiments. The results show that the air flow rate and fine dust particle amount are statistically significant to the temperature measurement. The regression model provided the functional relation between the temperature and these factors with substantial accuracy. In the last year of the project period, the ultrasonic and subsonic cleaning methods and coating

  18. Ground-based measurements of aerosol optical properties and radiative forcing in North China

    Institute of Scientific and Technical Information of China (English)

    Hongbin Chen; Xiangao Xia; Pucai Wang; Wenxing Zhang

    2007-01-01

    In order to gain an insight into the aerosol properties and their climatic effect over the continental source regions of China, it is of significance to carry out long-term ground-based measurements of aerosol optical properties and radiative forcing. A couple of temporary and permanent Aerosol Robotic Network (AERONET) sites and three comprehensive radiative sites were established in China as a result of international cooperation in recent years. Heavy aerosol loading and significant temporal and spatial variation over North China are revealed by the AERONET data.Aerosol-induced reductions in surface radiation budget are examined on the basis of collocated observations by sun photometers and pyranometers.

  19. Status Report: A Detector for Measuring the Ground State Hyperfine Splitting of Antihydrogen

    CERN Document Server

    Kolbinger, Bernadette

    2016-01-01

    The ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration at the Antiproton Decelerator at CERN aims to measure the ground state hyperfine structure of antihydrogen. A Rabi-like spectrometer line has been built for this purpose. A detector for counting antihydrogen is located at the end of the beam line. This contribution will focus on the tracking detector, whose challenging task it is to discriminate between background events and antiproton annihilations originating from antihydrogen atoms which are produced only in small amounts.

  20. Determination of natural radioactivity by gross alpha and beta measurements in ground water samples.

    Science.gov (United States)

    Turhan, S; Ozçitak, E; Taşkin, H; Varinlioğlu, A

    2013-06-01

    In this study, the activity concentrations of the gross α and β in ground water samples collected from the different drilled wells in Nevşehir province were measured to assess annual effective dose due to the ingestion of the water samples. Nevşehir province is one of the major cities of Cappadocia Region which is a popular tourist destination as it has many areas with unique geological, historic, and cultural features. Sampling and measurements were carried out in the autumn of 2011 and the spring of 2012. The values of the activity concentrations of the gross α and β measured in the water samples ranged from 80 to 380 mBq L(-1) with a mean of 192 mBq L(-1) and 120-3470 mBq L(-1) with a mean of 579 mBq L(-1) respectively. All values of the gross α were lower than the limit value of 500 mBq L(-1) while two ground water samples were found to have gross β activity concentrations of greater than 1000 mBq L(-1). Therefore two water samples were the subject of further radioisotope-specific analysis. The obtained result indicated that the elevated activity concentrations of the gross β in these water samples are dominated by (40)K activity. Annual effective doses ranged from 0.04 to 0.20 mSv y(-1).

  1. Capacitive driven-right-leg grounding in Indirect-contact ECG measurement.

    Science.gov (United States)

    Lim, Yong Gyu; Chung, Gih Sung; Park, Kwang Suk

    2010-01-01

    For the reduction of common-mode noise level in Indirect-contact ECG (IDC-ECG) measurement, a driven-right-leg grounding method was applied to the IDC-ECG. Because the IDC-ECG does not require any direct contact between the electrodes and the human skin, it is adequate for un-constraining long-term ECG measurement at home and its various applications are now under development. However, larger 60 Hz noise induced by power line appears in IDC-ECG than in conventional ECG, that is a restriction of IDC-ECG application. In this study, the driven-right-leg ground which has been used in conventional direct-contact ECG, was adapted to the IDC-ECG measurement, by feedback of the inversion of amplified common-mode noise to the body through the conductive textile laid on the chair seat. It was shown that the level of 60Hz power line noise was reduced to about -40 dB when the driven-right-leg gain was 1000.

  2. A New Ground Motion Intensity Measure, Peak Filtered Acceleration (PFA), to Estimate Collapse Vulnerability of Buildings in Earthquakes

    Science.gov (United States)

    Song, Shiyan

    In this thesis, we develop an efficient collapse prediction model, the PFA (Peak Filtered Acceleration) model, for buildings subjected to different types of ground motions. For the structural system, the PFA model covers modern steel and reinforced concrete moment-resisting frame buildings (potentially reinforced concrete shear wall buildings). For ground motions, the PFA model covers ramp-pulse-like ground motions, long-period ground motions, and short-period ground motions. To predict whether a building will collapse in response to a given ground motion, we first extract long-period components from the ground motion using a Butterworth low-pass filter with suggested order and cutoff frequency. The order depends on the type of ground motion, and the cutoff frequency depends on the building's natural frequency and ductility. We then compare the filtered acceleration time history with the capacity of the building. The capacity of the building is a constant for 2-dimentional buildings and a limit domain for 3-dimentional buildings. If the filtered acceleration exceeds the building's capacity, the building is predicted to collapse. Otherwise, it is expected to survive the ground motion. The parameters used in PFA model, which include fundamental period, global ductility and lateral capacity, can be obtained either from numerical analysis or interpolation based on the reference building system proposed in this thesis. The PFA collapse prediction model greatly reduces computational complexity while archiving good accuracy. It is verified by FEM simulations of 13 frame building models and 150 ground motion records. Based on the developed collapse prediction model, we propose to use PFA (Peak Filtered Acceleration) as a new ground motion intensity measure for collapse prediction. We compare PFA with traditional intensity measures PGA, PGV, PGD, and Sa in collapse prediction and find that PFA has the best performance among all the intensity measures. We also provide a

  3. Acoustic-Seismic Coupling in Porous Ground - Measurements and Analysis for On-Site-Inspection Support

    Science.gov (United States)

    Liebsch, Mattes; Gorschlüter, Felix; Altmann, Jürgen

    2014-05-01

    During on-site inspections (OSI) of the Comprehensive Nuclear Test Ban Treaty Organisation (CTBTO) a local seismic network can be installed to measure seismic aftershock signals of an assumed underground nuclear explosion. These signals are caused by relaxation processes in and near the cavity created by the explosion and when detected can lead to a localisation of the cavity. This localisation is necessary to take gas samples from the ground which are analysed for radioactive noble gas isotopes to confirm or dismiss the suspicion of a nuclear test. The aftershock signals are of very low magnitude so they can be masked by different sources, in particular periodic disturbances caused by vehicles and aircraft in the inspection area. Vehicles and aircraft (mainly helicopters) will be used for the inspection activities themselves, e.g. for overhead imagery or magnetic-anomaly sensing. While vehicles in contact with the ground can excite soil vibrations directly, aircraft and vehicles alike emit acoustic waves which excite soil vibrations when hitting the ground. These disturbing signals are of periodic nature while the seismic aftershock signals are pulse-shaped, so their separation is possible. The understanding of the coupling of acoustic waves to the ground is yet incomplete, a better understanding is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. In a project funded by the Young Scientist Research Award of the CTBTO to one of us (ML), we investigated the acoustic-seismic coupling of airborne signals of jet aircraft and artificially induced ones by a speaker. During a measurement campaign several acoustic and seismic sensors were placed below the take-off trajectory of an airport at 4 km distance. Therefore taking off and landing jet aircraft passed nearly straightly above the setup. Microphones were placed close to the ground to record the sound pressure of incident

  4. High-stability temperature control for ST-7/LISA Pathfinder gravitational reference sensor ground verification testing

    Science.gov (United States)

    Higuchi, S.; Allen, G.; Bencze, W.; Byer, R.; Dang, A.; DeBra, D. B.; Lauben, D.; Dorlybounxou, S.; Hanson, J.; Ho, L.; Huffman, G.; Sabur, F.; Sun, K.; Tavernetti, R.; Rolih, L.; Van Patten, R.; Wallace, J.; Williams, S.

    2006-03-01

    This article demonstrates experimental results of a thermal control system developed for ST-7 gravitational reference sensor (GRS) ground verification testing which provides thermal stability δT control of the LISA spacecraft to compensate solar irradiate 1/f fluctuations. Although for ground testing these specifications can be met fairly readily with sufficient insulation and thermal mass, in contrast, for spacecraft the very limited thermal mass calls for an active control system which can simultaneously meet disturbance rejection and stability requirements in the presence of long time delay; a considerable design challenge. Simple control laws presently provide ~ 1mK/surdHz for >24 hours. Continuing development of a model predictive feedforward control algorithm will extend performance to <1 mK/surdHz at f < 0.01 mHz and possibly lower, extending LISA coverage of super massive black hole mergers.

  5. Concurrent aerial and ground-based optical turbulence measurements along a long elevated path

    Science.gov (United States)

    Nowlin, Scott R.; Hahn, Ila L.; Hugo, Ronald J.; Bishop, Kenneth P.

    1999-08-01

    We report concurrent ground-based scintillator/airborne constant-current anemometer (CCA) measurements made along a 51.4 km-long slant path between Salinas and North Oscura peaks, NM. Simultaneous path-averaged refractive index structure parameter (Cn2) measurements from the CCA and the scintillometer show good agreement, with deviations apparently due to localized effects of underlying topography and metrology. Statistics from both data sets are presented in the form of histograms and cumulative distribution functions. CCA Cn2 point measurements are compared to underlying surface topography. We discuss possible effects of instruments anomalies, analysis methods, and atmospheric velocity fluctuation levels. We present conclusions and made recommendations for future similar experimental efforts.

  6. Autocorrelation in ultraviolet radiation measured at ground level using detrended fluctuation analysis

    Science.gov (United States)

    da Silva Filho, Paulo Cavalcante; da Silva, Francisco Raimundo; Corso, Gilberto

    2016-07-01

    In this study, we analyzed the autocorrelation among four ultraviolet (UV) radiation data sets obtained at 305 nm, 320 nm, 340 nm, and 380 nm. The data were recorded at ground level at the INPE climate station in Natal, RN, Brazil, which is a site close to the equator. The autocorrelations were computed by detrended fluctuation analysis (DFA) to estimate the index α. We found that the ​fluctuations in the UV radiation data were fractal, with scale-free behavior at a DFA index α ≃ 0.7. In addition, we performed a power law spectral analysis, which showed that the power spectrum exhibited a power law behavior with an exponent of β ≃ 0.45. Given that the theoretical result is β = 2 α - 1, these two results are in good agreement. Moreover, the application of the DFA ​method to the UV radiation data required detrending using a polynomial with an order of at least eight, which was related to the complex daily solar radiation curve obtained at ground level in a tropical region. The results indicated that the α exponent of UV radiation is similar to other climatic records such as air temperature, wind, or rain, but not solar activity.

  7. Experimental evaluation of IGBT junction temperature measurement via peak gate current

    DEFF Research Database (Denmark)

    Baker, Nick; Munk-Nielsen, Stig; Iannuzzo, Francesco

    2015-01-01

    Temperature sensitive electrical parameters allow junction temperature measurements on power semiconductors without modification to module packaging. The peak gate current has recently been proposed for IGBT junction temperature measurement and relies on the temperature dependent resistance of th...

  8. Core Temperature Measurement During Submaximal Exercise: Esophageal, Rectal, and Intestinal Temperatures

    Science.gov (United States)

    Lee, Stuart M. C.; Williams, W. Jon; Schneider, Suzanne M.

    2000-01-01

    The purpose of this study was to determine if intestinal temperature (Tin) might be in acceptable alternative to esophageal (Tes) and rectal temperature (Trec) to assess thermoregulation during supine exercise. We hypothesized that Tin would have values similar to Tes and a response time similar to Trec, but the rate of temperature change across time would not be different between measurement sites. Seven subjects completed a continuous supine protocol of 20 min of rest, 20 min of cycle exercise at 40% peak oxygen consumption (VO2pk), 20 min of cycle exercise at 65% V02pk, and 20 min of recovery. Tes, Trec, and Tin were recorded each min throughout the test. Temperatures were not different after 20 min of rest, but Trec was less than the Tes and Tin at the end of the 40% and 65% VO2pk stages. After 20 min of recovery, Tes was less than either Trec or Tin, which were not different from each other. Time to threshold for increased temperature from rest was greater for Trec than Tes but not different from Tin. Time to reach peak temperature was greater for Tin and Trec than Tes. Similarly, time to a decrease in temperature after exercise was greater for Trec than Tes, but not different from Tin. The rate of temperature change from threshold to the end of the 40% VO2pk stage was not different between measurement sites. However, the rate of change during recovery was more negative for Tes than Tin and Trec, which were different from each other. Measurement of Tin may he an acceptable alternative to Tes and Trec with an understanding of its limitations.

  9. Simultaneous wind and temperature measurements in the middle atmosphere with a twin Doppler lidar

    Science.gov (United States)

    Hildebrand, Jens; Baumgarten, Gerd; Fiedler, Jens; Lübken, Franz-Josef

    2016-04-01

    Winds play an important role for the filtering of gravity waves traveling from the ground to higher altitudes. They control the propagation of gravity waves and the amount of transported energy and momentum. The thermal structure of the atmosphere determines its stability, hence the buoyancy frequency. Therefore, knowing winds and temperatures in the middle atmosphere is crucial to study and interpret atmospheric dynamics comprehensively. Both temperature and wind affect the propagation of infrasound waves through the middle atmosphere. Observing winds and temperatures in the middle atmosphere on routine basis is challenging since a large part of this altitude range is not accessible by radars or satellites. Using the Doppler Rayleigh Iodine Spectrometer DoRIS, our Rayleigh/Mie/Raman lidar at the Arctic station ALOMAR in Northern Norway (69°N, 16°E) is capable to measure winds and temperatures simultaneously in the middle atmosphere between about 20 and 80 km altitude. Since two independently steerable telescopes are used, we can derive two wind components at once. Winds and temperatures are measured even under daylight conditions, yielding observations spanning multiple days, which is essential for, e.g., gravity-wave studies. We will present results from case studies and a larger data set covering winter situations between 2012 and 2015, including stratospheric warmings and periods of enhanced gravity wave activity.

  10. Performance measurements of multilayer insulation at variable cold temperature

    Science.gov (United States)

    Funke, Thomas; Haberstroh, Christoph

    2012-06-01

    Multilayer insulation (MLI) is commonly used in most cryogenic devices such as LHe-cryostats or superconductive cables. Typically thermal performance measurements have been carried out using bath cryostats. Inherent to all this devices is a fixed cold temperature at the boiling point of the particular cryogenic liquid. A recent approach for cryogenic pressure vessels covers a broad temperature range, i.e. hydrogen storage from 20 K to ambient temperature. Thus, a new calorimeter cryostat has been designed at TU Dresden to meet these requirements. The design as a flow cryostat allows the measurement of the thermal performance with variable cold temperature between 20 K and 300 K. It can be operated in vertical as well as in horizontal orientation. The insulation material is wrapped around a nearly isothermal cylinder which is held at the desired temperature by a cooling fluid. Preferably LHe respectively helium cold gas is used. Several design features reduce undesired interference errors. It is reported about design and equipment of this cryostat plus first experiences in operation

  11. Ambient temperature during torpor affects NREM sleep EEG during arousal episodes in hibernating European ground squirrels

    NARCIS (Netherlands)

    Strijkstra, AM; Daan, S

    1997-01-01

    Ambient temperature (T-a) systematically affects the frequency of arousal episodes in mammalian hibernation. This variation might hypothetically be attributed to temperature effects on the rate of sleep debt increase in torpor. We studied this rate by recording sleep electroencephalogram (EEG) in

  12. MEaSUREs Land Surface Temperature from GOES Satellites

    Science.gov (United States)

    Pinker, Rachel T.; Chen, Wen; Ma, Yingtao; Islam, Tanvir; Borbas, Eva; Hain, Chris; Hulley, Glynn; Hook, Simon

    2017-04-01

    Information on Land Surface Temperature (LST) can be generated from observations made from satellites in low Earth orbit (LEO) such as MODIS and ASTER and by sensors in geostationary Earth orbit (GEO) such as GOES. Under a project titled: "A Unified and Coherent Land Surface Temperature and Emissivity Earth System Data Record for Earth Science" led by Jet Propulsion Laboratory, an effort is underway to develop long term consistent information from both such systems. In this presentation we will describe an effort to derive LST information from GOES satellites. Results will be presented from two approaches: 1) based on regression developed from a wide range of simulations using MODTRAN, SeeBor Version 5.0 global atmospheric profiles and the CAMEL (Combined ASTER and MODIS Emissivity for Land) product based on the standard University of Wisconsin 5 km emissivity values (UWIREMIS) and the ASTER Global Emissivity Database (GED) product; 2) RTTOV radiative transfer model driven with MERRA-2 reanalysis fields. We will present results of evaluation of these two methods against various products, such as MOD11, and ground observations for the five year period of (2004-2008).

  13. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    Science.gov (United States)

    Razenkov, Ilya I.; Eloranta, Edwin W.

    2016-06-01

    The High Spectral Resolution Lidar (HSRL) designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter) allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm).

  14. Atmospheric Temperature Profile Measurements Using Mobile High Spectral Resolution Lidar

    Directory of Open Access Journals (Sweden)

    Razenkov Ilya I.

    2016-01-01

    Full Text Available The High Spectral Resolution Lidar (HSRL designed at the University of Wisconsin-Madison discriminates between Mie and Rayleigh backscattering [1]. It exploits the Doppler effect caused by thermal motion of molecules, which broadens the spectrum of the transmitted laser light. That allows for absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different absorption line widths (a regular iodine vapor filter and Argon buffered iodine filter allow for atmospheric temperature profile measurements. The sensitivity of the measured signal-to-air temperature ratio is around 0.14%/K. The instrument uses a shared telescope transmitter-receiver design and operates in eyesafe mode (the product of laser average power and telescope aperture equals 0.1 Wm2 at 532 nm.

  15. Evaluation of colour space transformation suitability to optical temperature measurements

    Science.gov (United States)

    Ziemba, A.; Fornalik-Wajs, E.

    2016-09-01

    All optical measurement methods base on the image analysis and relation between the measured parameter and some image features. In Digital Particle Image Thermometry (DPIT), such relation represents a function between the temperature and particles’ colour (i.a. Thermochromic Liquid Crystals). For the quantitative data acquisition the “colour” information is necessary, therefore the colour spaces based on hue H are used. Due to the big number of numerical operations needed in the analysis, the choice of colour space transformation is significant due to the accuracy and computational time. In this paper commonly applied RGB to HSI colour spaces’ transformations were compared and evaluation of their suitability to temperature measurement was performed. Time of obtaining the final results was considered as the main criterion. Appropriate calculations were conducted and presented.

  16. Thermal conductivity measurements at cryogenic temperatures at LASA

    Energy Technology Data Exchange (ETDEWEB)

    Broggi, F.; Pedrini, D.; Rossi, L. [INFN, Milan (Italy)]|[Laboratorio LASA, Segrate, Milan (Italy)

    1995-08-01

    Here the improvement realised to have better control of the reference junction temperature and measurements carried out on Nb{sub 3}Sn cut out from 2 different coils (named LASA3 and LASA5), showing the difference between the longitudinal and the transverse thermal conductivity, is described. Two different methods of data analysis are presented, the DAM (derivative approximated method) and the TCI (thermal conductivity integral). The data analysis for the tungsten and the LASA5 coil has been done according to the two methods showing that the TCI method with polynomial functions is not adequate to describe the thermal conductivity. Only a polynomial fit based on the TCI method but limited at a lower order than the nominal, when the data are well distributed along the range of measurements, can describe reasonably the thermal conductivity dependence with the temperature. Finally the measurements on a rod of BSCCO 2212 high T{sub c} superconductor are presented.

  17. Attachment of Free Filament Thermocouples for Temperature Measurements on CMC

    Science.gov (United States)

    Lei, Jih-Fen; Cuy, Michael D.; Wnuk, Stephen P.

    1997-01-01

    Ceramic Matrix Composites (CMC) are being developed for use as enabling materials for advanced aeropropulsion engine and high speed civil transport applications. The characterization and testing of these advanced materials in hostile, high-temperature environments require accurate measurement of the material temperatures. Commonly used wire Thermo-Couples (TC) can not be attached to this ceramic based material via conventional spot-welding techniques. Attachment of wire TC's with commercially available ceramic cements fail to provide sufficient adhesion at high temperatures. While advanced thin film TC technology provides minimally intrusive surface temperature measurement and has good adhesion on the CMC, its fabrication requires sophisticated and expensive facilities and is very time consuming. In addition, the durability of lead wire attachments to both thin film TC's and the substrate materials requires further improvement. This paper presents a newly developed attachment technique for installation of free filament wire TC's with a unique convoluted design on ceramic based materials such as CMC's. Three CMC's (SiC/SiC CMC and alumina/alumina CMC) instrumented with type IC, R or S wire TC's were tested in a Mach 0.3 burner rig. The CMC temperatures measured from these wire TC's were compared to that from the facility pyrometer and thin film TC's. There was no sign of TC delamination even after several hours exposure to 1200 C. The test results proved that this new technique can successfully attach wire TC's on CMC's and provide temperature data in hostile environments. The sensor fabrication process is less expensive and requires very little time compared to that of the thin film TC's. The same installation technique/process can also be applied to attach lead wires for thin film sensor systems.

  18. Temperature Measurement in WTE Boilers Using Suction Pyrometers

    Directory of Open Access Journals (Sweden)

    Fabio Rinaldi

    2013-11-01

    Full Text Available The temperature of the flue-gas in the post combustion zone of a waste to energy (WTE plant has to be maintained within a fairly narrow range of values, the minimum of which is prescribed by the European Waste Directive 2000/76/CE, whereas the maximum value must be such as to ensure the preservation of the materials and the energy efficiency of the plant. A high degree of accuracy in measuring and controlling the aforementioned temperature is therefore required. In almost the totality of WTE plants this measurement process is carried out by using practical industrial thermometers, such as bare thermocouples and infrared radiation (IR pyrometers, even if affected by different physical contributions which can make the gas temperature measurements incorrect. The objective of this paper is to analyze errors and uncertainties that can arise when using a bare thermocouple or an IR pyrometer in a WTE plant and to provide a method for the in situ calibration of these industrial sensors through the use of suction pyrometers. The paper describes principle of operation, design, and uncertainty contributions of suction pyrometers, it also provides the best estimation of the flue-gas temperature in the post combustion zone of a WTE plant and the estimation of its expanded uncertainty.

  19. Measurements of fluctuating gas temperatures using compensated fine wire thermocouples

    Science.gov (United States)

    Nina, M. N. R.; Pita, G. P.

    1985-09-01

    Thermocouples with three different wire diameters (15, 40 and 50 microns) were used in association with an analog compensation circuit connected to a data acquisition system. Measurements of the time constant were performed using two different heating techniques; Joule effect and external heating by laser beam. The thermocouples were used to quantify the fluctuating temperature field in a hot air jet and in a premixed propane flame. In the reacting case the catalytic effect was evaluated by comparing coated and uncoated wires. Conclusions were also obtained regarding frequency spectra, temperature probability distribution function and time constant.

  20. EPR-based distance measurements at ambient temperature

    Science.gov (United States)

    Krumkacheva, Olesya; Bagryanskaya, Elena

    2017-07-01

    Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0 nm. It was proposed more than 30 years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (T relaxation enhancement; RE). In this paper, we review the features of PD EPR and RE at ambient temperatures, in particular, requirements on electron spin phase memory time, ways of immobilization of biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities.

  1. Aerosol Single Scattering Albedo retrieved from ground-based measurements in the UV-visible

    Directory of Open Access Journals (Sweden)

    V. Buchard

    2010-07-01

    Full Text Available Estimates of Aerosol Single Scattering Albedo (SSA from ground-based spectral measurements in the UV-visible are conducted at Villeneuve d'Ascq (VdA in France. In order to estimate this parameter, measurements of global and diffuse UV-visible solar irradiances performed under cloud-free conditions since 2003 with a spectroradiometer operated by the Laboratoire d'Optique Atmosphérique (LOA are used. The technique consists in comparing the measured irradiance values to modelled irradiances computed for various SSA. The retrieval is restricted to the 330–450 nm range to avoid ozone influence.

    For validation purpose, the retrieved values of SSA at 440 nm are compared to the ones obtained from sunphotometer measurements of the AERONET/PHOTONS network available on the LOA site. The results are rather satisfying: in 2003 and 2005–2006 the Root Mean Square (RMS of the differences are about 0.05, these values are within the uncertainty domain of retrieval of both products. Distinction between days characterized by different aerosol content, by means of the aerosol optical thickness (AOT retrieved from ground-based measurements at the same wavelength, shows that the comparisons between both products are better when AOT are higher. Indeed in case AOT are greater than 0.2, the RMS is 0.027 in 2003 and 0.035 in 2005–2006. The SSA estimated at 340 and 380 nm from ground-based spectra are also studied, though no validation can be carried out with sunphotometer data (440 nm is the shortest wavelength at which the SSA is provided by the network. The good comparisons observed at 440 nm can let assume that the SSA retrieved from spectroradiometer measurements at the two other wavelengths are also obtained with a good confidence level. Thus these values in the UV range can be used to complete aerosol data provided by AERONET/PHOTONS at VdA. Moreover they can be used for a best knowledge of the aerosol absorption that is necessary to quantify the

  2. Validation of mathematical models for Salmonella growth in raw ground beef under dynamic temperature conditions representing loss of refrigeration.

    Science.gov (United States)

    McConnell, Jennifer A; Schaffner, Donald W

    2014-07-01

    Temperature is a primary factor in controlling the growth of microorganisms in food. The current U. S. Food and Drug Administration Model Food Code guidelines state that food can be kept out of temperature control for up to 4 h without qualifiers, or up to 6 h, if the food product starts at an initial 41 °F (5 °C) temperature and does not exceed 70 °F (21 °C) at 6 h. This project validates existing ComBase computer models for Salmonella growth under changing temperature conditions modeling scenarios using raw ground beef as a model system. A cocktail of Salmonella serovars isolated from different meat products ( Salmonella Copenhagen, Salmonella Montevideo, Salmonella Typhimurium, Salmonella Saintpaul, and Salmonella Heidelberg) was made rifampin resistant and used for all experiments. Inoculated samples were held in a programmable water bath at 4.4 °C (40 °F) and subjected to linear temperature changes to different final temperatures over various lengths of time and then returned to 4.4 °C (40 °F). Maximum temperatures reached were 15.6, 26.7, or 37.8 °C (60, 80, or 100 °F), and the temperature increases took place over 4, 6, and 8 h, with varying cooling times. Our experiments show that when maximum temperatures were lower (15.6 or 26.7 °C), there was generally good agreement between the ComBase models and experiments: when temperature increases of 15.6 or 26.7 °C occurred over 8 h, experimental data were within 0.13 log CFU of the model predictions. When maximum temperatures were 37 °C, predictive models were fail-safe. Overall bias of the models was 1.11. and accuracy was 2.11. Our experiments show the U.S. Food and Drug Administration Model Food Code guidelines for holding food out of temperature control are quite conservative. Our research also shows that the ComBase models for Salmonella growth are accurate or fail-safe for dynamic temperature conditions as might be observed due to power loss from natural disasters or during transport out of

  3. Global Fine Particulate Matter Concentrations and Trends Inferred from Satellite Observations, Modeling, and Ground-Based Measurements

    Science.gov (United States)

    Martin, Randall; van Donkelaar, Aaron; Boys, Brian; Philip, Sajeev; Lee, Colin; Snider, Graydon; Weagle, Crystal

    2014-05-01

    Outdoor fine particulate matter (PM2.5) is a leading environmentally-related cause of premature mortality worldwide. However, ground-level PM2.5 monitors remain sparse in many regions of the world. Satellite remote sensing from MODIS, MISR, and SeaWiFS yields a powerful global data source to address this issue. Global modeling (GEOS-Chem) plays a critical role in relating these observations to ground-level concentrations. The resultant satellite-based estimates of PM2.5 indicate dramatic variation around the world, with implications for global public health. A new ground-based aerosol network (SPARTAN) offers valuable measurements to understand the relationship between satellite observations of aerosol optical depth and ground-level PM2.5 concentrations. This talk will highlight recent advances in combining satellite remote sensing, global modeling, and ground-based measurements to improve understanding of global population exposure to outdoor fine particulate matter.

  4. Comparison and error analysis of remotely measured waveheight by high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    High frequency ground wave radar (HFGWR) has unique advantage in the survey of dynamical factors, such as sea surface current, sea wave, and sea surface wind in marine conditions in coastal sea area.Compared to marine satellite remote sensing, it involves lower cost, has higher measuring accuracy and spatial resolution and sampling frequency. High frequency ground wave radar is a new land based remote sensing instrument with superior vision and greater application potentials. This paper reviews the development history and application status of high frequency wave radar, introduces its remote-sensing principle and method to inverse offshore fluid, and wave and wind field. Based on the author's "863 Project", this paper recounts comparison and verification of radar remote-sensing value, the physical calibration of radar-measured data and methods to control the quality of radar-sensing data. The authors discuss the precision of radar-sensing data's inversing on offshore fluid field and application of the assimilated data on assimilation.

  5. Taking Stock of Circumboreal Forest Carbon With Ground Measurements, Airborne and Spaceborne LiDAR

    Science.gov (United States)

    Neigh, Christopher S. R.; Nelson, Ross F.; Ranson, K. Jon; Margolis, Hank A.; Montesano, Paul M.; Sun, Guoqing; Kharuk, Viacheslav; Naesset, Erik; Wulder, Michael A.; Andersen, Hans-Erik

    2013-01-01

    The boreal forest accounts for one-third of global forests, but remains largely inaccessible to ground-based measurements and monitoring. It contains large quantities of carbon in its vegetation and soils, and research suggests that it will be subject to increasingly severe climate-driven disturbance. We employ a suite of ground-, airborne- and space-based measurement techniques to derive the first satellite LiDAR-based estimates of aboveground carbon for the entire circumboreal forest biome. Incorporating these inventory techniques with uncertainty analysis, we estimate total aboveground carbon of 38 +/- 3.1 Pg. This boreal forest carbon is mostly concentrated from 50 to 55degN in eastern Canada and from 55 to 60degN in eastern Eurasia. Both of these regions are expected to warm >3 C by 2100, and monitoring the effects of warming on these stocks is important to understanding its future carbon balance. Our maps establish a baseline for future quantification of circumboreal carbon and the described technique should provide a robust method for future monitoring of the spatial and temporal changes of the aboveground carbon content.

  6. High temperature measurements in irradiated environment using Raman fiber optics distributed temperature sensing

    Science.gov (United States)

    Lecomte, Pierre; Blairon, Sylvain; Boldo, Didier; Taillade, Frédéric; Caussanel, Matthieu; Beauvois, Gwendal; Duval, Hervé; Grieu, Stéphane; Laffont, Guillaume; Lainé, Frédéric; Carrel, Frédéric

    2016-04-01

    Optical fiber temperature sensors using Raman effect are a promising technology for temperature mapping of nuclear power plant pipes. These pipes are exposed to high temperature (350 °C) and gamma radiations, which is a harsh environment for standard telecom fibers. Therefore metal coated fibers are to be used to perform measurement over 300 °C. Temperature variations can affect the attenuation of the metallic coated fiber before irradiation. The latter induces an extra attenuation, due to light absorption along the fiber by radiation-induced defects. The recombination of these defects can be strongly accelerated by the high temperature value. As backscattered Raman signal is weak it is important to test optical fibers under irradiation to observe how it gets attenuated. Different experiments are described in this conference paper: two in situ irradiation campaigns with different dose rates at, both ambient and high temperature. We observe that the tested off-the-shelf metallic coated fibers have a high attenuation under irradiation. We also noticed the fact that thermal annealing plays a massive role in the +300 °C temperature range.

  7. Use of aluminum nitride to obtain temperature measurements in a high temperature and high radiation environment

    Science.gov (United States)

    Wernsman, Bernard R.; Blasi, Raymond J.; Tittman, Bernhard R.; Parks, David A.

    2016-04-26

    An aluminum nitride piezoelectric ultrasonic transducer successfully operates at temperatures of up to 1000.degree. C. and fast (>1 MeV) neutron fluencies of more than 10.sup.18 n/cm.sup.2. The transducer comprises a transparent, nitrogen rich aluminum nitride (AlN) crystal wafer that is coupled to an aluminum cylinder for pulse-echo measurements. The transducer has the capability to measure in situ gamma heating within the core of a nuclear reactor.

  8. Improving the atmospheric wind speed measured accuracy by the ground-based airglow imaging interferometer

    Science.gov (United States)

    Tang, Yuanhe; Yang, Rui; Gao, Haiyang; Zhai, Fengtao; Yu, Yang; Cui, Jin

    2017-02-01

    A prototype ground based airglow imaging interferometer (GBAII) has been constructed to observe the upper atmospheric wind velocity and temperature at an altitude of 90-100 km, but the GBAII's wind speed accuracy was found to be unsatisfactory with a value of 21.0 m/s. Three theoretical aspects have been investigated to improve the accuracy, with the following finding: 1) By replacing the surface coatings of the GBAII's 6 lenses and Michelson interferometer (MI) with a new wind-speed infrared film rather than the original visible light film, the accuracy can be increased by 3.0 m/s. 2) By replacing the original charge-coupled device (CCD) with a quantum efficiency (QE) of 0.38 at the wavelength of approximately 866 nm by an electron multiplying CCD (EMCCD) with QE of 0.95, the accuracy can be increased by 6.7 m/s. By adding all the factors that improve the accuracy of the GBAII, it can be improved by 15.0 m/s, which realizes the original aim of wind speed accuracy of 6.0 m/s. Experimental results have been obtained for two aspects: 1) By replacing the surface film on the GBAII's 6 lenses and MI interface, the wind speed accuracy has been increased by 3.8 m/s. 2) A new GBAII temperature controller has been constructed to control the environmental temperature in 0.2 K steps. The results obtained by the GBAII on Dec. 6, 2013 show an average atmospheric temperature of 206.5 K, zonal wind speed of -26.8 m/s and meridional wind speed of 28.1 m/s. These results are close to those of the TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics) satellite Doppler interferometer (TIDI) data collected at almost the same time.

  9. Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    Science.gov (United States)

    Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.

    1977-01-01

    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.

  10. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Seong W. Lee

    2003-09-01

    During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalized room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.

  11. The 3-Hour-Interval Prediction of Ground-Level Temperature in South Korea Using Dynamic Linear Models

    Institute of Scientific and Technical Information of China (English)

    Keon-TaeSOHN; Deuk-KyunRHA; Young-KyungSEO

    2003-01-01

    The 3-hour-interval prediction of ground-level temperature from +00 h out to +45 h in South Korea(38 stations) is performed using the DLM (dynamic linear model) in order to eliminate the systematic error of numerical model forecasts. Numerical model forecasts and observations are used as input values of the DLM. According to the comparison of the DLM forecasts to the KFM (Kalman filter model) forecasts with RMSE and bias, the DLM is useful to improve the accuracy of prediction.

  12. Different Multifractal Scaling of the 0 cm Average Ground Surface Temperature of Four Representative Weather Stations over China

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2013-01-01

    Full Text Available The temporal scaling properties of the daily 0 cm average ground surface temperature (AGST records obtained from four selected sites over China are investigated using multifractal detrended fluctuation analysis (MF-DFA method. Results show that the AGST records at all four locations exhibit strong persistence features and different scaling behaviors. The differences of the generalized Hurst exponents are very different for the AGST series of each site reflecting the different scaling behaviors of the fluctuation. Furthermore, the strengths of multifractal spectrum are different for different weather stations and indicate that the multifractal behaviors vary from station to station over China.

  13. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  14. Development of Neural Network Model for Predicting Peak Ground Acceleration Based on Microtremor Measurement and Soil Boring Test Data

    National Research Council Canada - National Science Library

    Kerh, T; Lin, J. S; Gunaratnam, D

    2012-01-01

    .... This paper is therefore aimed at developing a neural network model, based on available microtremor measurement and on-site soil boring test data, for predicting peak ground acceleration at a site...

  15. Ir Thermographic Measurements of Temperatures and Heat Fluxes in Hypersonic Plasma Flow

    Science.gov (United States)

    Cardone, G.; Tortora, G.; del Vecchio, A.

    2005-02-01

    The technological development achieved in instruments and methodology concerning both flights and ground hypersonic experiment (employed in space plane planning) goes towards an updating and a standardization of the heat flux technical measurements. In fact, the possibility to simulate high enthalpy flow relative to reentry condition by hypersonic arc-jet facility needs devoted methods to measure heat fluxes. Aim of this work is to develop an experimental numerical technique for the evaluation of heat fluxes over Thermal Protection System (TPS) by means of InfraRed (IR) thermographic temperature measurements and a new heat flux sensor (IR-HFS). We tackle the numerical validation of IR-HFS, apply the same one to the Hyflex nose cap model and compare the obtained results with others ones obtained by others methodology.

  16. Spatially and temporally resolved temperature measurement in laser media.

    Science.gov (United States)

    Körner, Jörg; Yue, Fangxin; Hein, Joachim; Kaluza, Malte C

    2016-06-01

    A technique to measure the spatially resolved temperature distribution in a laser medium is presented. It is based on the temperature dependence of the absorption cross section close to the zero-phonon line of the active medium. Since other materials in the beam path exhibit a high (and constant) transmission at this wavelength, the method can easily be applied in realistic amplifier setups. The method was successfully tested on three different samples, which were pumped by a pulsed laser diode with up to 150 W average power: side-cooled Yb:YAG and Yb:fluoride-phosphate glass at room temperature and face-cooled Yb:CaF2 at 120 K.

  17. Thermal measurement. Nanoscale temperature mapping in operating microelectronic devices.

    Science.gov (United States)

    Mecklenburg, Matthew; Hubbard, William A; White, E R; Dhall, Rohan; Cronin, Stephen B; Aloni, Shaul; Regan, B C

    2015-02-06

    Modern microelectronic devices have nanoscale features that dissipate power nonuniformly, but fundamental physical limits frustrate efforts to detect the resulting temperature gradients. Contact thermometers disturb the temperature of a small system, while radiation thermometers struggle to beat the diffraction limit. Exploiting the same physics as Fahrenheit's glass-bulb thermometer, we mapped the thermal expansion of Joule-heated, 80-nanometer-thick aluminum wires by precisely measuring changes in density. With a scanning transmission electron microscope and electron energy loss spectroscopy, we quantified the local density via the energy of aluminum's bulk plasmon. Rescaling density to temperature yields maps with a statistical precision of 3 kelvin/hertz(-1/2), an accuracy of 10%, and nanometer-scale resolution. Many common metals and semiconductors have sufficiently sharp plasmon resonances to serve as their own thermometers. Copyright © 2015, American Association for the Advancement of Science.

  18. VALIDATION OF COOKING TIMES AND TEMPERATURES FOR THERMAL INACTIVATION OF YERSINIA PESTIS STRAINS KIM5 AND CDC-A1112 IN GROUND BEEF

    Science.gov (United States)

    The thermal stability of Yersinia pestis inoculated into retail ground beef (25 per cent fat) and heated in a temperature-controlled water bath or cooked on commercial grills was evaluated. Irradiated ground beef (3-g portions) was inoculated with ca. 6.7 log10 CFU/g of Y. pestis strain KIM5 and hea...

  19. Measurement and interpretation of low levels of dissolved oxygen in ground water

    Science.gov (United States)

    White, A.F.; Peterson, M.L.; Solbau, R.D.

    1990-01-01

    A Rhodazine-D colorimetric technique was adapted to measure low-level dissolved oxygen concentrations in ground water. Prepared samples containing between 0 and 8.0 ??moles L-1 dissolved oxygen in equilibrium with known gas mixtures produced linear spectrophotometric absorbance with a lower detection limit of 0.2 ??moles L-1. Excellent reproducibility was found for solutions ranging in composition from deionized water to sea water with chemical interferences detected only for easily reduced metal species such as ferric ion, cupric ion, and hexavalent chromium. Such effects were correctable based on parallel reaction stoichiometries relative to oxygen. The technique, coupled with a downhole wire line tool, permitted low-level monitoring of dissolved oxygen in wells at the selenium-contaminated Kesterson Reservoir in California. Results indicated a close association between low but measurable dissolved oxygen concentrations and mobility of oxidized forms of selenium. -from Authors

  20. Long-Term Trends in Space-Ground Atmospheric Propagation Measurements

    Science.gov (United States)

    Zemba, Michael J.; Nessel, James A.; Morse, Jacquelynne R.

    2015-01-01

    Propagation measurement campaigns are critical to characterizing the atmospheric behavior of a location and efficiently designing space-ground links. However, as global climate change affects weather patterns, the long-term trends of propagation data may be impacted over periods of decades or longer. Particularly, at high microwave frequencies (10 GHz and above), rain plays a dominant role in the attenuation statistics, and it has been observed that rain events over the past 50 years have trended toward increased frequency, intensity, and rain height. In the interest of quantifying the impact of these phenomena on long-term trends in propagation data, this paper compares two 20 GHz measurement campaigns both conducted at NASAs White Sands facility in New Mexico. The first is from the Advanced Communications Technology Satellite (ACTS) propagation campaign from 1994 to 1998, while the second is amplitude data recorded during a site test interferometer (STI) phase characterization campaign from 2009 to 2014.

  1. Earth's albedo variations 1998-2014 as measured from ground-based earthshine observations

    CERN Document Server

    Palle, E; Montanes-Rodriguez, P Pilar; Shumko, A; Gonzalez-Merino, B; Lombilla, C Martinez; Jimenez-Ibarra, F; Shumko, S; Sanroma, E; Hulist, A; Miles-Paez, P; Murgas, F; Nowak, G; Koonin, SE

    2016-01-01

    The Earth's albedo is a fundamental climate parameter for understanding the radiation budget of the atmosphere. It has been traditionally measured from space platforms, but also from the ground for sixteen years from Big Bear Solar Observatory by observing the Moon. The photometric ratio of the dark (earthshine) to the bright (moonshine) sides of the Moon is used to determine nightly anomalies in the terrestrial albedo, with the aim is of quantifying sustained monthly, annual and/or decadal changes. We find two modest decadal scale cycles in the albedo, but with no significant net change over the sixteen years of accumulated data. Within the evolution of the two cycles, we find periods of sustained annual increases, followed by comparable sustained decreases in albedo. The evolution of the earthshine albedo is in remarkable agreement with that from the CERES instruments, although each method measures different slices of the Earth's Bond albedo.

  2. Earth's albedo variations 1998-2014 as measured from ground-based earthshine observations

    Science.gov (United States)

    Palle, E.; Goode, P. R.; Montañés-Rodríguez, P.; Shumko, A.; Gonzalez-Merino, B.; Lombilla, C. Martinez; Jimenez-Ibarra, F.; Shumko, S.; Sanroma, E.; Hulist, A.; Miles-Paez, P.; Murgas, F.; Nowak, G.; Koonin, S. E.

    2016-05-01

    The Earth's albedo is a fundamental climate parameter for understanding the radiation budget of the atmosphere. It has been traditionally measured not only from space platforms but also from the ground for 16 years from Big Bear Solar Observatory by observing the Moon. The photometric ratio of the dark (earthshine) to the bright (moonshine) sides of the Moon is used to determine nightly anomalies in the terrestrial albedo, with the aim of quantifying sustained monthly, annual, and/or decadal changes. We find two modest decadal scale cycles in the albedo, but with no significant net change over the 16 years of accumulated data. Within the evolution of the two cycles, we find periods of sustained annual increases, followed by comparable sustained decreases in albedo. The evolution of the earthshine albedo is in remarkable agreement with that from the Clouds and the Earth's Radiant Energy System instruments, although each method measures different slices of the Earth's Bond albedo.

  3. Chlorine oxide in the stratospheric ozone layer Ground-based detection and measurement

    Science.gov (United States)

    Parrish, A.; De Zafra, R. L.; Solomon, P. M.; Barrett, J. W.; Carlson, E. R.

    1981-01-01

    Stratospheric chlorine oxide, a significant intermediate product in the catalytic destruction of ozone by atomic chlorine, has been detected and measured by a ground-based 204 GHz, millimeter-wave receiver. Data taken at latitude 42 deg N on 17 days between January 10 and February 18, 1980 yield an average chlorine oxide column density of approximately 1.05 x 10 to the 14th/sq cm or approximately 2/3 that of the average of eight in situ balloon flight measurements (excluding the anomalously high data of July 14, 1977) made over the past four years at 32 deg N. Less chlorine oxide below 35 km and a larger vertical gradient than predicted by theoretical models of the stratospheric ozone layer are found.

  4. Hybrid predictions of railway induced ground vibration using a combination of experimental measurements and numerical modelling

    Science.gov (United States)

    Kuo, K. A.; Verbraken, H.; Degrande, G.; Lombaert, G.

    2016-07-01

    Along with the rapid expansion of urban rail networks comes the need for accurate predictions of railway induced vibration levels at grade and in buildings. Current computational methods for making predictions of railway induced ground vibration rely on simplifying modelling assumptions and require detailed parameter inputs, which lead to high levels of uncertainty. It is possible to mitigate against these issues using a combination of field measurements and state-of-the-art numerical methods, known as a hybrid model. In this paper, two hybrid models are developed, based on the use of separate source and propagation terms that are quantified using in situ measurements or modelling results. These models are implemented using term definitions proposed by the Federal Railroad Administration and assessed using the specific illustration of a surface railway. It is shown that the limitations of numerical and empirical methods can be addressed in a hybrid procedure without compromising prediction accuracy.

  5. Isomeric and ground state energy level measurements of natural tellurium isotopes via (γ,n) reaction

    Science.gov (United States)

    Tamkas, M.; Akcali, O.; Durusoy, A.

    2015-04-01

    We have planned to measure isomeric and ground state energy levels in 120Te(γ,n)119m,gTe, 122Te(γ,n)121m,gTe, 128Te(γ,n)127m,gTe, 130Te(γ,n)129m,gTe photonuclear reactions of natural tellurium induced by bremsstrahlung photons with end-point energy at 18 MeV. The sample was irradiated in the clinical linear electron accelerator (Philips SLi-25) at Akdeniz University Hospital. The gamma spectrum of the tellurium sample was measured using HP(Ge) semiconductor detector (ORTEC) and multi channel analyzer. We used both MAESTRO (ORTEC) and home made root based gui program (Theia) for data analyzing. The obtained experimental data values are compared with NUDAT energy values.

  6. A Theory-Grounded Measure of Adolescents’ Response to a Media Literacy Intervention

    Science.gov (United States)

    Greene, Kathryn; Yanovitzky, Itzhak; Carpenter, Amanda; Banerjee, Smita C.; Magsamen-Conrad, Kate; Hecht, Michael L.; Elek, Elvira

    2016-01-01

    Media literacy interventions offer promising avenues for the prevention of risky health behaviors among children and adolescents, but current literature remains largely equivocal about their efficacy. The primary objective of this study was to develop and test theoretically-grounded measures of audiences’ degree of engagement with the content of media literacy programs based on the recognition that engagement (and not participation per se) can better explain and predict individual variations in the effects of these programs. We tested the validity and reliability of a measure of engagement with two different samples of 10th grade high school students who participated in a pilot and actual test of a brief media literacy curriculum. Four message evaluation factors (involvement, perceived novelty, critical thinking, personal reflection) emerged and demonstrate acceptable reliability. PMID:28042522

  7. A Microwave Radiometer for Internal Body Temperature Measurement

    Science.gov (United States)

    Scheeler, Robert Patterson

    This thesis presents the analysis and design of a microwave radiometer for internal body temperature measurements. There is currently no available method for non-invasive temperature measurement inside the human body. However, knowledge of both relative and absolute temperature variations over time is important to a number of medical applications. The research presented in this thesis details a proof-of-concept near-field microwave radiometer demonstrating relative thermometry of a multi-layer phantom. There are a number of technical challenges addressed in this thesis for radiometric determination of sub-degree temperature variations in the human body. A theoretical approach is developed for determining sensing depth from known complex layered tissues, which is defined as a figure of merit, and is shown to be dependent on frequency, electrical properties of the tissues, and the near-field probe. In order to obtain depth resolution, multiple frequency operation can be used, so multi-frequency probes are designed and demonstrated in this work. The choice of frequencies is determined not only by the tissue material properties, but also by the ever increasing radio interference in the environment. In this work, quiet bands allocated to radio astronomy are investigated. The radiometer and probe need to be compact to be wearable, and several advancements are made towards a fully wearable device: multi-frequency low-profile probes are designed and fabricated on a flexible substrate and the process of on-chip integration is demonstrated by a GaAs MMIC cold noise source for radiometer calibration. The implemented proof-of-concept device consists of two radiometers at 1.4 GHz and 2.7 GHz, designed with commercial inexpensive devices that can enable sufficient sensitivity. The device is tested on a phantom with two water layers whose temperatures are varied in a controlled manner, and focused on the human body temperature range. Measured results are discussed qualitatively

  8. Estimation of submarine groundwater discharge from bulk ground electrical conductivity measurements

    Science.gov (United States)

    Stieglitz, Thomas; Rapaglia, John; Bokuniewicz, Henry

    2008-08-01

    The utility of bulk ground conductivity (BGC) measurements in the estimation of submarine groundwater discharge (SGD) was investigated at four sites covering a range of hydrogeological settings, namely Cockburn Sound (Australia); Shelter Island (USA); Ubatuba Bay (Brazil) and Flic-en-Flac Bay (Mauritius). At each of the sites, BGC was surveyed in the intertidal zone, and seepage meters were used for direct measurements of SGD flow rates. In the presence of detectable salinity gradients in the sediment, a negative correlation between SGD and BGC was recorded. The correlation is site-specific and is dependent on both the type of sediment and the mixing processes. For example, at Shelter Island the maximum mean flow rates were 65 cm d-1 at a BGC of ˜0 mS cm-1 while at Mauritius maximum mean flow rates were 364 cm d-1 at a BGC of ˜0 mS cm-1. BGC measurements are used to estimate SGD over a large scale, and to separate its fresh and saline components. Extrapolating BGC measurements throughout the study sites yields a total discharge of 2.91, 1.59, 7.16, and 25.4 103 m3 d-1 km-1 of shoreline with a freshwater fraction of 41, 24, 29, and 63% at Cockburn Sound, Shelter Island, Ubatuba Bay, and Flic-en-Flac Bay respectively. The results demonstrate that ground conductivity is a useful tracer to survey and separate freshwater and recirculated seawater component of SGD. The presented investigation is a subset within a series of experiments designed to compare different methods to investigate SGD co-organized and carried out by SCOR, LOICZ, IOC and IAEA.

  9. Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space.

    Science.gov (United States)

    Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo

    2009-12-07

    The polarization characteristics of an artificial laser source in space were measured through space-to-ground atmospheric transmission paths. An existing Japanese laser communication satellite and optical ground station were used to measure Stokes parameters and the degree of polarization of the laser beam transmitted from the satellite. As a result, the polarization was preserved within an rms error of 1.6 degrees, and the degree of polarization was 99.4+/-4.4% through the space-to-ground atmosphere. These results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography worldwide in the future.

  10. GIPL1.3 simulated mean annual ground temperature (MAGT) in Celsius averaged for particular decade for the entire Alaskan permafrost domain. NAD83, Alaska Albers projection

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated mean annual ground temperature (MAGT) in...

  11. Multi-stage temperature compensation method for Lamb wave measurements

    Science.gov (United States)

    Dworakowski, Ziemowit; Ambrozinski, Lukasz; Stepinski, Tadeusz

    2016-11-01

    One of the important issues related to the applications of Lamb waves for structural health monitoring is their undesired sensitivity to variation of environmental conditions. Temperature is the main factor that can affect wave propagation and hence significantly reduce performance of a SHM system. Therefore, there is a need for development of robust monitoring methods with low sensitivity to temperature variations. This paper is aimed at verification of efficiency of four methods designed for damage detection using Lamb wave measurements performed in variable environmental conditions. The methods investigated in the comparison are the following: optimal baseline selection approach, the damage index based on a signal alignment with respect to instantaneous phase, and a group measurement approach capable of distinguishing local damage-related changes from temperature-induced global ones. The fourth method relies on fusion all these solutions simultaneously. The methods' ability to damage detection is compared using a specimen that is subjected to large temperature changes. It is found that although all the methods have their strengths and weaknesses, a cooperation of all solutions allows for significant increase of the damage detection efficiency.

  12. Temperature insensitive measurements of displacement using fiber Bragg grating sensors

    Science.gov (United States)

    Yang, Shuang; Li, Jun; Xu, Shengming; Sun, Miao; Tang, Yuquan; Gao, Gang; Dong, Fengzhong

    2016-11-01

    Optical fiber Bragg grating (FBG) displacement sensors play an important role in various areas due to the high sensitivity to displacement. However, it becomes a serious problem of FBG cross-sensitivity of temperature and displacement in applications with FBG displacement sensing. This paper presents a method of temperature insensitive measurement of displacement via using an appropriate layout of the sensor. A displacement sensor is constructed with two FBGs mounted on the opposite surface of a cantilever beam. The wavelengths of the FBGs shift with a horizontal direction displacement acting on the cantilever beam. Displacement measurement can be achieved by demodulating the wavelengths difference of the two FBGs. In this case, the difference of the two FBGs' wavelengths can be taken in order to compensate for the temperature effects. Four cantilever beams with different shapes are designed and the FBG strain distribution is quite different from each other. The deformation and strain distribution of cantilever beams are simulated by using finite element analysis, which is used to optimize the layout of the FBG displacement sensor. Experimental results show that an obvious increase in the sensitivity of this change on the displacement is obtained while temperature dependence greatly reduced. A change in the wavelength can be found with the increase of displacement from 0 to 10mm for a cantilever beam. The physical size of the FBG displacement sensor head can be adjusted to meet the need of different applications, such as structure health monitoring, smart material sensing, aerospace, etc.

  13. Measured Performance of a Low Temperature Air Source Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. K. [Johnson Research LLC, Pueblo West, CO (United States)

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  14. Temperature measurement on neurological pulse generators during MR scans

    Directory of Open Access Journals (Sweden)

    Alesch François

    2002-09-01

    Full Text Available Abstract According to manufacturers of both magnetic resonance imaging (MRI machines, and implantable neurological pulse generators (IPGs, MRI is contraindicated for patients with IPGs. A major argument for this restriction is the risk to induce heat in the leads due to the electromagnetic field, which could be dangerous for the surrounding brain parenchyma. The temperature change on the surface of the case of an ITREL-III (Medtronic Inc., Minneapolis, MN and the lead tip during MRI was determined. An anatomical realistic and a cubic phantom, filled with phantom material mimicking human tissue, and a typical lead configuration were used to imitate a patient who carries an IPG for deep brain stimulation. The measurements were performed in a 1.5 T and a 3.0 T MRI. 2.1°C temperature increases at the lead tip uncovered the lead tip as the most critical part concerning heating problems in IPGs. Temperature increases in other locations were low compared to the one at the lead tip. The measured temperature increase of 2.1°C can not be considered as harmful to the patient. Comparison with the results of other studies revealed the avoidance of loops as a practical method to reduce heating during MRI procedures.

  15. Comparison of Ground- and Space-based Radar Observations with Disdrometer Measurements During the PECAN Field Campaign

    Science.gov (United States)

    Torres, A. D.; Rasmussen, K. L.; Bodine, D. J.; Dougherty, E.

    2015-12-01

    Plains Elevated Convection At Night (PECAN) was a large field campaign that studied nocturnal mesoscale convective systems (MCSs), convective initiation, bores, and low-level jets across the central plains in the United States. MCSs are responsible for over half of the warm-season precipitation across the central U.S. plains. The rainfall from deep convection of these systems over land have been observed to be underestimated by satellite radar rainfall-retrieval algorithms by as much as 40 percent. These algorithms have a strong dependence on the generally unmeasured rain drop-size distribution (DSD). During the campaign, our group measured rainfall DSDs, precipitation fall velocities, and total precipitation in the convective and stratiform regions of MCSs using Ott Parsivel optical laser disdrometers. The disdrometers were co-located with mobile pod units that measured temperature, wind, and relative humidity for quality control purposes. Data from the operational NEXRAD radar in LaCrosse, Wisconsin and space-based radar measurements from a Global Precipitation Measurement satellite overpass on July 13, 2015 were used for the analysis. The focus of this study is to compare DSD measurements from the disdrometers to radars in an effort to reduce errors in existing rainfall-retrieval algorithms. The error analysis consists of substituting measured DSDs into existing quantitative precipitation estimation techniques (e.g. Z-R relationships and dual-polarization rain estimates) and comparing these estimates to ground measurements of total precipitation. The results from this study will improve climatological estimates of total precipitation in continental convection that are used in hydrological studies, climate models, and other applications.

  16. Temperature Measurement and Control System for Transtibial Prostheses: Functional Evaluation.

    Science.gov (United States)

    Ghoseiri, Kamiar; Zheng, Yong Ping; Leung, Aaron K L; Rahgozar, Mehdi; Aminian, Gholamreza; Lee, Tat Hing; Safari, Mohammad Reza

    2016-10-03

    The accumulation of heat inside the prosthetic socket increases skin temperature and fosters perspiration, which consequently leads to high tissue stress, friction blister, discomfort, unpleasant odor, and decreased prosthesis suspension and use. In the present study, the prototype of a temperature measurement and control (TM&C) system was designed, fabricated, and functionally evaluated in a phantom model of the transtibial prosthetic socket. The TM&C system was comprised of 12 thermistors divided equally into two groups that arranged internal and external to a prosthetic silicone liner. Its control system was programmed to select the required heating or cooling function of a thermal pump to provide thermal equilibrium based on the amount of temperature difference from a defined set temperature, or the amount of difference between the mean temperature recorded by inside and outside thermistors. A thin layer of aluminum was used for thermal conduction between the thermal pump and different sites around the silicone liner. The results showed functionality of the TM&C system for thermoregulation inside the prosthetic socket. However, enhancing the structure of this TM&C system, increasing its thermal power, and decreasing its weight and cost are main priorities before further development.

  17. Positional Repeatability Measurements Of Stepper Motors At Cryogenic Temperatures

    Science.gov (United States)

    Pompea, Stephen M.; Hall, Michael S.; Bartko, Frank; Houck, James R.

    1983-08-01

    Stepper motors operating at liquid helium temperature have multiple applications in cryogenically-cooled telescopes such as the Shuttle Infrared Telescope Facility (SIRTF). These SIRTF applications include driving cryogen flow valves, operating the Multiple Instrument Chamber (MIC) beam splitter mechanism, and operating filters and grating wheel mechanisms in the scientific instruments. The positional repeatability of the beam splitter drive mechanism is especially critical since it feeds the optical beam to the scien-tific instruments. Despite these important applications, no significant data on the positional repeatability of stepper motors at cryogenic temperatures has been available. Therefore, we conducted a series of measurements to determine the positional repeatability of a modified, off-the-shelf Berger/Lahr stepper motor (model RDM 253/25, step angle 3.6°) which had demonstrated excellent performance in previous endurance testing at LHe temperature. These test results indicated that the positional repeatability of the motor was excellent at all temperatures, with somewhat better performance at cryogenic temperatures. Another important result was that the motor could be repeatedly turned off and on while still accurately retaining its rotor position.

  18. Thermocouple design for measuring temperatures of small insects.

    Science.gov (United States)

    Hanson, A A; Venette, R C

    2013-01-01

    Contact thermocouples often are used to measure surface body temperature changes of insects during cold exposure. However, small temperature changes of minute insects can be difficult to detect, particularly during the measurement of supercooling points. We developed two thermocouple designs, which use 0.51 mm diameter or 0.127 mm diameter copper-constantan wires, to improve our ability to resolve insect exotherms. We tested the designs with adults from three parasitoid species: Tetrastichus planipennisi, Spathius agrili, and S. floridanus. These species are thermocouples than thick-gauge thermocouples for the smallest species tested, T. planipennisi. This difference was not apparent for larger species S. agrili and S. floridanus. Thermocouple design did not affect the mean supercooling point for any of the species. The cradle thermocouple design developed with the fine gauge wire was reusable and allowed for easy insect recovery after cold exposure.

  19. Temperature measurements of a high-power microwave feedhorn window

    Science.gov (United States)

    Hoppe, Daniel J.; Perez, Raul M.; Glazer, Stuart D.

    1990-06-01

    Temperature measurements of a high-power microwave feedhorn window, obtained using an imaging IR radiometer during transmitter operation at 365 kW CW and 8.5 GHz, are discussed. The window under investigation was constructed of HTP-6, a high-thermal-performance material developed to shield the Space Shuttle Orbiter from the heat of reentry. The measurement technique is described, and experimental results are presented. The window performed adequately at 365 kW CW with a center temperature of 475 C. The tests verify that HTP-6 can be used as a window material or a support structure in high-power waveguides at power densities of 1.47 kW/sq cm for extended periods of time, with no change in its mechanical characteristics.

  20. [Detonation temperature measurement of epoxypropane using instantaneous spectrum method].

    Science.gov (United States)

    Li, Ying; Li, Ping; Xiao, Hai-Bo; Hu, Dong; Yuan, Chang-Ying

    2008-03-01

    After solving the problems of synchronization of the measuring system and the avoidance of false trigger signal, the instantaneous emission spectrum of epoxypropane with an exposure time of 2 micros and a resolution of 0.2 nm was acquired from a side window of a shock tube at the very moment when the epoxypropane transformed from deflagration to detonation. The measuring system consists of an advanced intensified charge-coupled-device spectroscopic detector, a digital delay generator DG535, an explosion shock tube and optical fibers. The DDT process was monitored by pressure transducers. After correcting the intensity of the spectrum obtained, the background curve of the heat radiation intensity of the detonation was given immediately. The detonation temperature of 2 416 K for epoxypropane was derived from fitting the curve with Planck blackbody formula by least squares principle. The detonation temperature of epoxypropane can provide an experimental datum for analyzing the microscopic mechanism of DDT process.