WorldWideScience

Sample records for ground surfaces bogs

  1. Ground-penetrating radar study of the Rahivere peat bog, eastern Estonia

    Directory of Open Access Journals (Sweden)

    Jüri Plado

    2011-03-01

    Full Text Available The current case study presents results of the ground-penetrating radar (GPR profiling at one of the Saadjärve drumlin field interstitial troughs, the Rahivere bog, eastern Estonia. The study was conducted in order to identify the bog morphology, and the thickness and geometry of the peat body. The method was also used to describe the applicability of GPR in the evaluation of the peat deposit reserve as the Rahivere bog belongs among the officially registered peat reserves. Fourteen GPR profiles, ~ 100 m apart and oriented perpendicular to the long axis of the depression, covering the bog and its surrounding areas, were acquired. In order to verify the radar image interpretation as well as to evaluate the velocity of electromagnetic waves in peat, a common source configuration was utilized and thirteen boreholes were drilled on the GPR profiles. A mean value of 0.036 m ns–1 corresponding to relative dielectric permittivity of 69.7 was used for the time–depth conversion. Radar images reveal major reflection from the peat–soil interface up to a depth of about 4 m, whereas drillings showed a maximum thickness of 4.5 m of peat. Minor reflections appear from the upper peat and mineral soil. According to the borehole data, undecomposed peat is underlain by decomposed one, but identifying them by GPR is complicated. Mineral soil consists of glaciolimnic silty sand in the peripheral areas of the trough, overlain by limnic clay in the central part. The calculated peat volumes (1 200 000 m3 were found to exceed the earlier estimation (979 000 m3 that was based solely on drilling data. Ground-penetrating radar, as a method that allows mapping horizontal continuity of the sub-peat interface in a non-destructive way, was found to provide detailed information for evaluating peat depth and extent.

  2. Ground-penetrating radar study of the Cena Bog, Latvia: linkage of reflections with peat moisture content

    Directory of Open Access Journals (Sweden)

    Karušs, J.

    2015-12-01

    Full Text Available Present work illustrates results of the ground-penetrating radar (GPR study of the Cena Bog, Latvia. Six sub-horizontal reflections that most probably correspond to boundaries between sediments with different electromagnetic properties were identified. One of the reflections corresponds to bog peat mineral bottom interface but the rest are linked to boundaries within the peat body. The radar profiles are incorporated with sediment cores and studies of peat moisture and ash content, and degree of decomposition. Most of the electromagnetic wave reflections are related to changes in peat moisture content. The obtained data show that peat moisture content changes of at least 3 % are required to cause GPR signal reflection. However, there exist reflections that do not correlate with peat moisture content. As a result, authors disagree with a dominant opinion that all reflections in bogs are solely due to changes in volumetric peat moisture content.

  3. Jobs Bog

    DEFF Research Database (Denmark)

    Nielsen, Kirsten

    2015-01-01

    Indledningen sætter Jobs Bog ind i den bibelske kontekst og redegør for hovedindhold og genre.......Indledningen sætter Jobs Bog ind i den bibelske kontekst og redegør for hovedindhold og genre....

  4. Bog bodies

    DEFF Research Database (Denmark)

    Lynnerup, Niels

    2015-01-01

    the bog bodies have been studied using medical and natural scientific methods, and recently many bog bodies have been re-examined using especially modern, medical imaging techniques. Because of the preservation of soft tissue, especially the skin, it has been possible to determine lesions and trauma...

  5. Concepts of fen and bog re-examined in relation to bryophyte cover and the acidity of surface waters

    Directory of Open Access Journals (Sweden)

    Eville Gorham

    2014-01-01

    Full Text Available Studies of surface-water pH and bryophyte assemblages in 440 plots from five peatland regions across northern North America reveal a very distinct, two-fold division into fens with a pH mode at 6.76-7.00, in which Amblystegiaceae are prominent, and bogs with a pH mode at 4.01-4.25, in which Sphagnaceae are dominant. The relevance of the data to past and current views on peatland classification is explored.

  6. Enhanced sensitivity of a mountain bog to climate change as a delayed effect of road construction

    Directory of Open Access Journals (Sweden)

    P. von Sengbusch

    2015-01-01

    Full Text Available Trees of Pinus rotundata (bog pine characterise many bogs in the mid-altitude mountains of central Europe (Switzerland, East and South Germany, Czech Republic. The research described here focuses on recent changes in the growth of bog pine on the Ennersbacher Moor, a mountain mire in the Black Forest (south-west Germany. An increase in the cover of bog pine is usually caused by drainage and subsequent drawdown of the water table. However, this bog has not been drained or directly disturbed in any other way. One possible explanation is that a road constructed in 1983 along one margin of the bog has diverted part of its water supply. Even though the road was designed to conduct potentially salt-contaminated drainage water away from the bog, its construction did not cause an immediate vegetation response in the 1980s and 1990s. Therefore, I hypothesise that it enhanced the sensitivity of the bog to climatic stress, predisposing it to a succession that was eventually triggered by a series of drought years in 2009–2011. Data collected near the centre of the bog over the period 1998–2014 indicate not only a distinct change in the relationship between height and trunk circumference of the trees, but also an increase of dwarf shrub cover and changes in the composition of Sphagnum communities. Although the pH of near-surface water may have increased slightly over this period, pH and EC values remain within typical ranges for raised bogs in the Black Forest. Examination of peat profiles reveals that the peat is more highly humified now than it was in 2002, and water table records from 2012–2014 show a greater amplitude of fluctuation than water table data collected in 1998–2001. Even though its mean level is only 105 mm below the ground surface, the water table is now observed to fall rapidly to depths of at least 350 mm during both wet and dry summers. Mapping surface (mesotopography and flow lines from the adjacent slope shows that the

  7. The growth of permafrost-free bogs at the southern margin of permafrost, 1947-2010

    Science.gov (United States)

    Quinton, W. L.; Sonnentag, O.; Connon, R.; Chasmer, L.

    2013-12-01

    In the high-Boreal region of NW Canada, permafrost occurs predominantly in the form of tree-covered peat plateaus within a permafrost-free and treeless terrain dominated by flat bogs. This region is experiencing unprecedented rates of thaw. Over the last several decades, such thaw has significantly expanded the permafrost-free, treeless terrain at the expense of the plateaus. This rapid change in land-cover has raised concerns over its impact on northern water resources, since remotely sensed data and ground observations indicate that the two major land-covers in this region have very different hydrological functions. Peat plateaus have a limited capacity to store water, a relatively large snowmelt water supply and hydraulic gradients that direct excess water into adjacent permafrost-free wetlands. As such, the plateaus function primarily as runoff generators. Plateaus also obstruct and redirect water movement in adjacent wetlands since the open water surfaces of the latter occupy an elevation below the permafrost table. By contrast, bogs are primarily water storage features since they are surrounded by raised permafrost and therefore less able to exchange surface and near-surface flows with the basin drainage network. Accurate estimate of the permafrost and permafrost-free areas is needed for accurate predictions of basin runoff and storage. This study examines the perimeter-area characteristics of bogs and permafrost plateaus, using fractal geometry as a basis for quantifying these properties. Image analyses are applied to aerial photographs and satellite imagery of Scotty Creek, NWT over the period 1947-2010. Preliminary analyses suggest that the expanding bogs and shrinking permafrost plateaus behave as fractals, meaning that their perimeter-area characteristics can be described by simple power equations. The area-frequency characteristics of bogs and plateaus have a hyperbolic distribution with relatively few large bogs and plateaus and numerous small ones

  8. Distribution of bog and heath in a Newfoundland blanket bog complex: topographic limits on the hydrological processes governing blanket bog development

    Directory of Open Access Journals (Sweden)

    P. A. Graniero

    1999-01-01

    Full Text Available This research quantified the role of topography and hydrological processes within and, hence, the development of, blanket bogs. Topographic characteristics were derived from digital elevation models (DEMs developed for the surface and underlying substrate at three blanket bog sites on the southeastern lobe of the Avalon Peninsula, Newfoundland. A multinomial logit (MNL model of the probability of bog occurrence was constructed in terms of relevant topographic characteristics. The resulting model was then used to investigate the probabilistic boundary conditions of bog occurrence within the landscape. Under average curvatures for the sites studied, substrate slopes up to 0.065 favoured blanket bog development. However, steeper slopes could, theoretically, be occupied by blanked bog where water is concentrated by convergent curvatures or large contributing areas. Near community boundaries, bog and heath communities both occupied similar topographic conditions. Since these boundary locations are capable of supporting the hydrological conditions necessary for bog development, the heath is likely to be encroached upon by bog.

  9. Nutrient load can lead to enhanced CH4 fluxes through changes in vegetation, peat surface elevation and water table depth in ombrotrophic bog

    Science.gov (United States)

    Juutinen, Sari; Bubier, Jill; Larmola, Tuula; Humphreys, Elyn; Arnkil, Sini; Roy, Cameron; Moore, Tim

    2016-04-01

    Atmospheric nitrogen (N) deposition has led to nutrient enrichment in wetlands, particularly in temperate areas, affecting plant community composition, carbon (C) cycling, and microbial dynamics. It is vital to understand the temporal scales and mechanisms of the changes, because peatlands are long-term sinks of C, but sources of methane (CH4), an important greenhouse gas. Rainwater fed (ombrotrophic) bogs are considered to be vulnerable to nutrient loading due to their natural nutrient poor status. We fertilized Mer Bleue Bog, a Sphagnum moss and evergreen shrub-dominated ombrotrophic bog near Ottawa, Ontario, now for 11-16 years with N (NO3 NH4) at 0.6, 3.2, and 6.4 g N m-2 y-1 (~5, 10 and 20 times ambient N deposition during summer months) with and without phosphorus (P) and potassium (K). Treatments were applied to triplicate plots (3 x 3 m) from May - August 2000-2015 and control plots received distilled water. We measured CH4 fluxes with static chambers weekly from May to September 2015 and peat samples were incubated in laboratory to measure CH4 production and consumption potentials. Methane fluxes at the site were generally low, but after 16 years, mean CH4 emissions have increased and more than doubled in high nitrogen addition treatments if P and K input was also increased (3.2 and 6.4 g N m-2yr-1 with PK), owing to drastic changes in vegetation and soil moisture. Vegetation changes include a loss of Sphagnum moss and introduction of new species, typical to minerogenic mires, which together with increased decomposition have led to decreased surface elevation and to higher water table level relative to the surface. The trajectories indicate that the N only treatments may result in similar responses, but only over longer time scales. Elevated atmospheric deposition of nutrients to peatlands may increase loss of C not only due to changes in CO2 exchange but also due to enhanced CH4 emissions in peatlands through a complex suite of feedbacks and interactions

  10. Ten-year results of a comparison of methods for restoring afforested blanket bog

    Directory of Open Access Journals (Sweden)

    R. Anderson

    2017-02-01

    Full Text Available There is growing interest in the restoration of blanket bogs that were afforested during the 1960s to 1980s, to avoid further loss of carbon to the atmosphere and to regain and defragment important blanket bog habitat. This paper reports the findings from a ten-year experiment in the UK to test the effectiveness of restoration treatments on water table depth, peat bulk density and water content, ground surface height and vegetation development. Treatments used were the six combinations of damming or not damming plough furrows with leaving the trees alive, felling and leaving them on the ground or felling and removing them. Combining felling with damming furrows was most successful in raising the water table, whether or not the felled trees were removed. Only where felling was combined with damming did the water table continue to recover between Years 5 and 10. Over ten years, the water level in these treatments rose to slightly below that of non-afforested reference bog at the same sites. This occurred as a rapid initial rise, following which there was only very slight further improvement. Felling caused the species composition of the vegetation to change towards that of the reference bogs. The process was slow, with the vegetation becoming more dissimilar to non-forested reference bog in the first five years and then becoming more similar to the reference bog after Year 5. Surprisingly, damming plough furrows had little effect on the vegetation except that, in combination with felling, it increased differentiation between the plough furrows and other positions on the ploughed ground. Conifer seedlings established on the restored plots, most densely where they adjoined standing forest, and had similar density and growth in all the felled treatments. The restoration treatments resulted in a decrease in bulk density and increase in water content of the upper peat, probably due to an unloading effect caused by the raised water table buoying up the

  11. Artificial Ground Water Recharge with Surface Water

    Science.gov (United States)

    Heviánková, Silvie; Marschalko, Marian; Chromíková, Jitka; Kyncl, Miroslav; Korabík, Michal

    2016-10-01

    With regard to the adverse manifestations of the recent climatic conditions, Europe as well as the world have been facing the problem of dry periods that reduce the possibility of drawing drinking water from the underground sources. The paper aims to describe artificial ground water recharge (infiltration) that may be used to restock underground sources with surface water from natural streams. Among many conditions, it aims to specify the boundary and operational conditions of the individual aspects of the artificial ground water recharge technology. The principle of artificial infiltration lies in the design of a technical system, by means of which it is possible to conduct surplus water from one place (in this case a natural stream) into another place (an infiltration basin in this case). This way, the water begins to infiltrate into the underground resources of drinking water, while the mixed water composition corresponds to the water parameters required for drinking water.

  12. Bacteriophages as surface and ground water tracers

    Directory of Open Access Journals (Sweden)

    P. Rossi

    1998-01-01

    Full Text Available Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra. In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  13. Bacteriophages as surface and ground water tracers

    Science.gov (United States)

    Rossi, P.; Dörfliger, N.; Kennedy, K.; Müller, I.; Aragno, M.

    Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra). In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  14. Passive heating of the ground surface

    Science.gov (United States)

    Tyburczyk, Anna

    2016-03-01

    The phenomenon of phase change is one of the most important contemporary issues of thermal engineering. In particular, this applies to all kinds of heat exchanger systems, which should achieve the highest possible efficiency while reducing investment and operating costs. Some of these systems are heat pipes or thermosyphons, which, among others, are used for the heat transfer, temperature stabilization and the regulation of heat flux density. Additionally, they are passive systems, and therefore do not require an external power supply. Heat pipes can be used to stabilize the surface temperature of roads and driveways. Large heat tubes can be applied for heating the surface of bridges and overpasses, which become icy in unfavorable climatic conditions. The paper presents research on the test facility, whose main component is a long vertical copper fin. The temperature at the base of the fin was kept constant for a given series of measurements. Heat receiving fluid was ethanol at atmospheric pressure. The measurement methodology and the results of investigations were discussed. The surface temperature distribution was measured with the infrared camera, and on this basis the local values of heat flow and the heat transfer coefficient were determined. The results were presented as boiling curves for both the fin with the smooth surface and the one covered with a metal capillary-porous structure. The results obtained are useful in the design of heat exchangers, including passive heating of the ground.

  15. Passive heating of the ground surface

    Directory of Open Access Journals (Sweden)

    Tyburczyk Anna

    2016-01-01

    Full Text Available The phenomenon of phase change is one of the most important contemporary issues of thermal engineering. In particular, this applies to all kinds of heat exchanger systems, which should achieve the highest possible efficiency while reducing investment and operating costs. Some of these systems are heat pipes or thermosyphons, which, among others, are used for the heat transfer, temperature stabilization and the regulation of heat flux density. Additionally, they are passive systems, and therefore do not require an external power supply. Heat pipes can be used to stabilize the surface temperature of roads and driveways. Large heat tubes can be applied for heating the surface of bridges and overpasses, which become icy in unfavorable climatic conditions. The paper presents research on the test facility, whose main component is a long vertical copper fin. The temperature at the base of the fin was kept constant for a given series of measurements. Heat receiving fluid was ethanol at atmospheric pressure. The measurement methodology and the results of investigations were discussed. The surface temperature distribution was measured with the infrared camera, and on this basis the local values of heat flow and the heat transfer coefficient were determined. The results were presented as boiling curves for both the fin with the smooth surface and the one covered with a metal capillary-porous structure. The results obtained are useful in the design of heat exchangers, including passive heating of the ground.

  16. Pb inventory in an ombrotrophic bog decreases over time

    Science.gov (United States)

    Baumann, E.; Jeremiason, J.; Sebestyen, S.

    2016-12-01

    Peat cores were collected from the S2 ombrotrophic bog at the Marcell Experimental Forest (MEF) to determine if the Pb inventory in the bog has decreased over time. Pb concentrations in the outflow of the bog measured from 2009-2016 indicated continued mobilization and export of Pb out of the bog despite dramatic decreases in atmospheric deposition. A seminal study conducted by Urban et al. (1990) from 1981-1983 calculated a mass balance of Pb in the S2 watershed which included a Pb inventory in peat based on the approximate time frame of 1930 to 1983. We collected peat cores in 2016 to compare peat inventories of Pb over the same time range. We found that Pb inventories in the peat have decreased over time, consistent with Pb being mobilized by dissolved organic carbon (DOC) and gradually flushed out of the bog. Since 1983, DOC levels may have increased leading to further Pb mobilization and transport from the bog, but this trend is unclear. In contrast to Pb concentrations in the outflow water, upland runoff and the surface sphagnum moss layer have dramatically lower Pb concentrations compared to 1980s levels indicating fast ecosystem responses to a decrease in Pb inputs in these compartments. However, the deeper peat layers near the water table are responding more slowly to the decrease in Pb inputs and historical Pb inputs continue to be mobilized and transported from the bog. Our results would be applicable to other trace metals, such as Hg, that bind strongly to DOC. For example, a dramatic decrease in Hg deposition would not result in near-term decreases in Hg out of the bog.

  17. Prediction of ground surface displacement caused by grouting

    Institute of Scientific and Technical Information of China (English)

    郭风琪; 刘晓潭; 童无期; 单智

    2015-01-01

    Ground surface displacement caused by grouting was calculated with stochastic medium theory. Ground surface displacement was assumed to be caused by the cavity expansion of grouting, slurry seepage, and slurry contraction. A prediction method of ground surface displacement was developed. The reliability of the presented method was validated through a comparison between theoretical results and results from engineering practice. Results show that the present method is effective. The effect of parameters on uplift displacement was illustrated under different grouting conditions. Through analysis, it can be known that the ground surface uplift is mainly caused by osmosis of slurry and the primary influence angle of stratum βdetermines the influence range of surface uplift. Besides, the results show that ground surface uplift displacement decreases notably with increasing depth of the grouting cavity but it increases with increasing diffusion radius of grout and increasing grouting pressure.

  18. Restoration of pitcher plant bogs in eastern Texas, USA

    Science.gov (United States)

    Ronald Mize; Robert E. Evans; Barbara R. MacRoberts; Michael H. MacRoberts; D. Craig Rudolph

    2005-01-01

    Pitcher plant bogs, also referred to as hillside seepages bogs or hillside bogs, are extremely restricted on the West Gulf Coastal Plain. the number and extent of extant bogs is in the low hundreds, comprising no more than a few thousand hectares of habitat. These bogs support a large number of plant species of significant conservation concern. threats to existing bogs...

  19. Impact of catchment degree on peat properties in peat deposits of eutrophic bog

    Science.gov (United States)

    Inisheva, L. I.; Golubina, O. A.; Rodikova, A. V.; Shinkeeva, N. A.; Bubina, A. B.

    2010-05-01

    Fundamental works of many investigators show that according to the biophysical properties peat deposit (PD) is divided into 2 layers: active and inert. It is interesting to analyze the supposed changes in PD of eutrophic bog according to different data (physical, chemical and biological). The researches were carried out at two plots of one bog (points 1 and 2, positions 56° 21' NL, 84° 47' EL, Russia, Siberia). Agricultural afforestation (pine planting) was made at one of them (point 2) 60 years ago. Now this plot is absolutely identical in ground cover to 1 point, but other conditions are significantly changed. In spring bog water level is at the depth of 20cm at 2 point (at 1 point it is near water face), it lows up to 53 cm during summer time (at 1 point - up to 37 cm). According to redox conditions zone of anoxic-oxic conditions reaches meter depth at 2 points. PDs don't significantly differ in activity of ammonifiers but in activity of cellulose-lytic aerobic microflora it follows that it is more active at 2 point in PD active layer. In spite of good aeration, more favorable conditions were created also for anaerobic cellulose-fermenting microflora in PD of 2 point in comparison with 1 one. Activity analysis of denitrifying agents and microflora of other physiological groups also showed high activity of biota at the plot with afforestation amelioration. This fact was confirmed by high coefficient of mineralization. Time of drainage effect created by afforestation amelioration influenced group composition of peat organic matter which builds up PD of examined plots. According to fractional and group composition data fracture of hard-to-hydrolyze organic matters decreased during the process of microflora activating at the plot with afforestation amelioration but FA content increased. Fractional composition of nitrogen showed that content of mineral nitrogen compounds definitely increased. Thus, 60 years of surface drainage influenced composition change of peat

  20. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan Christian

    2005-01-01

    Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2 Hz. Unfortunately, environmental loads and the passage of blades past...... the tower may lead to excitation with frequencies of the same order of magnitude. Therefore, dynamic soil-structure interaction has to be accounted for in order to get an accurate prediction of the structural response. In this paper the particular problem of a rigid foundation on a layered subsoil...

  1. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan

    2007-01-01

    Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2 Hz. Unfortunately, environmental loads and the passage of blades past...... the tower may lead to excitation with frequencies of the same order of magnitude. Therefore, dynamic soilstructure interaction has to be accounted for in order to get an accurate prediction of the structural response. In this paper the particular problem of a rigid foundation on a layered subsoil...

  2. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during convention

  3. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  4. Digital Modeling Phenomenon Of Surface Ground Movement

    Directory of Open Access Journals (Sweden)

    Ioan Voina

    2016-11-01

    Full Text Available With the development of specialized software applications it was possible to approach and resolve complex problems concerning automating and process optimization for which are being used field data. Computerized representation of the shape and dimensions of the Earth requires a detailed mathematical modeling, known as "digital terrain model". The paper aims to present the digital terrain model of Vulcan mining, Hunedoara County, Romania. Modeling consists of a set of mathematical equations that define in detail the surface of Earth and has an approximate surface rigorously and mathematical, that calculated the land area. Therefore, the digital terrain model means a digital representation of the earth's surface through a mathematical model that approximates the land surface modeling, which can be used in various civil and industrial applications in. To achieve the digital terrain model of data recorded using linear and nonlinear interpolation method based on point survey which highlights the natural surface studied. Given the complexity of this work it is absolutely necessary to know in detail of all topographic elements of work area, without the actions to be undertaken to project and manipulate would not be possible. To achieve digital terrain model, within a specialized software were set appropriate parameters required to achieve this case study. After performing all steps we obtained digital terrain model of Vulcan Mine. Digital terrain model is the complex product, which has characteristics that are equivalent to the specialists that use satellite images and information stored in a digital model, this is easier to use.

  5. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    -small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  6. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    -small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  7. Power productivity of the ground surface

    Directory of Open Access Journals (Sweden)

    Gutu A.I.

    2008-12-01

    Full Text Available Here there is presented an attempt to estimate the efficiency degree when working with soil surface through the different methods of valorization incident solar radiation. Such technical methods are being analyzed as (solar collectors, photovoltaic cells, solar thermal power plants, power cultures field (bushes, wheat, sunflower, maize, rape, sorghum as well as microalgae crops. Here is the description of advantages and disadvantages for each group in part out of these three. The technical methods are up to date from the efficiency utilization view-point of industrial area. Microalgae crops are similar to technical methods from this point of view.

  8. Peat bogs in northern Alberta, Canada reveal decades of declining atmospheric Pb contamination

    Science.gov (United States)

    Shotyk, William; Appleby, Peter G.; Bicalho, Beatriz; Davies, Lauren; Froese, Duane; Grant-Weaver, Iain; Krachler, Michael; Magnan, Gabriel; Mullan-Boudreau, Gillian; Noernberg, Tommy; Pelletier, Rick; Shannon, Bob; Bellen, Simon; Zaccone, Claudio

    2016-09-01

    Peat cores were collected from six bogs in northern Alberta to reconstruct changes in the atmospheric deposition of Pb, a valuable tracer of human activities. In each profile, the maximum Pb enrichment is found well below the surface. Radiometric age dating using three independent approaches (14C measurements of plant macrofossils combined with the atmospheric bomb pulse curve, plus 210Pb confirmed using the fallout radionuclides 137Cs and 241Am) showed that Pb contamination has been in decline for decades. Today, the surface layers of these bogs are comparable in composition to the "cleanest" peat samples ever found in the Northern Hemisphere, from a Swiss bog ~ 6000 to 9000 years old. The lack of contemporary Pb contamination in the Alberta bogs is testimony to successful international efforts of the past decades to reduce anthropogenic emissions of this potentially toxic metal to the atmosphere.

  9. Mass balance and nitrogen accumulation in hummocks on a south Swedish bog during the late holocene

    Energy Technology Data Exchange (ETDEWEB)

    Malmer, N.; Svensson, G.; Wallen, B. [Lund Univ., Dept. of Ecology, Plant Ecology, Lund (Sweden)

    1997-12-31

    Two peat cores from the Store Mosse mire in the central part of South Sweden have been analyzed for dry bulk density, carbon, and nitrogen. They cover the development of the peat mound from the time of the conversion of the initial fen to an ombrotrophic bog at 5450 BP through three different bog stages, the Fuscum, the Rubellum-Fuscum and the Magellanicum bog stages, each one chracterized by a specific macrofossil assemblage. All N supplied to the bog surface in assumed to be contained in the organic matter. At the beginning of the Magellanicum bog stage. 1000 BP, the nitrogen accumulation rate increased from an earlier value of ca 0.4 g m{sup -2} yr{sup -1} to 0.8 g m{sup -2} yr{sup -1}. These accumulation rates for N have been used to establish time scales for the periods between the {sup 14}C-datings. The estimated litter deposition rate in the hummocks is 120 g m{sup -2} yr{sup -1} in the two older bog stages and 270 g m{sup -2} yr{sup -1} in the Magellanicum bog stage. The decay losses in the acrotelm increased, as a proportion of the addition, with time through each one of the bog stages. The range of variation in the cores for the acrotelm decay losses was 25-80%, and the annual input of organic matter to the catotelm, 30-130 g m{sup -2}. These ranges are greater than those found among recent bog hummocks in NW Europe and North America. The decay losses during 5000 yr in the catotelm may not have exceeded 20% of the original input. The over-all net rate of accumulation of C was highest, ca 40 g m{sup -2} yr{sup -1}, at the beginning of the Fuscum bog stage. The changes in the macrofossil assemblages are all associated with rapid increased in the peat accumulation rate, but decreases in accumulation rate are not. At the conversion from fen to bog the increased input of organic matter to the catotelm depended on expansion of Sphagman fuscum which formed a decay resistant litter. Later increases depended on rapid rises of the mean water table, resulting in

  10. Uranium in US surface, ground, and domestic waters. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  11. Iron from Zealandic bog iron ore -

    DEFF Research Database (Denmark)

    Lyngstrøm, Henriette Syrach

    2011-01-01

    og geologiske materiale, metallurgiske analyser og eksperimentel arkæologiske forsøg - konturerne af en jernproduktion med udgangspunkt i den sjællandske myremalm. The frequent application by archaeologists of Werner Christensen’s distribution map for the occurrence of bog iron ore in Denmark (1966...... are sketched of iron production based on bog iron ore from Zealand....

  12. Consequences of marginal drainage from a raised bog and understanding the hydrogeological dynamics as a basis for restoration

    Science.gov (United States)

    Regan, Shane; Johnston, Paul

    2010-05-01

    Raised bogs in Ireland have long been exploited for local fuel utilisation. The drainage associated with such activities alters the hydrological regime of the bog as consolidation of the peat substrate results in significant water loss and subsidence of the bog. Undisturbed raised bog environments are typically characterised by distinct ecological systems, or ecotopes, which are controlled by the relationship between surface slopes, flow path lengths and drainage conditions. Shrinkage of the main peat profile, or catotelm, invariably alters these conditions, changes of which significantly damage ecotopes of conservational value. Clara Bog, Ireland, is one of western Europe's largest remaining raised bogs and on which much hydroecological research has been conducted since the early 1990's. Though a relatively intact raised bog, it has been extensively damaged in the past with the construction of a road through the centre of the bog known to have resulted in subsidence of 9-10m. However, the western tract of Clara Bog, Clara Bog West, has also subsided significantly since the early 1990's due to on-going peat cutting activities on the bogs margins. Current research now indicates that the bog is not an isolated hydrological entity, as generally perceived of bogs, but rather that Clara Bog West is intrinsically linked to the regional groundwater table, which appears to provide a significant ‘support' function to the bog. Hydrogeological monitoring and analysis has shown that water losses are not simply a result of lateral seepage of water through the peat profile at the bogs margins. Measurements of flow rates and electrical conductivity in drains bordering the bog indicate that little water is discharging laterally through the peat profile. However, piezometric head levels in mineral subsoil underlying the bog and close to the margins of the bog have decreased by 0.3 to 0.5m and 0.4 to 1.0m respectively since the early 1990s and it is believed that this is a result

  13. North American regional climate reconstruction from ground surface temperature histories

    Science.gov (United States)

    Jaume-Santero, Fernando; Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-12-01

    Within the framework of the PAGES NAm2k project, 510 North American borehole temperature-depth profiles were analyzed to infer recent climate changes. To facilitate comparisons and to study the same time period, the profiles were truncated at 300 m. Ground surface temperature histories for the last 500 years were obtained for a model describing temperature changes at the surface for several climate-differentiated regions in North America. The evaluation of the model is done by inversion of temperature perturbations using singular value decomposition and its solutions are assessed using a Monte Carlo approach. The results within 95 % confidence interval suggest a warming between 1.0 and 2.5 K during the last two centuries. A regional analysis, composed of mean temperature changes over the last 500 years and geographical maps of ground surface temperatures, show that all regions experienced warming, but this warming is not spatially uniform and is more marked in northern regions.

  14. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  15. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  16. Mitigating ground vibration by periodic inclusions and surface structures

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Bucinskas, Paulius; Persson, Peter

    2016-01-01

    -dimensional finite-element model. The laboratory model employs soaked mattress foam placed within a box to mimic a finite volume of soil. The dynamic properties of the soaked foam ensure wavelengths representative of ground vibration in small scale. Comparison of the results from the two models leads......Ground vibration from traffic is a source of nuisance in urbanized areas. Trenches and wave barriers can provide mitigation of vibrations, but single barriers need to have a large depth to be effective-especially in the low-frequency range relevant to traffic-induced vibration. Alternatively...... well-defined behavior can be expected for transient loads and finite structures. However, some mitigation may occur. The paper aims at quantifying the mitigation effect of nearly periodic masses placed on the ground surface using two approaches: a small-scale laboratory model and a three...

  17. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  18. Synanthropization of the Baltic-type raised bog “Roby” (NW Poland

    Directory of Open Access Journals (Sweden)

    Sotek Zofia

    2015-06-01

    Full Text Available Raised and transitional peat bogs, despite their considerable resistance to synanthropization, as a result of anthropogenic transformations are exposed to the colonisation by alien species. One of them is the peatland “Roby”, where, in the years 2007-2009 and 2014, floristic, phytosociological and soil studies were carried out in order to record the signs of ongoing synanthropization. Conducted observations and analyses indicated that the expansion of willows has taken place and at present they occupy a large part of the bog, encroaching into bog birch forest and successfully competing with Myrica gale. Progressive peat mineralisation and constructed surfaced roads within the bog, contributed to the appearance and wide distribution of synanthropic species, such as: Urtica dioica, Impatiens parviflora and Spiraea salicifolia. Raised bog communities and their characteristic species occur on a few fragments of the bog, in north-western part, where water regime is shaped mainly by precipitation and peat deposit is fairly well-preserved. At the same time, in the patches of these communities, a distinct unfavourable increase in the share of Molinia caerulea is observed.

  19. Field evidence for buoyancy-driven water flow in a Sphagnum dominated peat bog

    NARCIS (Netherlands)

    Adema, E.B.; Baaijens, G. J.; van Belle, J.; Rappoldt, C.; Grootjans, A. P.; Smolders, A. J. P.

    2006-01-01

    Nocturnal buoyancy-driven water flow in bogs is proposed as a mechanism to replenish the nutrient availability in the top of the acrotelm. In an earlier paper, we provided evidence for buoyancy-driven water flow on theoretical and experimental grounds. In this paper, field evidence is given for the

  20. Anthropogenic degradation of mountainous raised bogs. Case study of the Polish Carpathians

    Science.gov (United States)

    Lajczak, Adam

    2016-04-01

    Publications on the human impact on peat bogs pay a lot of attention to peat erosion, peat burning and changes in the physical and chemical properties of peat deposits that indicate pollution in the environment, but a more detailed analysis of current changes in the peat bog relief as a result of peat deposit extraction and drying is omitted. Compared to other areas of the world, the level of knowledge on anthropogenic changes in the relief of peat bogs in some areas of Poland may be considered advanced. This applies not only to peat bogs in northern Poland but also southern Poland, where peat bogs in the Carpathians and the Sudetes are also found. The best analyzed peat bogs in southern Poland are the raised bogs in the Orawsko-Nowotarska Basin (Western Carpathians) and in valleys in the Bieszczady Mts. (Eastern Carpathians). Both areas are impacted by deep precipitation shadow. The purpose of this paper is: (1) to assess the rate of shrinkage in the surface area of peat domes in the mentioned areas, (2) to describe the rate of growth in the surface area of older and younger post-peat areas, (3) to explain current changes in peat bogs morphology, (4) to explain changes in water retention in peat deposit, (5) to separate phases in peat bogs relief changes. With that in mind, the direction and rate of change of landforms typical of younger post-peat areas, such as peat extraction scarps, post-extraction hollows, drainage systems including ditches and regulated stream channels, were analyzed. A special emphasis was placed on the period of time when the restoration of such areas has taken place. The paper is based on an analysis of maps produced over the last 230 years as well as on aerial photographs taken since 1965 and on LiDAR data. Fieldwork included the geomorphological and hydrographic mapping of specified landforms within peat bogs using GPS methods. In period prior to human activity peat domes were larger than today and were surrounded by lagg fens and were

  1. Carbon and Water Cycles in a New Zealand Peat Bog

    Science.gov (United States)

    Campbell, D.; Smith, J.

    2001-12-01

    Peat soils represent globally significant stores of carbon and an understanding of carbon exchange processes between peat wetland ecosystems and the atmosphere is important for understanding the effects of, and impacts upon, global climate change. Eddy covariance measurements of CO2, water vapour and energy fluxes were made during 1999 and 2000 at a remnant oligotrophic raised peat bog in North Island, New Zealand. The bog's hydrology has been modified by drainage of surrounding agricultural land, so that the water table is relatively deep compared to that of unmodified bogs in the region. Vegetation is dominated by two indigenous species of rush-like vascular plants belonging to the Southern hemisphere family Restionaceae. Maximum daytime CO2 fluxes were commonly -9 {μ }mol m-2 s-1 and averaged -1.3 {μ }mol m-2 s-1 over the 24-hour period in summertime. The ecosystem was a sink of atmospheric carbon for most of the year, with wintertime characterised by 12--15 weeks of carbon neutrality or slight carbon loss. Average carbon uptake by the ecosystem was 196 gC m-2 yr-1 for the two-year period. Modelling suggests that the key factor determining inter-annual variability of the carbon budget is seasonal soil temperature, whereas ecosystem respiration is relatively insensitive to the position of the lowered water table. The bog vegetation acts as a major control over water vapour loss and energy partitioning favors sensible heat production with mean summertime Bowen ratios of approximately 2.0. Water use efficiency was highest in the morning, indicating that the vegetation maximizes CO2 assimilation while the saturation vapour pressure deficit and transpiration rates are low. The dense canopy structure also restricts penetration of solar radiation to the peat surface, which minimizes evaporation and soil respiration.

  2. Exploring climatic controls on blanket bog litter decomposition across an altitudinal gradient

    Science.gov (United States)

    Bell, Michael; Ritson, Jonathan P.; Clark, Joanna M.; Verhoef, Anne; Brazier, Richard E.

    2016-04-01

    The hydrological and ecological functioning of blanket bogs is strongly coupled, involving multiple ecohydrological feedbacks which can affect carbon cycling. Cool and wet conditions inhibit decomposition, and favour the growth of Sphagnum mosses which produce highly recalcitrant litter. A small but persistent imbalance between production and decomposition has led to blanket bogs in the UK accumulating large amounts of carbon. Additionally, healthy bogs provide a suite of other ecosystems services including water regulation and drinking water provision. However, there is concern that climate change could increase rates of litter decomposition and disrupt this carbon sink. Furthermore, it has been argued that the response of these ecosystems in the warmer south west and west of the UK may provide an early analogue for later changes in the more extensive northern peatlands. In order to investigate the effects of climate change on blanket bog litter decomposition, we set-up a litter bag experiment across an altitudinal gradient spanning 200 m of elevation (including a transition from moorland to healthy blanket bog) on Dartmoor, an area of hitherto unstudied, climatically marginal blanket bog in the south west of the UK. At seven sites, water table depth and soil and surface temperature were recorded continuously. Litter bags filled with the litter of three vegetation species dominant on Dartmoor were incubated just below the bog surface and retrieved over a period of 12 months. We found significant differences in the rate of decomposition between species. At all sites, decomposition progressed in the order Calluna vulgaris (dwarf shrub) > Molinia caerulea (graminoid) > Sphagnum (bryophyte). However, while soil temperature did decrease along the altitudinal gradient, being warmer in the lower altitudes, a hypothesised accompanying decrease in decomposition rates did not occur. This could be explained by greater N deposition at the higher elevation sites (estimated

  3. Ground Surface Deformations Near a Fault-Bounded Groundwater Aquifer

    Science.gov (United States)

    Lipovsky, B.; Funning, G. J.; Ferretti, A.

    2011-12-01

    Geodetic data often reveal the presence of groundwater aquifers that are bounded by faults (Schmidt and Bürgmann, 2003; Galloway and Hoffmann, 2007; Bell et al., 2008). Whereas unrestricted groundwater aquifers exhibit a radially symmetric pattern of uplift with diffuse boundaries, aquifers that are bounded by faults have one or more sharp, linear boundaries. Interferometric synthetic aperture (InSAR) data, due to their high spatial density, are particularly well suited to observe fault bounded aquifers, and the Santa Clara Aquifer in the San Francisco Bay Area, California, constitutes an excellent example. The largest ground surface displacements in the Bay Area are due to the inflation of the Santa Clara aquifer, and InSAR data plainly show that the Santa Clara aquifer is partitioned by the Silver Creek fault. This study first develops a general model of the displacements at the surface of the Earth due to fluid diffusion through a buried permeable boundary such as a fault zone. This model is compared to InSAR data from the Silver Creek fault and we find that we are able to infer fault zone poromechanical properties from InSAR data that are comparable to in situ measurements. Our theoretical model is constrained by several geological and hydrological observations concerning the structure of fault zones. Analytical solutions are presented for the ground surface displacements due to a perfectly impermeable fault zone. This end-member family of models, however, does not fit the available data. We therefore make allowance for an arbitrarily layered, variably permeable, one-dimensional fault zone. Time-dependent ground surface deformations are calculated in the Laplace domain using an efficient semi-analytic method. This general model is applicable to other poroelastic regimes including geothermal and hydrocarbon systems. We are able to estimate fault zone hydraulic conductivity by comparing theoretical ground surface displacements in a permeable fault zone to

  4. Potential Energy Surfaces of Nitrogen Dioxide for the Ground State

    Institute of Scientific and Technical Information of China (English)

    SHAO Ju-Xiang; ZHU Zheng-He; CHENG Xin-Lu; YANG Xiang-Dong

    2007-01-01

    The potential energy function of nitrogen dioxide with the C2v symmetry in the ground state is represented using the simplified Sorbie-Murrell many-body expansion function in terms of the symmetry of NO2. Using the potential energy function, some potential energy surfaces of NO2(C2v, X2A1), such as the bond stretching contour plot for a fixed equilibrium geometry angle θ and contour for O moving around N-O (R1), in which R1 is fixed at the equilibrium bond length, are depicted. The potential energy surfaces are analysed. Moreover, the equilibrium parameters for NO2 with the C2v, Cs and D8h symmetries, such as equilibrium geometry structures and energies, are calculated by the ab initio (CBS-Q) method.

  5. Increased tree establishment in Lithuanian peat bogs--insights from field and remotely sensed approaches.

    Science.gov (United States)

    Edvardsson, Johannes; Šimanauskienė, Rasa; Taminskas, Julius; Baužienė, Ieva; Stoffel, Markus

    2015-02-01

    Over the past century an ongoing establishment of Scots pine (Pinus sylvestris L.), sometimes at accelerating rates, is noted at three studied Lithuanian peat bogs, namely Kerėplis, Rėkyva and Aukštumala, all representing different degrees of tree coverage and geographic settings. Present establishment rates seem to depend on tree density on the bog surface and are most significant at sparsely covered sites where about three-fourth of the trees have established since the mid-1990s, whereas the initial establishment in general was during the early to mid-19th century. Three methods were used to detect, compare and describe tree establishment: (1) tree counts in small plots, (2) dendrochronological dating of bog pine trees, and (3) interpretation of aerial photographs and historical maps of the study areas. In combination, the different approaches provide complimentary information but also weigh up each other's drawbacks. Tree counts in plots provided a reasonable overview of age class distributions and enabled capturing of the most recently established trees with ages less than 50 years. The dendrochronological analysis yielded accurate tree ages and a good temporal resolution of long-term changes. Tree establishment and spread interpreted from aerial photographs and historical maps provided a good overview of tree spread and total affected area. It also helped to verify the results obtained with the other methods and an upscaling of findings to the entire peat bogs. The ongoing spread of trees in predominantly undisturbed peat bogs is related to warmer and/or drier climatic conditions, and to a minor degree to land-use changes. Our results therefore provide valuable insights into vegetation changes in peat bogs, also with respect to bog response to ongoing and future climatic changes. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The impact of 90 years of drainage works on some chemical properties of raised peat bog organic soils - case study from valley of the Upper San river in Polish Bieszczady Mts. (Eastern Carpathians).

    Science.gov (United States)

    Stolarczyk, Mateusz

    2016-04-01

    Wetland ecosystems, including raised peat bogs are characterized by a specific water conditions and unique vegetation, which makes peatland highly important habitats due to protection of biodiversity. Transformation of peat bog areas is particularly related to changes in the environment e.g. according to reclamation works. Drainage of peatlands is directly associated to the decrease of groundwater levels and lead to a number of changes in the chemical and physical properties of peat material, included contents of exchangeable cations in the surface layers of peat soils in the decession phase of peat development and release above compounds from the soil to ground or surface waters. The aim of the research was to determine the impact of extended drainage works on chemical composition of sorption complex of raised peat bog organic soils and identification the potential environmental effects of alkaline cations leaching to the surface waters. Research was carried out on the peat bogs located in the Upper San valley in Polish Bieszczady Mts. (Eastern Carpathians). Soil samples used in this study were collected from 3 soil profiles in 10 or 20 cm intervals to the approximately 130 cm depth. Laboratory analyses included determination of basic properties of organic material such as the degree of peat decomposition, ash content, soil pH and carbon, hydrogen, nitrogen concentrations. Additionally the amount of alkaline cations, exchangeable and extractable acidity was determined. Furthermore, the degree of saturation of the sorption complex with alkaline cations (V) and cation exchange capacity (CEC) are calculated. In order to evaluate the impact of the examined peat bog to the environment, also water samples were collected and ions composition was measured. The obtained results show that studied organic soils are oligotrophic and strongly acidic. In the case of organic material related to decession phase of peat development, as a result of the lengthy drainage works

  7. Summertime greenhouse gas fluxes from an urban bog undergoing restoration through rewetting

    Directory of Open Access Journals (Sweden)

    A. Christen

    2016-04-01

    Full Text Available Rewetting can promote the ecological recovery of disturbed peatland ecosystems and may help to revert these ecosystems to carbon dioxide (CO2 sinks. However, rewetting of disturbed peatlands can also cause substantial emissions of methane (CH4 and possibly nitrous oxide (N2O. This study quantified summertime emissions of the three major long-lived greenhouse gases (GHGs CO2, CH4 and N2O; from undisturbed, disturbed and rewetted soils in the Burns Bog Ecological Conservancy Area (BBECA, a 20 km2 urban bog located in Delta, British Columbia, Canada. Four sites were chosen that represent different stages before or after ecological recovery in the BBECA: (i a relatively undisturbed scrub pine / Sphagnum / low shrub ecosystem; (ii a Rhynchospora alba / Sphagnum ecosystem that was disturbed by peat mining more than 65 years ago; (iii a R. alba / Dulichium arundinaceum ecosystem that was disturbed by peat mining 50 years ago and rewetted five years ago; and (iv a disturbed and rewetted surface with little vegetation cover that was cleared of vegetation 16 years ago and rewetted two years ago. The GHG fluxes from soils and ground vegetation were measured at all sites during June–August 2014, using a portable non-steady-state chamber system for CO2 and syringe sampling and laboratory analysis for CH4 and N2O fluxes. All four sites exhibited net GHG emissions into the atmosphere, dominated by CH4, which contributed 81–98 % of net CO2 equivalent (CO2e emissions. Overall, the median CH4 flux for all measurements and sites was ~74 mg m-2 day-1 (~30–410 mg m-2 day-1, 25th–75th percentiles. Fluxes in the rewetted (water-saturated sedge ecosystem were highest, with a quarter of the values higher than 3,000 mg m-2 day-1 (median 78 mg m-2 day-1. Exchange of CO2 due to photosynthesis and respiration was of secondary importance compared to soil CH4 emissions. Continuous CO2 flux measurements using the eddy covariance approach in the disturbed and rewetted R

  8. Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    YANG MeiXue; YAO TanDong; GOU XiaoHua; HIROSE Nozomu; FUJII Hide Yuki; HAO LiSheng; D.F.LEVIA

    2007-01-01

    The exchange of energy and water between the lithosphere and atmosphere mainly takes place at the ground surface. Therefore, freeze/thaw condition at the ground surface is an important factor in examining the interactions between the land surface and atmosphere. Based on the observation data obtained by CEOP/CAMP-Tibet, the diurnal freeze/thaw cycles of the ground surface near Naqu, central Tibetan Plateau was preliminarily analyzed. The results show that the surface layer was completely frozen for approximately one month. However, the time that the ground surface experienced diurnal freeze/thaw cycles was about 6 months. The high frequency of freeze/thaw cycles at the ground surface significantly influences water and energy exchanges between ground and atmosphere over half a year. The interaction processes between the ground and atmosphere under different soil conditions (such as complete thaw, complete freeze and diurnal freeze/thaw cycles) are issues worthy of further examination.

  9. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  10. Soil data for a thermokarst bog and the surrounding permafrost plateau forest, located at Bonanza Creek Long Term Ecological Research Site, Interior Alaska

    Science.gov (United States)

    Manies, Kristen L.; Fuller, Christopher C.; Jones, Miriam C.; Waldrop, Mark P.; McGeehin, John P.

    2017-01-19

    Peatlands play an important role in boreal ecosystems, storing a large amount of soil organic carbon. In northern ecosystems, collapse-scar bogs (also known as thermokarst bogs) often form as the result of ground subsidence following permafrost thaw. To examine how ecosystem carbon balance changes with the loss of permafrost, we measured carbon and nitrogen storage within a thermokarst bog and the surrounding forest, which continues to have permafrost. These sites are a part of the Bonanza Creek Long Term Ecological Research (LTER) site and are located within Interior Alaska. Here, we report on methods used for core collection analysis as well as the cores’ physical, chemical, and descriptive properties.

  11. A new peat bog testate amoeba transfer function and quantitative palaeohydrological reconstructions from southern Patagonia

    Science.gov (United States)

    van Bellen, S.; Mauquoy, D.; Payne, R.; Roland, T. P.; Hughes, P. D.; Daley, T. J.; Street-Perrot, F. A.; Loader, N.

    2013-12-01

    Testate amoebae have been used extensively as proxies for environmental change and palaeoclimate reconstructions in European and North American peatlands. The presence of these micro-organisms in surface samples is generally significantly linked to the local water table depth (WTD) and preservation of the amoeba shells downcore allows for millennial length water table reconstructions. Peat bog archive records in southern Patagonia are increasingly the focus of palaeoecological research due to the possibility of detecting changes in the Southern Westerlies. These Sphagnum magellanicum-dominated peat bogs are characterised by a wide range of water table depths, from wet hollows to high hummocks (>100 cm above the water table). Here we present the first transfer function for this region along with ~2k-year palaeorecords from local peat bogs. A modern dataset (155 samples) was sampled along transects from five bogs in 2012 and 2013. Measurements of WTD, pH and conductivity were taken for all samples. The transfer function model was based on the 2012 dataset, while the 2013 samples served as an independent test set to validate the model. Besides the standard leave-one-out cross-validation, we applied leave-one-site-out and leave-one transect-out cross-validation, which are effective means of verifying the degree of clustering in the dataset. To ensure that the environmental gradient had been evenly sampled we quantified the root-mean-squared error of prediction (RMSEP) individually for segments of this gradient. Ordinations showed a clear hydrological gradient in amoeba assemblages, with the dominant Assulina muscorum at the dry end and Amphitrema wrightianum and Difflugia globulosa at the wet end. Canonical correspondence analysis showed that WTD was the most important environmental variable, accounting for 18% of the variance in amoeba assemblages. A weighted averaging-partial least squares model showed best performance in cross-validation, using the 2013 data as an

  12. GROUND SURFACE VISUALIZATION USING RED RELIEF IMAGE MAP FOR A VARIETY OF MAP SCALES

    Directory of Open Access Journals (Sweden)

    T. Chiba

    2016-06-01

    Full Text Available There are many methods to express topographical features of ground surface. In which, contour map has been the traditional method and along with development of digital data, surface model such as shaded relief map has been using for ground surface expression. Recently, data acquisition has been developed very much quick, demanding more advanced visualization method to express ground surface so as to effectively use the high quality data. In this study, the authors using the Red Relief Image Map (RRIM, Chiba et al., 2008 to express ground surface visualization for a variety of map scales. The authors used 30 m mesh data of SRTM to show the topographical features of western Mongolian and micro-topographical features of ground surface in tectonically active regions of Japan. The results show that, compared to traditional and other similar methods, the RRIM can express ground surface more precisely and 3-dimensionally, suggested its advanced usage for many fields of topographical visualization.

  13. Ground Surface Visualization Using Red Relief Image Map for a Variety of Map Scales

    Science.gov (United States)

    Chiba, T.; Hasi, B.

    2016-06-01

    There are many methods to express topographical features of ground surface. In which, contour map has been the traditional method and along with development of digital data, surface model such as shaded relief map has been using for ground surface expression. Recently, data acquisition has been developed very much quick, demanding more advanced visualization method to express ground surface so as to effectively use the high quality data. In this study, the authors using the Red Relief Image Map (RRIM, Chiba et al., 2008) to express ground surface visualization for a variety of map scales. The authors used 30 m mesh data of SRTM to show the topographical features of western Mongolian and micro-topographical features of ground surface in tectonically active regions of Japan. The results show that, compared to traditional and other similar methods, the RRIM can express ground surface more precisely and 3-dimensionally, suggested its advanced usage for many fields of topographical visualization.

  14. Sphagnum bogs of Kelantan, Peninsular Malaysia

    NARCIS (Netherlands)

    Yao, T.L.; Kamarudin, S.; Chew, M.Y.; Kiew, R.

    2009-01-01

    Sphagnum bog, a unique plant community for Peninsular Malaysia was encountered on Padang Ragut, Kelantan. Its topographical features and flora are described, and compared with padang and upper montane floras. It is postulated that the community is derived from upper montane forest and is the result

  15. Locally controlled globally smooth ground surface reconstruction from terrestrial point clouds

    CERN Document Server

    Rychkov, Igor

    2012-01-01

    Approaches to ground surface reconstruction from massive terrestrial point clouds are presented. Using a set of local least squares (LSQR) planes, the "holes" are filled either from the ground model of the next coarser level or by Hermite Radial Basis Functions (HRBF). Global curvature continuous as well as infinitely smooth ground surface models are obtained with Partition of Unity (PU) using either tensor product B-Splines or compactly supported exponential function. The resulting surface function has local control enabling fast evaluation.

  16. Paired charcoal and tree-ring records of high-frequency Holocene fire from two New Mexico bog sites

    Science.gov (United States)

    Allen, C.D.; Anderson, R. Scott; Jass, R.B.; Toney, J.L.; Baisan, C.H.

    2008-01-01

    Two primary methods for reconstructing paleofire occurrence include dendrochronological dating of fire scars and stand ages from live or dead trees (extending back centuries into the past) and sedimentary records of charcoal particles from lakes and bogs, providing perspectives on fire history that can extend back for many thousands of years. Studies using both proxies have become more common in regions where lakes are present and fire frequencies are low, but are rare where high-frequency surface fires dominate and sedimentary deposits are primarily bogs and wetlands. Here we investigate sedimentary and fire-scar records of fire in two small watersheds in northern New Mexico, in settings recently characterised by relatively high-frequency fire where bogs and wetlands (Chihuahuen??os Bog and Alamo Bog) are more common than lakes. Our research demonstrates that: (1) essential features of the sedimentary charcoal record can be reproduced between multiple cores within a bog deposit; (2) evidence from both fire-scarred trees and charcoal deposits documents an anomalous lack of fire since ???1900, compared with the remainder of the Holocene; (3) sedimentary charcoal records probably underestimate the recurrence of fire events at these high-frequency fire sites; and (4) the sedimentary records from these bogs are complicated by factors such as burning and oxidation of these organic deposits, diversity of vegetation patterns within watersheds, and potential bioturbation by ungulates. We consider a suite of particular challenges in developing and interpreting fire histories from bog and wetland settings in the Southwest. The identification of these issues and constraints with interpretation of sedimentary charcoal fire records does not diminish their essential utility in assessing millennial-scale patterns of fire activity in this dry part of North America. ?? IAWF 2008.

  17. Measured ground-surface movements, Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Massey, B.L.

    1981-01-01

    The Cerro Prieto geothermal area in the Mexicali Valley, 30 kilometers southeast of Mexicali, Baja California, incurred slight deformation because of the extraction of hot water and steam, and probably, active tectonism. During 1977 to 1978, the US Geological Survey established and measured two networks of horizontal control in an effort to define both types of movement. These networks consisted of: (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from stations on an existing US Geological Survey crustal-strain network north of the international border; and (2) a local net tied to stations in the regional net and encompassing the present and planned geothermal production area. Electronic distance measuring instruments were used to measure the distances between stations in both networks in 1978, 1979 and 1981. Lines in the regional net averaged 25 km. in length and the standard deviation of an individual measurement is estimated to be approx. 0.3 part per million of line length. The local network was measured using different instrumentation and techniques. The average line length was about 5 km. and the standard deviation of an individual measurement approached 3 parts per million per line length. Ground-surface movements in the regional net, as measured by both the 1979 and 1981 resurveys, were small and did not exceed the noise level. The 1979 resurvey of the local net showed an apparent movement of 2 to 3 centimeters inward toward the center of the production area. This apparent movement was restricted to the general limits of the production area. The 1981 resurvey of the local net did not show increased movement attributable to fluid extraction.

  18. Fate and Transport of Road Salt During Snowmelt Through a Calcareous Fen: Kampoosa Bog, Stockbridge, Massachusetts

    Science.gov (United States)

    Rhodes, A. L.; Guswa, A. J.; Pufall, A.

    2007-12-01

    Kampoosa Bog is the largest and most ecologically diverse calcareous lake-basin fen in Massachusetts. Situated within a 4.7 km2 drainage basin, the open fen (approx. 20 acres) consists of a floating mat of sedges (incl. Carex aquatilis and Cladium mariscoides) that overlie peat and lake clay deposits. Mineral weathering of marble bedrock within the drainage basin supplies highly alkaline ground and surface waters to the fen basin. The natural chemistry has been greatly altered by road salt runoff from the Massaschusetts Turnpike, and in question is whether disturbance from the Turnpike and a gas pipline has facilitated aggressive growth by the invasive species Phragmites australis. Considered to be one of the most significant rare species habitats in the state, Massachusetts has designated Kampoosa Bog an Area of Critical Environmental Concern, and a committee representing several local, regional, and state agencies, organizations, and citizens manages the wetland. The purpose of this study is to characterize the hydrologic and chemical response of the wetland during snowmelt events to understand the fate and movement of road salt (NaCl). Concentrations of Na and Cl in the fen groundwater are greatest close to the Turnpike. Concentrations decrease with distance downstream but are still greatly elevated relative to sites upstream of the Turnpike. During snowmelt events, the fen's outlet shows a sharp rise in Na and Cl concentrations at the onset of melting that is soon diluted by the added meltwater. The Na and Cl flux, however, is greatest at peak discharge, suggesting that high-flow events are significant periods of export of dissolved salts from the fen. Pure dissolution of rock salt produces an equal molar ratio between Na and Cl, and sodium and chloride imbalances in stream and ground waters suggest that ~20% of the Na is stored on cation exchange sites within the peat. The largest imbalances between Na and Cl occur deeper within the peat, where the peat is

  19. UAV based 3D digital surface model to estimate paleolandscape in high mountainous environment

    Science.gov (United States)

    Mészáros, János; Árvai, Mátyás; Kohán, Balázs; Deák, Márton; Nagy, Balázs

    2016-04-01

    Our method to present current state of a peat bog was focused on the possible use of a UAV-system and later Structure-from-motion algorithms as processing technique. The peat bog site is located on the Vinderel Plateau, Farcǎu Massif, Maramures Mountains (Romania). The peat bog (1530 m a.s.l., N47°54'11", E24°26'37") lies below Rugasu ridge (c. 1820 m a.s.l.) and the locality serves as a conservation area for fallen down coniferous trees. Peat deposits were formed in a landslide concavity on the western slope of Farcǎu Massif. Nowadays the site is surrounded by a completely deforested landscape, and Farcǎu Massif lies above the depressed treeline. The peat bog has an extraordinary geomorphological situation, because a gully reached the bog and drained the water. In the recent past sedimentological and dendrochronological researches have been initiated. However, an accurate 3D digital surface model also needed for a complex paleoenvironmental research. Last autumn the bog and its surroundings were finally surveyed by a multirotor UAV developed in-house based on an open-source flight management unit and its firmware. During this survey a lightweight action camera (mainly to decrease payload weight) was used to take aerial photographs. While our quadcopter is capable to fly automatically on a predefined flight route, several over- and sidelapping flight lines were generated prior to the actual survey on the ground using a control software running on a notebook. Despite those precautions, limited number of batteries and severe weather affected our final flights, resulting a reduced surveyed area around peat bog. Later, during the processing we looked for a reliable tool which powerful enough to process more than 500 photos taken during flights. After testing several software Agisoft PhotoScan was used to create 3D point cloud and mesh about bog and its environment. Due to large number of photographs PhotoScan had to be configured for network processing to get

  20. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    Science.gov (United States)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  1. Surface fatigue life of CBN and vitreous ground carburized and hardened AISI 9310 spur gears

    Science.gov (United States)

    Townsend, Dennis P.; Patel, P. R.

    1988-01-01

    Spur gear surface endurance tests were conducted to investigate CBN ground AISI 9310 spur gears for use in aircraft applications, to determine their endurance characteristics and to compare the results with the endurance of standard vitreous ground AISI 9310 spur gears. Tests were conducted with VIM-VAR AISI 9310 carburized and hardened gears that were finish ground with either CBN or vitreous grinding methods. Test conditions were an inlet oil temeprature of 320 K (116 F), an outlet oil temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. The CBN ground gears exhibited a surface fatigue life that was slightly better than the vitreous ground gears. The subsurface residual stress of the CBN ground gears was approximately the same as that for the standard vitreous ground gears for the CBN grinding method used.

  2. Interactions between Nitrogen Fixation and Methane Cycling in Northern Minnesota Peat Bogs

    Science.gov (United States)

    Warren, M. J.; Gaby, J. C.; Lin, X.; Morton, P. L.; Kostka, J. E.; Glass, J. B.

    2014-12-01

    Peatlands cover only 3% of the Earth's surface, yet store a third of soil carbon. Increasing global temperatures have the potential to change peatlands from a net sink to a net source of atmospheric carbon. N is a limiting nutrient in oligotrophic Sphagnum-dominated peatlands and biological N2 fixation likely supplies a significant but unknown fraction of N inputs. Moreover, environmental controls on diazotrophic community composition in N-limited peatlands are poorly constrained. Thus, improved understanding of feedbacks between the CH4 and N cycles is critical for predicting future changes to CH4 flux from peat bogs. We coupled measurements of N2 fixation activity measured by the acetylene (C2H2) reduction assay (ARA) with molecular analyses of expression and diversity of nifH genes encoding the molybdenum (Mo)-containing nitrogenase from two peat bogs in the Marcell Experimental Forest, Minnesota, USA. The top 10 cm of peat was sampled from the high CH4 flux S1 bog and the low CH4 flux Zim bog in April and June 2014. Despite similar N concentrations in the top 10 cm of both bogs (0.5-1.0 μM NO2-+NO3- and 2-3 μM NH4+), the S1 bog displayed variable ARA activity (1-100 nmol C2H4 h-1 g-1) whereas the Zim bog had consistently low ARA activity (<1 nmol C2H4 h-1 g-1). Highest ARA activity was measured in June from S1 bog hollows with higher moisture content incubated without O2 in the light (20-100 nmol C2H4 h-1 g-1). Dissolved Fe (1-25 μM) was higher in hollow vs. hummock samples, and at S1 vs. Zim bog, while dissolved V (4-14 nM) was consistently higher than Mo (1-4 nM), suggesting that alternative V or Fe-containing nitrogenases might be present in these bogs. In contrast, Cu, an essential micronutrient for aerobic methanotrophs, was higher in hummocks (25-48 nM) than hollows (6-17 nM). The facultative methanotroph Methylocella was the dominant diazotroph in the S1 bog based on high throughput next generation sequencing of nifH cDNA amplicons. Given previous

  3. Development of a raised bog over 9000 years in Atlantic Canada

    Directory of Open Access Journals (Sweden)

    A. Robichaud

    2009-05-01

    Full Text Available The chronostratigraphy of a coastal bog was studied in order to distinguish the roles of autogenic and allogenic factors in peatland development. Well-dated stratigraphical sequences from a peat cliff were used. The peatland shows three main vegetation phases: rich fen, poor fen and bog. Peat formation started around 9500 yr BP and the first expansion phase of rich fen occurred between 8550 and 7400 yr BP. The rich fen gradually changed to a poor fen through autogenic processes between 7620 and 5500 yr BP. It then became a bog in two major development phases, possibly in response to climate change, around 5250 yr BP (central part and 2800 yr BP (margins. Expansion resumed after 5500 yr BP and terminated shortly after 2500 yr BP when the peatland had filled the basin. Although autogenic succession is the dominant process by which the peatland has evolved, climatic variability has also affected peat expansion and vegetation change. The influence of fire was very limited but topography played a major role in peat expansion. One major find is that climate change can trigger simultaneous but various responses in local vegetation, depending upon its position on the bog surface.

  4. Hydrological instability of a Baltic raised bog during the last 1000 years in northern Poland

    Science.gov (United States)

    Lamentowicz, Mariusz; Galka, Mariusz; Pawlyta, Jacek; Lamentowicz, Lukasz; Goslar, Tomasz; Miotk-Szpiganowicz, Grażyna; Mitchell, Edward A. D.

    2010-05-01

    Our aim was to reconstruct the palaeohydrological of a Baltic raised bog located in northern Poland over the last 1000 years. We used several proxies: testate amoebae, plant macrofossils, pollen and carbon stable isotopes to reconstruct the bog surface wetness. We analysed two replicated monoliths collected from the same bog at high temporal resolution. We obtained a reliable chronology for both monoliths based on radiocarbon and lead 210 dating. We compared the inferred water table depth changes obtained from the quantitative reconstruction based on the testate amoebae transfer function with inference from plant remains and carbon isotopic composition of Sphagnum stems for both monoliths. Our data provide new insight on human impact on the hydrology of Baltic raised bogs and the sensitivity of these peatlands to various disturbances. We show an increasing hydrological instability of the studied peatland concomitant with the gradually increasing human impact over the landscape since the Medieval Period. However, climatic change also played an important role during the Little Ice Age period that overlapped with the anthropogenic disturbance. This palaeoenvironmental data provides useful baseline data for peatland management and restoration in Northern Poland and more generally illustrate the value of high-resolution multiproxy studies as tool for both palaeoenvironmental studies and current management.

  5. Surface and borehole ground-penetrating-radar developments

    NARCIS (Netherlands)

    Slob, E.C.; Sato, M.; Olhoeft, G.

    2010-01-01

    During the past 80 years, ground-penetrating radar (GPR) has evolved from a skeptically received glacier sounder to a full multicomponent 3D volume-imaging and characterization device. The tool can be calibrated to allow for quantitative estimates of physical properties such as water content. Becau

  6. Mitigating ground vibration by periodic inclusions and surface structures

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Bucinskas, Paulius; Persson, Peter

    2016-01-01

    Ground vibration from traffic is a source of nuisance in urbanized areas. Trenches and wave barriers can provide mitigation of vibrations, but single barriers need to have a large depth to be effective-especially in the low-frequency range relevant to traffic-induced vibration. Alternatively, per...

  7. Near-ground cooling efficacies of trees and high-albedo surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, R M [Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering

    1997-05-01

    Daytime summer urban heat islands arise when the prevalence of dark-colored surfaces and lack of vegetation make a city warmer than neighboring countryside. Two frequently-proposed summer heat island mitigation measures are to plant trees and to increase the albedo (solar reflectivity) of ground surfaces. This dissertation examines the effects of these measures on the surface temperature of an object near the ground, and on solar heating of air near the ground. Near-ground objects include people, vehicles, and buildings. The variation of the surface temperature of a near-ground object with ground albedo indicates that a rise in ground albedo will cool a near-ground object only if the object`s albedo exceeds a critical value. This critical value of object albedo depends on wind speed, object geometry, and the height of the atmospheric thermal boundary layer. It ranges from 0.15 to 0.37 for a person. If an object has typical albedo of 0.3, increasing the ground albedo by.

  8. Topographical Anisotropy and Wetting of Ground Stainless Steel Surfaces

    Directory of Open Access Journals (Sweden)

    Cornelia Bellmann

    2012-12-01

    Full Text Available Microscopic and physico-chemical methods were used for a comprehensive surface characterization of different mechanically modified stainless steel surfaces. The surfaces were analyzed using high-resolution confocal microscopy, resulting in detailed information about the topographic properties. In addition, static water contact angle measurements were carried out to characterize the surface heterogeneity of the samples. The effect of morphological anisotropy on water contact angle anisotropy was investigated. The correlation between topography and wetting was studied by means of a model of wetting proposed in the present work, that allows quantifying the air volume of the interface water drop-stainless steel surface.

  9. Concentration distributions of thoron and radon near the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Katase, Akira [Tohwa Univ., Fukuoka (Japan). Faculty of Engineering

    1996-12-01

    One dimensional diffusion model with a constant diffusion coefficient is applied to the thoron concentration distributions in air above the ground. The experimental distributions are well described by the exponential function obtained from the model. Diffusion coefficients and thoron exhalation rates are estimated from the measured distributions, which are the average values for three months. The present values of thoron exhalation are however several times as small as those measured by other researchers. (author)

  10. Radionuclides in peat bogs and energy peat; Turvesoiden ja polttoturpeen radionuklidit

    Energy Technology Data Exchange (ETDEWEB)

    Helariutta, K.; Rantavaara, A. [Radiation and Nuclear Safety Authority, Helsinki (Finland); Lehtovaara, J. [Vapo Oy, Jyvaeskylae (Finland)

    2000-06-01

    The study was aimed at improving the general view on radionuclides contents in energy peat produced in Finland. The annual harvest of fuel peat in 1994 was studied extensively. Also thirteen peat bogs used for peat production and one bog in natural condition were analysed for vertical distributions of several radionuclides. These distributions demonstrate the future change in radioactivity of energy peat. Both natural nuclides emitting gamma radiation ({sup 238}U, {sup 235}U, {sup 232}Th, {sup 226}Ra, {sup 40}K) and radiocaesium ({sup 137}Cs, {sup 134}Cs) origin in fallout from a nuclear power plant accident (1986) and in atmospheric nuclear weapon tests were analysed. The beta and alpha active natural nuclides of lead and polonium ({sup 210}Pb, {sup 210}Po) were determined on a set of peat samples. These nuclides potentially contribute to radiation exposure through inhalation when partially released to atmosphere during combustion of peat. The activity concentrations of natural radionuclides often increased towards the deepest peat bog layers whereas the radioactive caesium deposited from atmosphere was missing in the deep layers. In undisturbed surface layers of a natural bog and peat production bogs the contents of {sup 210}Pb and {sup 210}Po exceeded those of the deeper peat layers. The nuclides of the uranium series in the samples were generally not in radioactive equilibrium, as different environmental processes change their activity ratios in peat. Radiation exposure from handling and utilisation of peat ash was estimated with activity indices derived from the data for energy peat harvested in 1994. Intervention doses were exceeded in a minor selection of samples due to {sup 137}Cs, whereas natural radionuclides contributed very little to the doses. (orig.)

  11. Radionuclides in peat bogs and energy peat; Turvesoiden ja polttoturpeen radionuklidit

    Energy Technology Data Exchange (ETDEWEB)

    Helariutta, K.; Rantavaara, A. [Radiation and Nuclear Safety Authority, Helsinki (Finland); Lehtovaara, J. [Vapo Oy, Jyvaeskylae (Finland)

    2000-06-01

    The study was aimed at improving the general view on radionuclides contents in energy peat produced in Finland. The annual harvest of fuel peat in 1994 was studied extensively. Also thirteen peat bogs used for peat production and one bog in natural condition were analysed for vertical distributions of several radionuclides. These distributions demonstrate the future change in radioactivity of energy peat. Both natural nuclides emitting gamma radiation ({sup 238}U, {sup 235}U, {sup 232}Th, {sup 226}Ra, {sup 40}K) and radiocaesium ({sup 137}Cs, {sup 134}Cs) origin in fallout from a nuclear power plant accident (1986) and in atmospheric nuclear weapon tests were analysed. The beta and alpha active natural nuclides of lead and polonium ({sup 210}Pb, {sup 210}Po) were determined on a set of peat samples. These nuclides potentially contribute to radiation exposure through inhalation when partially released to atmosphere during combustion of peat. The activity concentrations of natural radionuclides often increased towards the deepest peat bog layers whereas the radioactive caesium deposited from atmosphere was missing in the deep layers. In undisturbed surface layers of a natural bog and peat production bogs the contents of {sup 210}Pb and {sup 210}Po exceeded those of the deeper peat layers. The nuclides of the uranium series in the samples were generally not in radioactive equilibrium, as different environmental processes change their activity ratios in peat. Radiation exposure from handling and utilisation of peat ash was estimated with activity indices derived from the data for energy peat harvested in 1994. Intervention doses were exceeded in a minor selection of samples due to {sup 137}Cs, whereas natural radionuclides contributed very little to the doses. (orig.)

  12. Ground effects of space weather investigated by the surface impedance

    Science.gov (United States)

    Pirjola, R.; Boteler, D.; Trichtchenko, L.

    2009-02-01

    The objective of this paper is to provide a discussion of the surface impedance applicable in connection with studies of geomagnetically induced currents (GIC) in technological systems. This viewpoint means that the surface impedance is regarded as a tool to determine the horizontal (geo)electric field at the Earth's surface, which is the key quantity for GIC. Thus the approach is different from the traditional magnetotelluric viewpoint. The definition of the surface impedance usually involves wavenumber-frequency-domain fields, so inverse Fourier transforming the expression of the electric field in terms of the surface impedance and the geomagnetic field results in convolution integrals in the time and space domains. The frequency-dependent surface impedance has a high-pass filter character whereas the corresponding transfer function between the electric field and the time derivative of the magnetic field is of a low-pass filter type. The relative change of the latter transfer function with frequency is usually smaller than that of the surface impedance, which indicates that the geoelectric field is closer to the time derivative than to the magnetic field itself. An investigation of the surface impedance defined by the space-domain electric and magnetic components indicates that the largest electric fields are not always achieved by the plane wave assumption, which is sometimes regarded as an extreme case for GIC. It is also concluded in this paper that it is often possible to apply the plane wave relation locally between the surface electric and magnetic fields. The absolute value of the surface impedance decreases with an increasing wavenumber although the maximum may also be at a non-zero value of the wavenumber. The imaginary part of the surface impedance usually much exceeds the real part.

  13. Relative importance of local habitat complexity and regional factors for assemblages of oribatid mites (Acari: Oribatida) in Sphagnum peat bogs.

    Science.gov (United States)

    Minor, M A; Ermilov, S G; Philippov, D A; Prokin, A A

    2016-11-01

    We investigated communities of oribatid mites in five peat bogs in the north-west of the East European plain. We aimed to determine the extent to which geographic factors (latitude, separation distance), local environment (Sphagnum moss species, ground water level, biogeochemistry) and local habitat complexity (diversity of vascular plants and bryophytes in the surrounding plant community) influence diversity and community composition of Oribatida. There was a significant north-to-south increase in Oribatida abundance. In the variance partitioning, spatial factors explained 33.1 % of variability in abundance across samples; none of the environmental factors were significant. Across all bogs, Oribatida species richness and community composition were similar in Sphagnum rubellum and Sphagnum magellanicum, but significantly different and less diverse in Sphagnum cuspidatum. Sphagnum microhabitat explained 52.2 % of variability in Oribatida species richness, whereas spatial variables explained only 8.7 %. There was no distance decay in community similarity between bogs with increased geographical distance. The environmental variables explained 34.9 % of the variance in community structure, with vascular plants diversity, bryophytes diversity, and ground water level all contributing significantly; spatial variables explained 15.1 % of the total variance. Overall, only 50 % of the Oribatida community variance was explained by the spatial structure and environmental variables. We discuss relative importance of spatial and local environmental factors, and make general inferences about the formation of fauna in Sphagnum bogs.

  14. Analysis on effect of surface fault to site ground motion using finite element method

    Institute of Scientific and Technical Information of China (English)

    曹炳政; 罗奇峰

    2003-01-01

    Dynamic contact theory is applied to simulate the sliding of surface fault. Finite element method is used to analyze the effect of surface fault to site ground motions. Calculated results indicate that amplification effect is obvious in the area near surface fault, especially on the site that is in the downside fault. The results show that the effect of surface fault should be considered when important structure is constructed in the site with surface fault.

  15. RAISED BOGS ON THE NORTH-EAST OF EUROPE

    Directory of Open Access Journals (Sweden)

    T. K. YURKOVSKAYA

    2004-01-01

    Full Text Available In the Northeastern Europe 2 types of raised bogs are distinguished: coastal (Southern White Sea raised hogs and continental (Pechora-Onega raised bogs. They have been compared as to their flora, prevailing syntaxa, characteristics of their complexes, structure of mire massifs and composition of peat deposits.

  16. National Enforcement Initiative: Preventing Animal Waste from Contaminating Surface and Ground Water

    Science.gov (United States)

    This page describes EPA's goal in preventing animal waste from contaminating surface and ground Water. It is an EPA National Enforcement Initiative. Both enforcement cases, and a map of enforcement actions are provided.

  17. The Simulation of Grinding Wheels and Ground Surface Roughness Based on Virtual Reality Technology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The paper describes the feasibility and method of the application of virtual reality technology to grinding process, and introduces the modeling method of object entity in the environment of virtual reality. The simulation process of grinding wheels and ground surface roughness is discussed, and the computation program system of numerical simulation is compiled with Visual C++ programming language. At the same time, the three-dimensional simulation models of grinding wheels and ground surface roughness are ...

  18. Uncertainties and shortcomings of ground surface temperature histories derived from inversion of temperature logs

    OpenAIRE

    Hartmann, Andreas; Rath, Volker

    2008-01-01

    Analysing borehole temperature data in terms of ground surface history can add useful information to reconstructions of past climates. Therefore, a rigorous assessment of uncertainties and error sources is a necessary prerequisite for the meaningful interpretation of such ground surface temperature histories. This study analyses the most prominent sources of uncertainty. The diffusive nature of the process makes the inversion relatively robust against incomplete knowledge of the thermal diffu...

  19. Age estimation by 3D CT-scans of the Borremose Woman, a Danish bog body

    DEFF Research Database (Denmark)

    Villa, Chiara; Møller Rasmussen, Maria; Lynnerup, Niels

    2011-01-01

    been visualized from CT-scans using the Mimics software from Materialise. Extensive manual editing was necessary, as is common with bog bodies, since the bones were severely degraded and the ordinary range of Hounsfield Units (HU), used for clinical work, is not suitable. Only the cranium, the left...... ribs and the right auricular surface were 3D visualized. Based on these visualizations, the age was estimated by applying macroscopic methods routinely used for skeletal remains: the cranial sutures closure (Meindl & Lovejoy 1985), the sternal rib end (Iscan & Loth 1986) and the auricular surface...... was 16 to 24 years. Many problems had to be addressed. First of all, the degradation of the skeletal tissue does not allow a complete visualization: the bones are demineralized because of the acidic bog environment. Another problem is the subjectivity that can arise during manual editing, especially...

  20. Late Holocene palaeohydrological changes in a Sphagnum peat bog from NW Romania based on testate amoebae

    Directory of Open Access Journals (Sweden)

    Andrei-Cosmin Diaconu

    2016-04-01

    Full Text Available This paper investigates the possibility of reconstructing the palaeohydrological changes in an active Sphagnum peat bog from north-western Romania using testate amoebae fauna and organic matter content determined by loss on ignition (LOI. In total 28 taxa of testate amoebae were identified of which 11 were frequent enough to present a remarkable ecological significance. Based on the relative abundance of these taxa nine zones were identified, crossing from very wet to dry climate conditions. The wet periods identified are characterized by taxa like Centropyxis cassis, Amphitrema flavum and Hyalosphenia papilio, while in the dry periods Difflugia pulex and Nebela militaris thrive. We showed that combining qualitative information regarding hydrological preferences with the quantitative percentage data from the fossil record it is possible to obtain information regarding major surface moisture changes from the peat bog surface. Furthermore we identified a link between distribution of testate amoebae assemblages, organic matter variation and minerogenic material.

  1. Peat bogs and their organic soils: Archives of atmospheric change and global environmentalsignificance (Philippe Duchaufour Medal Lecture)

    Science.gov (United States)

    Shotyk, William

    2013-04-01

    A bog is much more than a waterlogged ecosystem where organic matter accumulates as peat. Peatlands such as bogs represent a critical link between the atmosphere, hydrosphere, and biosphere. Plants growing at the surface of ombrotrophic bogs receive nutrients exclusively from the atmosphere. Despite the variations in redox status caused by seasonal fluctuations in depth to water table, the low pHof the waters, and abundance of dissolved organic matter, bogs preserve a remarkably reproducible history of atmospheric pollution, climate change, landscape evolution and human history. For example, peat cores from bogs in Europe and North America have provided detailed reconstructions of the changing rates and sources of Ag, Cd, Hg, Pb, Sb, and Tl, providing new insights into the geochemical cycles of these elements, including the massive perturbations induced by human activities beginning many thousands of years ago. Despite the low pH, and perhaps because of the abundance of dissolved organic matter, bogs preserve many silicate and aluminosilicate minerals which renders them valuable archives of atmospheric dust deposition and the climate changes which drive them. In the deeper, basal peat layers of the bog, in the minerotrophic zone where pore waters are affected bymineral-water interactions in the underlying and surrounding soils and sediments, peat serves as animportant link to the hydrosphere, efficiently removing from the imbibed groundwaters such trace elements as As, Cu, Mo, Ni, Se, V, and U. These removal processes, while incompletely understood, are so effective that measuring the dissolved fraction of trace elements in the pore waters becomes a considerable challenge even for the most sophisticated analytical laboratories. While the trace elements listed above are removed from groundwaters (along with P and S), elements such as Fe and Mn are added to the waters because of reductive dissolution, an important first step in the formation of lacustrine Fe and Mn

  2. Could Poor Fens BE More Sensitive than Bogs to Elevated N Deposition in the Oil Sands Region of Northern Alberta?

    Science.gov (United States)

    Wieder, R. K.; Vile, M. A.; Scott, K. D.

    2015-12-01

    . These findings suggest that in the poor fen, N deposition may stimulate ericaceous shrub growth and growth of the microbial community in surface peat, either as a direct effect, or as an indirect effect of enhanced root growth. These responses were less apparent in the bog, suggesting that poor fens may be more responsive to elevated N deposition in the oil sands region.

  3. Geoinformatics meets education for a peat bog information system

    Science.gov (United States)

    Michel, Ulrich; Fiene, Christina; Plass, Christian

    2010-10-01

    Within the project "Expedition Bog: Young researchers are experimenting, exploring and discovering" a bog-information- system is developed by the Department of Geography (University of Education Heidelberg, Germany), the Institute for Geoinformatics and Remote Sensing (University of Osnabrueck, Germany; the NABU Umweltpyramide gGmbH. This information system will be available for schools and to the public. It is supplemented by teaching units on various topics around the bog via an online platform. The focus of the project, however, is the original encounter with the bog habitat. This is realized by a GPS scavenger hunt with small research tasks and observations, mapping and experiments. The project areas are the Huvenhoops bog and the Lauenbruecker bog in Rotenburg in Lower Saxony, Germany. Equipped with a researcher backpack, GPS device and a mobile bog book by means of a pocket PC, students can discover different learning stations in the project bogs. In our areas the students can learn more about different topics such as "the historical memory of the bog", "water", "peat moss and other plants" and "animals of the bog". Moreover small inquiry research projects can be executed. Experimenting on site helps students to develop important scientific findings and increases their curiosity and enthusiasm for nature. It also promotes a number of other basic skills such as literacy, language skills, social skills or fine motor skills. Moreover it also fosters the development of a positive attitude to science in general. The main objective of the project is to promote sustainable environmental education, as well as the development of environmental awareness. This will be accomplished through the imparting of knowledge but also through experiencing nature with all senses in the context of original encounters.

  4. Ground-water and surface-water quality data for the West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Spencer, Tracey A.; Phelan, Daniel J.; Olsen, Lisa D.; Lorah, Michelle M.

    2001-01-01

    This report presents ground-water and surface-water quality data from samples collected by the U.S. Geological Survey from November 1999 through May 2001 at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The report also provides a description of the sampling and analytical methods that were used to collect and analyze the samples, and includes an evaluation of the quality-assurance data. The ground-water sampling network included two 4-inch wells, two 2-inch wells, sixteen 1-inch piezometers, one hundred thirteen 0.75-inch piezometers, two 0.25-inch flexible-tubing piezo-meters, twenty-seven 0.25-inch piezometers, and forty-two multi-level monitoring system depths at six sites. Ground-water profiler samples were collected from nine sites at 34 depths. In addition, passive-diffusion-bag samplers were deployed at four sites, and porous-membrane sampling devices were installed in the upper sediment at five sites. Surface-water samples were collected from 20 sites. Samples were collected from wells and 0.75-inch piezometers for measurement of field parameters and reduction-oxidation constituents, and analysis of inorganic and organic constituents, during three sampling events in March?April and June?August 2000, and May 2001. Surface-water samples were collected from November 1999 through September 2000 during five sampling events for analysis of organic constituents. Ground-water profiler samples were collected in April?May 2000, and analyzed for field measure-ments, reduction-oxidation constituents, and inorganic constituents and organic constituents. Passive-diffusion-bag samplers were installed in September 2000, and samples were analyzed for organic constituents. Multi-level monitoring system samples were collected and analyzed for field measurements and reduction-oxidation con-stituents, inorganic constituents, and organic con-stituents in March?April and June?August 2000. Field measurements and organic constituents were collected from 0.25-inch

  5. Can a bog drained for forestry be a stronger carbon sink than a natural bog forest?

    Science.gov (United States)

    Hommeltenberg, J.; Schmid, H. P.; Drösler, M.; Werle, P.

    2014-07-01

    This study compares the CO2 exchange of a natural bog forest, and of a bog drained for forestry in the pre-Alpine region of southern Germany. The sites are separated by only 10 km, they share the same soil formation history and are exposed to the same climate and weather conditions. In contrast, they differ in land use history: at the Schechenfilz site a natural bog-pine forest (Pinus mugo ssp. rotundata) grows on an undisturbed, about 5 m thick peat layer; at Mooseurach a planted spruce forest (Picea abies) grows on drained and degraded peat (3.4 m). The net ecosystem exchange of CO2 (NEE) at both sites has been investigated for 2 years (July 2010-June 2012), using the eddy covariance technique. Our results indicate that the drained, forested bog at Mooseurach is a much stronger carbon dioxide sink (-130 ± 31 and -300 ± 66 g C m-2 a-1 in the first and second year, respectively) than the natural bog forest at Schechenfilz (-53 ± 28 and -73 ± 38 g C m-2 a-1). The strong net CO2 uptake can be explained by the high gross primary productivity of the 44-year old spruces that over-compensates the two-times stronger ecosystem respiration at the drained site. The larger productivity of the spruces can be clearly attributed to the larger plant area index (PAI) of the spruce site. However, even though current flux measurements indicate strong CO2 uptake of the drained spruce forest, the site is a strong net CO2 source when the whole life-cycle since forest planting is considered. It is important to access this result in terms of the long-term biome balance. To do so, we used historical data to estimate the difference between carbon fixation by the spruces and the carbon loss from the peat due to drainage since forest planting. This rough estimate indicates a strong carbon release of +134 t C ha-1 within the last 44 years. Thus, the spruces would need to grow for another 100 years at about the current rate, to compensate the potential peat loss of the former years. In

  6. Can a bog drained for forestry be a stronger carbon sink than a natural bog forest?

    Directory of Open Access Journals (Sweden)

    J. Hommeltenberg

    2014-02-01

    Full Text Available This study compares the CO2 exchange of a natural bog forest, and of a bog drained for forestry in the pre-alpine region of southern Germany. The sites are separated by only ten kilometers, they share the same formation history and are exposed to the same climate and weather conditions. In contrast, they differ in land use history: at the Schechenfilz site a natural bog-pine forest (Pinus mugo rotundata grows on an undisturbed, about 5 m thick peat layer; at Mooseurach a planted spruce forest (Picea abies grows on drained and degraded peat (3.4 m. The net ecosystem exchange of CO2 (NEE at both sites has been investigated for two years (July 2010 to June 2012, using the eddy covariance technique. Our results indicate that the drained, forested bog at Mooseurach is a much stronger carbon dioxide sink (−130 ± 31 and −300 ± 66 g C m−2 a−1 in the first and second year respectively than the natural bog forest at Schechenfilz (−53 ± 28 and −73±38 g C m−2 a−1. The strong net CO2 uptake can be explained by the high gross primary productivity of the spruces that over-compensates the two times stronger ecosystem respiration at the drained site. The larger productivity of the spruces can be clearly attributed to the larger LAI of the spruce site. However, even though current flux measurements indicate strong CO2 uptake of the drained spruce forest, the site is a strong net CO2 source, if the whole life-cycle, since forest planting is considered. We determined the difference between carbon fixation by the spruces and the carbon loss from the peat due to drainage since forest planting. The estimate resulted in a strong carbon release of +156 t C ha−1 within the last 44 yr, means the spruces would need to grow for another 100 yr, at the current rate, to compensate the peat loss of the former years. In contrast, the natural bog-pine ecosystem has likely been a small but consistent carbon sink for decades, which our results suggest is very

  7. Study on the Surface Free Energy of Ground CaO by IGC

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    CaO formed by decomposing CaCO3 at 1450℃ was ground in a vibrational mill,then the long-time ground sample was reheated at different temperatures.Inverse Gas Chromatography (IGC) was used to measure the variation of the sample′s surface free energy under grinding and reheating.It is concluded that the total surface free energy and the London dispersive component of the surface free energy increases with grinding,while the polar component first increases with grinding,and then decreases,and finally disappears.When the long-time ground sample was reheated,its total surface free energy decreases,among which the London component decreases,but the polar component appears again.

  8. Properties and structure of peat humic acids depending on humification and precursor biota in bogs

    Science.gov (United States)

    Klavins, Maris; Purmalis, Oskars

    2013-04-01

    Humic substances form most of the organic component of soil, peat and natural waters, but their structure and properties very much differs depending on their source. The aim of this study is to characterize humic acids from raised bog peat profiles to evaluate the homogeneity of humic acids isolated from the bog bodies and study peat humification impact on properties of humic acids. A major impact on the structure of peat humic acids have raised bog biota (dominantly represented by bryophytes of different origin) void of lignin. For characterization of peat humic acids their elemental (CHNOS), functional (-COOH, phenolic OH) analysis, spectroscopic characterization (UV, fluorescence, FTIR, 1H NMR, CP/MAS 13C NMR, ESR) and degradation studies (Py-GC/MS) were done. Peat humic acids (HA) have an intermediate position between the living organic matter and coal organic matter and their structure is formed in a process in which more labile structures (carbohydrates, amino acids, etc.) are destroyed, but thermodynamically more stable aromatic and polyaromatic structures emerge. Comparatively, the studied peat HAs are at the start of the transformation process of living organic matter. Concentrations of carboxyl and phenolic hydroxyl groups changes depending on the depth of peat from which HAs have been isolated: and carboxylic acidity is increasing with depth of peat location and the humification degree. The ability to influence the surface tension of peat humic acids isolated from a well-characterized bog profile demonstrates dependence on age and humification degree. With increase of the humification degree and age of humic acids, their molecular complexity and ability to influence surface tension decreases; even so, the impact of the biological precursor (peat-forming bryophytes and plants) can be identified.

  9. Salmonella pollution in ground and surface waters. (Latest citations from Pollution abstracts). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The bibliography contains citations concerning the contamination of ground waters and surface waters by Salmonella bacteria. Articles discuss the occurence, survival, origin, and control of these bacteria in water sources including rivers, reservoirs, swimming pools, wastewater, aquifers, and ground water. Citations also address the use of Salmonella populations as biological indicators of pollution in aquatic systems. (Contains a minimum of 102 citations and includes a subject term index and title list.)

  10. On Ground Surface Extraction Using Full-Waveform Airborne Laser Scanner for Cim

    Science.gov (United States)

    Nakano, K.; Chikatsu, H.

    2015-05-01

    Satellite positioning systems such as GPS and GLONASS have created significant changes not only in terms of spatial information but also in the construction industry. It is possible to execute a suitable construction plan by using a computerized intelligent construction. Therefore, an accurate estimate of the amount of earthwork is important for operating heavy equipment, and measurement of ground surface with high accuracy is required. A full-waveform airborne laser scanner is expected to be capable of improving the accuracy of ground surface extraction for forested areas, in contrast to discrete airborne laser scanners, as technological innovation. For forested areas, fundamental studies for construction information management (CIM) were conducted to extract ground surface using full-waveform airborne laser scanners based on waveform information.

  11. ON GROUND SURFACE EXTRACTION USING FULL-WAVEFORM AIRBORNE LASER SCANNER FOR CIM

    Directory of Open Access Journals (Sweden)

    K. Nakano

    2015-05-01

    Full Text Available Satellite positioning systems such as GPS and GLONASS have created significant changes not only in terms of spatial information but also in the construction industry. It is possible to execute a suitable construction plan by using a computerized intelligent construction. Therefore, an accurate estimate of the amount of earthwork is important for operating heavy equipment, and measurement of ground surface with high accuracy is required. A full-waveform airborne laser scanner is expected to be capable of improving the accuracy of ground surface extraction for forested areas, in contrast to discrete airborne laser scanners, as technological innovation. For forested areas, fundamental studies for construction information management (CIM were conducted to extract ground surface using full-waveform airborne laser scanners based on waveform information.

  12. Topographical changes of ground surface affected by the Tarim Desert Highway

    Institute of Scientific and Technical Information of China (English)

    LI Shengyu; LEI Jiaqiang; XU Xinwen; WANG Lixin; ZHOU Zhibin; LI Hongzhong

    2006-01-01

    The Tarim Desert Highway is the longest highway crossing the mobile desert in the world. The highway and its sand protection system were established in 1995. This great project must have significant effect on the aeolian environment in its neighborhoods. In 2004, we investigated the topographic changes of ground surface within the sand protection system and its external adjacent area in the hinterland of the Taklimakan Desert. The results showed that (i) the original topographic patterns of ground surface were greatly changed, and erosion as well as deposition was distributed clearly on the ground surface, affected by the road and its sand protection system; (ii) sediment deposited in the sand protection system gradually heightened the ground surface, but each part in the system changed differently: in the sand-blocking belt, a transverse sand ridge was formed in the same direction as the upright sand barrier; in the sand-binding belt, sediment was aggraded on the original surface in a certain thickness; at the initial stages since the establishment of the sand protection system, erosion had taken place in the un-stabilized area named by the deposition belt between the sand-blocking belt and the sand-binding belt, the inner of sand-binding belt, the windward slope of dunes in the sand-binding belt, and the neighboring leeward area of the sand protection system.

  13. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  14. The Effect of Images on Surface Potential and Resistance Calculation of Grounding Systems

    Directory of Open Access Journals (Sweden)

    MARTINS, A.

    2015-05-01

    Full Text Available In the grounding systems with a two layers soil, the calculation of the surface potential using the image method is sometimes impossible due to singularities, avoiding researchers to use the method for electrodes in the bottom layer. In the literature this problem solution is refereed as unreliable or solved with other more complex methods. This paper presents a new approach to calculate the surface potentials in a two. layer soil, for electrodes in the bottom layer, when images are at surface. The singularities in computing surface voltage, when the first image upwards lies at surface, are analysed and it's shown that a small change in top layer thickness allows an approximate solution. Surface potentials due to grid conductor are also considered and the values of resistance are compared with those from other methodologies. Singularities for a ground rod that crosses the two layers are also treated. The obtained values of resistance are not satisfactory, due to lower segments images that overlap the upper segments. This paper also proposes shifting the surface of the upper part of the ground rod, in the upper layer, or taking the modulus of the mutual resistance, to overcome this difficulty.

  15. Size of craters produced by explosive charges on or above the ground surface

    Science.gov (United States)

    Ambrosini, R. D.; Luccioni, B. M.; Danesi, R. F.; Riera, J. D.; Rocha, M. M.

    The results of a series of tests performed with different amounts of explosive at short distances above and below ground level, as well as on the soil surface are briefly described. After an introductory description of both the main features of the blast wave and the mechanics of crater formation, a brief review of empirical methods for crater size prediction is presented. Next, the experimental design and the results obtained are described. The crater dimensions for underground explosions coincide with those found in the literature. For explosions at ground level the results are qualitatively described by empirical equations. For explosive charges situated above ground level, the dimensions of the craters are smaller than those observed in underground and near the surface explosions. Two new single prediction equations for this case are presented.

  16. Inferring snow pack ripening and melt out from distributed ground surface temperature measurements

    Directory of Open Access Journals (Sweden)

    M.-O. Schmid

    2012-02-01

    Full Text Available The seasonal snow cover and its melting are heterogeneous both in space and time. Describing and modelling this variability are important because it affects divers phenomena such as runoff, ground temperatures or slope movements. This study investigates the derivation of melting characteristics based on spatial clusters of temperature measurements. Results are based on data from Switzerland where ground surface temperatures were measured with miniature loggers (iButtons at 40 locations, referred to as footprints. At each footprint, ten iButtons have been distributed randomly few cm below the ground surface over an area of 10 m × 10 m. Footprints span elevations of 2100–3300 m a.s.l. and slope angles of 0–55°, as well as diverse slope expositions and types of surface cover and ground material. Based on two years of temperature data, the basal ripening date and the melt-out date are determined for each iButton, aggregated to the footprint level and further analysed. The date of melt out could be derived for nearly all iButtons, the ripening date could be extracted for only approximately half of them because it requires ground freezing below the snow pack. The variability within a footprint is often considerable and one to three weeks difference between melting or ripening of the points in one footprint is not uncommon. The correlation of mean annual ground surface temperatures, ripening date and melt-out date is moderate, making them useful intuitive complementary measured for model evaluation.

  17. Supplementary report on surface-water and ground-water surveys, Nueces River Basin, Texas

    Science.gov (United States)

    Broadhurst, W.L.; Ellsworth, C.E.

    1950-01-01

    A report on the ground-water and surface-water surveys of the Nueces River Basin was included in a report by the Bureau of Reclamation, entitled "Comprehensive plan for water-resources development of the Nueces River Basin project planning report number 5-14.04-3, February 1946".

  18. Ground states for a modified capillary surface equation in weighted Orlicz-Sobolev space

    Directory of Open Access Journals (Sweden)

    Guoqing Zhang

    2015-03-01

    Full Text Available In this article, we prove a compact embedding theorem for the weighted Orlicz-Sobolev space of radially symmetric functions. Using the embedding theorem and critical points theory, we prove the existence of multiple radial solutions and radial ground states for the following modified capillary surface equation $$\\displaylines{ -\\operatorname{div}\\Big(\\frac{|\

  19. Greenhouse gas emissions from rewetted bog peat extraction sites and a Sphagnum cultivation site in Northwest Germany

    Science.gov (United States)

    Beyer, C.; Höper, H.

    2014-03-01

    . The yearly GWP100 balances ranged from -280.5 ± 465.2 to 644.5 ± 413.6 g CO2-eq. m-2 a-1 at the rewetted sites. In contrast, the Sphagnum farming site had a cooling impact on the climate in both years (-356.8 ± 176.5 and -234.9 ± 145.9 g CO2-C m-2 a-1). If the exported carbon through the harvest of the Sphagnum biomass and the additional CO2 emission from the decay of the organic material is considered, the NECB and GWP100 balances are near neutral. Peat mining sites are likely to become net carbon sinks and a peat accumulating ("growing") peatland within 30 years after rewetting, but the GWP100 balance may still be positive. A recommended measure for rewetting is to achieve a water level of a few centimetres below ground surface. Sphagnum farming is a climate friendly alternative to conventional commercial use of bogs. A year round constant water level of a few centimetres below ground level should be maintained.

  20. Greenhouse gas emissions from rewetted bog peat extraction sites and a Sphagnum cultivation site in Northwest Germany

    Directory of Open Access Journals (Sweden)

    C. Beyer

    2014-03-01

    .1 and –75.3 ± 39.8 g CO2-C m–2 a–1. The yearly GWP100 balances ranged from –280.5 ± 465.2 to 644.5 ± 413.6 g CO2-eq. m–2 a–1 at the rewetted sites. In contrast, the Sphagnum farming site had a cooling impact on the climate in both years (–356.8 ± 176.5 and –234.9 ± 145.9 g CO2-C m–2 a–1. If the exported carbon through the harvest of the Sphagnum biomass and the additional CO2 emission from the decay of the organic material is considered, the NECB and GWP100 balances are near neutral. Peat mining sites are likely to become net carbon sinks and a peat accumulating ("growing" peatland within 30 years after rewetting, but the GWP100 balance may still be positive. A recommended measure for rewetting is to achieve a water level of a few centimetres below ground surface. Sphagnum farming is a climate friendly alternative to conventional commercial use of bogs. A year round constant water level of a few centimetres below ground level should be maintained.

  1. Evaluation of the ground surface Enthalpy balance from bedrock shallow borehole temperatures (Livingston Island, Maritime Antarctic

    Directory of Open Access Journals (Sweden)

    M. Ramos

    2008-03-01

    Full Text Available The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic is studied. The borehole is 2.4 m deep and is located in a quartzite outcrop in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth hourly temperature profiles from: (i the cooling periods of the frost seasons of 2000 to 2005, and (ii the warming periods of the thaw seasons of 2002–2003, 2003–2004 and 2004–2005, were studied. In this modelling approach, heat gains and losses across ground surface are considered to be the causes for the 0°C isotherm movement. A methodological approach to calculate the Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density is considered to be constant in the borehole and initial isothermal conditions at 0°C are assumed to run the model. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima.

  2. A shear wave ground surface vibration technique for the detection of buried pipes

    Science.gov (United States)

    Muggleton, J. M.; Papandreou, B.

    2014-07-01

    A major UK initiative, entitled 'Mapping the Underworld' aims to develop and prove the efficacy of a multi-sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics; the application of this technology for detecting buried infrastructure, in particular pipes, is currently being investigated. Here, a shear wave ground vibration technique for detecting buried pipes is described. For this technique, shear waves are generated at the ground surface, and the resulting ground surface vibrations measured. Time-extended signals are employed to generate the illuminating wave. Generalized cross-correlation functions between the measured ground velocities and a reference measurement adjacent to the excitation are calculated and summed using a stacking method to generate a cross-sectional image of the ground. To mitigate the effects of other potential sources of vibration in the vicinity, the excitation signal can be used as an additional reference when calculating the cross-correlation functions. Measurements have been made at two live test sites to detect a range of buried pipes. Successful detection of the pipes was achieved, with the use of the additional reference signal proving beneficial in the noisier of the two environments.

  3. Evaluation of the ground surface Enthalpy balance from bedrock shallow borehole temperatures (Livingston Island, Maritime Antarctic)

    Science.gov (United States)

    Ramos, M.; Vieira, G.

    2008-03-01

    The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic) is studied. The borehole is 2.4 m deep and is located in a quartzite outcrop in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth) hourly temperature profiles from: (i) the cooling periods of the frost seasons of 2000 to 2005, and (ii) the warming periods of the thaw seasons of 2002-2003, 2003-2004 and 2004-2005, were studied. In this modelling approach, heat gains and losses across ground surface are considered to be the causes for the 0°C isotherm movement. A methodological approach to calculate the Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density is considered to be constant in the borehole and initial isothermal conditions at 0°C are assumed to run the model. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima).

  4. Interannual changes in snow cover and its impact on ground surface temperatures in Livingston Island (Antarctica)

    Science.gov (United States)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2015-04-01

    In permafrost areas the seasonal snow cover is an important factor on the ground thermal regime. Snow depth and timing are important in ground insulation from the atmosphere, creating different snow patterns and resulting in spatially variable ground temperatures. The aim of this work is to characterize the interactions between ground thermal regimes and snow cover and the influence on permafrost spatial distribution. The study area is the ice-free terrains of northwestern Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". Air and ground temperatures and snow thickness data where analysed from 4 sites along an altitudinal transect in Hurd Peninsula from 2007 to 2012: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). The data covers 6 cold seasons showing different conditions: i) very cold with thin snow cover; ii) cold with a gradual increase of snow cover; iii) warm with thick snow cover. The data shows three types of periods regarding the ground surface thermal regime and the thickness of snow cover: a) thin snow cover and short-term fluctuation of ground temperatures; b) thick snow cover and stable ground temperatures; c) very thick snow cover and ground temperatures nearly constant at 0°C. a) Thin snow cover periods: Collado Ramos and Ohridski sites show frequent temperature variations, alternating between short-term fluctuations and stable ground temperatures. Nuevo Incinerador displays during most of the winter stable ground temperatures; b) Cold winters with a gradual increase of the snow cover: Nuevo Incinerador, Collado Ramos and Ohridski sites show similar behavior, with a long period of stable ground temperatures; c) Thick snow cover periods: Collado Ramos and Ohridski show long periods of stable ground, while Nuevo Incinerador shows temperatures close to 0°C since the beginning of the winter, due to early snow cover

  5. A preliminary study on surface ground deformation near shallow foundation induced by strike-slip faulting

    Science.gov (United States)

    Wong, Pei-Syuan; Lin, Ming-Lang

    2016-04-01

    According to investigation of recent earthquakes, ground deformation and surface rupture are used to map the influenced range of the active fault. The zones of horizontal and vertical surface displacements and different features of surface rupture are investigated in the field, for example, the Greendale Fault 2010, MW 7.1 Canterbury earthquake. The buildings near the fault rotated and displaced vertically and horizontally due to the ground deformation. Besides, the propagation of fault trace detoured them because of the higher rigidity. Consequently, it's necessary to explore the ground deformation and mechanism of the foundation induced by strike-slip faulting for the safety issue. Based on previous study from scaled analogue model of strike-slip faulting, the ground deformation is controlled by material properties, depth of soil, and boundary condition. On the condition controlled, the model shows the features of ground deformation in the field. This study presents results from shear box experiment on small-scale soft clay models subjected to strike-slip faulting and placed shallow foundations on it in a 1-g environment. The quantifiable data including sequence of surface rupture, topography and the position of foundation are recorded with increasing faulting. From the result of the experiment, first en echelon R shears appeared. The R shears rotated to a more parallel angle to the trace and cracks pulled apart along them with increasing displacements. Then the P shears crossed the basement fault in the opposite direction appears and linked R shears. Lastly the central shear was Y shears. On the other hand, the development of wider zones of rupture, higher rising surface and larger the crack area on surface developed, with deeper depth of soil. With the depth of 1 cm and half-box displacement 1.2 cm, en echelon R shears appeared and the surface above the fault trace elevated to 1.15 mm (Dv), causing a 1.16 cm-wide zone of ground-surface rupture and deformation

  6. Seasonal Distribution of Trace Metals in Ground and Surface Water of Golaghat District, Assam, India

    Directory of Open Access Journals (Sweden)

    M. Boarh

    2010-01-01

    Full Text Available A study has been carried out on the quality of ground and surface water with respect to chromium, manganese, zinc, copper, nickel, cadmium and arsenic contamination from 28 different sources in the predominantly rural Golaghat district of Assam (India. The metals were analysed by using atomic absorption spectrometer. Water samples were collected from groundwater and surface water during the dry and wet seasons of 2008 from the different sources in 28 locations (samples. The results are discussed in the light of possible health hazards from the metals in relation to their maximum permissible limits. The study shows the quality of ground and surface water in a sizeable number of water samples in the district not to be fully satisfactory with respect to presence of the metals beyond permissible limits of WHO. The metal concentration of groundwater in the district follows the trend As>Zn>Mn>Cr>Cu>Ni>Cd in both the seasons.

  7. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    Science.gov (United States)

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  8. Determining the location of buried plastic water pipes from measurements of ground surface vibration

    Science.gov (United States)

    Muggleton, J. M.; Brennan, M. J.; Gao, Y.

    2011-09-01

    ‘Mapping the Underworld' is a UK-based project, which aims to create a multi-sensor device that combines complementary technologies for remote buried utility service detection and location. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and techniques for detecting buried infrastructure, in particular plastic water pipes, are being investigated. One of the proposed techniques involves excitation of the pipe at some known location with concurrent vibrational mapping of the ground surface in order to infer the location of the remainder of the pipe. In this paper, measurements made on a dedicated pipe rig are reported. Frequency response measurements relating vibrational velocity on the ground to the input excitation were acquired. Contour plots of the unwrapped phase revealed the location of the pipe to within 0.1-0.2 m. Magnitude contour plots revealed the excitation point and also the location of the pipe end. By examining the unwrapped phase gradients along a line above the pipe, it was possible to identify the wave-type within the pipe responsible for the ground surface vibration. Furthermore, changes in the ground surface phase speed computed using this method enabled the location of the end of the pipe to be confirmed.

  9. Homogenization of seismic surface wave profiling in highly heterogeneous improved ground

    Science.gov (United States)

    Lin, C.; Chien, C.

    2012-12-01

    Seismic surface wave profiling is gaining popularity in engineering practice for determining shear-wave velocity profile since the two-station SASW (Spectral Analysis of Surface Wave) was introduced. Recent developments in the multi-station approach (Multi-station Analysis of Surface Wave, MASW) result in several convenient commercial tools. Unlike other geophysical tomography methods, the surface wave method is essentially a 1-D method assuming horizontally-layered medium. Nevertheless, MASW is increasingly used to map lateral variation of S-wave velocity by multiple surveys overlooking the effect of lateral heterogeneity. MASW typically requires long receiver spread in order to have enough depth coverage. The accuracy and lateral resolution of 2-D S-wave velocity imaging by surface wave is not clear. Many geotechnical applications involves lateral variation in a scale smaller than the geophone spread and wave length. For example, soft ground is often improved to increase strength and stiffness by methods such as jet grouting and stone column which result in heterogeneous ground with improved columns. Experimental methods (Standard Penetration Test, sampling and laboratory testing, etc.) used to assess such ground improvement are subjected to several limitations such as small sampling volume, time-consuming, and cost ineffectiveness. It's difficult to assess the average property of the improved ground and the actual replacement ratio of ground improvement. The use of seismic surface wave method for such a purpose seems to be a good alternative. But what MASW measures in such highly heterogeneous improved ground remains to be investigated. This study evaluated the feasibility of MASW in highly heterogeneous ground with improved columns and investigated the homogenization of shear wave velocity measured by MASW. Field experiments show that MASW testing in such a composite ground behaves similar to testing in horizontally layered medium. It seems to measure some sort

  10. Natural Communities of Yellow Bogs in Lewis, Bloomfield and Brunswick Vermont

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Yellow Bogs in Essex County, Vermont is a unique ecological area characterized by boreal, lowland forests and extensive bog systems. Within the area, black spruce...

  11. Evaluation of Blister Run Bog, Randolph County, West Virginia, for eligibility as a Registered Natural Landmark

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Blister Run Bog was suggested for evaluation by the Director, Northeast Region, NPS, as part of the Wetlands Theme Study, as a bog/swamp area, under Department of...

  12. Stable strontium isotopic ratios from archaeological organic remains from the Thorsberg peat bog

    DEFF Research Database (Denmark)

    Nosch, Marie-Louise Bech; von Carnap-Bornheim, Claus; Grupe, Gisela;

    2007-01-01

    Pilot study analysing stable strontium isotopic ratios from Iron Age textile and leather finds from the Thorsberg peat bog.......Pilot study analysing stable strontium isotopic ratios from Iron Age textile and leather finds from the Thorsberg peat bog....

  13. Impact of caprock permeability on vertical ground surface displacements in geological underground utilisation

    Science.gov (United States)

    Kempka, Thomas; Tillner, Elena

    2015-04-01

    Geological underground utilisation inducing pore pressure changes in underground reservoirs is generally accompanied by hydro-mechanical processes. Thereby, pore pressure increase due to fluid injection may trigger ground surface uplift, while a decrease in pore pressure due to reservoir fluid production is known to induce ground subsidence. Different coupled hydro-mechanical simulation studies (e.g. Klimkowski et al., 2015, Kempka et al., 2014, Tillner et al., 2014) indicate that ground surface displacements can achieve a magnitude of several decimetres, if storage or production operations are being carried out at an industrial scale. Consequently, detailed knowledge on the parameters impacting ground surface uplift or subsidence is of major interest for the success of any geological underground utilisation in order to avoid surface infrastructure damage by spatially varying deformations. Furthermore, ground subsidence may result increased groundwater levels as experienced in different underground coal mining districts. In the present study, we carried out coupled hydro-mechanical simulations to account for the impact of caprock permeability on ground surface displacements resulting from geological underground utilisation. Thereto, different simulation scenarios were investigated using a synthetic 3D coupled numerical simulation model with varying caprock permeability and vertical location of the open well section in the target reservoir. Material property ranges were derived from available literature, while a normal faulting stress state was applied in all simulation scenarios. Our simulation results demonstrate that caprock permeability has a significant impact on the pressure development, and thus on vertical displacements at the ground surface as well as at the reservoir top. An increase in caprock permeability from 1 x 10-20 m2 by two orders of magnitude doubles vertical displacements at the ground surface, whereas vertical displacements at the reservoir top

  14. Advantages of analytically computing the ground heat flux in land surface models

    Science.gov (United States)

    Pauwels, Valentijn R. N.; Daly, Edoardo

    2016-11-01

    It is generally accepted that the ground heat flux accounts for a significant fraction of the surface energy balance. In land surface models, the ground heat flux is typically estimated through a numerical solution of the heat conduction equation. Recent research has shown that this approach introduces errors in the estimation of the energy balance. In this paper, we calibrate a land surface model using a numerical solution of the heat conduction equation with four different vertical spatial resolutions. It is found that the thermal conductivity is the most sensitive parameter to the spatial resolution. More importantly, the thermal conductivity values are directly related to the spatial resolution, thus rendering any physical interpretation of this value irrelevant. The numerical solution is then replaced by an analytical solution. The results of the numerical and analytical solutions are identical when fine spatial and temporal resolutions are used. However, when using resolutions that are typical of land surface models, significant differences are found. When using the analytical solution, the ground heat flux is directly calculated without calculating the soil temperature profile. The calculation of the temperature at each node in the soil profile is thus no longer required, unless the model contains parameters that depend on the soil temperature, which in this study is not the case. The calibration is repeated, and thermal conductivity values independent of the vertical spatial resolution are obtained. The main conclusion of this study is that care must be taken when interpreting land surface model results that have been obtained using numerical ground heat flux estimates. The use of exact analytical solutions, when available, is recommended.

  15. Evaluation of the ground surface Enthalpy balance from bedrock temperatures (Livingston Island, Maritime Antarctic)

    Science.gov (United States)

    Ramos, M.; Vieira, G.

    2009-05-01

    The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic) is studied. The borehole is 2.4 m deep and is located in a massive quartzite outcrop with negligible water content, in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth) hourly temperature profiles from: (i) the cooling periods of the frost season of 2000 to 2005, and (ii) the warming periods of the thaw season of 2002-2003, 2003-2004 and 2004-2005, were studied. In this modelling approach, heat gains and losses across the ground surface are assumed to be the causes for the 0°C isotherm movement. A methodological approach to calculate the ground Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change into the rock is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density and thermal conductivity are considered to be constant and initial isothermal conditions at 0°C are assumed (based in collected data and local meteorological conditions in this area) to run the model in the beginning of each season. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima). The application of this method avoids error propagation induced by the heat exchange calculations from multiple sensors using the Fourier method.

  16. Evaluation of the ground surface Enthalpy balance from bedrock temperatures (Livingston Island, Maritime Antarctic

    Directory of Open Access Journals (Sweden)

    M. Ramos

    2009-05-01

    Full Text Available The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic is studied. The borehole is 2.4 m deep and is located in a massive quartzite outcrop with negligible water content, in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth hourly temperature profiles from: (i the cooling periods of the frost season of 2000 to 2005, and (ii the warming periods of the thaw season of 2002–2003, 2003–2004 and 2004–2005, were studied. In this modelling approach, heat gains and losses across the ground surface are assumed to be the causes for the 0°C isotherm movement. A methodological approach to calculate the ground Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change into the rock is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density and thermal conductivity are considered to be constant and initial isothermal conditions at 0°C are assumed (based in collected data and local meteorological conditions in this area to run the model in the beginning of each season. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima. The application of this method avoids error propagation induced by the heat exchange calculations from multiple sensors using the Fourier method.

  17. Ground surface temperature and humidity, ground temperature cycles and the ice table depths in University Valley, McMurdo Dry Valleys of Antarctica

    Science.gov (United States)

    Fisher, David A.; Lacelle, Denis; Pollard, Wayne; Davila, Alfonso; McKay, Christopher P.

    2016-11-01

    In the upper McMurdo Dry Valleys, 90% of the measured ice table depths range from 0 to 80 cm; however, numerical models predict that the ice table is not in equilibrium with current climate conditions and should be deeper than measured. This study explored the effects of boundary conditions (air versus ground surface temperature and humidity), ground temperature cycles, and their diminishing amplitude with depth and advective flows (Darcy flow and wind pumping) on water vapor fluxes in soils and ice table depths using the REGO vapor diffusion model. We conducted a series of numerical experiments that illustrated different hypothetical scenarios and estimated the water vapor flux and ice table depth using the conditions in University Valley, a small high elevation valley. In situ measurements showed that while the mean annual ground surface temperature approximates that in the air, the mean annual ground surface relative humidity (>85%ice) was significantly higher than in the atmosphere ( 50%ice). When ground surface temperature and humidity were used as boundary conditions, along with damping diurnal and annual temperature cycles within the sandy soil, REGO predicted that measured ice table depths in the valley were in equilibrium with contemporary conditions. Based on model results, a dry soil column can become saturated with ice within centuries. Overall, the results from the new soil data and modeling have implications regarding the factors and boundary conditions that affect the stability of ground ice in cold and hyperarid regions where liquid water is rare.

  18. Electric Signals on and under the Ground Surface Induced by Seismic Waves

    Directory of Open Access Journals (Sweden)

    Akihiro Takeuchi

    2012-01-01

    Full Text Available We constructed three observation sites in northeastern Japan (Honjo, Kyowa, and Sennan with condenser-type large plate electrodes (4 × 4 m2 as sensors supported 4 m above the ground and with pairs of reference electrodes buried vertically at 0.5 m and 2.5 m depth (with a ground velocity sensor at Sennan only. Electrical signals of an earthquake (M6.3 in northeastern Japan were detected simultaneously with seismic waves. Their waveforms were damped oscillations, with greatly differing signal amplitudes among sites. Good positive correlation was found between the amplitudes of signals detected by all electrodes. We propose a signal generation model: seismic acceleration vertically shook pore water in the topsoil, generating the vertical streaming potential between the upper unsaturated water zone and the lower saturated water zone. Maximum electric earth potential difference was observed when one electrode was in the saturated water zone, and the other was within the unsaturated water zone, but not when the electrodes were in the saturated water zone. The streaming potential formed a charge on the ground surface, generating a vertical atmospheric electric field. The large plate electrode detected electric signals related to electric potential differences between the electrode and the ground surface.

  19. Kinetics of the forelimb in horses circling on different ground surfaces at the trot.

    Science.gov (United States)

    Chateau, Henry; Camus, Mathieu; Holden-Douilly, Laurène; Falala, Sylvain; Ravary, Bérangère; Vergari, Claudio; Lepley, Justine; Denoix, Jean-Marie; Pourcelot, Philippe; Crevier-Denoix, Nathalie

    2013-12-01

    Circling increases the expression of distal forelimb lameness in the horse, depending on rein, diameter and surface properties of the circle. However, there is limited information about the kinetics of horses trotting on circles. The aim of this study was to quantify ground reaction force (GRF) and moments in the inside and outside forelimb of horses trotting on circles and to compare the results obtained on different ground surfaces. The right front hoof of six horses was equipped with a dynamometric horseshoe, allowing the measurement of 3-dimensional GRF, moments and trajectory of the centre of pressure. The horses were lunged at slow trot (3 m/s) on right and left 4 m radius circles on asphalt and on a fibre sand surface. During circling, the inside forelimb produced a smaller peak vertical force and the stance phase was longer in comparison with the outside forelimb. Both right and left circling produced a substantial transversal force directed outwards. On a soft surface (sand fibre), the peak transversal force and moments around the longitudinal and vertical axes of the hoof were significantly decreased in comparison with a hard surface (asphalt). Sinking of the lateral or medial part of the hoof in a more compliant surface enables reallocation of part of the transversal force into a proximo-distal force, aligned with the limb axis, thus limiting extrasagittal stress on the joints.

  20. Holocene Landscape Dynamics in the Ammer Rv. Catchment (Bavarian Alps) - Influence of extreme weather events and land use on soil erosion using peat bogs as geoarchives

    Science.gov (United States)

    Schwindt, Daniel; Manthe, Pierre; Völkel, Jörg

    2016-04-01

    Soil degradation and the loss of soil organic carbon (SOC) induced by erosion events significantly influence soils and fertility as parts of the ecosystem services and play an important role with regard to global carbon dynamics. Soil erosion is strongly correlated with anthropogenic land use since the Neolithic Revolution around 8.000 BP. Likewise the effect of extreme weather events on soil erosion is of great interest with regard to the recent climate change debate, predicting a strong increase of extreme weather events. Aim of this study is the reconstruction of the Holocene landscape dynamic as influenced by land use and climate conditions. In this study peat bogs containing layers of colluvial sediments directly correlated to soil erosion were used as geoarchives for landscape dynamics. A temporal classification of extreme erosion events was established by dating organic material via 14C within both, colluvial layers as well as their direct peat surroundings. Detection and characterization of peat bogs containing colluvial sediments was based on geomorphological mapping, the application of geophysical methods (ERT - electrical resistivity tomography, GPR - ground penetrating radar) and core soundings. Laboratory analysis included the analysis of particle sizes and the content of organic material. We investigated 16 peat bogs following the altitudinal gradient of the Ammer River from alpine and subalpine towards lowland environments. A deposition of colluvial material could be detected in 4 peat bogs, all situated in the lower parts of the catchment. The minerogenic entry into peat bogs occurred throughout the Holocene as revealed by radiocarbon dating. A distinct cluster of erosional events e.g. during the little ice age could not be detected. Therefore, soil erosion dynamics and the appearance of colluvial sediments within peat bogs must rather be regarded as an effect of land use, actually farming and crop cultivation, or small-scale morphodynamic like

  1. Species identification of archaeological skin objects from Danish bogs

    DEFF Research Database (Denmark)

    Brandt, Luise Ørsted; Schmidt, Anne Lisbeth; Mannering, Ulla

    2014-01-01

    Denmark has an extraordinarily large and well-preserved collection of archaeological skin garments found in peat bogs, dated to approximately 920 BC – AD 775. These objects provide not only the possibility to study prehistoric skin costume and technologies, but also to investigate the animal...... species used for the production of skin garments. Until recently, species identification of archaeological skin was primarily performed by light and scanning electron microscopy or the analysis of ancient DNA. However, the efficacy of these methods can be limited due to the harsh, mostly acidic...... environment of peat bogs leading to morphological and molecular degradation within the samples. We compared species assignment results of twelve archaeological skin samples from Danish bogs using Mass Spectrometry (MS)-based peptide sequencing, against results obtained using light and scanning electron...

  2. New Measurements from Old Boreholes: A Look at Interaction Between Surface Air Temperature and Ground Surface Temperature

    Science.gov (United States)

    Heinle, S. M.; Gosnold, W. D.

    2007-12-01

    We recently logged new field measurements of several boreholes throughout the Midwest, including North Dakota, South Dakota, and Nebraska. We then compared these new measurements against measurements previously obtained. Our comparisons included inverse modeling of past and recent measurements as well as climate modeling based on past surface air temperatures obtained from the weather stations. The data show a good correlation between climate warming in the last century and ground surface warming. Of particular importance is that cooling of air temperatures beginning in the mid 1990s reflects in the ground surface temperatures. The boreholes included in the study consist of three boreholes located in north central North Dakota, including two deeper than 200 meters. Two boreholes in the southwestern part of South Dakota, and two from southeastern South Dakota, all approximately 180 meters deep. Also included, were two boreholes (135 meters and over 200 meters deep) located in southwestern Nebraska, and two boreholes in the panhandle of Nebraska, each over 100 meters deep. We obtained historical surface air temperature from climate stations located near the boreholes, both from the United States Historical Climatology Network and from the Western Regional Climate Center.

  3. Restoration of a Terrestrialized Soak Lake of an Irish Raised Bog: Results of Field Experiments

    NARCIS (Netherlands)

    Crushell, P.H.; Smolders, A.J.P.; Schouten, M.G.C.; Robroek, B.J.M.; Wirdum, G. van; Roelofs, J.G.M.

    2011-01-01

    Soaks (areas of mesotrophic/minerotrophic vegetation within acid bog) add to the overall heterogeneity and biodiversity of raised bog landscapes due to the presence of flora and fauna communities not typically associated with acid bog systems. A field experiment was set up to investigate the

  4. Restoration of a Terrestrialized Soak Lake of an Irish Raised Bog: Results of Field Experiments

    NARCIS (Netherlands)

    Crushell, P.H.; Smolders, A.J.P.; Schouten, M.G.C.; Robroek, B.J.M.; Wirdum, van G.; Roelofs, J.G.M.

    2011-01-01

    Soaks (areas of mesotrophic/minerotrophic vegetation within acid bog) add to the overall heterogeneity and biodiversity of raised bog landscapes due to the presence of flora and fauna communities not typically associated with acid bog systems. A field experiment was set up to investigate the potenti

  5. ON GROUND SURFACE EXTRACTION USING FULL-WAVEFORM AIRBORNE LASER SCANNER FOR CIM

    OpenAIRE

    Nakano, K.; H. Chikatsu

    2015-01-01

    Satellite positioning systems such as GPS and GLONASS have created significant changes not only in terms of spatial information but also in the construction industry. It is possible to execute a suitable construction plan by using a computerized intelligent construction. Therefore, an accurate estimate of the amount of earthwork is important for operating heavy equipment, and measurement of ground surface with high accuracy is required. A full-waveform airborne laser scanner is expected to be...

  6. Efficiency of silver nanoparticles against bacterial contaminants isolated from surface and ground water in Egypt

    Directory of Open Access Journals (Sweden)

    Reem Dosoky

    2015-06-01

    Full Text Available The bactericidal efficiency of silver nanoparticles (AgNP was evaluated against bacteria isolated from surface and ground water samples in Egypt. The AgNP were synthesized by typical one-step synthesis protocol, and were characterized using transmission electron microscopy and atomic absorption spectrophotometer. The bactericidal efficiency of AgNP was evaluated by its application in three concentrations i.e., 0.1, 0.05 and 0.01 ppm to water sample, and allowed to interact with bacteria for different duration e.g., 5 min 15 min, 30 min, 1 h and 2 h. Then, the bactericidal efficiency of AgNPs was determined by comparing the counted bacteria before and after the treatments. Higher mean values of total bacterial count (TBC, total coliform count (TCC, and total streptococcal count (TFS were detected in surface water than in ground water. Also, the results showed that TBC, TCC and TFS exceeded permissible limits. Application of AgNP at different concentration, the number of bacteria in TBC was significantly reduced in all AgNP-exposed samples as compared to the control group (p<0.05. The highest concentration of AgNP exhibited highest bactericidal efficiency in TBC, where, after two hours, 0.1, 0.05 and 0.01 mg/L AgNP was found to be sufficient to inhibit 91.85, 89.14 and 74.92%, and 92.33, 85.23 and 53.17% in TBC of surface and ground water, respectively. Moreover, the inhibition efficiency of the highest concentration (0.1 ppm against TCC reached to 98.10 and 99.88% in surface water and 95.54 and 99.20% in ground water after 1 h and 2 h, respectively. Similar results were found against TFS count. The AgNPs were found to be effective against bacteria of water origin.

  7. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    Science.gov (United States)

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh

  8. Interpreting Ground Temperature Measurements for Thermophysical Properties on Complex Surfaces of the Moon and Mars

    Science.gov (United States)

    Vasavada, A. R.; Hamilton, V. E.; Team, M.

    2013-12-01

    With the successful deployments of the Diviner radiometer on the Lunar Reconnaissance Orbiter and the REMS ground temperature sensor on the Curiosity Mars rover, records of ground temperature with high accuracy and finely sampled diurnal and seasonal cycles have become available. The detailed shapes of these temperature profiles allow inferences beyond just bulk thermophysical properties. Subtle (or sometime significant) effects of surface roughness, slope, and lateral and vertical heterogeneity may be identified in the surface brightness temperature data. For example, changes in thermal or physical properties with depth in the shallow subsurface affect the conduction and storage of thermal energy. These affect the surface energy balance and therefore surface temperatures, especially the rate of cooling at night. Making unique determinations of subsurface soil properties requires minimizing the uncertainties introduced by other effects. On Mars, atmospheric aerosol opacity and wind-driven sensible heat fluxes also affect the diurnal and annual temperature profiles. On both bodies, variations in thermal inertia, slopes, roughness, albedo, and emissivity within the radiometer footprint will cause the composite brightness temperature to differ from a kinetic temperature. Nevertheless, we have detected potential effects of complex surfaces in the temperature data from both Diviner and Curiosity. On the Moon, the results reveal a nearly ubiquitous surface structure, created mechanically by impact gardening, that controls the thermal response of the surface. On Mars, the thermal response is controlled primarily by grain size, cementation, lithification, and composition. However, the secondary effects of near-surface layering aid in the interpretation of stratigraphy and in the identification of geologic processes that have altered the surface.

  9. The complex relationships between methane emissions and water table at an ombrotrophic bog

    Science.gov (United States)

    Humphreys, Elyn; Roulet, Nigel; Moore, Tim

    2017-04-01

    Broad spatial and temporal variations in methane emissions from peatlands have been related to many variables including water table position, temperature and vegetation characteristics and functioning. In general, wetter peatlands tend to have greater methane emissions. However, over shorter periods of time and space, the relationship between water table and methane emissions can reverse, show hysteresis or be absent entirely. These relationships are investigated at the Mer Bleue Bog, a temperate ombrotrophic bog near Ottawa, Canada. Six years of concurrent growing season eddy covariance and automated chamber fluxes reveal the expected broad patterns. During the wettest growing season, the water table remained within 40 cm of the bog's hummock surfaces. Methane emissions were upwards of 20 to 45 mg C m-2 d-1 and exceeded the emission rates from two drier growing seasons which saw periods where the water table dropped to nearly 80 cm below the hummock surface. In those periods, methane emission rates declined to about 5 mg C m-2 d-1 or less. Lawn plots with aerenchymatous Eriophorum vegetation and high water tables had greatest emissions (exceeding 200 mg C m-2 d-1) compared to hummock plots vegetated by ericaceous shrubs, which had emissions rates similar to those measured by eddy covariance. However, within a growing season, hysteresis and inverse relationships between water table and methane emissions were observed at both ecosystem and chamber plot scales. These included periods between rainfall events where methane emissions increased while the water table deepened. The potential roles of methane production, consumption, storage and transport processes on these patterns will be discussed.

  10. Modeling ground surface uplift during CO2 sequestration: the case of In Salah, Algeria.

    Science.gov (United States)

    Rinaldi, Antonio Pio; Rutqvist, Jonny; Finsterle, Stefan; Liu, Hui-Hai

    2016-04-01

    Observable ground deformation, common in storage projects, carries useful information on processes occurring at the injection depth. The Krechba gas field at In Salah (Algeria) is one of the best known sites for studying ground surface deformation during geological storage. Being the first industrial-scale on-shore CO2 demonstration project, the site is well known for satellite-based ground-deformation monitoring data of remarkable quality. In this work, we carry out coupled fluid flow and geomechanical simulations to understand the uplift at three different CO2 injection wells (KB-501, KB-502, KB-503). Previous numerical studies focused on the KB-502 injection well, where a double-lobe uplift pattern has been observed in the ground-deformation data. The observed uplift patterns at KB-501 and KB-503 are different, but also indicate the influence of deep fracture zone mechanical responses. The current study improves the previous modeling approach by introducing an injection reservoir and a fracture zone, both responding to a Mohr-Coulomb failure criterion. In addition, we model a stress-dependent permeability and bulk modulus, according to a dual continuum model. Mechanical and hydraulic properties were determined through inverse modeling by matching the simulated spatial and temporal evolution of uplift to the corresponding InSAR observations as well as by matching simulated and measured pressures. The numerical simulations are in excellent agreement with observed spatial and temporal variation of ground surface uplift, as well as with measured pressures. The estimated values for the parameterized mechanical and hydraulic properties are in good agreement with previous numerical results, although with uncertainty.

  11. Unexpected DNA-fingerprinting pattern in a deep peat bog: evidence for methanotrophs at the bottom?

    Science.gov (United States)

    Steinmann, P.; Rossi, P.; Huon, S.; Eilrich, B.; Casati, S.

    2003-04-01

    With the goal of a better understanding of the fate of methane in the deep layers of peat bogs, we analysed the microbial 16S rDNA gene pool and measured the stable carbon isotope composition of bulk peat of a deep (6 m) peat bog profile (Etang de la Gruyère, Switzerland). Both Bacterial and Archaean communities were assessed using respectively TTGE (Temporal Temperature Gradient Electrophoresis) and SSCP (Single Strand Conformation Polymorphism), with fragments of the V1-V3 region of the 16S rDNA gene. The "relative diversity" shown in the TTGE AND SSCP gel patterns is presented using indices and band numbers per sample (Simpson evenness). PCA was calculated on the basis of the intensities of all bands found in the TTGE and SSCP fingerprinting profiles. These DNA fingerprinting patterns reveal the presence of a structured microbial community throughout the whole depth profile. Clear differences can be observed between the communities found in the near surface layers and those found at depth. Surprisingly, for both Archaean and Bacterial communities, the deepest samples display a high similarity level with those found in the first 20 centimeters. The δ13C values of the peat are relatively constant from the surface of the bog down to a depth of 5 m (values between 25.5 ppm and 26.5 ppm). Below 5 m the values decrease considerably with depth ( 28.5 ppm). As a working hypothesis to explain the two observations, we consider the possibility of the presence of methanotrophs in the deepest parts of the bogs. The electron acceptors needed for methane oxidation could be derived from lateral advection of less reducing groundwater. However, available pore water analyses suggest that neither molecular oxygen, nor sulfate or nitrate are present. One possible oxidising agent would be trivalent iron (solid or colloidal). Indeed are the iron concentrations in the deeper pore waters are elevated. Such deep methanotrophic microbial community could be similar to those found near

  12. Surface Gap Soliton Ground States for the Nonlinear Schr\\"{o}dinger Equation

    CERN Document Server

    Dohnal, Tomáš; Reichel, Wolfgang

    2010-01-01

    We consider the nonlinear Schr\\"{o}dinger equation $(-\\Delta +V(x))u = \\Gamma(x) |u|^{p-1}u$, $x\\in \\R^n$ with $V(x) = V_1(x) \\chi_{\\{x_1>0\\}}(x)+V_2(x) \\chi_{\\{x_10\\}}(x)+\\Gamma_2(x) \\chi_{\\{x_1<0\\}}(x)$ and with $V_1, V_2, \\Gamma_1, \\Gamma_2$ periodic in each coordinate direction. This problem describes the interface of two periodic media, e.g. photonic crystals. We study the existence of ground state $H^1$ solutions (surface gap soliton ground states) for $0<\\min \\sigma(-\\Delta +V)$. Using a concentration compactness argument, we provide an abstract criterion for the existence based on ground state energies of each periodic problem (with $V\\equiv V_1, \\Gamma\\equiv \\Gamma_1$ and $V\\equiv V_2, \\Gamma\\equiv \\Gamma_2$) as well as a more practical criterion based on ground states themselves. Examples of interfaces satisfying these criteria are provided. In 1D it is shown that, surprisingly, the criteria can be reduced to conditions on the linear Bloch waves of the operators $-\\tfrac{d^2}{dx^2} +V_1(x)$ an...

  13. Relationship between subsurface damage and surface roughness of ground optical materials

    Institute of Scientific and Technical Information of China (English)

    LI Sheng-yi; WANG Zhuo; WU Yu-lie

    2007-01-01

    A theoretical model of relationship between subsurface damage and surface roughness was established to realize rapid and non-destructive measurement of subsurface damage of ground optical materials. Postulated condition of the model was that subsurface damage depth and peak-to-valley surface roughness are equal to depth of radial and lateral cracks in brittle surface induced by small-radius (radius≤200 μm) spherical indenter, respectively. And contribution of elastic stress field to the radial cracks propagation was also considered in the loading cycle. Subsurface damage depth of ground BK7 glasses was measured by magnetorheological finishing spot technique to validate theoretical ratio of subsurface damage to surface roughness. The results show that the ratio is directly proportional to load of abrasive grains and hardness of optical materials, while inversely proportional to granularity of abrasive grains and fracture toughness of optical materials. Moreover, the influence of the load and fracture toughness on the ratio is more significant than the granularity and hardness, respectively. The measured ratios of 80 grit and 120 grit fixed abrasive grinding of BK7 glasses are 5.8 and 5.4, respectively.

  14. INVESTIGATION OF PROCESS PERTAINING TO INTERACTION OF TRACTOR DRIVING WHEELS WITH GROUND SURFACE

    Directory of Open Access Journals (Sweden)

    V. V. Guskov

    2017-01-01

    Full Text Available The paper presents results of investigations on the process pertaining to interaction of a driving wheel with ground surface and describes methodology for optimization of backbone parameters. The mentioned process has some specific differences in comparison with the process of wheel rolling along hard surface. Ground surface is represented by mixture of sandy and clay particles with plant residues and it has a number of physical and mechanical properties. The main of these properties is resistance of soil against compression and displacement. Compression process determines a track depth and resistance to motion and displacement process determines wheel gripping property and its tangential traction force. While executing the investigations laws of compression and displacement proposed by Prof.V. V. Katsygin as the most adequate reflection of actual processes have been used in the paper. Motion of the driving wheel along ground surface is accompanied by its slipping. It has been determined that the maximum wheel traction force is formed not with 100% slipping as it was supposed until present but the value has been obtained at 45–60 % slipping according to soil category. The developed integral equations with due account of the aspect make it possible to calculate road hold characteristics of driving wheels of the designed wheel tractor and evaluate its traction, speed and economic characteristics. Methodology has been developed for optimization of backbone parameters of wheeled running gear in the designed tractor such as design mass and adhesion weight, width, diameter and air pressure in a tire. The proposed methodology has been introduced in designing practice of wheeled tractors at OJSC “Minsk Tractor Works”.

  15. Spatial variation in rates of carbon and nitrogen accumulation in a boreal bog

    Energy Technology Data Exchange (ETDEWEB)

    Ohlson, M. [Agricultural Univ. of Norway, Aas (Norway). Dept. of Biology and Nature Conservation; Oekland, R.H. [Univ. of Oslo (Norway)

    1998-12-01

    Although previous studies hint at the occurrence of substantial spatial variation in the accumulation rates of C and N in bogs, the extent to which rates may vary on high-resolution spatial and temporal scales is not known. A main reason for the lack of knowledge is that it is problematic to determine the precise age of peat at a given depth. The authors determined rates of carbon and nitrogen accumulation in the uppermost decimeters of a bog ecosystem using the pine method, which enables accurate dating of surface peat layers. They combined accumulation data with numerical and geostatistical analyses of the recent vegetation to establish the relationship between bog vegetation and rate of peat accumulation. Use of a laser technique for spatial positioning of 151 age-determined peat cores within a 20 x 20 m plot made it possible to give the first tine-scaled account of spatial and temporal variation in rates of mass, carbon, and nitrogen accumulation during the last century. Rates of C and N accumulation were highly variable at all spatial scales studied. For example, after {approximately}125 yr of peat growth, C and N accumulation varied by factors of five and four, respectively, from 25 to 125 g/dm{sup 2} for C, and from 0.7 to 2.6 g/dm{sup 2} for N. It takes 40 yr of peat accumulation before significant amounts of C are lost through decay. Hummocks built up by Sphagnum fuscum and S. rubellum were able to maintain average rates of C accumulation that exceed 2 g{center_dot}dm{sup {minus}2}{center_dot} yr{sup {minus}1} during 50 yr of growth. The authors argue that data on spatial variation in rates of C accumulation are necessary to understand the role of boreal peatlands in the greenhouse effect and global climate.

  16. Temporal scale and the accumulation of peat in a Sphagnum bog

    Energy Technology Data Exchange (ETDEWEB)

    Belyea, L.R.; Warner, B.G. [University of Edinburgh, Edinburgh (United Kingdom). Inst. of Ecology and Resource Management

    1996-03-01

    Short-term (decadal) and long-term (millenial) processes of peat accumulation, and the links between them, in a Sphagnum bog in continental Canada are examined. A previously published model of bog growth was fitted to age profiles of the oxic acrotelm (surface, {lt} 60 cm thick) and the underlying, anoxic catotelm (210 cm thick). Approximately 5300 years of accumulation were represented in a radiocarbon-dated core that extended to the base of the deepest part of the peat deposit. The model estimated that the overall rate at which material entered long-term storage in the catotelm was 60-66 g.m({sup -2}.a{sup -1}). The model of bog growth estimated recent inputs to the acrotelm (90-930) g.m{sup -2}.a{sup -1} that were twofold higher than published field measurements of aboveground productivity, and decay rate coefficients (0.005-0.040) a{sup -1} that were 10-fold lower than published litter-bag measurements of mass loss. The pattern of mass loss over time, approximated from nitrogen concentration data, deviated from the pattern predicted by exponential models of decay. Calculations of the balance between additions to and losses from the acrotelm suggest that the amount of material transferred to the underlying catotelm differs among microhabitats. Such spatial variability in short-term processes is incompatible with long-term processes determining the position of the acrotelm-catotelm boundary. The applicability of the model to continental peatlands are discussed and ways to improve modelling of short-term autogenic processes are suggested.

  17. A Species Distribution Modeling Informed Conservation Assessment of Bog Spicebush

    Science.gov (United States)

    2016-09-14

    suitability of occupied sites is spatially and temporally dynamic. Additional information about Bog Spicebush habitat requirements and potential distribution...A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria: The R foundation, http://www.R...varying disturbance dependence, suggesting the habitat suitability of occupied sites is spatially and temporally dynamic. Additional information

  18. Do plant traits explain tree seedling survival in bogs?

    NARCIS (Netherlands)

    Limpens, J.; Egmond, van E.; Li, B.; Holmgren, M.

    2013-01-01

    Moss-dominated peat bogs store approximately 30% of global soil carbon. A climate induced shift from current moss-dominated conditions to tree-dominated states is expected to strongly affect their functioning and carbon sequestration capacity. Consequently, unraveling the mechanisms that may explain

  19. Nutrient availability at Mer Bleue bog measured by PRSTM probes

    Science.gov (United States)

    Wang, M.; Moore, T. R.; Talbot, J.

    2015-12-01

    Bogs, covering ~0.7 million km2 in Canada, store a large amount of C and N. As nutrient deficient ecosystems, it's critical to examine the nutrient availabilities and seasonal dynamics. We used Plant Root Simulators (PRSTM) at Mer Bleue bog to provide some baseline data on nutrient availability and its variability. In particular, we focused on ammonium, nitrate, phosphate, calcium, magnesium and potassium, iron, sulphate and aluminum. We placed PRS probes at a depth of 5 - 15 cm in pristine plots and plots with long term N, P and K fertilization for 4 weeks and determined the availability of these nutrients, from spring through to fall. Probes were also placed beneath the water table in hummock and hollow microtopography and along a transect including part of the bog which had been drained through the creation of a ditch 80 years ago. The result showed that there was limited available ammonium, nitrate and phosphate in the bog, the seasonal variation of nutrient availabilities probably due to mineralization, an increase in the availability of some nutrients between different water table depths or as a result of drainage, and the relative availability of nutrients compared to the input from fertilization. We suggest that PRS probes could be a useful tool to examine nutrient availability and dynamics in wetlands, with careful consideration of installing condition, for example, proper exposure period, depth relative to water table etc.

  20. Do plant traits explain tree seedling survival in bogs?

    NARCIS (Netherlands)

    Limpens, J.; Egmond, van E.; Li, B.; Holmgren, M.

    2014-01-01

    1.Moss-dominated peat bogs store approximately 30% of global soil carbon. A climate induced shift from current moss-dominated conditions to tree-dominated states is expected to strongly affect their functioning and carbon sequestration capacity. Consequently, unraveling the mechanisms that may expla

  1. Atmospheric nitrogen deposition promotes carbon loss from peat bogs

    NARCIS (Netherlands)

    Bragazza, L.; Freeman, C.; Jones, T.; Rydin, H.; Limpens, J.; Fenner, N.; Ellis, T.; Gerdol, R.; Hajek, M.; Hajek, T.; Iacumin, P.; Kutnar, L.; Tahvanainen, T.; Toberman, H.

    2006-01-01

    Peat bogs have historically represented exceptional carbon (C) sinks because of their extremely low decomposition rates and consequent accumulation of plant remnants as peat. Among the factors favoring that peat accumulation, a major role is played by the chemical quality of plant litter itself, whi

  2. DATING RECENT PEAT ACCUMULATION IN EUROPEAN OMBROTROPHIC BOGS

    NARCIS (Netherlands)

    van der Plicht, Johannes; Yeloff, Dan; van der Linden, Marjolein; van Geel, Bas; Brain, Sally; Chambers, Frank M.; Webb, Julia; Toms, Phillip; Hatté, C.; Jull, A.J.T.

    2013-01-01

    This study compares age estimates of recent peat deposits in 10 European ombrotrophic (precipitation-fed) bogs produced using the C-14 bomb peak, Pb-210, Cs-137, spheroidal carbonaceous particles (SCPs), and pollen. At 3 sites, the results of the different dating methods agree well. In 5 cores, ther

  3. Dating recent peat accumulation in European ombrotrophic bogs

    NARCIS (Netherlands)

    van der Plicht, J.; Yeloff, D.; van der Linden, M.; van Geel, B.; Brain, S.; Chambers, F.M.; Webb, J.; Toms, P.

    2013-01-01

    This study compares age estimates of recent peat deposits in 10 European ombrotrophic (precipitation-fed) bogs produced using the 14C bomb peak, 210Pb, 137Cs, spheroidal carbonaceous particles (SCPs), and pollen. At 3 sites, the results of the different dating methods agree well. In 5 cores, there i

  4. Spectrally selective surfaces for ground and space-based instrumentation: support for a resource base

    Science.gov (United States)

    McCall, Susan H.; Sinclair, R. Lawrence; Pompea, Stephen M.; Breault, Robert P.

    1993-11-01

    The performance of space telescopes, space instruments, and space radiator systems depends critically upon the selection of appropriate spectrally selective surfaces. Many space programs have suffered severe performance limitations, schedule setbacks, and spent hundreds of thousands of dollars in damage control because of a lack of readily-accessible, accurate data on the properties of spectrally selective surfaces, particularly black surfaces. A Canadian effort is underway to develop a resource base (database and support service) to help alleviate this problem. The assistance of the community is required to make the resource base comprehensive and useful to the end users. The paper aims to describe the objectives of this project. In addition, a request for information and support is made for various aspects of the project. The resource base will be useful for both ground and space-based instrumentation.

  5. The Potential Energy Surface for the Electronic Ground State of H 2Se Derived from Experiment

    Science.gov (United States)

    Jensen, P.; Kozin, I. N.

    1993-07-01

    The present paper reports a determination of the potential energy surface for the electronic ground state of the hydrogen selenide molecule through a direct least-squares fitting to experimental data using the MORBID (Morse oscillator rigid bender internal dynamics) approach developed by P. Jensen [ J. Mol. Spectrosc.128, 478-501 (1988); J. Chem. Soc. Faraday Trans. 284, 1315-1340 (1988)]. We have fitted a selection of 303 rotation-vibration energy spacings of H 280Se, D 280Se, and HD 80Se involving J ≤ 5 with a root-mean-square deviation of 0.0975 cm -1 for the rotational energy spacings and 0.268 cm -1 for the vibrational spacings. In the fitting, 14 parameters were varied. On the basis of the fitted potential surface we have studied the cluster effect in the vibrational ground state of H 2Se, i.e., the formation of nearly degenerate, four-member groups of rotational energy levels [see I. N. Kozin, S. Klee, P. Jensen, O. L. Polyansky, and I. M. Pavlichenkov. J. Mol. Spectrosc., 158, 409-422 (1993), and references therein]. The cluster formation becomes more pronounced with increasing J. For example, four-fold clusters formed in the vibrational ground state of H 280Se at J = 40 are degenerate to within a few MHz. Our predictions of the D 280Se energy spectrum show that for this molecule, the cluster formation is displaced towards higher J values than arc found for H 280Se. In the vibrational ground state, the qualitative deviation from the usual rigid rotor picture starts at J = 12 for H 280Se and at J = 18 for D 280Se, in full agreement with predictions from semiclassical theory. An interpretation of the cluster eigenstates is discussed.

  6. Conceptual Tenets of the Theory of Hydration of Heterogeneous Surface with Polar Order of Disperse Ground Layers of Sedimentary Genesis

    Directory of Open Access Journals (Sweden)

    Tamara G. Makeeva

    2012-09-01

    Full Text Available The article, basing on the established regularity defines the basic tenets of the theory of hydration of heterogeneous surface with polar order of disperse ground layers of sedimentary genesis. It offers classification and formula for the associated water density, valid corrections for the associated water density, calculates the water film thickness in disperse ground, develops the reliable physicochemical model of the disperse ground, determines the range of applicability of the existing laboratory and field methods.

  7. Oribatid mite species numbers increase, densities decline and parthenogenetic species suffer during bog degradation.

    Science.gov (United States)

    Seniczak, Anna; Seniczak, Stanisław; Maraun, Mark; Graczyk, Radomir; Mistrzak, Marcin

    2016-04-01

    This study compared the oribatid mites in two natural and four industrially exploited bogs. One natural bog (Zakręt, Z) was located in northeastern Poland and the other one (Toporowy Staw Niżni, TSN), in southern Poland. The four exploited bogs were also located in southern Poland and can be ranked from least to most degraded as follows: Łysa Puścizna (LP), Baligówka (B), Puścizna Mała (PM) and Kaczmarka (K). In the natural bogs, the water pH was higher than in the degraded ones, but other parameters were lower (conductivity, colour value, oxygen demand, and concentration of chlorides). In the natural bogs, the Oribatida were highly abundant (average density was 169,100 ind./m(2)), but with low species diversity and one dominating species. In bog Z the most abundant was Limnozetes foveolatus that had dominance of 75 % and in bog TSN, located at higher altitude, Trimalaconothrus maior dominated (73 %). In two degraded bogs that had still good water conditions (LP and B) the oribatid communities resembled those from the natural bogs; in LP the most abundant species was Hydrozetes lacustris and in bog B, L. foveolatus. In contrast, in two more degraded bogs (PM and K) the abundance of mites was lower (average density was 17,850 ind./m(2)), species diversity of the Oribatida was higher, and no species achieved a high dominance like in the natural bogs. Additionally, in more degraded bogs the abundance of parthenogenetic species was lower than in the natural bogs.

  8. The microbial impact on the sorption behaviour of selenite in an acidic, nutrient-poor boreal bog.

    Science.gov (United States)

    Lusa, M; Bomberg, M; Aromaa, H; Knuutinen, J; Lehto, J

    2015-09-01

    (79)Se is among the most important long lived radionuclides in spent nuclear fuel and selenite, SeO3(2-), is its typical form in intermediate redox potential. The sorption behaviour of selenite and the bacterial impact on the selenite sorption in a 7-m-deep profile of a nutrient-poor boreal bog was studied using batch sorption experiments. The batch distribution coefficient (Kd) values of selenite decreased as a function of sampling depth and highest Kd values, 6600 L/kg dry weight (DW), were observed in the surface moss and the lowest in the bottom clay at 1700 L/kg DW. The overall maximum sorption was observed at pH between 3 and 4 and the Kd values were significantly higher in unsterilized compared to sterilized samples. The removal of selenite from solution by Pseudomonas sp., Burkholderia sp., Rhodococcus sp. and Paenibacillus sp. strains isolated from the bog was affected by incubation temperature and time. In addition, the incubation of sterilized surface moss, subsurface peat and gyttja samples with added bacteria effectively removed selenite from the solution and on average 65% of selenite was removed when Pseudomonas sp. or Burkholderia sp. strains were used. Our results demonstrate the important role of bacteria for the removal of selenite from the solution phase in the bog environment, having a high organic matter content and a low pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Atmospheric Pb deposition in Spain during the last 4600 years recorded by two ombrotrophic peat bogs and implications for the use of peat as archive

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Cortizas, A.; Garcia-Rodeja, E.; Pontevedra Pombal, X.; Novoa Munoz, J.C. [Departamento de Edafologia y Quimica Agricola, Faculdad de Biologia, Universidad de Santiago, Campus Sur E-15706, Santiago de Compostela (Spain); Weiss, D. [T.H. Huxley School, Imperial College, Prince Consort Road, SW7 2BP London (United Kingdom); Cheburkin, A. [EMMA Analytical Inc Canada, ON Elmvale (Canada)

    2002-06-20

    Two ombrotrophic peat bogs in Northwestern Spain provided a history of 4600 years of Pb accumulation. Highest Pb concentrations (84-87 {mu}g g{sup -1}) were found near the bogs' surface, but there were also other significant peaks (6-14 {mu}g g{sup -1}), indicating pre-industrial atmospheric pollution. The enrichment factors (EFs) in both cores show a remarkably similar record. Atmospheric Pb pollution dates back to at least approximately 2500 years ago, reaching a first maximum during the Roman period. For the last 300 years, Pb EFs significantly increased due to industrial development, but the uppermost samples of the bogs show decreasing Pb EFs, probably due to the phasing out of leaded gasoline. These results are also supported by 206Pb/207Pb isotope ratios, as they continuously decrease from ca. 3000 BP until 2000 BP (from 1.275 at 4070 14C years BP to 1.182), indicating the growing importance of non-radiogenic Pb released from Iberian ores by ancient mining. Peat samples at a 3-5-cm depth are even less radiogenic (206Pb/107Pb=1.157), indicating the strong influence of leaded gasoline. Despite the common history shared by the two bogs, striking differences were found for Pb enrichment, whether this was calculated by normalising to the Pb/Ti ratio of the upper continental crust or to the Pb/Ti ratios of peats from pre-anthropogenic times. This effect seems to be related to differences in Ti accumulation in both bogs, possibly due to physical fractionation of the airborne dust during wind transport. Enrichment has to be carefully considered when comparing the results obtained for different bogs, since our results suggest that normalising to crustal proportions is meaningless when the bulk of the deposition in an area is strongly influenced by short- and medium-range dust transport.

  10. Mapping of permafrost surface using ground-penetrating radar at Kangerlussuaq Airport, western Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Andreasen, Frank

    2007-01-01

    Kangerlussuaq Airport is located at 67°N and 51°W in the zone of continuous permafrost in western Greenland. Its proximity to the Greenlandic ice sheet results in a dry sub-arctic climate with a mean annual temperature of −5.7 °C. The airport is built on a river terrace mostly consisting of fluvial...... deposits overlying fine-grained marine melt-water sediments and bedrock. A ground-penetrating radar (GPR) survey was performed to study the frozen surface beneath the airfield. The measurements were carried out in late July 2005 on the southern parking area in Kangerlussuaq Airport. Five years earlier...

  11. Influence of geology on arsenic concentrations in ground and surface water in central Lesvos, Greece.

    Science.gov (United States)

    Aloupi, Maria; Angelidis, Michael O; Gavriil, Apostolos M; Koulousaris, Michael; Varnavas, Soterios P

    2009-04-01

    The occurrence of As was studied in groundwater used for human consumption and irrigation, in stream water and sediments and in water from thermal springs in the drainage basin of Kalloni Gulf, island of Lesvos, Greece, in order to investigate the potential influence of the geothermal field of Polichnitos-Lisvori on the ground and surface water systems of the area. Total dissolved As varied in the range geology exerts a determinant influence on As geochemical behaviour. On the other hand, the geothermal activity manifested in the area of Polichnitos-Lisvori does not affect the presence of As in groundwater and streams.

  12. Asymmetric Rock Pressure on Shallow Tunnel in Strata with Inclined Ground Surface

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiao-jun; YANG Chang-yu

    2007-01-01

    By building a tunnel model with a semi-circular crown, the asymmetric rock pressure applied to the shallow tunnel in strata with inclined ground surface is analyzed. Formulae, which not only include the parameters related to both tunnel structure and surrounding rock mass, but the overburden depth, are developed. The computation for four tunnel models show that the method presented is feasible and convenient. Furthermore, the influence of the overburden depth on the rock pressure is elaborated, and the criterion to identify the deep or shallow tunnels is formulated as well.

  13. Ground-state charge transfer as a mechanism for surface-enhanced Raman scattering

    Science.gov (United States)

    Lippitsch, Max E.

    1984-03-01

    A model is presented for the contribution of ground-state charge transfer between a metal and adsorbate to surface-enhanced Raman scattering (SERS). It is shown that this contribution can be understood using the vibronic theory for calculating Raman intensities. The enhancement is due to vibronic coupling of the molecular ground state to the metal states, the coupling mechanism being a modulation of the ground-state charge-transfer energy by the molecular vibrations. An analysis of the coupling operator gives the selection rules for this process, which turn out to be dependent on the overall symmetry of the adsorbate-metal system, even if the charge transfer is small enough for the symmetry of the adsorbate to remain the same as that of the free molecule. It is shown that the model can yield predictions on the properties of SERS, e.g., specificity to adsorption geometry, appearance of forbidden bands, dependence on the applied potential, and dependence on the excitation wavelength. The predictions are in good agreement with experimental results. It is also deduced from this model that in many cases atomic-scale roughness is a prerequisite for the observation of SERS. A result on the magnitude of the enhancement can only be given in a crude approximation. Although in most cases an additional electromagnetic enhancement seems to be necessary to give an observable signal, this charge-transfer mechanism should be important in many SERS systems.

  14. Surface Signature Characterization at SPE through Ground-Proximal Methods: Methodology Change and Technical Justification

    Energy Technology Data Exchange (ETDEWEB)

    Schultz-Fellenz, Emily S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-09

    A portion of LANL’s FY15 SPE objectives includes initial ground-based or ground-proximal investigations at the SPE Phase 2 site. The area of interest is the U2ez location in Yucca Flat. This collection serves as a baseline for discrimination of surface features and acquisition of topographic signatures prior to any development or pre-shot activities associated with SPE Phase 2. Our team originally intended to perform our field investigations using previously vetted ground-based (GB) LIDAR methodologies. However, the extended proposed time frame of the GB LIDAR data collection, and associated data processing time and delivery date, were unacceptable. After technical consultation and careful literature research, LANL identified an alternative methodology to achieve our technical objectives and fully support critical model parameterization. Very-low-altitude unmanned aerial systems (UAS) photogrammetry appeared to satisfy our objectives in lieu of GB LIDAR. The SPE Phase 2 baseline collection was used as a test of this UAS photogrammetric methodology.

  15. Surface geophysical methods for characterising frozen ground in transitional permafrost landscapes

    Science.gov (United States)

    Briggs, Martin; Campbell, Seth; Nolan, Jay; Walvoord, Michelle Ann; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Lane, John

    2017-01-01

    The distribution of shallow frozen ground is paramount to research in cold regions, and is subject to temporal and spatial changes influenced by climate, landscape disturbance and ecosystem succession. Remote sensing from airborne and satellite platforms is increasing our understanding of landscape-scale permafrost distribution, but typically lacks the resolution to characterise finer-scale processes and phenomena, which are better captured by integrated surface geophysical methods. Here, we demonstrate the use of electrical resistivity imaging (ERI), electromagnetic induction (EMI), ground penetrating radar (GPR) and infrared imaging over multiple summer field seasons around the highly dynamic Twelvemile Lake, Yukon Flats, central Alaska, USA. Twelvemile Lake has generally receded in the past 30 yr, allowing permafrost aggradation in the receded margins, resulting in a mosaic of transient frozen ground adjacent to thick, older permafrost outside the original lakebed. ERI and EMI best evaluated the thickness of shallow, thin permafrost aggradation, which was not clear from frost probing or GPR surveys. GPR most precisely estimated the depth of the active layer, which forward electrical resistivity modelling indicated to be a difficult target for electrical methods, but could be more tractable in time-lapse mode. Infrared imaging of freshly dug soil pit walls captured active-layer thermal gradients at unprecedented resolution, which may be useful in calibrating emerging numerical models. GPR and EMI were able to cover landscape scales (several kilometres) efficiently, and new analysis software showcased here yields calibrated EMI data that reveal the complicated distribution of shallow permafrost in a transitional landscape.

  16. Quality of surface and ground waters, Yakima Indian Reservation, Washington, 1973-74

    Science.gov (United States)

    Fretwell, M.O.

    1977-01-01

    This report describes the quality of the surface and ground waters of the Yakima Indian Reservation in south-central Washington, during the period November 1973-October 1974. The average dissolved-solids concentrations ranged from 48 to 116 mg/L (milligrams per liter) in the mountain streams, and from 88 to 372 mg/L in the lowland streams, drains, and a canal. All the mountain streams contain soft water (classified as 0-60 mg/L hardness as CaC03), and the lowland streams, drains, and canal contain soft to very hard water (more than 180 mg/L hardness as CaC03). The water is generally of suitable quality for irrigation, and neither salinity nor sodium hazards are a problem in waters from any of the streams studied. The specific conductance of water from the major aquifers ranged from 20 to 1 ,540 micromhos. Ground water was most dilute in mineral content in the Klickitat River basin and most concentrated in part of the Satus Creek basin. The ground water in the Satus Creek basin with the most concentrated mineral content also contained the highest percentage composition of sulfate, chloride, and nitrate. For drinking water, the nitrate-nitrogen concentrations exceeded the U.S. Public Health Service 's recommended limit of 10 mg/L over an area of several square miles, with a maximum observed concentration of 170 mg/L. (Woodard-USGS).

  17. Mechanism and bounding of earthquake energy input to building structure on surface ground subjected to engineering bedrock motion

    OpenAIRE

    Kojima, K; Sakaguchi, K; Takewaki, I.

    2015-01-01

    The mechanism of earthquake energy input to building structures is clarified by considering the surface ground amplification and soil–structure interaction. The earthquake input energies to superstructures, soil–foundation systems and total swaying–rocking system are obtained by taking the corresponding appropriate free bodies into account and defining the energy transfer functions. It has been made clear that, when the ground surface motion is white, the input energy to the swaying–rocking m...

  18. Ecohydrological analysis of a groundwater influenced blanket bog: occurrence of Schoenus nigricans in Roundstone Bog, Connemara, Ireland

    Directory of Open Access Journals (Sweden)

    A.P. Grootjans

    2016-04-01

    Full Text Available Since the late 1960s, the occurrence of Schoenus nigricans in Irish blanket bogs has been attributed to inputs of salt spray to the blanket bogs, due to their proximity to the coast and the predominant westerly winds from the Atlantic Ocean. To test this hypothesis we carried out an ecohydrological field study at a large blanket bog in the western part of Connemara, Ireland. We described peat profiles in two transects and sampled pore water from peat at different depths. The water samples were analysed and their macro-ionic composition was used to locate possible inputs of calcareous groundwater to the system. We found clear evidence for inflow of calcareous groundwater at various sites and depths. Inflow of rather base-rich groundwater was indicated by high values of electrical conductivity (EC, high contents of calcium and bicarbonate, and high pH of the pore water. The peat profiles contained macro-remains of reed (Phragmites australis, in most cases only in deeper layers of peat, but at one location throughout the profile. This is another indication that the blanket bog was a groundwater-fed fen for quite some time. We conclude that the occurrence of S. nigricans in the blanket bog studied could be well explained by the hypothesis that S. nigricans is a relic from former more base-rich conditions. Relatively high base saturation could have persisted due to the prevailing groundwater flow in the upper layers preventing decalcification or other loss of cations from the whole soil profile including the topsoil.

  19. Effect of fertilization on dry mass accumulation and nutrient cycling in Scots pine on an ombrotrophic bog.

    OpenAIRE

    Finér, Leena

    1991-01-01

    The effects of PK (plus Ca, Mg, S, Cl and B) and NPK (plus Ca, Mg, S, Cl and B) were studied (1984-87) in an 85-yr-old Scots pine (Pinus sylvestris) stand growing on a drained low-shrub pine bog in E. Finland. Fertilizer was applied in spring 1985. The amounts of elements applied (kg/ha) were: N 150, P 53, K 100, Ca 135, Mg 25, S 28, Cl 95 and B 2.4. The total dry mass of the stand before fertilizer application was 78 t/ha, of which above-ground compartments accounted for 69%. The annual abov...

  20. Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D

    Science.gov (United States)

    Lautz, Laura K.; Siegel, Donald I.

    2006-11-01

    We used a three-dimensional MODFLOW model, paired with MT3D, to simulate hyporheic zones around debris dams and meanders along a semi-arid stream. MT3D simulates both advective transport and sink/source mixing of solutes, in contrast to particle tracking (e.g. MODPATH), which only considers advection. We delineated the hydrochemically active hyporheic zone based on a new definition, specifically as near-stream subsurface zones receiving a minimum of 10% surface water within a 10-day travel time. Modeling results indicate that movement of surface water into the hyporheic zone is predominantly an advective process. We show that debris dams are a key driver of surface water into the subsurface along the experimental reach, causing the largest flux rates of water across the streambed and creating hyporheic zones with up to twice the cross-sectional area of other hyporheic zones. Hyporheic exchange was also found in highly sinuous segments of the experimental reach, but flux rates are lower and the cross-sectional areas of these zones are generally smaller. Our modeling approach simulated surface and ground water mixing in the hyporheic zone, and thus provides numerical approximations that are more comparable to field-based observations of surface-groundwater exchange than standard particle-tracking simulations.

  1. Modelling the Influence of Ground Surface Relief on Electric Sounding Curves Using the Integral Equations Method

    Directory of Open Access Journals (Sweden)

    Balgaisha Mukanova

    2017-01-01

    Full Text Available The problem of electrical sounding of a medium with ground surface relief is modelled using the integral equations method. This numerical method is based on the triangulation of the computational domain, which is adapted to the shape of the relief and the measuring line. The numerical algorithm is tested by comparing the results with the known solution for horizontally layered media with two layers. Calculations are also performed to verify the fulfilment of the “reciprocity principle” for the 4-electrode installations in our numerical model. Simulations are then performed for a two-layered medium with a surface relief. The quantitative influences of the relief, the resistivity ratios of the contacting media, and the depth of the second layer on the apparent resistivity curves are established.

  2. Flux of benzo(a)pyrene to the ground surface and its distribution in the ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Milukaite, A. [Institute of Physics, Vilnius (Lithuania)

    1998-07-01

    Benzo(a)pyrene (BP) has been investigated in bulk atmospheric deposition, moss, needles of pine and some species of vascular plants. At two remote Lithuanian sites, for 1990-1995 the flux of benzo(a)pyrene from the atmosphere to the ground surface varied between 0.3 to 4.8 {mu}g{sup -2} mo{sup -1}. Consequently the territory of Lithuania (65,000 km{sup 2}) yearly was exposed to 624-2574 kg of carcinogen. The distribution of BP in soil and various vascular plant tissues (trifolium tepens, Elitrygea repens, Thymus serpyllum) indicates that benzo(a)pyrene is assimilated by flora. The concentration of BP is different in various organs of vascular plants and mostly depends on the degree of soil pollution. More than 300 samples of moss, mostly Hylocomium spendens and Pleurozium schreberi were analysed for BP. From 3.1 to 896.0 {mu}g kg{sup -1} of BP were measured in the moss samples. The flux of BP to the ground surface correlates well with its concentration in moss. A map of BP flux across Lithuania was created. 20 refs., 3 figs., 3 tabs.

  3. Human health impacts of drinking water (surface and ground) pollution Dakahlyia Governorate, Egypt

    Science.gov (United States)

    Mandour, R. A.

    2012-09-01

    This study was done on 30 drinking tap water samples (surface and ground) and 30 urine samples taken from patients who attended some of Dakahlyia governorate hospitals. These patients were complaining of poor-quality tap water in their houses, which was confirmed by this study that drinking water is contaminated with trace elements in some of the studied areas. The aim of this study was to determine the relationship between the contaminant drinking water (surface and ground) in Dakahlyia governorate and its impact on human health. This study reports the relationship between nickel and hair loss, obviously shown in water and urine samples. Renal failure cases were related to lead and cadmium contaminated drinking water, where compatibilities in results of water and urine samples were observed. Also, liver cirrhosis cases were related to iron-contaminated drinking water. Studies of these diseases suggest that abnormal incidence in specific areas is related to industrial wastes and agricultural activities that have released hazardous and toxic materials in the drinking water and thereby led to its contamination in these areas. We conclude that trace elements should be removed from drinking water for human safety.

  4. Analysis of selected herbicide metabolites in surface and ground water of the United States

    Science.gov (United States)

    Scribner, E.A.; Thurman, E.M.; Zimmerman, L.R.

    2000-01-01

    One of the primary goals of the US Geological Survey (USGS) Laboratory in Lawrence, Kansas, is to develop analytical methods for the analysis of herbicide metabolites in surface and ground water that are vital to the study of herbicide fate and degradation pathways in the environment. Methods to measure metabolite concentrations from three major classes of herbicides - triazine, chloroacetanilide and phenyl-urea - have been developed. Methods for triazine metabolite detection cover nine compounds: six compounds are detected by gas chromatography/mass spectrometry; one is detected by high-performance liquid chromatography with diode-array detection; and eight are detected by liquid chromatography/mass spectrometry. Two metabolites of the chloroacetanilide herbicides - ethane sulfonic acid and oxanilic acid - are detected by high-performance liquid chromatography with diode-array detection and liquid chromatography/mass spectrometry. Alachlor ethane sulfonic acid also has been detected by solid-phase extraction and enzyme-linked immunosorbent assay. Six phenylurea metabolites are all detected by liquid chromatography/mass spectrometry; four of the six metabolites also are detected by gas chromatography/mass spectrometry. Additionally, surveys of herbicides and their metabolites in surface water, ground water, lakes, reservoirs, and rainfall have been conducted through the USGS laboratory in Lawrence. These surveys have been useful in determining herbicide and metabolite occurrence and temporal distribution and have shown that metabolites may be useful in evaluation of non-point-source contamination. Copyright (C) 2000 Elsevier Science B.V.

  5. Tracing of ca 800 yr old mining activity in peat bog using Pb elemental concentrations and isotope compositions.

    Science.gov (United States)

    Baron, S.; Carignan, J.; Ploquin, A.

    2003-04-01

    Sixty sites of slags have been documented on the Mont-Lozère in southern France. The petrographic analysis shows that slags are metallurgical wastes (800 to 850 yr BP) which certainly result from smelting activity for lead and silver extraction (Ploquin et al., 2001). The aims of this study are: 1) to trace the source of Pb ores which supplied the smelting sites, by using the Pb isotopic composition of several surrounding Pb deposits, 2) to evaluate the actual pollution caused by these slags, by using elemental and isotopic compositions of soils, water and vegetation, and 3) to document the pollution history of the region, by using elemental and isotopic compositions of peat bog cores collected in the neighbourhood of the historical smelting sites. The lead isotopic composition of galena collected in most surrounding ores is very similar to that of different slag samples. On the other hand, the high precision of the results allowed us to select the mineralised areas which were probably the ore sources. The Pb isotopic composition of slags is even more homogeneous: 208/206 Pb: 2.092±0.002; 206/207 Pb: 1.179±0.001; 208/204 Pb: 38.663±0.025; 207/204 Pb: 15.665±0.006; 206/204 Pb: 18.476±0.023, and will allow source tracing in the environment. The "Narses Mortes" peat bog, around which two smelting sites have been reported, is strongly minerotrophic and contains 8 to 60% ash. A 1.40 m core have been retrieved and divided into 58 individual samples. Minerotrophic peat bog records both atmospheric deposition, soils leaching and the grounwater influence. The measured metal concentrations are normalised to Al contents of peat bog samples and the metal/Al ratios are compared to that of the Mont-Lozère granite: relative excess in metal concentrations are found in peat bog samples. An increasing excess of most metals (Pb, Zn, Cd...) was measured for surface samples, from 55 cm depth to the top of the core (23 cm depth). This profil might be attributed to atmospheric

  6. Seasonal Influences on Ground-Surface Water Interactions in an Arsenic-Affected Aquifer in Cambodia

    Science.gov (United States)

    Richards, L. A.; Magnone, D.; Van Dongen, B.; Bryant, C.; Boyce, A.; Ballentine, C. J.; Polya, D. A.

    2015-12-01

    Millions of people in South and Southeast Asia consume drinking water daily which contains dangerous levels of arsenic exceeding health-based recommendations [1]. A key control on arsenic mobilization in aquifers in these areas has been controversially identified as the interaction of 'labile' organic matter contained in surface waters with groundwaters and sediments at depth [2-4], which may trigger the release of arsenic from the solid- to aqueous-phase via reductive dissolution of iron-(hyr)oxide minerals [5]. In a field site in Kandal Province, Cambodia, which is an arsenic-affected area typical to others in the region, there are strong seasonal patterns in groundwater flow direction, which are closely related to monsoonal rains [6] and may contribute to arsenic release in this aquifer. The aim of this study is to explore the implications of the high susceptibility of this aquifer system to seasonal changes on potential ground-surface water interactions. The main objectives are to (i) identify key zones where there are likely ground-surface water interactions, (ii) assess the seasonal impact of such interactions and (iii) quantify the influence of interactions using geochemical parameters (such as As, Fe, NO3, NH4, 14C, 3T/3He, δ18O, δ2H). Identifying the zones, magnitude and seasonal influence of ground-surface water interactions elucidates new information regarding potential locations/pathways of arsenic mobilization and/or transport in affected aquifers and may be important for water management strategies in affected areas. This research is supported by NERC (NE/J023833/1) to DP, BvD and CJB and a NERC PhD studentship (NE/L501591/1) to DM. References: [1] World Health Organization, 2008. [2] Charlet & Polya (2006), Elements, 2, 91-96. [3] Harvey et al. (2002), Science, 298, 1602-1606. [4] Lawson et al. (2013), Env. Sci. Technol. 47, 7085 - 7094. [5] Islam et al. (2004), Nature, 430, 68-71. [6] Benner et al. (2008) Appl. Geochem. 23(11), 3072 - 3087.

  7. Overriding control of methane flux temporal variability by water table dynamics in a Southern Hemisphere, raised bog

    Science.gov (United States)

    Goodrich, J. P.; Campbell, D. I.; Roulet, N. T.; Clearwater, M. J.; Schipper, L. A.

    2015-05-01

    There are still large uncertainties in peatland methane flux dynamics and insufficient understanding of how biogeochemical processes scale to ecosystems. New Zealand bogs differ from Northern Hemisphere ombrotrophic systems in climatic setting, hydrology, and dominant vegetation, offering an opportunity to evaluate our knowledge of peatland methane biogeochemistry gained primarily from northern bogs and fens. We report eddy covariance methane fluxes from a raised bog in New Zealand over 2.5 years. Annual total methane flux in 2012 was 29.1 g CH4 m-2 yr-1, whereas during a year with a severe drought (2013) it was 20.6 g CH4 m-2 yr-1, both high compared to Northern Hemisphere bogs and fens. Drier conditions led to a decrease in fluxes from ~100 mg CH4 m-2 d-1 to ~20 mg CH4 m-2 d-1, and subsequent slow recovery of flux after postdrought water table rise. Water table depth regulated the temperature sensitivity of methane fluxes, and this sensitivity was greatest when the water table was within 100 mm of the surface, corresponding to the shallow rooting zone of the dominant vegetation. A correlation between daytime CO2 uptake and methane fluxes emerged during times with shallow water tables, suggesting that controls on methane production were critical in determining fluxes, more so than oxidation. Water table recession through this shallow zone led to increasing methane fluxes, whereas changes in temperature during these periods were not correlated. Models of methane fluxes should consider drought-induced lags in seasonal flux recovery that depend on drought characteristics and location of the critical zone for methane production.

  8. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  9. Martian Surface Temperature and Spectral Response from the MSL REMS Ground Temperature Sensor

    Science.gov (United States)

    Martin-Torres, Javier; Martínez-Frías, Jesús; Zorzano, María-Paz; Serrano, María; Mendaza, Teresa; Hamilton, Vicky; Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; REMS Team

    2013-04-01

    The Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory (MSL) offers the opportunity to explore the near surface atmospheric conditions and, in particular will shed new light into the heat budget of the Martian surface. This is important for studies of the atmospheric boundary layer (ABL), as the ground and air temperatures measured directly by REMS control the coupling of the atmosphere with the surface [Zurek et al., 1992]. This coupling is driven by solar insolation. The ABL plays an important role in the general circulation and the local atmospheric dynamics of Mars. One of the REMS sensors, the ground temperature sensor (GTS), provides the data needed to study the thermal inertia properties of the regolith and rocks beneath the MSL rover. The GTS includes thermopile detectors, with infrared bands of 8-14 µm and 16-20 µm [Gómez-Elvira et al., 2012]. These sensors are clustered in a single location on the MSL mast and the 8-14 µm thermopile sounds the surface temperature. The infrared radiation reaching the thermopile is proportional to the emissivity of the surface minerals across these thermal wavelengths. We have developed a radiative transfer retrieval method for the REMS GTS using a database of thermal infrared laboratory spectra of analogue minerals and their mixtures. [Martín Redondo et al. 2009, Martínez-Frías et al. 2012 - FRISER-IRMIX database]. This method will be used to assess the perfomance of the REMS GTS as well as determine, through the error analysis, the surface temperature and emissivity values where MSL is operating. Comparisons with orbiter data will be performed. References Gómez-Elvira et al. [2012], REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover, Space Science Reviews, Volume 170, Issue 1-4, pp. 583-640. Martín-Redondo et al. [2009] Journal of Environmental Monitoring 11:, pp. 1428-1432. Martínez-Frías et al. [2012] FRISER-IRMIX database http

  10. Ground Surface Deformation around Tehran due to Groundwater Recharge: InSAR Monitoring.

    Science.gov (United States)

    Gourmelen, N.; Peyret, M.; Fritz, J. F.; Cherry, J.

    2003-04-01

    Tehran is located on an active tectonic and seismic zone. The surface deformation monitoring provides a powerful tool for getting a better understanding of faults kinematics and mechanisms. Used in conjunction with GPS networks, InSAR (Interferometric Synthetic Aperture Radar) provides dense and precise deformation measurements which are essential for mapping complex heterogeneous deformation fields. Moreover, urban and arid areas preserve interferometric phase coherence. The archived acquisitions of ERS that span 9 months between September 1998 and June 1999 reveal wide areas of surface uplift (by as much as 9 cm). This vertical deformation (gradual in time) has probably no tectonic meaning but is rather the ground response to ground water recharge. These zones are all located dowstream of large alluvial fans like the one of Karaj. The variation of effective stress caused by intersticial water draining could explain such surface deformation. It can also be noticed that some faults act as boundary for these deformation zones and fluid motion. The understanding of this deformation is relevant for groundwater monitoring and urban developement management. It is also necessary for discriminating it from tectonic deformation that also occurs on this zone. Due to the lack of attitude control of satellite ERS-2 since February 2001, the last images acquired could not be combined with the former acquisitions. Nevertheless, we expect to be able to enrich our set of images in order to map tectonic deformation on a longer period and to monitor in a more continuous way the deformation due to groundwater evolution. This would allow to quantify the permanent and reversible part of this signal.

  11. Bog bilberry phenolics, antioxidant capacity and nutrient profile.

    Science.gov (United States)

    Colak, Nesrin; Torun, Hülya; Gruz, Jiri; Strnad, Miroslav; Hermosín-Gutiérrez, Isidro; Hayirlioglu-Ayaz, Sema; Ayaz, Faik Ahmet

    2016-06-15

    Phenolics and nutrient profiles of bog bilberry (Vaccinium uliginosum L.) collected from high mountain pastures in northeast Anatolia (Turkey) were examined for the first time in this study. The major soluble sugar identified in the berry was fructose, following by glucose, and the main organic acid identified was citric acid, followed by malic acid. Eleven phenolic acids and 17 anthocyanin 3-glycosides were identified and quantified. Caffeic acid in the free and glycoside forms and syringic acid in the ester form were the major phenolic acids, and the major individual anthocyanin present in the berry was malvidin 3-glucoside (24%). The highest total phenolics and anthocyanin contents were obtained from the anthocyanin fraction in conjunction with the highest antioxidant capacity, followed by the polyphenolic and aqueous fractions, FRAP, ORAC and DPPH, in that order. Our findings can be used to compare bog bilberry with other Vaccinium berries and to help clarify the relative potential health benefits of different berries.

  12. Geologic Evidence for Late-Stage Equatorial Surface and Ground Ice on Mars

    Science.gov (United States)

    Chapman, M. G.

    2003-12-01

    New imagery data from the Mars Observer Camera suggest that the equatorial canyon of Valles Marineris contained surface and ground ice relatively late in Martian history. Some troughs (or chasmata) of Valles Marineris contain large mounds and mesas of interior layered deposits (ILDs) that formed in the Late Hesperian to Early Amazonian. Although the origin of the ILDs remains controversial, their characteristics suggest that the strongest hypotheses origin are lacustrine or volcanic processes; some workers have suggested a compromise origin, noting that many MOC observations of ILDs are similar to those of terrestrial sub-ice volcanoes that erupt in meltwater lakes. Lacustrine deposition and sub-ice volcanism require that chamata water or ice would have had to remain stable on the surface long enough to form either (1) extremely thick (1 km to > 4 km) deposits of fine-grained suspended lacustrine materials or (2) numerous sub-ice volcanic edifices with heights that compare to those of Hawaiian oceanic volcanoes. However, a dust cover on top of ice or an ice-covered lake could aid in preventing rapid sublimation. If the ILDs are sub-ice volcanoes than new MOLA topographic data can be used to (1) measure the heights of their subaerial caprock and (2) estimate corresponding volumes of ice. For example, the largest ILD mound in the 113,275 km3 void of Juventae Chasma resembles a capped sub-ice volcanic ridge. The mound is about 2 km high; with the highest point of the cap reaching an elevation of about +80 m. GIS measurement indicate that the maximum volume of ice below the elevation of +80 m is 56,423 km3, so roughly half of the Chasma could have been filled with ice. If the ILDs are lacustrine, then the heights of some other mounds that rival the surrounding plateau elevation would have required a volume of water almost equal to their enclosing chasma. Later in the Amazonian, after sublimation of any putative surface water or ice, MOC imagery attests to ground ice

  13. Metabolism of nonparticulate phosphorus in an acid bog lake

    Energy Technology Data Exchange (ETDEWEB)

    Koenings, J. P.

    1977-01-01

    In North Gate Lake, an acid bog lake located on the northern Michigan-Wisconsin border, U.S.A., the algal nutrient inorganic phosphate (FRP) is not detectable by chemical means. Organic phosphorus (FUP) represents 100% of the detectable filterable phosphorus. The availability and cycling of this organic fraction are of considerable interest in regard to the primary productivity of this system. To clarify these relationships, the cycling of nonparticulate forms of phosphorus found in the epilimnion of this lake was studied.

  14. A Comprehensive Laboratory Study to Improve Ground Truth Calibration of Remotely Sensed Near-Surface Soil Moisture

    Science.gov (United States)

    Babaeian, E.; Tuller, M.; Sadeghi, M.; Sheng, W.; Jones, S. B.

    2016-12-01

    Optical satellite and airborne remote sensing (RS) have been widely applied for characterization of large-scale surface soil moisture distributions. However, despite the excellent spatial resolution of RS data, the electromagnetic radiation within the optical bands (400-2500 nm) penetrates the soil profile only to a depth of a few millimeters; hence obtained moisture estimates are limited to the soil surface region. Furthermore, moisture sensor networks employed for ground truth calibration of RS observations commonly exhibit very limited spatial resolution, which consequently leads to significant discrepancies between RS and ground truth observations. To better understand the relationship between surface and near-surface soil moisture, we employed a benchtop hyperspectral line-scan imaging system to generate high resolution surface reflectance maps during evaporation from soil columns filled with source soils covering a wide textural range and instrumented with a novel time domain reflectometry (TDR) sensor array that allows monitoring of near surface moisture at 0.5-cm resolution. A recently developed physical model for surface soil moisture predictions from shortwave infrared reflectance was applied to estimate surface soil moisture from surface reflectance and to explore the relationship between surface and near-surface moisture distributions during soil drying. Preliminary results are very promising and their applicability for ground truth calibration of RS observations will be discussed.

  15. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  16. Numerical study of heat transfer characteristics in BOG heat exchanger

    Science.gov (United States)

    Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin

    2016-12-01

    In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.

  17. Extracting phosphoric iron under laboratorial conditions smelting bog iron ores

    Science.gov (United States)

    Török, B.; Thiele, A.

    2013-12-01

    In recent years it has been indicated by archaeometric investigations that phosphoric-iron (P-iron, low carbon steel with 0,5-1,5wt% P), which is an unknown and unused kind of steel in the modern industry, was widely used in different parts of the world in medieval times. In this study we try to explore the role of phosphorus in the arhaeometallurgy of iron and answer some questions regarding the smelting bog iron ores with high P-content. XRF analyses were performed on bog iron ores collected in Somogy county. Smelting experiments were carried out on bog iron ores using a laboratory model built on the basis of previously conducted reconstructed smelting experiments in copies of excavated furnaces. The effect of technological parameters on P-content of the resulted iron bloom was studied. OM and SEM-EDS analyses were carried out on the extracted iron and slag samples. On the basis of the material analyses it can be stated that P-iron is usually extracted but the P-content is highly affected by technological parameters. Typical microstructures of P-iron and of slag could also be identified. It could also be established that arsenic usually solved in high content in iron as well.

  18. Properties and structure of raised bog peat humic acids

    Science.gov (United States)

    Klavins, Maris; Purmalis, Oskars

    2013-10-01

    Humic substances form most of the organic components of soil, peat and natural waters, and their structure and properties differ very much depending on their source. The aims of this study are to characterize humic acids (HAs) from raised bog peat, to evaluate the homogeneity of peat HAs within peat profiles, and to study peat humification impact on properties of HAs. A major impact on the structure of peat HAs have lignin-free raised bog biota (dominantly represented by bryophytes of different origin). On diagenesis scale, peat HAs have an intermediate position between the living organic matter and coal organic matter, and their structure is formed in a process in which more labile structures (carbohydrates, amino acids, etc.) are destroyed, while thermodynamically more stable aromatic and polyaromatic structures emerge as a result of abiotic synthesis. However, in comparison with soil, aquatic and other HAs, aromaticity of peat HAs is much lower. Comparatively, the raised bog peat HAs are at the beginning of the transformation process of living organic matter. Concentrations of carboxyl and phenolic hydroxyl groups change depending on the peat age and decomposition degree from where HAs have been isolated, and carboxylic acidity of peat HAs increases with peat depth and humification degree.

  19. Interfaces Supporting Surface Gap Soliton Ground States in the 1D Nonlinear Schroedinger Equation

    CERN Document Server

    Dohnal, Tomas; Plum, Michael; Reichel, Wolfgang

    2012-01-01

    We consider the problem of verifying the existence of $H^1$ ground states of the 1D nonlinear Schr\\"odinger equation for an interface of two periodic structures: $$-u" +V(x)u -\\lambda u = \\Gamma(x) |u|^{p-1}u \\ {on} \\R$$ with $V(x) = V_1(x), \\Gamma(x)=\\Gamma_1(x)$ for $x\\geq 0$ and $V(x) = V_2(x), \\Gamma(x)=\\Gamma_2(x)$ for $x1$. The article [T. Dohnal, M. Plum and W. Reichel, "Surface Gap Soliton Ground States for the Nonlinear Schr\\"odinger Equation," \\textit{Comm. Math. Phys.} \\textbf{308}, 511-542 (2011)] provides in the 1D case an existence criterion in the form of an integral inequality involving the linear potentials $V_{1},V_2$ and the Bloch waves of the operators $-\\tfrac{d^2}{dx^2}+V_{1,2}-\\lambda$. We choose here the classes of piecewise constant and piecewise linear potentials $V_{1,2}$ and check this criterion for a set of parameter values. In the piecewise constant case the Bloch waves are calculated explicitly and in the piecewise linear case verified enclosures of the Bloch waves are computed ...

  20. Ground Plane and Near-Surface Thermal Analysis for NASA's Constellation Program

    Science.gov (United States)

    Gasbarre, Joseph F.; Amundsen, Ruth M.; Scola, Salvatore; Leahy, Frank F.; Sharp, John R.

    2008-01-01

    Most spacecraft thermal analysis tools assume that the spacecraft is in orbit around a planet and are designed to calculate solar and planetary fluxes, as well as radiation to space. On NASA Constellation projects, thermal analysts are also building models of vehicles in their pre-launch condition on the surface of a planet. This process entails making some modifications in the building and execution of a thermal model such that the radiation from the planet, both reflected albedo and infrared, is calculated correctly. Also important in the calculation of pre-launch vehicle temperatures are the natural environments at the vehicle site, including air and ground temperatures, sky radiative background temperature, solar flux, and optical properties of the ground around the vehicle. A group of Constellation projects have collaborated on developing a cohesive, integrated set of natural environments that accurately capture worst-case thermal scenarios for the pre-launch and launch phases of these vehicles. The paper will discuss the standardization of methods for local planet modeling across Constellation projects, as well as the collection and consolidation of natural environments for launch sites. Methods for Earth as well as lunar sites will be discussed.

  1. Two decades of temperature-time monitoring experiment: air - ground surface - shallow subsurface interactions

    Science.gov (United States)

    Cermak, Vladimir; Dedecek, Petr; Safanda, Jan; Kresl, Milan

    2014-05-01

    Long-term observations (1994-2013) of air and shallow ground temperatures at borehole Prague-Sporilov (50º02'28.5"E, 14º28'40.2"N, 274 m a.s.l.) have been thoroughly analyzed to understand the relationship between these quantities and to describe the mechanism of heat transport at the land-atmosphere boundary layer. Data provided a surprisingly small mean ground-air temperature offset of only 0.31 K with no clear annual course and with the offset value changing irregularly even on a daily scale. Such value is substantially lower than similar values (1-2 K and more) found elsewhere, but may well characterize a mild temperate zone, when all so far available information referred rather to southern locations. Borehole data were correlated with similar observations in a polygon-site under four types of surface conditions (grass, soil, sand and asphalt) completed with registration of meteorological variables (wind direction & velocity, air & soil humidity, direct & reflected solar radiation, precipitation and snow cover). The "thermal orbits" technique proved to be an effective tool for the fast qualitative diagnostics of the thermal regime in the subsurface (conductive versus non-conductive).

  2. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Qiang; Li, Na; Wang, Jun; Wang, Bo, E-mail: bradywang@hit.edu.cn; Li, Guo; Ding, Fei; Jin, Huiliang

    2015-06-30

    Highlights: • The morphology evolution of ground fused silica, processed by atmospheric plasma, was investigated experimentally. • The roughness development results from opening and coalescing of the plasma-etched cracks. • The shapes of grain-like etched pits are the results of the adjacent cracks coalescing with one another. • The descent of the pits density is due to some smaller etched pits that are swallowed up by larger pits. • Leading role in surface smoothing is laterally etching away the side walls of the intersecting pits. - Abstract: Subsurface damage (SSD) is a defect that is inevitably induced during mechanical processes, such as grinding and polishing. This defect dramatically reduces the mechanical strength and the laser damage thresholds of optical elements. Compared with traditional mechanical machining, atmospheric pressure plasma processing (APPP) is a relatively novel technology that induces almost no SSD during the processing of silica-based optical materials. In this paper, a form of APPP, inductively coupled plasma (ICP), is used to process fused silica substrates with fluorocarbon precursor under atmospheric pressure. The surface morphology evolution of ICP-processed substrates was observed and characterized by confocal laser scanning microscope (CLSM), field emission scanning electron microscope (SEM), and atomic force microscopy (AFM). The results show that the roughness evolves with the etching depth, and the roughness evolution is a single-peaked curve. This curve results from the opening and the coalescing of surface cracks and fractures. The coalescence procedure of these microstructures was simulated with two common etched pits on a polished fused silica surface. Understanding the roughness evolution of plasma-processed surface might be helpful in optimizing the optical fabrication chain that contains APPP.

  3. Numerical modelling of ground-borne noise and vibration in buildings due to surface rail traffic

    Science.gov (United States)

    Fiala, P.; Degrande, G.; Augusztinovicz, F.

    2007-04-01

    This paper deals with the numerical computation of the structural and acoustic response of a building to an incoming wave field generated by high-speed surface railway traffic. The source model consists of a moving vehicle on a longitudinally invariant track, coupled to a layered ground modelled with a boundary element formulation. The receiver model is based on a substructuring formulation and consists of a boundary element model of the soil and a finite element model of the structure. The acoustic response of the building's rooms is computed by means of a spectral finite element formulation. The paper investigates the structural and acoustic response of a multi-story portal frame office building up to a frequency of 150 Hz to the passage of a Thalys high-speed train at constant velocity. The isolation performance of three different vibration countermeasures: a floating-floor, a room-in-room, and base-isolation, are examined.

  4. Sampling and analysis for radon-222 dissolved in ground water and surface water

    Science.gov (United States)

    DeWayne, Cecil L.; Gesell, T.F.

    1992-01-01

    Radon-222 is a naturally occurring radioactive gas in the uranium-238 decay series that has traditionally been called, simply, radon. The lung cancer risks associated with the inhalation of radon decay products have been well documented by epidemiological studies on populations of uranium miners. The realization that radon is a public health hazard has raised the need for sampling and analytical guidelines for field personnel. Several sampling and analytical methods are being used to document radon concentrations in ground water and surface water worldwide but no convenient, single set of guidelines is available. Three different sampling and analytical methods - bubbler, liquid scintillation, and field screening - are discussed in this paper. The bubbler and liquid scintillation methods have high accuracy and precision, and small analytical method detection limits of 0.2 and 10 pCi/l (picocuries per liter), respectively. The field screening method generally is used as a qualitative reconnaissance tool.

  5. Surface Properties and Characteristics of Mars Landing Sites from Remote Sensing Data and Ground Truth

    Science.gov (United States)

    Golombek, M. P.; Haldemann, A. F.; Simpson, R. A.; Furgason, R. L.; Putzig, N. E.; Huertas, A.; Arvidson, R. E.; Heet, T.; Bell, J. F.; Mellon, M. T.; McEwen, A. S.

    2008-12-01

    Surface characteristics at the six sites where spacecraft have successfully landed on Mars can be related favorably to their signatures in remotely sensed data from orbit and from the Earth. Comparisons of the rock abundance, types and coverage of soils (and their physical properties), thermal inertia, albedo, and topographic slope all agree with orbital remote sensing estimates and show that the materials at the landing sites can be used as ground truth for the materials that make up most of the equatorial and mid- to moderately high-latitude regions of Mars. The six landing sites sample two of the three dominant global thermal inertia and albedo units that cover ~80% of the surface of Mars. The Viking, Spirit, Mars Pathfinder, and Phoenix landing sites are representative of the moderate to high thermal inertia and intermediate to high albedo unit that is dominated by crusty, cloddy, blocky or frozen soils (duricrust that may be layered) with various abundances of rocks and bright dust. The Opportunity landing site is representative of the moderate to high thermal inertia and low albedo surface unit that is relatively dust free and composed of dark eolian sand and/or increased abundance of rocks. Rock abundance derived from orbital thermal differencing techniques in the equatorial regions agrees with that determined from rock counts at the surface and varies from ~3-20% at the landing sites. The size-frequency distributions of rocks >1.5 m diameter fully resolvable in HiRISE images of the landing sites follow exponential models developed from lander measurements of smaller rocks and are continuous with these rock distributions indicating both are part of the same population. Interpretation of radar data confirms the presence of load bearing, relatively dense surfaces controlled by the soil type at the landing sites, regional rock populations from diffuse scattering similar to those observed directly at the sites, and root-mean-squared slopes that compare favorably

  6. Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers

    Science.gov (United States)

    Hanjalić, K.; Hrebtov, M.

    2016-07-01

    We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.

  7. Scalable and Detail-Preserving Ground Surface Reconstruction from Large 3D Point Clouds Acquired by Mobile Mapping Systems

    Science.gov (United States)

    Craciun, D.; Serna Morales, A.; Deschaud, J.-E.; Marcotegui, B.; Goulette, F.

    2014-08-01

    The currently existing mobile mapping systems equipped with active 3D sensors allow to acquire the environment with high sampling rates at high vehicle velocities. While providing an effective solution for environment sensing over large scale distances, such acquisition provides only a discrete representation of the geometry. Thus, a continuous map of the underlying surface must be built. Mobile acquisition introduces several constraints for the state-of-the-art surface reconstruction algorithms. Smoothing becomes a difficult task for recovering sharp depth features while avoiding mesh shrinkage. In addition, interpolation-based techniques are not suitable for noisy datasets acquired by Mobile Laser Scanning (MLS) systems. Furthermore, scalability is a major concern for enabling real-time rendering over large scale distances while preserving geometric details. This paper presents a fully automatic ground surface reconstruction framework capable to deal with the aforementioned constraints. The proposed method exploits the quasi-flat geometry of the ground throughout a morphological segmentation algorithm. Then, a planar Delaunay triangulation is applied in order to reconstruct the ground surface. A smoothing procedure eliminates high frequency peaks, while preserving geometric details in order to provide a regular ground surface. Finally, a decimation step is applied in order to cope with scalability constraints over large scale distances. Experimental results on real data acquired in large urban environments are presented and a performance evaluation with respect to ground truth measurements demonstrate the effectiveness of our method.

  8. Monitoring surface geothermal features using time series of aerial and ground-based photographs

    Science.gov (United States)

    Bromley, C.; van Manen, S. M.; Graham, D.

    2010-12-01

    Geothermal systems are of high conservation and scientific value and monitoring of these is an important management tool to assess natural variations and changes resulting from development and utilization. This study examines time series of aerial and ground-based photographs of geothermal areas within the Taupo Volcanic Zone, New Zealand. A time series of aerial photographs from 1946-2007 of the Broadlands Road Scenic Reserve (Taupo, New Zealand) highlights large changes to this small area as the result of the start of geothermal fluid production for the nearby Wairakei power plant in 1958 and other causes. Prior to the opening of the plant the area was not geothermally active, but expansion of steam zones due to pressure drawdown has resulted in significant thermal changes in the subsurface. These subsurface thermal changes are evident in the aerial photographs as the appearance of hydrothermal eruption craters and areas of thermal bare ground, which are too hot for vegetation to grown on. In addition, in the late 1960’s thermotolerant vegetation started to establish itself in the adjacent area. Changes in the surface area covered by each of these, reflect changes in the geothermal system as well as changes in management (e.g. exclusion of livestock), and a time series of these changes has been produced using ArcMap™. Monthly photographs of surface geothermal expressions in the Rotorua area show changes in colour and size of chloride springs with time. Colour and size changes are difficult to quantify due to varying exposure settings, weather conditions, and vantage points. However, these qualitative descriptions can be combined with quantitative time series such as temperature measurements, to provide better insight into surface changes that have occurred at this geothermal field. This study highlights the value of both qualitative and quantitative data that can be obtained from time series of photographs, including photographs that were obtained before the

  9. Ground surface thermal regime of rock glaciers in the High Tatra Mts., Slovakia

    Science.gov (United States)

    Uxa, Tomáš; Mida, Peter

    2017-04-01

    Numerous lobate- or tongue-shaped debris accumulations, mostly interpreted as rock glaciers, have recently been recognized in the High Tatra Mts., Slovakia (49˚ 10' N, 20˚ 08' E). These prominent landforms arise due to creep of voluminous debris-ice mixtures, and as such they are excellent indicators of present or past permafrost existence. Hence rock glaciers are extensively utilized to model the distribution of permafrost in mountain areas. However, commonly applied rules of thumb may not be entirely indicative to discriminate particularly between the inactive (permafrost in disequilibrium with present climate) and relict (without permafrost) rock glaciers, which may substantially complicate permafrost modelling. Accordingly, the information about their thermal state is essential to calibrate and validate regional permafrost models. Limited ground temperature data have been, however, available from the High Tatra Mts. to date and therefore, we bring the updated and enhanced results from the thermal investigations of eleven rock glaciers located in the Slavkovská dolina and Veľká Studená dolina valleys at elevations between 1832 and 2090 m asl. Ground surface temperature (GST) has been continuously monitored at seven rock glaciers between October 2014 and September 2016 using nine Minikin Tie (EMS Brno Inc.) and iButton DS1922L (Maxim Integrated Inc.) loggers with an accuracy of ±0.2 and ±0.5 ˚ C, respectively. In addition, the bottom temperature of snow (BTS) was measured at 306 locations during spring of 2015 and 2016 to map potential permafrost occurrence within all the surveyed rock glaciers and in their immediate surroundings. Mean annual ground surface temperature (MAGST) of the rock glaciers ranged between -1.3 ˚ C and +2.6 ˚ C and averaged +1.0 ˚ C and +0.8 ˚ C in 2014-2015 and 2015-2016, respectively. Two sites continually showed negative MAGST and two other sites were below +0.5 ˚ C and +1.0 ˚ C, respectively. This strongly contrasts with

  10. Ground and surface water for drinking: a laboratory study on genotoxicity using plant tests

    Directory of Open Access Journals (Sweden)

    Donatella Feretti

    2012-02-01

    Full Text Available Surface waters are increasingly utilized for drinking water because groundwater sources are often polluted. Several monitoring studies have detected the presence of mutagenicity in drinking water, especially from surface sources due to the reaction of natural organic matter with disinfectant. The study aimed to investigate the genotoxic potential of the products of reaction between humic substances, which are naturally present in surface water, and three disinfectants: chlorine dioxide, sodium hypochlorite and peracetic acid. Commercial humic acids dissolved in distilled water at different total organic carbon (TOC concentrations were studied in order to simulate natural conditions of both ground water (TOC=2.5 mg/L and surface water (TOC=7.5 mg/L. These solutions were treated with the biocides at a 1:1 molar ratio of C:disinfectant and tested for genotoxicity using the anaphase chromosomal aberration and micronucleus tests in Allium cepa, and the Vicia faba and Tradescantia micronucleus tests. The tests were carried out after different times and with different modes of exposure, and at 1:1 and 1:10 dilutions of disinfected and undisinfected humic acid solutions. A genotoxic effect was found for sodium hypochlorite in all plant tests, at both TOCs considered, while chlorine dioxide gave positive results only with the A.cepa tests. Some positive effects were also detected for PAA (A.cepa and Tradescantia. No relevant differences were found in samples with different TOC values. The significant increase in all genotoxicity end-points induced by all tested disinfectants indicates that a genotoxic potential is exerted even in the presence of organic substances at similar concentrations to those frequently present in drinking water.

  11. Ground and surface water for drinking: a laboratory study on genotoxicity using plant tests.

    Science.gov (United States)

    Feretti, Donatella; Ceretti, Elisabetta; Gustavino, Bianca; Zerbini, Llaria; Zani, Claudia; Monarca, Silvano; Rizzoni, Marco

    2012-02-17

    Surface waters are increasingly utilized for drinking water because groundwater sources are often polluted. Several monitoring studies have detected the presence of mutagenicity in drinking water, especially from surface sources due to the reaction of natural organic matter with disinfectant. The study aimed to investigate the genotoxic potential of the products of reaction between humic substances, which are naturally present in surface water, and three disinfectants: chlorine dioxide, sodium hypochlorite and peracetic acid. Commercial humic acids dissolved in distilled water at different total organic carbon (TOC) concentrations were studied in order to simulate natural conditions of both ground water (TOC=2.5 mg/L) and surface water (TOC=7.5 mg/L). These solutions were treated with the biocides at a 1:1 molar ratio of C:disinfectant and tested for genotoxicity using the anaphase chromosomal aberration and micronucleus tests in Allium cepa, and the Vicia faba and Tradescantia micronucleus tests. The tests were carried out after different times and with different modes of exposure, and at 1:1 and 1:10 dilutions of disinfected and undisinfected humic acid solutions. A genotoxic effect was found for sodium hypochlorite in all plant tests, at both TOCs considered, while chlorine dioxide gave positive results only with the A.cepa tests. Some positive effects were also detected for PAA (A.cepa and Tradescantia). No relevant differences were found in samples with different TOC values. The significant increase in all genotoxicity end-points induced by all tested disinfectants indicates that a genotoxic potential is exerted even in the presence of organic substances at similar concentrations to those frequently present in drinking water.

  12. Large-aperture ground glass surface profile measurement using coherence scanning interferometry.

    Science.gov (United States)

    Bae, Eundeok; Kim, Yunseok; Park, Sanguk; Kim, Seung-Woo

    2017-01-23

    We present a coherence scanning interferometer configured to deal with rough glass surfaces exhibiting very low reflectance due to severe sub-surface light scattering. A compound light source is prepared by combining a superluminescent light-emitting diode with an ytterbium-doped fiber amplifier. The light source is attuned to offer a short temporal coherence length of 15 μm but with high spatial coherence to secure an adequate correlogram contrast by delivering strongly unbalanced optical power to the low reflectance target. In addition, the infrared spectral range of the light source is shifted close to the visible side at a 1,038 nm center wavelength, so a digital camera of multi-mega pixels available for industrial machine vision can be used to improve the correlogram contrast further with better lateral image resolutions. Experimental results obtained from a ground Zerodur mirror of 200 mm aperture size and 0.9 μm rms roughness are discussed to validate the proposed interferometer system.

  13. Atrazine and its degradation products in surface and ground waters in Zhangjiakou District, China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A method using the solid phase extraction (SPE) and liquid chromatography-mass spectrometry (LC-MS) to analyse atrazine and its degradation products at levels of low nanograms per liter in water has been developed. The environmental water samples were filtered and then extracted by SPE with a new sulfonation of poly(divinylbenzene-co-N- vinylpyrrolidone) sorbents MCX. HPLC/APCIMS was used for the analysis of atrazine and its degradation products, desethylatrazine (DEA), deisopropylatrazine (DIA), didealkylatrazine (DEDIA), and hydroxyatrazine (HYA). The detection limits ranged from 10-50 ng/L in water samples. Samples were collected from deep wells and a reservoir near a plant that produced atrazine. Atrazine concentration levels in most surface samples were above the limit of the China Surface Water Regulation (3 mg/L). In ground water, the levels of degradation product were more than 0.1 mg/L and 5-10 times greater than those of atrazine. The highest DEA concentration in the groundwater sample taken at the 130 m depth was 7.2 ug/L.

  14. Spectroscopic determination of ground and excited state vibrational potential energy surfaces

    Science.gov (United States)

    Laane, Jaan

    Far-infrared spectra, mid-infrared combination band spectra, Raman spectra, and dispersed fluorescence spectra of non-rigid molecules can be used to determine the energies of many of the quantum states of conformationally important vibrations such as out-of-plane ring modes, internal rotations, and molecular inversions in their ground electronic states. Similarly, the fluorescence excitation spectra of jet-cooled molecules, together with electronic absorption spectra, provide the information for determining the vibronic energy levels of electronic excited states. One- or two-dimensional potential energy functions, which govern the conformational changes along the vibrational coordinates, can be determined from these types of data for selected molecules. From these functions the molecular structures, the relative energies between different conformations, the barriers to molecular interconversions, and the forces responsible for the structures can be ascertained. This review describes the experimental and theoretical methodology for carrying out the potential energy determinations and presents a summary of work that has been carried out for both electronic ground and excited states. The results for the out-of-plane ring motions of four-, five-, and six-membered rings will be presented, and results for several molecules with unusual properties will be cited. Potential energy functions for the carbonyl wagging and ring modes for several cyclic ketones in their S1(n,pi*) states will also be discussed. Potential energy surfaces for the three internal rotations, including the one governing the photoisomerization process, will be examined for trans-stilbene in both its S0 and S1(pi,pi*) states. For the bicyclic molecules in the indan family, the two-dimensional potential energy surfaces for the highly interacting ring-puckering and ring-flapping motions in both the S0 and S1(pi,pi*) states have also been determined using all of the spectroscopic methods mentioned above

  15. Ozone treatment of coal- and coffee grounds-based active carbons: Water vapor adsorption and surface fractal micropores

    Energy Technology Data Exchange (ETDEWEB)

    Tsunoda, Ryoichi; Ozawa, Takayoshi; Ando, Junichi [Kanagawa Industrial Technology Research Inst., Ebina, Kanagawa (Japan)

    1998-09-15

    Characteristics of the adsorption iostherms of water vapor on active carbons from coal and coffee grounds and those ozonized ones from the surface fractal dimension analysis are discussed. The upswing of the adsorption isotherms in the low relative pressure of coffee grounds-based active carbon, of which isotherms were not scarcely affected on ozonization, was attributed to the adsorption of water molecules on the metallic oxides playing the role of oxygen-surface complexes, which formed the corrugated surfaces on the basal planes of micropore walls with the surface fractal dimension D{sub s} > 2. On the other hand, coal-based active carbon with D{sub s} < 2, which indicated the flat surfaces of micropore walls, showed little effect on the upswing even on ozonization, even though the adsorption amounts of water vapor were increased in the low relative pressure.

  16. Terrestrial isopod community as indicator of succession in a peat bog

    Directory of Open Access Journals (Sweden)

    Ivan Antonović

    2012-03-01

    Full Text Available Terrestrial isopods were studied in the Dubravica peat bog and surrounding forest in the northwestern Croatia. Sampling was conducted using pitfall traps over a two year period. Studied peat bog has a history of drastically decrease in area during the last five decades mainly due to the process of natural succession and changes in the water level. A total of 389 isopod individuals belonging to 8 species were captured. Species richness did not significantly differ between bog, edge and surrounding forest. High species richness at the bog is most likely the result of progressive vegetation succession, small size of the bog and interspecific relationships, such as predation. With spreading of Molinia grass on the peat bog, upper layers of Sphagnum mosses become less humid and probably more suitable for forest species that slowly colonise bog area. The highest diversity was found at the edge mainly due to the edge effect and seasonal immigration, but also possibly due to high abundance and predator pressure of the Myrmica ants and lycosid spiders at the bog site. The most abundant species were Trachelipus rathkii and Protracheoniscus politus, in the bog area and in the forest, respectively. Bog specific species were not recorded and the majority of the species collected belong to the group of tyrphoneutral species. However, Hyloniscus adonis could be considered as a tyrphoxenous species regarding its habitat preferences. Most of collected isopod species are widespread eurytopic species that usually inhabit various habitats and therefore indicate negative successive changes or degradation processes in the peat bog.

  17. Groundwater Surface Trends at Van Norden Meadow, California, from Ground Penetrating Radar Profiles

    Science.gov (United States)

    Tadrick, N. I.; Blacic, T. M.; Yarnell, S. M.

    2014-12-01

    Van Norden meadow in the Donner Summit area west of Lake Tahoe is one of the largest sub-alpine meadows in the Sierra Nevada mountain range. As natural water retention basins, meadows attenuate floods, improve water quality and support vegetation that stabilizes stream banks and promotes high biodiversity. Like most meadows in the Sierras however, over-grazing, road-building, and development has resulted in localized stream incision, degradation, and partial conversion from wet to dry conditions in Van Norden. Additionally, a small dam at the base of the meadow has partially flooded the lower meadow creating reservoir conditions. Privately owned since the late 1800s, Van Norden was recently purchased by a local land trust to prevent further development and return the area to public ownership. Restoration of the natural meadow conditions will involve notching the dam in 2016 to reduce currently impounded water volumes from 250 to less than 50 acre-feet. To monitor the effects of notching the dam on the upstream meadow conditions, better understanding of the surface and groundwater hydrology both pre- and post-restoration is required. We surveyed the meadow in summer 2014 with ground penetrating radar (GPR) to map the groundwater surface prior to restoration activities using a 270MHz antenna to obtain a suite of longitudinal and transverse transects. Groundwater level within the meadow was assessed using both piezometer readings and sweeps of the GPR antenna. Seventeen piezometers were added this year to the 13 already in place to monitor temporal changes in the groundwater surface, while the GPR profiles provided information about lateral variations. Our results provide an estimate of the groundwater depth variations across the upper portion of the meadow before notching. We plan to return in 2015 to collect GPR profiles during wetter conditions, which will provide a more complete assessment of the pre-notching groundwater hydrology.

  18. Surface Nuclear Magnetic Resonance (SNMR - A new method for exploration of ground water and aquifer properties

    Directory of Open Access Journals (Sweden)

    U. Yaramanci

    2000-06-01

    Full Text Available The Surface Nuclear Magnetic Resonance (SNMR method is a fairly new technique in geophysics to assess ground water, i.e. existence, amount and productibility by measurements at the surface. The NMR technique used in medicine, physics and lately in borehole geophysics was adopted for surface measurements in the early eighties, and commercial equipment for measurements has been available since the mid nineties. The SNMR method has been tested at sites in Northern Germany with Quaternary sand and clay layers, to examine the suitability of this new method for groundwater exploration and environmental investigations. More information is obtained by SNMR, particularly with respect to aquifer parameters, than with other geophysical techniques. SNMR measurements were carried out at three borehole locations, together with 2D and 1D direct current geoelectrics and well logging (induction log, gamma-ray log and pulsed neutron-gamma log. Permeabilities were calculated from the grain-size distributions of core material determined in the laboratory. It is demonstrated that the SNMR method is able to detect groundwater and the results are in good agreement with other geophysical and hydrogeological data. Using the SNMR method, the water content of the unsaturated and saturated zones (i.e. porosity of an aquifer can be reliably determined. This information and resistivity data permit in-situ determination of other aquifer parameters. Comparison of the SNMR results with borehole data clearly shows that the water content determined by SNMR is the free or mobile water in the pores. The permeabilities estimated from the SNMR decay times are similar to those derived from sieve analysis of core material. Thus, the combination of SNMR with geoelectric methods promises to be a powerful tool for studying aquifer properties.

  19. Transport and fate of nitrate at the ground-water/surface-water interface

    Science.gov (United States)

    Puckett, L.J.; Zamora, C.; Essaid, H.; Wilson, J.T.; Johnson, H.M.; Brayton, M.J.; Vogel, J.R.

    2008-01-01

    Although numerous studies of hyporheic exchange and denitrification have been conducted in pristine, high-gradient streams, few studies of this type have been conducted in nutrient-rich, low-gradient streams. This is a particularly important subject given the interest in nitrogen (N) inputs to the Gulf of Mexico and other eutrophic aquatic systems. A combination of hydrologic, mineralogical, chemical, dissolved gas, and isotopic data, were used to determine the processes controlling transport and fate of NO3- in streambeds at five sites across the USA. Water samples were collected from streambeds at depths ranging from 0.3 to 3 m at three to five points across the stream and in two to five separate transects. Residence times of water ranging from 0.28 to 34.7 d m-1 in the streambeds of N-rich watersheds played an important role in allowing denitrification to decrease NO3- concentrations. Where potential electron donors were limited and residence times were short, denitrification was limited. Consequently, in spite of reducing conditions at some sites, NO3- was transported into the stream. At two of the five study sites, NO3- in surface water infiltrated the streambeds and concentrations decreased, supporting current models that NO3- would be retained in N-rich streams. At the other three study sites, hydrogeologic controls limited or prevented infiltration of surface water into the streambed, and ground-water discharge contributed to NO 3- loads. Our results also show that in these low hydrologic-gradient systems, storm and other high-flow events can be important factors for increasing surface-water movement into streambeds. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  20. A comparative study of the phosphate levels in some surface and ground water bodies of Swaziland

    Directory of Open Access Journals (Sweden)

    A.O. Fadiran

    2008-08-01

    Full Text Available The levels of total phosphate in selected surface water and groundwater bodies from Manzini and Lubombo regions of Swaziland were determined using UV spectroscopic method. Samples were collected from three rivers (upstream and downstream of each, three industrial effluents, one reservoir, one pond, one tap water and fifteen boreholes. Mean phosphate levels in the tap water and reservoir varied between 0.08-0.09 mg/L while for the river samples, the range was 0.11-0.37 and for the industrial discharge, it was 0.11-1.60 mg/L PO4–P. For the ground water systems it ranged between 0.10-0.49 mg/L PO4–P. The mean phosphate levels in all the analyzed surface and groundwater samples were below the recommended maximum contaminant level (MCL by SWSC (Swaziland Water Service Corporation – i.e. 1.0 mg/L for drinking water; 2.0 mg/L for rivers and industrial effluents, and the South African criterion of 1.0 mg/L PO4–P, for sewage effluents being discharged into receiving waters. However, pooled mean values for all the sites were higher than the USEPA criterion of 0.03 mg/L maximum for uncontaminated lakes. Dominant factors considered to have influenced the levels of phosphates in both the surface and groundwater samples analyzed include industrial activities (where present, agricultural activities (including livestock, population density, location (urban, suburban or rural, soil/rock type in the vicinity of the sampling point, climate and rainfall pattern of the area or region concerned.

  1. Carbon balance of a boreal bog during a year with an exceptionally dry summer

    Energy Technology Data Exchange (ETDEWEB)

    Alm, J.; Silvola, J. [Univ. of Joensuu (Finland). Dept. of Biology; Schulman, L. [Univ. of Helsinki (Finland). Dept. of Ecology and Systematics; Walden, J. [Finnish Meteorological Inst., Helsinki (Finland); Nykaenen, H.; Martikainen, P.J. [National Public Health Inst., Kuopio (Finland). Lab. of Environmental Microbiology

    1999-01-01

    Northern peatlands are important terrestrial carbon stores, and they show large spatial and temporal variation in the atmospheric exchange of CO{sub 2} and CH{sub 4}. Thus, annual carbon balance must be studied in detail in order to predict the climatic responses of these ecosystems. Closed-chamber methods were used to study CO{sub 2} and CH{sub 4} in hollow, Sphagnum angustifolium lawn. S. fuscum lawn, and hummock microsites within an ombrotrophic S. fuscum bog. Micrometeorological tower measurements were used as a reference for the CH{sub 3} efflux from the bog. Low precipitation during May--August in 1994 and a warm July--August period caused the water table to drop by more than 15 cm below the peat surface in the hollows and to 48 cm below the surface in high hummocks. Increased annual total respiration exceeded gross production and resulted in a net C loss of 4--157 g/m{sup 2} in the different microsites. Drought probably caused irreversible desiccation in some lawns of S. angustifolium and S. balticum and in S. fuscum in the hummocks, while S. balticum growing in hollows retained its moisture and even increased its photosynthetic capacity during the July--August period. Seasonal (12 May--4 October) CH{sub 4} emissions ranged from 2 g CH{sub 4}-C/m{sup 2} in drier S. fuscum hummocks and lawns to 7 and 14 g/m{sup 2} in wetter S. angustifolium-S. balticum lawns and hollows, respectively.

  2. Questa baseline and pre-mining ground-water quality investigation. 10. Geologic influences on ground and surface waters in the lower Red River watershed, New Mexico

    Science.gov (United States)

    Ludington, Steve; Plumlee, Geoff; Caine, Jonathan; Bove, Dana; Holloway, JoAnn; Livo, Eric

    2005-01-01

    Introduction: This report is one in a series that presents results of an interdisciplinary U.S. Geological Survey (USGS) study of ground-water quality in the lower Red River watershed prior to open-pit and underground molybdenite mining at Molycorp's Questa mine. The stretch of the Red River watershed that extends from just upstream of the town of Red River, N. Mex., to just above the town of Questa includes several mineralized areas in addition to the one mined by Molycorp. Natural erosion and weathering of pyrite-rich rocks in the mineralized areas has created a series of erosional scars along this stretch of the Red River that contribute acidic waters, as well as mineralized alluvial material and sediments, to the river. The overall goal of the USGS study is to infer the premining ground-water quality at the Molycorp mine site. An integrated geologic, hydrologic, and geochemical model for ground water in the mineralized-but unmined-Straight Creek drainage (a tributary of the Red River) is being used as an analog for the geologic, geochemical, and hydrologic conditions that influenced ground-water quality and quantity in the Red River drainage prior to mining. This report provides an overall geologic framework for the Red River watershed between Red River and Questa, in northern New Mexico, and summarizes key geologic, mineralogic, structural and other characteristics of various mineralized areas (and their associated erosional scars and debris fans) that likely influence ground- and surface-water quality and hydrology. The premining nature of the Sulphur Gulch and Goat Hill Gulch scars on the Molycorp mine site can be inferred through geologic comparisons with other unmined scars in the Red River drainage.

  3. A mixed space-time and wavenumber-frequency domain procedure for modelling ground vibration from surface railway tracks

    Science.gov (United States)

    Koroma, S. G.; Thompson, D. J.; Hussein, M. F. M.; Ntotsios, E.

    2017-07-01

    This paper presents a methodology for studying ground vibration in which the railway track is modelled in the space-time domain using the finite element method (FEM) and, for faster computation, discretisation of the ground using either FEM or the boundary element method (BEM) is avoided by modelling it in the wavenumber-frequency domain. The railway track is coupled to the ground through a series of rectangular strips located at the surface of the ground; their vertical interaction is described by a frequency-dependent dynamic stiffness matrix whose elements are represented by discrete lumped parameter models. The effectiveness of this approach is assessed firstly through frequency domain analysis using as excitation a stationary harmonic load applied on the rail. The interaction forces at the ballast/ground interface are calculated using the FE track model in the space-time domain, transformed to the wavenumber domain, and used as input to the ground model for calculating vibration in the free field. Additionally, time domain simulations are also performed with the inclusion of nonlinear track parameters. Results are presented for the coupled track/ground model in terms of time histories and frequency spectra for the track vibration, interaction forces and free-field ground vibration. For the linear track model, the results from the mixed formulation are in excellent agreement with those from a semi-analytical model formulated in the wavenumber-frequency domain, particularly in the vicinity of the loading point. The accuracy of the mixed formulation away from the excitation point depends strongly on the inclusion of through-ground coupling in the lumped parameter model, which has been found to be necessary for both track dynamics and ground vibration predictions.

  4. Assessment of volatile organic compounds in surface water at West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 1999

    Science.gov (United States)

    Olsen, Lisa D.; Spencer, Tracey A.

    2000-01-01

    The U.S. Geological Survey (USGS) collected 13 surface-water samples and 3 replicates from 5 sites in the West Branch Canal Creek area at Aberdeen Proving Ground from February through August 1999, as a part of an investigation of ground-water contamination and natural attenuation processes. The samples were analyzed for volatile organic compounds, including trichloroethylene, 1,1,2,2-tetrachloroethane, carbon tetrachloride, and chloroform, which are the four major contaminants that were detected in ground water in the Canal Creek area in earlier USGS studies. Field blanks were collected during the sampling period to assess sample bias. Field replicates were used to assess sample variability, which was expressed as relative percent difference. The mean variability of the surface-water replicate analyses was larger (35.4 percent) than the mean variability of ground-water replicate analyses (14.6 percent) determined for West Branch Canal Creek from 1995 through 1996. The higher variability in surface-water analyses is probably due to heterogeneities in the composition of the surface water rather than differences in sampling or analytical procedures. The most frequently detected volatile organic compound was 1,1,2,2- tetrachloroethane, which was detected in every sample and in two of the replicates. The surface-water contamination is likely the result of cross-media transfer of contaminants from the ground water and sediments along the West Branch Canal Creek. The full extent of surface-water contamination in West Branch Canal Creek and the locations of probable contaminant sources cannot be determined from this limited set of data. Tidal mixing, creek flow patterns, and potential effects of a drought that occurred during the sampling period also complicate the evaluation of surface-water contamination.

  5. Ground surface temperature histories in northern Ontario and Québec for the past 500 years

    Science.gov (United States)

    Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-04-01

    We have used 19 temperature-depth profiles measured in boreholes from eastern Canada to reconstruct the ground surface temperature histories of the region. The boreholes are located north of 51oN, and west and east of James Bay in northern Ontario and Québec. The 8 boreholes in northern Ontario come from 3 sites in a region of extensive discontinuous permafrost, while the 11 holes from Québec come from 6 sites in a region of sporadic discontinuous permafrost. The depths of the holes range between 400 and 800 m, allowing a reconstruction of the ground surface temperature histories for the past 500 years. Present ground surface temperatures are higher in Québec, perhaps because the region receives more snowfall as shown by meteorological records and proxy data. The ground surface temperature histories indicate a present-day warming of ˜2-2.5oC in Ontario and ˜1-1.5oC in Québec relative to the reference surface temperature 500 years BP. These results are in agreement with available proxy data for the recent warming in eastern North America. Furthermore, they suggest that the higher snowfall and strong cooling during the Little Ice Age could have muted the borehole temperature record of climate change in Québec.

  6. An Upscaling Algorithm to Obtain the Representative Ground Truth of LAI Time Series in Heterogeneous Land Surface

    Directory of Open Access Journals (Sweden)

    Yuechan Shi

    2015-09-01

    Full Text Available Upscaling in situ leaf area index (LAI measurements to the footprint scale is important for the validation of medium resolution remote sensing products. However, surface heterogeneity and temporal variation of vegetation make this difficult. In this study, a two-step upscaling algorithm was developed to obtain the representative ground truth of LAI time series in heterogeneous surfaces based on in situ LAI data measured by the wireless sensor network (WSN observation system. Since heterogeneity within a site usually arises from the mixture of vegetation and non-vegetation surfaces, the spatial heterogeneity of vegetation and land cover types were separately considered. Representative LAI time series of vegetation surfaces were obtained by upscaling in situ measurements using an optimal weighted combination method, incorporating the expectation maximum (EM algorithm to derive the weights. The ground truth of LAI over the whole site could then be determined using area weighted combination of representative LAIs of different land cover types. The algorithm was evaluated using a dataset collected in Heihe Watershed Allied Telemetry Experimental Research (HiWater experiment. The proposed algorithm can effectively obtain the representative ground truth of LAI time series in heterogeneous cropland areas. Using the normal method of an average LAI measurement to represent the heterogeneous surface produced a root mean square error (RMSE of 0.69, whereas the proposed algorithm provided RMSE = 0.032 using 23 sampling points. The proposed ground truth derived method was implemented to validate four major LAI products.

  7. Deciphering the environmental and landscape evolution of Sierra Nevada (S Iberia) from bog archives

    Science.gov (United States)

    Garcia Alix, Antonio; Toney, Jaime L.; Jiménez-Moreno, Gonzalo; Ramos-Román, Maria J.; Anderson, R. Scott; Jiménez-Espejo, Francisco; Delgado Huertas, Antonio; Ruano, Patricia

    2016-04-01

    Sierra Nevada is the southernmost mountain range in the Iberian Peninsula and one of the highest in Europe. Its geomorphology was the result of Pleistocene glaciations that carved out depressions, valleys and cirques at high elevations in the metamorphic basement. Depressions gave rise to lakes and wetlands during the Holocene. Geophysical and organic geochemical analyses of biomarkers (n-alkanes) and bulk sediment (C and N ratio and isotopes) from two high elevation bogs (locally called "Borreguiles"): Borreguiles de la Virgen (BdlV) and Borreguiles de la Caldera (BdlC), have allowed us to track the hydrological evolution of the area and its relationship to climatic fluctuations of the western Mediterranean during the Holocene. Most of the bogs of this area resulted from the natural evolution of former small lakes. The records are 56 cm and 169 cm long, respectively. Geophysical data suggest that we recovered the whole sedimentary record from BdlC; however, there are some post-glacial sediments remaining below the BdlV core that we could not recover due to hard-ground conditions. During the early and middle Holocene, aquatic conditions predominated in BdlV compared to the most recent part of the record (low C/N values and high proportion of aquatic plants (Paq) deduced from the n-alkanes) suggesting a lake environment whose water level gradually decreased until ˜5.5 cal ky BP. This aridity trend is also observed in nearby records such as at Laguna de Río Seco (LdRS), a result of the African Humid Period demise. Carbon and nitrogen isotopes were higher during this interval, which might suggest more algae activity, in agreement with the highest concentrations of the algae Pediastrum in the area. There is an important development of terrestrial plants, a real bog stage (C/N higher than 20, high TOC, lower Paq) in both records from ˜5.5 to 3.5-3.0 cal ky BP. Those hydrological changes in the landscape might be related to a possible change in the source of

  8. Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas ground-water basin, Ventura County, California

    Science.gov (United States)

    Hanson, Randall T.; Martin, Peter; Koczot, Kathryn M.

    2003-01-01

    Ground water is the main source of water in the Santa Clara-Calleguas ground-water basin that covers about 310 square miles in Ventura County, California. A steady increase in the demand for surface- and ground-water resources since the late 1800s has resulted in streamflow depletion and ground-water overdraft. This steady increase in water use has resulted in seawater intrusion, inter-aquifer flow, land subsidence, and ground-water contamination. The Santa Clara-Calleguas Basin consists of multiple aquifers that are grouped into upper- and lower-aquifer systems. The upper-aquifer system includes the Shallow, Oxnard, and Mugu aquifers. The lower-aquifer system includes the upper and lower Hueneme, Fox Canyon, and Grimes Canyon aquifers. The layered aquifer systems are each bounded below by regional unconformities that are overlain by extensive basal coarse-grained layers that are the major pathways for ground-water production from wells and related seawater intrusion. The aquifer systems are bounded below and along mountain fronts by consolidated bedrock that forms a relatively impermeable boundary to ground-water flow. Numerous faults act as additional exterior and interior boundaries to ground-water flow. The aquifer systems extend offshore where they crop out along the edge of the submarine shelf and within the coastal submarine canyons. Submarine canyons have dissected these regional aquifers, providing a hydraulic connection to the ocean through the submarine outcrops of the aquifer systems. Coastal landward flow (seawater intrusion) occurs within both the upper- and lower-aquifer systems. A numerical ground-water flow model of the Santa Clara-Calleguas Basin was developed by the U.S. Geological Survey to better define the geohydrologic framework of the regional ground-water flow system and to help analyze the major problems affecting water-resources management of a typical coastal aquifer system. Construction of the Santa Clara-Calleguas Basin model required

  9. Temperature-induced increase in methane release from peat bogs: A mesocosm experiment

    NARCIS (Netherlands)

    Winden, J.F. van; Reichart, G.-J.; McNamara, N.P.; Benthien, A.; Sinninghe Damsté, J.S.

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and

  10. Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment

    NARCIS (Netherlands)

    van Winden, J.F.; Reichart, G.J.; McNamara, N.P.; Benthien, A.; Sinninghe Damsté, J.S.

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and

  11. Behaviour of carbon dioxide and water vapour flux densities from a disturbed raised peat bog

    NARCIS (Netherlands)

    Nieveen, J.P.; Jacobs, A.F.G.

    2002-01-01

    Measurements of carbon dioxide and water vapour flux densities were carried out for a disturbed raised peat bog in the north of the Netherlands during an 18 month continuous experiment. Tussock grass (sp. Molinea caerulae) mainly dominated the vegetation of the bog area. The maximum leaf area index

  12. Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment

    NARCIS (Netherlands)

    van Winden, J.F.; Reichart, G.J.; McNamara, N.P.; Benthien, A.; Sinninghe Damsté, J.S.

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasi

  13. Temperature-induced increase in methane release from peat bogs: A mesocosm experiment

    NARCIS (Netherlands)

    Winden, J.F. van; Reichart, G.-J.; McNamara, N.P.; Benthien, A.; Sinninghe Damsté, J.S.

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasi

  14. Dissolved organic nitrogen dominates in European bogs under increasing atmospheric N deposition

    NARCIS (Netherlands)

    Bragazza, L.; Limpens, J.

    2004-01-01

    To assess the effects of increased atmospheric N input on N availability in ombrotrophic peatlands, the relative concentrations of dissolved organic nitrogen (DON) to dissolved inorganic nitrogen (DIN) were measured in bog waters along a natural gradient of atmospheric N deposition. Six European bog

  15. Effects of elevated CO2 and vascular plants on evapotranspiration in bog vegetation

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Arp, W.J.; Berendse, F.

    2001-01-01

    We determined evapotranspiration in three experiments designed to study the effects of elevated CO2 and increased N deposition on ombrotrophic bog vegetation. Two experiments used peat monoliths with intact bog vegetation in containers, with one experiment outdoors and the other in a greenhouse. A t

  16. The spider fauna of Scragh Bog in Co Westmeath, Ireland (Arachnida: Araneae)

    NARCIS (Netherlands)

    Helsdingen, van P.J.

    1998-01-01

    The spider fauna of Scragh Bog, a quacking bog in Co Westmeath, Ireland, was investigated for the first time. The presence of 53 species could be established, two of which are new to Ireland (Carorita limnaea (Crosby & Bishop), Porrhomma oblitum (O.P.-Cambridge)), while 30 represent new county recor

  17. Long-term effects of climate change on vegetation and carbon dynamics in peat bogs

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Mauquoy, D.; van Geel, B.; Berendse, F.

    2008-01-01

    Questions: What are the long-term effects of climate change on the plant species composition and carbon sequestration in peat bogs? Methods: We developed a bog ecosystem model that includes vegetation, carbon, nitrogen and water dynamics. Two groups of vascular plant species and three groups of Spha

  18. Carbon and Oxygen Isotope Dendrochronology in Sub-Fossil Bog Oak Tree Rings - A Preliminary Study

    NARCIS (Netherlands)

    Sass, U.G.W.; Poole, I.; Wils, T.; Helle, G.; Schleser, G.H.; Bergen, van P.

    2005-01-01

    Isotope dendroclimatology is a relatively new field investigating environmental factors that control the radial growth of trees. Tree-ring series of sub-fossil bog oaks can be dated from sites across northwest Europe indicating that the environmental change(s) were regional rather than local. Bog

  19. Carbon and Oxygen Isotope Dendrochronology in Sub-Fossil Bog Oak Tree Rings - A Preliminary Study

    NARCIS (Netherlands)

    Sass, U.G.W.; Poole, I.; Wils, T.; Helle, G.; Schleser, G.H.; Bergen, van P.

    2005-01-01

    Isotope dendroclimatology is a relatively new field investigating environmental factors that control the radial growth of trees. Tree-ring series of sub-fossil bog oaks can be dated from sites across northwest Europe indicating that the environmental change(s) were regional rather than local. Bog oa

  20. Ecological networks and nature policy in central Russia : peat bogs in central and northern Meshera

    NARCIS (Netherlands)

    Butovsky, R.O.; Reijnen, R.; Otchagov, D.M.; Aleshenko, G.M.; Melik-Bagdasarov, E.

    2001-01-01

    In central and northern Meshera, Russia, the habitat of many characteristic peat bog species now show a very fragmented pattern. Peat mining and other human influences are the most important causes. As a result the potentials for viable populations ofcharacteristic peat bog species have decreased co

  1. Expansion of Sphagnum fallax in bogs: striking the ballance between N and P availability

    NARCIS (Netherlands)

    Limpens, J.; Tomassen, H.B.M.; Berendse, F.

    2003-01-01

    Nitrogen deposition may cause shifts in the Sphagnum species composition of bogs, ultimately affecting the conservation value of these systems. We studied the effects of N and P on the expansion of S. fallax and S. flexuosum in bogs. We related historical census data of S. fallax, S. flexuosum, and

  2. Modeling short wave radiation and ground surface temperature: a validation experiment in the Western Alps

    Science.gov (United States)

    Pogliotti, P.; Cremonese, E.; Dallamico, M.; Gruber, S.; Migliavacca, M.; Morra di Cella, U.

    2009-12-01

    Permafrost distribution in high-mountain areas is influenced by topography (micro-climate) and high variability of ground covers conditions. Its monitoring is very difficult due to logistical problems like accessibility, costs, weather conditions and reliability of instrumentation. For these reasons physically-based modeling of surface rock/ground temperatures (GST) is fundamental for the study of mountain permafrost dynamics. With this awareness a 1D version of GEOtop model (www.geotop.org) is tested in several high-mountain sites and its accuracy to reproduce GST and incoming short wave radiation (SWin) is evaluated using independent field measurements. In order to describe the influence of topography, both flat and near-vertical sites with different aspects are considered. Since the validation of SWin is difficult on steep rock faces (due to the lack of direct measures) and validation of GST is difficult on flat sites (due to the presence of snow) the two parameters are validated as independent experiments: SWin only on flat morphologies, GST only on the steep ones. The main purpose is to investigate the effect of: (i) distance between driving meteo station location and simulation point location, (ii) cloudiness, (iii) simulation point aspect, (iv) winter/summer period. The temporal duration of model runs is variable from 3 years for the SWin experiment to 8 years for the validation of GST. The model parameterization is constant and tuned for a common massive bedrock of crystalline rock like granite. Ground temperature profile is not initialized because rock temperature is measured at only 10cm depth. A set of 9 performance measures is used for comparing model predictions and observations (including: fractional mean bias (FB), coefficient of residual mass (CMR), mean absolute error (MAE), modelling efficiency (ME), coefficient of determination (R2)). Results are very encouraging. For both experiments the distance (Km) between location of the driving meteo

  3. Isotope evidence for N2-fixation in Sphagnum peat bogs

    Science.gov (United States)

    Novak, Martin; Jackova, Ivana; Buzek, Frantisek; Stepanova, Marketa; Veselovsky, Frantisek; Curik, Jan; Prechova, Eva

    2016-04-01

    Waterlogged organic soils store as much as 30 % of the world's soil carbon (C), and 15 % of the world's soil nitrogen (N). In the era of climate change, wetlands are vulnerable to increasing temperatures and prolonged periods of low rainfall. Higher rates of microbial processes and/or changing availability of oxygen may lead to peat thinning and elevated emissions of greenhouse gases (mostly CO2, but also CH4 and N2O). Biogeochemical cycling of C and N in peat bogs is coupled. Under low levels of pollution by reactive nitrogen (NO3-, NH4+), increasing N inputs may positively affect C storage in peat. Recent studies in North America and Scandinavia have suggested that pristine bogs are characterized by significant rates of microbial N2 fixation that augments C storage in the peat substrate. We present a nitrogen isotope study aimed at corroborating these findings. We conducted an isotope inventory of N fluxes and pools at two Sphagnum-dominated ombrotrophic peat bogs in the Czech Republic (Central Europe). For the first time, we present a time-series of del15N values of atmospheric input at the same locations as del15N values of living Sphagnum and peat. The mean del15N values systematically increased in the order: input NH4+ (-10.0 ‰) < input NO3- (-7.9 ‰) < peat porewater (-5.6 ‰) < Sphagnum (-5.0 ‰) < shallow peat (-4.2 ‰) < deep peat (-2.2 ‰) < runoff (-1.4 ‰) < porewater N2O (1.4 ‰). Importantly, N of Sphagnum was isotopically heavier than N of the atmospheric input (p < 0.001). If partial incorporation of reactive N from the atmosphere into Sphagnum was isotopically selective, the residual N would have to be isotopically extremely light. Such N, however, was not identified anywhere in the ecosystem. Alternatively, Sphagnum may have contained an admixture of isotopically heavier N from atmospheric N2 (del15N N2 = 0 ‰). We conlude that the N isotope systematics at the two Czech sites is consistent with the concept of significant N2 fixation

  4. Ferricrete, manganocrete, and bog iron occurrences with selected sedge bogs and active iron bogs and springs in the upper Animas River watershed, San Juan County, Colorado

    Science.gov (United States)

    Yager, Douglas B.; Church, Stanley E.; Verplanck, Philip L.; Wirt, Laurie

    2003-01-01

    During 1996 to 2000, the Bureau of Land Management, National Park Service, Environmental Protection Agency, United States Department of Agriculture (USDA) Forest Service, and the U.S. Geological Survey (USGS) developed a coordinated strategy to (1) study the environmental effects of historical mining on Federal lands, and (2) remediate contaminated sites that have the greatest impact on water quality and ecosystem health. This dataset provides information that contributes to these overall objectives and is part of the USGS Abandoned Mine Lands Initiative. Data presented here represent ferricrete occurrences and selected iron bogs and springs in the upper Animas River watershed in San Juan County near Silverton, Colorado. Ferricretes (stratified iron and manganese oxyhydroxide-cemented sedimentary deposits) are one indicator of the geochemical baseline conditions as well as the effect that weathering of mineralized rocks had on water quality in the Animas River watershed prior to mining. Logs and wood fragments preserved in several ferricretes in the upper Animas River watershed, collected primarily along streams, yield radiocarbon ages of modern to 9,580 years B.P. (P.L. Verplanck, D.B. Yager, and S.E. Church, work in progress). The presence of ferricrete deposits along the current stream courses indicates that climate and physiography of the Animas River watershed have been relatively constant throughout the Holocene and that weathering processes have been ongoing for thousands of years prior to historical mining activities. Thus, by knowing where ferricrete is preserved in the watershed today, land-management agencies have an indication of (1) where metal precipitation from weathering of altered rocks has occurred in the past, and (2) where this process is ongoing and may confound remediation efforts. These data are included as two coverages-a ferricrete coverage and a bogs and springs coverage. The coverages are included in ArcInfo shapefile and Arc

  5. Urban archaeological investigations using surface 3D Ground Penetrating Radar and Electrical Resistivity Tomography methods

    Science.gov (United States)

    Papadopoulos, Nikos; Sarris, Apostolos; Yi, Myeong-Jong; Kim, Jung-Ho

    2009-02-01

    Ongoing and extensive urbanisation, which is frequently accompanied with careless construction works, may threaten important archaeological structures that are still buried in the urban areas. Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) methods are most promising alternatives for resolving buried archaeological structures in urban territories. In this work, three case studies are presented, each of which involves an integrated geophysical survey employing the surface three-dimensional (3D) ERT and GPR techniques, in order to archaeologically characterise the investigated areas. The test field sites are located at the historical centres of two of the most populated cities of the island of Crete, in Greece. The ERT and GPR data were collected along a dense network of parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way, applying specific filters to the data in order to enhance their information content. Finally, horizontal depth slices representing the 3D variation of the physical properties were created. The GPR and ERT images significantly contributed in reconstructing the complex subsurface properties in these urban areas. Strong GPR reflections and high-resistivity anomalies were correlated with possible archaeological structures. Subsequent excavations in specific places at both sites verified the geophysical results. The specific case studies demonstrated the applicability of ERT and GPR techniques during the design and construction stages of urban infrastructure works, indicating areas of archaeological significance and guiding archaeological excavations before construction work.

  6. The impact of municipal landfill on surface and ground water quality in Bulawayo, Zimbabwe

    Directory of Open Access Journals (Sweden)

    R. Nyengera

    2012-11-01

    Full Text Available Leachate from Richmond municipal landfill, underlain by the Matsheumhlope unconfined aquifer in Bulawayo city and its consequent water resource quality impacts are evaluated. Leachate samples from collection ponds and water samples from a stream, and up and down-gradient boreholes fromthe landfill were tested for nine pollutants. The leachate pollutants found in both surface and ground water included metals (Fe, Pb and Hg and organic compounds that are hazardous to both human and the environmental health. Borehole water quality compliance with the relevant national and international regulations is reported. From borehole water samples, only chloride and nitrate with concentrations of 56.9 mg/ℓ and 2.26 mg/ℓ, respectively, were within the World Health Organisation (WHO recommended limits for drinking water of 250 mg/ℓ and 10 mg/ℓ, respectively. Lead and mercury concentrations of 0.22 mg/ℓ and 0.04 mg/ℓ were 10 times higher than WHO guidelines of 0.01 and 0.001 mg/ℓ, respectively. Both landfill and informal settlement activities near the landfill impact negatively to water resources quality in the area. City council should minimize waste by recycling, pre-treat collected leachate and drill monitoring wells around the landfill to check possible leachate leaks to water resources and take remedial actions, such assubmerged leachate combustion and evaporation.

  7. A study of the efficiency of spur gears made of powder metallurgy materials - ground versus super-finished surfaces

    OpenAIRE

    Li, Xinmin; Sosa, Mario; Andersson, Martin; Olofsson, Ulf

    2016-01-01

    Power loss is one of the main concerns in gear transmission systems. In this study a recirculating power back-to-back FZG test rig was used to investigate the efficiency of spur gears made of powder metallurgy (PM) material using two different surface manufacturing methods (ground and super-finished). The results were compared with previously presented results of standard gear material from the same test rig. The influence of the material (Wrought steel or PM) and surface roughness on the gea...

  8. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Vesna Kostik; Biljana Bauer; Zoran Kavrakovski

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  9. Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst

    Science.gov (United States)

    Katz, B.G.; Coplen, T.B.; Bullen, T.D.; Hal, Davis J.

    1997-01-01

    In the mantled karst terrane of northern Florida, the water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface. Chemical and isotopic analyses [18O/16O (??18O), 2H/1H (??D), 13C/12C (??13C), tritium(3H), and strontium-87/strontium-86(87Sr/86Sr)]along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of ground water as it evolves downgradient in two systems. In one system, surface water enters the Upper Floridan aquifer through a sinkhole located in the Northern Highlands physiographic unit. In the other system, surface water enters the aquifer through a sinkhole lake (Lake Bradford) in the Woodville Karst Plain. Differences in the composition of water isotopes (??18O and ??D) in rainfall, ground water, and surface water were used to develop mixing models of surface water (leakage of water to the Upper Floridan aquifer from a sinkhole lake and a sinkhole) and ground water. Using mass-balance calculations, based on differences in ??18O and ??D, the proportion of lake water that mixed with meteoric water ranged from 7 to 86% in water from wells located in close proximity to Lake Bradford. In deeper parts of the Upper Floridan aquifer, water enriched in 18O and D from five of 12 sampled municipal wells indicated that recharge from a sinkhole (1 to 24%) and surface water with an evaporated isotopic signature (2 to 32%) was mixing with ground water. The solute isotopes, ??13C and 87Sr/86Sr, were used to test the sensitivity of binary and ternary mixing models, and to estimate the amount of mass transfer of carbon and other dissolved species in geochemical reactions. In ground water downgradient from Lake Bradford, the dominant processes controlling carbon cycling in ground water were dissolution of carbonate minerals, aerobic degradation of organic matter, and hydrolysis of silicate minerals. In the deeper parts of the Upper

  10. Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux

    NARCIS (Netherlands)

    Bense, V.F.; Read, T.; Verhoef, A.

    2016-01-01

    We present one of the first studies of the use of distributed temperature sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer

  11. Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change

    Science.gov (United States)

    Munir, T. M.; Perkins, M.; Kaing, E.; Strack, M.

    2015-02-01

    Midlatitude treed bogs represent significant carbon (C) stocks and are highly sensitive to global climate change. In a dry continental treed bog, we compared three sites: control, recent (1-3 years; experimental) and older drained (10-13 years), with water levels at 38, 74 and 120 cm below the surface, respectively. At each site we measured carbon dioxide (CO2) fluxes and estimated tree root respiration (Rr; across hummock-hollow microtopography of the forest floor) and net primary production (NPP) of trees during the growing seasons (May to October) of 2011-2013. The CO2-C balance was calculated by adding the net CO2 exchange of the forest floor (NEff-Rr) to the NPP of the trees. From cooler and wetter 2011 to the driest and the warmest 2013, the control site was a CO2-C sink of 92, 70 and 76 g m-2, the experimental site was a CO2-C source of 14, 57 and 135 g m-2, and the drained site was a progressively smaller source of 26, 23 and 13 g CO2-C m-2. The short-term drainage at the experimental site resulted in small changes in vegetation coverage and large net CO2 emissions at the microforms. In contrast, the longer-term drainage and deeper water level at the drained site resulted in the replacement of mosses with vascular plants (shrubs) on the hummocks and lichen in the hollows leading to the highest CO2 uptake at the drained hummocks and significant losses in the hollows. The tree NPP (including above- and below-ground growth and litter fall) in 2011 and 2012 was significantly higher at the drained site (92 and 83 g C m-2) than at the experimental (58 and 55 g C m-2) and control (52 and 46 g C m-2) sites. We also quantified the impact of climatic warming at all water table treatments by equipping additional plots with open-top chambers (OTCs) that caused a passive warming on average of ~ 1 °C and differential air warming of ~ 6 °C at midday full sun over the study years. Warming significantly enhanced shrub growth and the CO2 sink function of the drained

  12. Getting saturated hydraulic conductivity from surface Ground-Penetrating Radar measurements inside a ring infiltrometer

    Science.gov (United States)

    Leger, E.; Saintenoy, A.; Coquet, Y.

    2013-12-01

    Hydraulic properties of soils, described by the soil water retention and hydraulic conductivity functions, strongly influence water flow in the vadoze zone, as well as the partitioning of precipitation between infiltration into the soil and runoff along the ground surface. Their evaluation has important applications for modelling available water resources and for flood forecasting. It is also crucial to evaluate soil's capacity to retain chemical pollutants and to assess the potential of groundwater pollution. The determination of the parameters involved in soil water retention functions, 5 parameters when using the van Genuchten function, is usually done by laboratory experiments, such as the water hanging column. Hydraulic conductivity, on the other hand can be estimated either in laboratory, or in situ using infiltrometry tests. Among the large panel of existing tests, the single or double ring infiltrometers give the field saturated hydraulic conductivity by applying a positive charge on soils, whereas the disk infiltrometer allows to reconstruct the whole hydraulic conductivity curve, by applying different charges smaller than or equal to zero. In their classical use, volume of infiltrated water versus time are fitted to infer soil's hydraulic conductivity close to water saturation. Those tests are time-consuming and difficult to apply to landscape-scale forecasting of infiltration. Furthermore they involve many assumptions concerning the form of the infiltration bulb and its evolution. Ground-Penetrating Radar (GPR) is a geophysical method based on electromagnetic wave propagation. It is highly sensitive to water content variations directly related to the dielectric permittivity. In this study GPR was used to monitor water infiltration inside a ring infiltrometer and retrieve the saturated hydraulic conductivity. We carried out experiments in a quarry of Fontainebleau sand, using a Mala RAMAC system with antennae centered on 1600 MHz. We recorded traces at

  13. Implementing ground surface deformation tools to characterize field-scale properties of a fractured aquifer during a short hydraulic test

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Boudin, Frédérick; Durand, Stéphane

    2016-04-01

    In naturally fractured reservoirs, fluid flow is governed by the structural and hydromechanical properties of fracture networks or conductive fault zones. In order to ensure a sustained exploitation of resources or to assess the safety of underground storage, it is necessary to evaluate these properties. As they generally form highly heterogeneous and anisotropic reservoirs, fractured media may be well characterized by means of several complementary experimental methods or sounding techniques. In this framework, the observation of ground deformation has been proved useful to gain insight of a fractured reservoir's geometry and hydraulic properties. Commonly, large conductive structures like faults can be studied from surface deformation from satellite methods at monthly time scales, whereas meter scale fractures have to be examined under short-term in situ experiments using high accuracy intruments like tiltmeters or extensometers installed in boreholes or at the ground's surface. To the best of our knowledge, the feasability of a field scale (~ 100 m) characterization of a fractured reservoir with geodetic tools in a short term experiment has not yet been addressed. In the present study, we implement two complementary ground surface geodetic tools, namely tiltmetry and optical leveling, to monitor the deformation induced by a hydraulic recovery test at the Ploemeur hydrological observatory (France). Employing a simple purely elastic modeling approach, we show that the joint use of time constraining data (tilt) and spatially constraining data (vertical displacement) makes it possible to evaluate the geometry (dip, root depth and lateral extent) and the storativity of a hydraulically active fault zone, in good agreement with previous studies. Hence we demonstrate that the adequate use of two complementary ground surface deformation methods offer a rich insight of large conductive structure's properties using a single short term hydraulic load. Ground surface

  14. On the wettability diversity of C/SiC surface: Comparison of the ground C/SiC surface and ablated C/SiC surface from three aspects

    Science.gov (United States)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.

    2016-11-01

    The coefficient of thermal conductivity was influenced by the wetting state of material. The wetting state usually depends on the surface wettability. C/SiC is a promising ceramic composites with multi-components. The wettability of C/SiC composites is hard to resort to the classical wetting theory directly. So far, few investigations focused on C/SiC surface wettability diversity after different material removal processes. In this investigation, comparative studies of surface wettability of ground C/SiC surface and laser-ablated C/SiC surface were carried out through apparent contact angle (APCA) measurements. The results showed that water droplets easily reached stable state on ground C/SiC surface; while the water droplets rappidly penetrated into the laser-ablated C/SiC surface. In order to find out the reason for wettability distinctions between the ground C/SiC surface and the laser-ablated C/SiC surface, comparative studies on the surface micro-structure, surface C-O-Si distribution, and surface C-O-Si weight percentage were carried out. The results showed that (1) A large number of micro cracks in the fuzzy pattern layer over laser-ablated C/SiC surfaces easily destoried the surface tension of water droplets, while only a few cracks existed over the ground C/SiC surfaces. (2) Chemical components (C, O, Si) were non-uniformly distributed on ground C/SiC surfaces, while the chemical components (C, O, Si) were uniformly distributed on laser-ablated C/SiC surfaces. (3) The carbon weight percentage on ground C/SiC surfaces were higher than that on laser-ablated C/SiC surfaces. All these made an essential contribution to the surface wettability diversity of C/SiC surface. Although more investigations about the quantitative influence of surface topography and surface chemical composition on composites wettability are still needed, the conslusion can be used in application: the wettability of C/SiC surface can be controlled by different material removal process

  15. Impact of the variability of the seasonal snow cover on the ground surface regimes in Hurd Peninsula (Livingston Island, Antarctic)

    Science.gov (United States)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2014-05-01

    Seasonally snow cover has a great impact on the thermal regime of the active layer and permafrost. Ground temperatures over a year are strongly affected by the timing, duration, thickness, structure and physical and thermal properties of snow cover. The purpose of this communication is to characterize the shallow ground thermal regimes, with special reference to the understanding of the influence snow cover in permafrost spatial distribution, in the ice-free areas of the north western part of Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". We have analyzed and ground temperatures as well as snow thickness data in four sites distributed along an altitudinal transect in Hurd Peninsula from 2007 to 2013: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). At each study site, data loggers were installed for the monitoring of air temperatures (at 1.5 m high), ground temperatures (5, 20 and 40 cm depth) and for snow depth (2, 5, 10, 20, 40, 80 and 160 cm) at 4-hour intervals. The winter data suggests the existence of three types of seasonal stages regarding the ground surface thermal regime and the thickness of snow cover: (a) shallow snow cover with intense ground temperatures oscillations; (b) thick snow cover and low variations of soil temperatures; and (c) stability of ground temperatures. Ground thermal conditions are also conditioned by a strong variability. Winter data indicates that Nuevo Incinerador site experiences more often thicker snow cover with higher ground temperatures and absence of ground temperatures oscillations. Collado Ramos and Ohridski show frequent variations of snow cover thickness, alternating between shallow snow cover with high ground temperature fluctuation and thick snow cover and low ground temperature fluctuation. Reina Sofia in all the years has thick snow cover with little variations in soil

  16. [Heavy metals in the surface sediment of the dumping ground outside Jiaozhou Bay and their potential ecological risk].

    Science.gov (United States)

    Cao, Cong-hua; Zhang, Nai-xing; Wu, Feng-cong; Sun, Bin; Ren, Rong-zhu; Sun, Xu; Lin, Sen; Zhang, Shao-ping

    2011-05-01

    Based on the monitoring data of heavy metals (Cr, Hg, Cd, Pb, Zn, Cu) in the surface sediment of the dumping ground outside Jiaozhou Bay from 2003 to 2008, the distribution patterns, factors controlling the distribution, and the potential ecological risks of heavy metals were studied with the data in 2007-08, and the fluctuation trends of heavy metals in the surface sediment over the 6 years were also discussed. The average concentrations of heavy metals Cr, Hg, Cd, Pb, Zn, Cu in the surface sediment were 29.47, 0.065, 0.105, 1.145, 9.63, 3.355 microg/g, respectively. Except for Cr, the concentration of heavy metals was high in the central dumping area while low outside the dumping ground, suggesting that the dredged material dumped was the main source of heavy metals. Organic carbon content in the surface sediment had a significant positive correlation with heavy metals except for Cr. Based on the results of ecological risk assessment, Hg had a medium potential ecological risk, while the other heavy metals had low potential ecological risk. The overall risk index (RI) of the heavy metals was 100.50, which was considered as a level of low potential ecological risk. The average concentration of heavy metals showed a decreasing trend over the 6 years, except Hg. In conclusion, the quality of surface sediment in term of heavy metals in the dumping ground outside Jiaozhou Bay is relatively good.

  17. Application of terrestrial laser scanning for detection of ground surface deformation in small mud volcano (Murono, Japan)

    Science.gov (United States)

    Hayakawa, Yuichi S.; Kusumoto, Shigekazu; Matta, Nobuhisa

    2016-07-01

    We perform terrestrial laser scanning (TLS) to detect changes in surface morphology of a mud volcano in Murono, north-central Japan. The study site underwent significant deformation by a strong earthquake in 2011, and the surface deformation has continued in the following years. The point cloud datasets were obtained by TLS at three different times in 2011, 2013 and 2014. Those point clouds were aligned by cloud-based registration, which minimizes the closest point distance of point clouds of unchanged ground features, and the TLS-based point cloud data appear to be suitable for detecting centimeter-order deformations in the central domain of the mud volcano, as well as for measurements of topographic features including cracks of paved ground surface. The spatial patterns and accumulative amount of the vertical deformation during 2011-2014 captured by TLS correspond well with those previously reported based on point-based leveling surveys, supporting the validity of TLS survey.

  18. Characterization of some physical and chemical properties of post-bog soils developed from limnic deposits in vicinity of lake Dubie (Western Pomerania, NW Poland

    Directory of Open Access Journals (Sweden)

    Jarnuszewski Grzegorz

    2016-03-01

    Full Text Available Post-bog soils developed from limnic calcareous sediments are closely related to a young-glacial landscape and postglacial lakes in Northern Poland. The studies conducted in 2010–2012 on post-bog soils near lake Dubie (Równina Drawska, NW Poland, partially used as an arable land. The goal of research was to characterise some chemical and physical properties of post-bog soils developed from carbonate deposits near lake Dubie. The soils of the analysed area developed from lacustrine chalk and calcareous gyttja belong to black earth and mucky soils. Organic matter content in surface horizons ranged from 5.0 to 14.2%, content of CaCO3 from 27.2 to 55.2%, the highest carbonate content was found in arable soil. The soils of the study area were characterised by a narrow C/N ratio, low level of total form of P and a high content of Ca. Specific density of surface horizons was in the range 2.49 to 2.58 Mg · m−3, bulk density from 0.445 to 1.212 Mg · m−3. High porosity was also found in the examined formations, from 0.826 in surface horizons and 0.700 m3 · m−3 in limnic deposits.

  19. Calculation of Electric Field at Ground Surface and ADSS Cable Prepared Hanging Point near EHV Power Transmission Tower

    Directory of Open Access Journals (Sweden)

    Xu Bao-Qing

    2016-01-01

    Full Text Available A simplified model of the 750kV tower is established by CDEGS software which is based on the Method Of Moment. The power frequency electric field distribution on the ground is achieved by software calculation and field-measuring. The validity of the calculation is proved when compare the calculation and experiment results. The model also can be used to calculate the electric field in prepared hanging points on the tower. Results show that the electric field distribution on the ground surface around the tower and prepared hanging points are meet the standard by calculation and experiment.

  20. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    Science.gov (United States)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher; Normand, Jonathan; Dermond, Jeffrey; Fang, Yilin; Sullivan, Charlotte

    2015-08-01

    One important issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine the resulting field-scale-induced displacements and consequences of overpressures on the mechanical integrity of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated for the first time on an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3 year-1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells are accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area shows sub- centimetric deformation in the western part of the city and close to the injection locations associated with ASR cycle. Deformations are found to be temporally out phased with the injection and recovery events due to complex groundwater flow. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections.

  1. Analysis of the Effects of Vitiates on Surface Heat Flux in Ground Tests of Hypersonic Vehicles

    Science.gov (United States)

    Cuda, Vincent; Gaffney, Richard L

    2008-01-01

    To achieve the high enthalpy conditions associated with hypersonic flight, many ground test facilities burn fuel in the air upstream of the test chamber. Unfortunately, the products of combustion contaminate the test gas and alter gas properties and the heat fluxes associated with aerodynamic heating. The difference in the heating rates between clean air and a vitiated test medium needs to be understood so that the thermal management system for hypersonic vehicles can be properly designed. This is particularly important for advanced hypersonic vehicle concepts powered by air-breathing propulsion systems that couple cooling requirements, fuel flow rates, and combustor performance by flowing fuel through sub-surface cooling passages to cool engine components and preheat the fuel prior to combustion. An analytical investigation was performed comparing clean air to a gas vitiated with methane/oxygen combustion products to determine if variations in gas properties contributed to changes in predicted heat flux. This investigation started with simple relationships, evolved into writing an engineering-level code, and ended with running a series of CFD cases. It was noted that it is not possible to simultaneously match all of the gas properties between clean and vitiated test gases. A study was then conducted selecting various combinations of freestream properties for a vitiated test gas that matched clean air values to determine which combination of parameters affected the computed heat transfer the least. The best combination of properties to match was the free-stream total sensible enthalpy, dynamic pressure, and either the velocity or Mach number. This combination yielded only a 2% difference in heating. Other combinations showed departures of up to 10% in the heat flux estimate.

  2. Spatio-temporal natural and anthropogenic environmental variability during the last 1500yrs in an ombrotrophic bog (East Belgium).

    Science.gov (United States)

    de Vleeschouwer, François; Fagel, Nathalie; Allan, Mohammed; Javaux, Emmanuelle; Gerrienne, Philippe; Streel, Maurice; Luthers, Cédric; Hindrycks, Marie-Noëlle; Wastiaux, Cécile; Leclercq, Louis

    2010-05-01

    Peatlands cover ca. 3 % of the Earth's surface and provide crucial continental archives for deciphering past climatic changes and anthropogenic impacts on decadal to millennial timescales. Numerous studies have demonstrated that peat bogs are excellent archives to investigate past environmental and ecological changes during the Holocene. Studies which focus on intra-site variability at high resolution are rare however, despite their potential to provide constraints on the reliability of the palaeoenvironmental reconstruction and the influence of micro-scale variability. Such variability must be taken into account in any peatland restoration process linked with recent environmental changes, particularly human-derived impact such as peat cutting, drainage and tree cultivation. Four 1m-long Wardenaar monoliths were retrieved from the Misten bog (Hautes-Fagnes, East Belgium). The cores were investigated using chronological (radiocarbon AMS dating of plant macrofossils, 210Pb age modelling), biological (macrofossils, pollen content, testate amoebae), organic (humification level) and geochemical proxies (major and trace geochemistry, Nd and Pb isotopes). The aims of this research were to: (1) to assess whether the bog vegetation and other environmental indicators have changed simultaneously in time and space, (2) identify the most sensitive palaeoenvironmental indicator(s) and (3) assess to what extent variation in peat accumulation rates affects the record of each proxy. Preliminary interpretations show great variability (up to 50%) in peat development on a decimetre depth-scale as assessed by the variation in peat palynological and macrofossils zones from one core to another. In addition, our recent high-resolution records of environmental change have high applied palaeoecological value since they can be used to inform conservation management (‘natural' changes in the composition of the peat forming vegetation and the range of water table depth variability over a

  3. Ground water/surface water responses to global climate simulations, Santa Clara-Calleguas Basin, Ventura, California

    Science.gov (United States)

    Hanson, R.T.; Dettinger, M.D.

    2005-01-01

    Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa ClaraCalleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Nin??o Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate-driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/??C, compared to 0.9 m/??C in observations. This close agreement shows that the GCM-RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM-RGWM combination could be used for planning purposes and - when the GCM forecast skills are adequate - for near term predictions.

  4. Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog

    Directory of Open Access Journals (Sweden)

    P. Alekseychik

    2017-08-01

    Full Text Available Very few studies of ecosystem–atmosphere exchange involving eddy covariance data have been conducted in Siberia, with none in the western Siberian middle taiga. This work provides the first estimates of carbon dioxide (CO2 and energy budgets in a typical bog of the western Siberian middle taiga based on May–August measurements in 2015. The footprint of measured fluxes consisted of a homogeneous mixture of tree-covered ridges and hollows with the vegetation represented by typical sedges and shrubs. Generally, the surface exchange rates resembled those of pine-covered bogs elsewhere. The surface energy balance closure approached 100 %. Net CO2 uptake was comparatively high, summing up to 202 gC m−2 for the four measurement months, while the Bowen ratio was seasonally stable at 28 %. The ecosystem turned into a net CO2 source during several front passage events in June and July. The periods of heavy rain helped keep the water table at a sustainably high level, preventing a usual drawdown in summer. However, because of the cloudy and rainy weather, the observed fluxes might rather represent the special weather conditions of 2015 than their typical magnitudes.

  5. Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog

    Science.gov (United States)

    Alekseychik, Pavel; Mammarella, Ivan; Karpov, Dmitry; Dengel, Sigrid; Terentieva, Irina; Sabrekov, Alexander; Glagolev, Mikhail; Lapshina, Elena

    2017-08-01

    Very few studies of ecosystem-atmosphere exchange involving eddy covariance data have been conducted in Siberia, with none in the western Siberian middle taiga. This work provides the first estimates of carbon dioxide (CO2) and energy budgets in a typical bog of the western Siberian middle taiga based on May-August measurements in 2015. The footprint of measured fluxes consisted of a homogeneous mixture of tree-covered ridges and hollows with the vegetation represented by typical sedges and shrubs. Generally, the surface exchange rates resembled those of pine-covered bogs elsewhere. The surface energy balance closure approached 100 %. Net CO2 uptake was comparatively high, summing up to 202 gC m-2 for the four measurement months, while the Bowen ratio was seasonally stable at 28 %. The ecosystem turned into a net CO2 source during several front passage events in June and July. The periods of heavy rain helped keep the water table at a sustainably high level, preventing a usual drawdown in summer. However, because of the cloudy and rainy weather, the observed fluxes might rather represent the special weather conditions of 2015 than their typical magnitudes.

  6. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    Science.gov (United States)

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also

  7. Colored grounds of gilt stucco surfaces as analyzed by a combined microscopic, spectroscopic and elemental analytical approach.

    Science.gov (United States)

    Sansonetti, A; Striova, J; Biondelli, D; Castellucci, E M

    2010-08-01

    A survey of gilts applied to stucco surfaces that specifically focuses on the compositions of their colored grounds is reported. Gilt samples of a common geographical (Lombardy in Italy) and temporal provenance (17th-18th century) were studied in the form of polished cross-sections by optical and electron microscopy (SEM-EDS), micro-Raman (microRaman) spectroscopy and Fourier-transform infrared microspectroscopy (microFTIR). Comparing samples with superimposed grounds and gilts enabled light to be shed on the choice of specific materials, their stratigraphic functions, decorative effects, and technological performances. Iron oxide pigments were found in the older grounds, sometimes in the presence of lead white (2PbCO(3).Pb(OH)(2)) or minium (Pb(3)O(4)). In more recent grounds, chrome yellow (PbCrO(4)), chrome orange (PbCrO(4).PbO), cinnabar (alpha-HgS) and barium white (BaSO(4)), invariably mixed with lead white, were encountered. Evidence for the use of organic mordants (colophony and wax, or siccative oil) was obtained by microFTIR. This combined microFTIR and microRaman spectroscopic and elemental (SEM-EDS) analytical approach enhances knowledge of the composition of gold grounds, their variability and their chronological evolution.

  8. Study on the applicability of frequency spectrum of micro-tremor and dynamic characteristics of surface ground in Asia area

    Institute of Scientific and Technical Information of China (English)

    CHE Ai-lan; IWATATE Takahiro; ODA Yoshiya; GE Xiu-run

    2006-01-01

    The dynamic characteristics of ground soil using micro-tremor observation in Asia (Zushi and Ogasawara (Japan),Xi'an (China), Manila (Philippines), and Gujarat (India)) are studied. Ground micro-tremor signals were observed and analyzed by fast Fourier transform method (FFT). The response of ground soil to frequency of ground micro-tremor is revealed, and functions with frequency-dependence and frequency-selection of micro-tremor for different foundation soil strata are also researched.The horizontal to vertical spectral ratio (H/V, Nakamura technique) of micro-tremor observed at the surface ground was used to evaluate the site's predominant period. This paper also discusses the application of micro-tremor on site safety evaluation, and gives the observed calculation results obtained at multiple points. The experimental foundation and the deduction process of the method are described in detail. Some problems of the method are pointed out. Potential use of the technique's good expandable nature makes it a useable means for preventing and reducing disaster's harmful effects.

  9. Microbial communities and greenhouse gas production from a thermokarst bog chronosequence: Mechanisms of rapid carbon loss

    Science.gov (United States)

    Waldrop, M. P.; Jones, M.; Manies, K.; Mcfarland, J. W.; Blazewicz, S.; Keller, J.; Haw, M.; Harden, J. W.; Medvedeff, C.; Turetsky, M. R.

    2015-12-01

    Climate change in northern latitudes is expected to cause widespread permafrost thaw in Interior Alaska over the 21st century. Permafrost thaw may result in land subsidence and the formation of thermokarst bogs. In decades following thaw, previously forest floor (silvic) carbon (C) may be rapidly decomposed, likely due to accelerated microbial activities in young bog environments, resulting in a decadal to century scale positive feedback to climate warming. We examined rates and mechanisms of C loss from a thermokarst bog chronosequence (0-500 ybp) at the Alaska Peatland Experiment (APEX), part of the Bonanza Creek LTER near Fairbanks, AK. Silvic C losses were within ranges observed at other thermokarst chronosequence studies. Incubation studies and modeling results indicate that there are accelerated rates of microbial activity within the deeper silvic and humic soil horizons of the youngest bog. We hypothesized two potential mechanisms of rapid C loss and higher microbial activity in young thermokarst bogs: 1) higher availability of electron acceptors from thawed permafrost that fuel microbial activity, and 2) increased availability of labile C from both soil organic matter and dissolved organic matter in young bogs fuel microbial activity. We tested these hypotheses using anaerobic soil incubations and assays of sulfate reduction, Fe reduction, humic substance (HS) reduction, and nitrate reduction, combined with quantitative PCR of microbial functional groups associated with those processes. Assay results indicated that although sulfate reduction and denitrification were detectable in several of the bogs, only HS reduction was unique to the deep layers of the young thermokarst bog. The most striking difference among different aged bogs was dissolved organic matter, which was elevated in the youngest bogs. These results support both of our hypotheses: microbial activity is stimulated by the availability of labile C in the young bog as both a source of C for

  10. The study of single station inverting the sea surface current by HF ground wave radar based on adjoint assimilation technology

    Science.gov (United States)

    Han, Shuzong; Yang, Hua; Xue, Wenhu; Wang, Xingchi

    2017-06-01

    This paper introduces the assimilation technology in an ocean dynamics model and discusses the feasibility of inverting the sea surface current in the detection zone by assimilating the sea current radial velocity detected by single station HF ground wave radar in ocean dynamics model. Based on the adjoint assimilation and POM model, the paper successfully inverts the sea surface current through single station HF ground wave radar in the Zhoushan sea area. The single station HF radar inversion results are also compared with the bistatic HF radar composite results and the fixed point measured results by Annderaa current meter. The error analysis shows that acquisition of flow velocity and flow direction data from the single station HF radar based on adjoint assimilation and POM model is viable and the data obtained have a high correlation and consistency with the flow field observed by HF radar.

  11. SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA

    Science.gov (United States)

    Mohanty, A. K.

    2009-12-01

    SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are

  12. Simulated potentiometric surface contours at end of simulation (1998) in model layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 1 of the Death Valley regional ground-water flow system...

  13. Simulated potentiometric surface contours of prepumping conditions in layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These simulated potentiometric surface contours represent prepumping (or steady-state) conditions for model layer 1 of the Death Valley regional ground-water flow...

  14. Simulated potentiometric surface contours of prepumping conditions in layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These simulated potentiometric surface contours represent prepumping (or steady-state) conditions for model layer 16 of the Death Valley regional ground-water flow...

  15. Simulated potentiometric surface contours at end of simulation (1998) in model layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 16 of the Death Valley regional ground-water flow system...

  16. Simulated potentiometric surface contours at end of simulation (1998) in model layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 1 of the Death Valley regional ground-water flow system...

  17. Simulated potentiometric surface contours at end of simulation (1998) in model layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 16 of the Death Valley regional ground-water flow...

  18. Development of a Remotely Operated, Field-Deployable Tritium Analysis System for Surface and Ground Water Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J. [Westinghouse Savannah River Company, AIKEN, SC (United States); Cable, P.R.; Noakes, J.E. [University of Georgia, , GA (United States); Spaulding, J.D. [University of Georgia, , GA (United States); Neary, M. P. [University of Georgia, , GA (United States); Wasyl, M.S. [Packard Instrument Company, , ()

    1996-06-20

    The environmental contamination resulting from decades of testing and manufacturing of nuclear materials for a national defense purposes is a problem now being faced by the United States. The Center for Applied Isotope Studies at the University of Georgia, in cooperation with the Westinghouse Savannah River Company and Packard Instrument Company, have developed a prototype unit for remote, near real time, in situ analysis of tritium in surface and ground water samples.

  19. Species identification of archaeological skin objects from Danish bogs

    DEFF Research Database (Denmark)

    Brandt, Luise Ørsted; Schmidt, Anne Lisbeth; Mannering, Ulla;

    2014-01-01

    MS-based methods, mostly relying on peptide fingerprinting, the shotgun sequencing approach we describe aims to identify the complete extracted ancient proteome, without preselected specific targets. As an example, we report the identification, in one of the samples, of two peptides uniquely assigned...... species used for the production of skin garments. Until recently, species identification of archaeological skin was primarily performed by light and scanning electron microscopy or the analysis of ancient DNA. However, the efficacy of these methods can be limited due to the harsh, mostly acidic...... to bovine foetal haemoglobin, indicating the production of skin from a calf slaughtered within the first months of its life. We conclude that MS-based peptide sequencing is a reliable method for species identification of samples from bogs. The mass spectrometry proteomics data were deposited in the Proteome...

  20. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region

    Science.gov (United States)

    Kassotis, Christopher D.; Tillitt, Donald E.; Davis, J. Wade; Hormann, Anette M.; Nagel, Susan C.

    2014-01-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized thataselected subset of chemicalsusedin natural gas drilling operationsandalso surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas–related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operationsmayresult in elevated endocrine-disrupting chemical activity in surface and ground water.

  1. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Vesna Kostik

    2014-07-01

    Full Text Available The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupled plasma-mass spectrometry, while in ground water samples from wells boreholes and mineral waters with the technique of ion chromatography. The research shows that lithium concentration in potable water ranging from 0.1 to 5.2 μg/L; in surface water from 0.5 to 15.0 μg/L; ground water from wells boreholes from 16.0 to 49.1 μg/L and mineral water from 125.2 to 484.9 μg/L. Obtained values are in accordance with the relevant international values for the lithium content in water.

  2. The potential surface in the ground electronic state of HCP with the isomerization process: the validity of calculating potential surface with DFT methods

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The density functional theory (DFT) provides us an effective way to calculate large cluster systems with moderate computational demands. We calculate potential energy surfaces (PES) with several different approaches of DFT. The PES in the ground electronic state are related to HCP's isomerization process. The calculated PES are compared with the “experimental” PES obtained by fitting from the experimental vibrational spectra and that given by the “accurate” quantum chemistry calculation with more expensive computations. The comparisons show that the potential surfaces calculated with DFT methods can reach the accuracy of less than 0.1 eV.

  3. Regional patterns and controlling factors in plant species composition and diversity in Canadian lowland coastal bogs and laggs

    Directory of Open Access Journals (Sweden)

    S.A. Howie

    2016-11-01

    Full Text Available Inventories of natural assemblages of plant species are critical when planning ecological restoration of bogs. However, little is known about the regional variation in plant communities at the margins (laggs of bogs, even though they are an integral element of raised bog ecosystems. Therefore, we investigated the regional patterns in the plant communities of bogs and laggs, and the factors that control them, for thirteen bogs in coastal British Columbia, Canada. Species richness was significantly higher in the bogs and laggs of the cooler, wetter Pacific Oceanic wetland region. Beta Diversity analyses showed that bogs in the Pacific Oceanic wetland region often shared species with their respective laggs, whereas half of the laggs in the warmer, drier Pacific Temperate wetland region had no species in common with the adjacent bogs and were thus more ecologically distinct from the bog. Primary climatic variables, such as mean annual precipitation, mean annual temperature and latitude, as well as climate-influenced variables, such as pH, peat depth, and Na+ concentrations were the main correlates of plant species composition in the studied bogs. Site-specific factors, particularly depth to water table, and fraction of inorganic material in peat samples, were as strongly related to lagg plant communities as climate, while hydrochemistry appeared to have less influence.

  4. Contrasting species-environment relationships in communities of testate amoebae, bryophytes and vascular plants along the fen-bog gradient.

    Science.gov (United States)

    Lamentowicz, Mariusz; Lamentowicz, Lukasz; van der Knaap, Willem O; Gabka, Maciej; Mitchell, Edward A D

    2010-04-01

    We studied the vegetation, testate amoebae and abiotic variables (depth of the water table, pH, electrical conductivity, Ca and Mg concentrations of water extracted from mosses) along the bog to extremely rich fen gradient in sub-alpine peatlands of the Upper Engadine (Swiss Alps). Testate amoeba diversity was correlated to that of mosses but not of vascular plants. Diversity peaked in rich fen for testate amoebae and in extremely rich fen for mosses, while for testate amoebae and mosses it was lowest in bog but for vascular plants in extremely rich fen. Multiple factor and redundancy analyses (RDA) revealed a stronger correlation of testate amoebae than of vegetation to water table and hydrochemical variables and relatively strong correlation between testate amoeba and moss community data. In RDA, hydrochemical variables explained a higher proportion of the testate amoeba and moss data than water table depth. Abiotic variables explained a higher percentage of the species data for testate amoebae (30.3% or 19.5% for binary data) than for mosses (13.4%) and vascular plants (10%). These results show that (1) vascular plant, moss and testate amoeba communities respond differently to ecological gradients in peatlands and (2) testate amoebae are more strongly related than vascular plants to the abiotic factors at the mire surface. These differences are related to vertical trophic gradients and associated niche differentiation.

  5. Climate-driven expansion of blanket bogs in Britain during the Holocene

    Directory of Open Access Journals (Sweden)

    A. V. Gallego-Sala

    2015-10-01

    Full Text Available Blanket bog occupies approximately 6 % of the area of the UK today. The Holocene expansion of this hyperoceanic biome has previously been explained as a consequence of Neolithic forest clearance. However, the present distribution of blanket bog in Great Britain can be predicted accurately with a simple model (PeatStash based on summer temperature and moisture index thresholds, and the same model correctly predicts the highly disjunct distribution of blanket bog worldwide. This finding suggests that climate, rather than land-use history, controls blanket-bog distribution in the UK and everywhere else. We set out to test this hypothesis for blanket bogs in the UK using bioclimate envelope modelling compared with a database of peat initiation age estimates. We used both pollen-based reconstructions and climate model simulations of climate changes between the mid-Holocene (6000 yr BP, 6 ka and modern climate to drive PeatStash and predict areas of blanket bog. We compiled data on the timing of blanket-bog initiation, based on 228 age determinations at sites where peat directly overlies mineral soil. The model predicts large areas of northern Britain would have had blanket bog by 6000 yr BP, and the area suitable for peat growth extended to the south after this time. A similar pattern is shown by the basal peat ages and new blanket bog appeared over a larger area during the late Holocene, the greatest expansion being in Ireland, Wales and southwest England, as the model predicts. The expansion was driven by a summer cooling of about 2 °C, shown by both pollen-based reconstructions and climate models. The data show early Holocene (pre-Neolithic blanket-bog initiation at over half of the sites in the core areas of Scotland, and northern England. The temporal patterns and concurrence of the bioclimate model predictions and initiation data suggest that climate change provides a parsimonious explanation for the early Holocene distribution and later

  6. Comparison of buried soil sensors, surface chambers and above ground measurements of carbon dioxide fluxes

    Science.gov (United States)

    Soil carbon dioxide (CO2) flux is an important component of the terrestrial carbon cycle. Accurate measurements of soil CO2 flux aids determinations of carbon budgets. In this study, we investigated soil CO2 fluxes with time and depth and above ground CO2 fluxes in a bare field. CO2 concentrations w...

  7. Areal-Averaged Spectral Surface Albedo in an Atlantic Coastal Area: Estimation from Ground-Based Transmission

    Directory of Open Access Journals (Sweden)

    Evgueni Kassianov

    2017-07-01

    Full Text Available Tower-based data combined with high-resolution satellite products have been used to produce surface albedo at various spatial scales over land. Because tower-based albedo data are available at only a few sites, surface albedos using these combined data are spatially limited. Moreover, tower-based albedo data are not representative of highly heterogeneous regions. To produce areal-averaged and spectrally-resolved surface albedo for regions with various degrees of surface heterogeneity, we have developed a transmission-based retrieval and demonstrated its feasibility for relatively homogeneous land surfaces. Here, we demonstrate its feasibility for a highly heterogeneous coastal region. We use the atmospheric transmission measured during a 19-month period (June 2009–December 2010 by a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR at five wavelengths (0.415, 0.5, 0.615, 0.673 and 0.87 µm at the Department of Energy’s Atmospheric Radiation Measurement (ARM Mobile Facility (AMF site located on Graciosa Island. We compare the MFRSR-retrieved areal-averaged surface albedo with albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS observations, and also a composite-based albedo. We demonstrate that these three methods produce similar spectral signatures of surface albedo; however, the MFRSR-retrieved albedo, is higher on average (≤0.04 than the MODIS-based areal-averaged surface albedo and the largest difference occurs in winter.

  8. Effect of the surface geology on strong ground motions due to the 2016 Central Tottori Earthquake, Japan

    Science.gov (United States)

    Kagawa, Takao; Noguchi, Tatsuya; Yoshida, Shohei; Yamamoto, Shinji

    2017-08-01

    On October 21, 2016, an earthquake with Japan Meteorological Agency (JMA) magnitude 6.6 hit the central part of Tottori Prefecture, Japan. This paper demonstrates two notable effects of the surface geology on strong ground motions due to the earthquake. One is a predominant period issue observed over a large area. A seismic intensity of 6 lower on the JMA scale was registered at three sites in the disaster area. However, the peak ground acceleration ranged from 0.3 to 1.4 G at the three sites because of the varying peak periods of observed strong ground motions. The spectral properties of the observations also reflect the damage around the sites. Three-component microtremors were observed in the area; the predominant ground period distributions based on horizontal to vertical spectral ratios were provided by the authors. The peak periods of the strong motion records agree well with predominant periods estimated from microtremor observations at a rather hard site; however, the predominant periods of the microtremors are slightly shorter than those of the main shock at the other two soft sites. We checked the nonlinear effect at the sites by comparing the site responses to small events and the main shock. The peak periods of the main shock were longer than those of the weak motions at the sites. This phenomenon indicates a nonlinear site effect due to large ground motions caused by the main shock. A horizontal component of the accelerogram showed rather pulsating swings that indicate cyclic mobility behavior, especially at a site close to a pond shore; ground subsidence of 20 cm was observed around the site. The peak periods of weak motions agree well with those of the microtremor observations. This implies an important issue that the predominant periods estimated by microtremors are not sufficient to estimate the effect of surface geology for disaster mitigation. We have to estimate the predominant periods under large ground motions considering the nonlinear site

  9. Functional diversity, succession, and human-mediated disturbances in raised bog vegetation.

    Science.gov (United States)

    Dyderski, Marcin K; Czapiewska, Natalia; Zajdler, Mateusz; Tyborski, Jarosław; Jagodziński, Andrzej M

    2016-08-15

    Raised and transitional bogs are one of the most threatened types of ecosystem, due to high specialisation of biota, associated with adaptations to severe environmental conditions. The aim of the study was to characterize the relationships between functional diversity (reflecting ecosystem-shaping processes) of raised bog plant communities and successional gradients (expressed as tree dimensions) and to show how impacts of former clear cuts may alter these relationships in two raised bogs in 'Bory Tucholskie' National Park (N Poland). Herbaceous layers of the plant communities were examined by floristic relevés (25m(2)) on systematically established transects. We also assessed patterns of tree ring widths. There were no relationships between vegetation functional diversity components and successional progress: only functional dispersion was negatively, but weakly, correlated with median DBH. Lack of these relationships may be connected with lack of prevalence of habitat filtering and low level of competition over all the successional phases. Former clear cuts, indicated by peaks of tree ring width, influenced the growth of trees in the bogs studied. In the bog with more intensive clear cuts we found more species with higher trophic requirements, which may indicate nutrient influx. However, we did not observe differences in vegetation patterns, functional traits or functional diversity indices between the two bogs studied. We also did not find an influence of clear cut intensity on relationships between functional diversity indices and successional progress. Thus, we found that alteration of the ecosystems studied by neighbourhood clear cuts did not affect the bogs strongly, as the vegetation was resilient to these impacts. Knowledge of vegetation resilience after clear cuts may be crucial for conservation planning in raised bog ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Comparison of MTI and Ground Truth Sea Surface Temperatures at Nauru

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.

    2002-09-05

    This report evaluates MTI-derived surface water temperature near the tropical Pacific island of Nauru. The MTI sea-surface temperatures were determined by the Los Alamos National Laboratory based on the robust retrieval.

  11. Force Restore Technique for Ground Surface Temperature and Moisture Content in a Dry Desert System

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Berkowicz, S.

    2000-01-01

    The level of the surface temperature as well as surface moisture content is important for the turbulent transports of sensible and latent heat, respectively, but this level is also crucial for the survival of shrubs, plants, insects, and small animals in a desert environment. To estimate the surface

  12. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  13. Spatial distribution and seasonal changes of mayflies (Insecta, Ephemeroptera in a Western Balkan peat bog

    Directory of Open Access Journals (Sweden)

    Marina Vilenica

    2016-12-01

    Full Text Available Peat bogs are unique wetland ecosystems of high conservation value all over the world, yet data on the macroinvertebrates (including mayfly assemblages in these habitats are still scarce. Over the course of one growing season, mayfly assemblages were sampled each month, along with other macroinvertebrates, in the largest and oldest Croatian peat bog and an adjacent stream. In total, ten mayfly species were recorded: two species in low abundance in the peat bog, and nine species in significantly higher abundance in the stream. Low species richness and abundance in the peat bog were most likely related to the harsh environmental conditions and mayfly habitat preferences. In comparison, due to the more favourable habitat conditions, higher species richness and abundance were observed in the nearby stream. Three of the recorded species, Caenis luctuosa from the peat bog, and Eurylophella karelica and Leptophlebia marginata from the stream are new records for the Croatian mayfly fauna. Typical Central European life cycle patterns were confirmed for several species (e.g. Baetis vernus, Nigrobaetis niger, Electrogena ujhelyii, while for several others (e.g. Habrophlebia fusca, Paraleptophlebia submarginata some discrepancies were observed. Therefore, these results provide new and valuable information on the ecology of mayflies in peat bog habitats.

  14. Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle SpectroPolarimetric Imager

    Directory of Open Access Journals (Sweden)

    David J. Diner

    2012-12-01

    Full Text Available Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF model. GroundMSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of outdoor landscapes. The camera uses a very accurate photoelastic-modulator-based polarimetric imaging technique to acquire Stokes vector measurements in three of the instrument’s bands (470, 660, and 865 nm. A description of the instrument is presented, and observations of selected targets within a scene acquired on 6 January 2010 are analyzed. Data collected during the course of the day as the Sun moved across the sky provided a range of illumination geometries that facilitated evaluation of the surface model, which is comprised of a volumetric reflection term represented by the modified Rahman-Pinty-Verstraete function plus a specular reflection term generated by a randomly oriented array of Fresnel-reflecting microfacets. While the model is fairly successful in predicting the polarized reflection from two grass targets in the scene, it does a poorer job for two manmade targets (a parking lot and a truck roof, possibly due to their greater degree of geometric organization. Several empirical adjustments to the model are explored and lead to improved fits to the data. For all targets, the data support the notion of spectral invariance in the angular shape of the unpolarized and polarized surface reflection. As noted by others, this behavior provides valuable constraints on the aerosol retrieval problem, and highlights the importance of multiangle observations.

  15. Scientific Ground of a New Optical Device for Contactless Measurement of the Small Spatial Displacements of Control Object Surfaces

    Science.gov (United States)

    Miroshnichenko, I. P.; Parinov, I. A.

    2017-06-01

    It is proposed the computational-experimental ground of newly developed optical device for contactless measurement of small spatial displacements of control object surfaces based on the use of new methods of laser interferometry. The proposed device allows one to register linear and angular components of the small displacements of control object surfaces during the diagnosis of the condition of structural materials for forced elements of goods under exploring by using acoustic non-destructive testing methods. The described results are the most suitable for application in the process of high-precision measurements of small linear and angular displacements of control object surfaces during experimental research, the evaluation and diagnosis of the state of construction materials for forced elements of goods, the study of fast wave propagation in layered constructions of complex shape, manufactured of anisotropic composite materials, the study of damage processes in modern construction materials in mechanical engineering, shipbuilding, aviation, instrumentation, power engineering, etc.

  16. Construction and Testing of Broadband High Impedance Ground Planes (HIGPS) for Surface Mount Antennas

    Science.gov (United States)

    2008-03-01

    mushrooms (with side lengths of 7.6mm). Larger mushrooms (with side lengths of 16mm) were located to the edges of the substrate . The resulting...thickness and substrate permittivity are two of the main design parameters. But these parameters have production constraints, since they are ordered off...plane designs as a meta- substrate for a broadband bow-tie antenna were presented. Consequently, the high impedance ground plane provided a suitable

  17. Dating Danish textiles and skins from bog finds by means of 14C AMS

    DEFF Research Database (Denmark)

    Mannering, Ulla; Possnert, Göran; Heinemeier, Jan

    2010-01-01

    This paper presents the results of 44 new 14C analyses of Danish Early Iron Age textiles and skins. Of 52 Danish bog finds containing skin and textile items, 30 are associated with bog bodies. Until now, only 18 of these have been dated. In this paper we add dates to the remaining finds. The resu......This paper presents the results of 44 new 14C analyses of Danish Early Iron Age textiles and skins. Of 52 Danish bog finds containing skin and textile items, 30 are associated with bog bodies. Until now, only 18 of these have been dated. In this paper we add dates to the remaining finds....... The results demonstrate that the Danish custom of depositing clothed bodies in a bog is centred to the centuries immediately before and at the beginning of the Common Era. Most of these bodies are carefully placed in the bog - wrapped or dressed in various textile and/or skin garments....

  18. Use of ground-water reservoirs for storage of surface water in the San Joaquin Valley, California

    Science.gov (United States)

    Davis, G.H.; Lofgren, B.E.; Mack, Seymour

    1964-01-01

    The San Joaquin Valley includes roughly the southern two-thirds of the Central Valley of California, extending 250 miles from Stockton on the north to Grapevine at the foot of the Tehachapi Mountains. The valley floor ranges in width from 25 miles near Bakersfield to about 55 miles near Visalia; it has a surface area of about 10,000 square miles. More than one-quarter of all the ground water pumped for irrigation in the United States is used in this highly productive valley. Withdrawal of ground water from storage by heavy pumping not only provides a needed irrigation water supply, but it also lowers the ground-water level and makes storage space available in which to conserve excess water during periods of heavy runoff. A storage capacity estimated to be 93 million acre-feet to a depth of 200 feet is available in this ground-water reservoir. This is about nine times the combined capacity of the existing and proposed surface-water reservoirs in the San Joaquin Valley under the California Water Plan. The landforms of the San Joaquin Valley include dissected uplands, low plains and fans, river flood plains and channels, and overflow lands and lake bottoms. Below the land surface, unconsolidated sediments derived from the surrounding mountain highlands extend downward for hundreds of feet. These unconsolidated deposits, consisting chiefly of alluvial deposits, but including some widespread lacustrine sediments, are the principal source of ground water in the valley. Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the valley, three distinct ground-water reservoirs are present. In downward succession these are 1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age, overlying the Corcoran clay member of the Tulare formation; 2) a body of fresh water confined beneath the Corcoran clay member, which

  19. The hydrological and geochemical isolation of a freshwater bog within a saline fen in north-eastern Alberta

    Directory of Open Access Journals (Sweden)

    S.J. Scarlett

    2013-10-01

    Full Text Available In the oil sands development region near Fort McMurray, Alberta, wetlands cover ~62 % of the landscape, and ~95 % of these wetlands are peatlands. A saline fen was studied as a reference site for peatland reclamation. Despite highly saline conditions, a freshwater bog was observed in the path of local saline groundwater flow. The purpose of this study was to identify the hydrological controls that have allowed the development and persistence of a bog in this setting. The presence of bog vegetation and its dilute water chemistry suggest that saline groundwater from the fen rarely enters the bog, which functions predominantly as a groundwater recharge system. Chloride (Cl– and sodium (Na+ were the dominant ions in fen water, with concentrations averaging 5394 and 2307 mg L-1, respectively, while the concentrations in bog water were 5 and 4 mg L-1, respectively. These concentrations were reflected by salinity and electrical conductivity measurements, which in the fen averaged 9.3 ppt, and 15.8 mS cm-1, respectively, and in the bog averaged 0.1 ppt and 0.3 mS cm-1, respectively. A small ridge in the mineral substratum was found at the fen–bog margin, which created a persistent groundwater mound. Under the dry conditions experienced in early summer, groundwater flow was directed away from the bog at a rate of 14.6 mm day-1. The convex water table at the fen-bog margin impeded flow of saline water into the bog and instead directed it around the bog margin. However, the groundwater mound was eliminated during flooding in autumn, when the horizontal hydraulic gradient across the margin became negligible, suggesting the possibility of saline water ingress into the bog under these conditions.

  20. DEM Development from Ground-Based LiDAR Data: A Method to Remove Non-Surface Objects

    Directory of Open Access Journals (Sweden)

    Maneesh Sharma

    2010-11-01

    Full Text Available Topography and land cover characteristics can have significant effects on infiltration, runoff, and erosion processes on watersheds. The ability to model the timing and routing of surface water and erosion is affected by the resolution of the digital elevation model (DEM. High resolution ground-based Light Detecting and Ranging (LiDAR technology can be used to collect detailed topographic and land cover characteristic data. In this study, a method was developed to remove vegetation from ground-based LiDAR data to create high resolution DEMs. Research was conducted on intensively studied rainfall–runoff plots on the USDA-ARS Walnut Gulch Experimental Watershed in Southeast Arizona. LiDAR data were used to generate 1 cm resolution digital surface models (DSM for 5 plots. DSMs created directly from LiDAR data contain non-surface objects such as vegetation cover. A vegetation removal method was developed which used a slope threshold and a focal mean filter method to remove vegetation and create bare earth DEMs. The method was validated on a synthetic plot, where rocks and vegetation were added incrementally. Results of the validation showed a vertical error of ±7.5 mm in the final DEM.

  1. Temperature rise in objects due to optical focused beam through atmospheric turbulence near ground and ocean surface

    Science.gov (United States)

    Stoneback, Matthew; Ishimaru, Akira; Reinhardt, Colin; Kuga, Yasuo

    2013-03-01

    We consider an optical beam propagated through the atmosphere and incident on an object causing a temperature rise. In clear air, the physical characteristics of the optical beam transmitted to the object surface are influenced primarily by the effect of atmospheric turbulence, which can be significant near the ground or ocean surface. We use a statistical model to quantify the expected power transfer through turbulent atmosphere and provide guidance toward the threshold of thermal blooming for the considered scenarios. The bulk thermal characteristics of the materials considered are used in a thermal diffusion model to determine the net temperature rise at the object surface due to the incident optical beam. These results of the study are presented in graphical form and are of particular interest to operators of high power laser systems operating over large distances through the atmosphere. Numerical examples include a CO2 laser (λ=10.6 μm) with: aperture size of 5 cm, varied pulse duration, and propagation distance of 0.5 km incident on 0.1-mm copper, 10-mm polyimide, 1-mm water, and 10-mm glass/resin composite targets. To assess the effect of near ground/ocean laser propagation, we compare turbulent (of varying degrees) and nonturbulent atmosphere.

  2. Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Baig, Jameel Ahmed, E-mail: jab_mughal@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kazi, Tasneem Gul, E-mail: tgkazi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Arain, Muhammad Balal, E-mail: bilal_KU2004@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Afridi, Hassan Imran, E-mail: hassanimranafridi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kandhro, Ghulam Abbas, E-mail: gakandhro@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Sarfraz, Raja Adil, E-mail: rajaadilsarfraz@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Jamal, Muhammad Khan, E-mail: mkhanjamali@yahoo.com [Government Degree College Usta Muhammad, Balochistan 08300 (Pakistan); Shah, Abdul Qadir, E-mail: aqshah07@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)

    2009-07-30

    Arsenic contamination in water has caused severe health problems around the world. The purpose of this study was to evaluate the geological and anthropogenic aspects of As pollution in surface and groundwater resources of Jamshoro Sindh, Pakistan. Hydride generator atomic absorption spectrophotometry (HG-AAS) is employed for the determination of arsenic in water samples, with detection limit of 0.02 {mu}g l{sup -1}. Arsenic concentrations in surface and underground water range from 3.0 to 50.0, and 13 to 106 {mu}g l{sup -1}, respectively. In most of the water samples As levels exceeded the WHO provisional guideline values 10 {mu}g l{sup -1}. The high level of As in under study area may be due to widespread water logging from Indus river irrigation system which causes high saturation of salts in this semi-arid region and lead to enrichment of As in shallow groundwater. Among the physico-chemical parameters, electrical conductivity, Na{sup +}, K{sup +}, and SO{sub 4}{sup 2-} were found to be higher in surface and ground water, while elevated levels of Ca{sup 2+} and Cl{sup -} were detected only in ground water than WHO permissible limit. The high level of iron was observed in ground water, which is a possible source of As enrichment in the study area. The multivariate technique (cluster analysis) was used for the elucidation of high, medium and low As contaminated areas. It may be concluded that As originate from coal combustion at brick factories and power generation plants, and it was mobilized promotionally by the alkaline nature of the understudy groundwater samples.

  3. Geochemistry of the surface and ground waters of the upper bassin of the river Llobregat

    Directory of Open Access Journals (Sweden)

    Freixes, A.

    1996-12-01

    Full Text Available In this work the main geochemical characteristics of the surface and ground waters of the Upper basin of the River Llobregat are described and, discussed. The water samples analysed reveal sharply contrasting characteristics. In both the Fonts del Llobregat and River Bastareny catchments, calcium bicarbonated waters with a low mineral content clearly predominate. However, in the catchment of the River Arija, although the waters of the upper course and the main tributaries are also calcium bicarbonated, it is worth noting that at the confluence with the River Llobregat calcium sulphated water is found. The catchment of the River Saldes shows a greater heterogeneity, with calcium bicarbonated, sodium chloridized and calcium sulphated waters, and thus at the confluence with the River Llobregat the water is sodium-calcium bicarbonated-sulphated. Principal components analysis enables us to arrive at a synthesis which clearly explains these characteristics. These results are fundamentally interpreted on the basis of the lithologies drained by the different watercourses.

    [es] En el presente estudio se presentan y discuten las principales características geoquímicas de las aguas superficiales y subterráneas de la Alta cuenca del río Llobregat hasta la entrada del río al embalse de La Baells. El conjunto de aguas analizadas presentan características muy contrastadas. Así, tanto en la subcuenca de las fuentes del Llobregat como en la del río Bastareny predominan las aguas bicarbonatadas cálcicas poco mineralizadas. En la subcuenca del río Arija, sí bien las aguas del curso alto y las de los principales afluentes también son bicarbonatadas cálcicas, destaca el hecho de que en la confluencia con el río Llobregat el agua es sulfatada cálcica. La subcuenca del río Saldes es la que presenta una mayor heterogeneidad, con aguas bicarbonatadas cálcicas, cloruradas sódicas y sulfatadas cálcicas, las cuales provocan que en la confluencia

  4. Hydrochemical assessments of surface Nile water and ground water in an industry area – South West Cairo

    Directory of Open Access Journals (Sweden)

    Mona El-Sayed

    2015-09-01

    The data obtained were used for mathematical calculations of some parameters such as sodium adsorption ratio (SAR, sodium percentage (Na%, and the suitability of water samples for drinking, domestic, and irrigation purposes was evaluated. The results indicate that most studied surface Nile water samples show excellent to good categories and are suitable for drinking and irrigation. Most studied ground water samples are not suitable for drinking and need treatment for irrigation; few samples are not suitable for any purpose because of pollution from different sources in this area.

  5. Different Multifractal Scaling of the 0 cm Average Ground Surface Temperature of Four Representative Weather Stations over China

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2013-01-01

    Full Text Available The temporal scaling properties of the daily 0 cm average ground surface temperature (AGST records obtained from four selected sites over China are investigated using multifractal detrended fluctuation analysis (MF-DFA method. Results show that the AGST records at all four locations exhibit strong persistence features and different scaling behaviors. The differences of the generalized Hurst exponents are very different for the AGST series of each site reflecting the different scaling behaviors of the fluctuation. Furthermore, the strengths of multifractal spectrum are different for different weather stations and indicate that the multifractal behaviors vary from station to station over China.

  6. Vibrational Spectra and Potential Energy Surface for Electronic Ground State of Jet-Cooled Molecule S2O

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Yan; DING Shi-Liang

    2004-01-01

    The vibration states of transition molecule S2O, including both bending and stretching vibrations, are studied in the framework of dynamical symmetry groups U1(4) U2(4). We get all the vibration spectra of S2O by fitting 22 spectra data with 10 parameters. The fitting rms of the Hamiltonian is 2.12 cm-1. With the parameters and Lie algebraic theory, we give the analytical expression of the potential energy surface, which helps us to calculate the dissociation energy and force constants of S2O in the electronic ground state.

  7. Contamination of rural surface and ground water by endosulfan in farming areas of the Western Cape, South Africa

    Directory of Open Access Journals (Sweden)

    London Leslie

    2003-03-01

    Full Text Available Abstract Background In South Africa there is little data on environmental pollution of rural water sources by agrochemicals. Methods This study investigated pesticide contamination of ground and surface water in three intensive agricultural areas in the Western Cape: the Hex River Valley, Grabouw and Piketberg. Monitoring for endosulfan and chlorpyrifos at low levels was conducted as well as screening for other pesticides. Results The quantification limit for endosulfan was 0.1 μg/L. Endosulfan was found to be widespread in ground water, surface water and drinking water. The contamination was mostly at low levels, but regularly exceeded the European Drinking Water Standard of 0.1 μg/L. The two most contaminated sites were a sub-surface drain in the Hex River Valley and a dam in Grabouw, with 0.83 ± 1.0 μg/L (n = 21 and 3.16 ± 3.5 μg/L (n = 13 average endosulfan levels respectively. Other pesticides including chlorpyrifos, azinphos-methyl, fenarimol, iprodione, deltamethrin, penconazole and prothiofos were detected. Endosulfan was most frequently detected in Grabouw (69% followed by Hex River (46% and Piketberg (39%. Detections were more frequent in surface water (47% than in groundwater (32% and coincided with irrigation, and to a lesser extent, to spraying and trigger rains. Total dietary endosulfan intake calculated from levels found in drinking water did not exceed the Joint WHO/FAO Meeting on Pesticide Residues (JMPR criteria. Conclusion The study has shown the need for monitoring of pesticide contamination in surface and groundwater, and the development of drinking water quality standards for specific pesticides in South Africa.

  8. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7.

    Science.gov (United States)

    Abuladze, Tamar; Li, Manrong; Menetrez, Marc Y; Dean, Timothy; Senecal, Andre; Sulakvelidze, Alexander

    2008-10-01

    A bacteriophage cocktail (designated ECP-100) containing three Myoviridae phages lytic for Escherichia coli O157:H7 was examined for its ability to reduce experimental contamination of hard surfaces (glass coverslips and gypsum boards), tomato, spinach, broccoli, and ground beef by three virulent strains of the bacterium. The hard surfaces and foods contaminated by a mixture of three E. coli O157:H7 strains were treated with ECP-100 (test samples) or sterile phosphate-buffered saline buffer (control samples), and the efficacy of phage treatment was evaluated by comparing the number of viable E. coli organisms recovered from the test and control samples. Treatments (5 min) with the ECP-100 preparation containing three different concentrations of phages (10(10), 10(9), and 10(8) PFU/ml) resulted in statistically significant reductions (P = E. coli O157:H7 organisms recovered from the glass coverslips. Similar treatments resulted in reductions of 100%, 95%, and 85%, respectively, in the number of E. coli O157:H7 organisms recovered from the gypsum board surfaces; the reductions caused by the two most concentrated phage preparations were statistically significant. Treatment with the least concentrated preparation that elicited significantly less contamination of the hard surfaces (i.e., 10(9) PFU/ml) also significantly reduced the number of viable E. coli O157:H7 organisms on the four food samples. The observed reductions ranged from 94% (at 120 +/- 4 h posttreatment of tomato samples) to 100% (at 24 +/- 4 h posttreatment of spinach samples). The data suggest that naturally occurring bacteriophages may be useful for reducing contamination of various hard surfaces, fruits, vegetables, and ground beef by E. coli O157:H7.

  9. ENVIRONMENTAL SAFETY IMPROVEMENT OF SURFACE AND GROUND WATER CONTAMINATION AT THE AIRPORT AREA

    Directory of Open Access Journals (Sweden)

    Svitlana Madzhd

    2016-11-01

    Full Text Available Purpose: Taking into account that the airport "Kyiv" is located in one of the central districts of Kyiv and does not have clearly established sanitary protection zones, the problem of environmental pollution is topical and requires monitoring and research. In order to improve environmental compliance we made assessment of superficial and ground water quality in airport zone. Methods: Water quality was estimated by the biotesting method, hydrochemical analysis, and by oil products detection method. Results We performed analysis of wastewaters of airport “Kyiv” and superficial waters of river Nyvka. The samples took place: above the airport drainage, in the drainage place and below drainage place. We conducted assessment of ground waters, which are sources of water supply, on different distance from an airport (20 m, 500 m, 1000 m, 1500 min. Results of hydrochemical investigations of river indicated excess of nitrogen compounds content compare to regulatory discharge. Thus, it was defined excess of ammonia nitrogen in wastewaters in three times and in place of dispersion – in ten times; the content of nitrite nitrogen in the river sample after discharge exceeds in 22 times norm. Analysis of drinking water in airport zone has showed extremely high level of pollution by nitrite nitrogen exceeding norm in 7-17 times. After analysis it was defined high level of river pollution by oil products (in 26-32 times higher than MPC, and ground water in 1, 5-2 times. Results of biotesting confirmed data of hydrochemical investigations of superficial water state (acute toxicity was observed in drainage area and in place of drainage dispersion. Discussion: Increased content of nitrite indicates the strengthening of decomposition process of organic matter in conditions of slower oxidation of NO into NO. This parameter is major sanitary indicator which indicates pollution of water body. High content of such specific pollutant for aviation transport

  10. Influence of the underlying surface on the antenna system of the ground penetrating radar

    Science.gov (United States)

    Balzovsky, E. V.; Buyanov, Yu I.; Shipilov, S. E.

    2017-08-01

    Simulation results of the antenna system of the radar of subsurface sounding intended for contactless investigation of the road condition are presented. The elements of the antenna system of ground penetrating radar with extended bandwidth made as a combination of electric and magnetic type radiators have been designed. The transmission coefficient between the elements of the antenna array determining their mutual influence has been calculated. Despite the close arrangement of the elements in the array, the level of mutual influence of the elements is not critical. The developed antenna array can be used both for excitation with short ultrawideband pulses and for frequency steering in the range of 0.8-4 GHz.

  11. Assessment of volatile organic compounds in surface water at Canal Creek, Aberdeen Proving Ground, Maryland, November 1999-September 2000

    Science.gov (United States)

    Phelan, Daniel J.; Olsen, Lisa D.; Senus, Michael P.; Spencer, Tracey A.

    2001-01-01

    The purpose of this report is to describe the occurrence and distribution of volatile organic compounds in surface-water samples collected by the U.S. Geological Survey in the Canal Creek area of Aberdeen Proving Ground, Maryland, from November 1999 through September 2000. The report describes the differences between years with below normal and normal precipitation, the effects of seasons, tide stages, and location on volatile organic compound concentrations in surface water, and provides estimates of volatile organic concentration loads to the tidal Gunpowder River. Eighty-four environmental samples from 20 surface-water sites were analyzed. As many as 13 different volatile organic compounds were detected in the samples. Concentrations of volatile organic compounds in surface-water samples ranged from below the reporting limit of 0.5 micrograms per liter to a maximum of 50.2 micrograms per liter for chloroform. Chloroform was detected most frequently, and was found in 55 percent of the environmental samples that were analyzed for volatile organic compounds (46 of 84 samples). Carbon tetrachloride was detected in 56 percent of the surface-water samples in the tidal part of the creek (34 of 61 samples), but was only detected in 3 of 23 samples in the nontidal part of the creek. 1,1,2,2-Tetrachloroethane was detected in 43 percent of the tidal samples (26 of 61 samples), but was detected at only two nontidal sites and only during November 1999. Three samples were collected from the tidal Gunpowder River about 300 feet from the mouth of Canal Creek in May 2000, and none of the samples contained volatile organic compound concentrations above detection levels. Volatile organic compound concentrations in surface water were highest in the reaches of the creek adjacent to the areas with the highest known levels of ground-water contamination. The load of total volatile organic compounds from Canal Creek to the Gunpowder River is approximately 1.85 pounds per day (0

  12. Road impacts on the Baca National Wildlife Refuge, Colorado, with emphasis on effects to surface and shallow ground-water hydrology : a literature review

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A review of published research on unpaved road effects on surface-water and shallow ground-water hydrology was undertaken to assist the Baca National Wildlife...

  13. Estimated potentiometric surface by D'Agnese and others (1998), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — D'Agnese and others (1998) developed a potentiometric surface to conceptualize the regional ground-water flow system and to construct numerical flow models of the...

  14. AATSR Land Surface Temperature Product Validation Using Ground Measurements in China and Implications for SLSTR

    Science.gov (United States)

    Zhou, Ji; Zmuda, Andy; Desnos, Yves-Louis; Ma, Jin

    2016-08-01

    Land surface temperature (LST) is one of the most important parameters at the interface between the earth's surface and the atmosphere. It acts as a sensitive indicator of climate change and is an essential input parameter for land surface models. Because of the intense variability at different spatial and temporal scales, satellite remote sensing provides the sole opportunity to acquire LSTs over large regions. Validation of the LST products is an necessary step before their applications conducted by scientific community and it is essential for the developers to improve the LST products.

  15. 3D simulation of near-fault strong ground motion:comparison between surface rupture fault and buried fault

    Institute of Scientific and Technical Information of China (English)

    Liu Qifang; Yuan Yifan; Jin Xing

    2007-01-01

    In this paper,near-fault strong ground motions caused by a surface rupture fault(SRF)and a buried fault(BF) are numerically simulated and compared by using a time-space-decoupled,explicit finite element method combined with a multi-transmitting formula(MTF) of an artificial boundary.Prior to the comparison,verification of the explicit element method and the MTF is conducted.The comparison results show that the final dislocation of the SRF is larger than the BF for the same stress drop on the fault plane.The maximum final dislocation occurs on the fault upper line for the SRF;however,for the BF,the maximum final dislocation is located on the fault central part.Meanwhile,the PGA,PGV and PGD of long period ground motions(≤1 Hz)generated by the SRF are much higher than those of the BF in the near-fault region.The peak value of the velocity pulse generated by the SRF is also higher than the BF.Furthermore,it is found that in a very narrow region along the fault trace,ground motions caused by the SRF are much higher than by the BF.These results may explain why SRFs almost always cause heavy damage in near-fault regions compared to buried faults.

  16. Activities of the Commission for Ground Surface Protection against Mining Damage in the first quarter of 1985. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Chroszcz, A.

    1985-01-01

    Five meetings of the Commission held from January to March 1985 are reported. Underground coal mining in the safety pillar of Bytom was discussed in the light of rock bursts and fatal accidents in the Dymitrow mine. Three coal mines remove the safety pillar: Dymitrow, Szombierki and Rozbark. The Commission discussed: replacing longwall mining with caving by longwall mining with hydraulic stowing, using packings with reduced settling, reducing concentration of mining operations in the area of Bytom center, coordination of underground mining by 3 mines (coordination of mining order, thickness of coal slices or coal seams, concentration of longwall mining in seams with reduced hazards of rock bursts, methods for protection of buildings and industrial plants at the ground surface against ground deformation. The Commission also discussed program of coal mining with hydraulic stowing in the safety pillar of the Batory Steelworks, the Hajduki chemical plant and Chorzow (order of mining, schemes for slice mining, forecasting ground subsidence, methods for protection against mining damage), underground mining with caving or stowing in safety pillars of the Miechowice and Karb mines under Bytom, new regulations on geodetic surveys in underground coal mines.

  17. Environmental impact of highway construction and repair materials on surface and ground waters. Case study: crumb rubber asphalt concrete.

    Science.gov (United States)

    Azizian, Mohammad F; Nelson, Peter O; Thayumanavan, Pugazhendhi; Williamson, Kenneth J

    2003-01-01

    The practice of incorporating certain waste products into highway construction and repair materials (CRMs) has become more popular. These practices have prompted the National Academy of Science, National Cooperative Highway Research Program (NCHRP) to research the possible impacts of these CRMs on the quality of surface and ground waters. State department of transportations (DOTs) are currently experimenting with use of ground tire rubber ( crumb rubber) in bituminous construction and as a crack sealer. Crumb rubber asphalt concrete (CR-AC) leachates contain a mixture of organic and metallic contaminants. Benzothiazole and 2(3H)-benzothiazolone (organic compounds used in tire rubber manufacturing) and the metals mercury and aluminum were leached in potentially harmful concentrations (exceeding toxic concentrations for aquatic toxicity tests). CR-AC leachate exhibited moderate to high toxicity for algae ( Selenastrum capriconutum) and moderate toxicity for water fleas ( Daphnia magna). Benzothiazole was readily removed from CR-AC leachate by the environmental processes of soil sorption, volatilization, and biodegradation. Metals, which do not volatilize or photochemically or biologically degrade, were removed from the leachate by soil sorption. Contaminants from CR-AC leachates are thus degraded or retarded in their transport through nearby soils and ground waters.

  18. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika, E-mail: ematoso@hotmail.com [Centro Tecnologico da Marinha em Sao Paulo (CEA/CTMS), Ipero, SP (Brazil). Centro Experimental Aramar; Cadore, Solange, E-mail: cadore@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Analica

    2015-07-01

    Barium can be found in waters up to 1 mg L{sup -1} and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L{sup -1} and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  19. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Fadong, E-mail: lifadong@igsnrr.ac.cn [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Zhang, Qiuying [Center for Agricultural Resources Research, Chinese Academy of Sciences, Shijiazhuang 050021 (China); Li, Jing [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Qiang [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-08-15

    Water pollution in the form of nitrate nitrogen (NO{sub 3}{sup −}–N) contamination is a major concern in most agricultural areas in the world. Concentrations and nitrogen and oxygen isotopic compositions of nitrate, as well as oxygen and deuterium isotopic compositions of surface and groundwater from a typical irrigated region in the North China Plain (NCP) collected from May to October in 2012 were analyzed to examine the major nitrate sources and transformations. Concentrations of NO{sub 3}{sup −}–N ranged from 0.2 to 29.6 mg/L (mean of 11.2 mg/L) in surface water, and from 0.1 to 19.4 mg/L (mean of 2.8 mg/L) in groundwater. Approximately 46.7% of the surface water samples and 10% of the groundwater samples exceeded the World Health Organization (WHO) drinking water standard for NO{sub 3}{sup −}–N. Surface water samples that exceeded the standard were collected mainly in the dry season (May and October), while groundwater samples that exceeded the standard were collected in the wet season (June). Overall, the highest nitrate levels were observed in surface water in May and in groundwater in June, indicating that fertilizer application, precipitation, and irrigation strongly influence the NO{sub 3}{sup −}–N concentrations. Analyses of isotopic compositions suggest that the main sources of nitrate are nitrification of fertilizer and sewage in surface water, in contrast, mineralization of soil organic N and sewage is the groundwater sources during the dry season. When fertilizers are applied, nitrate will be transported by precipitation through the soil layers to the groundwater in the wet season (June). Denitrification only occurred in surface water in the wet season. Attempts should be made to minimize overuse of nitrogen fertilizers and to improve nitrogen use efficiency in irrigated agricultural regions. - Highlights: • Nitrate sources in surface and groundwater were identified by multiple isotopes. • Nitrate pollution displayed obvious

  20. Be(1010): A test ground for surface electron-phonon coupling

    Science.gov (United States)

    Tang, Shu-Jung; Sprunger, Philip; Plummer, Ward; Yang, Wanli; Brouet, Veronique; Zhou, Xingjiang; Shen, Zhi-Xun

    2003-03-01

    The electron-phonon coupling on the Be(10bar10) surface has been investigated with high-resolution photoemission examining temperature dependence and dispersion distortion near the Fermi energy of the two zone boundary surface states. Two surface states (S1 and S2) coexist in a large gap in the bulk projection at the surface zone boundary barA. S1 is localized near the surface in the middle of the gap while S2 is near the bottom band edge and penetrates into the bulk. Using both a Debye and Einstein model to fit the temperature-dependent surface state line width produces an electron-phonon coupling strength with parameters, λ _S1 = 0.647 and λ _S2 = 0.491, more than two times larger than the bulk value, λ _bulk = 0.24. S2 data was measured with a 3D Debye model but the S1 data required an Einstein model with an optical phonon at energy 64 meV. Direct 2D images of the dispersion of the S1 state show dramatic distortion of the electron band dispersion within 64 meV of the Fermi energy. This data is used to extract the real and imaginary parts of the self-energy. Founded by NSF DMR-0105232 and Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725

  1. High resolution surface solar radiation patterns over Eastern Mediterranean: Satellite, ground-based, reanalysis data and radiative transfer simulations

    Science.gov (United States)

    Alexandri, G.; Georgoulias, A.; Meleti, C.; Balis, D.

    2013-12-01

    Surface solar radiation (SSR) and its long and short term variations play a critical role in the modification of climate and by extent of the social and financial life of humans. Thus, SSR measurements are of primary importance. SSR is measured for decades from ground-based stations for specific spots around the planet. During the last decades, satellite observations allowed for the assessment of the spatial variability of SSR at a global as well as regional scale. In this study, a detailed spatiotemporal view of the SSR over Eastern Mediterranean is presented at a high spatial resolution. Eastern Mediterranean is affected by various aerosol types (continental, sea, dust and biomass burning particles) and encloses countries with significant socioeconomical changes during the last decades. For the aims of this study, SSR data from satellites (Climate Monitoring Satellite Application Facility - CM SAF) and our ground station in Thessaloniki, a coastal city of ~1 million inhabitants in northern Greece, situated in the heart of Eastern Mediterranean (Eppley Precision pyranometer and Kipp & Zonen CM-11 pyranometer) are used in conjunction with radiative transfer simulations (Santa Barbara DISORT Atmospheric Radiative Transfer - SBDART). The CM SAF dataset used here includes monthly mean SSR observations at a high spatial resolution of 0.03x0.03 degrees for the period 1983-2005. Our ground-based SSR observations span from 1983 until today. SBDART radiative transfer simulations were implemented for a number of spots in the area of study in order to calculate the SSR. High resolution (level-2) aerosol and cloud data from MODIS TERRA and AQUA satellite sensors were used as input, as well as ground-based data from the AERONET. Data from other satellites (Earth Probe TOMS, OMI, etc) and reanalysis projects (ECMWF) were used where needed. The satellite observations, the ground-based measurements and the model estimates are validated against each other. The good agreement

  2. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    Science.gov (United States)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  3. Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission Data Alone: Toward an Operational Retrieval

    Directory of Open Access Journals (Sweden)

    Evgueni Kassianov

    2014-08-01

    Full Text Available We present here a simple retrieval of the areal-averaged spectral surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation. The feasibility of our retrieval for routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements: (1 spectral atmospheric transmission from the Multi-Filter Rotating Shadowband Radiometer (MFRSR at five wavelengths (415, 500, 615, 673, and 870 nm; (2 tower-based measurements of local surface albedo at the same wavelengths; and (3 areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS observations. These integrated datasets cover both temporally long (2008–2013 and short (April–May 2010 periods at the Atmospheric Radiation Measurement (ARM Southern Great Plains site and the National Oceanic and Atmospheric Administration (NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE, defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved areal-averaged albedo, is quite small (RMSE ≤ 0.015 and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between tower-based measurements of daily-averaged surface albedo for completely overcast and non-overcast conditions is also demonstrated.

  4. Survival of adenovirus types 2 and 41 in surface and ground waters measured by a plaque assay.

    Science.gov (United States)

    Rigotto, C; Hanley, K; Rochelle, P A; De Leon, R; Barardi, C R M; Yates, M V

    2011-05-01

    To manage artificial recharge systems, it is necessary to understand the inactivation process of microorganisms within aquifers so that requirements regarding storage times and treatment strategies for ground and surface waters can be developed and modeled to improve water management practices. This study was designed to investigate the survival of representative adenoviruses in surface- and groundwaters using a cell culture plaque assay with human lung carcinoma cells (A549) to enumerate surviving viruses. Adenovirus types 2 (Ad2) and 41 (Ad41) were seeded into 50 mL of three sterilized surface waters and groundwaters, and incubated at 10 and 19 °C for up to 301 days. Concentrations of Ad2 and Ad41 were relatively stable in all waters at 10 °C for at least 160 days and in some instances up to 301 days. At 19 °C, virus concentrations were reduced by 99.99% (4 log) after 301 days in surface water. There was approximately 90% (1 log) reduction of both viruses at 19 °C after 160 days of incubation in groundwater samples. There was no overall difference in survival kinetics in surface waters compared to groundwaters. The relatively high stability and long-term survival of adenoviruses in environmental waters at elevated temperatures should be considered in risk assessment models and drinking water management strategies.

  5. Atmospheric Environmental Changes Records from Peat Bogs: a Review%大气环境变化的泥炭地质档案

    Institute of Scientific and Technical Information of China (English)

    鲍锟山; 赵红梅; 于晓菲; 吕宪国; 王国平

    2011-01-01

    An ombrotrophic peat bog is a domed peatland in which the surface peat layers are hydrologically isolated from the influence of local ground and surface water, and are fed exclusively by atmospheric deposition consisting of both soi1d particles and mineral substances dissolved in rain water. It has proven to be a good continental geochemical archive, and has the unique advantage of a wide global distribution. It preserves intact atmospheric environmental changes' signatures including sea-salt aerosol,soil-dust, acid deposition, heavy metals, and organic pollutants. An efficient method to reconstruct a history of atmospheric environmental variation includes a chronological framework using geological dating techniques followed by biogeochemical analysis of a wide range of proxies. This paper reviews the approaches used to establish depth-age relationships in peat chronologies, and summarizes a large number of informed studies relative to deducing historical influence of ocean, rock-soil and human society on atmosphere. Finally, the slightly insufficient parts as well as the prospect of peat bog archives towards atmospheric variations are put forward.%雨养泥炭沼泽是一种重要的泥炭沼泽类型,具有全球广泛分布的特点,其养分补给主要源于大气降水(包括雨、雪和空气尘埃).它是一个记录大气环境变化的积极的信息储备系统,记录有大气输入的海盐气溶胶、沙尘颗粒、酸沉降、重金属和有机污染物等信息.采用地质定年技术将泥炭深度剖面转化到年代坐标上,并结合泥炭生物地球化学指标检测分析,提取反映这些信息的代用指标,是重建大气环境的变化历史的有效方法.本文讨论了泥炭沉积地球化学行为对沼泽定年和地质记录研究的意义,综述了泥炭沼泽常用的定年方法,总结了大量利用泥炭地质档案反演海洋、岩石-土壤及人类社会对大气环境变化的影响历史的研究,并在此基础上展

  6. Evaluating the effects of urbanization and land-use planning using ground-water and surface-water models

    Science.gov (United States)

    Hunt, R.J.; Steuer, J.J.

    2001-01-01

    Why are the effects of urbanization a concern? As the city of Middleton, Wisconsin, and its surroundings continue to develop, the Pheasant Branch watershed (fig.l) is expected to undergo urbanization. For the downstream city of Middleton, urbanization in the watershed can mean increased flood peaks, water volume and pollutant loads. More subtly, it may also reduce water that sustains the ground-water system (called "recharge") and adversely affect downstream ecosystems that depend on ground water such as the Pheasant Branch Springs (hereafter referred to as the Springs). The relation of stormwater runoff and reduced ground-water recharge is complex because the surface-water system is coupled to the underlying ground-water system. In many cases there is movement of water from one system to the other that varies seasonally or daily depending on changing conditions. Therefore, it is difficult to reliably determine the effects of urbanization on stream baseflow and spring flows without rigorous investigation. Moreover, mitigating adverse effects after development has occurred can be expensive and administratively difficult. Overlying these concerns are issues such as stewardship of the resource, the rights of the public, and land owners' rights both of those developing their land and those whose land is affected by this development. With the often- contradictory goals, a scientific basis for assessing effects of urbanization and effectiveness of mitigation measures helps ensure fair and constructive decision-making. The U.S. Geological Survey, in cooperation with the City of Middleton and Wisconsin Department of Natural Resources, completed a study that helps address these issues through modeling of the hydrologic system. This Fact Sheet discusses the results of this work.

  7. Monitoring ground-surface heating during expansion of the Casa Diablo production well field at Mammoth Lakes, California

    Science.gov (United States)

    Bergfeld, D.; Vaughan, R. Greg; Evans, William C.; Olsen, Eric

    2015-01-01

    The Long Valley hydrothermal system supports geothermal power production from 3 binary plants (Casa Diablo) near the town of Mammoth Lakes, California. Development and growth of thermal ground at sites west of Casa Diablo have created concerns over planned expansion of a new well field and the associated increases in geothermal fluid production. To ensure that all areas of ground heating are identified prior to new geothermal development, we obtained high-resolution aerial thermal infrared imagery across the region. The imagery covers the existing and proposed well fields and part of the town of Mammoth Lakes. Imagery results from a predawn flight on Oct. 9, 2014 readily identified the Shady Rest thermal area (SRST), one of two large areas of ground heating west of Casa Diablo, as well as other known thermal areas smaller in size. Maximum surface temperatures at 3 thermal areas were 26–28 °C. Numerous small areas with ground temperatures >16 °C were also identified and slated for field investigations in summer 2015. Some thermal anomalies in the town of Mammoth Lakes clearly reflect human activity.Previously established projects to monitor impacts from geothermal power production include yearly surveys of soil temperatures and diffuse CO2 emissions at SRST, and less regular surveys to collect samples from fumaroles and gas vents across the region. Soil temperatures at 20 cm depth at SRST are well correlated with diffuse CO2 flux, and both parameters show little variation during the 2011–14 field surveys. Maximum temperatures were between 55–67 °C and associated CO2 discharge was around 12–18 tonnes per day. The carbon isotope composition of CO2 is fairly uniform across the area ranging between –3.7 to –4.4 ‰. The gas composition of the Shady Rest fumarole however has varied with time, and H2S concentrations in the gas have been increasing since 2009.

  8. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    Science.gov (United States)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  9. An Approach for Predicting the Shape and Size of a Buried Basic Object on Surface Ground Penetrating Radar System

    Directory of Open Access Journals (Sweden)

    Nana Rachmana Syambas

    2012-01-01

    Full Text Available Surface ground-penetrating radar (GPR is one of the radar technology that is widely used in many applications. It is nondestructive remote sensing method to detect underground buried objects. However, the output target is only hyperbolic representation. This research develops a system to identify a buried object on surface GPR based on decision tree method. GPR data of many basic objects (with circular, triangular, and rectangular cross-section are classified and extracted to generate data training model as a unique template for each type of basic object. The pattern of object under test will be known by comparing its data with the training data using a decision tree method. A simple powerful algorithm to extract feature parameters of object which is based on linear extrapolation is proposed. The result showed that tested buried basic objects can be correctly predicted and the developed system works properly.

  10. Holocene palaeohydrological history of the Tǎul Muced peat bog (Northern Carpathians, Romania) based on testate amoebae (Protozoa) and plant macrofossils

    Science.gov (United States)

    Cosmin Diaconu, Andrei; Feurdean, Angelica; Lamentowicz, Mariusz; Gałka, Mariusz; Tanţǎu, Ioan

    2016-04-01

    Knowledge of past local vs. regional hydro-climate variability is a priority in climate research. This is because ecosystems and human depend on local climatic conditions and the magnitude of these climate changes is more variable at local and regional rather than at global scales. Ombrotrophic bogs are highly suitable for hydro-climate reconstructions as they are entirely dependent on the water from precipitation. We used stratigraphy, radiocarbon dating, testate amoebae (TA) and plant macrofossils on a peat profile from an ombrotrophic bog (Tǎul Muced) located in the Biosphere Reserve of the Rodna National Park Romania. We performed quantitative reconstruction of the depth to water table (DWT) and pH over the last 8000 years in a continental area of CE Europe. We identified six main stages in the development of the bog based on changes in TA assemblages in time. Wet conditions and pH between 2 and 4.5 were recorded between 4600-2750 and 1300-400 cal. yr BP, by the occurrence of Archerella flavum, Amphitrema wrightianum and Hyalosphenia papilio. This was associated to a local vegetation primarily composed of Sphagnum magellanicum and S. angustifolium. Dry stages and pH of 2.5 to 5 were inferred between 7550-4600, 2750-1300 and -50 cal. yr BP, by the dominance of Nebela militaris, Difflugia pulex and Phryganella acropodia. These overall dry conditions were also connected with increased abundance of Eriophorum vaginatum. The period between 400 and -50 cal. yr BP was characterized by a rapid shift from dry to wet conditions on the surface of the bog. Vegetation shifted from Sphagnum magellanicum to Sphagnum russowii dominated community. Our reconstruction remains in relatively good agreement with other palaeohydrological records from Central Eastern Europe. However, it shows contrasting conditions to others particularly with records from NW Europe. The valuable information regarding bog hydrology offered by our record puts an accent on the need of more regional TA

  11. A semiempirical study of the optimized ground and excited state potential energy surfaces of retinal and its protonated Schiff base

    Science.gov (United States)

    Parusel, A. B.; Pohorille, A.

    2001-01-01

    The electronic ground and first excited states of retinal and its Schiff base are optimized for the first time using the semiempirical AM1 Hamiltonian. The barrier for rotation about the C(11)-C(12) double bond is characterized by variation of both the twist angle delta(C(10)-C(11)-C(12)-C(13)) and the bond length d(C(11)-C(12)). The potential energy surface is obtained by varying these two parameters. The calculated ground state rotational barrier is equal to 15.6 kcal/mol for retinal and 20.5 kcal/mol for its Schiff base. The all-trans conformation is more stable by 3.7 kcal/mol than the 11-cis geometry. For the first excited state, S(1,) the 90 degrees twisted geometry represents a saddle point for retinal with the rotational barrier of 14.6 kcal/mol. In contrast, this conformation is an energy minimum for the Schiff base. It can be easily reached at room temperature from the planar minima since it is separated from them by a barrier of only 0.6 kcal/mol. The 90 degrees minimum conformation is more stable than the all-trans by 8.6 kcal/mol. We are thus able to present a reaction path on the S(1) surface of the retinal Schiff base with an almost barrier-less geometrical relaxation into a twisted minimum geometry, as observed experimentally. The character of the ground and first excited singlet states underscores the need for the inclusion of double excitations in the calculations.

  12. Influence of Holocene stratigraphic architecture on ground surface settlements: A case study from the City of Pisa (Tuscany, Italy)

    Science.gov (United States)

    Sarti, Giovanni; Rossi, Veronica; Amorosi, Alessandro

    2012-12-01

    The Holocene stratigraphic architecture of modern coastal and deltaic plains has peculiar characteristics that may influence ground surface settlements. In the Pisa urban area, the inhomogeneous spatial distribution of geotechnically weak layers, typically formed during the mid-late Holocene (highstand) coastal progradation, is inferred to be responsible for urban ground settlement and building damage, as evidenced by the tilt of several surface structures, among which the famous Leaning Tower of Pisa is the most prominent. On the basis of integrated stratigraphic, sedimentological and geotechnical data from a wide georeferenced database, three facies associations with high deformability potential (Units 1-3) are identified in the uppermost 30 m as opposed to depositional facies (Units 4-5) with higher geotechnical strength. Whereas Unit 1 represents a thick, laterally extensive lagoonal clay deposit, the overlying highly deformable units (Units 2-3) show more discontinuous spatial distribution controlled by the Holocene paleohydrographic evolution of the Arno coastal plain. Unit 2, dated between the Neolithic and the Etruscan age (ca. 5000-2000 yr BP), is composed of swamp clays and silty clays recording lagoon infilling due to Arno Delta progradation. Units 3 and 4, which consist of wet levee deposits and stiff floodplain clays, respectively, formed during the subsequent phases of alluvial plain construction started around the Roman age (from ca. 2000 yr BP). Whereas Units 3 and 4 are recorded within the uppermost 5 m, fluvial and distributary channel sands (Unit 5) cut the underlying deltaic-alluvial succession at various stratigraphic levels, down to Unit 1. The spatial distribution of these units gives rise to three, locally juxtaposed, stratigraphic motifs in Pisa underground, reflecting different potential risks for settlement under building loads. We show how lateral changes in stratigraphic architecture account for the irregular spatial distribution of

  13. Estimating Saturated Hydraulic Conductivity from Surface Ground-Penetrating Radar Monitoring of Infiltration

    CERN Document Server

    Léger, Emmanuel; Coquet, Yves

    2013-01-01

    In this study we used Hydrus-1D to simulate water infiltration from a ring infiltrometer. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity while knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the depth of the inflection point of the water content profile simulated at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relationship to invert the saturated hydraulic conductivity for constant and falling head infiltrations. We present our method on synthetic examples and on two experiments carried out on sand. We f...

  14. STUDY OF PHYSICO-CHEMICAL PROPERTIES OF THE SURFACE AND GROUND WATER

    Directory of Open Access Journals (Sweden)

    A. Y. Al-Ghamdi

    2014-01-01

    Full Text Available Of all the natural resources, water is unarguably the most essential and precious. Life began in water and life is nurtured by water. Ninety seven percent of the world’s water is found in oceans. Only 2.5% of the world’s water are non-saline fresh water. Saudi Arabia is a desert country with no permanent rivers or lakes and very little rainfall. Water is scarce and extremely valuable and with the country’s rapid growth, the demand for water is increasing. Seven samples of water are collected, six samples from Wells (1-6 and the last sample from Al-Mallah Valley Dam, Mukhwa (7, Al-Mukhwah, in order to find impurities and pollutants and found some suitable solution. Some physical properties of water are measured such as turbidity, conductivity, pH and also, some pollutants such as iron, manganese, nitrate, nitrite fluoride, phosphate as well as calcium, magnesium, sulfate and chloride as well as detection of some microorganisms. The results shown that, the water of Al-Mallah Valley Dam has a high percentage of turbidity as a result of contamination of water with clay, plant residues and also some dead animals. On the other hand, the samples of ground water have high conductivity and high value of fluoride, nitrite, nitrate contents as well as Mn and Fe. Also the result of microorganisms showed the presence of some the water of Al-Mallah Valley Dam can be treated with a very simple method and become suitable for drinking. Also ground water can be treated with a suitable method to reduce the total hardness and some pollutants. But its content of fluoride is higher than that of gulf specifications so it must be treated before used.

  15. Characterizing Geothermal Surface Manifestation Based on Multivariate Geostatistics of Ground Measurements Data

    Science.gov (United States)

    Ishaq; Nur Heriawan, Mohamad; Saepuloh, Asep

    2016-09-01

    Mt. Wayang Windu is one of geothermal field located in West Java, Indonesia. The characterization of steam spots at surface manifestation zones based on the soil physical measurements of the area is presented in this study. The multivariate geostatistical methods incorporating the soil physical parameter data were used to characterize the zonation of geothermal surface manifestations. The purpose of this study is to evaluate the performance of spatial estimation method of multivariate geostatistics using Ordinary Cokriging (COK) to characterize the physical properties of geothermal surface manifestations at Mt. Wayang Windu. The COK method was selected because this method is favorable when the secondary variables has more number than the primary variables. There are four soil physical parameters used as the basis of COK method, i.e. Electrical Conductivity, Susceptibility, pH, and Temperature. The parameters were measured directly at and around geothermal surface manifestations including hot springs, fumaroles, and craters. Each location of surface manifestations was measured about 30 points with 30 x 30 m grids. The measurement results were analyzed by descriptive statistics to identify at the nature of data. The correlation among variables was analyzed using linear regression. When the correlation coefficient among variables is higher, the estimation results is expected to have better Linear Coregionalization Model (LCM). LCM was used to analyze the spatial correlation of each variable based on their variogram and cross-variogram model. In oder to evaluate the performance of multivariate geostatistical using COK method, a Root Mean Square Error (RMSE) was performed. Estimation result using COK method is well applicable for characterizing the surface physics parameters of radar images data.

  16. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    Science.gov (United States)

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near

  17. CO2 and CH4 fluxes of contrasting pristine bogs in southern Patagonia (Tierra del Fuego, Argentina)

    Science.gov (United States)

    Münchberger, Wiebke; Blodau, Christian; Kleinebecker, Till; Pancotto, Veronica

    2015-04-01

    South Patagonian peatlands cover a wide range of the southern terrestrial area and thus are an important component of the terrestrial global carbon cycle. These extremely southern ecosystems have been accumulating organic material since the last glaciation up to now and are - in contrast to northern hemisphere bogs - virtually unaffected by human activities. So far, little attention has been given to these pristine ecosystems and great carbon reservoirs which will potentially be affected by climate change. We aim to fill the knowledge gap in the quantity of carbon released from these bogs and in what controls their fluxes. We study the temporal and spatial variability of carbon fluxes in two contrasting bog ecosystems in southern Patagonia, Tierra del Fuego. Sphagnum-dominated bog ecosystems in Tierra del Fuego are similar to the ones on the northern hemisphere, while cushion plant-dominated bogs can almost exclusively be found in southern Patagonia. These unique cushion plant-dominated bogs are found close to the coast and their occurrence changes gradually to Sphagnum-dominated bogs with increasing distance from the coast. We conduct closed chamber measurements and record relevant environmental variables for CO2 and CH4 fluxes during two austral vegetation periods from December to April. Chamber measurements are performed on microforms representing the main vegetation units of the studied bogs. Gas concentrations are measured with a fast analyzer (Los Gatos Ultraportable Greenhouse Gas Analyzer) allowing to accurately record CH4 fluxes in the ppm range. We present preliminary results of the carbon flux variability from south Patagonian peat bogs and give insights into their environmental controls. Carbon fluxes of these two bog types appear to be highly different. In contrast to Sphagnum-dominated bogs, cushion plant-dominated bogs release almost no CH4 while their CO2 flux in both, photosynthesis and respiration, can be twice as high as for Sphagnum

  18. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 2006-07

    Science.gov (United States)

    Truini, Margot; Macy, J.P.

    2008-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area is typically about 6 to 14 inches per year. The water-monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2006 to September 2007. The monitoring program includes measurements of (1) ground-water withdrawals, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. Periodic testing of ground-water withdrawal meters is completed every 4 to 5 years. The Navajo Tribal Utility Authority (NTUA) yearly totals for the ground-water metered withdrawal data were unavailable in 2006 due to an up-grade within the NTUA computer network. Because NTUA data is often combined with Bureau of Indian Affairs data for the total withdrawals in a well system, withdrawals will not be published in this year's annual report. From 2006 to 2007, annually measured water levels in the Black Mesa area declined in 3 of 11 wells measured in the unconfined areas of the N aquifer, and the median change was 0.0 feet. Measurements indicated that water levels declined in 8 of 17 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.2 feet. From the prestress period (prior to 1965) to 2007, the median water-level change for 30 wells was -11.1 feet. Median water-level changes were 2.9 feet for 11 wells measured in the unconfined areas and -40.2 feet for 19 wells measured in the confined area. Spring flow was measured

  19. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    DEFF Research Database (Denmark)

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian

    2012-01-01

    We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set ...

  20. Expanding surfaces: The viewer immersed in multiple modes of representation Following the drawing on the ground

    DEFF Research Database (Denmark)

    Carbone, Claudia

    2015-01-01

    The experience of the exhibition On the Surface – a retrospective of the work of Metis, the Edinburgh-based atelier of Mark Dorrian and Adrian Hawker, presented in the exhibition space of The Aarhus School of Architecture – is choreographed as a walk over superimposed fragments of architectural...

  1. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  2. Towards sustainable ecological networks of peat bogs in central Russia; development of local environmental action program (LEAP) as a practical tool for protection and restoration of peat bogs in Egorievsk sub region

    NARCIS (Netherlands)

    Butovsky, R.O.; Reijnen, R.; Bondartchuk, E.A.; Otchagov, D.M.; Melik-Bagdasarov, E.M.

    2001-01-01

    In central and northern Meshera the habitats for many characteristic peat bog species now show a very fragmented pattern. As a result, the potential for viable populations of characteristic peat bog species has decreased considerably. Peat-mining and other human influences are the most important rea

  3. Realization of Multi-Stable Ground States in a Nematic Liquid Crystal by Surface and Electric Field Modification

    Science.gov (United States)

    Gwag, Jin Seog; Kim, Young-Ki; Lee, Chang Hoon; Kim, Jae-Hoon

    2015-06-01

    Owing to the significant price drop of liquid crystal displays (LCDs) and the efforts to save natural resources, LCDs are even replacing paper to display static images such as price tags and advertising boards. Because of a growing market demand on such devices, the LCD that can be of numerous surface alignments of directors as its ground state, the so-called multi-stable LCD, comes into the limelight due to the great potential for low power consumption. However, the multi-stable LCD with industrial feasibility has not yet been successfully performed. In this paper, we propose a simple and novel configuration for the multi-stable LCD. We demonstrate experimentally and theoretically that a battery of stable surface alignments can be achieved by the field-induced surface dragging effect on an aligning layer with a weak surface anchoring. The simplicity and stability of the proposed system suggest that it is suitable for the multi-stable LCDs to display static images with low power consumption and thus opens applications in various fields.

  4. Modeling of ground temperatures in South Shetlands (Antarctic Peninsula): Forcing a land surface model with the reanalysis ERA-Interim

    Science.gov (United States)

    João Rocha, Maria; Dutra, Emanuel; Vieira, Gonçalo; Miranda, Pedro; Ramos, Miguel

    2010-05-01

    This study focus on Livingston Island (South Shetlands Antarctic Peninsula), one of the Earth's regions where warming has been more significant in the last 50 years. Our work is integrated in a project focusing on studying the influence of climate change on permafrost temperatures, which includes systematic and long-term terrain monitoring and also modeling using land surface models. A contribution will be the evaluation of the possibilities for using land surface modeling approaches to areas of the Antarctic Peninsula with lack of data on observational meteorological forcing data, as well as on permafrost temperatures. The climate variability of the Antarctic Peninsula region was studied using the new reanalysis product from European Centre for Medium-Range Weather Forecasts (ECMWF) Era-Interim and observational data from boreholes run by our group. Monthly and annual cycles of near surface climate variables are compared. The modeling approach includes the HTESSEL (Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land) forced with ERA-Interim for modeling ground temperatures in the study region. The simulation results of run of HTESSEL are compared against soil temperature observations. The results show a favorable match between simulated and observed soil temperatures. The use of different forcing parameters is compared and the model vs. observation results from different results is analyzed. The main variable needing further improvement in the modeling is snow cover. The developed methodology provides a good tool for the analysis of the influence of climate variability on permafrost of the Maritime Antarctic.

  5. Ground and surface temperature variability for remote sensing of soil moisture in a heterogeneous landscape

    Science.gov (United States)

    Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Finn, M.

    2009-01-01

    At the Little River Watershed (LRW) heterogeneous landscape near Tifton Georgia US an in situ network of stations operated by the US Department of Agriculture-Agriculture Research Service-Southeast Watershed Research Lab (USDA-ARS-SEWRL) was established in 2003 for the long term study of climatic and soil biophysical processes. To develop an accurate interpolation of the in situ readings that can be used to produce distributed representations of soil moisture (SM) and energy balances at the landscape scale for remote sensing studies, we studied (1) the temporal and spatial variations of ground temperature (GT) and infra red temperature (IRT) within 30 by 30 m plots around selected network stations; (2) the relationship between the readings from the eight 30 by 30 m plots and the point reading of the network stations for the variables SM, GT and IRT; and (3) the spatial and temporal variation of GT and IRT within agriculture landuses: grass, orchard, peanuts, cotton and bare soil in the surrounding landscape. The results showed high correlations between the station readings and the adjacent 30 by 30 m plot average value for SM; high seasonal independent variation in the GT and IRT behavior among the eight 30 by 30 m plots; and site specific, in-field homogeneity in each 30 by 30 m plot. We found statistical differences in the GT and IRT between the different landuses as well as high correlations between GT and IRT regardless of the landuse. Greater standard deviations for IRT than for GT (in the range of 2-4) were found within the 30 by 30 m, suggesting that when a single point reading for this variable is selected for the validation of either remote sensing data or water-energy models, errors may occur. The results confirmed that in this landscape homogeneous 30 by 30 m plots can be used as landscape spatial units for soil moisture and ground temperature studies. Under this landscape conditions small plots can account for local expressions of environmental

  6. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Delahaye, Thibault, E-mail: thibault.delahaye@univ-reims.fr; Rey, Michaël, E-mail: michael.rey@univ-reims.fr; Tyuterev, Vladimir G. [Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, BP 1039, F-51687, Reims Cedex 2 (France); Nikitin, Andrei [Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 634055 Tomsk, Russia and Quamer, State University of Tomsk (Russian Federation); Szalay, Péter G. [Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest (Hungary)

    2014-09-14

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C{sub 2}H{sub 4} obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C{sub 2}H{sub 4} molecule was obtained with a RMS(Obs.–Calc.) deviation of 2.7 cm{sup −1} for fundamental bands centers and 5.9 cm{sup −1} for vibrational bands up to 7800 cm{sup −1}. Large scale vibrational and rotational calculations for {sup 12}C{sub 2}H{sub 4}, {sup 13}C{sub 2}H{sub 4}, and {sup 12}C{sub 2}D{sub 4} isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm{sup −1} are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of {sup 13}C{sub 2}H{sub 4} and {sup 12}C{sub 2}D{sub 4} and rovibrational levels of {sup 12}C{sub 2}H{sub 4}.

  7. Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau

    Science.gov (United States)

    Gu, Lianglei; Yao, Jimin; Hu, Zeyong; Zhao, Lin

    2015-02-01

    Surface energy budgets were calculated using turbulent flux observation data and meteorological gradient data collected in 2008 from two sites: BJ, located in a seasonally frozen ground region, and Tanggula, located in a permafrost region. In 2008, the energy closure ratios for the BJ and Tanggula sites were 0.74 and 0.73, respectively, using 30-min instantaneous energy flux data but 0.87 and 0.99, respectively, using daily average energy flux data. Therefore, the energy closure status is related to the time scale that is used for the study. The variation in the surface energy budget at the two sites was similar: The sensible heat flux (Hs) was relatively high in spring and reduced in summer but gradually increased in autumn. The latent heat flux (LE) was higher in summer and autumn but lower in winter and spring. Comparably, the starting time for the significant increase in LE occurred earlier at the Tanggula site than that at the BJ site, because the freezing and thawing progress of the active layer of permafrost at Tanggula site significantly affected the Hs and LE distributions, but the freezing and thawing processes of the soil at BJ site did not significantly affect the Hs and LE distributions. The monsoon significantly affected the variation in Hs and LE at both the BJ and Tanggula sites. Regarding the diurnal variation of the energy budget at the two sites, the daily maximum of net radiation (Rn) occurred at approximately 14:00 Beijing Time, and the daily maximum of ground heat flux (G0) was earlier than those of Hs and LE. The albedo and Bowen ratio for the two sites were both low in summer but high in winter. The albedo increased significantly but the Bowen ratio became lower or even negative when the surface was covered with deep snow.

  8. Effect of Surface Geology on Ground Motions: The Case of Station TAP056 - Chutzuhu Site

    Directory of Open Access Journals (Sweden)

    Kuo-Liang Wen

    2008-01-01

    Full Text Available In the Tatun mountain area of northern Taiwan are two strong motion stations approximately 2.5 km apart, TAP056 and TAP066 of the TSMIP network. The accelerometer at station TAP056 is often triggered by earthquakes, but that at TAP066 station is not. Comparisons of vertical and horizontal peak ground accelerations reveal PGA in the vertical, east-west, and north-south components at TAP056 station to be 3.89, 7.57, and 5.45 times those at station TAP066, respectively. The PGA ratio does not seem to be related to earthquake source or path. Fourier spectra of earthquake records at station TAP056 always have approximately the same dominant frequency; however, those at station TAP066 are different due to different sources and paths of different events. This shows that spectra at TAP056 station are mainly controlled by local site effects. The spectral ratios of TAP056/TAP066 show the S-wave is amplified at around 8 ~ 10 Hz. The horizontal/vertical spectral ratios of station TAP056 also show a dominant frequency at about 6 and 8 ~ 10 Hz. After dense microtremor surveying and the addition of one accelerometer just 20 meters away from the original observation station, we can confirm that the top soft soil layer upon which the observation station is constructed generates the local site response at station TAP056.

  9. Mapping of the cumulative β-ray dose on the ground surface surrounding the Fukushima area

    Science.gov (United States)

    Endo, Satoru; Kajimoto, Tsuyoshi; Tanaka, Kenichi; Nguyen, Thanh T.; Hayashi, Gohei; Imanaka, Tetsuji

    2015-01-01

    A large amount of the fission products released by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on 11 March 2011 was deposited in a wide area from Tohoku to northern Kanto. A map of the estimated cumulative β-ray dose (70 μm dose equivalent) on the soil surface for one year after the FDNPP accident has been prepared using previously reported calculation methods and the 2-km mesh survey data by MEXT. From this map of estimated dose, areas with a high cumulative β-ray dose on the soil surface for one year after the FDNPP accident were found to be located in the Akogi-Teshichiro to Akogi-Kunugidaira region in Namie Town, and in the southern Futaba Town to the northern Tomioka Town region. The highest estimated cumulative β-ray dose was 710 mSv for one year at Akogi-Teshichiro, Namie Town. PMID:26519736

  10. Type of Ground Surface during Plyometric Training Affects the Severity of Exercise-Induced Muscle Damage

    Directory of Open Access Journals (Sweden)

    Hamid Arazi

    2016-03-01

    Full Text Available The purpose of this study was to compare the changes in the symptoms of exercise-induced muscle damage from a bout of plyometric exercise (PE; 10 × 10 vertical jumps performed in aquatic, sand and firm conditions. Twenty-four healthy college-aged men were randomly assigned to one of three groups: Aquatic (AG, n = 8, Sand (SG, n = 8 and Firm (FG, n = 8. The AG performed PE in an aquatic setting with a depth of ~130 cm. The SG performed PE on a dry sand surface at a depth of 20 cm, and the FG performed PE on a 10-cm-thick wooden surface. Plasma creatine kinase (CK activity, delayed onset muscle soreness (DOMS, knee range of motion (KROM, maximal isometric voluntary contraction (MIVC of the knee extensors, vertical jump (VJ and 10-m sprint were measured before and 24, 48 and 72 h after the PE. Compared to baseline values, FG showed significantly (p < 0.05 greater changes in CK, DOMS, and VJ at 24 until 48 h. The MIVC decreased significantly for the SG and FG at 24 until 48 h post-exercise in comparison to the pre-exercise values. There were no significant (p > 0.05 time or group by time interactions in KROM. In the 10-m sprint, all the treatment groups showed significant (p < 0.05 changes compared to pre-exercise values at 24 h, and there were no significant (p > 0.05 differences between groups. The results indicate that PE in an aquatic setting and on a sand surface induces less muscle damage than on a firm surface. Therefore, training in aquatic conditions and on sand may be beneficial for the improvement of performance, with a concurrently lower risk of muscle damage and soreness.

  11. Commons problems, common ground: Earth-surface dynamics and the social-physical interdisciplinary frontier

    Science.gov (United States)

    Lazarus, E.

    2015-12-01

    In the archetypal "tragedy of the commons" narrative, local farmers pasture their cows on the town common. Soon the common becomes crowded with cows, who graze it bare, and the arrangement of open access to a shared resource ultimately fails. The "tragedy" involves social and physical processes, but the denouement depends on who is telling the story. An economist might argue that the system collapses because each farmer always has a rational incentive to graze one more cow. An ecologist might remark that the rate of grass growth is an inherent control on the common's carrying capacity. And a geomorphologist might point out that processes of soil degradation almost always outstrip processes of soil production. Interdisciplinary research into human-environmental systems still tends to favor disciplinary vantages. In the context of Anthropocene grand challenges - including fundamental insight into dynamics of landscape resilience, and what the dominance of human activities means for processes of change and evolution on the Earth's surface - two disciplines in particular have more to talk about than they might think. Here, I use three examples - (1) beach nourishment, (2) upstream/downstream fluvial asymmetry, and (3) current and historical "land grabbing" - to illustrate a range of interconnections between physical Earth-surface science and common-pool resource economics. In many systems, decision-making and social complexity exert stronger controls on landscape expression than do physical geomorphological processes. Conversely, human-environmental research keeps encountering multi-scale, emergent problems of resource use made 'common-pool' by water, nutrient and sediment transport dynamics. Just as Earth-surface research can benefit from decades of work on common-pool resource systems, quantitative Earth-surface science can make essential contributions to efforts addressing complex problems in environmental sustainability.

  12. Seismic interferometry of railroad induced ground motions: body and surface wave imaging

    Science.gov (United States)

    Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon

    2016-04-01

    Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.

  13. Environmental monitoring in peat bog areas by change detection methods

    Science.gov (United States)

    Michel, Ulrich; Mildes, Wiebke

    2016-10-01

    Remote sensing image analysis systems and geographic information systems (GIS) show great promise for the integration of a wide variety of spatial information supporting tasks such as urban and regional planning, natural resource management, agricultural studies and topographic or thematic mapping. Current and future remote sensing programs are based on a variety of sensors that will provide timely and repetitive multisensor earth observation on a global scale. GIS offer efficient tools for handling, manipulating, analyzing and presenting spatial data that are required for sensible decision making in various areas. The Environmental Monitoring project may serve as a convincing example of the operational use of integrated GIS/remote sensing technologies. The overall goal of the project is to assess the capabilities of satellite remote sensing for the analysis of land use changes, especially in moor areas. These areas are recognized as areas crucial to the mission of the Department of Environment and, therefore, to be placed under an extended level of protection. It is of critical importance, however, to have accurate and current information about the ecological and economic state of these sensitive areas. In selected pasture and moor areas, methods for multisensor data fusion have being developed and tested. The results of this testing show which techniques are useful for pasture and moor monitoring at an operational level. A hierarchical method is used for extracting bog land classes with respect to the environmental protection goals. A highly accurate classification of the following classes was accomplished: deciduous- and mixed forest, coniferous forest, water, very wet areas, meadowland/farmland with vegetation, meadowland/farmland with partly vegetation, meadowland/ farmland without vegetation, peat quarrying with maximum of 50% vegetation, de- and regeneration stages. In addition, a change detection analysis is performed in comparison with the existing

  14. Carbon dioxide flux and net primary production of a boreal treed bog: responses to warming and water table manipulations

    Science.gov (United States)

    Munir, T. M.; Perkins, M.; Kaing, E.; Strack, M.

    2014-09-01

    Mid-latitude treed bogs are significant carbon (C) stocks and are highly sensitive to global climate change. In a dry continental treed bog, we compared three sites; control, recent (1-3 years; experimental) and older drained (10-13 years; drained) with water levels at 38, 74 and 120 cm below the surface, respectively. At each site we measured carbon dioxide (CO2) fluxes and tree root respiration (Rr) (across hummock-hollow microtopography of the forest floor) and net primary production (NPP) of trees during the growing seasons (May to October) of 2011-2013. The carbon (C) balance was calculated by adding net CO2 exchange of the forest floor (NEff-Rr) to the NPP of the trees. From cooler and wetter 2011 to driest and warmest 2013, The control site was a~C sink of 92, 70 and 76 g m-2, experimental site was a C source of 14, 57 and 135 g m-2, and drained site was a progressively smaller source of 26, 23 and 13 g m-2, respectively. Although all microforms at the experimental site had large net CO2 emissions, the longer-term drainage and deeper water level at the drained site resulted in the replacement of mosses with vascular plants (shrubs) at the hummocks and lichens at the hollows leading to the highest CO2 uptake at drained hummocks and significant losses at hollows. The tree NPP was highest at the drained site. We also quantified the impact of climatic warming at all water table treatments by equipping additional plots with open-top chambers (OTCs) that caused a passive warming on average of ∼1 °C and differential air warming of ∼6 °C (at mid-day full sun) across the study years. Warming significantly enhanced the shrub growth and CO2 sink function of the drained hummocks (exceeding the cumulative respiration losses at hollows induced by the lowered water level × warming). There was an interaction of water level with warming across hummocks that resulted in largest net CO2 uptake at warmed drained hummocks. Thus in 2013, the warming treatment enhanced the

  15. Monitoring of the ground surface temperature and the active layer in NorthEastern Canadian permafrost areas using remote sensing data assimilated in a climate land surface scheme.

    Science.gov (United States)

    Marchand, N.; Royer, A.; Krinner, G.; Roy, A.

    2014-12-01

    Projected future warming is particularly strong in the Northern high latitudes where increases of temperatures are up to 2 to 6 °C. Permafrost is present on 25 % of the northern hemisphere lands and contain high quantities of « frozen » carbon, estimated at 1400 Gt (40 % of the global terrestrial carbon). The aim of this study is to improve our understanding of the climate evolution in arctic areas, and more specifically of land areas covered by snow. The objective is to describe the ground temperature year round including under snow cover, and to analyse the active layer thickness evolution in relation to the climate variability. We use satellite data (fusion of MODIS land surface temperature « LST » and microwave AMSR-E brightness temperature « Tb ») assimilated in the Canadian Land Surface Scheme (CLASS) of the Canadian climate model coupled with a simple radiative transfer model (HUT). This approach benefits from the advantages of each of the data type in order to complete two objectives : 1- build a solid methodology for retrieving the ground temperature, with and without snow cover, in taïga and tundra areas ; 2 - from those retrieved ground temperatures, derive the summer melt duration and the active layer depth. We describe the coupling of the models and the methodology that adjusts the meteorological input parameters of the CLASS model (mainly air temperature and precipitations derived from the NARR database) in order to minimise the simulated LST and Tb ouputs in comparison with satellite measurements. Using ground-based meteorological data as validation references in NorthEastern Canadian tundra, the results show that the proposed approach improves the soil temperatures estimates when using the MODIS LST and Tb at 10 and 19 GHz to constrain the model in comparison with the model outputs without satellite data. Error analysis is discussed for the summer period (2.5 - 4 K) and for the snow covered winter period (2 - 3.5 K). Further steps are

  16. Antonio Beccadellis bog om kong Alfonso I af Napoli (1455) og reformationskongen Christian III af Danmark-Norge (1550)

    DEFF Research Database (Denmark)

    Lausten, Martin Schwarz

    2016-01-01

    Præsentation af Beccadellis bog (1455) og redegørelse for, hvorledes den ukendte Erhard efter tilskyndelse fra Melanchthon kunne tilegne denne katolske humanistiske bog, ændret i lettere grad, til den lutherske konge Christian III (1550)....

  17. Results of ground-water, surface-water, and water-chemistry monitoring, Black Mesa area, northeastern Arizona, 1994

    Science.gov (United States)

    Littin, G.R.; Monroe, S.A.

    1995-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined areas of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1994, ground-water withdrawals for industrial and municipal use totaled about 7,000 acre-feet, which is an 8-percent increase from the previous year. Pumpage from the confined part of the aquifer increased by about 9 percent to 5,400 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 2 percent to 1,600 acre-feet. Water-level declines in the confined area during 1994 were recorded in 10 of 16 wells, and the median change was a decline of about 2.3 feet as opposed to a decline of 3.3 feet for the previous year. The median change in water levels in the unconfined area was a rise of 0.1 foot in 1994 as opposed to a decline of 0.5 foot in 1993. Measured low-flow discharge along Moenkopi Wash decreased from 3.0 cubic feet per second in 1993 to 2.9 cubic feet per second in 1994. Eleven low-flow measurements were made along Laguna Creek between Tsegi, Arizona, and Chinle Wash to determine the amount of discharge that would occur as seepage from the N aquifer under optimal base-flow conditions. Discharge was 5.6 cubic feet per second near Tsegi and 1.5 cubic feet per second above the confluence with Chinle Wash. Maximum discharge was 5.9 cubic feet per second about 4 miles upstream from Dennehotso. Discharge was measured at three springs. The changes in discharge at Burro and Whisky Springs were small and within the uncertainty of

  18. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin

    Science.gov (United States)

    Zhang, L.; Lu, Zhiming; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W.

    2012-01-01

    Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool to detect long-term seismotectonic motions by reducing the atmospheric artifacts, thereby providing more precise deformation signal. The commonly used approaches such as persistent scatterer InSAR (PSInSAR) and small baseline subset (SBAS) algorithms need to resolve the phase ambiguities in interferogram stacks either by searching a predefined solution space or by sparse phase unwrapping methods; however the efficiency and the success of phase unwrapping cannot be guaranteed. We present here an alternative approach - temporarily coherent point (TCP) InSAR (TCPInSAR) - to estimate the long term deformation rate without the need of phase unwrapping. The proposed approach has a series of innovations including TCP identification, TCP network and TCP least squares estimator. We apply the proposed method to the Los Angeles Basin in southern California where structurally active faults are believed capable of generating damaging earthquakes. The analysis is based on 55 interferograms from 32 ERS-1/2 images acquired during Oct. 1995 and Dec. 2000. To evaluate the performance of TCPInSAR on a small set of observations, a test with half of interferometric pairs is also performed. The retrieved TCPInSAR measurements have been validated by a comparison with GPS observations from Southern California Integrated GPS Network. Our result presents a similar deformation pattern as shown in past InSAR studies but with a smaller average standard deviation (4.6. mm) compared with GPS observations, indicating that TCPInSAR is a promising alternative for efficiently mapping ground deformation even from a relatively smaller set of interferograms. ?? 2011.

  19. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites.

    Science.gov (United States)

    Farmer, John G; Thomas, Rhodri P; Graham, Margaret C; Geelhoed, Jeanine S; Lumsdon, David G; Paterson, Edward

    2002-04-01

    Chromium concentrations of up to 91 mg l(-1) were found by ICP-OES for ground water from nine boreholes at four landfill sites in an area of S.E. Glasgow/S. Lanarkshire where high-lime chromite ore processing residue (COPR) from a local chemical works had been deposited from 1830 to 1968. Surface water concentrations of up to 6.7 mg l(-1) in a local tributary stream fell to 0.11 mg l(-1) in the River Clyde. Two independent techniques of complexation/colorimetry and speciated isotope dilution mass spectrometry (SIDMS) showed that Cr was predominantly (>90%) in hexavalent form (CrVI) as CrO4(2-), as anticipated at the high pH (7.5-12.5) of the sites. Some differences between the implied and directly determined concentrations of dissolved CrIII, however, appeared related to the total organic carbon (TOC) content. This was most significant for the ground water from one borehole that had the highest TOC concentration of 300 mg l(-1) and at which ultrafiltration produced significant decreases in Cr concentration with decreasing size fractions, e.g. complex. This showed for the main Cr-containing fraction, 100 kDa-0.45 microm, that the Cr was associated with a dark brown band characteristic of organic (humic) matter. Comparison of gel electrophoresis and FTIR results for ultrafilter retentates of ground water from this borehole with those for a borehole at another site where CrVI predominated suggested the influence of carboxylate groups, both in reducing CrVI and in forming soluble CrIII-humic complexes. The implications of this for remediation strategies (especially those based on the addition of organic matter) designed to reduce highly mobile and carcinogenic Cr(VI)O4(2-) to the much less harmful CrIII as insoluble Cr(OH)3 are discussed.

  20. The study of coastal ground surfaces to predict the ways of increasing efficiency of research mobile robots

    Science.gov (United States)

    Makarov, Vladimir; Kurkin, Andrey; Belyalov, Vladimir; Tyugin, Dmitry; Zezyulin, Denis

    2017-04-01

    The increase in spatial scales of studying coastal areas can be achieved by the use of mobile robotic systems (MRS) equipped with scanning equipment, video inspection system and positioning system. The project aims at increasing the capabilities for designing effective ground MRS through the use of advanced methods of forecasting characteristics of vehicle-terrain interaction in coastal zones, where hydrosphere, lithosphere, atmosphere and biosphere interact. In the period from 14 May to 18 June 2016 there was organized the expedition to Sakhalin Island for conducting full-scale testing autonomous MRS for coastal monitoring and forecasting marine natural disasters [Kurkin A.A., Zeziulin D.V., Makarov V.S., Zaitsev A.I., Belyaev A.M., Beresnev P.O., Belyakov V.V., Pelinovsky E.N., Tyugin D.Yu. Investigations of coastal areas of the Okhotsk sea using a ground mobile robot // Ecological systems and devices. 2016. No. 8. P. 11-17]. Within the framework of the expedition specific areas of terrain in the vicinity of Cape Svobodny were investigated (with the support of SRB AMR FEB RAS). Terrain areas were studied from the standpoint of possibility of the MRS movement. As a result of measuring all the necessary data on the physical-mechanical and geometric characteristics of the coastal zones, required to calculate the force factors acting on the MRS, and, accordingly, the parameters of its motion were received. The obtained data will be used for developing new statistical models of the physical-mechanical and geometrical characteristics of the coastal ground surfaces, creating methodology for assessing the efficiency and finding ways to optimize the design of the MRS.

  1. The effects of oxalate treatment on the smear layer of ground surfaces of human dentine.

    Science.gov (United States)

    Pashley, D H; Galloway, S E

    1985-01-01

    The layer was evaluated by scanning electron microscopy and by measurement of hydraulic conductance before and after 2-min topical treatment with potassium chloride, neutral potassium oxalate, half-neutralized oxalic acid or both neutral and acidic oxalates. The treated smear layers were then re-evaluated microscopically and functionally both before and after acid challenge. The layers treated with KCl were not altered either microscopically or functionally and were susceptible to acid etching. Dentine surfaces treated with either oxalate solutions became less permeable and were acid-resistant.

  2. Pesticide levels in ground and surface waters of Primavera do Leste Region, Mato Grosso, Brazil.

    Science.gov (United States)

    Dores, Eliana F G C; Carbo, Leandro; Ribeiro, Maria L; De-Lamonica-Freire, Ermelinda M

    2008-08-01

    Residues of the herbicides simazine, metribuzin, metolachlor, trifluralin, atrazine, and two metabolites of atrazine, deisopropylatrazine (DIA) and deethylatrazine (DEA), are surveyed in the surface and groundwater of the Primavera do Leste region, Mato Grosso, Brazil during September and December 1998 and April 1999. Different water source sampling stations of groundwater (irrigation water well, drinking water well, and water hole) and surface water (dam and river) are set up based on agricultural land use. A solid-phase extraction procedure followed by gas chromatography-nitrogen-phosphorus detection is used for the determination of these compounds. All compounds are detected at least once in water samples. A temporal trend of pesticide contamination is observed, with the highest contamination frequency occurring in December during the main application season. Metribuzin shows the highest individual detection frequencies throughout the monitoring period, followed by metolachlor, simazine, and DEA. The maximum mean concentrations of pesticides in this study are in the range from 0.14 to 1.7 microg/L. We deduct that the contamination of water resources is predominantly caused by non-point pollution of pesticides used in intensive cash-crop cultures of the Cerrado area. Therefore, a continuous monitoring of pesticide concentrations in water resources of this tropical region is necessary to detect the longer term contamination trends and developing health risks.

  3. A study of SO2 emissions and ground surface displacements at Lastarria volcano, Antofagasta Region, Northern Chile

    Science.gov (United States)

    Krewcun, Lucie G.

    Lastarria volcano (Chile) is located at the North-West margin of the 'Lazufre' ground inflation signal (37x45 km2), constantly uplifting at a rate of ˜2.5 cm/year since 1996 (Pritchard and Simons 2002; Froger et al. 2007). The Lastarria volcano has the double interest to be superimposed on a second, smaller-scale inflation signal and to be the only degassing area of the Lazufre signal. In this project, we compared daily SO2 burdens recorded by AURA's OMI mission for 2005-2010 with Ground Surface Displacements (GSD) calculated from the Advanced Synthetic Aperture Radar (ASAR) images for 2003-2010. We found a constant maximum displacement rate of 2.44 cm/year for the period 2003-2007 and 0.80- 0.95 cm/year for the period 2007-2010. Total SO 2 emitted is 67.0 kT for the period 2005-2010, but detection of weak SO2 degassing signals in the Andes remains challenging owing to increased noise in the South Atlantic radiation Anomaly region.

  4. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2009-12-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer, CAR, and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  5. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2010-03-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  6. Assessment of dry season surface, ground, and treated water quality in the Cape Coast municipality of Ghana.

    Science.gov (United States)

    Quagraine, E K; Adokoh, C K

    2010-01-01

    This aim of this monitoring was to assess water quality in a dry season for the Cape Coast municipality in Ghana, which has been experiencing chronic water shortages. Fifteen different sampling stations--four surface, five ground, and six tap water samples--were analyzed for physicochemical and microbiological parameters during January to April 2005. Levels or trends in water quality that may be deleterious to sensitive water uses, including drinking, irrigation, and livestock watering have been noted with reference to well-established guidelines. Exceedances to some health-based drinking water guidelines included positive coliform for various water samples; pH for all groundwater samples (pH 5.9+/-0.3); conductivity for 50% groundwater; color for about a third of groundwater and tap water; Mn for 44% tap water, 67% groundwater, and 50% surface water samples. The World Health Organization laundry staining Fe guideline of 0.3 mg/l was exceeded by 75% of surface water, 44% tap water, and 53% groundwater samples. The corresponding Mn guideline of 0.1 mg/l was exceeded by all the water samples. Respectively, all surface water samples and also 75% of the surface water exceeded some known Cu and Zn guideline for the protection of aquatic life. Compared to some historic data for Fosu Lagoon, the current study shows a lowering of approximately 1 pH unit, increase of approximately 65% NH3, one to two orders of magnitude increase in PO4(3-), and more than two orders of magnitude increase in NO3-. In several instances, tap water samples collected at the consumers' end of the distribution system did not reflect on the true quality of the treated water. Mn, SO4(2-), PO4(3-), Cu, and Zn were among the chemical contaminations observed to occur in the distribution system.

  7. Areal-averaged and Spectrally-resolved Surface Albedo from Ground-based Transmission Data Alone: Toward an Operational Retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.

    2014-08-22

    We present here a simple retrieval of the areal-averaged and spectrally resolved surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties in the visible and near-infrared spectral range. The feasibility of our approach for the routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements:(1) spectrally resolved atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR) at wavelength 415, 500, 615, 673, and 870 nm, (2) tower-based measurements of local surface albedo at the same wavelengths, and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both long (2008-2013) and short (April-May, 2010) periods at the ARM Southern Great Plains (SGP) site and the NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE), which is defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved area-averaged albedo, is quite small (RMSE≤0.01) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between the tower-based daily averages of surface albedo for the completely overcast and non-overcast conditions is also demonstrated. This agreement suggests that our retrieval originally developed for the overcast conditions likely will work for non-overcast conditions as well.

  8. Dynamic subsidence prediction of ground surface above salt cavern gas storage considering the creep of rock salt

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new model is proposed to predict the dynamic subsidence of ground surface above salt cavern gas storage during the leaching and storage, which takes into account the creep of rock salt. In the model, the extended form of Gaussian curve is adopted to figure out the shape of subsidence areas. The corresponding theoretical formulas are derived. In addition, parameters are studied to investigate the surface subsidence as a function of the salt ejection rate, internal pressure, buried depth, diameter, height, running time, etc. Through an example, the subsidence of the salt cavern gas storage located at Jiangsu of China obtained by the new model was compared with those by Peter A F formula, Schober & Sroka formula and FLAC3D through simulation. The results showed the proposed model is precise and correct, and can meet the actual engineering demands. The surface subsidence is equidirectional with the increase of salt ejection rate, depth, diameter, height, and running time, but reverse to the increase of internal pressure. The depth, diameter, running time and internal pressure have great effects on the subsidence, whereas the salt ejection rate and height have little influences on it.

  9. Hydro-economic modeling of conjunctive ground and surface water use to guide sustainable basin management

    Science.gov (United States)

    Taher Kahil, Mohamed; Ward, Frank A.; Albiac, Jose; Eggleston, Jack; Sanz, David

    2016-04-01

    Water demands for irrigation, urban and environmental uses in arid and semiarid regions continue to grow, while freshwater supplies from surface and groundwater resources are becoming scarce and are expected to decline with climate change. Policymakers in these regions face hard choices on water management and policies. Hydro-economic modeling is the state-of-the art tool that could be used to guide the design and implementation of sustainable water management policies in basins. The strength of hydro-economic modeling lies in its capacity to integrate key biophysical and socio-economic components within a unified framework. A major gap in developments on hydro-economic modeling to date has been the weak integration of surface and groundwater flows, based on the theoretically correct Darcy equations used by the hydrogeological community. The modeling approach taken here is integrated, avoiding the single-tank aquifer assumption, avoiding simplified assumptions on aquifer-river linkages, and bypassing iterations among separate hydrological and economic models. The groundwater flow formulation used in this paper harnesses the standard finite difference expressions for groundwater flow and groundwater-surface water exchange developed in the USGS MODFLOW groundwater model. The methodological contribution to previous modeling efforts is the explicit specification of aquifer-river interactions, important when aquifer systems make a sizable contribution to basin resources. The modeling framework is solved completely, and information among the economic and hydrological components over all periods and locations are jointly and simultaneously determined. This novel framework is applied to the Jucar basin (Spain), which is a good experimental region for an integrated basin scale analysis. The framework is used for assessing the impacts of a range of climate change scenarios and policy choices, especially the hydrologic, land use, and economic outcomes. The modeling framework

  10. Modification of bog vegetation by power utility rights-of-way

    Energy Technology Data Exchange (ETDEWEB)

    Nickerson, N.H.; Thibodeau, F.R.

    1984-10-01

    Wetland modification is strictly controlled by a number of state and federal statutes. This study documents the effects of construction and maintenance of power utility rights-of-way on shrub swamp-bog vegetation at Tewksbury, Massachusetts. While both activities cause at least temporary changes in natural vegetation, neither causes substantial long-term negative impact. Bog vegetation recovers naturally in four growing seasons from the effects of both activites. Such utility rights-of-way do not appear to be in conflict with the intent of wetland protection legislation.

  11. A feasibility study to estimate minimum surface-casing depths of oil and gas wells to prevent ground-water contamination in four areas of western Pennsylvania

    Science.gov (United States)

    Buckwalter, T.F.; Squillace, P.J.

    1995-01-01

    Hydrologic data were evaluated from four areas of western Pennsylvania to estimate the minimum depth of well surface casing needed to prevent contamination of most of the fresh ground-water resources by oil and gas wells. The areas are representative of the different types of oil and gas activities and of the ground-water hydrology of most sections of the Appalachian Plateaus Physiographic Province in western Pennsylvania. Approximate delineation of the base of the fresh ground-water system was attempted by interpreting the following hydrologic data: (1) reports of freshwater and saltwater in oil and gas well-completion reports, (2) water well-completion reports, (3) geophysical logs, and (4) chemical analyses of well water. Because of the poor quality and scarcity of ground-water data, the altitude of the base of the fresh ground-water system in the four study areas cannot be accurately delineated. Consequently, minimum surface-casing depths for oil and gas wells cannot be estimated with confidence. Conscientious and reliable reporting of freshwater and saltwater during drilling of oil and gas wells would expand the existing data base. Reporting of field specific conductance of ground water would greatly enhance the value of the reports of ground water in oil and gas well-completion records. Water-bearing zones in bedrock are controlled mostly by the presence of secondary openings. The vertical and horizontal discontinuity of secondary openings may be responsible, in part, for large differences in altitudes of freshwater zones noted on completion records of adjacent oil and gas wells. In upland and hilltop topographies, maximum depths of fresh ground water are reported from several hundred feet below land surface to slightly more than 1,000 feet, but the few deep reports are not substantiated by results of laboratory analyses of dissolved-solids concentrations. Past and present drillers for shallow oil and gas wells commonly install surface casing to below the

  12. Ground-water-level monitoring, basin boundaries, and potentiometric surfaces of the aquifer system at Edwards Air Force Base, California, 1992

    Science.gov (United States)

    Rewis, D.L.

    1995-01-01

    A ground-water-level monitoring program was implemented at Edwards Air Force Base, California, from January through December 1992 to monitor spatial and temporal changes in poten-tiometric surfaces that largely are affected by ground-water pumping. Potentiometric-surface maps are needed to determine the correlation between declining ground- water levels and the distribution of land subsidence. The monitoring program focused on areas of the base where pumping has occurred, especially near Rogers Lake, and involved three phases of data collection: (1) well canvassing and selection, (2) geodetic surveys, and (3) monthly ground-water-level measurements. Construction and historical water- level data were compiled for 118 wells and pi-ezometers on or near the base, and monthly ground-water-level measurements were made in 82 wells and piezometers on the base. The compiled water-level data were used in conjunction with previously collected geologic data to identify three types of no-flow boundaries in the aquifer system: structural boundaries, a principal-aquifer boundary, and ground-water divides. Heads were computed from ground-water-level measurements and land-surface altitudes and then were used to map seasonal potentiometric surfaces for the principal and deep aquifers underlying the base. Pumping has created a regional depression in the potentiometric surface of the deep aquifer in the South Track, South Base, and Branch Park well-field area. A 15-foot decline in the potentiometric surface from April to September 1992 and 20- to 30-foot drawdowns in the three production wells in the South Track well field caused locally unconfined conditions in the deep aquifer.

  13. Application of ESPRIT in Broad Beam HF Ground Wave Radar Sea Surface Current Mapping

    Institute of Scientific and Technical Information of China (English)

    Liu Dan-hong; Wu Xiong-bin; Wen Bi-yang; Cheng Feng

    2004-01-01

    HF surface wave radar system OSMAR2000 is a broad-beam sea-state detecting radar. ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) algorithm is proposed to apply in DOA (direction of arrival) determination of sea echoes. The algorithm of ESPRIT is briefly introduced first. Then discussions are made on the technique for application in the OSMAR2000 framework. Numerical simulation results are presented to demonstrate the feasibility of radial current mapping based on this method. The algorithm manifests significant performance and computational advantages compared with that of MUSIC. Data acquired by OSMAR2000 are processed to give radial current map and the synthesized vector currents are compared with the in-situ measurement with traditional means. The results show the validity of ESPRIT application in DOA determination for broad-beam radar.

  14. W-Band Characterization of Grounded Frequency Selective Surface Arrays Composed of Nonequal Slot Length Subarrays

    Directory of Open Access Journals (Sweden)

    S. Islam

    2009-01-01

    Full Text Available We present the design and construction of Frequency Selective Surface arrays composed of two subarrays of different slot lengths. We investigated their response variations with the variation of slot length differences of the elementary sub-arrays. Such nonhomogeneous arrays cannot be simulated with Computer Aided Design (CAD programs because the boundary conditions are not fulfilled by the simulator. In infinite array simulation, the periodic boundary conditions are prescribed on the walls of the unit cell, whereas in the case of sub-arrays of unequal slot length such boundary conditions are not applicable. The CAD simulation of such combined array gives incorrect values of amplitude and phase responses. In this work, we investigate the characteristics of such complex arrays by using heuristic experimental approach. The results of the experimental approach demonstrate that the resultant reflection amplitude and phase of such complex array depend on the difference of slot lengths (ΔL of the two sub-arrays.

  15. From Ground Truth to Space: Surface, Subsurface and Remote Observations Associated with Nuclear Test Detection

    Science.gov (United States)

    Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.

    2016-12-01

    Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.

  16. Surface and Ground Water Quality in Köprüören Basin (Kütahya), Turkey

    Science.gov (United States)

    Arslan, Şebnem; Çelik, Mehmet; Erdem Dokuz, Uǧur; Abadi Berhe, Berihu

    2014-05-01

    In this study, quality of the water resources in Köprüören Basin, located to the west of Kütahya city in western Anatolia, were investigated. The total catchment area of the basin is 275 km2 and it is located upstream of Kütahya and Eskişehir plains. Therefore, besides 6,000 people residing in the basin, a much larger population will be impacted by the quality of surface and groundwater resources. Groundwater occurs under confined conditions in the limestones of Pliocene units. Groundwater flow is from north to south and south to north towards Kocasu stream, which flows to Enne Dam. The surface and ground water quality in this area are negatively affected by the mining activities. In the northern part of the area, there are coal deposits present in Miocene Tunçbilek formation. Ground waters in contact with the coal deposits contain low concentrations of arsenic (up to 30 µg/l). In the southern part, the only silver deposit of Turkey is present, which is developed in metamorphic basement rocks, Early Miocene volcanics and Pliocene units near Gümüşköy (Gümüş means silver, köy means village in Turkish). The amount of silver manufactured annually in this silver plant is huge and comprises about 1% of the World's Silver Production. The wastes, enriched in cyanide, arsenic, stibnite, lead and zinc, are stored in waste pools and there is extensive leakage of these heavy metals from these pools. Therefore, surface waters, soils and plants in the affected areas contain high concentrations of arsenic, stibnite and lead. The As, Sb, Pb and Zn concentrations are up to 733 µg/l, 158 µg/l, 48 µg/l, and 286 µg/l in surface waters (in dry season), 6180 ppm, 410 ppm, 4180 ppm, 9950 ppm in soils and 809 ppm, 399 ppm, 800 ppm, 2217 ppm in plants, respectively. Today, most of the As, Sb, Pb and Zn are absorbed by the soils and only a small part are dissolved in water. However, conditions might change in future leading to desorption of these contaminants. Therefore

  17. High resolution imaging of vadose zone transport using surface and crosswell ground penetrating radar methods

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kenneth H.; Kowalsky, Mike B.; Peterson, John E.

    2002-11-05

    To effectively clean up many contaminated sites there is a need for information on heterogeneities at scales ranging from one centimeter to tens of meters, as these features can alter contaminant transport significantly. At the Department of Energy's Hanford, Washington site heterogeneities of interest can range from localized phenomena such as silt or gravel lenses, fractures, clastic dikes, to large-scale lithologic discontinuities. In the vadose zone it is critical to understand the parameters controlling flow. These features have been suspected of leading to funneling and fingering, additional physical mechanisms that could alter and possibly accelerate the transport of contaminants to underlying groundwater. For example, it has been observed from the studies to date that over relatively short distances there are heterogeneities in the physical structure of the porous medium and structural differences between repacked soil cores and the field site from which the materials initially came (Raymond and Shdo, 1966). Analysis of cores taken from the vadose zone (i.e., soil surface to water table) has been useful in identifying localized zones of contamination. Unfortunately, these analyses are sparse (limited to a few boreholes) and extremely expensive. The high levels of radioactivity at many of the contaminated sites increase drilling and sample costs and analysis time. Cost of drilling and core analysis for the SX tank farm has exceeded $1M per borehole (50 meter deep) for sampling. The inability to track highly mobile species through the vadose zone highlights an important need: the need for methods to describe the complete vadose zone plume and to determine processes controlling accelerated contamination of groundwater at Hanford. A combination of surface and crosswell (i.e. borehole) geophysical measurements is one means to provide this information. The main questions addressed with the radar methods in this study are: (1) What parts of the vadose zone

  18. Estimating Daily Maximum and Minimum Land Air Surface Temperature Using MODIS Land Surface Temperature Data and Ground Truth Data in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Phan Thanh Noi

    2016-12-01

    Full Text Available This study aims to evaluate quantitatively the land surface temperature (LST derived from MODIS (Moderate Resolution Imaging Spectroradiometer MOD11A1 and MYD11A1 Collection 5 products for daily land air surface temperature (Ta estimation over a mountainous region in northern Vietnam. The main objective is to estimate maximum and minimum Ta (Ta-max and Ta-min using both TERRA and AQUA MODIS LST products (daytime and nighttime and auxiliary data, solving the discontinuity problem of ground measurements. There exist no studies about Vietnam that have integrated both TERRA and AQUA LST of daytime and nighttime for Ta estimation (using four MODIS LST datasets. In addition, to find out which variables are the most effective to describe the differences between LST and Ta, we have tested several popular methods, such as: the Pearson correlation coefficient, stepwise, Bayesian information criterion (BIC, adjusted R-squared and the principal component analysis (PCA of 14 variables (including: LST products (four variables, NDVI, elevation, latitude, longitude, day length in hours, Julian day and four variables of the view zenith angle, and then, we applied nine models for Ta-max estimation and nine models for Ta-min estimation. The results showed that the differences between MODIS LST and ground truth temperature derived from 15 climate stations are time and regional topography dependent. The best results for Ta-max and Ta-min estimation were achieved when we combined both LST daytime and nighttime of TERRA and AQUA and data from the topography analysis.

  19. Alaskan permafrost groundwater storage changes derived from GRACE and ground measurements

    Science.gov (United States)

    Reginald R. Muskett; Vladimir E. Romanovsky

    2011-01-01

    The Arctic is in transition from climate-driven thawing of permafrost. We investigate satellite-derived water equivalent mass changes, snow water equivalent with in situ measurements of runoff and ground-survey derived geoid models from 1999 through 2009. The Alaskan Arctic coastal plain groundwater storage (including wetland bog, thaw pond and lake) is increasing by 1...

  20. Field experiment provides ground truth for surface nuclear magnetic resonance measurement

    Science.gov (United States)

    Knight, R.; Grunewald, E.; Irons, T.; Dlubac, K.; Song, Y.; Bachman, H.N.; Grau, B.; Walsh, D.; Abraham, J.D.; Cannia, J.

    2012-01-01

    The need for sustainable management of fresh water resources is one of the great challenges of the 21st century. Since most of the planet's liquid fresh water exists as groundwater, it is essential to develop non-invasive geophysical techniques to characterize groundwater aquifers. A field experiment was conducted in the High Plains Aquifer, central United States, to explore the mechanisms governing the non-invasive Surface NMR (SNMR) technology. We acquired both SNMR data and logging NMR data at a field site, along with lithology information from drill cuttings. This allowed us to directly compare the NMR relaxation parameter measured during logging,T2, to the relaxation parameter T2* measured using the SNMR method. The latter can be affected by inhomogeneity in the magnetic field, thus obscuring the link between the NMR relaxation parameter and the hydraulic conductivity of the geologic material. When the logging T2data were transformed to pseudo-T2* data, by accounting for inhomogeneity in the magnetic field and instrument dead time, we found good agreement with T2* obtained from the SNMR measurement. These results, combined with the additional information about lithology at the site, allowed us to delineate the physical mechanisms governing the SNMR measurement. Such understanding is a critical step in developing SNMR as a reliable geophysical method for the assessment of groundwater resources.

  1. Directional site resonances and the influence of near-surface geology on ground motion

    Science.gov (United States)

    Bonamassa, Ornella; Vidale, John E.; Houston, Heidi; Schwartz, Susan Y.

    1991-05-01

    We examine the horizontal motions at close stations from earthquakes in the Loma Prieta and Whittier Narrows sequences to study the shear wave polarizations. We use a dense, six station array recording 10 aftershocks for the former, and use two events and 11 stations across the Los Angeles area for the latter.We compute the average azimuth of strongest shaking in the shear wave as a function of frequency from 1 to 18 Hz for each record of each earthquake. The direction of shaking at a given frequency often correlates much better with an empirical site resonance direction than with the direction of shaking expected from the focal mechanism of the earthquake. The effect tends to be greatest at the frequencies that are the most amplified. This phenomenon can complicate determination of the earthquake source at frequencies higher than 1 Hz.Further, since sites only 25 meters apart show different preferred directions, very near-surface geology is probably responsible. Estimation of directional site resonances may prove useful for seismic design.

  2. Estimation of the near surface soil water content during evaporation using air-launched ground-penetrating radar

    KAUST Repository

    Moghadas, Davood

    2014-01-01

    Evaporation is an important process in the global water cycle and its variation affects the near sur-face soil water content, which is crucial for surface hydrology and climate modelling. Soil evaporation rate is often characterized by two distinct phases, namely, the energy limited phase (stage-I) and the soil hydraulic limited period (stage-II). In this paper, a laboratory experiment was conducted using a sand box filled with fine sand, which was subject to evaporation for a period of twenty three days. The setup was equipped with a weighting system to record automatically the weight of the sand box with a constant time-step. Furthermore, time-lapse air-launched ground penetrating radar (GPR) measurements were performed to monitor the evaporation process. The GPR model involves a full-waveform frequency-domain solution of Maxwell\\'s equations for wave propagation in three-dimensional multilayered media. The accuracy of the full-waveform GPR forward modelling with respect to three different petrophysical models was investigated. Moreover, full-waveform inversion of the GPR data was used to estimate the quantitative information, such as near surface soil water content. The two stages of evaporation can be clearly observed in the radargram, which indicates qualitatively that enough information is contained in the GPR data. The full-waveform GPR inversion allows for accurate estimation of the near surface soil water content during extended evaporation phases, when a wide frequency range of GPR (0.8-5.0 GHz) is taken into account. In addition, the results indicate that the CRIM model may constitute a relevant alternative in solving the frequency-dependency issue for full waveform GPR modelling.

  3. Hydrophilic anthropogenic markers for quantification of wastewater contamination in ground- and surface waters.

    Science.gov (United States)

    Kahle, Maren; Buerge, Ignaz J; Müller, Markus D; Poiger, Thomas

    2009-12-01

    Hydrophilic, persistent markers are useful to detect, locate, and quantify contamination of natural waters with domestic wastewater. The present study focused on occurrence and fate of seven marker candidates including carbamazepine (CBZ), 10,11-dihydro-10,11-dihydroxycarbamazepine (DiOH-CBZ), primidone (PMD), crotamiton (CTMT), N-acetyl-4-aminoantipyrine (AAA), N-formyl-4-aminoantipyrine (FAA), and benzotriazole (BTri) in wastewater treatment plants (WWTPs), lakes, and groundwater. In WWTPs, concentrations from 0.14 microg/L to several micrograms per liter were observed for all substances, except CTMT, which was detected at lower concentrations. Loads determined in untreated and treated wastewater indicated that removal of the potential markers in WWTPs is negligible; only BTri was partly eliminated (average 33%). In lakes, five compounds, CBZ, DiOH-CBZ, FAA, AAA, and BTri, were consistently detected in concentrations of 2 to 70 ng/L, 3 to 150 ng/L, less than the limit of quantification to 30 ng/L, 2 to 80 ng/L, and 11 to 920 ng/L, respectively. Mean per capita loads in the outflows of the lakes suggested possible dissipation in surface waters, especially of AAA and FAA. Nevertheless, concentrations of CBZ, DiOH-CBZ, and BTri correlated with the actual anthropogenic burden of the lakes by domestic wastewater, indicating that these compounds are suitable for quantification of wastewater contamination in lakes. Marker candidates were also detected in a number of groundwater samples. Carbamazepine concentrations up to 42 ng/L were observed in aquifers with significant infiltration of river water, receiving considerable wastewater discharges from WWTPs. Concentration ratios between compounds indicated some elimination of BTri and DiOH-CBZ during subsurface passage or in groundwater, while CBZ and PMD appeared to be more stable and thus are promising wastewater markers for groundwater. The wastewater burden in groundwater, estimated with the markers CBZ and PMD

  4. Ab initio potential energy surface and excited vibrational states for the electronic ground state of Li2H

    Institute of Scientific and Technical Information of China (English)

    鄢国森; 先晖; 谢代前

    1997-01-01

    A 285-pomt multi-reference configuration-interaction involving single and double excitations ( MRS DCI) potential energy surface for the electronic ground state of L12H is determined by using 6-311G (2df,2pd)basis set.A Simons-Parr-Finlan polynomial expansion is used to fit the discrete surface with a x2 of 4.64×106 The equn librium geometry occurs at Rc=0.172 nm and,LiHL1=94.10°.The dissociation energy for reaction I2H(2A)→L12(1∑g)+H(2S) is 243.910 kJ/mol,and that for reaction L12H(2A’)→HL1(1∑) + L1(2S) is 106.445 kl/mol The inversion barrier height is 50.388 kj/mol.The vibrational energy levels are calculated using the discrete variable representation (DVR) method.

  5. Greenhouse gas exchange of rewetted bog peat extraction sites and a Sphagnum cultivation site in northwest Germany

    Science.gov (United States)

    Beyer, C.; Höper, H.

    2015-04-01

    .9 ± 112.8 g CO2-C m-2 a-1 at the rewetted sites and -115.8 ± 48.1 and -77 ± 39.8 g CO2-C m-2 a-1 at the Sphagnum cultivating site. The annual GWP100 balances ranged from -280.5 ± 465.2 to 644.5 ± 413.6 g CO2-eq. m-2 a-1 at the rewetted sites. In contrast, the Sphagnum farming site had a cooling impact on the climate in both years (-356.8 ± 176.5 and -234.9 ± 145.9 g CO2-C m-2 a-1). If the carbon exported through the harvest of the Sphagnum biomass and the additional CO2 emission from the decay of the organic material is considered, the NECB and GWP100 balances are near neutral. Peat mining sites are likely to become net carbon sinks and a peat accumulating ("growing") peatland within 30 years of rewetting, but the GWP100 balance may still be positive. A recommended measure for rewetting is to achieve a water level of a few centimetres below ground. Sphagnum farming is a climate-friendly alternative to conventional commercial use of bogs. A year-round constant water level of a few centimetres below ground level should be maintained.

  6. Nutrient Addition Leads to a Weaker CO2 Sink and Higher CH4 Emissions through Vegetation-Microclimate Feedbacks at Mer Bleue Bog, Canada

    Science.gov (United States)

    Bubier, J. L.; Arnkil, S.; Humphreys, E.; Juutinen, S.; Larmola, T.; Moore, T. R.

    2015-12-01

    Atmospheric nitrogen (N) deposition has led to nutrient enrichment in wetlands globally, affecting plant community composition, carbon (C) cycling, and microbial dynamics. Nutrient-limited boreal bogs are long-term sinks of carbon dioxide (CO2), but sources of methane (CH4), an important greenhouse gas. We fertilized Mer Bleue Bog, a Sphagnum moss and evergreen shrub-dominated ombrotrophic bog near Ottawa, Ontario, for 10-15 years with N as NO3 and NH4 at 5, 10 and 20 times ambient N deposition (0.6-0.8 g N m-2 y-1), with and without phosphorus (P) and potassium (K). Treatments were applied to triplicate plots (3 x 3 m) from May - August 2000-2015 and control plots received distilled water. We measured net ecosystem CO2 exchange (NEE), ecosystem photosynthesis and respiration, and CH4 flux with climate-controlled chambers; leaf-level CO2 exchange and biochemistry; substrate-induced respiration, CH4 production and consumption potentials with laboratory incubations; plant species composition and abundance; and microclimate (peat temperature, moisture, light interception). After 15 years, we have found that NEE has decreased, and CH4 emissions have increased, in the highest nutrient treatments owing to changes in vegetation, microtopography, and peat characteristics. Vegetation changes include a loss of Sphagnum moss and introduction of new deciduous species. Simulated atmospheric N deposition has not benefitted the photosynthetic apparatus of the dominant evergreen shrubs, but resulted in higher foliar respiration, contributing to a weaker ecosystem CO2 sink. Loss of moss has led to wetter near-surface substrate, higher rates of decomposition and CH4 emission, and a shift in microbial communities. Thus, elevated atmospheric deposition of nutrients may endanger C storage in peatlands through a complex suite of feedbacks and interactions among vegetation, microclimate, and microbial communities.

  7. Role and Responsibility of Board of Governors [BOG] in Ensuring Educational Quality in Colleges & Universities

    Science.gov (United States)

    Naik, B. M.

    2012-01-01

    The paper presents in brief the need and importance of effective, imaginative and responsible governing boards in colleges and universities, so as to ensure educational quality. BOG should engage fruitfully with the principal and activities in college/ university. UGC, AICTE have now prescribed creation of effective boards for both government and…

  8. Dibasic Ammonium Phosphate Application Enhances Aromatic Compound Concentration in Bog Bilberry Syrup Wine.

    Science.gov (United States)

    Wang, Shao-Yang; Li, Yi-Qing; Li, Teng; Yang, Hang-Yu; Ren, Jie; Zhang, Bo-Lin; Zhu, Bao-Qing

    2016-12-29

    A nitrogen deficiency always causes bog bilberry syrup wine to have a poor sensory feature. This study investigated the effect of nitrogen source addition on volatile compounds during bog bilberry syrup wine fermentation. The syrup was supplemented with 60, 90, 120 or 150 mg/L dibasic ammonium phosphate (DAP) before fermentation. Results showed that an increase of DAP amounts accelerated fermentation rate, increased alcohol content, and decreased sugar level. Total phenol and total flavonoid content were also enhanced with the increase of DAP amounts. A total of 91 volatile compounds were detected in the wine and their concentrations were significantly enhanced with the increase of DAP. Ethyl acetate, isoamyl acetate, phenethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, isobutanol, isoamyl alcohol, levo-2,3-butanediol, 2-phenylethanol, meso-2,3-butanediol, isobutyric acid, hexanoic acid, and octanoic acid exhibited a significant increase of their odor activity value (OAV) with the increase of DAP amounts. Bog bilberry syrup wine possessed fruity, fatty, and caramel flavors as its major aroma, whereas a balsamic note was the least present. The increase of DAP amounts significantly improved the global aroma attributes, thereby indicating that DAP supplementation could promote wine fermentation performance and enhance the sensory quality of bog bilberry syrup wine.

  9. Hvordan jøderne blev til jøder i Esters bog

    DEFF Research Database (Denmark)

    Holt, Else Kragelund

    2015-01-01

    persere, der ikke ”bliver jøder”. Denne kamp tolkes som udtryk dels for en fællesskabsskabende effervescens (Durkheim), der bedst forstås gennem Purimfestens karnevaleske karakter, dels for mimetisk rivalisering (Girard), personificeret gennem Haman og Mordokaj. Purim og Esters Bog står således i en...

  10. A single well pumping and recovery test to measure in situ acrotelm transmissivity in raised bogs

    NARCIS (Netherlands)

    Schaaf, van der S.

    2004-01-01

    A quasi-steady-state single pit pumping and recovery test to measure in situ the transmissivity of the highly permeable upper layer of raised bogs, the acrotelm, is described and discussed. The basic concept is the expanding depression cone during both pumping and recovery. It is shown that applying

  11. Diurnal and seasonal variation of carbon dioxide exchange from a former true raised bog.

    NARCIS (Netherlands)

    Nieveen, J.P.; Jacobs, C.M.J.; Jacobs, A.F.G.

    1998-01-01

    Carbon dioxide exchange was measured, using the eddy covariance technique, during a one and a half year period in 1994 and 1995. The measurements took place over a former true raised bog, characterized by a shallow peat layer and a vegetation dominated by Molinia caerulea. The growing season extende

  12. Pollution of bogs in Tomsk region (Western Siberia, Russia as an indicator of sustainable development

    Directory of Open Access Journals (Sweden)

    A.M Mezhibor

    2014-10-01

    Full Text Available Wetlands play a key role in the climatic balance of our planet. Thus, their protection from anthropogenic pollution is an important target for sustainable development of environment. Wetlands have a special significance for the Siberian region of Russia where they take great territories. Peat bogs, being unique ecosystems among wetlands, have properties to save the history of atmospheric pollution. The particularity of peat bogs is determined by their nutrition - they receive chemical elements mostly from the atmosphere. Some peat bogs in Siberia (Tomsk region, Russia were studied to determine the degree of environment pollution during the last century and the change of geochemical composition of peat in time. These studies determined the increase of pollution in the region from the middle of 20th century because of the sharp industrial development. The data on the pollution of peat bogs allow concluding that the geochemical peculiarities of different parts of Tomsk region influenced by different types of industry: nuclear facility, coal-burning power stations and oil refineries. This method can be used together with other methods implemented for the detection of anthropogenic pollution and the results can be used as indicative parameters in environmental change. The results of the studies can be used for the development of recommendations in the decrease of the industry influence for the sustainable development of Siberian region.Keywords: upland peat, air pollution, Tomsk region, indicators of sustainable development

  13. Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition?

    NARCIS (Netherlands)

    Tomassen, H.B.M.; Smolders, A.J.P.; Limpens, J.; Lamers, L.P.M.; Roelofs, J.G.M.

    2004-01-01

    1. In many ombrotrophic bog areas the invasion of grass (e.g. Molinia caerulea) and tree (e.g. Betula pubescens) species has become a major problem. We investigated whether the invasion of such species is due to high atmospheric nitrogen (N) deposition by conducting a fertilization experiment. 2. Th

  14. Effect of cloud-to-ground lightning and meteorological conditions on surface NOx and O3 in Hong Kong

    Science.gov (United States)

    Fei, Leilei; Chan, L. Y.; Bi, Xinhui; Guo, Hai; Liu, Yonglin; Lin, Qinhao; Wang, Xinming; Peng, Ping'an; Sheng, Guoying

    2016-12-01

    Cloud-to-ground (CG) lightning, meteorological conditions and corresponding surface nitrogen oxides (NOx) and ozone (O3) variations in relation to thunderstorm and lightning activities over Hong Kong at Kwai Chung (urban), Tung Chung (new town) and Tap Mun (background) during active lightning seasons from 2009 to 2013 were studied by analyzing respective air quality monitoring station data along with CG lightning and meteorological data. We observed NOx enhancement and significant O3 decline on lightning days. Influences of land use types, lightning activities and meteorological conditions on surface NOx and O3 were examined. NOx and O3 concentrations shifted towards higher and lower levels, respectively, during lightning days especially in the dominant wind directions. Principal component analysis/absolute principal component scores (PCA/APCS) method and stepwise multiple linear regression (MLR) analysis were employed to examine the influence of thunderstorm related lightning and meteorological parameters on surface NOx and O3. Wind speed was supposed to be the most important meteorological parameter affecting the concentration of NOx, and lightning activities were observed to make a positive contribution to NOx. Negative contribution of hot, cloudy and wet weather and positive contribution of wind speed were found to affect the concentration of O3. Lightning parameters were also found to make a small positive contribution to O3 concentration at Tap Mun and Tung Chung, but the net effect of lightning activities and corresponding meteorological conditions was the decrease of O3 on lightning days. Reasonably good agreement between the predicted and observed NOx and O3 values indicates that PCA/APCS-MLR is a valuable method to study the thunderstorm induced NOx and O3 variations.

  15. Interactions between surface water and ground water and effects on mercury transport in the north-central Everglades

    Science.gov (United States)

    Harvey, Judson W.; Krupa, Steven L.; Gefvert, Cynthia; Mooney, Robert H.; Choi, Jungyill; King, Susan A.; Giddings, Jefferson B.

    2002-01-01

    The hydrology of the north-central Everglades was altered substantially in the past century by canal dredging, land subsidence, ground-water pumping, and levee construction. Vast areas of seasonal and perennial wetlands were converted to uses for agriculture, light industry, and suburban development. As the catchment area for the Everglades decreased, so did the sources of water from local precipitation and runoff from surrounding uplands. Partly in response to those alterations, water-resources managers compartmentalized the remaining wetlands in the north-central Everglades into large retention basins, called Water Conservation Areas (WCAs). In spite of efforts to improve how water resources are managed, the result has been frequent periods of excessive drying out or flooding of the WCAs because the managed system does not have the same water-storage capacity as the pre-drainage Everglades. Linked to the hydrological modifications are ecological changes including large-scale invasions of cattail, loss of tree islands, and diminishing bird populations in the Everglades. Complex interactions among numerous physical, chemical, and biological factors are responsible for the long-term degradation of the ecological character of the Everglades.Over the past 15 years, a new set of smaller wetland basins, called Stormwater Treatment Areas (STAs), have been designed and constructed by water-resources engineers on the former wetlands adjacent to WCAs. The purpose of STAs is to remove excess nutrients from agricultural drainage water prior to its input to WCAs. STAs tend to be about one-tenth the size of a WCA, and they are located on former wetlands on the northwestern side of WCAs on sites that were managed as farmland for much of the twentieth century in an area referred to as the Everglades Agricultural Area, or EAA. The objective of the present investigation was to quantify interactions between surface water and ground water in the Everglades Nutrient Removal Project

  16. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B.; Bergman, Torbjoern (Geological Survey of Sweden, Uppsala (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden)); Petersson, Jesper (SwedPower AB, Stockholm (Sweden))

    2008-12-15

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  17. Vegetation drives belowground biogeochemical gradients and C accumulation in an ombrotrophic bog

    Science.gov (United States)

    Knorr, Klaus-Holger; Galka, Mariusz; Borken, Werner

    2016-04-01

    Peat decomposition and C accumulation is determined by hydrology and climate and by concomitant changes in vegetation and changes in the quality of carbon inputs. Especially changes from moss dominated to vascular plant dominated vegetation affect belowground biogeochemistry and decomposition, as Sphagnum mosses provide refractory, nutrient poor litter, while vascular plants produce more labile litter and may have aerenchymatic rooting systems. In-site variability in moisture and vegetation, e.g. hummock-hollow structures, lawns, and medium scale surface topography, could thus cause large differences in decomposition and C accumulation within a site. In order to understand within-site variability and to see how C accumulation, common decomposition indices, and major biogeochemical parameters in the pore waters are affected by site specific conditions and vegetation, we investigated a moisture-vegetation gradient along a 800 m transect in an oceanic, ombrotrophic bog in Southern Patagonia. Along the transect, conditions changed from wet, Sphagnum dominated (S. magellanicum), to intermediate drier and wetter with Sphagnum/shrubs mixtures, sedges and rushes to more wind exposed, dominated by cushion plants (mainly Astelia pumila). We hypothesized that under arenchymatic vascular plants, decomposition is enhanced and C accumulation is decreased. Vegetation development was elucidated by plant macrofossils and carbon accumulation was attributed to the respective vegetation. The transect demonstrated a high variability of depth records within the bog. At the two most contrasting sites, the uppermost 1 meter persistently dominated by either Sphagnum magellanicum or Astelia pumila had accumulated over 2400 or 4200 years, respectively. Accordingly, the peat under cushion plants was much more decomposed, with C/N ratios of 20-50 compared to C/N ratios of 40-80 under Sphagnum patches. Mixed sites in between had C/N ratios of 30-90, depending on plant community, and

  18. Impact of long term wetting on pore water chemistry in a peat bog in Ontario, Canada

    Science.gov (United States)

    Schaper, Jonas; Blodau, Christian; Holger Knorr, Klaus

    2013-04-01

    Peatlands of the northern hemisphere store a remarkable amount of carbon but also contribute to global methane emissions. As large areas in the boreal and subarctic zone are considered to undergo significant climate change it is necessary to understand how these ecosystems react to altered environmental conditions. Since not only temperatures but also precipitation is likely to increase in these regions, it is of particular interest to understand the impact of raised water tables and changing local hydrological flow patterns on peatlands' carbon cycle. We chose a pristine bog that was partly flooded by a reservoir lake created 60 years ago in Ontario, Canada. Water management in the reservoir resulted in seasonal flooding, shifting hydrological flow patterns and vegetation gradients. The impact of partial flooding on pore water chemistry and DIC and CH4 concentrations were studied within surface peat layers. Samples were taken with pore water peepers along the vegetation- and flooding gradient. Turnover rates of DIC and methane were calculated from obtained concentration profiles and peat porosity under the assumption that transport is dominated by diffusion. Values of pH changed remarkably from 4 within the undisturbed bog part to almost 8 at the lake shore. Ca2+ and Mg2+ were the only ions that showed significant distribution patterns with readily increasing concentrations towards the lake water body. CH4 and DIC concentrations also increased towards the lake and peaked in around 100 cm depth right at the shore with maximum concentrations being 2766 μmol L-1 for CH4 and 7543 μmol L-1 for DIC, respectively. Turnover rates also increased towards the shore albeit some uncertainty lies in this finding as steady state condition required for calculations were probably not established and transport was not only dominated by diffusion. Maximum CH4 production rates were modeled to be 36 nmol cm-3 d-1 and maximum DIC production was calculated to 64 nmol cm-3 d-1. Ca2

  19. Origins of mineral matter in peat marsh and peat bog deposits, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Buendia, A.M. [Unidad Tecnica del Marmol, AIDICO, Cami de Castella, 4, 03660 Novelda, Alicante (Spain); Whateley, M.K.G. [Rio Tinto Technical Services, Castlemead, Lower Castlemead, BS99 7YR Bristol (United Kingdom); Bastida, J.; Urquiola, M.M. [Dpto. Geologia, Univ. Valencia, Dr. Moliner 50. 46100 Burjasot, Valencia (Spain)

    2007-07-02

    The mineralogy of three back-barrier peat marshes (Torreblanca, Benicasim and Moncofar marshes) from Eastern Spain and one peat bog (Orihuela del Tremedal bog) from central east Spain have been investigated, using X-ray diffraction (XRD) and scanning electronic microscope (SEM) techniques. A combination of XRD methods was used to quantify the mineralogy of dried bulk peat samples. The water source in the peat marshes is both continental and marine. Water is highly mineralised. Water flow is both low and slow (accumulative system). The water source in the peat bog is continental, draining from the hill. The higher concentration of ions in the water of the back-barrier peat marshes leads to a higher concentration of authigenic minerals in the peat marshes compared to the peat bog. Three main mineral origins have been recognized, namely: detrital, syngenetic-epigenetic and biogenic. The more important contribution comes from the detrital system. Biogenic and bio-influenced minerals are the main non-detrital minerals in the peatlands. This paper discusses the biogenic origin of halite (and other minor halides and sulphates, such as, sylvite, carnalite, epsomite, glauberite, mirabilite and anhydrite?) from halophytic plants, as well as amorphous silica (opal-A) from sponge spicules and phytoliths of several plants. Pyrite in the peat bog has both syngenetic and epigenetic origins from plant decomposition and sulphur release. In the peat marsh the pyrite has a syngenetic origin from sulphate reduction (S{sub sulphate} {yields} S{sub pyritic}), and an epigenetic origin in the older peat, from plant decomposition (S{sub organic} {yields} S{sub pyritic}). (author)

  20. Differences in rates of decrease of environmental radiation dose rates by ground surface property in Fukushima City after the Fukushima Daiichi nuclear power plant accident.

    Science.gov (United States)

    Kakamu, Takeyasu; Kanda, Hideyuki; Tsuji, Masayoshi; Kobayashi, Daisuke; Miyake, Masao; Hayakawa, Takehito; Katsuda, Shin-ichiro; Mori, Yayoi; Okouchi, Toshiyasu; Hazama, Akihiro; Fukushima, Tetsuhito

    2013-01-01

    After the Great East Japan Earthquake on 11 March 2011, the environmental radiation dose in Fukushima City increased. On 11 April, 1 mo after the earthquake, the environmental radiation dose rate at various surfaces in the same area differed greatly by surface property. Environmental radiation measurements continue in order to determine the estimated time to 50% reduction in environmental radiation dose rates by surface property in order to make suggestions for decontamination in Fukushima. The measurements were carried out from 11 April to 11 November 2011. Forty-eight (48) measurement points were selected, including four kinds of ground surface properties: grass (13), soil (5), artificial turf (7), and asphalt (23). Environmental radiation dose rate was measured at heights of 100 cm above the ground surface. Time to 50% reduction of environmental radiation dose rates was estimated for each ground surface property. Radiation dose rates on 11 November had decreased significantly compared with those on 11 April for all surface properties. Artificial turf showed the longest time to 50% reduction (544.32 d, standard error: 96.86), and soil showed the shortest (213.20 d, standard error: 35.88). The authors found the environmental radiation dose rate on artificial materials to have a longer 50% reduction time than that on natural materials. These results contribute to determining an order of priority for decontamination after nuclear disasters.

  1. Investigation of the influence of topographic irregularities and two dimensional effects on the intensity of surface ground motion with one- and two-dimensional analyses

    Directory of Open Access Journals (Sweden)

    L. Yılmazoğlu

    2013-12-01

    Full Text Available In this work, the surface ground motion that occurs during an earthquake in ground sections having different topographic forms has been examined with one and two dynamic site response analyses. One-dimensional analyses were undertaken using the Equivalent-Linear Earthquake Response Analysis program based on the equivalent linear analysis principle and the Deepsoil program which is able to make both equivalent linear and nonlinear analyses and two-dimensional analyses using the Plaxis software. The viscous damping parameters used in the dynamic site response analyses undertaken with the Plaxis software were obtained using the DeepSoil program. In the dynamic site response analyses, the synthetic acceleration over a 475 yr replication period representing the earthquakes in Istanbul was used as the basis of the bedrock ground motion. The peak ground acceleration obtained different depths of soils and acceleration spectrum values have been compared. The surface topography and layer boundaries in the 5-5' section were selected in order to examine the effect of the land topography and layer boundaries on the analysis results were flattened and compared with the actual status. The analysis results showed that the characteristics of the surface ground motion changes in relation to the varying local soil conditions and land topography.

  2. Application of BOG compressor in Jiangsu LNG Receiving Terminal%BOG压缩机在江苏LNG接收站的应用

    Institute of Scientific and Technical Information of China (English)

    张璨

    2012-01-01

    BOG压缩机是BOG处理的核心设备,其作用是处理过量的蒸发气,维持LNG储罐内的压力稳定.江苏LNG接收站选用的活塞立式压缩机,由于采用了迷宫密封,活塞和气缸为非接触,因此工作表面没有磨损,可以选择较高的活塞速度;由于采用了卸荷阀和余隙阀控制相结合的方式,因此使得负荷可以在更大的可控范围变化.在压缩机运行过程中,压缩机在启机时发生了跳车现象,为此,结合生产实际,灵活变化压缩机的联锁值及负荷增减的时间点,对压缩机冷却水系统及压缩机的隔离吹扫进行优化,满足了工艺要求,提高了安全系数.%Jiangsu LNG Receiving Terminal generally adopts recondenser process to utilize the cool energy of LNG to liquefy BOG and recover BOG. BOG compressor is the key equipment in BOG treatment, which can dispose redundant gas and maintain the tank's pressure of LNG. Jiangsu LNG Receiving Terminal uses vertical piston compressor (Swiss Burkhardt Company). Due to the adoption of the labyrinth seal, the piston and cylinder are not contacted, so, the work surface is abrasion free, and a high piston speed is better choice. Because the unloading valve control and clearance valve control become a set of combination, the load can be kept in a wide controllable range. During running of compressor, compressor has to shut down in staring up. Referring to actual operation, the interlock value compressor and time-point of load fluctuation are changed. Optimization on the cooling water system of compressor and isolation/purging for compressor is carried out, which meets the needs of technology requirements and increases safety.

  3. A Semiautomated Multilayer Picking Algorithm for Ice-sheet Radar Echograms Applied to Ground-Based Near-Surface Data

    Science.gov (United States)

    Onana, Vincent De Paul; Koenig, Lora Suzanne; Ruth, Julia; Studinger, Michael; Harbeck, Jeremy P.

    2014-01-01

    Snow accumulation over an ice sheet is the sole mass input, making it a primary measurement for understanding the past, present, and future mass balance. Near-surface frequency-modulated continuous-wave (FMCW) radars image isochronous firn layers recording accumulation histories. The Semiautomated Multilayer Picking Algorithm (SAMPA) was designed and developed to trace annual accumulation layers in polar firn from both airborne and ground-based radars. The SAMPA algorithm is based on the Radon transform (RT) computed by blocks and angular orientations over a radar echogram. For each echogram's block, the RT maps firn segmented-layer features into peaks, which are picked using amplitude and width threshold parameters of peaks. A backward RT is then computed for each corresponding block, mapping the peaks back into picked segmented-layers. The segmented layers are then connected and smoothed to achieve a final layer pick across the echogram. Once input parameters are trained, SAMPA operates autonomously and can process hundreds of kilometers of radar data picking more than 40 layers. SAMPA final pick results and layer numbering still require a cursory manual adjustment to correct noncontinuous picks, which are likely not annual, and to correct for inconsistency in layer numbering. Despite the manual effort to train and check SAMPA results, it is an efficient tool for picking multiple accumulation layers in polar firn, reducing time over manual digitizing efforts. The trackability of good detected layers is greater than 90%.

  4. Evaluation of the toxicological properties of ground- and surface-water samples from the Aral Sea Basin

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, K. [University of Salzburg, Department of Cell Biology, Hellbrunnerstr. 34, A-5020 Salzburg (Austria); Erdinger, L. [University of Heidelberg, Department for Hygiene and Medical Microbiology, Heidelberg (Germany); Ingel, F. [Russian Academy of Medical Sciences, A.N.Sysin Institute of Human Ecology and Environmental Hygiene, Moscow (Russian Federation); Khussainova, S. [Scientific Center of Pediatrics and Chrildren' s Surgery, Almaty (Kazakhstan); Utegenova, E. [Kazakh Sanitary-Epidemiological Station, Almaty (Kazakhstan); Bresgen, N. [University of Salzburg, Department of Cell Biology, Hellbrunnerstr. 34, A-5020 Salzburg (Austria); Eckl, P.M. [University of Salzburg, Department of Cell Biology, Hellbrunnerstr. 34, A-5020 Salzburg (Austria)]. E-mail: peter.eckl@sbg.ac.at

    2007-03-01

    In order to determine whether there is a potential health risk associated with the water supply in the Aral Sea Basin, ground- and surface-water samples were collected in and around Aralsk and from the Aral Sea in 2002. Water samples from Akchi, a small town close to Almaty, served as controls. Bioassays with different toxicological endpoints were employed to assess the general toxicological status. Additionally, the samples were analysed for microbial contamination. The samples were tested in the primary hepatocyte assay for their potential to induce micronuclei and chromosomal aberrations as cumulative indicators for genotoxicity. In parallel, the effects on cell proliferation evidenced by mitotic index and cytotoxicity such as the appearance of necrotic and apoptotic cells, were determined. Furthermore, samples were examined using the Microtox assay for general toxicity. Chemical analysis according to European regulations was performed and soil and water samples were analysed for DDT and DDE. The results obtained indicated no increased cyto- or genotoxic potential of the water samples, nor levels of DDT or DDE exceeding the thresholds levels suggested by WHO. Our data therefore do not support the hypothesis that the contamination of the drinking water in and around Aralsk is responsible for the health effects previously described such as increased rates of liver disease and in particular liver cancer. Microbiological analysis, however, revealed the presence of contamination in most samples analysed.

  5. Characteristics of Ground Surface Temperatures as in situ Observed in Elevational Permafrost on the Northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Luo, D.; Jin, H.; Marchenko, S. S.; Romanovsky, V. E.

    2016-12-01

    Elevational permafrost is primarily distributed on the Qinghai-Tibet Plateau (QTP) at mid-latitudes, where the average elevation is higher than 4,000 m a.s.l. The topography, including the elevation and aspect, obviously is the decisive controlling factor of thermal regimes of elevational permafrost, which is warm and extremely sensitive to anthropogenic activities and climate changes. Due to the harsh weather conditions and unfavorable logistics accommodations, however, the elevational permafrost on the QTP, especially in the rugged topography, is hard to be plotted through ground-based field investigations. The exact distribution of elevational permafrost could be simulated through GST. In this study, we set up three monitoring sites of GST at the beginning of 2015. One located in the rugged mountain of the source area of the Yellow River, one located in the sunny slope of the Bayan Har Mountain Pass, and one another located in a degrading alpine meadow of the source area of the Yangtze River. Based on these GST records, the daily, monthly, seasonal and year-average values of GST, freezing and thawing indices calculated from GST, and empirical Stefan Equation to calculate the ALT, as well as the GIPL-2.0 model to simulate the freezing and thawing processes of the active layer were integrative executed for these three sites. Results demonstrate that GST could be a much more reliable driving parameter to simulate the active layer and permafrost than the air temperature and land surface temperature.

  6. [Effects of ground surface mulching in tea garden on soil water and nutrient dynamics and tea plant growth].

    Science.gov (United States)

    Sun, Li-tao; Wang, Yu; Ding, Zhao-tang

    2011-09-01

    Taking a 2-year-old tea garden in Qingdao of Shandong Province as test object, this paper studied the effects of different mulching modes on the soil water and nutrient dynamics and tea plant growth. Four treatments were installed, i.e., no mulching (CK), straw mulching (T1), plastic film mulching (T2), and straw plus plastic film mulching (T3). Comparing with CK, mulching could keep the soil water content at a higher level, and enhance the water use efficiency. In treatments T1 and T3, the tea growth water use efficiency and yield water use efficiency increased by 43%-48% and 7%-13%, respectively, compared with CK. Also in treatments T1 and T3, the contents of soil organic matter, available-N, nitrate-N, and ammonium-N increased significantly, with the soil fertility improved, and the leaf nitrate-N content and nitrate reductase activity increased, which promoted the tea growth and yield (12%-13% higher than CK) and made the peak period of bud growth appeared earlier. Considering the tea growth and yield, water and nutrient use efficiency, environment safety and economic benefit, straw mulching could be an effective ground surface mulching mode for young tea garden.

  7. The effects of nutrient losses from agriculture on ground and surface water quality: the position of science in developing indicators for regulation

    NARCIS (Netherlands)

    Schröder, J.J.; Scholefield, D.; Cabral, F.; Hofmans, G.

    2004-01-01

    The magnitude of current nutrient losses from agriculture to ground and surface water calls for effective environmental policy, including the use of regulation. Nutrient loss is experienced in many countries despite differences in the organisation and intensity of agricultural production. However, a

  8. Validation of the Cooray‐Rubinstein (C‐R) formula for a rough ground surface by using three‐dimensional (3‐D) FDTD

    National Research Council Canada - National Science Library

    Li, Dongshuai; Zhang, Qilin; Liu, Tao; Wang, Zhenhui

    2013-01-01

    In this paper, we have extended the Cooray‐Rubinstein (C‐R) approximate formula into the fractal rough ground surface and then validate its accuracy by using three‐dimensional (3‐D) finite‐difference time‐domain (FDTD...

  9. Where’s the Ground Surface? – Elevation Bias in LIDAR-derived Digital Elevation Models Due to Dense Vegetation in Oregon Tidal Marshes

    Science.gov (United States)

    Light Detection and Ranging (LIDAR) is a powerful resource for coastal and wetland managers and its use is increasing. Vegetation density and other land cover characteristics influence the accuracy of LIDAR-derived ground surface digital elevation models; however the degree to wh...

  10. The Brenner Moor - A saline bog as a source for halogenated and non-halogenated volatile compounds

    Science.gov (United States)

    Krause, T.; Studenroth, S.; Furchner, M.; Hoffman, A.; Lippe, S.; Kotte, K.; Schöler, H. F.

    2012-04-01

    The Brenner Moor is a small bog in the catchment area of the river Trave located in Schleswig-Holstein, North Germany, between Baltic and North Sea. The bog is fed by several saline springs with chloride concentrations up to 15 g/L. The high chloride concentrations and the high organic content of the peat make the Brenner Moor an ideal source for the abiotic formation of volatile organic halogenated compounds (VOX). VOX play an important role in the photochemical processes of the lower atmosphere and information on the atmospheric input from saline soils like the Brenner Moor will help to understand the global fluxes of VOX. Soil samples were taken in spring 2011 from several locations and depths in the vicinity of the Brenner Moor. The samples were freeze-dried, ground and incubated in water emphasising an abiotic character for the formation of volatile organic compounds. 1,2-dichloroethane and trichloromethane are the main halogenated compounds emitted from soils of the Brenner Moor. The abiotic formation of trichloromethane as well as other trihalomethanes has been part of intensive studies. A well known source is the decarboxylation of trichloroacetic acid and trichloroacetyl-containing compounds to trichloromethane [1]. Huber et al. discovered another pathway in which catechol, as a model compound for organic substances, is oxidised under Fenton-like conditions with iron(III), hydrogen peroxide and halides to form trihalomethanes [2]. Besides the halogenated compounds, the formation of sulphur compounds such as dimethyl sulfide and dimethyl disulfide and several furan derivatives could be detected which also have an impact on atmospheric chemistry, especially particle formation of clouds. Furan, methylfuran and dimethylfuran are compounds that can be obtained under Fenton-like oxidation from catechol, methyl- and dimethylcatechol and are known to be produced in natural soils [3]. A novel class of furan derivatives that are formed under abiotic conditions from

  11. Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996

    Science.gov (United States)

    Parnell, J.M.

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.

  12. Transport of a nematicide in surface and ground waters in a farmed tropical catchment with volcanic substratum

    Science.gov (United States)

    Charlier, J.-B.; Cattan, P.; Voltz, M.; Moussa, R.

    2009-04-01

    Assessment of water-pollution risks in agricultural regions requires studying pesticide transport processes in soil and water compartments at the catchment scale. In tropical regions, banana (Musa spp.) plantations are located in zones with abundant rainfalls and soils with high infiltration rates, which lead to washout and leaching of soil-applied pesticides, causing severe diffuse pollution of water resources. The aim of this paper is to determine how the nematicide cadusafos [S,S-di-sec-butyl O-ethyl phosphorodithioate], used in banana plantations, contaminates water and soils at the two scales of subcatchment and catchment. The study site was a small banana-growing catchment on the tropical volcanic island of Guadeloupe in the Caribbean (FWI). The catchment is located in pedoclimatic conditions where rainfall is abundant (> 4000 mm/year), and soil permeable (saturated hydraulic conductivity of Andosol Ks > 30 mm/h). Two campaigns of nematicide application were conducted, one in 2003 over 40% of the catchment and one in 2006 over 12%. For 100 days after application, we monitored the surface water and groundwater flows and the cadusafos concentrations in the soil and in surface and ground waters in a 2400 m² subcatchment and a 17.8 ha catchment. The results show that at the subcatchment scale the high retention in the A horizon of the soil limited the transport of cadusafos by runoff, whereas the lower retention of the molecule in the B horizon favoured percolation towards the shallow groundwater. The contamination levels of surface water, as well as shallow and deep groundwaters, reflected the geological structure of the Féfé catchment: i.e. a shallow aquifer in the most recent volcanic deposits that is rapidly exposed to pollution and a deeper aquifer that is relatively protected from the pollution coming from the treated fields. Comparing the losses of cadusafos at the subcatchment and at the catchment scales revealed that the nematicide re-infiltrated in

  13. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    Science.gov (United States)

    Barton, Gary J.

    2004-01-01

    The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated

  14. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    Energy Technology Data Exchange (ETDEWEB)

    MYERS DA; CUBBAGE R; BRAUCHLA R; O' BRIEN G

    2008-07-24

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity{trademark} surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects.

  15. Ground-penetrating radar (GPR) responses for sub-surface salt contamination and solid waste: modeling and controlled lysimeter studies.

    Science.gov (United States)

    Wijewardana, Y N S; Shilpadi, A T; Mowjood, M I M; Kawamoto, K; Galagedara, L W

    2017-02-01

    The assessment of polluted areas and municipal solid waste (MSW) sites using non-destructive geophysical methods is timely and much needed in the field of environmental monitoring and management. The objectives of this study are (i) to evaluate the ground-penetrating radar (GPR) wave responses as a result of different electrical conductivity (EC) in groundwater and (ii) to conduct MSW stratification using a controlled lysimeter and modeling approach. A GPR wave simulation was carried out using GprMax2D software, and the field test was done on two lysimeters that were filled with sand (Lysimeter-1) and MSW (Lysimeter-2). A Pulse EKKO-Pro GPR system with 200- and 500-MHz center frequency antennae was used to collect GPR field data. Amplitudes of GPR-reflected waves (sub-surface reflectors and water table) were studied under different EC levels injected to the water table. Modeling results revealed that the signal strength of the reflected wave decreases with increasing EC levels and the disappearance of the subsurface reflection and wave amplitude reaching zero at higher EC levels (when EC >0.28 S/m). Further, when the EC level was high, the plume thickness did not have a significant effect on the amplitude of the reflected wave. However, it was also found that reflected signal strength decreases with increasing plume thickness at a given EC level. 2D GPR profile images under wet conditions showed stratification of the waste layers and relative thickness, but it was difficult to resolve the waste layers under dry conditions. These results show that the GPR as a non-destructive method with a relatively larger sample volume can be used to identify highly polluted areas with inorganic contaminants in groundwater and waste stratification. The current methods of MSW dumpsite investigation are tedious, destructive, time consuming, costly, and provide only point-scale measurements. However, further research is needed to verify the results under heterogeneous aquifer

  16. Analysis of isotope element by electrolytic enrichment method for ground water and surface water in Saurashtra region, Gujarat, India

    Directory of Open Access Journals (Sweden)

    Sajal Singh

    2016-12-01

    Full Text Available The present study has been aimed for the assessment of isotope element Tritium (3H. It is a great threat to human health and environment for lengthy duration. The tritium exists in earth in diverse forms such as (1 small amounts of natural tritium are produced by alpha decay of lithium-7, (2 natural atmospheric tritium is also generated by secondary neutron cosmic ray bombardment of nitrogen, (3 atmospheric nuclear bomb testing in the 1950s, although the contribution from nuclear power plants is small. Tritium or 3H is a radioactive isotope of hydrogen with a half-life of 12.32 ± 0.02 years. Water samples from ground water, surface water, and precipitation were collected from different locations in Gujarat area and were analyzed for the same. Distillation of samples was done to reduce the conductivity. Deuterium and Hydrogen were removed by the process of physico-chemical fractionation in the tritium enrichment unit. The basis of physico-chemical fractionation is the difference in the strength of bonds formed by the light vs. the heavier isotope of a given element. A total of 10 cycles (runs were executed using Quintals process. Tritium concentration files were created with help of WinQ and Quick start software in Quintals process (Liquid Scintillation Spectrometer. The concentration of tritium in terms of tritium units (TU of various samples has been determined. The TU values of the samples vary in the range of 0.90–6.62 TU.

  17. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    Science.gov (United States)

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  18. EXAMINATION ABOUT INFLUENCE FOR PRECISION OF 3D IMAGE MEASUREMENT FROM THE GROUND CONTROL POINT MEASUREMENT AND SURFACE MATCHING

    Directory of Open Access Journals (Sweden)

    T. Anai

    2015-05-01

    Full Text Available As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results

  19. Surface aerosol and rehabilitation properties of ground-level atmosphere in the mountains of the North Caucasus

    Science.gov (United States)

    Reps, Valentina; Efimenko, Natalia; Povolotskaya, Nina; Abramtsova, Anna; Ischenko, Dmitriy; Senik, Irina; Slepikh, Victor

    2017-04-01

    The rehabilitative properties (RP) of ground-level atmosphere (GA) of Russian resorts are considered as natural healing resources and received state legal protection [1]. Due to global urbanization the chemical composition and particle size distribution of the surface aerosol are changing rapidly. However, the influence of surface aerosol on the RP of GA has been insufficiently studied. At the resort region of the North Caucasus complex monitoring (aerosol, trace gases NOx, CO, O3, CH4; periodically - heavy metals) is performed at two high levels (860 masl - a park zone of a large mountain resort, 2070 masl - alpine grassland, the net station). The results of the measurements are used in programs of bioclimatic, landscape and medical monitoring to specify the influence of aerosol on rehabilitation properties of the environment and human adaptative reserves. The aerosol particles of size range 500-1000 nm are used as a marker of the pathogenic effect of aerosol [2]. In the conditions of regional urbanization and complicated mountain atmospheric circulation the influence of aerosol on RP of GA and the variability of heart rhythm with the volunteers at different heights were investigated. At the height of 860 masl (urbanized resort) there have been noticed aerosol variations in the range of 0,04-0,35 particles/cm3 (slightly aerosol polluted), in mountain conditions - background pollution aerosol level. The difference of bioclimatic conditions at the specified high-rise levels has been referred to the category of contrasts. The natural aero ionization ∑(N+)+(N-) varied from 960 ion/cm3 to 1460 ion/cm3 in the resort park (860 m); from 1295 ion/cm3 to 4850 ion/cm3 on the Alpine meadow (2070 m); from 1128 ion/cm3 to 3420 ion/cm3 - on the tested site near the edge of the pinewood (1720 m). In the group of volunteers the trip from low-hill terrain zone (860 m) to the lower zone of highlands (2070 m) caused the activation of neuro and humoral regulation, vegetative and

  20. Examination about Influence for Precision of 3d Image Measurement from the Ground Control Point Measurement and Surface Matching

    Science.gov (United States)

    Anai, T.; Kochi, N.; Yamada, M.; Sasaki, T.; Otani, H.; Sasaki, D.; Nishimura, S.; Kimoto, K.; Yasui, N.

    2015-05-01

    As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching) by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results of analysis made

  1. Towards the identification of dyestuffs in Early Iron Age Scandinavian peat bog textiles

    DEFF Research Database (Denmark)

    Mannering, Ulla; Gleba, Margarita; Vanden Berghe, Ina

    2009-01-01

    A large systematic dye investigation of prehistoric Danish and Norwegian bog textiles was carried out using high performance liquid chromatography with photo diode array detection. After the selection of the most suitable protocol for dye extraction and HPLC analysis for this specific group...... of archaeological samples, the second part included the characterisation of the dyes detected in the whole series of the Early Iron Age textiles and the interpretation of the dyeing technology. Natural organic dyes were found from the three main categories of natural dyes, hence throwing new light on the use...... of biological dye sources in Early Iron Age Scandinavia. The results clearly indicate that most Scandinavian peat bog textiles originally were dyed and that already during the 1st millennium BC, the populations in Scandinavia were familiar with the dyeing technology....

  2. Linking major and trace element headwater stream concentrations to DOC release and hydrologic conditions in a bog and peaty riparian zone

    Science.gov (United States)

    Broder, Tanja; Biester, Harald

    2017-04-01

    Peatlands and organic-rich riparian zones are known to export large amounts of dissolved organic carbon (DOC) to surface water. In organic-rich, acidic headwater streams main carriers for element export are dissolved organic matter (DOM) and organic-iron complexes. In this environment DOM might also act as major carrier for metals, which otherwise may have a low solubility. This study examines annual and short term event-based variations of major and trace elements in a headwater catchment. Patterns are used to trace hydrological pathways and element sources under different hydrologic preconditions. Furthermore, it elucidates the importance of DOC as carrier of different elements in a bog and a peaty riparian catchment. The study was conducted in a small headwater stream draining an ombrotrophic peatland with an adjacent forested area with peaty riparian soils in the Harz Mountains (Germany). Discharge sampling was conducted weekly at two sites from snowmelt to begin of snowfall and in high resolution during selected discharge events in 2013 and 2014. Element concentrations were measured by means of ICP-MS and ICP-OES. A PCA was performed for each site and for annual and event datasets. Results show that a large number of element concentrations strongly correlate with DOC concentrations at the bog site. Even elements like Ca and Mg, which are known to have a low affinity to DOC. Congruently, the first principal component integrates the DOC pattern (element loadings > 0.8: Ca, Fe, Mg, Mn, Zn, As, Sr, Cd, DOC) and explained about 35 % of total variance and even 50 % during rain events (loadings > 0.8: Al, Ca, Fe, Mg, Mn, Zn, Li, Co, As, Sr, Cd, Pb, DOC). The study cannot verify that all correlating elements bind to DOC. It is likely that also a common mobilization pattern in the upper peat layer by plant decomposition causes the same response to changes in hydrologic pathways. Additionally, a low mineral content and an enrichment of elements like Fe and Mn in the

  3. Functional Diversity of Boreal Bog Plant Species Decreases Seasonal Variation of Ecosystem Carbon Sink Function

    Science.gov (United States)

    Korrensalo, A.

    2015-12-01

    Species diversity has been found to decrease the temporal variance of productivity of a plant community, and diversity in species responses to environmental factors seems to make a plant community more stable in changing conditions. Boreal bogs are nutrient poor peatland ecosystems where the number of plant species is low but the species differ greatly in their growth form. In here we aim to assess the role of the variation in photosynthesis between species for the temporal variation in ecosystem carbon sink function. To quantify the photosynthetic properties and their seasonal variation for different bog plant species we measured photosynthetic parameters and stress-inducing chlorophyll fluorescence of vascular plant and Sphagnum moss species in a boreal bog over a growing season. We estimated monthly gross photosynthesis (PG) of the whole study site based on species level light response curves and leaf area development. The estimated PG was further compared with a gross primary production (GPP) estimate measured by eddy covariance (EC) technique. The sum of upscaled PG estimates agreed well with the GPP estimate measured by the EC technique. The contributions of the species and species groups to the ecosystem level PG changed over the growing season. The sharp mid-summer peak in sedge PG was balanced by more stable PG of evergreen shrubs and Sphagna. Species abundance rather than differences in photosynthetic properties between species and growth forms determined the most productive plants on the ecosystem scale. Sphagna had lower photosynthesis and clorophyll fluorescence than vascular plants but were more productive on the ecosystem scale throughout the growing season due to their high areal coverage. These results show that the diversity of growth forms stabilizes the seasonal variation of the ecosystem level PG in an ombrotrophic bog ecosystem. This may increase the resilience of the ecosystem to changing environmental conditions.

  4. Contributions to the knowledge of flora and vegetation of peat bog from Bihorului Mountains (NW Romania

    Directory of Open Access Journals (Sweden)

    Petru BURESCU

    2010-11-01

    Full Text Available The oligotrophic peat bog of Bihorului Mountains are quartered in the valleys with northern exposure, of siliceous substrate, forming habitats with high conservation value, which are home to over 10 rare relict species. The phytocoenoses of the associations Sphagnetum magellanici, Sphagno cuspidati – Rhynchosporetum albae, Caricetum limosae were analyzed by us in terms of floristic composition, ecological spectra of the type of life forms and floristic elements, in terms of chart ecological factors: moisture, soil temperature and chemical reaction.

  5. Bioavailability of inorganic arsenic from bog ore-containing soil in the dog.

    OpenAIRE

    Groen, K; Vaessen, H A; Kliest, J J; Boer, J.L. de; van Ooik, T; Timmerman, A.; Vlug, R F

    1994-01-01

    In some parts of The Netherlands, bog ore-containing soils predominate, which have natural arsenic levels that exceed, by a factor of 10, existing standards for maximum allowable levels of inorganic arsenic in soil. These standards are based on the assumption that in humans the bioavailability of arsenic from ingested soil is equal to that from an aqueous solution. In view of the regulatory problem that the arsenic levels of these soils present, we questioned the validity of this assumption. ...

  6. Road impacts on the Baca National Wildlife Refuge, Colorado, with emphasis on effects to surface- and shallow ground-water hydrology - A literature review

    Science.gov (United States)

    Andersen, Douglas C.

    2007-01-01

    A review of published research on unpaved road effects on surface-water and shallow ground-water hydrology was undertaken to assist the Baca National Wildlife Refuge, Colorado, in understanding factors potentially influencing refuge ecology. Few studies were found that addressed hydrological effects of roads on a comparable area of shallow slope in a semiarid region. No study dealt with road effects on surface- and ground-water supplies to ephemeral wetlands, which on the refuge are sustained by seasonal snowmelt in neighboring mountains. Road surfaces increase runoff, reduce infiltration, and serve as a sediment source. Roadbeds can interfere with normal surface- and ground-water flows and thereby influence the quantity, timing, and duration of water movement both across landscapes and through the soil. Hydrologic effects can be localized near the road as well as widespread and distant. The number, arrangement, and effectiveness of road-drainage structures (culverts and other devices) largely determine the level of hydrologic alteration produced by a road. Undesirable changes to natural hydrologic patterns can be minimized by considering potential impacts during road design, construction, and maintenance. Road removal as a means to restore desirable hydrologic conditions to landscapes adversely affected by roads has yet to be rigorously evaluated.

  7. Greenhouse gas balance of an establishing Sphagnum culture on a former bog grassland in Germany

    Directory of Open Access Journals (Sweden)

    A. Günther

    2017-04-01

    Full Text Available The cultivation of Sphagnum mosses on re-wetted peat bogs for use in horticulture is a new land use strategy. We provide the first greenhouse gas balances for a field-scale Sphagnum farming experiment on former bog grassland, in its establishment phase. Over two years we used closed chambers to make measurements of GHG exchange on production strips of Sphagnum palustre L. and Sphagnum papillosum Lindb. and on irrigation ditches. Methane fluxes of both Sphagnum species showed a significant decrease over the study period. This trend was stronger for S. papillosum. In contrast, the estimated CO2 fluxes did not show a significant temporal trend over the study period. The production strips of both Sphagnum species were net GHG sinks of 5–9 t ha 1 a 1 (in CO2-equivalents during the establishment phase of the moss carpets. In comparison, the ditches were a CO2 source instead of a CO2 sink and emitted larger amounts of CH4, resulting in net GHG release of ~11 t ha 1 a 1 CO2-equivalents. We conclude that Sphagnum farming fields should be designed to minimise the area covered by irrigation ditches. Overall, Sphagnum farming on bogs has lower on-field GHG emissions than low-intensity agriculture.

  8. Effects of surface applications of biosolids on soil, crops, ground water, and streambed sediment near Deer Trail, Colorado, 1999-2003

    Science.gov (United States)

    Yager, Tracy J.B.; Smith, David B.; Crock, James G.

    2004-01-01

    The U.S. Geological Survey, in cooperation with Metro Wastewater Reclamation District and North Kiowa Bijou Groundwater Management District, studied natural geochemical effects and the effects of biosolids applications to the Metro Wastewater Reclamation District properties near Deer Trail, Colorado, during 1999 through 2003 because of public concern about potential contamination of soil, crops, ground water, and surface water from biosolids applications. Parameters analyzed for each monitoring component included arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc (the nine trace elements regulated by Colorado for biosolids), gross alpha and gross beta radioactivity, and plutonium, as well as other parameters. Concentrations of the nine regulated trace elements in biosolids were relatively uniform and did not exceed applicable regulatory standards. All plutonium concentrations in biosolids were below the minimum detectable level and were near zero. The most soluble elements in biosolids were arsenic, molybdenum, nickel, phosphorus, and selenium. Elevated concentrations of bismuth, mercury, phosphorus, and silver would be the most likely inorganic biosolids signature to indicate that soil or streambed sediment has been affected by biosolids. Molybdenum and tungsten, and to a lesser degree antimony, cadmium, cobalt, copper, mercury, nickel, phosphorus, and selenium, would be the most likely inorganic 'biosolids signature' to indicate ground water or surface water has been affected by biosolids. Soil data indicate that biosolids have had no measurable effect on the concentration of the constituents monitored. Arsenic concentrations in soil of both Arapahoe and Elbert County monitoring sites (like soil from all parts of Colorado) exceed the Colorado soil remediation objectives and soil cleanup standards, which were determined by back-calculating a soil concentration equivalent to a one-in-a-million cumulative cancer risk. Lead concentrations

  9. Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3

    Science.gov (United States)

    Westermann, S.; Langer, M.; Boike, J.; Heikenfeld, M.; Peter, M.; Etzelmüller, B.; Krinner, G.

    2016-02-01

    Thawing of permafrost in a warming climate is governed by a complex interplay of different processes of which only conductive heat transfer is taken into account in most model studies. However, observations in many permafrost landscapes demonstrate that lateral and vertical movement of water can have a pronounced influence on the thaw trajectories, creating distinct landforms, such as thermokarst ponds and lakes, even in areas where permafrost is otherwise thermally stable. Novel process parameterizations are required to include such phenomena in future projections of permafrost thaw and subsequent climatic-triggered feedbacks. In this study, we present a new land-surface scheme designed for permafrost applications, CryoGrid 3, which constitutes a flexible platform to explore new parameterizations for a range of permafrost processes. We document the model physics and employed parameterizations for the basis module CryoGrid 3, and compare model results with in situ observations of surface energy balance, surface temperatures, and ground thermal regime from the Samoylov permafrost observatory in NE Siberia. The comparison suggests that CryoGrid 3 can not only model the evolution of the ground thermal regime in the last decade, but also consistently reproduce the chain of energy transfer processes from the atmosphere to the ground. In addition, we demonstrate a simple 1-D parameterization for thaw processes in permafrost areas rich in ground ice, which can phenomenologically reproduce both formation of thermokarst ponds and subsidence of the ground following thawing of ice-rich subsurface layers. Long-term simulation from 1901 to 2100 driven by reanalysis data and climate model output demonstrate that the hydrological regime can both accelerate and delay permafrost thawing. If meltwater from thawed ice-rich layers can drain, the ground subsides, as well as the formation of a talik, are delayed. If the meltwater pools at the surface, a pond is formed that enhances heat

  10. Validation of the Cooray-Rubinstein (C-R) formula for a rough ground surface by using three-dimensional (3-D) FDTD

    Science.gov (United States)

    Li, Dongshuai; Zhang, Qilin; Liu, Tao; Wang, Zhenhui

    2013-11-01

    this paper, we have extended the Cooray-Rubinstein (C-R) approximate formula into the fractal rough ground surface and then validate its accuracy by using three-dimensional (3-D) finite-difference time-domain (FDTD) method at distances of 50 m and 100 m from the lightning channel. The results show that the extended C-R formula has an accepted accuracy for predicting the lightning-radiated horizontal electric field above the fractal rough and conducting ground, and its accuracy increases a little better with the higher of the earth conductivity. For instance, when the conductivity of the rough ground is 0.1 S/m, the error of the peak value predicted by the extended C-R formula is less than about 2.3%, while its error is less than about 6.7% for the conductivity of 0.01 S/m. The rough ground has much effect on the lightning horizontal field, and the initial peak value of the horizontal field obviously decreases with the increase of the root-mean-square height of the rough ground at early times (within several microseconds of the beginning of return stroke).

  11. Late Holocene palaeoclimate variability: The significance of bog pine dendrochronology related to peat stratigraphy. The Puścizna Wielka raised bog case study (Orawa - Nowy Targ Basin, Polish Inner Carpathians)

    Science.gov (United States)

    Krąpiec, Marek; Margielewski, Włodzimierz; Korzeń, Katarzyna; Szychowska-Krąpiec, Elżbieta; Nalepka, Dorota; Łajczak, Adam

    2016-09-01

    The results of dendrochronological and palynological analyses of subfossil pine trees occurring in the peat deposits of the Puścizna Wielka raised bog (Polish Carpathians, Southern Poland) - the only site with numerous subfossil pine trees in the mountainous regions of Central Europe presently known - indicate that the majority of the tree populations grew in the peat bog during the periods ca 5415-3940 cal BP and 3050-2560 cal BP. Several forestless episodes, dated to 5245-5155 cal BP, 4525-4395 cal BP and 3940-3050 cal BP, were preceded by tree dying-off phases caused by an extreme periodical increase in humidity and general climate cooling trends. These events are documented based on analyses of pollen and non-pollen palynomorph assemblages, dendrochronological analyses of the trees, as well as numerous radiocarbon datings of the sediment horizons occurring within the peat bog profile. The phases of germinations, and, in turn, of tree and shrub invasions of the peat bog areas have been closely connected to drying and occasional warming of the regional climate. The last of the forestless periods began about 2600 years ago and continued up to the very recent times. Currently, as a result of desiccation of the peat bog and the lowering of the groundwater level (due to improved water drainage system), pine trees have returned the peat bog again. These results demonstrate that studies of subfossil bog-pine trees are quite effective in documenting and reconstructing periods of humidity fluctuation that occurred within the Carpathian region over the last several millennia.

  12. Water quality and ground-water/surface-water interactions along the John River near Anaktuvuk Pass, Alaska, 2002-2003

    Science.gov (United States)

    Moran, Edward H.; Brabets, Timothy P.

    2005-01-01

    The headwaters of the John River are located near the village ofAnaktuvuk Pass in the central Brooks Range of interior Alaska. With the recent construction of a water-supply system and a wastewater-treatment plant, most homes in Anaktuvuk Pass now have modern water and wastewater systems. The effluent from the treatment plant discharges into a settling pond near a tributary of the John River. The headwaters of the John River are adjacent to Gates of the Arctic National Park and Preserve, and the John River is a designated Wild River. Due to the concern about possible water-quality effects from the wastewater effluent, the hydrology of the John River near Anaktuvuk Pass was studied from 2002 through 2003. Three streams form the John River atAnaktuvuk Pass: Contact Creek, Giant Creek, and the John RiverTributary. These streams drain areas of 90.3 km (super 2) , 120 km (super 2) , and 4.6 km (super 2) , respectively. Water-qualitydata collected from these streams from 2002-03 indicate that the waters are a calcium-bicarbonate type and that Giant Creek adds a sulfate component to the John River. The highest concentrations of bicarbonate, calcium, sodium, sulfate, and nitrate were found at the John River Tributary below the wastewater-treatment lagoon. These concentrations have little effect on the water quality of the John River because the flow of the John River Tributary is only about 2 percent of the John River flow. To better understand the ground-water/surface-water interactions of the upper John River, a numerical groundwater-flow model of the headwater area of the John River was constructed. Processes that occur during spring break-up, such as thawing of the active layer and the frost table and the resulting changes of storage capacity of the aquifer, were difficult to measure and simulate. Application and accuracy of the model is limited by the lack of specific hydrogeologic data both spatially and temporally. However

  13. Photosynthetic properties of boreal bog plant species and their contribution to ecosystem level carbon sink

    Science.gov (United States)

    Korrensalo, Aino; Hájek, Tomas; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Mehtätalo, Lauri; Mammarella, Ivan; Tuittila, Eeva-Stiina

    2016-04-01

    Boreal bogs have a low number of plant species, but a large diversity of growth forms. This heterogeneity might explain the seasonally less varying photosynthetic productivity of these ecosystems compared to peatlands with vegetation consisting of fewer growth forms. The differences in photosynthetic properties within bog species and phases of growing season has not been comprehensively studied. Also the role of different plant species for the ecosystem level carbon (C) sink function is insufficiently known. We quantified the seasonal variation of photosynthetic properties in bog plant species and assessed how this variation accounts for the temporal variation in the ecosystem C sink. Photosynthetic light response of 11 vascular plant and 8 Sphagnum moss species was measured monthly over the growing season of 2013. Based on the species' light response parameters, leaf area development and areal coverage, we estimated the ecosystem level gross photosynthesis rate (PG) over the growing season. The level of upscaled PG was verified by comparing it to the ecosystem gross primary production (GPP) estimate calculated based on eddy covariance (EC) measurements. Although photosynthetic parameters differed within plant species and months, these differences were of less importance than expected for the variation in ecosystem level C sink. The most productive plant species at the ecosystem scale were not those with the highest maximum potential photosynthesis per unit of leaf area (Pmax), but those having the largest areal coverage. Sphagnum mosses had 35% smaller Pmax than vascular plants, but had higher photosynthesis at the ecosystem scale throughout the growing season. The contribution of the bog plant species to the ecosystem level PG differed over the growing season. The seasonal variation in ecosystem C sink was mainly controlled by phenology. Sedge PG had a sharp mid-summer peak, but the PG of evergreen shrubs and Sphagna remained rather stable over the growing season

  14. Advanced ceramics: evaluation of the ground surface Cerâmicas avançadas: avaliação da superfície polida

    Directory of Open Access Journals (Sweden)

    E. C. Bianchi

    2003-09-01

    Full Text Available The aim of this research is to evaluate the influence of grinding and cutting conditions on surfaces of advanced ceramics ground with diamond grinding wheels containing a binding resin bond. The quality surface was analyzed by Scanning Electron Microscopy (SEM.O objetivo desta pesquisa é a avaliação da influência das condições de usinagem na superfície gerada de cerâmicas avançadas retificadas com rebolo diamantado com ligante resinóide. A qualidade superficial foi analisada utilizando-se a Microscopia Eletrônica de Varredura (MEV

  15. The ion chemistry of surface and ground waters in the Taklimakan Desert of Tarim Basin, western China

    Institute of Scientific and Technical Information of China (English)

    ZHU BingQi; YANG XiaoPing

    2007-01-01

    The physio-chemical and chemical features of water in natural conditions are controlled by the weathering of bedrocks, local climate, landforms and other geo-environmental parameters. In order to understand the characteristics of water and the origins of the dissolved loads in the rivers and in the ground waters of the Taklimakan Desert, western China, we studied the ions in the water samples collected from rivers and wells. We collected water samples from four rivers (Keriya River, Cele River, Tumiya River and Yulongkashi River) in the southern desert and ground water samples from many parts of the desert. Major cations and anions were measured using ion-chromatograph and titration with HCl. The total dissolved solids (TDS), pH and conductivity were examined on site by a portable multi-parameter analyzer. The data show that the water in the rivers of southern Taklimakan is still of fresh water quality and slight alkalinity, although the TDS is comparatively higher than that of many other rivers of the world. The ground water is fresh to slightly saline, with TDS a little higher than that of river water in the study area. The concentration of ions is slightly different between the four rivers in the southern Taklimakan. However, the chemistries of ground water in all samples are to a large degree controlled by sodium and chloride. The ions in the ground water are concluded to be mainly from dissolving of evaporites, consistent with the dry climate in the region, whereas the ions in the rivers are mainly from rock weathering. Low-level human imprints are recognized in the ground water samples also.

  16. Hydrology of the Beryl-Enterprise area, Escalante Desert, Utah, with emphasis on ground water; With a section on surface water

    Science.gov (United States)

    Mower, Reed W.; Sandberg, George Woodard

    1982-01-01

    An investigation of the water resources of the Beryl-Enterprise area, Escalante Desert, Utah (pl. 1), was made during 1976-78 as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights. Wells were the most important source of water for all purposes in the Beryl-Enterprise area during 1978, but it has not always been so. For nearly a century after the first settlers arrived in about 1860, streams supplied most of the irrigation water and springs supplied much of the water for domestic and stock use. A few shallow wells were dug by the early settlers for domestic and stock water, but the widespread use of ground water did not start until the 1920's when shallow wells were first dug to supply irrigation water. Ground-water withdrawals from wells, principally for irrigation, have increased nearly every year since the 1920's. The quantity withdrawn from wells surpassed that diverted from surface sources during the mid-1940's and was about eight times that amount during the 1970's. As a result, water levels have declined measurably throughout the area resulting in administrative water-rights problems.The primary purpose of this report is to describe the water resources with emphasis on ground water. The surface-water resources are evaluated only as they pertain to the understanding of the ground-water resources. A secondary purpose is to discuss the extent and effects of the development of ground water in order to provide the hydrologic information needed for the orderly and optimum development of the resource and for the effective administration and adjudication of water rights in the area. The hydrologic data on which this report is based are given in a companion report by Mower (1981).

  17. A large 3D physical model: a tool to investigate the consequences of ground movements on the surface structures

    Directory of Open Access Journals (Sweden)

    Hor B.

    2010-06-01

    Full Text Available Soil subsidence of various extend and amplitude can result from the failure of underground cavities, whether natural (for example caused by the dissolution of rocks by underground water flow or man-made (such as mines. The impact of the ground movements on existing structures (houses, buildings, bridges, etc… is generally dramatic. A large small-scale physical model is developed in order to improve our understanding of the behaviour of the building subjected to ground subsidence or the collapse of cavities. We focus on the soil-structure interaction and on the mitigation techniques allowing reducing the vulnerability of the buildings (structures.

  18. Full-wave modelling of ground-penetrating radars: antenna mutual coupling phenomena and sub-surface scattering processes

    NARCIS (Netherlands)

    Caratelli, D.; Yarovoy, A.

    2011-01-01

    Ground-penetrating radar (GPR) technology finds applications in many areas such as geophysical prospecting, archaeology, civil engineering, environmental engineering, and defence applications as a non-invasive sensing tool [3], [6], [18]. One key component in any GPR system is the receiver/transmitt

  19. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange.

    Science.gov (United States)

    Alamdar, Ambreen; Syed, Jabir Hussain; Malik, Riffat Naseem; Katsoyiannis, Athanasios; Liu, Junwen; Li, Jun; Zhang, Gan; Jones, Kevin C

    2014-02-01

    This study was conducted to examine organochlorine pesticides (OCPs) contamination levels in the surface soil and air samples together with air-soil exchange fluxes at an obsolete pesticide dumping ground and the associated areas from Hyderabad City, Pakistan. Among all the sampling sites, concentrations of OCPs in the soil and air samples were found highest in obsolete pesticide dumping ground, whereas dominant contaminants were dichlorodiphenyltrichloroethane (DDTs) (soil: 77-212,200 ng g(-1); air: 90,700 pg m(-3)) and hexachlorocyclohexane (HCHs) (soil: 43-4,090 ng g(-1); air: 97,400 pg m(-3)) followed by chlordane, heptachlor and hexachlorobenzene (HCB). OCPs diagnostic indicative ratios reflect historical use as well as fresh input in the study area. Moreover, the air and soil fugacity ratios (0.9-1.0) at the dumping ground reflecting a tendency towards net volatilization of OCPs, while at the other sampling sites, the fugacity ratios indicate in some cases deposition and in other cases volatilization. Elevated concentrations of DDTs and HCHs at pesticide dumping ground and its surroundings pose potential exposure risk to biological organisms, to the safety of agricultural products and to the human health. Our study thus emphasizes the need of spatio-temporal monitoring of OCPs at local and regional scale to assess and remediate the future adverse implications.

  20. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan

    2015-09-18

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  1. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Khan Zaib Jadoon

    2015-09-01

    Full Text Available We tested an off-ground ground-penetrating radar (GPR system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  2. Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface.

    Science.gov (United States)

    Ishizuka, Masahide; Mikami, Masao; Tanaka, Taichu Y; Igarashi, Yasuhito; Kita, Kazuyuki; Yamada, Yutaka; Yoshida, Naohiro; Toyoda, Sakae; Satou, Yukihiko; Kinase, Takeshi; Ninomiya, Kazuhiko; Shinohara, Atsushi

    2017-01-01

    A size-resolved, one-dimensional resuspension scheme for soil particles from the ground surface is proposed to evaluate the concentration of radioactivity in the atmosphere due to the secondary emission of radioactive material. The particle size distributions of radioactive particles at a sampling point were measured and compared with the results evaluated by the scheme using four different soil textures: sand, loamy sand, sandy loam, and silty loam. For sandy loam and silty loam, the results were in good agreement with the size-resolved atmospheric radioactivity concentrations observed at a school ground in Tsushima District, Namie Town, Fukushima, which was heavily contaminated after the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Though various assumptions were incorporated into both the scheme and evaluation conditions, this study shows that the proposed scheme can be applied to evaluate secondary emissions caused by aeolian resuspension of radioactive materials associated with mineral dust particles from the ground surface. The results underscore the importance of taking soil texture into account when evaluating the concentrations of resuspended, size-resolved atmospheric radioactivity.

  3. Surface and sub-surface anatomy of the landscape: integrating Unmanned Aerial Vehicle Structure from Motion (UAV-SfM) and Ground Penetrating Radar (GRP) to investigate sedimentary features in the field. - an example from NW Australia

    Science.gov (United States)

    Callow, Nik; Leopold, Matthias; May, Simon Matthias

    2015-04-01

    Geomorphology is confronted by the challenge of reconstructing landscape features at appropriate scales, resolution and accuracy, that allows meaningful analysis of environmental processes and their implications. Field geomorphology offers a discrete snapshot (i.e. one or two field campaigns) to reconstruct how features have changed, evolved or responded over time. We explore the application of an emerging photogrammetry technique called Structure-from-Motion (SfM), which uses multiple photographs of the same feature (but taken at different locations) to create high-accuracy three-dimensional models of surface of sedimentary fans formed by extreme wave events. This approach is complimented by investigation of the sub-surface morphology using Ground Penetrating Radar (GPR). Using an UAV "octocopter", we captured 1208 photos with a DSLR camera (Canon EoS-M) at the height of 50m with a ground pixel resolution of 9mm, above a cyclone wash-over fan in the Exmouth Gulf (Western Australia) that measured about 500m inland by 300m wide. Based on 38 ground control point targets (with between 4 and 45 individual photographs per target) the SfM surface had an absolute total (XYZ) accuracy of 51mm (39mm X, 29mm Y and 14mm Y), based on RTK-DGPS surveying from a local ground reference station (with an absolute AUSPOS accuracy of 57mm X, 6mm Y, 50mm Z to AHD) and an overall relative point accuracy of 7mm. A sparse point cloud of over 5.5 million data points was generated using only points with a reconstruction accuracy of RGB colour of each XYZ pixel) using K-Means clustering within Python. The output was then manually classified into ground and non-ground points, and the geostatistical analyst functionality of ArcGIS used to produce a final bare-earth DEM. This approach has allowed the study team to economically collect an unprecedented high-resolution and accuracy topographic model of this feature to compliment on-ground sediment, geophysics and dating work to analyse the

  4. Contribution of ground surface altitude difference to thermal anomaly detection using satellite images: Application to volcanic/geothermal complexes in the Andes of Central Chile

    Science.gov (United States)

    Gutiérrez, Francisco J.; Lemus, Martín; Parada, Miguel A.; Benavente, Oscar M.; Aguilera, Felipe A.

    2012-09-01

    Detection of thermal anomalies in volcanic-geothermal areas using remote sensing methodologies requires the subtraction of temperatures, not provided by geothermal manifestations (e.g. hot springs, fumaroles, active craters), from satellite image kinetic temperature, which is assumed to correspond to the ground surface temperature. Temperatures that have been subtracted in current models include those derived from the atmospheric transmittance, reflectance of the Earth's surface (albedo), topography effect, thermal inertia and geographic position effect. We propose a model that includes a new parameter (K) that accounts for the variation of temperature with ground surface altitude difference in areas where steep relief exists. The proposed model was developed and applied, using ASTER satellite images, in two Andean volcanic/geothermal complexes (Descabezado Grande-Cerro Azul Volcanic Complex and Planchón-Peteroa-Azufre Volcanic Complex) where field data of atmosphere and ground surface temperature as well as radiation for albedo calibration were obtained in 10 selected sites. The study area was divided into three zones (Northern, Central and Southern zones) where the thermal anomalies were obtained independently. K value calculated for night images of the three zones are better constrained and resulted to be very similar to the Environmental Lapse Rate (ELR) determined for a stable atmosphere (ELR > 7 °C/km). Using the proposed model, numerous thermal anomalies in areas of ≥ 90 m × 90 m were identified that were successfully cross-checked in the field. Night images provide more reliable information for thermal anomaly detection than day images because they record higher temperature contrast between geothermal areas and its surroundings and correspond to more stable atmospheric condition at the time of image acquisition.

  5. Application of soil magnetometry on peat-bogs and soils in areas affected by historical and prehistoric ore mining and smelting.

    Science.gov (United States)

    Magiera, Tadeusz; Mendakiewicz, Maria; Szuszkiewicz, Marcin; Chrost, Leszak

    2015-04-01

    The valleys of upper Brynica and Stoła located in northern part of Upper Silesia were areas of historical human activities since prehistoric times. Historically confirmed mining and smelting of iron, silver and lead ores on this areas has been dated back to early Middle Ages, however recently some geochemical and radiometric analyses suggest even prehistoric time of such activities. The aim of this study was to check if it is possible to find any magnetic signal suggesting such activities in peat-bogs and soils of this area. This magnetic properties would be a result of presence of historical Technogenic Magnetic Particles (TMPs) arisen during the primitive smelting processes in the past. Many different types of TMPs were separated from the depth of 15-30 cm of soil profiles and also were present in deeper parts of peat-bogs accompanied by fine charcoal particles. The peat-bog horizons dated by radiocarbon (C14) for 2000 BC were contaminated by some heavy metals (Cu, Zn, Cd, Ag, Pb, Mn, Fe, Sr, Sc) and slightly increased magnetic susceptibility signal was also observed. On the base of soil surface magnetic measurement using MS2D Bartington sensor complemented by magnetic gradiometer system Grad 601-02 for the deeper soil penetration, some local magnetic anomalies were detected. In areas of local 'hot spots', the vertical cores up to 30 cm in depth were collected using the HUMAX core sampler. Vertical distribution of magnetic susceptibility along the cores was measured in the laboratory using the MS2C Bartington core sensor. The core section with increased susceptibility values were analyzed and TMPs were separated using a hand magnet. The separation of fine fraction of TMPs was carried out in an ultrasonic bath from the fine soil material suspended in isopropanol to avoid their coagulation. Irregular ceramic particles, ash and ore particles, as well as strong magnetic particles of metallic iron; all with diameter up to 10 mm and almost regular shape and rounded

  6. Ground tests with prototype of CeBr3 active gamma ray spectrometer proposed for future venus surface missions

    Science.gov (United States)

    Litvak, M. L.; Sanin, A. B.; Golovin, D. V.; Jun, I.; Mitrofanov, I. G.; Shvetsov, V. N.; Timoshenko, G. N.; Vostrukhin, A. A.

    2017-03-01

    The results of a series of ground tests with a prototype of an active gamma-ray spectrometer based on a new generation of scintillation crystal (CeBr3) are presented together with a consideration to its applicability to future Venus landing missions. We evaluated the instrument's capability to distinguish the subsurface elemental composition of primary rock forming elements such as O, Na, Mg, Al, Si, K and Fe. Our study uses heritage from previous ground and field tests and applies to the analysis of gamma lines from activation reaction products generated by a pulsed neutron generator. We have estimated that the expected accuracies achieved in this approach could be as high as 1-10% for the particular chemical element being studied.

  7. Spatial and temporal performance of the miniface (free air CO2 enrichment) system on bog ecosystems in northern and central Europe

    NARCIS (Netherlands)

    Miglietta, F.; Hoosbeek, M.R.; Foot, J.; Gigon, F.; Hassinen, A.; Heijmans, M.; Peressotti, A.; Saarinen, T.; Breemen, van N.; Wallen, B.

    2001-01-01

    The Bog Ecosystem Research Initiative (BERI) project was initiated to investigate, at five climatically different sites across Europe, the effects of elevated CO2 and N deposition on the net exchange of CO2 and CH4 between bogs and the atmosphere, and to study the effects of elevated CO2 and N depos

  8. Unexpected differences in butterfly diversity between two peat bogs in the same area

    Directory of Open Access Journals (Sweden)

    Klimczuk Przemysław

    2017-09-01

    Full Text Available Peat bogs are listed among the most threatened habitats in central Europe, a situation that is reflected by, for example, the conservational status of stenotopic butterflies. Even so, this group remains relatively little studied and most of the available data are limited to qualitative records. The present study enabled us to gain insight into the butterfly fauna of the two largest peat bogs in the Knyszyn Forest (NE Poland, i.e. Bagno Moskal and the one in the Jesionowe Góry nature reserve. The sites, only ca 10 km apart, are characterized by similar vegetation (mainly the Ledo-Sphagnetum association. The study was carried out in 2013-2015 using the transect method, i.e. regular counts along fixed routes. A total of 37 species, including three tyrphobionts (Colias palaeno, Plebejus optilete and Boloria eunomia and two tyrphophiles (Callophrys rubi and Boloria euphrosyne, were recorded. The greatest and unexpected differences between the sites were related to the complete absence of P. optilete at Bagno Moskal, the significantly higher abundance of B. eunomia at Jesionowe Góry and the greater abundance of B. euphrosyne at Bagno Moskal. In addition, C. palaeno was observed sporadically and only at Bagno Moskal. There was some heterogeneity in the distribution and density of particular species, however. Ledum palustre was found to be the most important nectar plant, its flowers also being frequently visited by tyrphoneutrals. The present study shows that isolated island-like habitats (e.g. peat bogs may possess specific features and be subject to specific independent changes. The results provide a good basis for further research into the habitat preferences of tyrphophilous and tyrphobiontic butterflies, which is important in the context of their conservation.

  9. Temperature-induced increase in methane release from peat bogs: a mesocosm experiment.

    Science.gov (United States)

    van Winden, Julia F; Reichart, Gert-Jan; McNamara, Niall P; Benthien, Albert; Damsté, Jaap S Sinninghe

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the temperature effect on methane and carbon cycling, a set of mesocosm experiments were executed, where intact peat cores containing actively growing Sphagnum were incubated at 5, 10, 15, 20, and 25°C. After two months of incubation, methane flux measurements indicated that, at increasing temperatures, methanotrophs are not able to fully compensate for the increasing methane production by methanogens. Net methane fluxes showed a strong temperature-dependence, with higher methane fluxes at higher temperatures. After removal of Sphagnum, methane fluxes were higher, increasing with increasing temperature. This indicates that the methanotrophs associated with Sphagnum plants play an important role in limiting the net methane flux from peat. Methanotrophs appear to consume almost all methane transported through diffusion between 5 and 15°C. Still, even though methane consumption increased with increasing temperature, the higher fluxes from the methane producing microbes could not be balanced by methanotrophic activity. The efficiency of the Sphagnum-methanotroph consortium as a filter for methane escape thus decreases with increasing temperature. Whereas 98% of the produced methane is retained at 5°C, this drops to approximately 50% at 25°C. This implies that warming at the mid to high latitudes may be enhanced through increased methane release from peat bogs.

  10. Temperature-induced increase in methane release from peat bogs: a mesocosm experiment.

    Directory of Open Access Journals (Sweden)

    Julia F van Winden

    Full Text Available Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs. Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the temperature effect on methane and carbon cycling, a set of mesocosm experiments were executed, where intact peat cores containing actively growing Sphagnum were incubated at 5, 10, 15, 20, and 25°C. After two months of incubation, methane flux measurements indicated that, at increasing temperatures, methanotrophs are not able to fully compensate for the increasing methane production by methanogens. Net methane fluxes showed a strong temperature-dependence, with higher methane fluxes at higher temperatures. After removal of Sphagnum, methane fluxes were higher, increasing with increasing temperature. This indicates that the methanotrophs associated with Sphagnum plants play an important role in limiting the net methane flux from peat. Methanotrophs appear to consume almost all methane transported through diffusion between 5 and 15°C. Still, even though methane consumption increased with increasing temperature, the higher fluxes from the methane producing microbes could not be balanced by methanotrophic activity. The efficiency of the Sphagnum-methanotroph consortium as a filter for methane escape thus decreases with increasing temperature. Whereas 98% of the produced methane is retained at 5°C, this drops to approximately 50% at 25°C. This implies that warming at the mid to high latitudes may be enhanced through increased methane release from peat bogs.

  11. Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs.

    Science.gov (United States)

    Bubier, Jill L; Smith, Rose; Juutinen, Sari; Moore, Tim R; Minocha, Rakesh; Long, Stephanie; Minocha, Subhash

    2011-10-01

    Plants in nutrient-poor environments typically have low foliar nitrogen (N) concentrations, long-lived tissues with leaf traits designed to use nutrients efficiently, and low rates of photosynthesis. We postulated that increasing N availability due to atmospheric deposition would increase photosynthetic capacity, foliar N, and specific leaf area (SLA) of bog shrubs. We measured photosynthesis, foliar chemistry and leaf morphology in three ericaceous shrubs (Vaccinium myrtilloides, Ledum groenlandicum and Chamaedaphne calyculata) in a long-term fertilization experiment at Mer Bleue bog, Ontario, Canada, with a background deposition of 0.8 g N m(-2) a(-1). While biomass and chlorophyll concentrations increased in the highest nutrient treatment for C. calyculata, we found no change in the rates of light-saturated photosynthesis (A(max)), carboxylation (V(cmax)), or SLA with nutrient (N with and without PK) addition, with the exception of a weak positive correlation between foliar N and A(max) for C. calyculata, and higher V(cmax) in L. groenlandicum with low nutrient addition. We found negative correlations between photosynthetic N use efficiency (PNUE) and foliar N, accompanied by a species-specific increase in one or more amino acids, which may be a sign of excess N availability and/or a mechanism to reduce ammonium (NH(4)) toxicity. We also observed a decrease in foliar soluble Ca and Mg concentrations, essential minerals for plant growth, but no change in polyamines, indicators of physiological stress under conditions of high N accumulation. These results suggest that plants adapted to low-nutrient environments do not shift their resource allocation to photosynthetic processes, even after reaching N sufficiency, but instead store the excess N in organic compounds for future use. In the long term, bog species may not be able to take advantage of elevated nutrients, resulting in them being replaced by species that are better adapted to a higher nutrient environment.

  12. Algae metabolism and organic carbon in sediments determining arsenic mobilisation in ground- and surface water. A field study in Doñana National Park, Spain.

    Science.gov (United States)

    Kohfahl, Claus; Navarro, Daniel Sánchez-Rodas; Mendoza, Jorge Armando; Vadillo, Iñaki; Giménez-Forcada, Elena

    2016-02-15

    A study has been performed to explore the origin, spatiotemporal behaviour and mobilisation mechanism of the elevated arsenic (As) concentrations found in ground water and drinking ponds of the Doñana National Park, Southern Spain. At a larger scale, 13 piezometers and surface water samples of about 50 artificial drinking ponds and freshwater lagoons throughout the National Park were collected and analysed for major ions, metals and trace elements. At a smaller scale, 5 locations were equipped with piezometers and groundwater was sampled up to 4 times for ambient parameters, major ions, metals, trace elements and iron (Fe) speciation. As was analysed for inorganic and organic speciation. Undisturbed sediment samples were analysed for physical parameters, mineralogy, geochemistry as well as As species. Sediment analyses yielded total As between 0.1 and 18 mg/kg and are not correlated with As concentration in water. Results of the surface- and groundwater sampling revealed elevated concentration of As up to 302 μg/L within a restricted area of the National Park. Results of groundwater sampling reveals strong correlation of As with Fe(2+) pointing to As mobilisation due to reductive dissolution of hydroferric oxides (HFO) in areas of locally elevated amounts of organic matter within the sediments. High As concentrations in surface water ponds are correlated with elevated alkalinity and pH attributed to algae metabolism, leading to As desorption from HFO. The algae metabolism is responsible for the presence of methylated arsenic species in surface water, in contrast to ground water in which only inorganic As species was found. Temporal variations in surface water and groundwater are also related to changes in pH and alkalinity as a result of enhanced algae metabolism in surface water or related to changes in the redox level in the case of groundwater.

  13. Preliminary stable isotope results from the Mohos peat bog, East-Carpathians

    Science.gov (United States)

    Túri, Marianna; Palcsu, László; Futó, István; Hubay, Katalin; Molnár, Mihály; Rinyu, László; Braun, Mihály

    2016-04-01

    This work provides preliminary results of an isotope investigation carried out on a peat core drilled in the ombrotrophic Mohos peat bog, Ciomadul Mountain, (46°8'3.60"N, 25°54'19.43"E, 1050 m.a.s.l.), East Carpathians, Romania. The Ciomadul is a single dacitic volcano with two craters: the younger Saint Ana and the older Mohos which is a peat bog, and surrounded by a number of individual lava domes as well as a narrow volcaniclastic ring plain volcano. A 10 m long peat core has been taken previously, and is available for stable oxygen and carbon isotope analysis. It is known from our previous work (Hubay et al., 2015) that it covers a period from 11.500 cal year B.P. to present. The peat bog is composed mainly of Sphagnum, which has a direct relationship with the environment, making it suitable for examine the changes in the surrounding circumstances. Isotopic analysis of the prepared cellulose from Sphagnum moss has the attribute to provide such high resolution quantitative estimates of the past climate and there is no such climate studies in this area where the past climate investigations based on oxygen isotope analysis of the Sphagnum. Oxygen and carbon stable isotope analysis were carried out on the hemicellulose samples, which were chemically prepared for 14C dating and taken from every 30 cm of the 10 m long peat core. The oxygen isotope composition of the precipitation can be revealed from the δ18O values of the prepared cellulose samples, since, while carbon isotope ratio tells more about the wet and dry periods of the past. Studying both oxygen and carbon isotope signatures, slight fluctuations can be seen during the Holocene like some of the six periods of significant climate changes can be seen in this resolution during the time periods of 9000-8000, 6000-5000, 4200-3800, 3500-2500, 1200-1000, and 600-150 cal yr B.P. Additionally, the late Pleistocene - early Holocene environmental changes can be clearly observed as Pleistocene peat samples have

  14. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia

    Directory of Open Access Journals (Sweden)

    T. Broder

    2012-04-01

    Full Text Available Ombrotrophic bogs in southern Patagonia have been examined with regard to paleoclimatic and geochemical research questions but knowledge about organic matter decomposition in these bogs is limited. Therefore, we examined peat humification with depth by Fourier Transformed Infrared (FTIR measurements of solid peat, C/N ratio, and δ13C and δ15N isotope measurements in three bog sites. Peat decomposition generally increased with depth but distinct small scale variation occurred, reflecting fluctuations in factors controlling decomposition. C/N ratios varied mostly between 40 and 120 and were significantly correlated (R2 > 0.55, p < 0.01 with FTIR-derived humification indices. The degree of decomposition was lowest at a site presently dominated by Sphagnum mosses. The peat was most strongly decomposed at the driest site, where currently peat-forming vegetation produced less refractory organic material, possibly due to fertilizing effects of high sea spray deposition. Decomposition of peat was also advanced near ash layers, suggesting a stimulation of decomposition by ash deposition. Values of δ13C were 26.5 ± 2‰ in the peat and partly related to decomposition indices, while δ15N in the peat varied around zero and did not consistently relate to any decomposition index. Concentrations of DOM partly related to C/N ratios, partly to FTIR derived indices. They were not conclusively linked to the decomposition degree of the peat. DOM was enriched in 13C and in 15N relative to the solid phase probably due to multiple microbial modifications and recycling of N in these N-poor environments. In summary, the depth profiles of C/N ratios, δ13C values, and FTIR spectra seemed to reflect changes in environmental conditions affecting decomposition, such as bog wetness, but were dominated by site specific factors, and are further influenced by ash

  15. Elevated Nitrogen Deposition Enhances the Net CO2 Sink Strength in Alberta Bogs along a Post-fire Chronosequence

    Science.gov (United States)

    Wieder, R. K.; Vile, M. A.; Albright, C. M.; Scott, K. D.

    2014-12-01

    About 30% of the landscape of northern Alberta, Canada is occupied by peatlands, which persist at the low end range of both mean annual precipitation (moss, was not affected by N addition, suggesting that the overall response of NEE to N addition is the result of enhanced growth of ericaceous shrubs. These findings suggest that while elevated N deposition in the AOSR may enhance the strength of the overall CO2 sink of bogs in the short term, in the longer term, increased shrub growth has the potential to shade Sphagnum mosses, compromising the future bog CO2sink strength across the region.

  16. Stable (206Pb, 207Pb, 208Pb) and radioactive (210Pb) lead isotopes in 1 year of growth of Sphagnum moss from four ombrotrophic bogs in southern Germany: Geochemical significance and environmental implications

    Science.gov (United States)

    Shotyk, William; Kempter, Heike; Krachler, Michael; Zaccone, Claudio

    2015-08-01

    The surfaces of Sphagnum carpets were marked with plastic mesh and 1 year later the production of plant matter was harvested in four ombrotrophic bogs from two regions of southern Germany: Upper Bavaria (Oberbayern, OB) and the Northern Black Forest (Nordschwarzwald, NBF). Radioactive, 210Pb was determined in solid samples using ultralow background gamma spectrometry while total Pb concentrations and stable isotopes (206Pb, 207Pb, 208Pb) were determined in acid digests using ICP-SMS. Up to 12 samples (40 × 40 cm) were collected per site, and 6-10 sites investigated per bog. The greatest variations within a given sampling site were in the range 212-532 Bq kg-1 for 210Pb activity, whereas 206Pb/207Pb and 208Pb/206Pb varied less than 1%. The median values of all parameters for the sites (6-10 per bog) were not significantly different. The median activities of 210Pb (Bq kg-1) in the mosses collected from the bogs in NBF (HO = 372 ± 56, n = 55; WI = 342 ± 58, n = 93) were slightly less from those in OB (GS = 394 ± 50, n = 55; KL = 425 ± 58, n = 24). However, the mosses in the NBF bogs exhibited much greater productivity (187-202 g m-2 a-1) compared to those of OB (71-91 g m-2 a-1), and this has a profound impact on the accumulation rates of 210Pb (Bq m-2 a-1), with the bogs in the NBF yielding fluxes (HO = 73 ± 30; WI = 65 ± 20) which are twice those of OB (GS = 29 ± 11; KL = 40 ± 13). Using the air concentrations of 210Pb measured at Schauinsland (SIL) in the southern Black Forest and average annual precipitation, the atmospheric fluxes of 210Pb at SIL (340 Bq m-2 a-1) exceeds the corresponding values obtained from the mosses by a factor of five, providing the first quantitative estimate of the net retention efficiency of 210Pb by Sphagnum. When the 210Pb activities of all moss samples are combined (n = 227), a significant decrease with increasing plant production rate is observed; in contrast, total Pb concentrations show the opposite trend. The contrasting

  17. Rotational, steric, and coriolis effects on the F + HCl --> HF + Cl reaction on the 1(2)A' ground-state surface.

    Science.gov (United States)

    Defazio, Paolo; Petrongolo, Carlo

    2009-04-23

    We present a quantum study of the reaction F((2)P) + HCl(X(1)Sigma(+)) --> HF(X(1)Sigma(+)) + Cl((2)P) on a recently computed 1(2)A' ground-state surface, considering HCl in the ground vibrational state, with up to 16 rotational quanta j(0). We employ the real wavepacket (WP) and flux methods for calculating coupled-channel (CC) and centrifugal-sudden (CS) initial-state probabilities up to J = 80 and 140, respectively. We also report CC and CS ground-state cross sections and CS excited-state cross sections and discuss the dynamics analyzing WP time evolutions. The HCl rotation highly enhances reaction probabilities and cross sections, as it was previously found for probabilities at J Coriolis couplings favor instead the energy flow from the HCl rotation to the F-H---Cl reactive vibration. WP snapshots confirm and explain the HCl rotational effects, because the density into the nearly collinear F-H---Cl product channel increases remarkably with j(0). Finally, our CS rate constant is underestimated with respect to the experiment, pointing out the need of more accurate multisurface and CC calculations.

  18. Use of borehole and surface geophysics to investigate ground-water quality near a road-deicing salt-storage facility, Valparaiso, Indiana

    Science.gov (United States)

    Risch, M.R.; Robinson, B.A.

    2001-01-01

    Borehole and surface geophysics were used to investigate ground-water quality affected by a road-deicing salt-storage facility located near a public water-supply well field. From 1994 through 1998, borehole geophysical logs were made in an existing network of monitoring wells completed near the bottom of a thick sand aquifer. Logs of natural gamma activity indicated a uniform and negligible contribution of clay to the electromagnetic conductivity of the aquifer so that the logs of electromagnetic conductivity primarily measured the amount of dissolved solids in the ground water near the wells. Electromagneticconductivity data indicated the presence of a saltwater plume near the bottom of the aquifer. Increases in electromagnetic conductivity, observed from sequential logging of wells, indicated the saltwater plume had moved north about 60 to 100 feet per year between 1994 and 1998. These rates were consistent with estimates of horizontal ground-water flow based on velocity calculations made with hydrologic data from the study area.

  19. Immunolocalization of NGF and its receptors in ovarian surface epithelium of the wild ground squirrel during the breeding and nonbreeding seasons.

    Science.gov (United States)

    Bao, L; Li, Q; Liu, Y; Li, B; Sheng, X; Han, Y; Weng, Q

    2014-05-09

    The ovarian surface epithelium (OSE) plays an important role in normal ovarian physiology. During each reproductive cycle, the OSE takes part in the cyclical ovulatory ruptures and repair. The aim of this study was to investigate the immunolocalization of nerve growth factor (NGF) and its receptors, tyrosine kinase A (TrkA) and p75, in the OSE cells of the wild ground squirrels during the breeding and nonbreeding seasons. There were marked variations in ovarian weight and size between the breeding and the nonbreeding seasons. Histologically, cuboidal cells and squamous cells were identified in the OSE of both seasons. Yet, stronger immunostaining of NGF, TrkA and p75 were observed in cuboidal cells and squamous cells in the breeding season as compared to the nonbreeding season. In addition, plasma gonadotropin concentrations were higher in the breeding season than in the nonbreeding season, suggesting that the expression patterns of NGF, TrkA and p75 in the OSE were correlated with changes in plasma gonadotropins. These findings suggested that NGF and its receptor TrkA and p75 may be involved in the regulation of seasonal changes in the OSE of wild ground squirrel.in the OSE of wild ground squirrel.

  20. Simultaneous investigation of blast induced ground vibration and airblast effects on safety level of structures and human in surface blasting

    Institute of Scientific and Technical Information of China (English)

    Faramarzi Farhad⇑; Ebrahimi Farsangi Mohammad Ali; Mansouri Hamid

    2014-01-01

    The significance of studying, monitoring and predicting blast induced vibration and noise level in mining and civil activities is justified in the capability of imposing damages, sense of uncertainty due to negative psychological impacts on involved personnel and also judicial complaints of local inhabitants in the nearby area. This paper presents achieved results during an investigation carried out at Sungun Copper Mine, Iran. Besides, the research also studied the significance of blast induced ground vibration and air-blast on safety aspects of nearby structures, potential risks, frequency analysis, and human response. According to the United States Bureau of Mines (USBM) standard, the attenuation equations were devel-oped using field records. A general frequency analysis and risk evaluation revealed that:94%of generated frequencies are less than 14 Hz which is within the natural frequency of structures that increases risk of damage. At the end, studies of human response showed destructive effects of the phenomena by ranging between 2.54 and 25.40 mm/s for ground vibrations and by the average value of 110 dB for noise levels which could increase sense of uncertainty among involved employees.

  1. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry

    KAUST Repository

    Pecher, Lisa

    2017-09-15

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained.

  2. IMPACTS OF ECOTOURISM ON THE BOG OF SERRA NEGRA - BEZERROS/ PE

    Directory of Open Access Journals (Sweden)

    Carolina Florio Castro

    2005-05-01

    Full Text Available The “Brejo da Serra Negra” ( Bog of Serra Negra has become an area of interest of manysectors of society, among them tourism in its different forms. Ecotourism is one of thepropellers of tourism and defined by the Institute of Ecotourism of Brazil as : “the practice ofrecreational, sporting or educational tourism using, in a sustainable form, natural and culturalassets, encouraging conservation, promoting environmental awareness and assuring the wellbeing of the populations involved” (Instituto de Ecoturismo do Brasil, 1995. Within thisperspective some questions such as : how does ecotourism is developed in the concernedarea? What are the impacts caused on Brejo da Serra Negra ( Bog of Serra Negra? How isenvironmental awareness being addressed? should be answered.The Brejo da Serra Negra has been the constant aim of ecotourism because of its very uniquebeauty and the fact that it is a climatic sub-humid area in the hinterlands of Pernambuco andattraction to the so-called radical sports, ecologic tours, caverns exploring as well as camping.

  3. Mapping raised bogs with an iterative one-class classification approach

    Science.gov (United States)

    Mack, Benjamin; Roscher, Ribana; Stenzel, Stefanie; Feilhauer, Hannes; Schmidtlein, Sebastian; Waske, Björn

    2016-10-01

    Land use and land cover maps are one of the most commonly used remote sensing products. In many applications the user only requires a map of one particular class of interest, e.g. a specific vegetation type or an invasive species. One-class classifiers are appealing alternatives to common supervised classifiers because they can be trained with labeled training data of the class of interest only. However, training an accurate one-class classification (OCC) model is challenging, particularly when facing a large image, a small class and few training samples. To tackle these problems we propose an iterative OCC approach. The presented approach uses a biased Support Vector Machine as core classifier. In an iterative pre-classification step a large part of the pixels not belonging to the class of interest is classified. The remaining data is classified by a final classifier with a novel model and threshold selection approach. The specific objective of our study is the classification of raised bogs in a study site in southeast Germany, using multi-seasonal RapidEye data and a small number of training sample. Results demonstrate that the iterative OCC outperforms other state of the art one-class classifiers and approaches for model selection. The study highlights the potential of the proposed approach for an efficient and improved mapping of small classes such as raised bogs. Overall the proposed approach constitutes a feasible approach and useful modification of a regular one-class classifier.

  4. Zero methane emission bogs: extreme rhizosphere oxygenation by cushion plants in Patagonia.

    Science.gov (United States)

    Fritz, Christian; Pancotto, Veronica A; Elzenga, Josephus T M; Visser, Eric J W; Grootjans, Ab P; Pol, Arjan; Iturraspe, Rodolfo; Roelofs, Jan G M; Smolders, Alfons J P

    2011-04-01

    • Vascular wetland plants may substantially increase methane emissions by producing root exudates and easily degradable litter, and by providing a low-resistance diffusion pathway via their aerenchyma. However, model studies have indicated that vascular plants can reduce methane emission when soil oxygen demand is exceeded by oxygen released from roots. Here, we tested whether these conditions occur in bogs dominated by cushion plants. • Root-methane interactions were studied by comparing methane emissions, stock and oxygen availability in depth profiles below lawns of either cushion plants or Sphagnum mosses in Patagonia. • Cushion plants, Astelia pumila and Donatia fascicularis, formed extensive root systems up to 120 cm in depth. The cold soil (microbial activity and oxygen consumption. In cushion plant lawns, high soil oxygen coincided with high root densities, but methane emissions were absent. In Sphagnum lawns, methane emissions were substantial. High methane concentrations were only found in soils without cushion plant roots. • This first methane study in Patagonian bog vegetation reveals lower emissions than expected. We conclude that cushion plants are capable of reducing methane emission on an ecosystem scale by thorough soil and methane oxidation. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  5. Evaluation of ground grain versus pre- and post-pellet whole grain additions to poultry diets via a response surface design.

    Science.gov (United States)

    Moss, Amy F; Chrystal, Peter V; Truong, Ha H; Selle, Peter H; Liu, Sonia Yun

    2017-09-12

    1. The objective of this study was to compare the effects of pre- and post-pellet whole grain wheat additions to diets on growth performance, gizzard and pancreas development, nutrient utilisation and starch and protein (N) digestibility coefficients in broiler chickens via an equilateral triangle response surface design. 2. The three apical treatments of the equilateral triangle comprised (1A) a standard diet containing 600 g/kg ground wheat, (2B) the same diet containing 600 g/kg pre-pellet whole wheat and (3C) the same diet containing 300 g/kg ground wheat and 300 g/kg post-pellet whole wheat. Seven blends of the three apical diets were located within the triangle to complete the design and a total of 360 male Ross 308 chicks were offered the ten experimental diets from 7 to 28 d post-hatch. Model prediction and response surface plots were generated with R 3.0.3 software. 3. The most efficient FCR of 1.466 was observed in birds offered an almost equal mixture of the pre- and post-pellet whole grain apical dietary treatments, which corresponded to 172 g/kg ground grain, 256 g/kg pre-pellet whole grain, 172 g/kg post-pellet whole grain in a diet containing 600 g/kg wheat. 4. The most efficient energy utilisation (ME:GE ratio of 0.766) was observed in birds offered a blend of the ground grain and pre-pellet whole grain apical dietary treatments which corresponded to a mixture of 384 g/kg pre-pellet whole grain and 216 g/kg ground grain. 5. Pre-pellet whole grain feeding generated the most pronounced responses in increased relative gizzard contents, reduced gizzard pH and increased relative pancreas weights. Consideration is given to the likely differences between pre- and post-pellet whole grain feeding.

  6. Identifying the hotspots of non-renewable water use using HiGW-MAT: A new land surface model coupled with human interventions and ground water reservoir

    Science.gov (United States)

    Oki, T.; Pokhrel, Y. N.; Yeh, P. J.; Koirala, S.; Kanae, S.; Hanasaki, N.

    2011-12-01

    The real hydrological cycles on the Earth are not natural anymore. Global hydrological model simulations of the water cycle and available water resources should have an ability to consider the effects of human interventions on hydrological cycles. Anthropogenic activity modules (Hanasaki et al., 2008), such as reservoir operation, crop growth and water demand in crop lands, and environmental flows, were incorporated into a land surface model called MATSIRO (Takata et al., 2003), to form a new model, MAT-HI (Pokhrel et al., 2011). Total terrestrial water storages (TWS) in large river basins were estimated using the new model by off-line simulation, and compared with the TWS observed by GRACE for 2002-2007. The results showed MAT-HI has an advantage estimating TWS particularly in arid river basins compared with H08 (Hanasaki et al., 2008). MAT-HI was further coupled with a module representing the ground water level fluctuations (Yeh et al., 2005), and consists a new land surface scheme HiGW-MAT (Human Intervention and Ground Water coupled MATSIRO). HiGW-MAT is also associated with a scheme tracing the origin and flow path with the consideration on the sources of water withdrawal from stream flow, medium-size reservoirs and nonrenewable groundwater in addition to precipitation to croplands enabled the assessment of the origin of water producing major crops as Hanasaki et al. (2010). Areas highly dependent on nonrenewable groundwater are detected in the Pakistan, Bangladesh, western part of India, north and western parts of China, some regions in the Arabian Peninsula and the western part of the United States through Mexico. Cumulative nonrenewable groundwater withdrawals estimated by the model are corresponding fairly well with the country statistics of total groundwater withdrawals. Ground water table depletions in large aquifers in US estimated by HiGW-MAT were compared with in-situ observational data, and the correspondences are very good. Mean global exploitation

  7. Mid- and late Holocene human impact recorded by the Coltrondo peat bog (NE Italian Alps)

    Science.gov (United States)

    Segnana, Michela; Poto, Luisa; Gabrieli, Jacopo; Martino, Matteo; Oeggl, Klaus; Barbante, Carlo

    2016-04-01

    Peat bogs are ideal archives for the study of environmental changes, whether these are natural or human induced. Indeed, receiving water and nutrients exclusively from dry and wet atmospheric depositions, they are among the most suitable matrices for palaeoenvironmental reconstruction. The present study is focused on the Eastern sector of the Italian Alps, where we sampled the Coltrondo peat bog, in the Comelico area (ca. 1800 m a.s.l.) The knowledge of the human history in this area is rather scarce: the only pieces of archaeological evidence found in this area dates back to the Mesolithic and the absence of later archaeological finds makes it difficult to reconstruct the human settlement in the valley. With the main aim to obtain information about the human settlement in that area we selected a multi-proxy approach, combining the study of biotic and abiotic sedimentary components archived in the 7900 years-peat bog record. Pollen analysis is performed along the core registering human impacts on the area from ca. 2500 cal BP, when land-use changes are well evidenced by the presence of human-related pollen and non-pollen palynomorphs (NPPs), as well as by the increase in micro-charcoal particles. Periods of increased human impact are recorded at the end of the Middle Ages and later, at the end of the 19th century. The analysis of trace elements, such as lead, is performed by means of ICP-MS technique and its enrichment factor (EF) is calculated. A first slight increase of Pb EF during Roman Times is possibly related to mining activities carried out by the Romans. Mining activities carried out in the area are registered during the Middle Ages, while the advent of the industrialization in the 20th century is marked by the highest EF values registered on the top of the core. To help and support the interpretation of geochemical data, lead isotopes ratios are also measured using ICP-MS to discriminate between natural and anthropogenic sources of lead. The 206Pb/207Pb

  8. Comparison of different methods to determine the degree of peat decomposition in peat bogs

    Science.gov (United States)

    Biester, H.; Knorr, K.-H.; Schellekens, J.; Basler, A.; Hermanns, Y.-M.

    2014-05-01

    Peat humification or decomposition is a frequently used proxy to extract past time changes in hydrology and climate from peat bogs. During the past century several methods to determine changes in peat decomposition have been introduced. Most of these methods are operationally defined only and the chemical changes underlying the decomposition process are often poorly understood and lack validation. Owing to the chemically undefined nature of many humification analyses the comparison of results obtained by different methods is difficult. In this study we compared changes in peat decomposition proxies in cores of two peat bogs (Königsmoor, KK; Kleines Rotes Bruch, KRB) from the Harz Mountains (Germany) using C / N ratios, Fourier transform infrared spectra absorption (FTIR) intensities, Rock Eva® oxygen and hydrogen indices, δ13C and δ15N isotopic signatures and UV-absorption (UV-ABS) of NaOH peat extracts. In order to explain parallels and discrepancies between these methods, one of the cores was additionally analysed by pyrolysis gas chromatography mass spectrometry (pyrolysis-GC-MS). Pyrolysis-GC-MS data provide detailed information on a molecular level, which allows differentiation of both changes attributed to decomposition processes and changes in vegetation. Principal component analysis was used to identify and separate the effects of changes in vegetation pattern and decomposition processes because both may occur simultaneously upon changes in bog hydrology. Records of decomposition proxies show similar historical development at both sites, indicating external forcing such as climate as controlling the process. All decomposition proxies except UV-ABS and δ15N isotopes show similar patterns in their records and reflect to different extents signals of decomposition. The molecular composition of the KK core reveals that these changes are mainly attributed to decomposition processes and to a lesser extent to changes in vegetation. Changes in the molecular

  9. Development of a high resolution modeling tool for prediction of waterflows through complex mires: Example of the Mukhrino bog complex in West Siberian middle Taiga Zone

    Science.gov (United States)

    Zarov, Evgeny A.; Schmitz, Oliver; Bleuten, Wladimir

    2015-04-01

    Water flow through peat bogs differ substantially from mineral soil landscapes. Permeability of the peatlayers decrease dramatically with depth within the permanently watersaturated peat layers (Catotelm), whereas the 10-60 cm thick superficial layer (Acrotelm) has a very high conductivity. Water flows predominantly in this acrotelm layer where an open structure of stems of mosses and few plants hardly limit water flow. By omitting this superficial flow infrastructures in many places block the waterflow. Moreover, the different bog types within a complex bog have different hydrological conductivities. Without considering the typical water-flow of bogs the construction of roads and platforms for oil and gas production threatens downhill mire ecosystems by partly drainage. The objective of our study was to develop a modeling tool which can be used to predict quantitatively spatially distributed water-flow of a bog complex. A part of the extensive bog complex "Mukhrino bog complex" located at the left bank of Irtysh river near the West Siberian town Khanty-Mansiysk' was chosen as modeling area. Water discharge from this bog catchment occurs by "waterfalls" at the East margin where a scarp with ca. 8 m elevation difference has been developed by backward erosion into the bog by the Mukhrino river. From field observations it was proven that no discharge of groundwater occurred at the margin of the bog catchment area. We used PCRaster-MODFLOW as modeling environment. The model area size was 3.8 km2, cell size 5 m and the model included 3 Acrotelm layers and 3 Catotelm layers. Thickness of Acrotelm and Catotelm have been measured by coring in transects. Input data of rain, snow have been recorded in the study area. Evapotranspiration was measured with small lysimeters and crop factors for different land unit types (open water, raised bog, patterned bog, poor fens) were elaborated by water balance modeling (1-D). Land unit types have been mapped by supervised classification

  10. Geochemical processes in ground water resulting from surface mining of coal at the Big Sky and West Decker Mine areas, southeastern Montana

    Science.gov (United States)

    Clark, D.W.

    1995-01-01

    A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which geochemical processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. Geochemical models were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous geochemical characteristics. Geochemical processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.

  11. Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States

    Science.gov (United States)

    Webb, R.H.; Leake, S.A.

    2006-01-01

    Riverine riparian vegetation has changed throughout the southwestern United States, prompting concern about losses of habitat and biodiversity. Woody riparian vegetation grows in a variety of geomorphic settings ranging from bedrock-lined channels to perennial streams crossing deep alluvium and is dependent on interaction between ground-water and surface-water resources. Historically, few reaches in Arizona, southern Utah, or eastern California below 1530 m elevation had closed gallery forests of cottonwood and willow; instead, many alluvial reaches that now support riparian gallery forests once had marshy grasslands and most bedrock canyons were essentially barren. Repeat photography using more than 3000 historical images of rivers indicates that riparian vegetation has increased over much of the region. These increases appear to be related to several factors, notably the reduction in beaver populations by trappers in the 19th century, downcutting of arroyos that drained alluvial aquifers between 1880 and 1910, the frequent recurrence of winter floods during discrete periods of the 20th century, an increased growing season, and stable ground-water levels. Reductions in riparian vegetation result from agricultural clearing, excessive ground-water use, complete flow diversion, and impoundment of reservoirs. Elimination of riparian vegetation occurs either where high ground-water use lowers the water table below the rooting depth of riparian species, where base flow is completely diverted, or both. We illustrate regional changes using case histories of the San Pedro and Santa Cruz Rivers, which are adjacent watersheds in southern Arizona with long histories of water development and different trajectories of change in riparian vegetation.

  12. Surface-water, water-quality, and ground-water assessment of the Municipio of Comerio, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Comerio, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System, and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resource data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 13 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land- and water-use conditions. A sanitary quality survey of streams utilized 24 sampling stations to evaluate about 84 miles of stream channels with drainage to or within the municipio of Comerio. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions to evaluate the sanitary quality of streams. Bacteriological analyses indicate that about 27 miles of stream reaches within the municipio of Comerio may have fecal coliform bacteria concentrations above the water-quality goal established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include illegal discharge of sewage to storm-water drains, malfunction of sanitary

  13. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform

  14. Determination of trace levels of herbicides and their degradation products in surface and ground waters by gas chromatography/ion-trap mass spectrometry

    Science.gov (United States)

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.

    1990-01-01

    A rapid, specific and highly sensitive method is described for the determination of several commonly used herbicides and their degradation products in surface and ground waters by using gas chromatography/ion-trap mass spectrometry. The compounds included atrazine, and its degradation products desethylatrazine and desisopropylatrazine; Simazine; Cyanazine; Metolachlor; and alachlor and its degradation products, 2-chloro-2', 6'-diethylacetanilide, 2-hydroxy-2', 6'-diethylacetanilide and 2,6-diethylaniline. The method was applied to surface-water samples collected from 16 different stations along the lower Mississippi River and its major tributaries, and ground-water samples beneath a cornfield in central Nebraska. Average recovery of a surrogate herbicide, terbuthylazine, was greater than 99%. Recoveries of the compounds of interest from river water spiked at environmental levels are also presented. Full-scan mass spectra of these compounds were obtained on 1 ng or less of analyte. Data were collected in the full-scan acquisition mode. Quantitation was based on a single characteristic ion for each compound. The detection limit was 60 pg with a signal-to-noise ratio of greater than 10:1.

  15. Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, B.M.; Finsterle, S.; Onstott, T.C.; Toole, P.; Pratt, L.M.

    2008-10-10

    We have developed a borehole methodology to estimate formation thermal conductivity in situ with a spatial resolution of one meter. In parallel with a fiber-optic distributed temperature sensor (DTS), a resistance heater is deployed to create a controlled thermal perturbation. The transient thermal data is inverted to estimate the formation's thermal conductivity. We refer to this instrumentation as a Distributed Thermal Perturbation Sensor (DTPS), given the distributed nature of the DTS measurement technology. The DTPS was deployed in permafrost at the High Lake Project Site (67 degrees 22 minutes N, 110 degrees 50 minutes W), Nunavut, Canada. Based on DTPS data, a thermal conductivity profile was estimated along the length of a wellbore. Using the thermal conductivity profile, the baseline geothermal profile was then inverted to estimate a ground surface temperature history (GSTH) for the High Lake region. The GSTH exhibits a 100-year long warming trend, with a present-day ground surface temperature increase of 3.0 {+-} 0.8 C over the long-term average.

  16. Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity.

    Science.gov (United States)

    Costard, F; Forget, F; Mangold, N; Peulvast, J P

    2002-01-04

    The observation of small gullies associated with recent surface runoff on Mars has renewed the question of liquid water stability at the surface of Mars. The gullies could be formed by groundwater seepage from underground aquifers; however, observations of gullies originating from isolated peaks and dune crests question this scenario. We show that these landforms may result from the melting of water ice in the top few meters of the martian subsurface at high obliquity. Our conclusions are based on the analogy between the martian gullies and terrestrial debris flows observed in Greenland and numerical simulations that show that above-freezing temperatures can occur at high obliquities in the near surface of Mars, and that such temperatures are only predicted at latitudes and for slope orientations corresponding to where the gullies have been observed on Mars.

  17. Formation of Recent Martian Debris Flows by Melting of Near-Surface Ground Ice at High Obliquity

    Science.gov (United States)

    Costard, F.; Forget, F.; Mangold, N.; Peulvast, J. P.

    2002-01-01

    The observation of small gullies associated with recent surface runoff on Mars has renewed the question of liquid water stability at the surface of Mars. The gullies could be formed by groundwater seepage from underground aquifers; however, observations of gullies originating from isolated peaks and dune crests question this scenario. We show that these landforms may result from the melting of water ice in the top few meters of the martian subsurface at high obliquity. Our conclusions are based on the analogy between the martian gullies and terrestrial debris flows observed in Greenland and numerical simulations that show that above-freezing temperatures can occur at high obliquities in the near surface of Mars, and that such temperatures are only predicted at latitudes and for slope orientations corresponding to where the gullies have been observed on Mars.

  18. LNG加气站 BOG 用于站内生活用气的可行性探讨%Discussion on the feasibility of using BOG for life in a LNG filling station

    Institute of Scientific and Technical Information of China (English)

    廖晓梦; 张昀; 伍婷

    2016-01-01

    目前国内大多数LNG 加气站产生的BOG 都直接排放,造成能源浪费和安全风险。在LNG加气站工艺流程分析的基础上,探讨了LNG加气站内BOG的来源,对BOG回收作为站内自用气(采暖、做饭、淋浴)的可行性进行了研究,并通过实例计算,从经济角度论证了BOG回收作为站内自用气的可行性。结果表明,将LNG加气站BOG回收作为站内自用气的方案具有可行性,不仅能够带来可观的经济效益,而且对LNG站场运行安全具有重要意义。%Nowadays in China ,BOG generated in LNG filling station is released directly ,which leads to the waste of energy and the risk of safety .Based on the analysis of LNG filling station process flow ,the source of BOG in LNG filling station is discussed ,and the research on feasibility of using BOG for life (heating ,cooking ,showering) is carried out ,as well as a real station for an example , the practicability from economic angle is discussed .The results show that it is feasible to use BOG for life and has not only economic benefits but also an important meaning for the safety of a LNG filling station .

  19. Reintroduction of salt marsh vegetation and phosphorus fertilisation improve plant colonisation on seawater-contaminated cutover bogs

    Directory of Open Access Journals (Sweden)

    C. Emond

    2016-07-01

    Full Text Available Coastal bogs that are used for peat extraction are prone to contamination by seawater during storm events. Once contaminated, they remain mostly bare because of the combination of high salinity, low pH, high water table and low nutrient availability. The goal of this research was to investigate how plant colonisation at salt-contaminated bogs can be accelerated, in order to prevent erosion and fluvial export of the peat. At two seawater-contaminated bogs, we tested the application of rock phosphate and dolomitic lime in combination with five plant introduction treatments: transplantation of Carex paleacea; transplantation of Spartina pectinata; transfer of salt marsh diaspores in July; transfer of salt marsh diaspores in August; and no treatment (control. The effects of different doses of lime on the growth of C. paleacea and S. pectinata were also investigated in a greenhouse experiment. In the field, phosphorus fertilisation improved plant growth. Transplantation of C. paleacea resulted in the highest plant colonisation, whereas salt marsh diaspore transfer led to the highest species diversity. Lime applications did not improve plant establishment in either the field or the greenhouse. To promote revegetation of seawater-contaminated cutover bogs, adding P is an asset, Carex paleacea is a good species to transplant, and the transfer of salt marsh diaspores improves plant diversity.

  20. Comparisons of soil nitrogen mass balances for an ombrotrophic bog and a minerotrophic fen in northern Minnesota

    Science.gov (United States)

    Brian H. Hill; Terri M. Jicha; LaRae L.P. Lehto; Colleen M. Elonen; Stephen D. Sebestyen; Randy Kolka

    2016-01-01

    Wecompared nitrogen (N) storage and flux in soils froman ombrotrophic bogwith that of a minerotrophic fen to quantify the differences in N cycling between these two peatlands types in northernMinnesota (USA). Precipitation, atmospheric deposition, and bog and fen outflowswere analyzed for nitrogen species. Upland and peatland soil sampleswere analyzed for N content,...

  1. Relationships between anthropogenic pressures and ecosystem functions in UK blanket bogs: linking process understanding to ecosystem service valuation

    OpenAIRE

    Evans, CD; Bonn, A; Holden, J; Reed, MS; Evans, MG; Worrall, F.; J. Couwenberg; Parnell, M

    2014-01-01

    Quantification and valuation of ecosystem services are critically dependent on the quality of underpinning science. While key ecological processes may be understood, translating this understanding into quantitative relationships suitable for use in an ecosystem services context remains challenging. Using blanket bogs as a case study, we derived quantitative 'pressure-response functions' linking anthropogenic pressures (drainage, burning, sulphur and nitrogen deposition) with ecosystem functio...

  2. The uptake of Ni2+ and Ag+ by bacterial strains isolated from a boreal nutrient-poor bog

    Directory of Open Access Journals (Sweden)

    Merja Lusa

    2016-05-01

    Full Text Available We studied the uptake of Ni2+ and Ag+ by bacterial strains of Paenibacillus, Pseudomonas, Burkholderia and Rhodococcus isolated from an acidic nutrient-poor boreal bog. The tests were run in two different growth media at two temperatures; +4 °C and +20 °C. All bacterial strains removed Ni2+ and Ag+ from the solution with highest efficiencies shown by one of the Pseudomonas sp. and one of the Paenibacillus sp. strains. Highest Ni2+ uptake was found in 1% Tryptone solution, whereas the highest removal of Ag+ was obtained using 1% Yeast extract. Temperature affected the uptake of Ni2+ and Ag+, but statistically significant difference was found only for Ni2+. Based on tests carried out for the bacteria in nutrient broths and for fresh samples taken from varying depth up to seven meters from the ombrotrophic bog, from which the bacteria were isolated, we estimated that in in situ conditions of the bog the uptake of Ni2+ by bacteria accounts for approximately 0.02% of the total sorption in the uppermost moss layer, 0.01% in the peat layer, 0.02% in the gyttja layer and 0.1% in the bottom clay layer of the bog. For Ag+ the corresponding values were 2.3% in the moss layer, 0.04% in the peat layer, 0.2% in the gyttja and 0.03% in the clay layer.

  3. Assessing Expected Fractional Damage of Above-ground Buildings from Air-to-surface Weapons based on Indirect Fire Concept

    Directory of Open Access Journals (Sweden)

    Jong Yil Park

    2010-08-01

    Full Text Available For the expected fractional damage of building targets from air-to-surface weapons, the US has used the JMEM/AS method, which is based on the direct-fire concept. However, the damage redistribution assumption in the direct-fire concept could induce serious errors in damage estimation of building targets. In this paper, a method for the expected fractional damage of building targets is proposed based on the indirect-fire concept. From the proposed model, it is shown that the joint munitions effectiveness manuals/air-to-surface (JMEM/AS method is not appropriate for building targets, especially for attacks with multiple aiming points. It is recommended that the indirect-fire concept should be adopted for weaponeering even for air-to-surface weapons. fire concept could induce serious errors in damage estimation of building targets. In this paper, a method for the expected fractional damage of building targets is proposed based on the indirect-fire concept. From the proposed model, it is shown that the JMEM/AS method is not appropriate for building targets, especially for attacks with multiple aiming points. It is recommended that the indirect-fire concept should be adopted for weaponeering even for air-to-surface weapons.Defence Science Journal, 2010, 60(5, pp.491-496, DOI:http://dx.doi.org/10.14429/dsj.60.571

  4. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry.

    Science.gov (United States)

    Pecher, Lisa; Laref, Slimane; Raupach, Marc; Tonner, Ralf Ewald

    2017-09-15

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Can satellite land surface temperature data be used similarly to ground discharge measurements for distributed hydrological model calibration?

    NARCIS (Netherlands)

    Corbari, C.; Mancini, M.; Li, J.; Su, Zhongbo

    2015-01-01

    This study proposes a new methodology for the calibration of distributed hydrological models at basin scale by constraining an internal model variable using satellite data of land surface temperature. The model algorithm solves the system of energy and mass balances in terms of a representative equi

  6. Above- and below-ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization

    NARCIS (Netherlands)

    Wang, Peng; Limpens, Juul; Mommer, Liesje; Ruijven, van Jasper; Nauta, Ake L.; Berendse, Frank; Schaepman-Strub, Gabriela; Blok, Daan; Maximov, Trofim C.; Heijmans, Monique M.P.D.

    2017-01-01

    Climate warming is faster in