WorldWideScience

Sample records for ground surface remains

  1. What Makes Hotel Expatriates Remain in Their Overseas Assignments: A Grounded Theory Study

    Science.gov (United States)

    Ho, Zoe Ju-Yu

    2012-01-01

    In this study the researcher uses a qualitative research design to discover what makes hotel expatriates remain in their overseas assignments. In-depth interviews, participant observations, and personal documents are used as data collection methods. Four hotel expatriates are recruited as participants of the study. The collected interview…

  2. Artificial Ground Water Recharge with Surface Water

    Science.gov (United States)

    Heviánková, Silvie; Marschalko, Marian; Chromíková, Jitka; Kyncl, Miroslav; Korabík, Michal

    2016-10-01

    With regard to the adverse manifestations of the recent climatic conditions, Europe as well as the world have been facing the problem of dry periods that reduce the possibility of drawing drinking water from the underground sources. The paper aims to describe artificial ground water recharge (infiltration) that may be used to restock underground sources with surface water from natural streams. Among many conditions, it aims to specify the boundary and operational conditions of the individual aspects of the artificial ground water recharge technology. The principle of artificial infiltration lies in the design of a technical system, by means of which it is possible to conduct surplus water from one place (in this case a natural stream) into another place (an infiltration basin in this case). This way, the water begins to infiltrate into the underground resources of drinking water, while the mixed water composition corresponds to the water parameters required for drinking water.

  3. Bacteriophages as surface and ground water tracers

    Directory of Open Access Journals (Sweden)

    P. Rossi

    1998-01-01

    Full Text Available Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra. In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  4. Bacteriophages as surface and ground water tracers

    Science.gov (United States)

    Rossi, P.; Dörfliger, N.; Kennedy, K.; Müller, I.; Aragno, M.

    Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra). In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  5. Passive heating of the ground surface

    Science.gov (United States)

    Tyburczyk, Anna

    2016-03-01

    The phenomenon of phase change is one of the most important contemporary issues of thermal engineering. In particular, this applies to all kinds of heat exchanger systems, which should achieve the highest possible efficiency while reducing investment and operating costs. Some of these systems are heat pipes or thermosyphons, which, among others, are used for the heat transfer, temperature stabilization and the regulation of heat flux density. Additionally, they are passive systems, and therefore do not require an external power supply. Heat pipes can be used to stabilize the surface temperature of roads and driveways. Large heat tubes can be applied for heating the surface of bridges and overpasses, which become icy in unfavorable climatic conditions. The paper presents research on the test facility, whose main component is a long vertical copper fin. The temperature at the base of the fin was kept constant for a given series of measurements. Heat receiving fluid was ethanol at atmospheric pressure. The measurement methodology and the results of investigations were discussed. The surface temperature distribution was measured with the infrared camera, and on this basis the local values of heat flow and the heat transfer coefficient were determined. The results were presented as boiling curves for both the fin with the smooth surface and the one covered with a metal capillary-porous structure. The results obtained are useful in the design of heat exchangers, including passive heating of the ground.

  6. Passive heating of the ground surface

    Directory of Open Access Journals (Sweden)

    Tyburczyk Anna

    2016-01-01

    Full Text Available The phenomenon of phase change is one of the most important contemporary issues of thermal engineering. In particular, this applies to all kinds of heat exchanger systems, which should achieve the highest possible efficiency while reducing investment and operating costs. Some of these systems are heat pipes or thermosyphons, which, among others, are used for the heat transfer, temperature stabilization and the regulation of heat flux density. Additionally, they are passive systems, and therefore do not require an external power supply. Heat pipes can be used to stabilize the surface temperature of roads and driveways. Large heat tubes can be applied for heating the surface of bridges and overpasses, which become icy in unfavorable climatic conditions. The paper presents research on the test facility, whose main component is a long vertical copper fin. The temperature at the base of the fin was kept constant for a given series of measurements. Heat receiving fluid was ethanol at atmospheric pressure. The measurement methodology and the results of investigations were discussed. The surface temperature distribution was measured with the infrared camera, and on this basis the local values of heat flow and the heat transfer coefficient were determined. The results were presented as boiling curves for both the fin with the smooth surface and the one covered with a metal capillary-porous structure. The results obtained are useful in the design of heat exchangers, including passive heating of the ground.

  7. Effect of interaction of embedded crack and free surface on remaining fatigue life

    Directory of Open Access Journals (Sweden)

    Genshichiro Katsumata

    2016-12-01

    Full Text Available Embedded crack located near free surface of a component interacts with the free surface. When the distance between the free surface and the embedded crack is short, stress at the crack tip ligament is higher than that at the other area of the cracked section. It can be easily expected that fatigue crack growth is fast, when the embedded crack locates near the free surface. To avoid catastrophic failures caused by fast fatigue crack growth at the crack tip ligament, fitness-for-service (FFS codes provide crack-to-surface proximity rules. The proximity rules are used to determine whether the cracks should be treated as embedded cracks as-is, or transformed to surface cracks. Although the concepts of the proximity rules are the same, the specific criteria and the rules to transform embedded cracks into surface cracks differ amongst FFS codes. This paper focuses on the interaction between an embedded crack and a free surface of a component as well as on its effects on the remaining fatigue lives of embedded cracks using the proximity rules provided by the FFS codes. It is shown that the remaining fatigue lives for the embedded cracks strongly depend on the crack aspect ratio and location from the component free surface. In addition, it can be said that the proximity criteria defined by the API and RSE-M codes give overly conservative remaining lives. On the contrary, the WES and AME codes always give long remaining lives and non-conservative estimations. When the crack aspect ratio is small, ASME code gives non-conservative estimation.

  8. Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials.

    Science.gov (United States)

    Warnes, Sarah L; Little, Zoë R; Keevil, C William

    2015-11-10

    The evolution of new and reemerging historic virulent strains of respiratory viruses from animal reservoirs is a significant threat to human health. Inefficient human-to-human transmission of zoonotic strains may initially limit the spread of transmission, but an infection may be contracted by touching contaminated surfaces. Enveloped viruses are often susceptible to environmental stresses, but the human coronaviruses responsible for severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) have recently caused increasing concern of contact transmission during outbreaks. We report here that pathogenic human coronavirus 229E remained infectious in a human lung cell culture model following at least 5 days of persistence on a range of common nonbiocidal surface materials, including polytetrafluoroethylene (Teflon; PTFE), polyvinyl chloride (PVC), ceramic tiles, glass, silicone rubber, and stainless steel. We have shown previously that noroviruses are destroyed on copper alloy surfaces. In this new study, human coronavirus 229E was rapidly inactivated on a range of copper alloys (within a few minutes for simulated fingertip contamination) and Cu/Zn brasses were very effective at lower copper concentration. Exposure to copper destroyed the viral genomes and irreversibly affected virus morphology, including disintegration of envelope and dispersal of surface spikes. Cu(I) and Cu(II) moieties were responsible for the inactivation, which was enhanced by reactive oxygen species generation on alloy surfaces, resulting in even faster inactivation than was seen with nonenveloped viruses on copper. Consequently, copper alloy surfaces could be employed in communal areas and at any mass gatherings to help reduce transmission of respiratory viruses from contaminated surfaces and protect the public health. Respiratory viruses are responsible for more deaths globally than any other infectious agent. Animal coronaviruses that "host jump" to humans result in

  9. Prediction of ground surface displacement caused by grouting

    Institute of Scientific and Technical Information of China (English)

    郭风琪; 刘晓潭; 童无期; 单智

    2015-01-01

    Ground surface displacement caused by grouting was calculated with stochastic medium theory. Ground surface displacement was assumed to be caused by the cavity expansion of grouting, slurry seepage, and slurry contraction. A prediction method of ground surface displacement was developed. The reliability of the presented method was validated through a comparison between theoretical results and results from engineering practice. Results show that the present method is effective. The effect of parameters on uplift displacement was illustrated under different grouting conditions. Through analysis, it can be known that the ground surface uplift is mainly caused by osmosis of slurry and the primary influence angle of stratum βdetermines the influence range of surface uplift. Besides, the results show that ground surface uplift displacement decreases notably with increasing depth of the grouting cavity but it increases with increasing diffusion radius of grout and increasing grouting pressure.

  10. Comparison of waxy and normal potato starch remaining granules after chemical surface gelatinization: Pasting behavior and surface morphology

    NARCIS (Netherlands)

    Huang, J.; Chen Zenghong,; Xu, Yalun; Li, Hongliang; Liu, Shuxing; Yang, Daqing; Schols, H.A.

    2014-01-01

    o understand the contribution of granule inner portion to the pasting property of starch, waxy potato starch and two normal potato starches and their acetylated starch samples were subjected to chemical surface gelatinization by 3.8 mol/L CaCl2 to obtain remaining granules. Native and acetylated, or

  11. Comparison of waxy and normal potato starch remaining granules after chemical surface gelatinization: Pasting behavior and surface morphology

    NARCIS (Netherlands)

    Huang, J.; Chen Zenghong,; Xu, Yalun; Li, Hongliang; Liu, Shuxing; Yang, Daqing; Schols, H.A.

    2014-01-01

    o understand the contribution of granule inner portion to the pasting property of starch, waxy potato starch and two normal potato starches and their acetylated starch samples were subjected to chemical surface gelatinization by 3.8 mol/L CaCl2 to obtain remaining granules. Native and acetylated,

  12. Imaging of Archaeological Remains at Barcombe Roman Villa using Microwave Tomographic Depictions of Ground Penetrating Radar Data

    Science.gov (United States)

    Soldovieri, F.; Utsi, E.; Alani, A.; Persico, R.

    2012-04-01

    The site of the Barcombe Romano-British villa lies in a field on the perimeter of Barcombe village in East Sussex, England. The site came to the attention of the Mid Sussex Field Archaeological Team (MSFAT) and the University College London Field Archaeological Unit (UCL, subsequently replaced by the Centre for Continuing Education of the University of Sussex, CCE) because it was in danger of disappearing altogether without being adequately recorded [1]. In common with many other UK sites of the period, the villa had been extensively robbed out in the centuries following its demise in order to provide building material for the adjacent village and its associated farms, a common problem with Romano-British sites in the UK [2]. In addition, the site is positioned on the ridge of a field in agricultural use and has therefore been extensively ploughed out. As a result, the archaeological evidence was sparse and the little that remained was being rapidly eroded. In April 2001, a Ground Penetrating Radar (GPR) survey was carried out jointly by the Department of Engineering, Portsmouth and Utsi Electronics Ltd on behalf of the archaeological team in order to investigate the possibility of mapping both the villa and earlier prehistoric remains on the same ridge. Using a 40m by 60m grid laid out by the archaeological team, a Groundvue 1, with antennas of central frequency 400MHz, was used to survey along a series of parallel transects at intervals of 50cm. The sampling interval along the line of survey was 5cm and probing was carried out to 40ns. The results of the GPR survey, including a comparison with the evidence from the resistivity work, were published in 2002 [3]. The original GPR data were processed (using the ReflexW package) by applying background removal, adding time based gain, averaging over 2 traces in order to reduce noise resulting from the relative movement of the antennas across the ploughed field and finally applying a Bandpass Butterworth filter of 200

  13. Reactions to Reading 'Remaining Consistent with Method? An Analysis of Grounded Theory Research in Accounting': A Comment on Gurd

    OpenAIRE

    2008-01-01

    Purpose: This paper is a comment on Gurd's paper published in QRAM 5(2) on the use of grounded theory in interpretive accounting research. Methodology: Like Gurd, we conducted a bibliographic study on prior pieces of research claiming the use of grounded theory. Findings: We found a large diversity of ways of doing grounded theory. There are as many ways as articles. Consistent with the spirit of grounded theory, the field suggested the research questions, methods and verifiability criteria. ...

  14. Comparison of waxy and normal potato starch remaining granules after chemical surface gelatinization: pasting behavior and surface morphology.

    Science.gov (United States)

    Huang, Junrong; Chen, Zhenghong; Xu, Yalun; Li, Hongliang; Liu, Shuxing; Yang, Daqing; Schols, Henk A

    2014-02-15

    To understand the contribution of granule inner portion to the pasting property of starch, waxy potato starch and two normal potato starches and their acetylated starch samples were subjected to chemical surface gelatinization by 3.8 mol/L CaCl2 to obtain remaining granules. Native and acetylated, original and remaining granules of waxy potato starch had similar rapid visco analyzer (RVA) pasting profiles, while those of two normal potato starches behaved obviously different from each other. All remaining granules had lower peak viscosity than the corresponding original granules. Contribution of waxy potato starch granule's inner portion to the peak viscosity was significant more than those of normal potato starches. The shell structure appearing on the remaining granule surface for waxy potato starch was smoother and thinner than that for normal potato starches as observed by scanning electron microscopy, indicating a more regular structure of shell and a more ordered packing of shell for waxy potato starch granules. The blocklet size of waxy potato starch was smaller and more uniform than those of normal potato starches as shown by atomic force microscopy images of original and remaining granules. In general, our results provided the evidence for the spatial structure diversity between waxy and normal potato starch granules: outer layer and inner portion of waxy potato starch granule had similar structure, while outer layer had notably different structure from inner portion for normal potato starch granule.

  15. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan Christian

    2005-01-01

    Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2 Hz. Unfortunately, environmental loads and the passage of blades past...... the tower may lead to excitation with frequencies of the same order of magnitude. Therefore, dynamic soil-structure interaction has to be accounted for in order to get an accurate prediction of the structural response. In this paper the particular problem of a rigid foundation on a layered subsoil...

  16. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan

    2007-01-01

    Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2 Hz. Unfortunately, environmental loads and the passage of blades past...... the tower may lead to excitation with frequencies of the same order of magnitude. Therefore, dynamic soilstructure interaction has to be accounted for in order to get an accurate prediction of the structural response. In this paper the particular problem of a rigid foundation on a layered subsoil...

  17. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during convention

  18. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  19. Digital Modeling Phenomenon Of Surface Ground Movement

    Directory of Open Access Journals (Sweden)

    Ioan Voina

    2016-11-01

    Full Text Available With the development of specialized software applications it was possible to approach and resolve complex problems concerning automating and process optimization for which are being used field data. Computerized representation of the shape and dimensions of the Earth requires a detailed mathematical modeling, known as "digital terrain model". The paper aims to present the digital terrain model of Vulcan mining, Hunedoara County, Romania. Modeling consists of a set of mathematical equations that define in detail the surface of Earth and has an approximate surface rigorously and mathematical, that calculated the land area. Therefore, the digital terrain model means a digital representation of the earth's surface through a mathematical model that approximates the land surface modeling, which can be used in various civil and industrial applications in. To achieve the digital terrain model of data recorded using linear and nonlinear interpolation method based on point survey which highlights the natural surface studied. Given the complexity of this work it is absolutely necessary to know in detail of all topographic elements of work area, without the actions to be undertaken to project and manipulate would not be possible. To achieve digital terrain model, within a specialized software were set appropriate parameters required to achieve this case study. After performing all steps we obtained digital terrain model of Vulcan Mine. Digital terrain model is the complex product, which has characteristics that are equivalent to the specialists that use satellite images and information stored in a digital model, this is easier to use.

  20. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    -small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  1. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    -small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  2. Power productivity of the ground surface

    Directory of Open Access Journals (Sweden)

    Gutu A.I.

    2008-12-01

    Full Text Available Here there is presented an attempt to estimate the efficiency degree when working with soil surface through the different methods of valorization incident solar radiation. Such technical methods are being analyzed as (solar collectors, photovoltaic cells, solar thermal power plants, power cultures field (bushes, wheat, sunflower, maize, rape, sorghum as well as microalgae crops. Here is the description of advantages and disadvantages for each group in part out of these three. The technical methods are up to date from the efficiency utilization view-point of industrial area. Microalgae crops are similar to technical methods from this point of view.

  3. The song remains the same: Juvenile Richardson's ground squirrels do not respond differentially to mother's or colony member's alarm calls

    Institute of Scientific and Technical Information of China (English)

    James F.HARE; Kurtis J.WARKENTIN

    2012-01-01

    Alarm calls are emitted by Richardson's ground squirrels Urocitellus richardsonii in response to avian and terrestrial predators.Conspecifics detecting these calls respond with increased vigilance,promoting predator detection and evasion,but in doing so,lose time from foraging.That loss can be minimized if alarm call recipients discriminate among signalers,and weight their response accordingly.For juvenile ground squirrels,we predicted that the trade-off between foraging and vigilance could be optimized via selective response to alarm calls emitted by their own dam,and/or neighboring colony members over calls broadcast by less familiar conspecifics.Alarm calls of adult female Richardson's ground squirrels were elicited in the field using a predator model and recorded on digital audio tape.Free-living focal juveniles were subjected to playbacks of a call of their mother,and on a separate occasion a call from either another adult female from their own colony,or an adult female from another colony.Neither immediate postural responses and escape behavior,nor the duration of vigilance manifested by juveniles differed with exposure to alarm calls of the three adult female signaler types.Thus,juveniles did not respond preferentially to alarm calls emitted by their mothers or colony members,likely reflecting the high cost of ignoring alarm signals where receivers have had limited opportunity to establish past signaler reliability.

  4. Opisthorchiasis in infant remains from the medieval Zeleniy Yar burial ground of XII-XIII centuries AD.

    Science.gov (United States)

    Slepchenko, Sergey Mikhailovich; Gusev, Alexander Vasilevich; Ivanov, Sergey Nikolaevich; Svyatova, Evgenia Olegovna

    2015-12-01

    We present a paleoparasitological analysis of the medieval Zeleniy Yar burial ground of the XII-XII centuries AD located in the northern part of Western Siberia. Parasite eggs, identified as eggs of Opisthorchis felineus, were found in the samples from the pelvic area of a one year old infant buried at the site. Presence of these eggs in the soil samples from the infant's abdomen suggests that he/she was infected with opisthorchiasis and imply consumption of undercooked fish. Ethnographic records collected among the population of the northern part of Western Siberia reveal numerous cases of feeding raw fish to their children. Zeleniy Yar case of opisthorchiasis suggests that this dietary custom has persisted from at least medieval times.

  5. Opisthorchiasis in infant remains from the medieval Zeleniy Yar burial ground of XII-XIII centuries AD

    Directory of Open Access Journals (Sweden)

    Sergey Mikhailovich Slepchenko

    2015-01-01

    Full Text Available We present a paleoparasitological analysis of the medieval Zeleniy Yar burial ground of the XII-XII centuries AD located in the northern part of Western Siberia. Parasite eggs, identified as eggs of Opisthorchis felineus, were found in the samples from the pelvic area of a one year old infant buried at the site. Presence of these eggs in the soil samples from the infant’s abdomen suggests that he/she was infected with opisthorchiasis and imply consumption of undercooked fish. Ethnographic records collected among the population of the northern part of Western Siberia reveal numerous cases of feeding raw fish to their children. Zeleniy Yar case of opisthorchiasis suggests that this dietary custom has persisted from at least medieval times.

  6. Noncontact monitoring of surface-wave nonlinearity for predicting the remaining life of fatigued steels

    Science.gov (United States)

    Ogi, Hirotsugu; Hirao, Masahiko; Aoki, Shinji

    2001-07-01

    A nonlinear acoustic measurement is studied for fatigue damage monitoring. An electromagnetic acoustic transducer (EMAT) magnetostrictively couples to a surface-shear-wave resonance along the circumference of a rod specimen during rotating bending fatigue of carbon steels. Excitation of the EMAT at half of the resonance frequency caused the standing wave to contain only the second-harmonic component, which was received by the same EMAT to determine the second-harmonic amplitude. Thus measured surface-wave nonlinearity always showed two distinct peaks at 60% and 85% of the total life. We attribute the earlier peak to crack nucleation and growth, and the later peak to an increase of free dislocations associated with crack extension in the final stage. This noncontact resonance-EMAT measurement can monitor the evolution of the surface-shear-wave nonlinearity throughout the metal's fatigue life and detect the pertinent precursors of the eventual failure.

  7. Uranium in US surface, ground, and domestic waters. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  8. North American regional climate reconstruction from ground surface temperature histories

    Science.gov (United States)

    Jaume-Santero, Fernando; Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-12-01

    Within the framework of the PAGES NAm2k project, 510 North American borehole temperature-depth profiles were analyzed to infer recent climate changes. To facilitate comparisons and to study the same time period, the profiles were truncated at 300 m. Ground surface temperature histories for the last 500 years were obtained for a model describing temperature changes at the surface for several climate-differentiated regions in North America. The evaluation of the model is done by inversion of temperature perturbations using singular value decomposition and its solutions are assessed using a Monte Carlo approach. The results within 95 % confidence interval suggest a warming between 1.0 and 2.5 K during the last two centuries. A regional analysis, composed of mean temperature changes over the last 500 years and geographical maps of ground surface temperatures, show that all regions experienced warming, but this warming is not spatially uniform and is more marked in northern regions.

  9. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  10. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  11. Mitigating ground vibration by periodic inclusions and surface structures

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Bucinskas, Paulius; Persson, Peter

    2016-01-01

    -dimensional finite-element model. The laboratory model employs soaked mattress foam placed within a box to mimic a finite volume of soil. The dynamic properties of the soaked foam ensure wavelengths representative of ground vibration in small scale. Comparison of the results from the two models leads......Ground vibration from traffic is a source of nuisance in urbanized areas. Trenches and wave barriers can provide mitigation of vibrations, but single barriers need to have a large depth to be effective-especially in the low-frequency range relevant to traffic-induced vibration. Alternatively...... well-defined behavior can be expected for transient loads and finite structures. However, some mitigation may occur. The paper aims at quantifying the mitigation effect of nearly periodic masses placed on the ground surface using two approaches: a small-scale laboratory model and a three...

  12. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  13. Fusion of Satellite Multispectral Images Based on Ground-Penetrating Radar (GPR Data for the Investigation of Buried Concealed Archaeological Remains

    Directory of Open Access Journals (Sweden)

    Athos Agapiou

    2017-06-01

    Full Text Available The paper investigates the superficial layers of an archaeological landscape based on the integration of various remote sensing techniques. It is well known in the literature that shallow depths may be rich in archeological remains, which generate different signal responses depending on the applied technique. In this study three main technologies are examined, namely ground-penetrating radar (GPR, ground spectroscopy, and multispectral satellite imagery. The study aims to propose a methodology to enhance optical remote sensing satellite images, intended for archaeological research, based on the integration of ground based and satellite datasets. For this task, a regression model between the ground spectroradiometer and GPR is established which is then projected to a high resolution sub-meter optical image. The overall methodology consists of nine steps. Beyond the acquirement of the in-situ measurements and their calibration (Steps 1–3, various regression models are examined for more than 70 different vegetation indices (Steps 4–5. The specific data analysis indicated that the red-edge position (REP hyperspectral index was the most appropriate for developing a local fusion model between ground spectroscopy data and GPR datasets (Step 6, providing comparable results with the in situ GPR measurements (Step 7. Other vegetation indices, such as the normalized difference vegetation index (NDVI, have also been examined, providing significant correlation between the two datasets (R = 0.50. The model is then projected to a high-resolution image over the area of interest (Step 8. The proposed methodology was evaluated with a series of field data collected from the Vésztő-Mágor Tell in the eastern part of Hungary. The results were compared with in situ magnetic gradiometry measurements, indicating common interpretation results. The results were also compatible with the preliminary archaeological investigations of the area (Step 9. The overall

  14. Ground Surface Deformations Near a Fault-Bounded Groundwater Aquifer

    Science.gov (United States)

    Lipovsky, B.; Funning, G. J.; Ferretti, A.

    2011-12-01

    Geodetic data often reveal the presence of groundwater aquifers that are bounded by faults (Schmidt and Bürgmann, 2003; Galloway and Hoffmann, 2007; Bell et al., 2008). Whereas unrestricted groundwater aquifers exhibit a radially symmetric pattern of uplift with diffuse boundaries, aquifers that are bounded by faults have one or more sharp, linear boundaries. Interferometric synthetic aperture (InSAR) data, due to their high spatial density, are particularly well suited to observe fault bounded aquifers, and the Santa Clara Aquifer in the San Francisco Bay Area, California, constitutes an excellent example. The largest ground surface displacements in the Bay Area are due to the inflation of the Santa Clara aquifer, and InSAR data plainly show that the Santa Clara aquifer is partitioned by the Silver Creek fault. This study first develops a general model of the displacements at the surface of the Earth due to fluid diffusion through a buried permeable boundary such as a fault zone. This model is compared to InSAR data from the Silver Creek fault and we find that we are able to infer fault zone poromechanical properties from InSAR data that are comparable to in situ measurements. Our theoretical model is constrained by several geological and hydrological observations concerning the structure of fault zones. Analytical solutions are presented for the ground surface displacements due to a perfectly impermeable fault zone. This end-member family of models, however, does not fit the available data. We therefore make allowance for an arbitrarily layered, variably permeable, one-dimensional fault zone. Time-dependent ground surface deformations are calculated in the Laplace domain using an efficient semi-analytic method. This general model is applicable to other poroelastic regimes including geothermal and hydrocarbon systems. We are able to estimate fault zone hydraulic conductivity by comparing theoretical ground surface displacements in a permeable fault zone to

  15. Potential Energy Surfaces of Nitrogen Dioxide for the Ground State

    Institute of Scientific and Technical Information of China (English)

    SHAO Ju-Xiang; ZHU Zheng-He; CHENG Xin-Lu; YANG Xiang-Dong

    2007-01-01

    The potential energy function of nitrogen dioxide with the C2v symmetry in the ground state is represented using the simplified Sorbie-Murrell many-body expansion function in terms of the symmetry of NO2. Using the potential energy function, some potential energy surfaces of NO2(C2v, X2A1), such as the bond stretching contour plot for a fixed equilibrium geometry angle θ and contour for O moving around N-O (R1), in which R1 is fixed at the equilibrium bond length, are depicted. The potential energy surfaces are analysed. Moreover, the equilibrium parameters for NO2 with the C2v, Cs and D8h symmetries, such as equilibrium geometry structures and energies, are calculated by the ab initio (CBS-Q) method.

  16. Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    YANG MeiXue; YAO TanDong; GOU XiaoHua; HIROSE Nozomu; FUJII Hide Yuki; HAO LiSheng; D.F.LEVIA

    2007-01-01

    The exchange of energy and water between the lithosphere and atmosphere mainly takes place at the ground surface. Therefore, freeze/thaw condition at the ground surface is an important factor in examining the interactions between the land surface and atmosphere. Based on the observation data obtained by CEOP/CAMP-Tibet, the diurnal freeze/thaw cycles of the ground surface near Naqu, central Tibetan Plateau was preliminarily analyzed. The results show that the surface layer was completely frozen for approximately one month. However, the time that the ground surface experienced diurnal freeze/thaw cycles was about 6 months. The high frequency of freeze/thaw cycles at the ground surface significantly influences water and energy exchanges between ground and atmosphere over half a year. The interaction processes between the ground and atmosphere under different soil conditions (such as complete thaw, complete freeze and diurnal freeze/thaw cycles) are issues worthy of further examination.

  17. Interannual changes in snow cover and its impact on ground surface temperatures in Livingston Island (Antarctica)

    Science.gov (United States)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2015-04-01

    In permafrost areas the seasonal snow cover is an important factor on the ground thermal regime. Snow depth and timing are important in ground insulation from the atmosphere, creating different snow patterns and resulting in spatially variable ground temperatures. The aim of this work is to characterize the interactions between ground thermal regimes and snow cover and the influence on permafrost spatial distribution. The study area is the ice-free terrains of northwestern Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". Air and ground temperatures and snow thickness data where analysed from 4 sites along an altitudinal transect in Hurd Peninsula from 2007 to 2012: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). The data covers 6 cold seasons showing different conditions: i) very cold with thin snow cover; ii) cold with a gradual increase of snow cover; iii) warm with thick snow cover. The data shows three types of periods regarding the ground surface thermal regime and the thickness of snow cover: a) thin snow cover and short-term fluctuation of ground temperatures; b) thick snow cover and stable ground temperatures; c) very thick snow cover and ground temperatures nearly constant at 0°C. a) Thin snow cover periods: Collado Ramos and Ohridski sites show frequent temperature variations, alternating between short-term fluctuations and stable ground temperatures. Nuevo Incinerador displays during most of the winter stable ground temperatures; b) Cold winters with a gradual increase of the snow cover: Nuevo Incinerador, Collado Ramos and Ohridski sites show similar behavior, with a long period of stable ground temperatures; c) Thick snow cover periods: Collado Ramos and Ohridski show long periods of stable ground, while Nuevo Incinerador shows temperatures close to 0°C since the beginning of the winter, due to early snow cover

  18. Homogenization of seismic surface wave profiling in highly heterogeneous improved ground

    Science.gov (United States)

    Lin, C.; Chien, C.

    2012-12-01

    Seismic surface wave profiling is gaining popularity in engineering practice for determining shear-wave velocity profile since the two-station SASW (Spectral Analysis of Surface Wave) was introduced. Recent developments in the multi-station approach (Multi-station Analysis of Surface Wave, MASW) result in several convenient commercial tools. Unlike other geophysical tomography methods, the surface wave method is essentially a 1-D method assuming horizontally-layered medium. Nevertheless, MASW is increasingly used to map lateral variation of S-wave velocity by multiple surveys overlooking the effect of lateral heterogeneity. MASW typically requires long receiver spread in order to have enough depth coverage. The accuracy and lateral resolution of 2-D S-wave velocity imaging by surface wave is not clear. Many geotechnical applications involves lateral variation in a scale smaller than the geophone spread and wave length. For example, soft ground is often improved to increase strength and stiffness by methods such as jet grouting and stone column which result in heterogeneous ground with improved columns. Experimental methods (Standard Penetration Test, sampling and laboratory testing, etc.) used to assess such ground improvement are subjected to several limitations such as small sampling volume, time-consuming, and cost ineffectiveness. It's difficult to assess the average property of the improved ground and the actual replacement ratio of ground improvement. The use of seismic surface wave method for such a purpose seems to be a good alternative. But what MASW measures in such highly heterogeneous improved ground remains to be investigated. This study evaluated the feasibility of MASW in highly heterogeneous ground with improved columns and investigated the homogenization of shear wave velocity measured by MASW. Field experiments show that MASW testing in such a composite ground behaves similar to testing in horizontally layered medium. It seems to measure some sort

  19. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  20. Reactions to reading “Remaining consistent with method? An analysis of grounded theory research in accounting”: A comment on Gurd

    OpenAIRE

    2008-01-01

    Purpose: The present paper is a comment on Gurd's paper published in QRAM on the use of grounded theory in interpretive accounting research. Methodology: Like Gurd, we conducted a bibliographic study on prior pieces of research claiming the use of grounded theory. Findings: We found a large diversity of ways of doing grounded theory. There are as many ways as articles. Consistent with the spirit of grounded theory, the field suggested the research questions, methods and verifiability criteria...

  1. Reactions to reading “Remaining consistent with method? An analysis of grounded theory research in accounting”: A comment on Gurd

    OpenAIRE

    2008-01-01

    Purpose: The present paper is a comment on Gurd’s paper published in QRAM on the use of grounded theory in interpretive accounting research. Methodology: Like Gurd, we conducted a bibliographic study on prior pieces of research claiming the use of grounded theory. Findings: We found a large diversity of ways of doing grounded theory. There are as many ways as articles. Consistent with the spirit of grounded theory, the field suggested the research questions, methods and verifiability criteria...

  2. GROUND SURFACE VISUALIZATION USING RED RELIEF IMAGE MAP FOR A VARIETY OF MAP SCALES

    Directory of Open Access Journals (Sweden)

    T. Chiba

    2016-06-01

    Full Text Available There are many methods to express topographical features of ground surface. In which, contour map has been the traditional method and along with development of digital data, surface model such as shaded relief map has been using for ground surface expression. Recently, data acquisition has been developed very much quick, demanding more advanced visualization method to express ground surface so as to effectively use the high quality data. In this study, the authors using the Red Relief Image Map (RRIM, Chiba et al., 2008 to express ground surface visualization for a variety of map scales. The authors used 30 m mesh data of SRTM to show the topographical features of western Mongolian and micro-topographical features of ground surface in tectonically active regions of Japan. The results show that, compared to traditional and other similar methods, the RRIM can express ground surface more precisely and 3-dimensionally, suggested its advanced usage for many fields of topographical visualization.

  3. Ground Surface Visualization Using Red Relief Image Map for a Variety of Map Scales

    Science.gov (United States)

    Chiba, T.; Hasi, B.

    2016-06-01

    There are many methods to express topographical features of ground surface. In which, contour map has been the traditional method and along with development of digital data, surface model such as shaded relief map has been using for ground surface expression. Recently, data acquisition has been developed very much quick, demanding more advanced visualization method to express ground surface so as to effectively use the high quality data. In this study, the authors using the Red Relief Image Map (RRIM, Chiba et al., 2008) to express ground surface visualization for a variety of map scales. The authors used 30 m mesh data of SRTM to show the topographical features of western Mongolian and micro-topographical features of ground surface in tectonically active regions of Japan. The results show that, compared to traditional and other similar methods, the RRIM can express ground surface more precisely and 3-dimensionally, suggested its advanced usage for many fields of topographical visualization.

  4. Locally controlled globally smooth ground surface reconstruction from terrestrial point clouds

    CERN Document Server

    Rychkov, Igor

    2012-01-01

    Approaches to ground surface reconstruction from massive terrestrial point clouds are presented. Using a set of local least squares (LSQR) planes, the "holes" are filled either from the ground model of the next coarser level or by Hermite Radial Basis Functions (HRBF). Global curvature continuous as well as infinitely smooth ground surface models are obtained with Partition of Unity (PU) using either tensor product B-Splines or compactly supported exponential function. The resulting surface function has local control enabling fast evaluation.

  5. Below the Callus Surface: Applying Paleohistological Techniques to Understand the Biology of Bone Healing in Skeletonized Human Remains.

    Science.gov (United States)

    Assis, Sandra; Keenleyside, Anne

    2016-01-01

    Bone trauma is a common occurrence in human skeletal remains. Macroscopic and imaging scrutiny is the approach most currently used to analyze and describe trauma. Nevertheless, this line of inquiry may not be sufficient to accurately identify the type of traumatic lesion and the associated degree of bone healing. To test the usefulness of histology in the examination of bone healing biology, we used an integrative approach that combines gross inspection and microscopy. Six bone samples belonging to 5 adult individuals with signs of bone trauma were collected from the Human Identified Skeletal Collection from the Museu Bocage (Lisbon, Portugal). Previous to sampling, the lesions were described according to their location, morphology, and healing status. After sampling, the bone specimens were prepared for plane light and polarized light analysis. The histological analysis was pivotal: (1) to differentiate between types of traumatic lesions; (2) to ascertain the posttraumatic interval, and (3) to diagnose other associated pathological conditions. The outer surface of a bone lesion may not give a complete picture of the biology of the tissue's response. Accordingly, microscopic analysis is essential to differentiate, characterize, and classify trauma signs. © 2016 S. Karger AG, Basel.

  6. Measured ground-surface movements, Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Massey, B.L.

    1981-01-01

    The Cerro Prieto geothermal area in the Mexicali Valley, 30 kilometers southeast of Mexicali, Baja California, incurred slight deformation because of the extraction of hot water and steam, and probably, active tectonism. During 1977 to 1978, the US Geological Survey established and measured two networks of horizontal control in an effort to define both types of movement. These networks consisted of: (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from stations on an existing US Geological Survey crustal-strain network north of the international border; and (2) a local net tied to stations in the regional net and encompassing the present and planned geothermal production area. Electronic distance measuring instruments were used to measure the distances between stations in both networks in 1978, 1979 and 1981. Lines in the regional net averaged 25 km. in length and the standard deviation of an individual measurement is estimated to be approx. 0.3 part per million of line length. The local network was measured using different instrumentation and techniques. The average line length was about 5 km. and the standard deviation of an individual measurement approached 3 parts per million per line length. Ground-surface movements in the regional net, as measured by both the 1979 and 1981 resurveys, were small and did not exceed the noise level. The 1979 resurvey of the local net showed an apparent movement of 2 to 3 centimeters inward toward the center of the production area. This apparent movement was restricted to the general limits of the production area. The 1981 resurvey of the local net did not show increased movement attributable to fluid extraction.

  7. Ground-state charge transfer as a mechanism for surface-enhanced Raman scattering

    Science.gov (United States)

    Lippitsch, Max E.

    1984-03-01

    A model is presented for the contribution of ground-state charge transfer between a metal and adsorbate to surface-enhanced Raman scattering (SERS). It is shown that this contribution can be understood using the vibronic theory for calculating Raman intensities. The enhancement is due to vibronic coupling of the molecular ground state to the metal states, the coupling mechanism being a modulation of the ground-state charge-transfer energy by the molecular vibrations. An analysis of the coupling operator gives the selection rules for this process, which turn out to be dependent on the overall symmetry of the adsorbate-metal system, even if the charge transfer is small enough for the symmetry of the adsorbate to remain the same as that of the free molecule. It is shown that the model can yield predictions on the properties of SERS, e.g., specificity to adsorption geometry, appearance of forbidden bands, dependence on the applied potential, and dependence on the excitation wavelength. The predictions are in good agreement with experimental results. It is also deduced from this model that in many cases atomic-scale roughness is a prerequisite for the observation of SERS. A result on the magnitude of the enhancement can only be given in a crude approximation. Although in most cases an additional electromagnetic enhancement seems to be necessary to give an observable signal, this charge-transfer mechanism should be important in many SERS systems.

  8. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    Science.gov (United States)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  9. Surface fatigue life of CBN and vitreous ground carburized and hardened AISI 9310 spur gears

    Science.gov (United States)

    Townsend, Dennis P.; Patel, P. R.

    1988-01-01

    Spur gear surface endurance tests were conducted to investigate CBN ground AISI 9310 spur gears for use in aircraft applications, to determine their endurance characteristics and to compare the results with the endurance of standard vitreous ground AISI 9310 spur gears. Tests were conducted with VIM-VAR AISI 9310 carburized and hardened gears that were finish ground with either CBN or vitreous grinding methods. Test conditions were an inlet oil temeprature of 320 K (116 F), an outlet oil temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. The CBN ground gears exhibited a surface fatigue life that was slightly better than the vitreous ground gears. The subsurface residual stress of the CBN ground gears was approximately the same as that for the standard vitreous ground gears for the CBN grinding method used.

  10. Do runners who suffer injuries have higher vertical ground reaction forces than those who remain injury-free? A systematic review and meta-analysis

    NARCIS (Netherlands)

    van der Worp, Henk; Vrielink, Jelte W.; Bredeweg, Steef W.

    2016-01-01

    Background Vertical ground reaction force (VGRF) parameters have been implicated as a cause of several running-related injuries. However, no systematic review has examined this relationship. Aim We systematically reviewed evidence for a relation between VGRF parameters and specific running-related i

  11. Do runners who suffer injuries have higher vertical ground reaction forces than those who remain injury-free? : A systematic review and meta-analysis

    NARCIS (Netherlands)

    van der Worp, Henk; Vrielink, Jelte W.; Bredeweg, Steef W.

    2016-01-01

    BACKGROUND: Vertical ground reaction force (VGRF) parameters have been implicated as a cause of several running-related injuries. However, no systematic review has examined this relationship. AIM: We systematically reviewed evidence for a relation between VGRF parameters and specific running-related

  12. Surface and borehole ground-penetrating-radar developments

    NARCIS (Netherlands)

    Slob, E.C.; Sato, M.; Olhoeft, G.

    2010-01-01

    During the past 80 years, ground-penetrating radar (GPR) has evolved from a skeptically received glacier sounder to a full multicomponent 3D volume-imaging and characterization device. The tool can be calibrated to allow for quantitative estimates of physical properties such as water content. Becau

  13. Mitigating ground vibration by periodic inclusions and surface structures

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Bucinskas, Paulius; Persson, Peter

    2016-01-01

    Ground vibration from traffic is a source of nuisance in urbanized areas. Trenches and wave barriers can provide mitigation of vibrations, but single barriers need to have a large depth to be effective-especially in the low-frequency range relevant to traffic-induced vibration. Alternatively, per...

  14. New model for estimating the relationship between surface area and volume in the human body using skeletal remains.

    Science.gov (United States)

    Kasabova, Boryana E; Holliday, Trenton W

    2015-04-01

    A new model for estimating human body surface area and body volume/mass from standard skeletal metrics is presented. This model is then tested against both 1) "independently estimated" body surface areas and "independently estimated" body volume/mass (both derived from anthropometric data) and 2) the cylindrical model of Ruff. The model is found to be more accurate in estimating both body surface area and body volume/mass than the cylindrical model, but it is more accurate in estimating body surface area than it is for estimating body volume/mass (as reflected by the standard error of the estimate when "independently estimated" surface area or volume/mass is regressed on estimates derived from the present model). Two practical applications of the model are tested. In the first test, the relative contribution of the limbs versus the trunk to the body's volume and surface area is compared between "heat-adapted" and "cold-adapted" populations. As expected, the "cold-adapted" group has significantly more of its body surface area and volume in its trunk than does the "heat-adapted" group. In the second test, we evaluate the effect of variation in bi-iliac breadth, elongated or foreshortened limbs, and differences in crural index on the body's surface area to volume ratio (SA:V). Results indicate that the effects of bi-iliac breadth on SA:V are substantial, while those of limb lengths and (especially) the crural index are minor, which suggests that factors other than surface area relative to volume are driving morphological variation and ecogeographical patterning in limb prorportions.

  15. Near-ground cooling efficacies of trees and high-albedo surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, R M [Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering

    1997-05-01

    Daytime summer urban heat islands arise when the prevalence of dark-colored surfaces and lack of vegetation make a city warmer than neighboring countryside. Two frequently-proposed summer heat island mitigation measures are to plant trees and to increase the albedo (solar reflectivity) of ground surfaces. This dissertation examines the effects of these measures on the surface temperature of an object near the ground, and on solar heating of air near the ground. Near-ground objects include people, vehicles, and buildings. The variation of the surface temperature of a near-ground object with ground albedo indicates that a rise in ground albedo will cool a near-ground object only if the object`s albedo exceeds a critical value. This critical value of object albedo depends on wind speed, object geometry, and the height of the atmospheric thermal boundary layer. It ranges from 0.15 to 0.37 for a person. If an object has typical albedo of 0.3, increasing the ground albedo by.

  16. Topographical Anisotropy and Wetting of Ground Stainless Steel Surfaces

    Directory of Open Access Journals (Sweden)

    Cornelia Bellmann

    2012-12-01

    Full Text Available Microscopic and physico-chemical methods were used for a comprehensive surface characterization of different mechanically modified stainless steel surfaces. The surfaces were analyzed using high-resolution confocal microscopy, resulting in detailed information about the topographic properties. In addition, static water contact angle measurements were carried out to characterize the surface heterogeneity of the samples. The effect of morphological anisotropy on water contact angle anisotropy was investigated. The correlation between topography and wetting was studied by means of a model of wetting proposed in the present work, that allows quantifying the air volume of the interface water drop-stainless steel surface.

  17. Concentration distributions of thoron and radon near the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Katase, Akira [Tohwa Univ., Fukuoka (Japan). Faculty of Engineering

    1996-12-01

    One dimensional diffusion model with a constant diffusion coefficient is applied to the thoron concentration distributions in air above the ground. The experimental distributions are well described by the exponential function obtained from the model. Diffusion coefficients and thoron exhalation rates are estimated from the measured distributions, which are the average values for three months. The present values of thoron exhalation are however several times as small as those measured by other researchers. (author)

  18. Ground effects of space weather investigated by the surface impedance

    Science.gov (United States)

    Pirjola, R.; Boteler, D.; Trichtchenko, L.

    2009-02-01

    The objective of this paper is to provide a discussion of the surface impedance applicable in connection with studies of geomagnetically induced currents (GIC) in technological systems. This viewpoint means that the surface impedance is regarded as a tool to determine the horizontal (geo)electric field at the Earth's surface, which is the key quantity for GIC. Thus the approach is different from the traditional magnetotelluric viewpoint. The definition of the surface impedance usually involves wavenumber-frequency-domain fields, so inverse Fourier transforming the expression of the electric field in terms of the surface impedance and the geomagnetic field results in convolution integrals in the time and space domains. The frequency-dependent surface impedance has a high-pass filter character whereas the corresponding transfer function between the electric field and the time derivative of the magnetic field is of a low-pass filter type. The relative change of the latter transfer function with frequency is usually smaller than that of the surface impedance, which indicates that the geoelectric field is closer to the time derivative than to the magnetic field itself. An investigation of the surface impedance defined by the space-domain electric and magnetic components indicates that the largest electric fields are not always achieved by the plane wave assumption, which is sometimes regarded as an extreme case for GIC. It is also concluded in this paper that it is often possible to apply the plane wave relation locally between the surface electric and magnetic fields. The absolute value of the surface impedance decreases with an increasing wavenumber although the maximum may also be at a non-zero value of the wavenumber. The imaginary part of the surface impedance usually much exceeds the real part.

  19. When Protocols Become Fairy Tales and Gods Remain Buried Under: Excerpts From the Diary of Forensic Experts at Ground Zero During the Mega Quake That Hit Nepal.

    Science.gov (United States)

    Acharya, Jenash; Shrestha, Rijen; Shrestha, Pramod Kumar; Kanchan, Tanuj; Krishan, Kewal

    2017-03-01

    More than a year has passed since the mega quake hit Nepal. Although a lot is written about the lacunae in disaster preparedness, lessons learnt, and public health concerns after the aftermath, nothing much has been written about the fate of the deceased. Although saving takes priority after a disaster, the management of dead bodies also requires immediate attention because the process of identification becomes more difficult and expensive as time passes. This article shares the firsthand experiences of forensic experts at ground zero during the quake that may be useful to forensic experts responsible for handling such situations worldwide.

  20. Analysis on effect of surface fault to site ground motion using finite element method

    Institute of Scientific and Technical Information of China (English)

    曹炳政; 罗奇峰

    2003-01-01

    Dynamic contact theory is applied to simulate the sliding of surface fault. Finite element method is used to analyze the effect of surface fault to site ground motions. Calculated results indicate that amplification effect is obvious in the area near surface fault, especially on the site that is in the downside fault. The results show that the effect of surface fault should be considered when important structure is constructed in the site with surface fault.

  1. Geologic Evidence for Late-Stage Equatorial Surface and Ground Ice on Mars

    Science.gov (United States)

    Chapman, M. G.

    2003-12-01

    New imagery data from the Mars Observer Camera suggest that the equatorial canyon of Valles Marineris contained surface and ground ice relatively late in Martian history. Some troughs (or chasmata) of Valles Marineris contain large mounds and mesas of interior layered deposits (ILDs) that formed in the Late Hesperian to Early Amazonian. Although the origin of the ILDs remains controversial, their characteristics suggest that the strongest hypotheses origin are lacustrine or volcanic processes; some workers have suggested a compromise origin, noting that many MOC observations of ILDs are similar to those of terrestrial sub-ice volcanoes that erupt in meltwater lakes. Lacustrine deposition and sub-ice volcanism require that chamata water or ice would have had to remain stable on the surface long enough to form either (1) extremely thick (1 km to > 4 km) deposits of fine-grained suspended lacustrine materials or (2) numerous sub-ice volcanic edifices with heights that compare to those of Hawaiian oceanic volcanoes. However, a dust cover on top of ice or an ice-covered lake could aid in preventing rapid sublimation. If the ILDs are sub-ice volcanoes than new MOLA topographic data can be used to (1) measure the heights of their subaerial caprock and (2) estimate corresponding volumes of ice. For example, the largest ILD mound in the 113,275 km3 void of Juventae Chasma resembles a capped sub-ice volcanic ridge. The mound is about 2 km high; with the highest point of the cap reaching an elevation of about +80 m. GIS measurement indicate that the maximum volume of ice below the elevation of +80 m is 56,423 km3, so roughly half of the Chasma could have been filled with ice. If the ILDs are lacustrine, then the heights of some other mounds that rival the surrounding plateau elevation would have required a volume of water almost equal to their enclosing chasma. Later in the Amazonian, after sublimation of any putative surface water or ice, MOC imagery attests to ground ice

  2. National Enforcement Initiative: Preventing Animal Waste from Contaminating Surface and Ground Water

    Science.gov (United States)

    This page describes EPA's goal in preventing animal waste from contaminating surface and ground Water. It is an EPA National Enforcement Initiative. Both enforcement cases, and a map of enforcement actions are provided.

  3. The Simulation of Grinding Wheels and Ground Surface Roughness Based on Virtual Reality Technology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The paper describes the feasibility and method of the application of virtual reality technology to grinding process, and introduces the modeling method of object entity in the environment of virtual reality. The simulation process of grinding wheels and ground surface roughness is discussed, and the computation program system of numerical simulation is compiled with Visual C++ programming language. At the same time, the three-dimensional simulation models of grinding wheels and ground surface roughness are ...

  4. Uncertainties and shortcomings of ground surface temperature histories derived from inversion of temperature logs

    OpenAIRE

    Hartmann, Andreas; Rath, Volker

    2008-01-01

    Analysing borehole temperature data in terms of ground surface history can add useful information to reconstructions of past climates. Therefore, a rigorous assessment of uncertainties and error sources is a necessary prerequisite for the meaningful interpretation of such ground surface temperature histories. This study analyses the most prominent sources of uncertainty. The diffusive nature of the process makes the inversion relatively robust against incomplete knowledge of the thermal diffu...

  5. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Everglades restoration. A century of water management for flood control and water storage in the Everglades resulted in the creation of the Water Conservation Areas (WCAs). Construction of the major canals began in the 1910s and the systems of levees that enclose the basins and structures that move water between basins were largely completed by the 1950s. The abandoned wetlands that remained outside of the Water Conservation areas tended to dry out and subside by 10 feet or more, which created abrupt transitions in land-surface elevations and water levels across the levees. The increases in topographic and hydraulic gradients near the margins of the WCAs, along with rapid pumping of water between basins to achieve management objectives, have together altered the patterns of recharge and discharge in the Everglades. The most evident change is the increase in the magnitude of recharge (on the upgradient side) and discharge (on the downgradient side) of levees separating WCA-2A from other basins or areas outside. Recharge and discharge in the vast interior of WCA-2A also likely have increased, but fluxes in the interior wetlands are more subtle and more difficult to quantify compared with areas close to the levees. Surface-water and ground-water interactions differ in fundamental ways between wetlands near WCA-2A's boundaries and wetlands in the basin's interior. The levees that form the WCA's boundaries have introduced step functions in the topographic and hydraulic gradients that are important as a force to drive water flow across the wetland ground surface. The resulting recharge and discharge fluxes tend to be unidirectional (connecting points of recharge on the upgradient side of the levee with points of discharge on the downgradient side), and fluxes are also relatively steady in magnitude compared with fluxes in the interior. Recharge flow paths are also relatively deep in their extent near levees, with fluxes passing entirely through the 1-m peat layer and inte

  6. Ground-water and surface-water quality data for the West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Spencer, Tracey A.; Phelan, Daniel J.; Olsen, Lisa D.; Lorah, Michelle M.

    2001-01-01

    This report presents ground-water and surface-water quality data from samples collected by the U.S. Geological Survey from November 1999 through May 2001 at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The report also provides a description of the sampling and analytical methods that were used to collect and analyze the samples, and includes an evaluation of the quality-assurance data. The ground-water sampling network included two 4-inch wells, two 2-inch wells, sixteen 1-inch piezometers, one hundred thirteen 0.75-inch piezometers, two 0.25-inch flexible-tubing piezo-meters, twenty-seven 0.25-inch piezometers, and forty-two multi-level monitoring system depths at six sites. Ground-water profiler samples were collected from nine sites at 34 depths. In addition, passive-diffusion-bag samplers were deployed at four sites, and porous-membrane sampling devices were installed in the upper sediment at five sites. Surface-water samples were collected from 20 sites. Samples were collected from wells and 0.75-inch piezometers for measurement of field parameters and reduction-oxidation constituents, and analysis of inorganic and organic constituents, during three sampling events in March?April and June?August 2000, and May 2001. Surface-water samples were collected from November 1999 through September 2000 during five sampling events for analysis of organic constituents. Ground-water profiler samples were collected in April?May 2000, and analyzed for field measure-ments, reduction-oxidation constituents, and inorganic constituents and organic constituents. Passive-diffusion-bag samplers were installed in September 2000, and samples were analyzed for organic constituents. Multi-level monitoring system samples were collected and analyzed for field measurements and reduction-oxidation con-stituents, inorganic constituents, and organic con-stituents in March?April and June?August 2000. Field measurements and organic constituents were collected from 0.25-inch

  7. Study on the Surface Free Energy of Ground CaO by IGC

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    CaO formed by decomposing CaCO3 at 1450℃ was ground in a vibrational mill,then the long-time ground sample was reheated at different temperatures.Inverse Gas Chromatography (IGC) was used to measure the variation of the sample′s surface free energy under grinding and reheating.It is concluded that the total surface free energy and the London dispersive component of the surface free energy increases with grinding,while the polar component first increases with grinding,and then decreases,and finally disappears.When the long-time ground sample was reheated,its total surface free energy decreases,among which the London component decreases,but the polar component appears again.

  8. The lost church of Montemurro (Basilicata, Italy): Ground Penetrating Radar and Electrical Resistivity Tomography for detecting its buried remains in S. Maria Square.

    Science.gov (United States)

    Bavusi, Massimo; Giocoli, Alessandro; de Martino, Gregory; Loperte, Antonio; Lapenna, Vincenzo

    2010-05-01

    Montemurro is a little centre town located in the Agri Valley (Basilicata Region, Italy) which was affected by two catastrophic events: in the 1842 a very large landslide has damaged great part of the centre and in the 1857 the town was destroyed completely by the "Great Neapolitan Earthquake" (Mallet, 1862), a seismic event having epicenter in the Agri Valley (Cello et al., 2003; Bavusi et al., 2004). Signs of those tragic events can be still found in the fabric of the city. One of these is certainly S. Maria square, a place suspected to house a church before the disastrous events of 1842. This suspicion is supported by a series of evidences: a historical drawing, dating back to before 1842, shows a church in position compatible with the location of the square; in aerial view S. Maria square appears as tear in the fabric of the city; the tales of the erderlies of Montemurro speak about an ancient missing church in the town. Then, in the attempt to resolve the doubt about the presence of the church, a geophysical survey was planned in S. Maria Square with the aim to detect some buried masonry structures related to the church. In this work we selected two active techniques such as the Ground Penetrating Radar (GPR) and the Electrical Resistivity Tomography (ERT). Sixty parallel GPR profiles 0.5 m spaced were gathered in S. Maria Square and in a contiguous street by using a GSSI SIR3000 system with a central frequency antenna of 200 MHz. Processed radargrams showed numerous reflectors and heterogeneities in the subsoil related to manmade objects. Then, a laborious data processing (Nuzzo et al., 2002) allowed to obtain several time-slices showing noticeable reflections compatible with masonry structures. Moreover, two ERT profiles were carried out by using an IRIS Syscal R2 system equipped with a multielectrode cable. The first ERT profile 86 m long and having 44 electrodes 2 m spaced allowed to investigate up to 9 m of depth. The second, overlapped on the previous

  9. Salmonella pollution in ground and surface waters. (Latest citations from Pollution abstracts). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The bibliography contains citations concerning the contamination of ground waters and surface waters by Salmonella bacteria. Articles discuss the occurence, survival, origin, and control of these bacteria in water sources including rivers, reservoirs, swimming pools, wastewater, aquifers, and ground water. Citations also address the use of Salmonella populations as biological indicators of pollution in aquatic systems. (Contains a minimum of 102 citations and includes a subject term index and title list.)

  10. On Ground Surface Extraction Using Full-Waveform Airborne Laser Scanner for Cim

    Science.gov (United States)

    Nakano, K.; Chikatsu, H.

    2015-05-01

    Satellite positioning systems such as GPS and GLONASS have created significant changes not only in terms of spatial information but also in the construction industry. It is possible to execute a suitable construction plan by using a computerized intelligent construction. Therefore, an accurate estimate of the amount of earthwork is important for operating heavy equipment, and measurement of ground surface with high accuracy is required. A full-waveform airborne laser scanner is expected to be capable of improving the accuracy of ground surface extraction for forested areas, in contrast to discrete airborne laser scanners, as technological innovation. For forested areas, fundamental studies for construction information management (CIM) were conducted to extract ground surface using full-waveform airborne laser scanners based on waveform information.

  11. ON GROUND SURFACE EXTRACTION USING FULL-WAVEFORM AIRBORNE LASER SCANNER FOR CIM

    Directory of Open Access Journals (Sweden)

    K. Nakano

    2015-05-01

    Full Text Available Satellite positioning systems such as GPS and GLONASS have created significant changes not only in terms of spatial information but also in the construction industry. It is possible to execute a suitable construction plan by using a computerized intelligent construction. Therefore, an accurate estimate of the amount of earthwork is important for operating heavy equipment, and measurement of ground surface with high accuracy is required. A full-waveform airborne laser scanner is expected to be capable of improving the accuracy of ground surface extraction for forested areas, in contrast to discrete airborne laser scanners, as technological innovation. For forested areas, fundamental studies for construction information management (CIM were conducted to extract ground surface using full-waveform airborne laser scanners based on waveform information.

  12. Topographical changes of ground surface affected by the Tarim Desert Highway

    Institute of Scientific and Technical Information of China (English)

    LI Shengyu; LEI Jiaqiang; XU Xinwen; WANG Lixin; ZHOU Zhibin; LI Hongzhong

    2006-01-01

    The Tarim Desert Highway is the longest highway crossing the mobile desert in the world. The highway and its sand protection system were established in 1995. This great project must have significant effect on the aeolian environment in its neighborhoods. In 2004, we investigated the topographic changes of ground surface within the sand protection system and its external adjacent area in the hinterland of the Taklimakan Desert. The results showed that (i) the original topographic patterns of ground surface were greatly changed, and erosion as well as deposition was distributed clearly on the ground surface, affected by the road and its sand protection system; (ii) sediment deposited in the sand protection system gradually heightened the ground surface, but each part in the system changed differently: in the sand-blocking belt, a transverse sand ridge was formed in the same direction as the upright sand barrier; in the sand-binding belt, sediment was aggraded on the original surface in a certain thickness; at the initial stages since the establishment of the sand protection system, erosion had taken place in the un-stabilized area named by the deposition belt between the sand-blocking belt and the sand-binding belt, the inner of sand-binding belt, the windward slope of dunes in the sand-binding belt, and the neighboring leeward area of the sand protection system.

  13. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  14. The Effect of Images on Surface Potential and Resistance Calculation of Grounding Systems

    Directory of Open Access Journals (Sweden)

    MARTINS, A.

    2015-05-01

    Full Text Available In the grounding systems with a two layers soil, the calculation of the surface potential using the image method is sometimes impossible due to singularities, avoiding researchers to use the method for electrodes in the bottom layer. In the literature this problem solution is refereed as unreliable or solved with other more complex methods. This paper presents a new approach to calculate the surface potentials in a two. layer soil, for electrodes in the bottom layer, when images are at surface. The singularities in computing surface voltage, when the first image upwards lies at surface, are analysed and it's shown that a small change in top layer thickness allows an approximate solution. Surface potentials due to grid conductor are also considered and the values of resistance are compared with those from other methodologies. Singularities for a ground rod that crosses the two layers are also treated. The obtained values of resistance are not satisfactory, due to lower segments images that overlap the upper segments. This paper also proposes shifting the surface of the upper part of the ground rod, in the upper layer, or taking the modulus of the mutual resistance, to overcome this difficulty.

  15. Size of craters produced by explosive charges on or above the ground surface

    Science.gov (United States)

    Ambrosini, R. D.; Luccioni, B. M.; Danesi, R. F.; Riera, J. D.; Rocha, M. M.

    The results of a series of tests performed with different amounts of explosive at short distances above and below ground level, as well as on the soil surface are briefly described. After an introductory description of both the main features of the blast wave and the mechanics of crater formation, a brief review of empirical methods for crater size prediction is presented. Next, the experimental design and the results obtained are described. The crater dimensions for underground explosions coincide with those found in the literature. For explosions at ground level the results are qualitatively described by empirical equations. For explosive charges situated above ground level, the dimensions of the craters are smaller than those observed in underground and near the surface explosions. Two new single prediction equations for this case are presented.

  16. Inferring snow pack ripening and melt out from distributed ground surface temperature measurements

    Directory of Open Access Journals (Sweden)

    M.-O. Schmid

    2012-02-01

    Full Text Available The seasonal snow cover and its melting are heterogeneous both in space and time. Describing and modelling this variability are important because it affects divers phenomena such as runoff, ground temperatures or slope movements. This study investigates the derivation of melting characteristics based on spatial clusters of temperature measurements. Results are based on data from Switzerland where ground surface temperatures were measured with miniature loggers (iButtons at 40 locations, referred to as footprints. At each footprint, ten iButtons have been distributed randomly few cm below the ground surface over an area of 10 m × 10 m. Footprints span elevations of 2100–3300 m a.s.l. and slope angles of 0–55°, as well as diverse slope expositions and types of surface cover and ground material. Based on two years of temperature data, the basal ripening date and the melt-out date are determined for each iButton, aggregated to the footprint level and further analysed. The date of melt out could be derived for nearly all iButtons, the ripening date could be extracted for only approximately half of them because it requires ground freezing below the snow pack. The variability within a footprint is often considerable and one to three weeks difference between melting or ripening of the points in one footprint is not uncommon. The correlation of mean annual ground surface temperatures, ripening date and melt-out date is moderate, making them useful intuitive complementary measured for model evaluation.

  17. Supplementary report on surface-water and ground-water surveys, Nueces River Basin, Texas

    Science.gov (United States)

    Broadhurst, W.L.; Ellsworth, C.E.

    1950-01-01

    A report on the ground-water and surface-water surveys of the Nueces River Basin was included in a report by the Bureau of Reclamation, entitled "Comprehensive plan for water-resources development of the Nueces River Basin project planning report number 5-14.04-3, February 1946".

  18. Ground states for a modified capillary surface equation in weighted Orlicz-Sobolev space

    Directory of Open Access Journals (Sweden)

    Guoqing Zhang

    2015-03-01

    Full Text Available In this article, we prove a compact embedding theorem for the weighted Orlicz-Sobolev space of radially symmetric functions. Using the embedding theorem and critical points theory, we prove the existence of multiple radial solutions and radial ground states for the following modified capillary surface equation $$\\displaylines{ -\\operatorname{div}\\Big(\\frac{|\

  19. Evaluation of the ground surface Enthalpy balance from bedrock shallow borehole temperatures (Livingston Island, Maritime Antarctic

    Directory of Open Access Journals (Sweden)

    M. Ramos

    2008-03-01

    Full Text Available The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic is studied. The borehole is 2.4 m deep and is located in a quartzite outcrop in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth hourly temperature profiles from: (i the cooling periods of the frost seasons of 2000 to 2005, and (ii the warming periods of the thaw seasons of 2002–2003, 2003–2004 and 2004–2005, were studied. In this modelling approach, heat gains and losses across ground surface are considered to be the causes for the 0°C isotherm movement. A methodological approach to calculate the Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density is considered to be constant in the borehole and initial isothermal conditions at 0°C are assumed to run the model. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima.

  20. A shear wave ground surface vibration technique for the detection of buried pipes

    Science.gov (United States)

    Muggleton, J. M.; Papandreou, B.

    2014-07-01

    A major UK initiative, entitled 'Mapping the Underworld' aims to develop and prove the efficacy of a multi-sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics; the application of this technology for detecting buried infrastructure, in particular pipes, is currently being investigated. Here, a shear wave ground vibration technique for detecting buried pipes is described. For this technique, shear waves are generated at the ground surface, and the resulting ground surface vibrations measured. Time-extended signals are employed to generate the illuminating wave. Generalized cross-correlation functions between the measured ground velocities and a reference measurement adjacent to the excitation are calculated and summed using a stacking method to generate a cross-sectional image of the ground. To mitigate the effects of other potential sources of vibration in the vicinity, the excitation signal can be used as an additional reference when calculating the cross-correlation functions. Measurements have been made at two live test sites to detect a range of buried pipes. Successful detection of the pipes was achieved, with the use of the additional reference signal proving beneficial in the noisier of the two environments.

  1. Evaluation of the ground surface Enthalpy balance from bedrock shallow borehole temperatures (Livingston Island, Maritime Antarctic)

    Science.gov (United States)

    Ramos, M.; Vieira, G.

    2008-03-01

    The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic) is studied. The borehole is 2.4 m deep and is located in a quartzite outcrop in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth) hourly temperature profiles from: (i) the cooling periods of the frost seasons of 2000 to 2005, and (ii) the warming periods of the thaw seasons of 2002-2003, 2003-2004 and 2004-2005, were studied. In this modelling approach, heat gains and losses across ground surface are considered to be the causes for the 0°C isotherm movement. A methodological approach to calculate the Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density is considered to be constant in the borehole and initial isothermal conditions at 0°C are assumed to run the model. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima).

  2. A preliminary study on surface ground deformation near shallow foundation induced by strike-slip faulting

    Science.gov (United States)

    Wong, Pei-Syuan; Lin, Ming-Lang

    2016-04-01

    According to investigation of recent earthquakes, ground deformation and surface rupture are used to map the influenced range of the active fault. The zones of horizontal and vertical surface displacements and different features of surface rupture are investigated in the field, for example, the Greendale Fault 2010, MW 7.1 Canterbury earthquake. The buildings near the fault rotated and displaced vertically and horizontally due to the ground deformation. Besides, the propagation of fault trace detoured them because of the higher rigidity. Consequently, it's necessary to explore the ground deformation and mechanism of the foundation induced by strike-slip faulting for the safety issue. Based on previous study from scaled analogue model of strike-slip faulting, the ground deformation is controlled by material properties, depth of soil, and boundary condition. On the condition controlled, the model shows the features of ground deformation in the field. This study presents results from shear box experiment on small-scale soft clay models subjected to strike-slip faulting and placed shallow foundations on it in a 1-g environment. The quantifiable data including sequence of surface rupture, topography and the position of foundation are recorded with increasing faulting. From the result of the experiment, first en echelon R shears appeared. The R shears rotated to a more parallel angle to the trace and cracks pulled apart along them with increasing displacements. Then the P shears crossed the basement fault in the opposite direction appears and linked R shears. Lastly the central shear was Y shears. On the other hand, the development of wider zones of rupture, higher rising surface and larger the crack area on surface developed, with deeper depth of soil. With the depth of 1 cm and half-box displacement 1.2 cm, en echelon R shears appeared and the surface above the fault trace elevated to 1.15 mm (Dv), causing a 1.16 cm-wide zone of ground-surface rupture and deformation

  3. Seasonal Distribution of Trace Metals in Ground and Surface Water of Golaghat District, Assam, India

    Directory of Open Access Journals (Sweden)

    M. Boarh

    2010-01-01

    Full Text Available A study has been carried out on the quality of ground and surface water with respect to chromium, manganese, zinc, copper, nickel, cadmium and arsenic contamination from 28 different sources in the predominantly rural Golaghat district of Assam (India. The metals were analysed by using atomic absorption spectrometer. Water samples were collected from groundwater and surface water during the dry and wet seasons of 2008 from the different sources in 28 locations (samples. The results are discussed in the light of possible health hazards from the metals in relation to their maximum permissible limits. The study shows the quality of ground and surface water in a sizeable number of water samples in the district not to be fully satisfactory with respect to presence of the metals beyond permissible limits of WHO. The metal concentration of groundwater in the district follows the trend As>Zn>Mn>Cr>Cu>Ni>Cd in both the seasons.

  4. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    Science.gov (United States)

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  5. Determining the location of buried plastic water pipes from measurements of ground surface vibration

    Science.gov (United States)

    Muggleton, J. M.; Brennan, M. J.; Gao, Y.

    2011-09-01

    ‘Mapping the Underworld' is a UK-based project, which aims to create a multi-sensor device that combines complementary technologies for remote buried utility service detection and location. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and techniques for detecting buried infrastructure, in particular plastic water pipes, are being investigated. One of the proposed techniques involves excitation of the pipe at some known location with concurrent vibrational mapping of the ground surface in order to infer the location of the remainder of the pipe. In this paper, measurements made on a dedicated pipe rig are reported. Frequency response measurements relating vibrational velocity on the ground to the input excitation were acquired. Contour plots of the unwrapped phase revealed the location of the pipe to within 0.1-0.2 m. Magnitude contour plots revealed the excitation point and also the location of the pipe end. By examining the unwrapped phase gradients along a line above the pipe, it was possible to identify the wave-type within the pipe responsible for the ground surface vibration. Furthermore, changes in the ground surface phase speed computed using this method enabled the location of the end of the pipe to be confirmed.

  6. Remaining Sites Verification Package for the 100-B-1 Surface Chemical and Solid Waste Dumping Area, Waste Site Reclassification Form 2006-003

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Carlson

    2006-04-24

    The 100-B-1 waste site was a dumping site that was divided into two areas. One area was used as a laydown area for construction materials, and the other area was used as a chemical dumping area. The 100-B-1 Surface Chemical and Solid Waste Dumping Area site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  7. Impact of caprock permeability on vertical ground surface displacements in geological underground utilisation

    Science.gov (United States)

    Kempka, Thomas; Tillner, Elena

    2015-04-01

    Geological underground utilisation inducing pore pressure changes in underground reservoirs is generally accompanied by hydro-mechanical processes. Thereby, pore pressure increase due to fluid injection may trigger ground surface uplift, while a decrease in pore pressure due to reservoir fluid production is known to induce ground subsidence. Different coupled hydro-mechanical simulation studies (e.g. Klimkowski et al., 2015, Kempka et al., 2014, Tillner et al., 2014) indicate that ground surface displacements can achieve a magnitude of several decimetres, if storage or production operations are being carried out at an industrial scale. Consequently, detailed knowledge on the parameters impacting ground surface uplift or subsidence is of major interest for the success of any geological underground utilisation in order to avoid surface infrastructure damage by spatially varying deformations. Furthermore, ground subsidence may result increased groundwater levels as experienced in different underground coal mining districts. In the present study, we carried out coupled hydro-mechanical simulations to account for the impact of caprock permeability on ground surface displacements resulting from geological underground utilisation. Thereto, different simulation scenarios were investigated using a synthetic 3D coupled numerical simulation model with varying caprock permeability and vertical location of the open well section in the target reservoir. Material property ranges were derived from available literature, while a normal faulting stress state was applied in all simulation scenarios. Our simulation results demonstrate that caprock permeability has a significant impact on the pressure development, and thus on vertical displacements at the ground surface as well as at the reservoir top. An increase in caprock permeability from 1 x 10-20 m2 by two orders of magnitude doubles vertical displacements at the ground surface, whereas vertical displacements at the reservoir top

  8. Advantages of analytically computing the ground heat flux in land surface models

    Science.gov (United States)

    Pauwels, Valentijn R. N.; Daly, Edoardo

    2016-11-01

    It is generally accepted that the ground heat flux accounts for a significant fraction of the surface energy balance. In land surface models, the ground heat flux is typically estimated through a numerical solution of the heat conduction equation. Recent research has shown that this approach introduces errors in the estimation of the energy balance. In this paper, we calibrate a land surface model using a numerical solution of the heat conduction equation with four different vertical spatial resolutions. It is found that the thermal conductivity is the most sensitive parameter to the spatial resolution. More importantly, the thermal conductivity values are directly related to the spatial resolution, thus rendering any physical interpretation of this value irrelevant. The numerical solution is then replaced by an analytical solution. The results of the numerical and analytical solutions are identical when fine spatial and temporal resolutions are used. However, when using resolutions that are typical of land surface models, significant differences are found. When using the analytical solution, the ground heat flux is directly calculated without calculating the soil temperature profile. The calculation of the temperature at each node in the soil profile is thus no longer required, unless the model contains parameters that depend on the soil temperature, which in this study is not the case. The calibration is repeated, and thermal conductivity values independent of the vertical spatial resolution are obtained. The main conclusion of this study is that care must be taken when interpreting land surface model results that have been obtained using numerical ground heat flux estimates. The use of exact analytical solutions, when available, is recommended.

  9. Evaluation of the ground surface Enthalpy balance from bedrock temperatures (Livingston Island, Maritime Antarctic)

    Science.gov (United States)

    Ramos, M.; Vieira, G.

    2009-05-01

    The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic) is studied. The borehole is 2.4 m deep and is located in a massive quartzite outcrop with negligible water content, in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth) hourly temperature profiles from: (i) the cooling periods of the frost season of 2000 to 2005, and (ii) the warming periods of the thaw season of 2002-2003, 2003-2004 and 2004-2005, were studied. In this modelling approach, heat gains and losses across the ground surface are assumed to be the causes for the 0°C isotherm movement. A methodological approach to calculate the ground Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change into the rock is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density and thermal conductivity are considered to be constant and initial isothermal conditions at 0°C are assumed (based in collected data and local meteorological conditions in this area) to run the model in the beginning of each season. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima). The application of this method avoids error propagation induced by the heat exchange calculations from multiple sensors using the Fourier method.

  10. Evaluation of the ground surface Enthalpy balance from bedrock temperatures (Livingston Island, Maritime Antarctic

    Directory of Open Access Journals (Sweden)

    M. Ramos

    2009-05-01

    Full Text Available The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic is studied. The borehole is 2.4 m deep and is located in a massive quartzite outcrop with negligible water content, in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth hourly temperature profiles from: (i the cooling periods of the frost season of 2000 to 2005, and (ii the warming periods of the thaw season of 2002–2003, 2003–2004 and 2004–2005, were studied. In this modelling approach, heat gains and losses across the ground surface are assumed to be the causes for the 0°C isotherm movement. A methodological approach to calculate the ground Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change into the rock is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density and thermal conductivity are considered to be constant and initial isothermal conditions at 0°C are assumed (based in collected data and local meteorological conditions in this area to run the model in the beginning of each season. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima. The application of this method avoids error propagation induced by the heat exchange calculations from multiple sensors using the Fourier method.

  11. Ground surface temperature and humidity, ground temperature cycles and the ice table depths in University Valley, McMurdo Dry Valleys of Antarctica

    Science.gov (United States)

    Fisher, David A.; Lacelle, Denis; Pollard, Wayne; Davila, Alfonso; McKay, Christopher P.

    2016-11-01

    In the upper McMurdo Dry Valleys, 90% of the measured ice table depths range from 0 to 80 cm; however, numerical models predict that the ice table is not in equilibrium with current climate conditions and should be deeper than measured. This study explored the effects of boundary conditions (air versus ground surface temperature and humidity), ground temperature cycles, and their diminishing amplitude with depth and advective flows (Darcy flow and wind pumping) on water vapor fluxes in soils and ice table depths using the REGO vapor diffusion model. We conducted a series of numerical experiments that illustrated different hypothetical scenarios and estimated the water vapor flux and ice table depth using the conditions in University Valley, a small high elevation valley. In situ measurements showed that while the mean annual ground surface temperature approximates that in the air, the mean annual ground surface relative humidity (>85%ice) was significantly higher than in the atmosphere ( 50%ice). When ground surface temperature and humidity were used as boundary conditions, along with damping diurnal and annual temperature cycles within the sandy soil, REGO predicted that measured ice table depths in the valley were in equilibrium with contemporary conditions. Based on model results, a dry soil column can become saturated with ice within centuries. Overall, the results from the new soil data and modeling have implications regarding the factors and boundary conditions that affect the stability of ground ice in cold and hyperarid regions where liquid water is rare.

  12. Electric Signals on and under the Ground Surface Induced by Seismic Waves

    Directory of Open Access Journals (Sweden)

    Akihiro Takeuchi

    2012-01-01

    Full Text Available We constructed three observation sites in northeastern Japan (Honjo, Kyowa, and Sennan with condenser-type large plate electrodes (4 × 4 m2 as sensors supported 4 m above the ground and with pairs of reference electrodes buried vertically at 0.5 m and 2.5 m depth (with a ground velocity sensor at Sennan only. Electrical signals of an earthquake (M6.3 in northeastern Japan were detected simultaneously with seismic waves. Their waveforms were damped oscillations, with greatly differing signal amplitudes among sites. Good positive correlation was found between the amplitudes of signals detected by all electrodes. We propose a signal generation model: seismic acceleration vertically shook pore water in the topsoil, generating the vertical streaming potential between the upper unsaturated water zone and the lower saturated water zone. Maximum electric earth potential difference was observed when one electrode was in the saturated water zone, and the other was within the unsaturated water zone, but not when the electrodes were in the saturated water zone. The streaming potential formed a charge on the ground surface, generating a vertical atmospheric electric field. The large plate electrode detected electric signals related to electric potential differences between the electrode and the ground surface.

  13. Kinetics of the forelimb in horses circling on different ground surfaces at the trot.

    Science.gov (United States)

    Chateau, Henry; Camus, Mathieu; Holden-Douilly, Laurène; Falala, Sylvain; Ravary, Bérangère; Vergari, Claudio; Lepley, Justine; Denoix, Jean-Marie; Pourcelot, Philippe; Crevier-Denoix, Nathalie

    2013-12-01

    Circling increases the expression of distal forelimb lameness in the horse, depending on rein, diameter and surface properties of the circle. However, there is limited information about the kinetics of horses trotting on circles. The aim of this study was to quantify ground reaction force (GRF) and moments in the inside and outside forelimb of horses trotting on circles and to compare the results obtained on different ground surfaces. The right front hoof of six horses was equipped with a dynamometric horseshoe, allowing the measurement of 3-dimensional GRF, moments and trajectory of the centre of pressure. The horses were lunged at slow trot (3 m/s) on right and left 4 m radius circles on asphalt and on a fibre sand surface. During circling, the inside forelimb produced a smaller peak vertical force and the stance phase was longer in comparison with the outside forelimb. Both right and left circling produced a substantial transversal force directed outwards. On a soft surface (sand fibre), the peak transversal force and moments around the longitudinal and vertical axes of the hoof were significantly decreased in comparison with a hard surface (asphalt). Sinking of the lateral or medial part of the hoof in a more compliant surface enables reallocation of part of the transversal force into a proximo-distal force, aligned with the limb axis, thus limiting extrasagittal stress on the joints.

  14. New Measurements from Old Boreholes: A Look at Interaction Between Surface Air Temperature and Ground Surface Temperature

    Science.gov (United States)

    Heinle, S. M.; Gosnold, W. D.

    2007-12-01

    We recently logged new field measurements of several boreholes throughout the Midwest, including North Dakota, South Dakota, and Nebraska. We then compared these new measurements against measurements previously obtained. Our comparisons included inverse modeling of past and recent measurements as well as climate modeling based on past surface air temperatures obtained from the weather stations. The data show a good correlation between climate warming in the last century and ground surface warming. Of particular importance is that cooling of air temperatures beginning in the mid 1990s reflects in the ground surface temperatures. The boreholes included in the study consist of three boreholes located in north central North Dakota, including two deeper than 200 meters. Two boreholes in the southwestern part of South Dakota, and two from southeastern South Dakota, all approximately 180 meters deep. Also included, were two boreholes (135 meters and over 200 meters deep) located in southwestern Nebraska, and two boreholes in the panhandle of Nebraska, each over 100 meters deep. We obtained historical surface air temperature from climate stations located near the boreholes, both from the United States Historical Climatology Network and from the Western Regional Climate Center.

  15. ON GROUND SURFACE EXTRACTION USING FULL-WAVEFORM AIRBORNE LASER SCANNER FOR CIM

    OpenAIRE

    Nakano, K.; H. Chikatsu

    2015-01-01

    Satellite positioning systems such as GPS and GLONASS have created significant changes not only in terms of spatial information but also in the construction industry. It is possible to execute a suitable construction plan by using a computerized intelligent construction. Therefore, an accurate estimate of the amount of earthwork is important for operating heavy equipment, and measurement of ground surface with high accuracy is required. A full-waveform airborne laser scanner is expected to be...

  16. Efficiency of silver nanoparticles against bacterial contaminants isolated from surface and ground water in Egypt

    Directory of Open Access Journals (Sweden)

    Reem Dosoky

    2015-06-01

    Full Text Available The bactericidal efficiency of silver nanoparticles (AgNP was evaluated against bacteria isolated from surface and ground water samples in Egypt. The AgNP were synthesized by typical one-step synthesis protocol, and were characterized using transmission electron microscopy and atomic absorption spectrophotometer. The bactericidal efficiency of AgNP was evaluated by its application in three concentrations i.e., 0.1, 0.05 and 0.01 ppm to water sample, and allowed to interact with bacteria for different duration e.g., 5 min 15 min, 30 min, 1 h and 2 h. Then, the bactericidal efficiency of AgNPs was determined by comparing the counted bacteria before and after the treatments. Higher mean values of total bacterial count (TBC, total coliform count (TCC, and total streptococcal count (TFS were detected in surface water than in ground water. Also, the results showed that TBC, TCC and TFS exceeded permissible limits. Application of AgNP at different concentration, the number of bacteria in TBC was significantly reduced in all AgNP-exposed samples as compared to the control group (p<0.05. The highest concentration of AgNP exhibited highest bactericidal efficiency in TBC, where, after two hours, 0.1, 0.05 and 0.01 mg/L AgNP was found to be sufficient to inhibit 91.85, 89.14 and 74.92%, and 92.33, 85.23 and 53.17% in TBC of surface and ground water, respectively. Moreover, the inhibition efficiency of the highest concentration (0.1 ppm against TCC reached to 98.10 and 99.88% in surface water and 95.54 and 99.20% in ground water after 1 h and 2 h, respectively. Similar results were found against TFS count. The AgNPs were found to be effective against bacteria of water origin.

  17. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    Science.gov (United States)

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh

  18. Interpreting Ground Temperature Measurements for Thermophysical Properties on Complex Surfaces of the Moon and Mars

    Science.gov (United States)

    Vasavada, A. R.; Hamilton, V. E.; Team, M.

    2013-12-01

    With the successful deployments of the Diviner radiometer on the Lunar Reconnaissance Orbiter and the REMS ground temperature sensor on the Curiosity Mars rover, records of ground temperature with high accuracy and finely sampled diurnal and seasonal cycles have become available. The detailed shapes of these temperature profiles allow inferences beyond just bulk thermophysical properties. Subtle (or sometime significant) effects of surface roughness, slope, and lateral and vertical heterogeneity may be identified in the surface brightness temperature data. For example, changes in thermal or physical properties with depth in the shallow subsurface affect the conduction and storage of thermal energy. These affect the surface energy balance and therefore surface temperatures, especially the rate of cooling at night. Making unique determinations of subsurface soil properties requires minimizing the uncertainties introduced by other effects. On Mars, atmospheric aerosol opacity and wind-driven sensible heat fluxes also affect the diurnal and annual temperature profiles. On both bodies, variations in thermal inertia, slopes, roughness, albedo, and emissivity within the radiometer footprint will cause the composite brightness temperature to differ from a kinetic temperature. Nevertheless, we have detected potential effects of complex surfaces in the temperature data from both Diviner and Curiosity. On the Moon, the results reveal a nearly ubiquitous surface structure, created mechanically by impact gardening, that controls the thermal response of the surface. On Mars, the thermal response is controlled primarily by grain size, cementation, lithification, and composition. However, the secondary effects of near-surface layering aid in the interpretation of stratigraphy and in the identification of geologic processes that have altered the surface.

  19. Modeling ground surface uplift during CO2 sequestration: the case of In Salah, Algeria.

    Science.gov (United States)

    Rinaldi, Antonio Pio; Rutqvist, Jonny; Finsterle, Stefan; Liu, Hui-Hai

    2016-04-01

    Observable ground deformation, common in storage projects, carries useful information on processes occurring at the injection depth. The Krechba gas field at In Salah (Algeria) is one of the best known sites for studying ground surface deformation during geological storage. Being the first industrial-scale on-shore CO2 demonstration project, the site is well known for satellite-based ground-deformation monitoring data of remarkable quality. In this work, we carry out coupled fluid flow and geomechanical simulations to understand the uplift at three different CO2 injection wells (KB-501, KB-502, KB-503). Previous numerical studies focused on the KB-502 injection well, where a double-lobe uplift pattern has been observed in the ground-deformation data. The observed uplift patterns at KB-501 and KB-503 are different, but also indicate the influence of deep fracture zone mechanical responses. The current study improves the previous modeling approach by introducing an injection reservoir and a fracture zone, both responding to a Mohr-Coulomb failure criterion. In addition, we model a stress-dependent permeability and bulk modulus, according to a dual continuum model. Mechanical and hydraulic properties were determined through inverse modeling by matching the simulated spatial and temporal evolution of uplift to the corresponding InSAR observations as well as by matching simulated and measured pressures. The numerical simulations are in excellent agreement with observed spatial and temporal variation of ground surface uplift, as well as with measured pressures. The estimated values for the parameterized mechanical and hydraulic properties are in good agreement with previous numerical results, although with uncertainty.

  20. Surface Gap Soliton Ground States for the Nonlinear Schr\\"{o}dinger Equation

    CERN Document Server

    Dohnal, Tomáš; Reichel, Wolfgang

    2010-01-01

    We consider the nonlinear Schr\\"{o}dinger equation $(-\\Delta +V(x))u = \\Gamma(x) |u|^{p-1}u$, $x\\in \\R^n$ with $V(x) = V_1(x) \\chi_{\\{x_1>0\\}}(x)+V_2(x) \\chi_{\\{x_10\\}}(x)+\\Gamma_2(x) \\chi_{\\{x_1<0\\}}(x)$ and with $V_1, V_2, \\Gamma_1, \\Gamma_2$ periodic in each coordinate direction. This problem describes the interface of two periodic media, e.g. photonic crystals. We study the existence of ground state $H^1$ solutions (surface gap soliton ground states) for $0<\\min \\sigma(-\\Delta +V)$. Using a concentration compactness argument, we provide an abstract criterion for the existence based on ground state energies of each periodic problem (with $V\\equiv V_1, \\Gamma\\equiv \\Gamma_1$ and $V\\equiv V_2, \\Gamma\\equiv \\Gamma_2$) as well as a more practical criterion based on ground states themselves. Examples of interfaces satisfying these criteria are provided. In 1D it is shown that, surprisingly, the criteria can be reduced to conditions on the linear Bloch waves of the operators $-\\tfrac{d^2}{dx^2} +V_1(x)$ an...

  1. Relationship between subsurface damage and surface roughness of ground optical materials

    Institute of Scientific and Technical Information of China (English)

    LI Sheng-yi; WANG Zhuo; WU Yu-lie

    2007-01-01

    A theoretical model of relationship between subsurface damage and surface roughness was established to realize rapid and non-destructive measurement of subsurface damage of ground optical materials. Postulated condition of the model was that subsurface damage depth and peak-to-valley surface roughness are equal to depth of radial and lateral cracks in brittle surface induced by small-radius (radius≤200 μm) spherical indenter, respectively. And contribution of elastic stress field to the radial cracks propagation was also considered in the loading cycle. Subsurface damage depth of ground BK7 glasses was measured by magnetorheological finishing spot technique to validate theoretical ratio of subsurface damage to surface roughness. The results show that the ratio is directly proportional to load of abrasive grains and hardness of optical materials, while inversely proportional to granularity of abrasive grains and fracture toughness of optical materials. Moreover, the influence of the load and fracture toughness on the ratio is more significant than the granularity and hardness, respectively. The measured ratios of 80 grit and 120 grit fixed abrasive grinding of BK7 glasses are 5.8 and 5.4, respectively.

  2. INVESTIGATION OF PROCESS PERTAINING TO INTERACTION OF TRACTOR DRIVING WHEELS WITH GROUND SURFACE

    Directory of Open Access Journals (Sweden)

    V. V. Guskov

    2017-01-01

    Full Text Available The paper presents results of investigations on the process pertaining to interaction of a driving wheel with ground surface and describes methodology for optimization of backbone parameters. The mentioned process has some specific differences in comparison with the process of wheel rolling along hard surface. Ground surface is represented by mixture of sandy and clay particles with plant residues and it has a number of physical and mechanical properties. The main of these properties is resistance of soil against compression and displacement. Compression process determines a track depth and resistance to motion and displacement process determines wheel gripping property and its tangential traction force. While executing the investigations laws of compression and displacement proposed by Prof.V. V. Katsygin as the most adequate reflection of actual processes have been used in the paper. Motion of the driving wheel along ground surface is accompanied by its slipping. It has been determined that the maximum wheel traction force is formed not with 100% slipping as it was supposed until present but the value has been obtained at 45–60 % slipping according to soil category. The developed integral equations with due account of the aspect make it possible to calculate road hold characteristics of driving wheels of the designed wheel tractor and evaluate its traction, speed and economic characteristics. Methodology has been developed for optimization of backbone parameters of wheeled running gear in the designed tractor such as design mass and adhesion weight, width, diameter and air pressure in a tire. The proposed methodology has been introduced in designing practice of wheeled tractors at OJSC “Minsk Tractor Works”.

  3. Spectrally selective surfaces for ground and space-based instrumentation: support for a resource base

    Science.gov (United States)

    McCall, Susan H.; Sinclair, R. Lawrence; Pompea, Stephen M.; Breault, Robert P.

    1993-11-01

    The performance of space telescopes, space instruments, and space radiator systems depends critically upon the selection of appropriate spectrally selective surfaces. Many space programs have suffered severe performance limitations, schedule setbacks, and spent hundreds of thousands of dollars in damage control because of a lack of readily-accessible, accurate data on the properties of spectrally selective surfaces, particularly black surfaces. A Canadian effort is underway to develop a resource base (database and support service) to help alleviate this problem. The assistance of the community is required to make the resource base comprehensive and useful to the end users. The paper aims to describe the objectives of this project. In addition, a request for information and support is made for various aspects of the project. The resource base will be useful for both ground and space-based instrumentation.

  4. The Potential Energy Surface for the Electronic Ground State of H 2Se Derived from Experiment

    Science.gov (United States)

    Jensen, P.; Kozin, I. N.

    1993-07-01

    The present paper reports a determination of the potential energy surface for the electronic ground state of the hydrogen selenide molecule through a direct least-squares fitting to experimental data using the MORBID (Morse oscillator rigid bender internal dynamics) approach developed by P. Jensen [ J. Mol. Spectrosc.128, 478-501 (1988); J. Chem. Soc. Faraday Trans. 284, 1315-1340 (1988)]. We have fitted a selection of 303 rotation-vibration energy spacings of H 280Se, D 280Se, and HD 80Se involving J ≤ 5 with a root-mean-square deviation of 0.0975 cm -1 for the rotational energy spacings and 0.268 cm -1 for the vibrational spacings. In the fitting, 14 parameters were varied. On the basis of the fitted potential surface we have studied the cluster effect in the vibrational ground state of H 2Se, i.e., the formation of nearly degenerate, four-member groups of rotational energy levels [see I. N. Kozin, S. Klee, P. Jensen, O. L. Polyansky, and I. M. Pavlichenkov. J. Mol. Spectrosc., 158, 409-422 (1993), and references therein]. The cluster formation becomes more pronounced with increasing J. For example, four-fold clusters formed in the vibrational ground state of H 280Se at J = 40 are degenerate to within a few MHz. Our predictions of the D 280Se energy spectrum show that for this molecule, the cluster formation is displaced towards higher J values than arc found for H 280Se. In the vibrational ground state, the qualitative deviation from the usual rigid rotor picture starts at J = 12 for H 280Se and at J = 18 for D 280Se, in full agreement with predictions from semiclassical theory. An interpretation of the cluster eigenstates is discussed.

  5. Conceptual Tenets of the Theory of Hydration of Heterogeneous Surface with Polar Order of Disperse Ground Layers of Sedimentary Genesis

    Directory of Open Access Journals (Sweden)

    Tamara G. Makeeva

    2012-09-01

    Full Text Available The article, basing on the established regularity defines the basic tenets of the theory of hydration of heterogeneous surface with polar order of disperse ground layers of sedimentary genesis. It offers classification and formula for the associated water density, valid corrections for the associated water density, calculates the water film thickness in disperse ground, develops the reliable physicochemical model of the disperse ground, determines the range of applicability of the existing laboratory and field methods.

  6. A study of SO2 emissions and ground surface displacements at Lastarria volcano, Antofagasta Region, Northern Chile

    Science.gov (United States)

    Krewcun, Lucie G.

    Lastarria volcano (Chile) is located at the North-West margin of the 'Lazufre' ground inflation signal (37x45 km2), constantly uplifting at a rate of ˜2.5 cm/year since 1996 (Pritchard and Simons 2002; Froger et al. 2007). The Lastarria volcano has the double interest to be superimposed on a second, smaller-scale inflation signal and to be the only degassing area of the Lazufre signal. In this project, we compared daily SO2 burdens recorded by AURA's OMI mission for 2005-2010 with Ground Surface Displacements (GSD) calculated from the Advanced Synthetic Aperture Radar (ASAR) images for 2003-2010. We found a constant maximum displacement rate of 2.44 cm/year for the period 2003-2007 and 0.80- 0.95 cm/year for the period 2007-2010. Total SO 2 emitted is 67.0 kT for the period 2005-2010, but detection of weak SO2 degassing signals in the Andes remains challenging owing to increased noise in the South Atlantic radiation Anomaly region.

  7. Mapping of permafrost surface using ground-penetrating radar at Kangerlussuaq Airport, western Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Andreasen, Frank

    2007-01-01

    Kangerlussuaq Airport is located at 67°N and 51°W in the zone of continuous permafrost in western Greenland. Its proximity to the Greenlandic ice sheet results in a dry sub-arctic climate with a mean annual temperature of −5.7 °C. The airport is built on a river terrace mostly consisting of fluvial...... deposits overlying fine-grained marine melt-water sediments and bedrock. A ground-penetrating radar (GPR) survey was performed to study the frozen surface beneath the airfield. The measurements were carried out in late July 2005 on the southern parking area in Kangerlussuaq Airport. Five years earlier...

  8. Influence of geology on arsenic concentrations in ground and surface water in central Lesvos, Greece.

    Science.gov (United States)

    Aloupi, Maria; Angelidis, Michael O; Gavriil, Apostolos M; Koulousaris, Michael; Varnavas, Soterios P

    2009-04-01

    The occurrence of As was studied in groundwater used for human consumption and irrigation, in stream water and sediments and in water from thermal springs in the drainage basin of Kalloni Gulf, island of Lesvos, Greece, in order to investigate the potential influence of the geothermal field of Polichnitos-Lisvori on the ground and surface water systems of the area. Total dissolved As varied in the range geology exerts a determinant influence on As geochemical behaviour. On the other hand, the geothermal activity manifested in the area of Polichnitos-Lisvori does not affect the presence of As in groundwater and streams.

  9. Asymmetric Rock Pressure on Shallow Tunnel in Strata with Inclined Ground Surface

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiao-jun; YANG Chang-yu

    2007-01-01

    By building a tunnel model with a semi-circular crown, the asymmetric rock pressure applied to the shallow tunnel in strata with inclined ground surface is analyzed. Formulae, which not only include the parameters related to both tunnel structure and surrounding rock mass, but the overburden depth, are developed. The computation for four tunnel models show that the method presented is feasible and convenient. Furthermore, the influence of the overburden depth on the rock pressure is elaborated, and the criterion to identify the deep or shallow tunnels is formulated as well.

  10. Surface Signature Characterization at SPE through Ground-Proximal Methods: Methodology Change and Technical Justification

    Energy Technology Data Exchange (ETDEWEB)

    Schultz-Fellenz, Emily S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-09

    A portion of LANL’s FY15 SPE objectives includes initial ground-based or ground-proximal investigations at the SPE Phase 2 site. The area of interest is the U2ez location in Yucca Flat. This collection serves as a baseline for discrimination of surface features and acquisition of topographic signatures prior to any development or pre-shot activities associated with SPE Phase 2. Our team originally intended to perform our field investigations using previously vetted ground-based (GB) LIDAR methodologies. However, the extended proposed time frame of the GB LIDAR data collection, and associated data processing time and delivery date, were unacceptable. After technical consultation and careful literature research, LANL identified an alternative methodology to achieve our technical objectives and fully support critical model parameterization. Very-low-altitude unmanned aerial systems (UAS) photogrammetry appeared to satisfy our objectives in lieu of GB LIDAR. The SPE Phase 2 baseline collection was used as a test of this UAS photogrammetric methodology.

  11. Surface geophysical methods for characterising frozen ground in transitional permafrost landscapes

    Science.gov (United States)

    Briggs, Martin; Campbell, Seth; Nolan, Jay; Walvoord, Michelle Ann; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Lane, John

    2017-01-01

    The distribution of shallow frozen ground is paramount to research in cold regions, and is subject to temporal and spatial changes influenced by climate, landscape disturbance and ecosystem succession. Remote sensing from airborne and satellite platforms is increasing our understanding of landscape-scale permafrost distribution, but typically lacks the resolution to characterise finer-scale processes and phenomena, which are better captured by integrated surface geophysical methods. Here, we demonstrate the use of electrical resistivity imaging (ERI), electromagnetic induction (EMI), ground penetrating radar (GPR) and infrared imaging over multiple summer field seasons around the highly dynamic Twelvemile Lake, Yukon Flats, central Alaska, USA. Twelvemile Lake has generally receded in the past 30 yr, allowing permafrost aggradation in the receded margins, resulting in a mosaic of transient frozen ground adjacent to thick, older permafrost outside the original lakebed. ERI and EMI best evaluated the thickness of shallow, thin permafrost aggradation, which was not clear from frost probing or GPR surveys. GPR most precisely estimated the depth of the active layer, which forward electrical resistivity modelling indicated to be a difficult target for electrical methods, but could be more tractable in time-lapse mode. Infrared imaging of freshly dug soil pit walls captured active-layer thermal gradients at unprecedented resolution, which may be useful in calibrating emerging numerical models. GPR and EMI were able to cover landscape scales (several kilometres) efficiently, and new analysis software showcased here yields calibrated EMI data that reveal the complicated distribution of shallow permafrost in a transitional landscape.

  12. Quality of surface and ground waters, Yakima Indian Reservation, Washington, 1973-74

    Science.gov (United States)

    Fretwell, M.O.

    1977-01-01

    This report describes the quality of the surface and ground waters of the Yakima Indian Reservation in south-central Washington, during the period November 1973-October 1974. The average dissolved-solids concentrations ranged from 48 to 116 mg/L (milligrams per liter) in the mountain streams, and from 88 to 372 mg/L in the lowland streams, drains, and a canal. All the mountain streams contain soft water (classified as 0-60 mg/L hardness as CaC03), and the lowland streams, drains, and canal contain soft to very hard water (more than 180 mg/L hardness as CaC03). The water is generally of suitable quality for irrigation, and neither salinity nor sodium hazards are a problem in waters from any of the streams studied. The specific conductance of water from the major aquifers ranged from 20 to 1 ,540 micromhos. Ground water was most dilute in mineral content in the Klickitat River basin and most concentrated in part of the Satus Creek basin. The ground water in the Satus Creek basin with the most concentrated mineral content also contained the highest percentage composition of sulfate, chloride, and nitrate. For drinking water, the nitrate-nitrogen concentrations exceeded the U.S. Public Health Service 's recommended limit of 10 mg/L over an area of several square miles, with a maximum observed concentration of 170 mg/L. (Woodard-USGS).

  13. Mechanism and bounding of earthquake energy input to building structure on surface ground subjected to engineering bedrock motion

    OpenAIRE

    Kojima, K; Sakaguchi, K; Takewaki, I.

    2015-01-01

    The mechanism of earthquake energy input to building structures is clarified by considering the surface ground amplification and soil–structure interaction. The earthquake input energies to superstructures, soil–foundation systems and total swaying–rocking system are obtained by taking the corresponding appropriate free bodies into account and defining the energy transfer functions. It has been made clear that, when the ground surface motion is white, the input energy to the swaying–rocking m...

  14. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 2006-07

    Science.gov (United States)

    Truini, Margot; Macy, J.P.

    2008-01-01

    once in 2006 and once in 2007 at Moenkopi School Spring. Flow decreased by 18.9 percent at Moenkopi School Spring. During the period of record, flow fluctuated, and a decreasing trend was apparent. Continuous records of surface-water discharge in the Black Mesa area have been collected from streamflow gages at the following sites: Moenkopi Wash at Moenkopi (1976 to 2006), Dinnebito Wash near Sand Springs (1993 to 2006), Polacca Wash near Second Mesa (1994 to 2006), and Pasture Canyon Springs (August 2004 to December 2006). Median flows during November, December, January, and February of each water year were used as an index of the amount of ground-water discharge to the above named sites. For the period of record at each streamflow-gaging station, the median winter flows have generally remained even, showing neither a significant increase nor decrease in flows. There is not a long enough period of record for Pasture Canyon Spring for a trend to be apparent. In 2007, water samples were collected from 1 well and 1 spring in the Black Mesa area and were analyzed for selected chemical constituents. Concentrations of dissolved solids, chloride, and sulfate have varied at Peabody well 5 for the period of record, and there is an apparent increasing trend. Dissolved-solids, chloride, and sulfate concentrations increased at Moenkopi School Spring during the more than 12 years of record.

  15. Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D

    Science.gov (United States)

    Lautz, Laura K.; Siegel, Donald I.

    2006-11-01

    We used a three-dimensional MODFLOW model, paired with MT3D, to simulate hyporheic zones around debris dams and meanders along a semi-arid stream. MT3D simulates both advective transport and sink/source mixing of solutes, in contrast to particle tracking (e.g. MODPATH), which only considers advection. We delineated the hydrochemically active hyporheic zone based on a new definition, specifically as near-stream subsurface zones receiving a minimum of 10% surface water within a 10-day travel time. Modeling results indicate that movement of surface water into the hyporheic zone is predominantly an advective process. We show that debris dams are a key driver of surface water into the subsurface along the experimental reach, causing the largest flux rates of water across the streambed and creating hyporheic zones with up to twice the cross-sectional area of other hyporheic zones. Hyporheic exchange was also found in highly sinuous segments of the experimental reach, but flux rates are lower and the cross-sectional areas of these zones are generally smaller. Our modeling approach simulated surface and ground water mixing in the hyporheic zone, and thus provides numerical approximations that are more comparable to field-based observations of surface-groundwater exchange than standard particle-tracking simulations.

  16. Modelling the Influence of Ground Surface Relief on Electric Sounding Curves Using the Integral Equations Method

    Directory of Open Access Journals (Sweden)

    Balgaisha Mukanova

    2017-01-01

    Full Text Available The problem of electrical sounding of a medium with ground surface relief is modelled using the integral equations method. This numerical method is based on the triangulation of the computational domain, which is adapted to the shape of the relief and the measuring line. The numerical algorithm is tested by comparing the results with the known solution for horizontally layered media with two layers. Calculations are also performed to verify the fulfilment of the “reciprocity principle” for the 4-electrode installations in our numerical model. Simulations are then performed for a two-layered medium with a surface relief. The quantitative influences of the relief, the resistivity ratios of the contacting media, and the depth of the second layer on the apparent resistivity curves are established.

  17. Flux of benzo(a)pyrene to the ground surface and its distribution in the ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Milukaite, A. [Institute of Physics, Vilnius (Lithuania)

    1998-07-01

    Benzo(a)pyrene (BP) has been investigated in bulk atmospheric deposition, moss, needles of pine and some species of vascular plants. At two remote Lithuanian sites, for 1990-1995 the flux of benzo(a)pyrene from the atmosphere to the ground surface varied between 0.3 to 4.8 {mu}g{sup -2} mo{sup -1}. Consequently the territory of Lithuania (65,000 km{sup 2}) yearly was exposed to 624-2574 kg of carcinogen. The distribution of BP in soil and various vascular plant tissues (trifolium tepens, Elitrygea repens, Thymus serpyllum) indicates that benzo(a)pyrene is assimilated by flora. The concentration of BP is different in various organs of vascular plants and mostly depends on the degree of soil pollution. More than 300 samples of moss, mostly Hylocomium spendens and Pleurozium schreberi were analysed for BP. From 3.1 to 896.0 {mu}g kg{sup -1} of BP were measured in the moss samples. The flux of BP to the ground surface correlates well with its concentration in moss. A map of BP flux across Lithuania was created. 20 refs., 3 figs., 3 tabs.

  18. Human health impacts of drinking water (surface and ground) pollution Dakahlyia Governorate, Egypt

    Science.gov (United States)

    Mandour, R. A.

    2012-09-01

    This study was done on 30 drinking tap water samples (surface and ground) and 30 urine samples taken from patients who attended some of Dakahlyia governorate hospitals. These patients were complaining of poor-quality tap water in their houses, which was confirmed by this study that drinking water is contaminated with trace elements in some of the studied areas. The aim of this study was to determine the relationship between the contaminant drinking water (surface and ground) in Dakahlyia governorate and its impact on human health. This study reports the relationship between nickel and hair loss, obviously shown in water and urine samples. Renal failure cases were related to lead and cadmium contaminated drinking water, where compatibilities in results of water and urine samples were observed. Also, liver cirrhosis cases were related to iron-contaminated drinking water. Studies of these diseases suggest that abnormal incidence in specific areas is related to industrial wastes and agricultural activities that have released hazardous and toxic materials in the drinking water and thereby led to its contamination in these areas. We conclude that trace elements should be removed from drinking water for human safety.

  19. Analysis of selected herbicide metabolites in surface and ground water of the United States

    Science.gov (United States)

    Scribner, E.A.; Thurman, E.M.; Zimmerman, L.R.

    2000-01-01

    One of the primary goals of the US Geological Survey (USGS) Laboratory in Lawrence, Kansas, is to develop analytical methods for the analysis of herbicide metabolites in surface and ground water that are vital to the study of herbicide fate and degradation pathways in the environment. Methods to measure metabolite concentrations from three major classes of herbicides - triazine, chloroacetanilide and phenyl-urea - have been developed. Methods for triazine metabolite detection cover nine compounds: six compounds are detected by gas chromatography/mass spectrometry; one is detected by high-performance liquid chromatography with diode-array detection; and eight are detected by liquid chromatography/mass spectrometry. Two metabolites of the chloroacetanilide herbicides - ethane sulfonic acid and oxanilic acid - are detected by high-performance liquid chromatography with diode-array detection and liquid chromatography/mass spectrometry. Alachlor ethane sulfonic acid also has been detected by solid-phase extraction and enzyme-linked immunosorbent assay. Six phenylurea metabolites are all detected by liquid chromatography/mass spectrometry; four of the six metabolites also are detected by gas chromatography/mass spectrometry. Additionally, surveys of herbicides and their metabolites in surface water, ground water, lakes, reservoirs, and rainfall have been conducted through the USGS laboratory in Lawrence. These surveys have been useful in determining herbicide and metabolite occurrence and temporal distribution and have shown that metabolites may be useful in evaluation of non-point-source contamination. Copyright (C) 2000 Elsevier Science B.V.

  20. A Method for Decreasing the Amount of the Drug Remaining on the Surfaces of the Mortar and Pestle after Grinding Small Amount of Tablets.

    Science.gov (United States)

    Kawakami, Miki; Kitada, Rika; Kurita, Takuro; Tokumura, Tadakazu

    2017-01-01

     The aim of the present study was to develop a method for grinding tablets with a mortar and pestle while reducing drug loss because grinding tablets is known to be associated with reductions in tablet weight and loss of the active drug. Seven kinds of tablets were subjected to grinding. The proportion (%) of the amount of the active drug in the powder remaining on the surfaces of the mortar and pestle relative to the total amount of the drug recovered (the recovery percent) was calculated. The recovery percent of the 7 kinds of tablets ranged from 17.2-35.9%, and the tablets' recovery percent decreased as the tablet weight increased. When the grinding was performed with 1 g of lactose monohydrate or 1 g of D-mannitol moistened with water, the recovery percent of the tablets decreased to 2.6-9.9% and 3.8-9.9%, respectively. The effects of the weight of lactose monohydrate on the recovery percent of Allegra(®) 60 mg tablets were examined. It was found that at least 0.6 g of lactose monohydrate was required to have a sufficient effect on drug recovery. Therefore, additives that have stronger effects at lower amounts were sought. As a result, calcium monohydrogen phosphate was found to have the strongest effect on drug recovery. The addition of 0.4 g calcium monohydrogen phosphate resulted in the recovery percent of 5.1%, which was significantly lower than that of 15.0% observed after the addition of 0.4 g lactose monohydrate, and lower than the 6.8% of 1 g lactose monohydrate.

  1. Seasonal Influences on Ground-Surface Water Interactions in an Arsenic-Affected Aquifer in Cambodia

    Science.gov (United States)

    Richards, L. A.; Magnone, D.; Van Dongen, B.; Bryant, C.; Boyce, A.; Ballentine, C. J.; Polya, D. A.

    2015-12-01

    Millions of people in South and Southeast Asia consume drinking water daily which contains dangerous levels of arsenic exceeding health-based recommendations [1]. A key control on arsenic mobilization in aquifers in these areas has been controversially identified as the interaction of 'labile' organic matter contained in surface waters with groundwaters and sediments at depth [2-4], which may trigger the release of arsenic from the solid- to aqueous-phase via reductive dissolution of iron-(hyr)oxide minerals [5]. In a field site in Kandal Province, Cambodia, which is an arsenic-affected area typical to others in the region, there are strong seasonal patterns in groundwater flow direction, which are closely related to monsoonal rains [6] and may contribute to arsenic release in this aquifer. The aim of this study is to explore the implications of the high susceptibility of this aquifer system to seasonal changes on potential ground-surface water interactions. The main objectives are to (i) identify key zones where there are likely ground-surface water interactions, (ii) assess the seasonal impact of such interactions and (iii) quantify the influence of interactions using geochemical parameters (such as As, Fe, NO3, NH4, 14C, 3T/3He, δ18O, δ2H). Identifying the zones, magnitude and seasonal influence of ground-surface water interactions elucidates new information regarding potential locations/pathways of arsenic mobilization and/or transport in affected aquifers and may be important for water management strategies in affected areas. This research is supported by NERC (NE/J023833/1) to DP, BvD and CJB and a NERC PhD studentship (NE/L501591/1) to DM. References: [1] World Health Organization, 2008. [2] Charlet & Polya (2006), Elements, 2, 91-96. [3] Harvey et al. (2002), Science, 298, 1602-1606. [4] Lawson et al. (2013), Env. Sci. Technol. 47, 7085 - 7094. [5] Islam et al. (2004), Nature, 430, 68-71. [6] Benner et al. (2008) Appl. Geochem. 23(11), 3072 - 3087.

  2. Martian Surface Temperature and Spectral Response from the MSL REMS Ground Temperature Sensor

    Science.gov (United States)

    Martin-Torres, Javier; Martínez-Frías, Jesús; Zorzano, María-Paz; Serrano, María; Mendaza, Teresa; Hamilton, Vicky; Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; REMS Team

    2013-04-01

    The Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory (MSL) offers the opportunity to explore the near surface atmospheric conditions and, in particular will shed new light into the heat budget of the Martian surface. This is important for studies of the atmospheric boundary layer (ABL), as the ground and air temperatures measured directly by REMS control the coupling of the atmosphere with the surface [Zurek et al., 1992]. This coupling is driven by solar insolation. The ABL plays an important role in the general circulation and the local atmospheric dynamics of Mars. One of the REMS sensors, the ground temperature sensor (GTS), provides the data needed to study the thermal inertia properties of the regolith and rocks beneath the MSL rover. The GTS includes thermopile detectors, with infrared bands of 8-14 µm and 16-20 µm [Gómez-Elvira et al., 2012]. These sensors are clustered in a single location on the MSL mast and the 8-14 µm thermopile sounds the surface temperature. The infrared radiation reaching the thermopile is proportional to the emissivity of the surface minerals across these thermal wavelengths. We have developed a radiative transfer retrieval method for the REMS GTS using a database of thermal infrared laboratory spectra of analogue minerals and their mixtures. [Martín Redondo et al. 2009, Martínez-Frías et al. 2012 - FRISER-IRMIX database]. This method will be used to assess the perfomance of the REMS GTS as well as determine, through the error analysis, the surface temperature and emissivity values where MSL is operating. Comparisons with orbiter data will be performed. References Gómez-Elvira et al. [2012], REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover, Space Science Reviews, Volume 170, Issue 1-4, pp. 583-640. Martín-Redondo et al. [2009] Journal of Environmental Monitoring 11:, pp. 1428-1432. Martínez-Frías et al. [2012] FRISER-IRMIX database http

  3. Ground Surface Deformation around Tehran due to Groundwater Recharge: InSAR Monitoring.

    Science.gov (United States)

    Gourmelen, N.; Peyret, M.; Fritz, J. F.; Cherry, J.

    2003-04-01

    Tehran is located on an active tectonic and seismic zone. The surface deformation monitoring provides a powerful tool for getting a better understanding of faults kinematics and mechanisms. Used in conjunction with GPS networks, InSAR (Interferometric Synthetic Aperture Radar) provides dense and precise deformation measurements which are essential for mapping complex heterogeneous deformation fields. Moreover, urban and arid areas preserve interferometric phase coherence. The archived acquisitions of ERS that span 9 months between September 1998 and June 1999 reveal wide areas of surface uplift (by as much as 9 cm). This vertical deformation (gradual in time) has probably no tectonic meaning but is rather the ground response to ground water recharge. These zones are all located dowstream of large alluvial fans like the one of Karaj. The variation of effective stress caused by intersticial water draining could explain such surface deformation. It can also be noticed that some faults act as boundary for these deformation zones and fluid motion. The understanding of this deformation is relevant for groundwater monitoring and urban developement management. It is also necessary for discriminating it from tectonic deformation that also occurs on this zone. Due to the lack of attitude control of satellite ERS-2 since February 2001, the last images acquired could not be combined with the former acquisitions. Nevertheless, we expect to be able to enrich our set of images in order to map tectonic deformation on a longer period and to monitor in a more continuous way the deformation due to groundwater evolution. This would allow to quantify the permanent and reversible part of this signal.

  4. A Comprehensive Laboratory Study to Improve Ground Truth Calibration of Remotely Sensed Near-Surface Soil Moisture

    Science.gov (United States)

    Babaeian, E.; Tuller, M.; Sadeghi, M.; Sheng, W.; Jones, S. B.

    2016-12-01

    Optical satellite and airborne remote sensing (RS) have been widely applied for characterization of large-scale surface soil moisture distributions. However, despite the excellent spatial resolution of RS data, the electromagnetic radiation within the optical bands (400-2500 nm) penetrates the soil profile only to a depth of a few millimeters; hence obtained moisture estimates are limited to the soil surface region. Furthermore, moisture sensor networks employed for ground truth calibration of RS observations commonly exhibit very limited spatial resolution, which consequently leads to significant discrepancies between RS and ground truth observations. To better understand the relationship between surface and near-surface soil moisture, we employed a benchtop hyperspectral line-scan imaging system to generate high resolution surface reflectance maps during evaporation from soil columns filled with source soils covering a wide textural range and instrumented with a novel time domain reflectometry (TDR) sensor array that allows monitoring of near surface moisture at 0.5-cm resolution. A recently developed physical model for surface soil moisture predictions from shortwave infrared reflectance was applied to estimate surface soil moisture from surface reflectance and to explore the relationship between surface and near-surface moisture distributions during soil drying. Preliminary results are very promising and their applicability for ground truth calibration of RS observations will be discussed.

  5. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  6. Interfaces Supporting Surface Gap Soliton Ground States in the 1D Nonlinear Schroedinger Equation

    CERN Document Server

    Dohnal, Tomas; Plum, Michael; Reichel, Wolfgang

    2012-01-01

    We consider the problem of verifying the existence of $H^1$ ground states of the 1D nonlinear Schr\\"odinger equation for an interface of two periodic structures: $$-u" +V(x)u -\\lambda u = \\Gamma(x) |u|^{p-1}u \\ {on} \\R$$ with $V(x) = V_1(x), \\Gamma(x)=\\Gamma_1(x)$ for $x\\geq 0$ and $V(x) = V_2(x), \\Gamma(x)=\\Gamma_2(x)$ for $x1$. The article [T. Dohnal, M. Plum and W. Reichel, "Surface Gap Soliton Ground States for the Nonlinear Schr\\"odinger Equation," \\textit{Comm. Math. Phys.} \\textbf{308}, 511-542 (2011)] provides in the 1D case an existence criterion in the form of an integral inequality involving the linear potentials $V_{1},V_2$ and the Bloch waves of the operators $-\\tfrac{d^2}{dx^2}+V_{1,2}-\\lambda$. We choose here the classes of piecewise constant and piecewise linear potentials $V_{1,2}$ and check this criterion for a set of parameter values. In the piecewise constant case the Bloch waves are calculated explicitly and in the piecewise linear case verified enclosures of the Bloch waves are computed ...

  7. Ground Plane and Near-Surface Thermal Analysis for NASA's Constellation Program

    Science.gov (United States)

    Gasbarre, Joseph F.; Amundsen, Ruth M.; Scola, Salvatore; Leahy, Frank F.; Sharp, John R.

    2008-01-01

    Most spacecraft thermal analysis tools assume that the spacecraft is in orbit around a planet and are designed to calculate solar and planetary fluxes, as well as radiation to space. On NASA Constellation projects, thermal analysts are also building models of vehicles in their pre-launch condition on the surface of a planet. This process entails making some modifications in the building and execution of a thermal model such that the radiation from the planet, both reflected albedo and infrared, is calculated correctly. Also important in the calculation of pre-launch vehicle temperatures are the natural environments at the vehicle site, including air and ground temperatures, sky radiative background temperature, solar flux, and optical properties of the ground around the vehicle. A group of Constellation projects have collaborated on developing a cohesive, integrated set of natural environments that accurately capture worst-case thermal scenarios for the pre-launch and launch phases of these vehicles. The paper will discuss the standardization of methods for local planet modeling across Constellation projects, as well as the collection and consolidation of natural environments for launch sites. Methods for Earth as well as lunar sites will be discussed.

  8. Two decades of temperature-time monitoring experiment: air - ground surface - shallow subsurface interactions

    Science.gov (United States)

    Cermak, Vladimir; Dedecek, Petr; Safanda, Jan; Kresl, Milan

    2014-05-01

    Long-term observations (1994-2013) of air and shallow ground temperatures at borehole Prague-Sporilov (50º02'28.5"E, 14º28'40.2"N, 274 m a.s.l.) have been thoroughly analyzed to understand the relationship between these quantities and to describe the mechanism of heat transport at the land-atmosphere boundary layer. Data provided a surprisingly small mean ground-air temperature offset of only 0.31 K with no clear annual course and with the offset value changing irregularly even on a daily scale. Such value is substantially lower than similar values (1-2 K and more) found elsewhere, but may well characterize a mild temperate zone, when all so far available information referred rather to southern locations. Borehole data were correlated with similar observations in a polygon-site under four types of surface conditions (grass, soil, sand and asphalt) completed with registration of meteorological variables (wind direction & velocity, air & soil humidity, direct & reflected solar radiation, precipitation and snow cover). The "thermal orbits" technique proved to be an effective tool for the fast qualitative diagnostics of the thermal regime in the subsurface (conductive versus non-conductive).

  9. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Qiang; Li, Na; Wang, Jun; Wang, Bo, E-mail: bradywang@hit.edu.cn; Li, Guo; Ding, Fei; Jin, Huiliang

    2015-06-30

    Highlights: • The morphology evolution of ground fused silica, processed by atmospheric plasma, was investigated experimentally. • The roughness development results from opening and coalescing of the plasma-etched cracks. • The shapes of grain-like etched pits are the results of the adjacent cracks coalescing with one another. • The descent of the pits density is due to some smaller etched pits that are swallowed up by larger pits. • Leading role in surface smoothing is laterally etching away the side walls of the intersecting pits. - Abstract: Subsurface damage (SSD) is a defect that is inevitably induced during mechanical processes, such as grinding and polishing. This defect dramatically reduces the mechanical strength and the laser damage thresholds of optical elements. Compared with traditional mechanical machining, atmospheric pressure plasma processing (APPP) is a relatively novel technology that induces almost no SSD during the processing of silica-based optical materials. In this paper, a form of APPP, inductively coupled plasma (ICP), is used to process fused silica substrates with fluorocarbon precursor under atmospheric pressure. The surface morphology evolution of ICP-processed substrates was observed and characterized by confocal laser scanning microscope (CLSM), field emission scanning electron microscope (SEM), and atomic force microscopy (AFM). The results show that the roughness evolves with the etching depth, and the roughness evolution is a single-peaked curve. This curve results from the opening and the coalescing of surface cracks and fractures. The coalescence procedure of these microstructures was simulated with two common etched pits on a polished fused silica surface. Understanding the roughness evolution of plasma-processed surface might be helpful in optimizing the optical fabrication chain that contains APPP.

  10. Numerical modelling of ground-borne noise and vibration in buildings due to surface rail traffic

    Science.gov (United States)

    Fiala, P.; Degrande, G.; Augusztinovicz, F.

    2007-04-01

    This paper deals with the numerical computation of the structural and acoustic response of a building to an incoming wave field generated by high-speed surface railway traffic. The source model consists of a moving vehicle on a longitudinally invariant track, coupled to a layered ground modelled with a boundary element formulation. The receiver model is based on a substructuring formulation and consists of a boundary element model of the soil and a finite element model of the structure. The acoustic response of the building's rooms is computed by means of a spectral finite element formulation. The paper investigates the structural and acoustic response of a multi-story portal frame office building up to a frequency of 150 Hz to the passage of a Thalys high-speed train at constant velocity. The isolation performance of three different vibration countermeasures: a floating-floor, a room-in-room, and base-isolation, are examined.

  11. Sampling and analysis for radon-222 dissolved in ground water and surface water

    Science.gov (United States)

    DeWayne, Cecil L.; Gesell, T.F.

    1992-01-01

    Radon-222 is a naturally occurring radioactive gas in the uranium-238 decay series that has traditionally been called, simply, radon. The lung cancer risks associated with the inhalation of radon decay products have been well documented by epidemiological studies on populations of uranium miners. The realization that radon is a public health hazard has raised the need for sampling and analytical guidelines for field personnel. Several sampling and analytical methods are being used to document radon concentrations in ground water and surface water worldwide but no convenient, single set of guidelines is available. Three different sampling and analytical methods - bubbler, liquid scintillation, and field screening - are discussed in this paper. The bubbler and liquid scintillation methods have high accuracy and precision, and small analytical method detection limits of 0.2 and 10 pCi/l (picocuries per liter), respectively. The field screening method generally is used as a qualitative reconnaissance tool.

  12. Surface Properties and Characteristics of Mars Landing Sites from Remote Sensing Data and Ground Truth

    Science.gov (United States)

    Golombek, M. P.; Haldemann, A. F.; Simpson, R. A.; Furgason, R. L.; Putzig, N. E.; Huertas, A.; Arvidson, R. E.; Heet, T.; Bell, J. F.; Mellon, M. T.; McEwen, A. S.

    2008-12-01

    Surface characteristics at the six sites where spacecraft have successfully landed on Mars can be related favorably to their signatures in remotely sensed data from orbit and from the Earth. Comparisons of the rock abundance, types and coverage of soils (and their physical properties), thermal inertia, albedo, and topographic slope all agree with orbital remote sensing estimates and show that the materials at the landing sites can be used as ground truth for the materials that make up most of the equatorial and mid- to moderately high-latitude regions of Mars. The six landing sites sample two of the three dominant global thermal inertia and albedo units that cover ~80% of the surface of Mars. The Viking, Spirit, Mars Pathfinder, and Phoenix landing sites are representative of the moderate to high thermal inertia and intermediate to high albedo unit that is dominated by crusty, cloddy, blocky or frozen soils (duricrust that may be layered) with various abundances of rocks and bright dust. The Opportunity landing site is representative of the moderate to high thermal inertia and low albedo surface unit that is relatively dust free and composed of dark eolian sand and/or increased abundance of rocks. Rock abundance derived from orbital thermal differencing techniques in the equatorial regions agrees with that determined from rock counts at the surface and varies from ~3-20% at the landing sites. The size-frequency distributions of rocks >1.5 m diameter fully resolvable in HiRISE images of the landing sites follow exponential models developed from lander measurements of smaller rocks and are continuous with these rock distributions indicating both are part of the same population. Interpretation of radar data confirms the presence of load bearing, relatively dense surfaces controlled by the soil type at the landing sites, regional rock populations from diffuse scattering similar to those observed directly at the sites, and root-mean-squared slopes that compare favorably

  13. Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers

    Science.gov (United States)

    Hanjalić, K.; Hrebtov, M.

    2016-07-01

    We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.

  14. Scalable and Detail-Preserving Ground Surface Reconstruction from Large 3D Point Clouds Acquired by Mobile Mapping Systems

    Science.gov (United States)

    Craciun, D.; Serna Morales, A.; Deschaud, J.-E.; Marcotegui, B.; Goulette, F.

    2014-08-01

    The currently existing mobile mapping systems equipped with active 3D sensors allow to acquire the environment with high sampling rates at high vehicle velocities. While providing an effective solution for environment sensing over large scale distances, such acquisition provides only a discrete representation of the geometry. Thus, a continuous map of the underlying surface must be built. Mobile acquisition introduces several constraints for the state-of-the-art surface reconstruction algorithms. Smoothing becomes a difficult task for recovering sharp depth features while avoiding mesh shrinkage. In addition, interpolation-based techniques are not suitable for noisy datasets acquired by Mobile Laser Scanning (MLS) systems. Furthermore, scalability is a major concern for enabling real-time rendering over large scale distances while preserving geometric details. This paper presents a fully automatic ground surface reconstruction framework capable to deal with the aforementioned constraints. The proposed method exploits the quasi-flat geometry of the ground throughout a morphological segmentation algorithm. Then, a planar Delaunay triangulation is applied in order to reconstruct the ground surface. A smoothing procedure eliminates high frequency peaks, while preserving geometric details in order to provide a regular ground surface. Finally, a decimation step is applied in order to cope with scalability constraints over large scale distances. Experimental results on real data acquired in large urban environments are presented and a performance evaluation with respect to ground truth measurements demonstrate the effectiveness of our method.

  15. Monitoring surface geothermal features using time series of aerial and ground-based photographs

    Science.gov (United States)

    Bromley, C.; van Manen, S. M.; Graham, D.

    2010-12-01

    Geothermal systems are of high conservation and scientific value and monitoring of these is an important management tool to assess natural variations and changes resulting from development and utilization. This study examines time series of aerial and ground-based photographs of geothermal areas within the Taupo Volcanic Zone, New Zealand. A time series of aerial photographs from 1946-2007 of the Broadlands Road Scenic Reserve (Taupo, New Zealand) highlights large changes to this small area as the result of the start of geothermal fluid production for the nearby Wairakei power plant in 1958 and other causes. Prior to the opening of the plant the area was not geothermally active, but expansion of steam zones due to pressure drawdown has resulted in significant thermal changes in the subsurface. These subsurface thermal changes are evident in the aerial photographs as the appearance of hydrothermal eruption craters and areas of thermal bare ground, which are too hot for vegetation to grown on. In addition, in the late 1960’s thermotolerant vegetation started to establish itself in the adjacent area. Changes in the surface area covered by each of these, reflect changes in the geothermal system as well as changes in management (e.g. exclusion of livestock), and a time series of these changes has been produced using ArcMap™. Monthly photographs of surface geothermal expressions in the Rotorua area show changes in colour and size of chloride springs with time. Colour and size changes are difficult to quantify due to varying exposure settings, weather conditions, and vantage points. However, these qualitative descriptions can be combined with quantitative time series such as temperature measurements, to provide better insight into surface changes that have occurred at this geothermal field. This study highlights the value of both qualitative and quantitative data that can be obtained from time series of photographs, including photographs that were obtained before the

  16. Ground surface thermal regime of rock glaciers in the High Tatra Mts., Slovakia

    Science.gov (United States)

    Uxa, Tomáš; Mida, Peter

    2017-04-01

    Numerous lobate- or tongue-shaped debris accumulations, mostly interpreted as rock glaciers, have recently been recognized in the High Tatra Mts., Slovakia (49˚ 10' N, 20˚ 08' E). These prominent landforms arise due to creep of voluminous debris-ice mixtures, and as such they are excellent indicators of present or past permafrost existence. Hence rock glaciers are extensively utilized to model the distribution of permafrost in mountain areas. However, commonly applied rules of thumb may not be entirely indicative to discriminate particularly between the inactive (permafrost in disequilibrium with present climate) and relict (without permafrost) rock glaciers, which may substantially complicate permafrost modelling. Accordingly, the information about their thermal state is essential to calibrate and validate regional permafrost models. Limited ground temperature data have been, however, available from the High Tatra Mts. to date and therefore, we bring the updated and enhanced results from the thermal investigations of eleven rock glaciers located in the Slavkovská dolina and Veľká Studená dolina valleys at elevations between 1832 and 2090 m asl. Ground surface temperature (GST) has been continuously monitored at seven rock glaciers between October 2014 and September 2016 using nine Minikin Tie (EMS Brno Inc.) and iButton DS1922L (Maxim Integrated Inc.) loggers with an accuracy of ±0.2 and ±0.5 ˚ C, respectively. In addition, the bottom temperature of snow (BTS) was measured at 306 locations during spring of 2015 and 2016 to map potential permafrost occurrence within all the surveyed rock glaciers and in their immediate surroundings. Mean annual ground surface temperature (MAGST) of the rock glaciers ranged between -1.3 ˚ C and +2.6 ˚ C and averaged +1.0 ˚ C and +0.8 ˚ C in 2014-2015 and 2015-2016, respectively. Two sites continually showed negative MAGST and two other sites were below +0.5 ˚ C and +1.0 ˚ C, respectively. This strongly contrasts with

  17. Ground and surface water for drinking: a laboratory study on genotoxicity using plant tests

    Directory of Open Access Journals (Sweden)

    Donatella Feretti

    2012-02-01

    Full Text Available Surface waters are increasingly utilized for drinking water because groundwater sources are often polluted. Several monitoring studies have detected the presence of mutagenicity in drinking water, especially from surface sources due to the reaction of natural organic matter with disinfectant. The study aimed to investigate the genotoxic potential of the products of reaction between humic substances, which are naturally present in surface water, and three disinfectants: chlorine dioxide, sodium hypochlorite and peracetic acid. Commercial humic acids dissolved in distilled water at different total organic carbon (TOC concentrations were studied in order to simulate natural conditions of both ground water (TOC=2.5 mg/L and surface water (TOC=7.5 mg/L. These solutions were treated with the biocides at a 1:1 molar ratio of C:disinfectant and tested for genotoxicity using the anaphase chromosomal aberration and micronucleus tests in Allium cepa, and the Vicia faba and Tradescantia micronucleus tests. The tests were carried out after different times and with different modes of exposure, and at 1:1 and 1:10 dilutions of disinfected and undisinfected humic acid solutions. A genotoxic effect was found for sodium hypochlorite in all plant tests, at both TOCs considered, while chlorine dioxide gave positive results only with the A.cepa tests. Some positive effects were also detected for PAA (A.cepa and Tradescantia. No relevant differences were found in samples with different TOC values. The significant increase in all genotoxicity end-points induced by all tested disinfectants indicates that a genotoxic potential is exerted even in the presence of organic substances at similar concentrations to those frequently present in drinking water.

  18. Ground and surface water for drinking: a laboratory study on genotoxicity using plant tests.

    Science.gov (United States)

    Feretti, Donatella; Ceretti, Elisabetta; Gustavino, Bianca; Zerbini, Llaria; Zani, Claudia; Monarca, Silvano; Rizzoni, Marco

    2012-02-17

    Surface waters are increasingly utilized for drinking water because groundwater sources are often polluted. Several monitoring studies have detected the presence of mutagenicity in drinking water, especially from surface sources due to the reaction of natural organic matter with disinfectant. The study aimed to investigate the genotoxic potential of the products of reaction between humic substances, which are naturally present in surface water, and three disinfectants: chlorine dioxide, sodium hypochlorite and peracetic acid. Commercial humic acids dissolved in distilled water at different total organic carbon (TOC) concentrations were studied in order to simulate natural conditions of both ground water (TOC=2.5 mg/L) and surface water (TOC=7.5 mg/L). These solutions were treated with the biocides at a 1:1 molar ratio of C:disinfectant and tested for genotoxicity using the anaphase chromosomal aberration and micronucleus tests in Allium cepa, and the Vicia faba and Tradescantia micronucleus tests. The tests were carried out after different times and with different modes of exposure, and at 1:1 and 1:10 dilutions of disinfected and undisinfected humic acid solutions. A genotoxic effect was found for sodium hypochlorite in all plant tests, at both TOCs considered, while chlorine dioxide gave positive results only with the A.cepa tests. Some positive effects were also detected for PAA (A.cepa and Tradescantia). No relevant differences were found in samples with different TOC values. The significant increase in all genotoxicity end-points induced by all tested disinfectants indicates that a genotoxic potential is exerted even in the presence of organic substances at similar concentrations to those frequently present in drinking water.

  19. Large-aperture ground glass surface profile measurement using coherence scanning interferometry.

    Science.gov (United States)

    Bae, Eundeok; Kim, Yunseok; Park, Sanguk; Kim, Seung-Woo

    2017-01-23

    We present a coherence scanning interferometer configured to deal with rough glass surfaces exhibiting very low reflectance due to severe sub-surface light scattering. A compound light source is prepared by combining a superluminescent light-emitting diode with an ytterbium-doped fiber amplifier. The light source is attuned to offer a short temporal coherence length of 15 μm but with high spatial coherence to secure an adequate correlogram contrast by delivering strongly unbalanced optical power to the low reflectance target. In addition, the infrared spectral range of the light source is shifted close to the visible side at a 1,038 nm center wavelength, so a digital camera of multi-mega pixels available for industrial machine vision can be used to improve the correlogram contrast further with better lateral image resolutions. Experimental results obtained from a ground Zerodur mirror of 200 mm aperture size and 0.9 μm rms roughness are discussed to validate the proposed interferometer system.

  20. Atrazine and its degradation products in surface and ground waters in Zhangjiakou District, China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A method using the solid phase extraction (SPE) and liquid chromatography-mass spectrometry (LC-MS) to analyse atrazine and its degradation products at levels of low nanograms per liter in water has been developed. The environmental water samples were filtered and then extracted by SPE with a new sulfonation of poly(divinylbenzene-co-N- vinylpyrrolidone) sorbents MCX. HPLC/APCIMS was used for the analysis of atrazine and its degradation products, desethylatrazine (DEA), deisopropylatrazine (DIA), didealkylatrazine (DEDIA), and hydroxyatrazine (HYA). The detection limits ranged from 10-50 ng/L in water samples. Samples were collected from deep wells and a reservoir near a plant that produced atrazine. Atrazine concentration levels in most surface samples were above the limit of the China Surface Water Regulation (3 mg/L). In ground water, the levels of degradation product were more than 0.1 mg/L and 5-10 times greater than those of atrazine. The highest DEA concentration in the groundwater sample taken at the 130 m depth was 7.2 ug/L.

  1. Spectroscopic determination of ground and excited state vibrational potential energy surfaces

    Science.gov (United States)

    Laane, Jaan

    Far-infrared spectra, mid-infrared combination band spectra, Raman spectra, and dispersed fluorescence spectra of non-rigid molecules can be used to determine the energies of many of the quantum states of conformationally important vibrations such as out-of-plane ring modes, internal rotations, and molecular inversions in their ground electronic states. Similarly, the fluorescence excitation spectra of jet-cooled molecules, together with electronic absorption spectra, provide the information for determining the vibronic energy levels of electronic excited states. One- or two-dimensional potential energy functions, which govern the conformational changes along the vibrational coordinates, can be determined from these types of data for selected molecules. From these functions the molecular structures, the relative energies between different conformations, the barriers to molecular interconversions, and the forces responsible for the structures can be ascertained. This review describes the experimental and theoretical methodology for carrying out the potential energy determinations and presents a summary of work that has been carried out for both electronic ground and excited states. The results for the out-of-plane ring motions of four-, five-, and six-membered rings will be presented, and results for several molecules with unusual properties will be cited. Potential energy functions for the carbonyl wagging and ring modes for several cyclic ketones in their S1(n,pi*) states will also be discussed. Potential energy surfaces for the three internal rotations, including the one governing the photoisomerization process, will be examined for trans-stilbene in both its S0 and S1(pi,pi*) states. For the bicyclic molecules in the indan family, the two-dimensional potential energy surfaces for the highly interacting ring-puckering and ring-flapping motions in both the S0 and S1(pi,pi*) states have also been determined using all of the spectroscopic methods mentioned above

  2. Ozone treatment of coal- and coffee grounds-based active carbons: Water vapor adsorption and surface fractal micropores

    Energy Technology Data Exchange (ETDEWEB)

    Tsunoda, Ryoichi; Ozawa, Takayoshi; Ando, Junichi [Kanagawa Industrial Technology Research Inst., Ebina, Kanagawa (Japan)

    1998-09-15

    Characteristics of the adsorption iostherms of water vapor on active carbons from coal and coffee grounds and those ozonized ones from the surface fractal dimension analysis are discussed. The upswing of the adsorption isotherms in the low relative pressure of coffee grounds-based active carbon, of which isotherms were not scarcely affected on ozonization, was attributed to the adsorption of water molecules on the metallic oxides playing the role of oxygen-surface complexes, which formed the corrugated surfaces on the basal planes of micropore walls with the surface fractal dimension D{sub s} > 2. On the other hand, coal-based active carbon with D{sub s} < 2, which indicated the flat surfaces of micropore walls, showed little effect on the upswing even on ozonization, even though the adsorption amounts of water vapor were increased in the low relative pressure.

  3. Remaining Sites Verification Package for the 100-B-23, 100-B/C Area Surface Debris, Waste Site, Waste Site Reclassification Form 2008-027

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Capron

    2008-06-16

    The 100-B-23, 100-B/C Surface Debris, waste consisted of multiple locations of surface debris and chemical stains that were identified during an Orphan Site Evaluation of the 100-B/C Area. Evaluation of the collected information for the surface debris features yielded four generic waste groupings: asbestos-containing material, lead debris, oil and oil filters, and treated wood. Focused verification sampling was performed concurrently with remediation. Site remediation was accomplished by selective removal of the suspect hazardous items and potentially impacted soils. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  4. Groundwater Surface Trends at Van Norden Meadow, California, from Ground Penetrating Radar Profiles

    Science.gov (United States)

    Tadrick, N. I.; Blacic, T. M.; Yarnell, S. M.

    2014-12-01

    Van Norden meadow in the Donner Summit area west of Lake Tahoe is one of the largest sub-alpine meadows in the Sierra Nevada mountain range. As natural water retention basins, meadows attenuate floods, improve water quality and support vegetation that stabilizes stream banks and promotes high biodiversity. Like most meadows in the Sierras however, over-grazing, road-building, and development has resulted in localized stream incision, degradation, and partial conversion from wet to dry conditions in Van Norden. Additionally, a small dam at the base of the meadow has partially flooded the lower meadow creating reservoir conditions. Privately owned since the late 1800s, Van Norden was recently purchased by a local land trust to prevent further development and return the area to public ownership. Restoration of the natural meadow conditions will involve notching the dam in 2016 to reduce currently impounded water volumes from 250 to less than 50 acre-feet. To monitor the effects of notching the dam on the upstream meadow conditions, better understanding of the surface and groundwater hydrology both pre- and post-restoration is required. We surveyed the meadow in summer 2014 with ground penetrating radar (GPR) to map the groundwater surface prior to restoration activities using a 270MHz antenna to obtain a suite of longitudinal and transverse transects. Groundwater level within the meadow was assessed using both piezometer readings and sweeps of the GPR antenna. Seventeen piezometers were added this year to the 13 already in place to monitor temporal changes in the groundwater surface, while the GPR profiles provided information about lateral variations. Our results provide an estimate of the groundwater depth variations across the upper portion of the meadow before notching. We plan to return in 2015 to collect GPR profiles during wetter conditions, which will provide a more complete assessment of the pre-notching groundwater hydrology.

  5. Surface Nuclear Magnetic Resonance (SNMR - A new method for exploration of ground water and aquifer properties

    Directory of Open Access Journals (Sweden)

    U. Yaramanci

    2000-06-01

    Full Text Available The Surface Nuclear Magnetic Resonance (SNMR method is a fairly new technique in geophysics to assess ground water, i.e. existence, amount and productibility by measurements at the surface. The NMR technique used in medicine, physics and lately in borehole geophysics was adopted for surface measurements in the early eighties, and commercial equipment for measurements has been available since the mid nineties. The SNMR method has been tested at sites in Northern Germany with Quaternary sand and clay layers, to examine the suitability of this new method for groundwater exploration and environmental investigations. More information is obtained by SNMR, particularly with respect to aquifer parameters, than with other geophysical techniques. SNMR measurements were carried out at three borehole locations, together with 2D and 1D direct current geoelectrics and well logging (induction log, gamma-ray log and pulsed neutron-gamma log. Permeabilities were calculated from the grain-size distributions of core material determined in the laboratory. It is demonstrated that the SNMR method is able to detect groundwater and the results are in good agreement with other geophysical and hydrogeological data. Using the SNMR method, the water content of the unsaturated and saturated zones (i.e. porosity of an aquifer can be reliably determined. This information and resistivity data permit in-situ determination of other aquifer parameters. Comparison of the SNMR results with borehole data clearly shows that the water content determined by SNMR is the free or mobile water in the pores. The permeabilities estimated from the SNMR decay times are similar to those derived from sieve analysis of core material. Thus, the combination of SNMR with geoelectric methods promises to be a powerful tool for studying aquifer properties.

  6. Transport and fate of nitrate at the ground-water/surface-water interface

    Science.gov (United States)

    Puckett, L.J.; Zamora, C.; Essaid, H.; Wilson, J.T.; Johnson, H.M.; Brayton, M.J.; Vogel, J.R.

    2008-01-01

    Although numerous studies of hyporheic exchange and denitrification have been conducted in pristine, high-gradient streams, few studies of this type have been conducted in nutrient-rich, low-gradient streams. This is a particularly important subject given the interest in nitrogen (N) inputs to the Gulf of Mexico and other eutrophic aquatic systems. A combination of hydrologic, mineralogical, chemical, dissolved gas, and isotopic data, were used to determine the processes controlling transport and fate of NO3- in streambeds at five sites across the USA. Water samples were collected from streambeds at depths ranging from 0.3 to 3 m at three to five points across the stream and in two to five separate transects. Residence times of water ranging from 0.28 to 34.7 d m-1 in the streambeds of N-rich watersheds played an important role in allowing denitrification to decrease NO3- concentrations. Where potential electron donors were limited and residence times were short, denitrification was limited. Consequently, in spite of reducing conditions at some sites, NO3- was transported into the stream. At two of the five study sites, NO3- in surface water infiltrated the streambeds and concentrations decreased, supporting current models that NO3- would be retained in N-rich streams. At the other three study sites, hydrogeologic controls limited or prevented infiltration of surface water into the streambed, and ground-water discharge contributed to NO 3- loads. Our results also show that in these low hydrologic-gradient systems, storm and other high-flow events can be important factors for increasing surface-water movement into streambeds. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  7. A comparative study of the phosphate levels in some surface and ground water bodies of Swaziland

    Directory of Open Access Journals (Sweden)

    A.O. Fadiran

    2008-08-01

    Full Text Available The levels of total phosphate in selected surface water and groundwater bodies from Manzini and Lubombo regions of Swaziland were determined using UV spectroscopic method. Samples were collected from three rivers (upstream and downstream of each, three industrial effluents, one reservoir, one pond, one tap water and fifteen boreholes. Mean phosphate levels in the tap water and reservoir varied between 0.08-0.09 mg/L while for the river samples, the range was 0.11-0.37 and for the industrial discharge, it was 0.11-1.60 mg/L PO4–P. For the ground water systems it ranged between 0.10-0.49 mg/L PO4–P. The mean phosphate levels in all the analyzed surface and groundwater samples were below the recommended maximum contaminant level (MCL by SWSC (Swaziland Water Service Corporation – i.e. 1.0 mg/L for drinking water; 2.0 mg/L for rivers and industrial effluents, and the South African criterion of 1.0 mg/L PO4–P, for sewage effluents being discharged into receiving waters. However, pooled mean values for all the sites were higher than the USEPA criterion of 0.03 mg/L maximum for uncontaminated lakes. Dominant factors considered to have influenced the levels of phosphates in both the surface and groundwater samples analyzed include industrial activities (where present, agricultural activities (including livestock, population density, location (urban, suburban or rural, soil/rock type in the vicinity of the sampling point, climate and rainfall pattern of the area or region concerned.

  8. Questa baseline and pre-mining ground-water quality investigation. 10. Geologic influences on ground and surface waters in the lower Red River watershed, New Mexico

    Science.gov (United States)

    Ludington, Steve; Plumlee, Geoff; Caine, Jonathan; Bove, Dana; Holloway, JoAnn; Livo, Eric

    2005-01-01

    Introduction: This report is one in a series that presents results of an interdisciplinary U.S. Geological Survey (USGS) study of ground-water quality in the lower Red River watershed prior to open-pit and underground molybdenite mining at Molycorp's Questa mine. The stretch of the Red River watershed that extends from just upstream of the town of Red River, N. Mex., to just above the town of Questa includes several mineralized areas in addition to the one mined by Molycorp. Natural erosion and weathering of pyrite-rich rocks in the mineralized areas has created a series of erosional scars along this stretch of the Red River that contribute acidic waters, as well as mineralized alluvial material and sediments, to the river. The overall goal of the USGS study is to infer the premining ground-water quality at the Molycorp mine site. An integrated geologic, hydrologic, and geochemical model for ground water in the mineralized-but unmined-Straight Creek drainage (a tributary of the Red River) is being used as an analog for the geologic, geochemical, and hydrologic conditions that influenced ground-water quality and quantity in the Red River drainage prior to mining. This report provides an overall geologic framework for the Red River watershed between Red River and Questa, in northern New Mexico, and summarizes key geologic, mineralogic, structural and other characteristics of various mineralized areas (and their associated erosional scars and debris fans) that likely influence ground- and surface-water quality and hydrology. The premining nature of the Sulphur Gulch and Goat Hill Gulch scars on the Molycorp mine site can be inferred through geologic comparisons with other unmined scars in the Red River drainage.

  9. A mixed space-time and wavenumber-frequency domain procedure for modelling ground vibration from surface railway tracks

    Science.gov (United States)

    Koroma, S. G.; Thompson, D. J.; Hussein, M. F. M.; Ntotsios, E.

    2017-07-01

    This paper presents a methodology for studying ground vibration in which the railway track is modelled in the space-time domain using the finite element method (FEM) and, for faster computation, discretisation of the ground using either FEM or the boundary element method (BEM) is avoided by modelling it in the wavenumber-frequency domain. The railway track is coupled to the ground through a series of rectangular strips located at the surface of the ground; their vertical interaction is described by a frequency-dependent dynamic stiffness matrix whose elements are represented by discrete lumped parameter models. The effectiveness of this approach is assessed firstly through frequency domain analysis using as excitation a stationary harmonic load applied on the rail. The interaction forces at the ballast/ground interface are calculated using the FE track model in the space-time domain, transformed to the wavenumber domain, and used as input to the ground model for calculating vibration in the free field. Additionally, time domain simulations are also performed with the inclusion of nonlinear track parameters. Results are presented for the coupled track/ground model in terms of time histories and frequency spectra for the track vibration, interaction forces and free-field ground vibration. For the linear track model, the results from the mixed formulation are in excellent agreement with those from a semi-analytical model formulated in the wavenumber-frequency domain, particularly in the vicinity of the loading point. The accuracy of the mixed formulation away from the excitation point depends strongly on the inclusion of through-ground coupling in the lumped parameter model, which has been found to be necessary for both track dynamics and ground vibration predictions.

  10. Assessment of volatile organic compounds in surface water at West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 1999

    Science.gov (United States)

    Olsen, Lisa D.; Spencer, Tracey A.

    2000-01-01

    The U.S. Geological Survey (USGS) collected 13 surface-water samples and 3 replicates from 5 sites in the West Branch Canal Creek area at Aberdeen Proving Ground from February through August 1999, as a part of an investigation of ground-water contamination and natural attenuation processes. The samples were analyzed for volatile organic compounds, including trichloroethylene, 1,1,2,2-tetrachloroethane, carbon tetrachloride, and chloroform, which are the four major contaminants that were detected in ground water in the Canal Creek area in earlier USGS studies. Field blanks were collected during the sampling period to assess sample bias. Field replicates were used to assess sample variability, which was expressed as relative percent difference. The mean variability of the surface-water replicate analyses was larger (35.4 percent) than the mean variability of ground-water replicate analyses (14.6 percent) determined for West Branch Canal Creek from 1995 through 1996. The higher variability in surface-water analyses is probably due to heterogeneities in the composition of the surface water rather than differences in sampling or analytical procedures. The most frequently detected volatile organic compound was 1,1,2,2- tetrachloroethane, which was detected in every sample and in two of the replicates. The surface-water contamination is likely the result of cross-media transfer of contaminants from the ground water and sediments along the West Branch Canal Creek. The full extent of surface-water contamination in West Branch Canal Creek and the locations of probable contaminant sources cannot be determined from this limited set of data. Tidal mixing, creek flow patterns, and potential effects of a drought that occurred during the sampling period also complicate the evaluation of surface-water contamination.

  11. Ground surface temperature histories in northern Ontario and Québec for the past 500 years

    Science.gov (United States)

    Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-04-01

    We have used 19 temperature-depth profiles measured in boreholes from eastern Canada to reconstruct the ground surface temperature histories of the region. The boreholes are located north of 51oN, and west and east of James Bay in northern Ontario and Québec. The 8 boreholes in northern Ontario come from 3 sites in a region of extensive discontinuous permafrost, while the 11 holes from Québec come from 6 sites in a region of sporadic discontinuous permafrost. The depths of the holes range between 400 and 800 m, allowing a reconstruction of the ground surface temperature histories for the past 500 years. Present ground surface temperatures are higher in Québec, perhaps because the region receives more snowfall as shown by meteorological records and proxy data. The ground surface temperature histories indicate a present-day warming of ˜2-2.5oC in Ontario and ˜1-1.5oC in Québec relative to the reference surface temperature 500 years BP. These results are in agreement with available proxy data for the recent warming in eastern North America. Furthermore, they suggest that the higher snowfall and strong cooling during the Little Ice Age could have muted the borehole temperature record of climate change in Québec.

  12. An Upscaling Algorithm to Obtain the Representative Ground Truth of LAI Time Series in Heterogeneous Land Surface

    Directory of Open Access Journals (Sweden)

    Yuechan Shi

    2015-09-01

    Full Text Available Upscaling in situ leaf area index (LAI measurements to the footprint scale is important for the validation of medium resolution remote sensing products. However, surface heterogeneity and temporal variation of vegetation make this difficult. In this study, a two-step upscaling algorithm was developed to obtain the representative ground truth of LAI time series in heterogeneous surfaces based on in situ LAI data measured by the wireless sensor network (WSN observation system. Since heterogeneity within a site usually arises from the mixture of vegetation and non-vegetation surfaces, the spatial heterogeneity of vegetation and land cover types were separately considered. Representative LAI time series of vegetation surfaces were obtained by upscaling in situ measurements using an optimal weighted combination method, incorporating the expectation maximum (EM algorithm to derive the weights. The ground truth of LAI over the whole site could then be determined using area weighted combination of representative LAIs of different land cover types. The algorithm was evaluated using a dataset collected in Heihe Watershed Allied Telemetry Experimental Research (HiWater experiment. The proposed algorithm can effectively obtain the representative ground truth of LAI time series in heterogeneous cropland areas. Using the normal method of an average LAI measurement to represent the heterogeneous surface produced a root mean square error (RMSE of 0.69, whereas the proposed algorithm provided RMSE = 0.032 using 23 sampling points. The proposed ground truth derived method was implemented to validate four major LAI products.

  13. Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas ground-water basin, Ventura County, California

    Science.gov (United States)

    Hanson, Randall T.; Martin, Peter; Koczot, Kathryn M.

    2003-01-01

    Ground water is the main source of water in the Santa Clara-Calleguas ground-water basin that covers about 310 square miles in Ventura County, California. A steady increase in the demand for surface- and ground-water resources since the late 1800s has resulted in streamflow depletion and ground-water overdraft. This steady increase in water use has resulted in seawater intrusion, inter-aquifer flow, land subsidence, and ground-water contamination. The Santa Clara-Calleguas Basin consists of multiple aquifers that are grouped into upper- and lower-aquifer systems. The upper-aquifer system includes the Shallow, Oxnard, and Mugu aquifers. The lower-aquifer system includes the upper and lower Hueneme, Fox Canyon, and Grimes Canyon aquifers. The layered aquifer systems are each bounded below by regional unconformities that are overlain by extensive basal coarse-grained layers that are the major pathways for ground-water production from wells and related seawater intrusion. The aquifer systems are bounded below and along mountain fronts by consolidated bedrock that forms a relatively impermeable boundary to ground-water flow. Numerous faults act as additional exterior and interior boundaries to ground-water flow. The aquifer systems extend offshore where they crop out along the edge of the submarine shelf and within the coastal submarine canyons. Submarine canyons have dissected these regional aquifers, providing a hydraulic connection to the ocean through the submarine outcrops of the aquifer systems. Coastal landward flow (seawater intrusion) occurs within both the upper- and lower-aquifer systems. A numerical ground-water flow model of the Santa Clara-Calleguas Basin was developed by the U.S. Geological Survey to better define the geohydrologic framework of the regional ground-water flow system and to help analyze the major problems affecting water-resources management of a typical coastal aquifer system. Construction of the Santa Clara-Calleguas Basin model required

  14. Surface electromyography studies in standing position confirm that ankle strategy remains disturbed even following successful treatment of patients with a history of sciatica

    OpenAIRE

    Huber, Juliusz; Lisiński, Przemysław; Ciesielska, Jagoda; Kulczyk, Aleksandra; Lipiec, Joanna; Bandosz, Agata

    2016-01-01

    [Purpose] It is hypothesized that ankle strategy can be changed in patients with a history of sciatica. The aim of this study was to detect residual disturbances following successful treatment. [Subjects and Methods] In patients with a history of sciatica (N=11) and pseudo-sciatica (N=9), differences in muscle activity were recorded with bilateral surface polyelectromyography and stability measurements (center of foot pressure sway and center of spectrum) in normal standing and tandem positio...

  15. Modeling short wave radiation and ground surface temperature: a validation experiment in the Western Alps

    Science.gov (United States)

    Pogliotti, P.; Cremonese, E.; Dallamico, M.; Gruber, S.; Migliavacca, M.; Morra di Cella, U.

    2009-12-01

    Permafrost distribution in high-mountain areas is influenced by topography (micro-climate) and high variability of ground covers conditions. Its monitoring is very difficult due to logistical problems like accessibility, costs, weather conditions and reliability of instrumentation. For these reasons physically-based modeling of surface rock/ground temperatures (GST) is fundamental for the study of mountain permafrost dynamics. With this awareness a 1D version of GEOtop model (www.geotop.org) is tested in several high-mountain sites and its accuracy to reproduce GST and incoming short wave radiation (SWin) is evaluated using independent field measurements. In order to describe the influence of topography, both flat and near-vertical sites with different aspects are considered. Since the validation of SWin is difficult on steep rock faces (due to the lack of direct measures) and validation of GST is difficult on flat sites (due to the presence of snow) the two parameters are validated as independent experiments: SWin only on flat morphologies, GST only on the steep ones. The main purpose is to investigate the effect of: (i) distance between driving meteo station location and simulation point location, (ii) cloudiness, (iii) simulation point aspect, (iv) winter/summer period. The temporal duration of model runs is variable from 3 years for the SWin experiment to 8 years for the validation of GST. The model parameterization is constant and tuned for a common massive bedrock of crystalline rock like granite. Ground temperature profile is not initialized because rock temperature is measured at only 10cm depth. A set of 9 performance measures is used for comparing model predictions and observations (including: fractional mean bias (FB), coefficient of residual mass (CMR), mean absolute error (MAE), modelling efficiency (ME), coefficient of determination (R2)). Results are very encouraging. For both experiments the distance (Km) between location of the driving meteo

  16. Urban archaeological investigations using surface 3D Ground Penetrating Radar and Electrical Resistivity Tomography methods

    Science.gov (United States)

    Papadopoulos, Nikos; Sarris, Apostolos; Yi, Myeong-Jong; Kim, Jung-Ho

    2009-02-01

    Ongoing and extensive urbanisation, which is frequently accompanied with careless construction works, may threaten important archaeological structures that are still buried in the urban areas. Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) methods are most promising alternatives for resolving buried archaeological structures in urban territories. In this work, three case studies are presented, each of which involves an integrated geophysical survey employing the surface three-dimensional (3D) ERT and GPR techniques, in order to archaeologically characterise the investigated areas. The test field sites are located at the historical centres of two of the most populated cities of the island of Crete, in Greece. The ERT and GPR data were collected along a dense network of parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way, applying specific filters to the data in order to enhance their information content. Finally, horizontal depth slices representing the 3D variation of the physical properties were created. The GPR and ERT images significantly contributed in reconstructing the complex subsurface properties in these urban areas. Strong GPR reflections and high-resistivity anomalies were correlated with possible archaeological structures. Subsequent excavations in specific places at both sites verified the geophysical results. The specific case studies demonstrated the applicability of ERT and GPR techniques during the design and construction stages of urban infrastructure works, indicating areas of archaeological significance and guiding archaeological excavations before construction work.

  17. The impact of municipal landfill on surface and ground water quality in Bulawayo, Zimbabwe

    Directory of Open Access Journals (Sweden)

    R. Nyengera

    2012-11-01

    Full Text Available Leachate from Richmond municipal landfill, underlain by the Matsheumhlope unconfined aquifer in Bulawayo city and its consequent water resource quality impacts are evaluated. Leachate samples from collection ponds and water samples from a stream, and up and down-gradient boreholes fromthe landfill were tested for nine pollutants. The leachate pollutants found in both surface and ground water included metals (Fe, Pb and Hg and organic compounds that are hazardous to both human and the environmental health. Borehole water quality compliance with the relevant national and international regulations is reported. From borehole water samples, only chloride and nitrate with concentrations of 56.9 mg/ℓ and 2.26 mg/ℓ, respectively, were within the World Health Organisation (WHO recommended limits for drinking water of 250 mg/ℓ and 10 mg/ℓ, respectively. Lead and mercury concentrations of 0.22 mg/ℓ and 0.04 mg/ℓ were 10 times higher than WHO guidelines of 0.01 and 0.001 mg/ℓ, respectively. Both landfill and informal settlement activities near the landfill impact negatively to water resources quality in the area. City council should minimize waste by recycling, pre-treat collected leachate and drill monitoring wells around the landfill to check possible leachate leaks to water resources and take remedial actions, such assubmerged leachate combustion and evaporation.

  18. A study of the efficiency of spur gears made of powder metallurgy materials - ground versus super-finished surfaces

    OpenAIRE

    Li, Xinmin; Sosa, Mario; Andersson, Martin; Olofsson, Ulf

    2016-01-01

    Power loss is one of the main concerns in gear transmission systems. In this study a recirculating power back-to-back FZG test rig was used to investigate the efficiency of spur gears made of powder metallurgy (PM) material using two different surface manufacturing methods (ground and super-finished). The results were compared with previously presented results of standard gear material from the same test rig. The influence of the material (Wrought steel or PM) and surface roughness on the gea...

  19. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Vesna Kostik; Biljana Bauer; Zoran Kavrakovski

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  20. Surface fuels quantification in forest plantations and remaining of atlantic forest in the “Brejo” region in Paraíba State, Brazil”

    Directory of Open Access Journals (Sweden)

    Patrícia Carneiro Souto

    2009-12-01

    Full Text Available Studies on the accumulation of combustible material in native forests and plantations are mainly important tool for estimating the risk of forest fires. This study aimed to determine the amount of combustible material in forest stands and in the remaining rain forest located in the municipality of Areia, in Brejo of Paraiba. The collection of combustible material was carried out in plots of 1m ², randomly selected areas. The fuel accumulated in the different areas were classified according to the physiological state of alive and dead. The largest amount of combustible material was obtained in the area of the Atlantic with 19.47 Mg ha-1. The amount of combustible material alive did not differ between the studied areas.

  1. Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst

    Science.gov (United States)

    Katz, B.G.; Coplen, T.B.; Bullen, T.D.; Hal, Davis J.

    1997-01-01

    In the mantled karst terrane of northern Florida, the water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface. Chemical and isotopic analyses [18O/16O (??18O), 2H/1H (??D), 13C/12C (??13C), tritium(3H), and strontium-87/strontium-86(87Sr/86Sr)]along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of ground water as it evolves downgradient in two systems. In one system, surface water enters the Upper Floridan aquifer through a sinkhole located in the Northern Highlands physiographic unit. In the other system, surface water enters the aquifer through a sinkhole lake (Lake Bradford) in the Woodville Karst Plain. Differences in the composition of water isotopes (??18O and ??D) in rainfall, ground water, and surface water were used to develop mixing models of surface water (leakage of water to the Upper Floridan aquifer from a sinkhole lake and a sinkhole) and ground water. Using mass-balance calculations, based on differences in ??18O and ??D, the proportion of lake water that mixed with meteoric water ranged from 7 to 86% in water from wells located in close proximity to Lake Bradford. In deeper parts of the Upper Floridan aquifer, water enriched in 18O and D from five of 12 sampled municipal wells indicated that recharge from a sinkhole (1 to 24%) and surface water with an evaporated isotopic signature (2 to 32%) was mixing with ground water. The solute isotopes, ??13C and 87Sr/86Sr, were used to test the sensitivity of binary and ternary mixing models, and to estimate the amount of mass transfer of carbon and other dissolved species in geochemical reactions. In ground water downgradient from Lake Bradford, the dominant processes controlling carbon cycling in ground water were dissolution of carbonate minerals, aerobic degradation of organic matter, and hydrolysis of silicate minerals. In the deeper parts of the Upper

  2. Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux

    NARCIS (Netherlands)

    Bense, V.F.; Read, T.; Verhoef, A.

    2016-01-01

    We present one of the first studies of the use of distributed temperature sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer

  3. Effect of Fuchunsan I on healing of remaining wound surface in burn%复春散Ⅰ号对烧伤残余创面愈合的影响

    Institute of Scientific and Technical Information of China (English)

    黄灿全

    2003-01-01

    @@ BACKGROUND: Remaining wound surface in late stage isoften found in patients with big area of deep burn and infection iscomplicated in most cases. There are many causes for remainingwound surface, but local repeated infection is one of the importantreasons. Once infection occurred at wound surface, growth of ep-ithelial cells will be influenced seriously because of large amount ofbacteria and products of metabolism and effect of skin graft isn' tsatisfying. So, an effective method must be adopted to replace skingraft and promote healing of wound surface. Fuchunsan I effectivelyresolved this problem.

  4. Interactions between surface water and ground water and effects on mercury transport in the north-central Everglades

    Science.gov (United States)

    Harvey, Judson W.; Krupa, Steven L.; Gefvert, Cynthia; Mooney, Robert H.; Choi, Jungyill; King, Susan A.; Giddings, Jefferson B.

    2002-01-01

    The hydrology of the north-central Everglades was altered substantially in the past century by canal dredging, land subsidence, ground-water pumping, and levee construction. Vast areas of seasonal and perennial wetlands were converted to uses for agriculture, light industry, and suburban development. As the catchment area for the Everglades decreased, so did the sources of water from local precipitation and runoff from surrounding uplands. Partly in response to those alterations, water-resources managers compartmentalized the remaining wetlands in the north-central Everglades into large retention basins, called Water Conservation Areas (WCAs). In spite of efforts to improve how water resources are managed, the result has been frequent periods of excessive drying out or flooding of the WCAs because the managed system does not have the same water-storage capacity as the pre-drainage Everglades. Linked to the hydrological modifications are ecological changes including large-scale invasions of cattail, loss of tree islands, and diminishing bird populations in the Everglades. Complex interactions among numerous physical, chemical, and biological factors are responsible for the long-term degradation of the ecological character of the Everglades.Over the past 15 years, a new set of smaller wetland basins, called Stormwater Treatment Areas (STAs), have been designed and constructed by water-resources engineers on the former wetlands adjacent to WCAs. The purpose of STAs is to remove excess nutrients from agricultural drainage water prior to its input to WCAs. STAs tend to be about one-tenth the size of a WCA, and they are located on former wetlands on the northwestern side of WCAs on sites that were managed as farmland for much of the twentieth century in an area referred to as the Everglades Agricultural Area, or EAA. The objective of the present investigation was to quantify interactions between surface water and ground water in the Everglades Nutrient Removal Project

  5. Getting saturated hydraulic conductivity from surface Ground-Penetrating Radar measurements inside a ring infiltrometer

    Science.gov (United States)

    Leger, E.; Saintenoy, A.; Coquet, Y.

    2013-12-01

    Hydraulic properties of soils, described by the soil water retention and hydraulic conductivity functions, strongly influence water flow in the vadoze zone, as well as the partitioning of precipitation between infiltration into the soil and runoff along the ground surface. Their evaluation has important applications for modelling available water resources and for flood forecasting. It is also crucial to evaluate soil's capacity to retain chemical pollutants and to assess the potential of groundwater pollution. The determination of the parameters involved in soil water retention functions, 5 parameters when using the van Genuchten function, is usually done by laboratory experiments, such as the water hanging column. Hydraulic conductivity, on the other hand can be estimated either in laboratory, or in situ using infiltrometry tests. Among the large panel of existing tests, the single or double ring infiltrometers give the field saturated hydraulic conductivity by applying a positive charge on soils, whereas the disk infiltrometer allows to reconstruct the whole hydraulic conductivity curve, by applying different charges smaller than or equal to zero. In their classical use, volume of infiltrated water versus time are fitted to infer soil's hydraulic conductivity close to water saturation. Those tests are time-consuming and difficult to apply to landscape-scale forecasting of infiltration. Furthermore they involve many assumptions concerning the form of the infiltration bulb and its evolution. Ground-Penetrating Radar (GPR) is a geophysical method based on electromagnetic wave propagation. It is highly sensitive to water content variations directly related to the dielectric permittivity. In this study GPR was used to monitor water infiltration inside a ring infiltrometer and retrieve the saturated hydraulic conductivity. We carried out experiments in a quarry of Fontainebleau sand, using a Mala RAMAC system with antennae centered on 1600 MHz. We recorded traces at

  6. Implementing ground surface deformation tools to characterize field-scale properties of a fractured aquifer during a short hydraulic test

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Boudin, Frédérick; Durand, Stéphane

    2016-04-01

    In naturally fractured reservoirs, fluid flow is governed by the structural and hydromechanical properties of fracture networks or conductive fault zones. In order to ensure a sustained exploitation of resources or to assess the safety of underground storage, it is necessary to evaluate these properties. As they generally form highly heterogeneous and anisotropic reservoirs, fractured media may be well characterized by means of several complementary experimental methods or sounding techniques. In this framework, the observation of ground deformation has been proved useful to gain insight of a fractured reservoir's geometry and hydraulic properties. Commonly, large conductive structures like faults can be studied from surface deformation from satellite methods at monthly time scales, whereas meter scale fractures have to be examined under short-term in situ experiments using high accuracy intruments like tiltmeters or extensometers installed in boreholes or at the ground's surface. To the best of our knowledge, the feasability of a field scale (~ 100 m) characterization of a fractured reservoir with geodetic tools in a short term experiment has not yet been addressed. In the present study, we implement two complementary ground surface geodetic tools, namely tiltmetry and optical leveling, to monitor the deformation induced by a hydraulic recovery test at the Ploemeur hydrological observatory (France). Employing a simple purely elastic modeling approach, we show that the joint use of time constraining data (tilt) and spatially constraining data (vertical displacement) makes it possible to evaluate the geometry (dip, root depth and lateral extent) and the storativity of a hydraulically active fault zone, in good agreement with previous studies. Hence we demonstrate that the adequate use of two complementary ground surface deformation methods offer a rich insight of large conductive structure's properties using a single short term hydraulic load. Ground surface

  7. On the wettability diversity of C/SiC surface: Comparison of the ground C/SiC surface and ablated C/SiC surface from three aspects

    Science.gov (United States)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.

    2016-11-01

    The coefficient of thermal conductivity was influenced by the wetting state of material. The wetting state usually depends on the surface wettability. C/SiC is a promising ceramic composites with multi-components. The wettability of C/SiC composites is hard to resort to the classical wetting theory directly. So far, few investigations focused on C/SiC surface wettability diversity after different material removal processes. In this investigation, comparative studies of surface wettability of ground C/SiC surface and laser-ablated C/SiC surface were carried out through apparent contact angle (APCA) measurements. The results showed that water droplets easily reached stable state on ground C/SiC surface; while the water droplets rappidly penetrated into the laser-ablated C/SiC surface. In order to find out the reason for wettability distinctions between the ground C/SiC surface and the laser-ablated C/SiC surface, comparative studies on the surface micro-structure, surface C-O-Si distribution, and surface C-O-Si weight percentage were carried out. The results showed that (1) A large number of micro cracks in the fuzzy pattern layer over laser-ablated C/SiC surfaces easily destoried the surface tension of water droplets, while only a few cracks existed over the ground C/SiC surfaces. (2) Chemical components (C, O, Si) were non-uniformly distributed on ground C/SiC surfaces, while the chemical components (C, O, Si) were uniformly distributed on laser-ablated C/SiC surfaces. (3) The carbon weight percentage on ground C/SiC surfaces were higher than that on laser-ablated C/SiC surfaces. All these made an essential contribution to the surface wettability diversity of C/SiC surface. Although more investigations about the quantitative influence of surface topography and surface chemical composition on composites wettability are still needed, the conslusion can be used in application: the wettability of C/SiC surface can be controlled by different material removal process

  8. Impact of the variability of the seasonal snow cover on the ground surface regimes in Hurd Peninsula (Livingston Island, Antarctic)

    Science.gov (United States)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2014-05-01

    Seasonally snow cover has a great impact on the thermal regime of the active layer and permafrost. Ground temperatures over a year are strongly affected by the timing, duration, thickness, structure and physical and thermal properties of snow cover. The purpose of this communication is to characterize the shallow ground thermal regimes, with special reference to the understanding of the influence snow cover in permafrost spatial distribution, in the ice-free areas of the north western part of Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". We have analyzed and ground temperatures as well as snow thickness data in four sites distributed along an altitudinal transect in Hurd Peninsula from 2007 to 2013: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). At each study site, data loggers were installed for the monitoring of air temperatures (at 1.5 m high), ground temperatures (5, 20 and 40 cm depth) and for snow depth (2, 5, 10, 20, 40, 80 and 160 cm) at 4-hour intervals. The winter data suggests the existence of three types of seasonal stages regarding the ground surface thermal regime and the thickness of snow cover: (a) shallow snow cover with intense ground temperatures oscillations; (b) thick snow cover and low variations of soil temperatures; and (c) stability of ground temperatures. Ground thermal conditions are also conditioned by a strong variability. Winter data indicates that Nuevo Incinerador site experiences more often thicker snow cover with higher ground temperatures and absence of ground temperatures oscillations. Collado Ramos and Ohridski show frequent variations of snow cover thickness, alternating between shallow snow cover with high ground temperature fluctuation and thick snow cover and low ground temperature fluctuation. Reina Sofia in all the years has thick snow cover with little variations in soil

  9. Fish remains and humankind

    Directory of Open Access Journals (Sweden)

    Andrew K G Jones

    1997-08-01

    Full Text Available The four papers in this issue represent a trawl of the reports presented to the Fourth meeting of the International Council for Archaeozoology (ICAZ Fish Remains Working Group, which met at the University of York in 1987. The conference discussed material from many parts of the world - from Australasia to the north-west coast of America - and many eras, ranging in date from the early Pleistocene to the 1980s. It demonstrated both the variety of work being carried out and the growing interest in ancient fish remains. Internet Archaeology plans to publish other batches of papers from this conference. These reports will demonstrate the effort being made to distinguish between assemblages of fish remains which have been deposited by people and those which occur in ancient deposits as a result of the action of other agents. To investigate this area, experiments with modern material and observations of naturally occurring fish bone assemblages are supplemented with detailed analysis of ancient and modern fish remains. The papers published here illustrate the breadth of research into osteology, biogeography, documentary research, and the practicalities of recovering fish remains. Read, digest and enjoy them! Using the Internet for publishing research papers is not only ecologically sound (saving paper, etc. it disseminates scholarship to anyone anywhere on the planet with access to what is gradually becoming necessary technology in the late 20th century. Hopefully, future groups of papers will include video and audio material recorded at the conference, and so enable those who could not attend to gain further insights into the meeting and the scholarship underpinning this area of research.

  10. Surface electromyography studies in standing position confirm that ankle strategy remains disturbed even following successful treatment of patients with a history of sciatica

    Science.gov (United States)

    Huber, Juliusz; Lisiński, Przemysław; Ciesielska, Jagoda; Kulczyk, Aleksandra; Lipiec, Joanna; Bandosz, Agata

    2016-01-01

    [Purpose] It is hypothesized that ankle strategy can be changed in patients with a history of sciatica. The aim of this study was to detect residual disturbances following successful treatment. [Subjects and Methods] In patients with a history of sciatica (N=11) and pseudo-sciatica (N=9), differences in muscle activity were recorded with bilateral surface polyelectromyography and stability measurements (center of foot pressure sway and center of spectrum) in normal standing and tandem positions. Results were compared with recordings in healthy people (N=9) to identify abnormalities in electromyographic and postural studies. [Results] Increased amplitude of electromyographic recordings from the gastrocnemius and extensor digiti muscles on the affected side was detected more in patients with a history of sciatica than pseudo-sciatica syndromes in tandem position. Fewer amplitude fluctuations were observed in both positions preferably in patients following sciatica. Changes in center of foot pressure sway and center of spectrum during balance platform studies were detected in normal standing position in this group of patients. No similar abnormalities in electromyographic and postural studies were detected in healthy people. [Conclusion] Sciatica and pseudo-sciatica evoke persistent disturbances in activity of muscles responsible for ankle strategy. Electromyography differentiates the two groups of patients better than postural studies. PMID:27065544

  11. [Heavy metals in the surface sediment of the dumping ground outside Jiaozhou Bay and their potential ecological risk].

    Science.gov (United States)

    Cao, Cong-hua; Zhang, Nai-xing; Wu, Feng-cong; Sun, Bin; Ren, Rong-zhu; Sun, Xu; Lin, Sen; Zhang, Shao-ping

    2011-05-01

    Based on the monitoring data of heavy metals (Cr, Hg, Cd, Pb, Zn, Cu) in the surface sediment of the dumping ground outside Jiaozhou Bay from 2003 to 2008, the distribution patterns, factors controlling the distribution, and the potential ecological risks of heavy metals were studied with the data in 2007-08, and the fluctuation trends of heavy metals in the surface sediment over the 6 years were also discussed. The average concentrations of heavy metals Cr, Hg, Cd, Pb, Zn, Cu in the surface sediment were 29.47, 0.065, 0.105, 1.145, 9.63, 3.355 microg/g, respectively. Except for Cr, the concentration of heavy metals was high in the central dumping area while low outside the dumping ground, suggesting that the dredged material dumped was the main source of heavy metals. Organic carbon content in the surface sediment had a significant positive correlation with heavy metals except for Cr. Based on the results of ecological risk assessment, Hg had a medium potential ecological risk, while the other heavy metals had low potential ecological risk. The overall risk index (RI) of the heavy metals was 100.50, which was considered as a level of low potential ecological risk. The average concentration of heavy metals showed a decreasing trend over the 6 years, except Hg. In conclusion, the quality of surface sediment in term of heavy metals in the dumping ground outside Jiaozhou Bay is relatively good.

  12. Application of terrestrial laser scanning for detection of ground surface deformation in small mud volcano (Murono, Japan)

    Science.gov (United States)

    Hayakawa, Yuichi S.; Kusumoto, Shigekazu; Matta, Nobuhisa

    2016-07-01

    We perform terrestrial laser scanning (TLS) to detect changes in surface morphology of a mud volcano in Murono, north-central Japan. The study site underwent significant deformation by a strong earthquake in 2011, and the surface deformation has continued in the following years. The point cloud datasets were obtained by TLS at three different times in 2011, 2013 and 2014. Those point clouds were aligned by cloud-based registration, which minimizes the closest point distance of point clouds of unchanged ground features, and the TLS-based point cloud data appear to be suitable for detecting centimeter-order deformations in the central domain of the mud volcano, as well as for measurements of topographic features including cracks of paved ground surface. The spatial patterns and accumulative amount of the vertical deformation during 2011-2014 captured by TLS correspond well with those previously reported based on point-based leveling surveys, supporting the validity of TLS survey.

  13. Calculation of Electric Field at Ground Surface and ADSS Cable Prepared Hanging Point near EHV Power Transmission Tower

    Directory of Open Access Journals (Sweden)

    Xu Bao-Qing

    2016-01-01

    Full Text Available A simplified model of the 750kV tower is established by CDEGS software which is based on the Method Of Moment. The power frequency electric field distribution on the ground is achieved by software calculation and field-measuring. The validity of the calculation is proved when compare the calculation and experiment results. The model also can be used to calculate the electric field in prepared hanging points on the tower. Results show that the electric field distribution on the ground surface around the tower and prepared hanging points are meet the standard by calculation and experiment.

  14. [PALEOPATHOLOGY OF HUMAN REMAINS].

    Science.gov (United States)

    Minozzi, Simona; Fornaciari, Gino

    2015-01-01

    Many diseases induce alterations in the human skeleton, leaving traces of their presence in ancient remains. Paleopathological examination of human remains not only allows the study of the history and evolution of the disease, but also the reconstruction of health conditions in the past populations. This paper describes the most interesting diseases observed in skeletal samples from the Roman Imperial Age necropoles found in urban and suburban areas of Rome during archaeological excavations in the last decades. The diseases observed were grouped into the following categories: articular diseases, traumas, infections, metabolic or nutritional diseases, congenital diseases and tumours, and some examples are reported for each group. Although extensive epidemiological investigation in ancient skeletal records is impossible, the palaeopathological study allowed to highlight the spread of numerous illnesses, many of which can be related to the life and health conditions of the Roman population.

  15. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    Science.gov (United States)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher; Normand, Jonathan; Dermond, Jeffrey; Fang, Yilin; Sullivan, Charlotte

    2015-08-01

    One important issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine the resulting field-scale-induced displacements and consequences of overpressures on the mechanical integrity of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated for the first time on an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3 year-1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells are accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area shows sub- centimetric deformation in the western part of the city and close to the injection locations associated with ASR cycle. Deformations are found to be temporally out phased with the injection and recovery events due to complex groundwater flow. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections.

  16. Analysis of the Effects of Vitiates on Surface Heat Flux in Ground Tests of Hypersonic Vehicles

    Science.gov (United States)

    Cuda, Vincent; Gaffney, Richard L

    2008-01-01

    To achieve the high enthalpy conditions associated with hypersonic flight, many ground test facilities burn fuel in the air upstream of the test chamber. Unfortunately, the products of combustion contaminate the test gas and alter gas properties and the heat fluxes associated with aerodynamic heating. The difference in the heating rates between clean air and a vitiated test medium needs to be understood so that the thermal management system for hypersonic vehicles can be properly designed. This is particularly important for advanced hypersonic vehicle concepts powered by air-breathing propulsion systems that couple cooling requirements, fuel flow rates, and combustor performance by flowing fuel through sub-surface cooling passages to cool engine components and preheat the fuel prior to combustion. An analytical investigation was performed comparing clean air to a gas vitiated with methane/oxygen combustion products to determine if variations in gas properties contributed to changes in predicted heat flux. This investigation started with simple relationships, evolved into writing an engineering-level code, and ended with running a series of CFD cases. It was noted that it is not possible to simultaneously match all of the gas properties between clean and vitiated test gases. A study was then conducted selecting various combinations of freestream properties for a vitiated test gas that matched clean air values to determine which combination of parameters affected the computed heat transfer the least. The best combination of properties to match was the free-stream total sensible enthalpy, dynamic pressure, and either the velocity or Mach number. This combination yielded only a 2% difference in heating. Other combinations showed departures of up to 10% in the heat flux estimate.

  17. Ground water/surface water responses to global climate simulations, Santa Clara-Calleguas Basin, Ventura, California

    Science.gov (United States)

    Hanson, R.T.; Dettinger, M.D.

    2005-01-01

    Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa ClaraCalleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Nin??o Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate-driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/??C, compared to 0.9 m/??C in observations. This close agreement shows that the GCM-RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM-RGWM combination could be used for planning purposes and - when the GCM forecast skills are adequate - for near term predictions.

  18. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    Science.gov (United States)

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also

  19. Colored grounds of gilt stucco surfaces as analyzed by a combined microscopic, spectroscopic and elemental analytical approach.

    Science.gov (United States)

    Sansonetti, A; Striova, J; Biondelli, D; Castellucci, E M

    2010-08-01

    A survey of gilts applied to stucco surfaces that specifically focuses on the compositions of their colored grounds is reported. Gilt samples of a common geographical (Lombardy in Italy) and temporal provenance (17th-18th century) were studied in the form of polished cross-sections by optical and electron microscopy (SEM-EDS), micro-Raman (microRaman) spectroscopy and Fourier-transform infrared microspectroscopy (microFTIR). Comparing samples with superimposed grounds and gilts enabled light to be shed on the choice of specific materials, their stratigraphic functions, decorative effects, and technological performances. Iron oxide pigments were found in the older grounds, sometimes in the presence of lead white (2PbCO(3).Pb(OH)(2)) or minium (Pb(3)O(4)). In more recent grounds, chrome yellow (PbCrO(4)), chrome orange (PbCrO(4).PbO), cinnabar (alpha-HgS) and barium white (BaSO(4)), invariably mixed with lead white, were encountered. Evidence for the use of organic mordants (colophony and wax, or siccative oil) was obtained by microFTIR. This combined microFTIR and microRaman spectroscopic and elemental (SEM-EDS) analytical approach enhances knowledge of the composition of gold grounds, their variability and their chronological evolution.

  20. Study on the applicability of frequency spectrum of micro-tremor and dynamic characteristics of surface ground in Asia area

    Institute of Scientific and Technical Information of China (English)

    CHE Ai-lan; IWATATE Takahiro; ODA Yoshiya; GE Xiu-run

    2006-01-01

    The dynamic characteristics of ground soil using micro-tremor observation in Asia (Zushi and Ogasawara (Japan),Xi'an (China), Manila (Philippines), and Gujarat (India)) are studied. Ground micro-tremor signals were observed and analyzed by fast Fourier transform method (FFT). The response of ground soil to frequency of ground micro-tremor is revealed, and functions with frequency-dependence and frequency-selection of micro-tremor for different foundation soil strata are also researched.The horizontal to vertical spectral ratio (H/V, Nakamura technique) of micro-tremor observed at the surface ground was used to evaluate the site's predominant period. This paper also discusses the application of micro-tremor on site safety evaluation, and gives the observed calculation results obtained at multiple points. The experimental foundation and the deduction process of the method are described in detail. Some problems of the method are pointed out. Potential use of the technique's good expandable nature makes it a useable means for preventing and reducing disaster's harmful effects.

  1. The study of single station inverting the sea surface current by HF ground wave radar based on adjoint assimilation technology

    Science.gov (United States)

    Han, Shuzong; Yang, Hua; Xue, Wenhu; Wang, Xingchi

    2017-06-01

    This paper introduces the assimilation technology in an ocean dynamics model and discusses the feasibility of inverting the sea surface current in the detection zone by assimilating the sea current radial velocity detected by single station HF ground wave radar in ocean dynamics model. Based on the adjoint assimilation and POM model, the paper successfully inverts the sea surface current through single station HF ground wave radar in the Zhoushan sea area. The single station HF radar inversion results are also compared with the bistatic HF radar composite results and the fixed point measured results by Annderaa current meter. The error analysis shows that acquisition of flow velocity and flow direction data from the single station HF radar based on adjoint assimilation and POM model is viable and the data obtained have a high correlation and consistency with the flow field observed by HF radar.

  2. SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA

    Science.gov (United States)

    Mohanty, A. K.

    2009-12-01

    SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are

  3. Simulated potentiometric surface contours at end of simulation (1998) in model layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 1 of the Death Valley regional ground-water flow system...

  4. Simulated potentiometric surface contours of prepumping conditions in layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These simulated potentiometric surface contours represent prepumping (or steady-state) conditions for model layer 1 of the Death Valley regional ground-water flow...

  5. Simulated potentiometric surface contours of prepumping conditions in layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These simulated potentiometric surface contours represent prepumping (or steady-state) conditions for model layer 16 of the Death Valley regional ground-water flow...

  6. Simulated potentiometric surface contours at end of simulation (1998) in model layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 16 of the Death Valley regional ground-water flow system...

  7. Simulated potentiometric surface contours at end of simulation (1998) in model layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 1 of the Death Valley regional ground-water flow system...

  8. Simulated potentiometric surface contours at end of simulation (1998) in model layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 16 of the Death Valley regional ground-water flow...

  9. Development of a Remotely Operated, Field-Deployable Tritium Analysis System for Surface and Ground Water Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J. [Westinghouse Savannah River Company, AIKEN, SC (United States); Cable, P.R.; Noakes, J.E. [University of Georgia, , GA (United States); Spaulding, J.D. [University of Georgia, , GA (United States); Neary, M. P. [University of Georgia, , GA (United States); Wasyl, M.S. [Packard Instrument Company, , ()

    1996-06-20

    The environmental contamination resulting from decades of testing and manufacturing of nuclear materials for a national defense purposes is a problem now being faced by the United States. The Center for Applied Isotope Studies at the University of Georgia, in cooperation with the Westinghouse Savannah River Company and Packard Instrument Company, have developed a prototype unit for remote, near real time, in situ analysis of tritium in surface and ground water samples.

  10. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region

    Science.gov (United States)

    Kassotis, Christopher D.; Tillitt, Donald E.; Davis, J. Wade; Hormann, Anette M.; Nagel, Susan C.

    2014-01-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized thataselected subset of chemicalsusedin natural gas drilling operationsandalso surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas–related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operationsmayresult in elevated endocrine-disrupting chemical activity in surface and ground water.

  11. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Vesna Kostik

    2014-07-01

    Full Text Available The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupled plasma-mass spectrometry, while in ground water samples from wells boreholes and mineral waters with the technique of ion chromatography. The research shows that lithium concentration in potable water ranging from 0.1 to 5.2 μg/L; in surface water from 0.5 to 15.0 μg/L; ground water from wells boreholes from 16.0 to 49.1 μg/L and mineral water from 125.2 to 484.9 μg/L. Obtained values are in accordance with the relevant international values for the lithium content in water.

  12. The potential surface in the ground electronic state of HCP with the isomerization process: the validity of calculating potential surface with DFT methods

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The density functional theory (DFT) provides us an effective way to calculate large cluster systems with moderate computational demands. We calculate potential energy surfaces (PES) with several different approaches of DFT. The PES in the ground electronic state are related to HCP's isomerization process. The calculated PES are compared with the “experimental” PES obtained by fitting from the experimental vibrational spectra and that given by the “accurate” quantum chemistry calculation with more expensive computations. The comparisons show that the potential surfaces calculated with DFT methods can reach the accuracy of less than 0.1 eV.

  13. Comparison of buried soil sensors, surface chambers and above ground measurements of carbon dioxide fluxes

    Science.gov (United States)

    Soil carbon dioxide (CO2) flux is an important component of the terrestrial carbon cycle. Accurate measurements of soil CO2 flux aids determinations of carbon budgets. In this study, we investigated soil CO2 fluxes with time and depth and above ground CO2 fluxes in a bare field. CO2 concentrations w...

  14. Areal-Averaged Spectral Surface Albedo in an Atlantic Coastal Area: Estimation from Ground-Based Transmission

    Directory of Open Access Journals (Sweden)

    Evgueni Kassianov

    2017-07-01

    Full Text Available Tower-based data combined with high-resolution satellite products have been used to produce surface albedo at various spatial scales over land. Because tower-based albedo data are available at only a few sites, surface albedos using these combined data are spatially limited. Moreover, tower-based albedo data are not representative of highly heterogeneous regions. To produce areal-averaged and spectrally-resolved surface albedo for regions with various degrees of surface heterogeneity, we have developed a transmission-based retrieval and demonstrated its feasibility for relatively homogeneous land surfaces. Here, we demonstrate its feasibility for a highly heterogeneous coastal region. We use the atmospheric transmission measured during a 19-month period (June 2009–December 2010 by a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR at five wavelengths (0.415, 0.5, 0.615, 0.673 and 0.87 µm at the Department of Energy’s Atmospheric Radiation Measurement (ARM Mobile Facility (AMF site located on Graciosa Island. We compare the MFRSR-retrieved areal-averaged surface albedo with albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS observations, and also a composite-based albedo. We demonstrate that these three methods produce similar spectral signatures of surface albedo; however, the MFRSR-retrieved albedo, is higher on average (≤0.04 than the MODIS-based areal-averaged surface albedo and the largest difference occurs in winter.

  15. Effect of the surface geology on strong ground motions due to the 2016 Central Tottori Earthquake, Japan

    Science.gov (United States)

    Kagawa, Takao; Noguchi, Tatsuya; Yoshida, Shohei; Yamamoto, Shinji

    2017-08-01

    On October 21, 2016, an earthquake with Japan Meteorological Agency (JMA) magnitude 6.6 hit the central part of Tottori Prefecture, Japan. This paper demonstrates two notable effects of the surface geology on strong ground motions due to the earthquake. One is a predominant period issue observed over a large area. A seismic intensity of 6 lower on the JMA scale was registered at three sites in the disaster area. However, the peak ground acceleration ranged from 0.3 to 1.4 G at the three sites because of the varying peak periods of observed strong ground motions. The spectral properties of the observations also reflect the damage around the sites. Three-component microtremors were observed in the area; the predominant ground period distributions based on horizontal to vertical spectral ratios were provided by the authors. The peak periods of the strong motion records agree well with predominant periods estimated from microtremor observations at a rather hard site; however, the predominant periods of the microtremors are slightly shorter than those of the main shock at the other two soft sites. We checked the nonlinear effect at the sites by comparing the site responses to small events and the main shock. The peak periods of the main shock were longer than those of the weak motions at the sites. This phenomenon indicates a nonlinear site effect due to large ground motions caused by the main shock. A horizontal component of the accelerogram showed rather pulsating swings that indicate cyclic mobility behavior, especially at a site close to a pond shore; ground subsidence of 20 cm was observed around the site. The peak periods of weak motions agree well with those of the microtremor observations. This implies an important issue that the predominant periods estimated by microtremors are not sufficient to estimate the effect of surface geology for disaster mitigation. We have to estimate the predominant periods under large ground motions considering the nonlinear site

  16. Comparison of MTI and Ground Truth Sea Surface Temperatures at Nauru

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.

    2002-09-05

    This report evaluates MTI-derived surface water temperature near the tropical Pacific island of Nauru. The MTI sea-surface temperatures were determined by the Los Alamos National Laboratory based on the robust retrieval.

  17. Dynamic behavior of the water droplet impact on a textured hydrophobic/superhydrophobic surface: the effect of the remaining liquid film arising on the pillars' tops on the contact time.

    Science.gov (United States)

    Li, Xiying; Ma, Xuehu; Lan, Zhong

    2010-04-06

    We have fabricated a series of textured silicon surfaces decorated by square arrays of pillars whose radius and pitch can be adjusted independently. These surfaces possessed a hydrophobic/superhydrophobic property after silanization. The dynamic behavior of water droplets impacting these structured surfaces was examined using a high-speed camera. Experimental results validated that the remaining liquid film on the pillars' tops gave rise to a wet surface instead of a dry surface as the water droplet began to recede away from the textured surfaces. Also, experimental results demonstrated that the difference in the contact time was subjected to the solid fraction referred to as the ratio of the actual area contacting with the liquid to its projected area on the textured surface. Because the mechanism by which the residual liquid film emerges on the pillars' tops can essentially be ascribed to the pinch-off of the liquid threads, we further addressed the changes in the contact time in terms of the characteristic time of pinch-off of an imaginary liquid cylinder whose radius is related to the solid fraction and the maximum contact area. The match of the theoretical analysis and the experimental results substantiates the assumption aforementioned.

  18. Force Restore Technique for Ground Surface Temperature and Moisture Content in a Dry Desert System

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Berkowicz, S.

    2000-01-01

    The level of the surface temperature as well as surface moisture content is important for the turbulent transports of sensible and latent heat, respectively, but this level is also crucial for the survival of shrubs, plants, insects, and small animals in a desert environment. To estimate the surface

  19. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  20. Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle SpectroPolarimetric Imager

    Directory of Open Access Journals (Sweden)

    David J. Diner

    2012-12-01

    Full Text Available Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF model. GroundMSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of outdoor landscapes. The camera uses a very accurate photoelastic-modulator-based polarimetric imaging technique to acquire Stokes vector measurements in three of the instrument’s bands (470, 660, and 865 nm. A description of the instrument is presented, and observations of selected targets within a scene acquired on 6 January 2010 are analyzed. Data collected during the course of the day as the Sun moved across the sky provided a range of illumination geometries that facilitated evaluation of the surface model, which is comprised of a volumetric reflection term represented by the modified Rahman-Pinty-Verstraete function plus a specular reflection term generated by a randomly oriented array of Fresnel-reflecting microfacets. While the model is fairly successful in predicting the polarized reflection from two grass targets in the scene, it does a poorer job for two manmade targets (a parking lot and a truck roof, possibly due to their greater degree of geometric organization. Several empirical adjustments to the model are explored and lead to improved fits to the data. For all targets, the data support the notion of spectral invariance in the angular shape of the unpolarized and polarized surface reflection. As noted by others, this behavior provides valuable constraints on the aerosol retrieval problem, and highlights the importance of multiangle observations.

  1. Scientific Ground of a New Optical Device for Contactless Measurement of the Small Spatial Displacements of Control Object Surfaces

    Science.gov (United States)

    Miroshnichenko, I. P.; Parinov, I. A.

    2017-06-01

    It is proposed the computational-experimental ground of newly developed optical device for contactless measurement of small spatial displacements of control object surfaces based on the use of new methods of laser interferometry. The proposed device allows one to register linear and angular components of the small displacements of control object surfaces during the diagnosis of the condition of structural materials for forced elements of goods under exploring by using acoustic non-destructive testing methods. The described results are the most suitable for application in the process of high-precision measurements of small linear and angular displacements of control object surfaces during experimental research, the evaluation and diagnosis of the state of construction materials for forced elements of goods, the study of fast wave propagation in layered constructions of complex shape, manufactured of anisotropic composite materials, the study of damage processes in modern construction materials in mechanical engineering, shipbuilding, aviation, instrumentation, power engineering, etc.

  2. Construction and Testing of Broadband High Impedance Ground Planes (HIGPS) for Surface Mount Antennas

    Science.gov (United States)

    2008-03-01

    mushrooms (with side lengths of 7.6mm). Larger mushrooms (with side lengths of 16mm) were located to the edges of the substrate . The resulting...thickness and substrate permittivity are two of the main design parameters. But these parameters have production constraints, since they are ordered off...plane designs as a meta- substrate for a broadband bow-tie antenna were presented. Consequently, the high impedance ground plane provided a suitable

  3. Use of ground-water reservoirs for storage of surface water in the San Joaquin Valley, California

    Science.gov (United States)

    Davis, G.H.; Lofgren, B.E.; Mack, Seymour

    1964-01-01

    The San Joaquin Valley includes roughly the southern two-thirds of the Central Valley of California, extending 250 miles from Stockton on the north to Grapevine at the foot of the Tehachapi Mountains. The valley floor ranges in width from 25 miles near Bakersfield to about 55 miles near Visalia; it has a surface area of about 10,000 square miles. More than one-quarter of all the ground water pumped for irrigation in the United States is used in this highly productive valley. Withdrawal of ground water from storage by heavy pumping not only provides a needed irrigation water supply, but it also lowers the ground-water level and makes storage space available in which to conserve excess water during periods of heavy runoff. A storage capacity estimated to be 93 million acre-feet to a depth of 200 feet is available in this ground-water reservoir. This is about nine times the combined capacity of the existing and proposed surface-water reservoirs in the San Joaquin Valley under the California Water Plan. The landforms of the San Joaquin Valley include dissected uplands, low plains and fans, river flood plains and channels, and overflow lands and lake bottoms. Below the land surface, unconsolidated sediments derived from the surrounding mountain highlands extend downward for hundreds of feet. These unconsolidated deposits, consisting chiefly of alluvial deposits, but including some widespread lacustrine sediments, are the principal source of ground water in the valley. Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the valley, three distinct ground-water reservoirs are present. In downward succession these are 1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age, overlying the Corcoran clay member of the Tulare formation; 2) a body of fresh water confined beneath the Corcoran clay member, which

  4. DEM Development from Ground-Based LiDAR Data: A Method to Remove Non-Surface Objects

    Directory of Open Access Journals (Sweden)

    Maneesh Sharma

    2010-11-01

    Full Text Available Topography and land cover characteristics can have significant effects on infiltration, runoff, and erosion processes on watersheds. The ability to model the timing and routing of surface water and erosion is affected by the resolution of the digital elevation model (DEM. High resolution ground-based Light Detecting and Ranging (LiDAR technology can be used to collect detailed topographic and land cover characteristic data. In this study, a method was developed to remove vegetation from ground-based LiDAR data to create high resolution DEMs. Research was conducted on intensively studied rainfall–runoff plots on the USDA-ARS Walnut Gulch Experimental Watershed in Southeast Arizona. LiDAR data were used to generate 1 cm resolution digital surface models (DSM for 5 plots. DSMs created directly from LiDAR data contain non-surface objects such as vegetation cover. A vegetation removal method was developed which used a slope threshold and a focal mean filter method to remove vegetation and create bare earth DEMs. The method was validated on a synthetic plot, where rocks and vegetation were added incrementally. Results of the validation showed a vertical error of ±7.5 mm in the final DEM.

  5. Temperature rise in objects due to optical focused beam through atmospheric turbulence near ground and ocean surface

    Science.gov (United States)

    Stoneback, Matthew; Ishimaru, Akira; Reinhardt, Colin; Kuga, Yasuo

    2013-03-01

    We consider an optical beam propagated through the atmosphere and incident on an object causing a temperature rise. In clear air, the physical characteristics of the optical beam transmitted to the object surface are influenced primarily by the effect of atmospheric turbulence, which can be significant near the ground or ocean surface. We use a statistical model to quantify the expected power transfer through turbulent atmosphere and provide guidance toward the threshold of thermal blooming for the considered scenarios. The bulk thermal characteristics of the materials considered are used in a thermal diffusion model to determine the net temperature rise at the object surface due to the incident optical beam. These results of the study are presented in graphical form and are of particular interest to operators of high power laser systems operating over large distances through the atmosphere. Numerical examples include a CO2 laser (λ=10.6 μm) with: aperture size of 5 cm, varied pulse duration, and propagation distance of 0.5 km incident on 0.1-mm copper, 10-mm polyimide, 1-mm water, and 10-mm glass/resin composite targets. To assess the effect of near ground/ocean laser propagation, we compare turbulent (of varying degrees) and nonturbulent atmosphere.

  6. Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Baig, Jameel Ahmed, E-mail: jab_mughal@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kazi, Tasneem Gul, E-mail: tgkazi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Arain, Muhammad Balal, E-mail: bilal_KU2004@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Afridi, Hassan Imran, E-mail: hassanimranafridi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kandhro, Ghulam Abbas, E-mail: gakandhro@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Sarfraz, Raja Adil, E-mail: rajaadilsarfraz@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Jamal, Muhammad Khan, E-mail: mkhanjamali@yahoo.com [Government Degree College Usta Muhammad, Balochistan 08300 (Pakistan); Shah, Abdul Qadir, E-mail: aqshah07@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)

    2009-07-30

    Arsenic contamination in water has caused severe health problems around the world. The purpose of this study was to evaluate the geological and anthropogenic aspects of As pollution in surface and groundwater resources of Jamshoro Sindh, Pakistan. Hydride generator atomic absorption spectrophotometry (HG-AAS) is employed for the determination of arsenic in water samples, with detection limit of 0.02 {mu}g l{sup -1}. Arsenic concentrations in surface and underground water range from 3.0 to 50.0, and 13 to 106 {mu}g l{sup -1}, respectively. In most of the water samples As levels exceeded the WHO provisional guideline values 10 {mu}g l{sup -1}. The high level of As in under study area may be due to widespread water logging from Indus river irrigation system which causes high saturation of salts in this semi-arid region and lead to enrichment of As in shallow groundwater. Among the physico-chemical parameters, electrical conductivity, Na{sup +}, K{sup +}, and SO{sub 4}{sup 2-} were found to be higher in surface and ground water, while elevated levels of Ca{sup 2+} and Cl{sup -} were detected only in ground water than WHO permissible limit. The high level of iron was observed in ground water, which is a possible source of As enrichment in the study area. The multivariate technique (cluster analysis) was used for the elucidation of high, medium and low As contaminated areas. It may be concluded that As originate from coal combustion at brick factories and power generation plants, and it was mobilized promotionally by the alkaline nature of the understudy groundwater samples.

  7. Geochemistry of the surface and ground waters of the upper bassin of the river Llobregat

    Directory of Open Access Journals (Sweden)

    Freixes, A.

    1996-12-01

    Full Text Available In this work the main geochemical characteristics of the surface and ground waters of the Upper basin of the River Llobregat are described and, discussed. The water samples analysed reveal sharply contrasting characteristics. In both the Fonts del Llobregat and River Bastareny catchments, calcium bicarbonated waters with a low mineral content clearly predominate. However, in the catchment of the River Arija, although the waters of the upper course and the main tributaries are also calcium bicarbonated, it is worth noting that at the confluence with the River Llobregat calcium sulphated water is found. The catchment of the River Saldes shows a greater heterogeneity, with calcium bicarbonated, sodium chloridized and calcium sulphated waters, and thus at the confluence with the River Llobregat the water is sodium-calcium bicarbonated-sulphated. Principal components analysis enables us to arrive at a synthesis which clearly explains these characteristics. These results are fundamentally interpreted on the basis of the lithologies drained by the different watercourses.

    [es] En el presente estudio se presentan y discuten las principales características geoquímicas de las aguas superficiales y subterráneas de la Alta cuenca del río Llobregat hasta la entrada del río al embalse de La Baells. El conjunto de aguas analizadas presentan características muy contrastadas. Así, tanto en la subcuenca de las fuentes del Llobregat como en la del río Bastareny predominan las aguas bicarbonatadas cálcicas poco mineralizadas. En la subcuenca del río Arija, sí bien las aguas del curso alto y las de los principales afluentes también son bicarbonatadas cálcicas, destaca el hecho de que en la confluencia con el río Llobregat el agua es sulfatada cálcica. La subcuenca del río Saldes es la que presenta una mayor heterogeneidad, con aguas bicarbonatadas cálcicas, cloruradas sódicas y sulfatadas cálcicas, las cuales provocan que en la confluencia

  8. Hydrochemical assessments of surface Nile water and ground water in an industry area – South West Cairo

    Directory of Open Access Journals (Sweden)

    Mona El-Sayed

    2015-09-01

    The data obtained were used for mathematical calculations of some parameters such as sodium adsorption ratio (SAR, sodium percentage (Na%, and the suitability of water samples for drinking, domestic, and irrigation purposes was evaluated. The results indicate that most studied surface Nile water samples show excellent to good categories and are suitable for drinking and irrigation. Most studied ground water samples are not suitable for drinking and need treatment for irrigation; few samples are not suitable for any purpose because of pollution from different sources in this area.

  9. Different Multifractal Scaling of the 0 cm Average Ground Surface Temperature of Four Representative Weather Stations over China

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2013-01-01

    Full Text Available The temporal scaling properties of the daily 0 cm average ground surface temperature (AGST records obtained from four selected sites over China are investigated using multifractal detrended fluctuation analysis (MF-DFA method. Results show that the AGST records at all four locations exhibit strong persistence features and different scaling behaviors. The differences of the generalized Hurst exponents are very different for the AGST series of each site reflecting the different scaling behaviors of the fluctuation. Furthermore, the strengths of multifractal spectrum are different for different weather stations and indicate that the multifractal behaviors vary from station to station over China.

  10. Vibrational Spectra and Potential Energy Surface for Electronic Ground State of Jet-Cooled Molecule S2O

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Yan; DING Shi-Liang

    2004-01-01

    The vibration states of transition molecule S2O, including both bending and stretching vibrations, are studied in the framework of dynamical symmetry groups U1(4) U2(4). We get all the vibration spectra of S2O by fitting 22 spectra data with 10 parameters. The fitting rms of the Hamiltonian is 2.12 cm-1. With the parameters and Lie algebraic theory, we give the analytical expression of the potential energy surface, which helps us to calculate the dissociation energy and force constants of S2O in the electronic ground state.

  11. Contamination of rural surface and ground water by endosulfan in farming areas of the Western Cape, South Africa

    Directory of Open Access Journals (Sweden)

    London Leslie

    2003-03-01

    Full Text Available Abstract Background In South Africa there is little data on environmental pollution of rural water sources by agrochemicals. Methods This study investigated pesticide contamination of ground and surface water in three intensive agricultural areas in the Western Cape: the Hex River Valley, Grabouw and Piketberg. Monitoring for endosulfan and chlorpyrifos at low levels was conducted as well as screening for other pesticides. Results The quantification limit for endosulfan was 0.1 μg/L. Endosulfan was found to be widespread in ground water, surface water and drinking water. The contamination was mostly at low levels, but regularly exceeded the European Drinking Water Standard of 0.1 μg/L. The two most contaminated sites were a sub-surface drain in the Hex River Valley and a dam in Grabouw, with 0.83 ± 1.0 μg/L (n = 21 and 3.16 ± 3.5 μg/L (n = 13 average endosulfan levels respectively. Other pesticides including chlorpyrifos, azinphos-methyl, fenarimol, iprodione, deltamethrin, penconazole and prothiofos were detected. Endosulfan was most frequently detected in Grabouw (69% followed by Hex River (46% and Piketberg (39%. Detections were more frequent in surface water (47% than in groundwater (32% and coincided with irrigation, and to a lesser extent, to spraying and trigger rains. Total dietary endosulfan intake calculated from levels found in drinking water did not exceed the Joint WHO/FAO Meeting on Pesticide Residues (JMPR criteria. Conclusion The study has shown the need for monitoring of pesticide contamination in surface and groundwater, and the development of drinking water quality standards for specific pesticides in South Africa.

  12. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7.

    Science.gov (United States)

    Abuladze, Tamar; Li, Manrong; Menetrez, Marc Y; Dean, Timothy; Senecal, Andre; Sulakvelidze, Alexander

    2008-10-01

    A bacteriophage cocktail (designated ECP-100) containing three Myoviridae phages lytic for Escherichia coli O157:H7 was examined for its ability to reduce experimental contamination of hard surfaces (glass coverslips and gypsum boards), tomato, spinach, broccoli, and ground beef by three virulent strains of the bacterium. The hard surfaces and foods contaminated by a mixture of three E. coli O157:H7 strains were treated with ECP-100 (test samples) or sterile phosphate-buffered saline buffer (control samples), and the efficacy of phage treatment was evaluated by comparing the number of viable E. coli organisms recovered from the test and control samples. Treatments (5 min) with the ECP-100 preparation containing three different concentrations of phages (10(10), 10(9), and 10(8) PFU/ml) resulted in statistically significant reductions (P = E. coli O157:H7 organisms recovered from the glass coverslips. Similar treatments resulted in reductions of 100%, 95%, and 85%, respectively, in the number of E. coli O157:H7 organisms recovered from the gypsum board surfaces; the reductions caused by the two most concentrated phage preparations were statistically significant. Treatment with the least concentrated preparation that elicited significantly less contamination of the hard surfaces (i.e., 10(9) PFU/ml) also significantly reduced the number of viable E. coli O157:H7 organisms on the four food samples. The observed reductions ranged from 94% (at 120 +/- 4 h posttreatment of tomato samples) to 100% (at 24 +/- 4 h posttreatment of spinach samples). The data suggest that naturally occurring bacteriophages may be useful for reducing contamination of various hard surfaces, fruits, vegetables, and ground beef by E. coli O157:H7.

  13. ENVIRONMENTAL SAFETY IMPROVEMENT OF SURFACE AND GROUND WATER CONTAMINATION AT THE AIRPORT AREA

    Directory of Open Access Journals (Sweden)

    Svitlana Madzhd

    2016-11-01

    Full Text Available Purpose: Taking into account that the airport "Kyiv" is located in one of the central districts of Kyiv and does not have clearly established sanitary protection zones, the problem of environmental pollution is topical and requires monitoring and research. In order to improve environmental compliance we made assessment of superficial and ground water quality in airport zone. Methods: Water quality was estimated by the biotesting method, hydrochemical analysis, and by oil products detection method. Results We performed analysis of wastewaters of airport “Kyiv” and superficial waters of river Nyvka. The samples took place: above the airport drainage, in the drainage place and below drainage place. We conducted assessment of ground waters, which are sources of water supply, on different distance from an airport (20 m, 500 m, 1000 m, 1500 min. Results of hydrochemical investigations of river indicated excess of nitrogen compounds content compare to regulatory discharge. Thus, it was defined excess of ammonia nitrogen in wastewaters in three times and in place of dispersion – in ten times; the content of nitrite nitrogen in the river sample after discharge exceeds in 22 times norm. Analysis of drinking water in airport zone has showed extremely high level of pollution by nitrite nitrogen exceeding norm in 7-17 times. After analysis it was defined high level of river pollution by oil products (in 26-32 times higher than MPC, and ground water in 1, 5-2 times. Results of biotesting confirmed data of hydrochemical investigations of superficial water state (acute toxicity was observed in drainage area and in place of drainage dispersion. Discussion: Increased content of nitrite indicates the strengthening of decomposition process of organic matter in conditions of slower oxidation of NO into NO. This parameter is major sanitary indicator which indicates pollution of water body. High content of such specific pollutant for aviation transport

  14. Influence of the underlying surface on the antenna system of the ground penetrating radar

    Science.gov (United States)

    Balzovsky, E. V.; Buyanov, Yu I.; Shipilov, S. E.

    2017-08-01

    Simulation results of the antenna system of the radar of subsurface sounding intended for contactless investigation of the road condition are presented. The elements of the antenna system of ground penetrating radar with extended bandwidth made as a combination of electric and magnetic type radiators have been designed. The transmission coefficient between the elements of the antenna array determining their mutual influence has been calculated. Despite the close arrangement of the elements in the array, the level of mutual influence of the elements is not critical. The developed antenna array can be used both for excitation with short ultrawideband pulses and for frequency steering in the range of 0.8-4 GHz.

  15. Assessment of volatile organic compounds in surface water at Canal Creek, Aberdeen Proving Ground, Maryland, November 1999-September 2000

    Science.gov (United States)

    Phelan, Daniel J.; Olsen, Lisa D.; Senus, Michael P.; Spencer, Tracey A.

    2001-01-01

    The purpose of this report is to describe the occurrence and distribution of volatile organic compounds in surface-water samples collected by the U.S. Geological Survey in the Canal Creek area of Aberdeen Proving Ground, Maryland, from November 1999 through September 2000. The report describes the differences between years with below normal and normal precipitation, the effects of seasons, tide stages, and location on volatile organic compound concentrations in surface water, and provides estimates of volatile organic concentration loads to the tidal Gunpowder River. Eighty-four environmental samples from 20 surface-water sites were analyzed. As many as 13 different volatile organic compounds were detected in the samples. Concentrations of volatile organic compounds in surface-water samples ranged from below the reporting limit of 0.5 micrograms per liter to a maximum of 50.2 micrograms per liter for chloroform. Chloroform was detected most frequently, and was found in 55 percent of the environmental samples that were analyzed for volatile organic compounds (46 of 84 samples). Carbon tetrachloride was detected in 56 percent of the surface-water samples in the tidal part of the creek (34 of 61 samples), but was only detected in 3 of 23 samples in the nontidal part of the creek. 1,1,2,2-Tetrachloroethane was detected in 43 percent of the tidal samples (26 of 61 samples), but was detected at only two nontidal sites and only during November 1999. Three samples were collected from the tidal Gunpowder River about 300 feet from the mouth of Canal Creek in May 2000, and none of the samples contained volatile organic compound concentrations above detection levels. Volatile organic compound concentrations in surface water were highest in the reaches of the creek adjacent to the areas with the highest known levels of ground-water contamination. The load of total volatile organic compounds from Canal Creek to the Gunpowder River is approximately 1.85 pounds per day (0

  16. Road impacts on the Baca National Wildlife Refuge, Colorado, with emphasis on effects to surface and shallow ground-water hydrology : a literature review

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A review of published research on unpaved road effects on surface-water and shallow ground-water hydrology was undertaken to assist the Baca National Wildlife...

  17. Estimated potentiometric surface by D'Agnese and others (1998), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — D'Agnese and others (1998) developed a potentiometric surface to conceptualize the regional ground-water flow system and to construct numerical flow models of the...

  18. AATSR Land Surface Temperature Product Validation Using Ground Measurements in China and Implications for SLSTR

    Science.gov (United States)

    Zhou, Ji; Zmuda, Andy; Desnos, Yves-Louis; Ma, Jin

    2016-08-01

    Land surface temperature (LST) is one of the most important parameters at the interface between the earth's surface and the atmosphere. It acts as a sensitive indicator of climate change and is an essential input parameter for land surface models. Because of the intense variability at different spatial and temporal scales, satellite remote sensing provides the sole opportunity to acquire LSTs over large regions. Validation of the LST products is an necessary step before their applications conducted by scientific community and it is essential for the developers to improve the LST products.

  19. Interfacial and surface characterization of two self-etching adhesive systems and a total-etch adhesive after bonding to ground and unground bovine enamel--a qualitative study.

    Science.gov (United States)

    Ibarra, Gabriela; Vargas, Marcos A; Geurtsen, Werner

    2006-12-01

    The purpose of the study was to evaluate the enamel surface and interface morphology of two self-etching adhesive systems (SAS) vs a total-etch control, after bonding to ground and unground enamel using field emission scanning electron microscopy (FESEM). Thirty bovine incisors were used in this study. The buccal enamel surface of 15 teeth was ground flat to resemble freshly cut enamel. The rest of the teeth were left intact. Two SAS, Clearfil SE Bond (CSE, Kuraray) and Prompt L-Pop (3M-ESPE), and a conventional adhesive system, Scotchbond Multipurpose (3M-ESPE, control), were used to condition the surface of unground and ground enamel on 12 teeth. A composite button was bonded to the remaining 18 teeth; a cross-section (1 mm thick) was obtained from each and the bonded interface was polished. All specimens were dehydrated in ascending grades of ethanol, gold-sputter-coated, and observed under FESEM (Hitachi S-4000) to evaluate the ultrastructural morphology of the enamel surface and the enamel-dentin interface. The etching patterns and adhesive penetration varied according to the aggressiveness of the SAS, with CSE being the mildest and H3PO4 being the most aggressive. There were no significant differences on the ultrastructural morphology of the enamel surface between unground and ground specimens. It appears that microporosities within enamel prisms provide sufficient enamel-resin hybridization in unground enamel. The enamel dissolution pattern and depth of infiltration depend on the type of SAS used, with no significant differences in unground and ground enamel.

  20. 3D simulation of near-fault strong ground motion:comparison between surface rupture fault and buried fault

    Institute of Scientific and Technical Information of China (English)

    Liu Qifang; Yuan Yifan; Jin Xing

    2007-01-01

    In this paper,near-fault strong ground motions caused by a surface rupture fault(SRF)and a buried fault(BF) are numerically simulated and compared by using a time-space-decoupled,explicit finite element method combined with a multi-transmitting formula(MTF) of an artificial boundary.Prior to the comparison,verification of the explicit element method and the MTF is conducted.The comparison results show that the final dislocation of the SRF is larger than the BF for the same stress drop on the fault plane.The maximum final dislocation occurs on the fault upper line for the SRF;however,for the BF,the maximum final dislocation is located on the fault central part.Meanwhile,the PGA,PGV and PGD of long period ground motions(≤1 Hz)generated by the SRF are much higher than those of the BF in the near-fault region.The peak value of the velocity pulse generated by the SRF is also higher than the BF.Furthermore,it is found that in a very narrow region along the fault trace,ground motions caused by the SRF are much higher than by the BF.These results may explain why SRFs almost always cause heavy damage in near-fault regions compared to buried faults.

  1. Activities of the Commission for Ground Surface Protection against Mining Damage in the first quarter of 1985. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Chroszcz, A.

    1985-01-01

    Five meetings of the Commission held from January to March 1985 are reported. Underground coal mining in the safety pillar of Bytom was discussed in the light of rock bursts and fatal accidents in the Dymitrow mine. Three coal mines remove the safety pillar: Dymitrow, Szombierki and Rozbark. The Commission discussed: replacing longwall mining with caving by longwall mining with hydraulic stowing, using packings with reduced settling, reducing concentration of mining operations in the area of Bytom center, coordination of underground mining by 3 mines (coordination of mining order, thickness of coal slices or coal seams, concentration of longwall mining in seams with reduced hazards of rock bursts, methods for protection of buildings and industrial plants at the ground surface against ground deformation. The Commission also discussed program of coal mining with hydraulic stowing in the safety pillar of the Batory Steelworks, the Hajduki chemical plant and Chorzow (order of mining, schemes for slice mining, forecasting ground subsidence, methods for protection against mining damage), underground mining with caving or stowing in safety pillars of the Miechowice and Karb mines under Bytom, new regulations on geodetic surveys in underground coal mines.

  2. Environmental impact of highway construction and repair materials on surface and ground waters. Case study: crumb rubber asphalt concrete.

    Science.gov (United States)

    Azizian, Mohammad F; Nelson, Peter O; Thayumanavan, Pugazhendhi; Williamson, Kenneth J

    2003-01-01

    The practice of incorporating certain waste products into highway construction and repair materials (CRMs) has become more popular. These practices have prompted the National Academy of Science, National Cooperative Highway Research Program (NCHRP) to research the possible impacts of these CRMs on the quality of surface and ground waters. State department of transportations (DOTs) are currently experimenting with use of ground tire rubber ( crumb rubber) in bituminous construction and as a crack sealer. Crumb rubber asphalt concrete (CR-AC) leachates contain a mixture of organic and metallic contaminants. Benzothiazole and 2(3H)-benzothiazolone (organic compounds used in tire rubber manufacturing) and the metals mercury and aluminum were leached in potentially harmful concentrations (exceeding toxic concentrations for aquatic toxicity tests). CR-AC leachate exhibited moderate to high toxicity for algae ( Selenastrum capriconutum) and moderate toxicity for water fleas ( Daphnia magna). Benzothiazole was readily removed from CR-AC leachate by the environmental processes of soil sorption, volatilization, and biodegradation. Metals, which do not volatilize or photochemically or biologically degrade, were removed from the leachate by soil sorption. Contaminants from CR-AC leachates are thus degraded or retarded in their transport through nearby soils and ground waters.

  3. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika, E-mail: ematoso@hotmail.com [Centro Tecnologico da Marinha em Sao Paulo (CEA/CTMS), Ipero, SP (Brazil). Centro Experimental Aramar; Cadore, Solange, E-mail: cadore@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Analica

    2015-07-01

    Barium can be found in waters up to 1 mg L{sup -1} and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L{sup -1} and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  4. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Fadong, E-mail: lifadong@igsnrr.ac.cn [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Zhang, Qiuying [Center for Agricultural Resources Research, Chinese Academy of Sciences, Shijiazhuang 050021 (China); Li, Jing [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Qiang [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-08-15

    Water pollution in the form of nitrate nitrogen (NO{sub 3}{sup −}–N) contamination is a major concern in most agricultural areas in the world. Concentrations and nitrogen and oxygen isotopic compositions of nitrate, as well as oxygen and deuterium isotopic compositions of surface and groundwater from a typical irrigated region in the North China Plain (NCP) collected from May to October in 2012 were analyzed to examine the major nitrate sources and transformations. Concentrations of NO{sub 3}{sup −}–N ranged from 0.2 to 29.6 mg/L (mean of 11.2 mg/L) in surface water, and from 0.1 to 19.4 mg/L (mean of 2.8 mg/L) in groundwater. Approximately 46.7% of the surface water samples and 10% of the groundwater samples exceeded the World Health Organization (WHO) drinking water standard for NO{sub 3}{sup −}–N. Surface water samples that exceeded the standard were collected mainly in the dry season (May and October), while groundwater samples that exceeded the standard were collected in the wet season (June). Overall, the highest nitrate levels were observed in surface water in May and in groundwater in June, indicating that fertilizer application, precipitation, and irrigation strongly influence the NO{sub 3}{sup −}–N concentrations. Analyses of isotopic compositions suggest that the main sources of nitrate are nitrification of fertilizer and sewage in surface water, in contrast, mineralization of soil organic N and sewage is the groundwater sources during the dry season. When fertilizers are applied, nitrate will be transported by precipitation through the soil layers to the groundwater in the wet season (June). Denitrification only occurred in surface water in the wet season. Attempts should be made to minimize overuse of nitrogen fertilizers and to improve nitrogen use efficiency in irrigated agricultural regions. - Highlights: • Nitrate sources in surface and groundwater were identified by multiple isotopes. • Nitrate pollution displayed obvious

  5. Be(1010): A test ground for surface electron-phonon coupling

    Science.gov (United States)

    Tang, Shu-Jung; Sprunger, Philip; Plummer, Ward; Yang, Wanli; Brouet, Veronique; Zhou, Xingjiang; Shen, Zhi-Xun

    2003-03-01

    The electron-phonon coupling on the Be(10bar10) surface has been investigated with high-resolution photoemission examining temperature dependence and dispersion distortion near the Fermi energy of the two zone boundary surface states. Two surface states (S1 and S2) coexist in a large gap in the bulk projection at the surface zone boundary barA. S1 is localized near the surface in the middle of the gap while S2 is near the bottom band edge and penetrates into the bulk. Using both a Debye and Einstein model to fit the temperature-dependent surface state line width produces an electron-phonon coupling strength with parameters, λ _S1 = 0.647 and λ _S2 = 0.491, more than two times larger than the bulk value, λ _bulk = 0.24. S2 data was measured with a 3D Debye model but the S1 data required an Einstein model with an optical phonon at energy 64 meV. Direct 2D images of the dispersion of the S1 state show dramatic distortion of the electron band dispersion within 64 meV of the Fermi energy. This data is used to extract the real and imaginary parts of the self-energy. Founded by NSF DMR-0105232 and Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725

  6. High resolution surface solar radiation patterns over Eastern Mediterranean: Satellite, ground-based, reanalysis data and radiative transfer simulations

    Science.gov (United States)

    Alexandri, G.; Georgoulias, A.; Meleti, C.; Balis, D.

    2013-12-01

    Surface solar radiation (SSR) and its long and short term variations play a critical role in the modification of climate and by extent of the social and financial life of humans. Thus, SSR measurements are of primary importance. SSR is measured for decades from ground-based stations for specific spots around the planet. During the last decades, satellite observations allowed for the assessment of the spatial variability of SSR at a global as well as regional scale. In this study, a detailed spatiotemporal view of the SSR over Eastern Mediterranean is presented at a high spatial resolution. Eastern Mediterranean is affected by various aerosol types (continental, sea, dust and biomass burning particles) and encloses countries with significant socioeconomical changes during the last decades. For the aims of this study, SSR data from satellites (Climate Monitoring Satellite Application Facility - CM SAF) and our ground station in Thessaloniki, a coastal city of ~1 million inhabitants in northern Greece, situated in the heart of Eastern Mediterranean (Eppley Precision pyranometer and Kipp & Zonen CM-11 pyranometer) are used in conjunction with radiative transfer simulations (Santa Barbara DISORT Atmospheric Radiative Transfer - SBDART). The CM SAF dataset used here includes monthly mean SSR observations at a high spatial resolution of 0.03x0.03 degrees for the period 1983-2005. Our ground-based SSR observations span from 1983 until today. SBDART radiative transfer simulations were implemented for a number of spots in the area of study in order to calculate the SSR. High resolution (level-2) aerosol and cloud data from MODIS TERRA and AQUA satellite sensors were used as input, as well as ground-based data from the AERONET. Data from other satellites (Earth Probe TOMS, OMI, etc) and reanalysis projects (ECMWF) were used where needed. The satellite observations, the ground-based measurements and the model estimates are validated against each other. The good agreement

  7. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    Science.gov (United States)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  8. Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission Data Alone: Toward an Operational Retrieval

    Directory of Open Access Journals (Sweden)

    Evgueni Kassianov

    2014-08-01

    Full Text Available We present here a simple retrieval of the areal-averaged spectral surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation. The feasibility of our retrieval for routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements: (1 spectral atmospheric transmission from the Multi-Filter Rotating Shadowband Radiometer (MFRSR at five wavelengths (415, 500, 615, 673, and 870 nm; (2 tower-based measurements of local surface albedo at the same wavelengths; and (3 areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS observations. These integrated datasets cover both temporally long (2008–2013 and short (April–May 2010 periods at the Atmospheric Radiation Measurement (ARM Southern Great Plains site and the National Oceanic and Atmospheric Administration (NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE, defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved areal-averaged albedo, is quite small (RMSE ≤ 0.015 and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between tower-based measurements of daily-averaged surface albedo for completely overcast and non-overcast conditions is also demonstrated.

  9. Survival of adenovirus types 2 and 41 in surface and ground waters measured by a plaque assay.

    Science.gov (United States)

    Rigotto, C; Hanley, K; Rochelle, P A; De Leon, R; Barardi, C R M; Yates, M V

    2011-05-01

    To manage artificial recharge systems, it is necessary to understand the inactivation process of microorganisms within aquifers so that requirements regarding storage times and treatment strategies for ground and surface waters can be developed and modeled to improve water management practices. This study was designed to investigate the survival of representative adenoviruses in surface- and groundwaters using a cell culture plaque assay with human lung carcinoma cells (A549) to enumerate surviving viruses. Adenovirus types 2 (Ad2) and 41 (Ad41) were seeded into 50 mL of three sterilized surface waters and groundwaters, and incubated at 10 and 19 °C for up to 301 days. Concentrations of Ad2 and Ad41 were relatively stable in all waters at 10 °C for at least 160 days and in some instances up to 301 days. At 19 °C, virus concentrations were reduced by 99.99% (4 log) after 301 days in surface water. There was approximately 90% (1 log) reduction of both viruses at 19 °C after 160 days of incubation in groundwater samples. There was no overall difference in survival kinetics in surface waters compared to groundwaters. The relatively high stability and long-term survival of adenoviruses in environmental waters at elevated temperatures should be considered in risk assessment models and drinking water management strategies.

  10. Evaluating the effects of urbanization and land-use planning using ground-water and surface-water models

    Science.gov (United States)

    Hunt, R.J.; Steuer, J.J.

    2001-01-01

    Why are the effects of urbanization a concern? As the city of Middleton, Wisconsin, and its surroundings continue to develop, the Pheasant Branch watershed (fig.l) is expected to undergo urbanization. For the downstream city of Middleton, urbanization in the watershed can mean increased flood peaks, water volume and pollutant loads. More subtly, it may also reduce water that sustains the ground-water system (called "recharge") and adversely affect downstream ecosystems that depend on ground water such as the Pheasant Branch Springs (hereafter referred to as the Springs). The relation of stormwater runoff and reduced ground-water recharge is complex because the surface-water system is coupled to the underlying ground-water system. In many cases there is movement of water from one system to the other that varies seasonally or daily depending on changing conditions. Therefore, it is difficult to reliably determine the effects of urbanization on stream baseflow and spring flows without rigorous investigation. Moreover, mitigating adverse effects after development has occurred can be expensive and administratively difficult. Overlying these concerns are issues such as stewardship of the resource, the rights of the public, and land owners' rights both of those developing their land and those whose land is affected by this development. With the often- contradictory goals, a scientific basis for assessing effects of urbanization and effectiveness of mitigation measures helps ensure fair and constructive decision-making. The U.S. Geological Survey, in cooperation with the City of Middleton and Wisconsin Department of Natural Resources, completed a study that helps address these issues through modeling of the hydrologic system. This Fact Sheet discusses the results of this work.

  11. Monitoring ground-surface heating during expansion of the Casa Diablo production well field at Mammoth Lakes, California

    Science.gov (United States)

    Bergfeld, D.; Vaughan, R. Greg; Evans, William C.; Olsen, Eric

    2015-01-01

    The Long Valley hydrothermal system supports geothermal power production from 3 binary plants (Casa Diablo) near the town of Mammoth Lakes, California. Development and growth of thermal ground at sites west of Casa Diablo have created concerns over planned expansion of a new well field and the associated increases in geothermal fluid production. To ensure that all areas of ground heating are identified prior to new geothermal development, we obtained high-resolution aerial thermal infrared imagery across the region. The imagery covers the existing and proposed well fields and part of the town of Mammoth Lakes. Imagery results from a predawn flight on Oct. 9, 2014 readily identified the Shady Rest thermal area (SRST), one of two large areas of ground heating west of Casa Diablo, as well as other known thermal areas smaller in size. Maximum surface temperatures at 3 thermal areas were 26–28 °C. Numerous small areas with ground temperatures >16 °C were also identified and slated for field investigations in summer 2015. Some thermal anomalies in the town of Mammoth Lakes clearly reflect human activity.Previously established projects to monitor impacts from geothermal power production include yearly surveys of soil temperatures and diffuse CO2 emissions at SRST, and less regular surveys to collect samples from fumaroles and gas vents across the region. Soil temperatures at 20 cm depth at SRST are well correlated with diffuse CO2 flux, and both parameters show little variation during the 2011–14 field surveys. Maximum temperatures were between 55–67 °C and associated CO2 discharge was around 12–18 tonnes per day. The carbon isotope composition of CO2 is fairly uniform across the area ranging between –3.7 to –4.4 ‰. The gas composition of the Shady Rest fumarole however has varied with time, and H2S concentrations in the gas have been increasing since 2009.

  12. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    Science.gov (United States)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  13. An Approach for Predicting the Shape and Size of a Buried Basic Object on Surface Ground Penetrating Radar System

    Directory of Open Access Journals (Sweden)

    Nana Rachmana Syambas

    2012-01-01

    Full Text Available Surface ground-penetrating radar (GPR is one of the radar technology that is widely used in many applications. It is nondestructive remote sensing method to detect underground buried objects. However, the output target is only hyperbolic representation. This research develops a system to identify a buried object on surface GPR based on decision tree method. GPR data of many basic objects (with circular, triangular, and rectangular cross-section are classified and extracted to generate data training model as a unique template for each type of basic object. The pattern of object under test will be known by comparing its data with the training data using a decision tree method. A simple powerful algorithm to extract feature parameters of object which is based on linear extrapolation is proposed. The result showed that tested buried basic objects can be correctly predicted and the developed system works properly.

  14. A semiempirical study of the optimized ground and excited state potential energy surfaces of retinal and its protonated Schiff base

    Science.gov (United States)

    Parusel, A. B.; Pohorille, A.

    2001-01-01

    The electronic ground and first excited states of retinal and its Schiff base are optimized for the first time using the semiempirical AM1 Hamiltonian. The barrier for rotation about the C(11)-C(12) double bond is characterized by variation of both the twist angle delta(C(10)-C(11)-C(12)-C(13)) and the bond length d(C(11)-C(12)). The potential energy surface is obtained by varying these two parameters. The calculated ground state rotational barrier is equal to 15.6 kcal/mol for retinal and 20.5 kcal/mol for its Schiff base. The all-trans conformation is more stable by 3.7 kcal/mol than the 11-cis geometry. For the first excited state, S(1,) the 90 degrees twisted geometry represents a saddle point for retinal with the rotational barrier of 14.6 kcal/mol. In contrast, this conformation is an energy minimum for the Schiff base. It can be easily reached at room temperature from the planar minima since it is separated from them by a barrier of only 0.6 kcal/mol. The 90 degrees minimum conformation is more stable than the all-trans by 8.6 kcal/mol. We are thus able to present a reaction path on the S(1) surface of the retinal Schiff base with an almost barrier-less geometrical relaxation into a twisted minimum geometry, as observed experimentally. The character of the ground and first excited singlet states underscores the need for the inclusion of double excitations in the calculations.

  15. Influence of Holocene stratigraphic architecture on ground surface settlements: A case study from the City of Pisa (Tuscany, Italy)

    Science.gov (United States)

    Sarti, Giovanni; Rossi, Veronica; Amorosi, Alessandro

    2012-12-01

    The Holocene stratigraphic architecture of modern coastal and deltaic plains has peculiar characteristics that may influence ground surface settlements. In the Pisa urban area, the inhomogeneous spatial distribution of geotechnically weak layers, typically formed during the mid-late Holocene (highstand) coastal progradation, is inferred to be responsible for urban ground settlement and building damage, as evidenced by the tilt of several surface structures, among which the famous Leaning Tower of Pisa is the most prominent. On the basis of integrated stratigraphic, sedimentological and geotechnical data from a wide georeferenced database, three facies associations with high deformability potential (Units 1-3) are identified in the uppermost 30 m as opposed to depositional facies (Units 4-5) with higher geotechnical strength. Whereas Unit 1 represents a thick, laterally extensive lagoonal clay deposit, the overlying highly deformable units (Units 2-3) show more discontinuous spatial distribution controlled by the Holocene paleohydrographic evolution of the Arno coastal plain. Unit 2, dated between the Neolithic and the Etruscan age (ca. 5000-2000 yr BP), is composed of swamp clays and silty clays recording lagoon infilling due to Arno Delta progradation. Units 3 and 4, which consist of wet levee deposits and stiff floodplain clays, respectively, formed during the subsequent phases of alluvial plain construction started around the Roman age (from ca. 2000 yr BP). Whereas Units 3 and 4 are recorded within the uppermost 5 m, fluvial and distributary channel sands (Unit 5) cut the underlying deltaic-alluvial succession at various stratigraphic levels, down to Unit 1. The spatial distribution of these units gives rise to three, locally juxtaposed, stratigraphic motifs in Pisa underground, reflecting different potential risks for settlement under building loads. We show how lateral changes in stratigraphic architecture account for the irregular spatial distribution of

  16. Estimating Saturated Hydraulic Conductivity from Surface Ground-Penetrating Radar Monitoring of Infiltration

    CERN Document Server

    Léger, Emmanuel; Coquet, Yves

    2013-01-01

    In this study we used Hydrus-1D to simulate water infiltration from a ring infiltrometer. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity while knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the depth of the inflection point of the water content profile simulated at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relationship to invert the saturated hydraulic conductivity for constant and falling head infiltrations. We present our method on synthetic examples and on two experiments carried out on sand. We f...

  17. STUDY OF PHYSICO-CHEMICAL PROPERTIES OF THE SURFACE AND GROUND WATER

    Directory of Open Access Journals (Sweden)

    A. Y. Al-Ghamdi

    2014-01-01

    Full Text Available Of all the natural resources, water is unarguably the most essential and precious. Life began in water and life is nurtured by water. Ninety seven percent of the world’s water is found in oceans. Only 2.5% of the world’s water are non-saline fresh water. Saudi Arabia is a desert country with no permanent rivers or lakes and very little rainfall. Water is scarce and extremely valuable and with the country’s rapid growth, the demand for water is increasing. Seven samples of water are collected, six samples from Wells (1-6 and the last sample from Al-Mallah Valley Dam, Mukhwa (7, Al-Mukhwah, in order to find impurities and pollutants and found some suitable solution. Some physical properties of water are measured such as turbidity, conductivity, pH and also, some pollutants such as iron, manganese, nitrate, nitrite fluoride, phosphate as well as calcium, magnesium, sulfate and chloride as well as detection of some microorganisms. The results shown that, the water of Al-Mallah Valley Dam has a high percentage of turbidity as a result of contamination of water with clay, plant residues and also some dead animals. On the other hand, the samples of ground water have high conductivity and high value of fluoride, nitrite, nitrate contents as well as Mn and Fe. Also the result of microorganisms showed the presence of some the water of Al-Mallah Valley Dam can be treated with a very simple method and become suitable for drinking. Also ground water can be treated with a suitable method to reduce the total hardness and some pollutants. But its content of fluoride is higher than that of gulf specifications so it must be treated before used.

  18. Characterizing Geothermal Surface Manifestation Based on Multivariate Geostatistics of Ground Measurements Data

    Science.gov (United States)

    Ishaq; Nur Heriawan, Mohamad; Saepuloh, Asep

    2016-09-01

    Mt. Wayang Windu is one of geothermal field located in West Java, Indonesia. The characterization of steam spots at surface manifestation zones based on the soil physical measurements of the area is presented in this study. The multivariate geostatistical methods incorporating the soil physical parameter data were used to characterize the zonation of geothermal surface manifestations. The purpose of this study is to evaluate the performance of spatial estimation method of multivariate geostatistics using Ordinary Cokriging (COK) to characterize the physical properties of geothermal surface manifestations at Mt. Wayang Windu. The COK method was selected because this method is favorable when the secondary variables has more number than the primary variables. There are four soil physical parameters used as the basis of COK method, i.e. Electrical Conductivity, Susceptibility, pH, and Temperature. The parameters were measured directly at and around geothermal surface manifestations including hot springs, fumaroles, and craters. Each location of surface manifestations was measured about 30 points with 30 x 30 m grids. The measurement results were analyzed by descriptive statistics to identify at the nature of data. The correlation among variables was analyzed using linear regression. When the correlation coefficient among variables is higher, the estimation results is expected to have better Linear Coregionalization Model (LCM). LCM was used to analyze the spatial correlation of each variable based on their variogram and cross-variogram model. In oder to evaluate the performance of multivariate geostatistical using COK method, a Root Mean Square Error (RMSE) was performed. Estimation result using COK method is well applicable for characterizing the surface physics parameters of radar images data.

  19. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    Science.gov (United States)

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near

  20. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    DEFF Research Database (Denmark)

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian

    2012-01-01

    We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set ...

  1. Expanding surfaces: The viewer immersed in multiple modes of representation Following the drawing on the ground

    DEFF Research Database (Denmark)

    Carbone, Claudia

    2015-01-01

    The experience of the exhibition On the Surface – a retrospective of the work of Metis, the Edinburgh-based atelier of Mark Dorrian and Adrian Hawker, presented in the exhibition space of The Aarhus School of Architecture – is choreographed as a walk over superimposed fragments of architectural...

  2. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  3. Realization of Multi-Stable Ground States in a Nematic Liquid Crystal by Surface and Electric Field Modification

    Science.gov (United States)

    Gwag, Jin Seog; Kim, Young-Ki; Lee, Chang Hoon; Kim, Jae-Hoon

    2015-06-01

    Owing to the significant price drop of liquid crystal displays (LCDs) and the efforts to save natural resources, LCDs are even replacing paper to display static images such as price tags and advertising boards. Because of a growing market demand on such devices, the LCD that can be of numerous surface alignments of directors as its ground state, the so-called multi-stable LCD, comes into the limelight due to the great potential for low power consumption. However, the multi-stable LCD with industrial feasibility has not yet been successfully performed. In this paper, we propose a simple and novel configuration for the multi-stable LCD. We demonstrate experimentally and theoretically that a battery of stable surface alignments can be achieved by the field-induced surface dragging effect on an aligning layer with a weak surface anchoring. The simplicity and stability of the proposed system suggest that it is suitable for the multi-stable LCDs to display static images with low power consumption and thus opens applications in various fields.

  4. Modeling of ground temperatures in South Shetlands (Antarctic Peninsula): Forcing a land surface model with the reanalysis ERA-Interim

    Science.gov (United States)

    João Rocha, Maria; Dutra, Emanuel; Vieira, Gonçalo; Miranda, Pedro; Ramos, Miguel

    2010-05-01

    This study focus on Livingston Island (South Shetlands Antarctic Peninsula), one of the Earth's regions where warming has been more significant in the last 50 years. Our work is integrated in a project focusing on studying the influence of climate change on permafrost temperatures, which includes systematic and long-term terrain monitoring and also modeling using land surface models. A contribution will be the evaluation of the possibilities for using land surface modeling approaches to areas of the Antarctic Peninsula with lack of data on observational meteorological forcing data, as well as on permafrost temperatures. The climate variability of the Antarctic Peninsula region was studied using the new reanalysis product from European Centre for Medium-Range Weather Forecasts (ECMWF) Era-Interim and observational data from boreholes run by our group. Monthly and annual cycles of near surface climate variables are compared. The modeling approach includes the HTESSEL (Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land) forced with ERA-Interim for modeling ground temperatures in the study region. The simulation results of run of HTESSEL are compared against soil temperature observations. The results show a favorable match between simulated and observed soil temperatures. The use of different forcing parameters is compared and the model vs. observation results from different results is analyzed. The main variable needing further improvement in the modeling is snow cover. The developed methodology provides a good tool for the analysis of the influence of climate variability on permafrost of the Maritime Antarctic.

  5. Ground and surface temperature variability for remote sensing of soil moisture in a heterogeneous landscape

    Science.gov (United States)

    Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Finn, M.

    2009-01-01

    At the Little River Watershed (LRW) heterogeneous landscape near Tifton Georgia US an in situ network of stations operated by the US Department of Agriculture-Agriculture Research Service-Southeast Watershed Research Lab (USDA-ARS-SEWRL) was established in 2003 for the long term study of climatic and soil biophysical processes. To develop an accurate interpolation of the in situ readings that can be used to produce distributed representations of soil moisture (SM) and energy balances at the landscape scale for remote sensing studies, we studied (1) the temporal and spatial variations of ground temperature (GT) and infra red temperature (IRT) within 30 by 30 m plots around selected network stations; (2) the relationship between the readings from the eight 30 by 30 m plots and the point reading of the network stations for the variables SM, GT and IRT; and (3) the spatial and temporal variation of GT and IRT within agriculture landuses: grass, orchard, peanuts, cotton and bare soil in the surrounding landscape. The results showed high correlations between the station readings and the adjacent 30 by 30 m plot average value for SM; high seasonal independent variation in the GT and IRT behavior among the eight 30 by 30 m plots; and site specific, in-field homogeneity in each 30 by 30 m plot. We found statistical differences in the GT and IRT between the different landuses as well as high correlations between GT and IRT regardless of the landuse. Greater standard deviations for IRT than for GT (in the range of 2-4) were found within the 30 by 30 m, suggesting that when a single point reading for this variable is selected for the validation of either remote sensing data or water-energy models, errors may occur. The results confirmed that in this landscape homogeneous 30 by 30 m plots can be used as landscape spatial units for soil moisture and ground temperature studies. Under this landscape conditions small plots can account for local expressions of environmental

  6. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Delahaye, Thibault, E-mail: thibault.delahaye@univ-reims.fr; Rey, Michaël, E-mail: michael.rey@univ-reims.fr; Tyuterev, Vladimir G. [Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, BP 1039, F-51687, Reims Cedex 2 (France); Nikitin, Andrei [Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 634055 Tomsk, Russia and Quamer, State University of Tomsk (Russian Federation); Szalay, Péter G. [Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest (Hungary)

    2014-09-14

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C{sub 2}H{sub 4} obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C{sub 2}H{sub 4} molecule was obtained with a RMS(Obs.–Calc.) deviation of 2.7 cm{sup −1} for fundamental bands centers and 5.9 cm{sup −1} for vibrational bands up to 7800 cm{sup −1}. Large scale vibrational and rotational calculations for {sup 12}C{sub 2}H{sub 4}, {sup 13}C{sub 2}H{sub 4}, and {sup 12}C{sub 2}D{sub 4} isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm{sup −1} are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of {sup 13}C{sub 2}H{sub 4} and {sup 12}C{sub 2}D{sub 4} and rovibrational levels of {sup 12}C{sub 2}H{sub 4}.

  7. Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau

    Science.gov (United States)

    Gu, Lianglei; Yao, Jimin; Hu, Zeyong; Zhao, Lin

    2015-02-01

    Surface energy budgets were calculated using turbulent flux observation data and meteorological gradient data collected in 2008 from two sites: BJ, located in a seasonally frozen ground region, and Tanggula, located in a permafrost region. In 2008, the energy closure ratios for the BJ and Tanggula sites were 0.74 and 0.73, respectively, using 30-min instantaneous energy flux data but 0.87 and 0.99, respectively, using daily average energy flux data. Therefore, the energy closure status is related to the time scale that is used for the study. The variation in the surface energy budget at the two sites was similar: The sensible heat flux (Hs) was relatively high in spring and reduced in summer but gradually increased in autumn. The latent heat flux (LE) was higher in summer and autumn but lower in winter and spring. Comparably, the starting time for the significant increase in LE occurred earlier at the Tanggula site than that at the BJ site, because the freezing and thawing progress of the active layer of permafrost at Tanggula site significantly affected the Hs and LE distributions, but the freezing and thawing processes of the soil at BJ site did not significantly affect the Hs and LE distributions. The monsoon significantly affected the variation in Hs and LE at both the BJ and Tanggula sites. Regarding the diurnal variation of the energy budget at the two sites, the daily maximum of net radiation (Rn) occurred at approximately 14:00 Beijing Time, and the daily maximum of ground heat flux (G0) was earlier than those of Hs and LE. The albedo and Bowen ratio for the two sites were both low in summer but high in winter. The albedo increased significantly but the Bowen ratio became lower or even negative when the surface was covered with deep snow.

  8. Effect of Surface Geology on Ground Motions: The Case of Station TAP056 - Chutzuhu Site

    Directory of Open Access Journals (Sweden)

    Kuo-Liang Wen

    2008-01-01

    Full Text Available In the Tatun mountain area of northern Taiwan are two strong motion stations approximately 2.5 km apart, TAP056 and TAP066 of the TSMIP network. The accelerometer at station TAP056 is often triggered by earthquakes, but that at TAP066 station is not. Comparisons of vertical and horizontal peak ground accelerations reveal PGA in the vertical, east-west, and north-south components at TAP056 station to be 3.89, 7.57, and 5.45 times those at station TAP066, respectively. The PGA ratio does not seem to be related to earthquake source or path. Fourier spectra of earthquake records at station TAP056 always have approximately the same dominant frequency; however, those at station TAP066 are different due to different sources and paths of different events. This shows that spectra at TAP056 station are mainly controlled by local site effects. The spectral ratios of TAP056/TAP066 show the S-wave is amplified at around 8 ~ 10 Hz. The horizontal/vertical spectral ratios of station TAP056 also show a dominant frequency at about 6 and 8 ~ 10 Hz. After dense microtremor surveying and the addition of one accelerometer just 20 meters away from the original observation station, we can confirm that the top soft soil layer upon which the observation station is constructed generates the local site response at station TAP056.

  9. Mapping of the cumulative β-ray dose on the ground surface surrounding the Fukushima area

    Science.gov (United States)

    Endo, Satoru; Kajimoto, Tsuyoshi; Tanaka, Kenichi; Nguyen, Thanh T.; Hayashi, Gohei; Imanaka, Tetsuji

    2015-01-01

    A large amount of the fission products released by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on 11 March 2011 was deposited in a wide area from Tohoku to northern Kanto. A map of the estimated cumulative β-ray dose (70 μm dose equivalent) on the soil surface for one year after the FDNPP accident has been prepared using previously reported calculation methods and the 2-km mesh survey data by MEXT. From this map of estimated dose, areas with a high cumulative β-ray dose on the soil surface for one year after the FDNPP accident were found to be located in the Akogi-Teshichiro to Akogi-Kunugidaira region in Namie Town, and in the southern Futaba Town to the northern Tomioka Town region. The highest estimated cumulative β-ray dose was 710 mSv for one year at Akogi-Teshichiro, Namie Town. PMID:26519736

  10. Type of Ground Surface during Plyometric Training Affects the Severity of Exercise-Induced Muscle Damage

    Directory of Open Access Journals (Sweden)

    Hamid Arazi

    2016-03-01

    Full Text Available The purpose of this study was to compare the changes in the symptoms of exercise-induced muscle damage from a bout of plyometric exercise (PE; 10 × 10 vertical jumps performed in aquatic, sand and firm conditions. Twenty-four healthy college-aged men were randomly assigned to one of three groups: Aquatic (AG, n = 8, Sand (SG, n = 8 and Firm (FG, n = 8. The AG performed PE in an aquatic setting with a depth of ~130 cm. The SG performed PE on a dry sand surface at a depth of 20 cm, and the FG performed PE on a 10-cm-thick wooden surface. Plasma creatine kinase (CK activity, delayed onset muscle soreness (DOMS, knee range of motion (KROM, maximal isometric voluntary contraction (MIVC of the knee extensors, vertical jump (VJ and 10-m sprint were measured before and 24, 48 and 72 h after the PE. Compared to baseline values, FG showed significantly (p < 0.05 greater changes in CK, DOMS, and VJ at 24 until 48 h. The MIVC decreased significantly for the SG and FG at 24 until 48 h post-exercise in comparison to the pre-exercise values. There were no significant (p > 0.05 time or group by time interactions in KROM. In the 10-m sprint, all the treatment groups showed significant (p < 0.05 changes compared to pre-exercise values at 24 h, and there were no significant (p > 0.05 differences between groups. The results indicate that PE in an aquatic setting and on a sand surface induces less muscle damage than on a firm surface. Therefore, training in aquatic conditions and on sand may be beneficial for the improvement of performance, with a concurrently lower risk of muscle damage and soreness.

  11. Commons problems, common ground: Earth-surface dynamics and the social-physical interdisciplinary frontier

    Science.gov (United States)

    Lazarus, E.

    2015-12-01

    In the archetypal "tragedy of the commons" narrative, local farmers pasture their cows on the town common. Soon the common becomes crowded with cows, who graze it bare, and the arrangement of open access to a shared resource ultimately fails. The "tragedy" involves social and physical processes, but the denouement depends on who is telling the story. An economist might argue that the system collapses because each farmer always has a rational incentive to graze one more cow. An ecologist might remark that the rate of grass growth is an inherent control on the common's carrying capacity. And a geomorphologist might point out that processes of soil degradation almost always outstrip processes of soil production. Interdisciplinary research into human-environmental systems still tends to favor disciplinary vantages. In the context of Anthropocene grand challenges - including fundamental insight into dynamics of landscape resilience, and what the dominance of human activities means for processes of change and evolution on the Earth's surface - two disciplines in particular have more to talk about than they might think. Here, I use three examples - (1) beach nourishment, (2) upstream/downstream fluvial asymmetry, and (3) current and historical "land grabbing" - to illustrate a range of interconnections between physical Earth-surface science and common-pool resource economics. In many systems, decision-making and social complexity exert stronger controls on landscape expression than do physical geomorphological processes. Conversely, human-environmental research keeps encountering multi-scale, emergent problems of resource use made 'common-pool' by water, nutrient and sediment transport dynamics. Just as Earth-surface research can benefit from decades of work on common-pool resource systems, quantitative Earth-surface science can make essential contributions to efforts addressing complex problems in environmental sustainability.

  12. Seismic interferometry of railroad induced ground motions: body and surface wave imaging

    Science.gov (United States)

    Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon

    2016-04-01

    Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.

  13. Monitoring of the ground surface temperature and the active layer in NorthEastern Canadian permafrost areas using remote sensing data assimilated in a climate land surface scheme.

    Science.gov (United States)

    Marchand, N.; Royer, A.; Krinner, G.; Roy, A.

    2014-12-01

    Projected future warming is particularly strong in the Northern high latitudes where increases of temperatures are up to 2 to 6 °C. Permafrost is present on 25 % of the northern hemisphere lands and contain high quantities of « frozen » carbon, estimated at 1400 Gt (40 % of the global terrestrial carbon). The aim of this study is to improve our understanding of the climate evolution in arctic areas, and more specifically of land areas covered by snow. The objective is to describe the ground temperature year round including under snow cover, and to analyse the active layer thickness evolution in relation to the climate variability. We use satellite data (fusion of MODIS land surface temperature « LST » and microwave AMSR-E brightness temperature « Tb ») assimilated in the Canadian Land Surface Scheme (CLASS) of the Canadian climate model coupled with a simple radiative transfer model (HUT). This approach benefits from the advantages of each of the data type in order to complete two objectives : 1- build a solid methodology for retrieving the ground temperature, with and without snow cover, in taïga and tundra areas ; 2 - from those retrieved ground temperatures, derive the summer melt duration and the active layer depth. We describe the coupling of the models and the methodology that adjusts the meteorological input parameters of the CLASS model (mainly air temperature and precipitations derived from the NARR database) in order to minimise the simulated LST and Tb ouputs in comparison with satellite measurements. Using ground-based meteorological data as validation references in NorthEastern Canadian tundra, the results show that the proposed approach improves the soil temperatures estimates when using the MODIS LST and Tb at 10 and 19 GHz to constrain the model in comparison with the model outputs without satellite data. Error analysis is discussed for the summer period (2.5 - 4 K) and for the snow covered winter period (2 - 3.5 K). Further steps are

  14. Results of ground-water, surface-water, and water-chemistry monitoring, Black Mesa area, northeastern Arizona, 1994

    Science.gov (United States)

    Littin, G.R.; Monroe, S.A.

    1995-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined areas of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1994, ground-water withdrawals for industrial and municipal use totaled about 7,000 acre-feet, which is an 8-percent increase from the previous year. Pumpage from the confined part of the aquifer increased by about 9 percent to 5,400 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 2 percent to 1,600 acre-feet. Water-level declines in the confined area during 1994 were recorded in 10 of 16 wells, and the median change was a decline of about 2.3 feet as opposed to a decline of 3.3 feet for the previous year. The median change in water levels in the unconfined area was a rise of 0.1 foot in 1994 as opposed to a decline of 0.5 foot in 1993. Measured low-flow discharge along Moenkopi Wash decreased from 3.0 cubic feet per second in 1993 to 2.9 cubic feet per second in 1994. Eleven low-flow measurements were made along Laguna Creek between Tsegi, Arizona, and Chinle Wash to determine the amount of discharge that would occur as seepage from the N aquifer under optimal base-flow conditions. Discharge was 5.6 cubic feet per second near Tsegi and 1.5 cubic feet per second above the confluence with Chinle Wash. Maximum discharge was 5.9 cubic feet per second about 4 miles upstream from Dennehotso. Discharge was measured at three springs. The changes in discharge at Burro and Whisky Springs were small and within the uncertainty of

  15. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin

    Science.gov (United States)

    Zhang, L.; Lu, Zhiming; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W.

    2012-01-01

    Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool to detect long-term seismotectonic motions by reducing the atmospheric artifacts, thereby providing more precise deformation signal. The commonly used approaches such as persistent scatterer InSAR (PSInSAR) and small baseline subset (SBAS) algorithms need to resolve the phase ambiguities in interferogram stacks either by searching a predefined solution space or by sparse phase unwrapping methods; however the efficiency and the success of phase unwrapping cannot be guaranteed. We present here an alternative approach - temporarily coherent point (TCP) InSAR (TCPInSAR) - to estimate the long term deformation rate without the need of phase unwrapping. The proposed approach has a series of innovations including TCP identification, TCP network and TCP least squares estimator. We apply the proposed method to the Los Angeles Basin in southern California where structurally active faults are believed capable of generating damaging earthquakes. The analysis is based on 55 interferograms from 32 ERS-1/2 images acquired during Oct. 1995 and Dec. 2000. To evaluate the performance of TCPInSAR on a small set of observations, a test with half of interferometric pairs is also performed. The retrieved TCPInSAR measurements have been validated by a comparison with GPS observations from Southern California Integrated GPS Network. Our result presents a similar deformation pattern as shown in past InSAR studies but with a smaller average standard deviation (4.6. mm) compared with GPS observations, indicating that TCPInSAR is a promising alternative for efficiently mapping ground deformation even from a relatively smaller set of interferograms. ?? 2011.

  16. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites.

    Science.gov (United States)

    Farmer, John G; Thomas, Rhodri P; Graham, Margaret C; Geelhoed, Jeanine S; Lumsdon, David G; Paterson, Edward

    2002-04-01

    Chromium concentrations of up to 91 mg l(-1) were found by ICP-OES for ground water from nine boreholes at four landfill sites in an area of S.E. Glasgow/S. Lanarkshire where high-lime chromite ore processing residue (COPR) from a local chemical works had been deposited from 1830 to 1968. Surface water concentrations of up to 6.7 mg l(-1) in a local tributary stream fell to 0.11 mg l(-1) in the River Clyde. Two independent techniques of complexation/colorimetry and speciated isotope dilution mass spectrometry (SIDMS) showed that Cr was predominantly (>90%) in hexavalent form (CrVI) as CrO4(2-), as anticipated at the high pH (7.5-12.5) of the sites. Some differences between the implied and directly determined concentrations of dissolved CrIII, however, appeared related to the total organic carbon (TOC) content. This was most significant for the ground water from one borehole that had the highest TOC concentration of 300 mg l(-1) and at which ultrafiltration produced significant decreases in Cr concentration with decreasing size fractions, e.g. complex. This showed for the main Cr-containing fraction, 100 kDa-0.45 microm, that the Cr was associated with a dark brown band characteristic of organic (humic) matter. Comparison of gel electrophoresis and FTIR results for ultrafilter retentates of ground water from this borehole with those for a borehole at another site where CrVI predominated suggested the influence of carboxylate groups, both in reducing CrVI and in forming soluble CrIII-humic complexes. The implications of this for remediation strategies (especially those based on the addition of organic matter) designed to reduce highly mobile and carcinogenic Cr(VI)O4(2-) to the much less harmful CrIII as insoluble Cr(OH)3 are discussed.

  17. The study of coastal ground surfaces to predict the ways of increasing efficiency of research mobile robots

    Science.gov (United States)

    Makarov, Vladimir; Kurkin, Andrey; Belyalov, Vladimir; Tyugin, Dmitry; Zezyulin, Denis

    2017-04-01

    The increase in spatial scales of studying coastal areas can be achieved by the use of mobile robotic systems (MRS) equipped with scanning equipment, video inspection system and positioning system. The project aims at increasing the capabilities for designing effective ground MRS through the use of advanced methods of forecasting characteristics of vehicle-terrain interaction in coastal zones, where hydrosphere, lithosphere, atmosphere and biosphere interact. In the period from 14 May to 18 June 2016 there was organized the expedition to Sakhalin Island for conducting full-scale testing autonomous MRS for coastal monitoring and forecasting marine natural disasters [Kurkin A.A., Zeziulin D.V., Makarov V.S., Zaitsev A.I., Belyaev A.M., Beresnev P.O., Belyakov V.V., Pelinovsky E.N., Tyugin D.Yu. Investigations of coastal areas of the Okhotsk sea using a ground mobile robot // Ecological systems and devices. 2016. No. 8. P. 11-17]. Within the framework of the expedition specific areas of terrain in the vicinity of Cape Svobodny were investigated (with the support of SRB AMR FEB RAS). Terrain areas were studied from the standpoint of possibility of the MRS movement. As a result of measuring all the necessary data on the physical-mechanical and geometric characteristics of the coastal zones, required to calculate the force factors acting on the MRS, and, accordingly, the parameters of its motion were received. The obtained data will be used for developing new statistical models of the physical-mechanical and geometrical characteristics of the coastal ground surfaces, creating methodology for assessing the efficiency and finding ways to optimize the design of the MRS.

  18. The effects of oxalate treatment on the smear layer of ground surfaces of human dentine.

    Science.gov (United States)

    Pashley, D H; Galloway, S E

    1985-01-01

    The layer was evaluated by scanning electron microscopy and by measurement of hydraulic conductance before and after 2-min topical treatment with potassium chloride, neutral potassium oxalate, half-neutralized oxalic acid or both neutral and acidic oxalates. The treated smear layers were then re-evaluated microscopically and functionally both before and after acid challenge. The layers treated with KCl were not altered either microscopically or functionally and were susceptible to acid etching. Dentine surfaces treated with either oxalate solutions became less permeable and were acid-resistant.

  19. Pesticide levels in ground and surface waters of Primavera do Leste Region, Mato Grosso, Brazil.

    Science.gov (United States)

    Dores, Eliana F G C; Carbo, Leandro; Ribeiro, Maria L; De-Lamonica-Freire, Ermelinda M

    2008-08-01

    Residues of the herbicides simazine, metribuzin, metolachlor, trifluralin, atrazine, and two metabolites of atrazine, deisopropylatrazine (DIA) and deethylatrazine (DEA), are surveyed in the surface and groundwater of the Primavera do Leste region, Mato Grosso, Brazil during September and December 1998 and April 1999. Different water source sampling stations of groundwater (irrigation water well, drinking water well, and water hole) and surface water (dam and river) are set up based on agricultural land use. A solid-phase extraction procedure followed by gas chromatography-nitrogen-phosphorus detection is used for the determination of these compounds. All compounds are detected at least once in water samples. A temporal trend of pesticide contamination is observed, with the highest contamination frequency occurring in December during the main application season. Metribuzin shows the highest individual detection frequencies throughout the monitoring period, followed by metolachlor, simazine, and DEA. The maximum mean concentrations of pesticides in this study are in the range from 0.14 to 1.7 microg/L. We deduct that the contamination of water resources is predominantly caused by non-point pollution of pesticides used in intensive cash-crop cultures of the Cerrado area. Therefore, a continuous monitoring of pesticide concentrations in water resources of this tropical region is necessary to detect the longer term contamination trends and developing health risks.

  20. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2009-12-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer, CAR, and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  1. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2010-03-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  2. Assessment of dry season surface, ground, and treated water quality in the Cape Coast municipality of Ghana.

    Science.gov (United States)

    Quagraine, E K; Adokoh, C K

    2010-01-01

    This aim of this monitoring was to assess water quality in a dry season for the Cape Coast municipality in Ghana, which has been experiencing chronic water shortages. Fifteen different sampling stations--four surface, five ground, and six tap water samples--were analyzed for physicochemical and microbiological parameters during January to April 2005. Levels or trends in water quality that may be deleterious to sensitive water uses, including drinking, irrigation, and livestock watering have been noted with reference to well-established guidelines. Exceedances to some health-based drinking water guidelines included positive coliform for various water samples; pH for all groundwater samples (pH 5.9+/-0.3); conductivity for 50% groundwater; color for about a third of groundwater and tap water; Mn for 44% tap water, 67% groundwater, and 50% surface water samples. The World Health Organization laundry staining Fe guideline of 0.3 mg/l was exceeded by 75% of surface water, 44% tap water, and 53% groundwater samples. The corresponding Mn guideline of 0.1 mg/l was exceeded by all the water samples. Respectively, all surface water samples and also 75% of the surface water exceeded some known Cu and Zn guideline for the protection of aquatic life. Compared to some historic data for Fosu Lagoon, the current study shows a lowering of approximately 1 pH unit, increase of approximately 65% NH3, one to two orders of magnitude increase in PO4(3-), and more than two orders of magnitude increase in NO3-. In several instances, tap water samples collected at the consumers' end of the distribution system did not reflect on the true quality of the treated water. Mn, SO4(2-), PO4(3-), Cu, and Zn were among the chemical contaminations observed to occur in the distribution system.

  3. Areal-averaged and Spectrally-resolved Surface Albedo from Ground-based Transmission Data Alone: Toward an Operational Retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.

    2014-08-22

    We present here a simple retrieval of the areal-averaged and spectrally resolved surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties in the visible and near-infrared spectral range. The feasibility of our approach for the routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements:(1) spectrally resolved atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR) at wavelength 415, 500, 615, 673, and 870 nm, (2) tower-based measurements of local surface albedo at the same wavelengths, and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both long (2008-2013) and short (April-May, 2010) periods at the ARM Southern Great Plains (SGP) site and the NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE), which is defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved area-averaged albedo, is quite small (RMSE≤0.01) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between the tower-based daily averages of surface albedo for the completely overcast and non-overcast conditions is also demonstrated. This agreement suggests that our retrieval originally developed for the overcast conditions likely will work for non-overcast conditions as well.

  4. Dynamic subsidence prediction of ground surface above salt cavern gas storage considering the creep of rock salt

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new model is proposed to predict the dynamic subsidence of ground surface above salt cavern gas storage during the leaching and storage, which takes into account the creep of rock salt. In the model, the extended form of Gaussian curve is adopted to figure out the shape of subsidence areas. The corresponding theoretical formulas are derived. In addition, parameters are studied to investigate the surface subsidence as a function of the salt ejection rate, internal pressure, buried depth, diameter, height, running time, etc. Through an example, the subsidence of the salt cavern gas storage located at Jiangsu of China obtained by the new model was compared with those by Peter A F formula, Schober & Sroka formula and FLAC3D through simulation. The results showed the proposed model is precise and correct, and can meet the actual engineering demands. The surface subsidence is equidirectional with the increase of salt ejection rate, depth, diameter, height, and running time, but reverse to the increase of internal pressure. The depth, diameter, running time and internal pressure have great effects on the subsidence, whereas the salt ejection rate and height have little influences on it.

  5. Hydro-economic modeling of conjunctive ground and surface water use to guide sustainable basin management

    Science.gov (United States)

    Taher Kahil, Mohamed; Ward, Frank A.; Albiac, Jose; Eggleston, Jack; Sanz, David

    2016-04-01

    Water demands for irrigation, urban and environmental uses in arid and semiarid regions continue to grow, while freshwater supplies from surface and groundwater resources are becoming scarce and are expected to decline with climate change. Policymakers in these regions face hard choices on water management and policies. Hydro-economic modeling is the state-of-the art tool that could be used to guide the design and implementation of sustainable water management policies in basins. The strength of hydro-economic modeling lies in its capacity to integrate key biophysical and socio-economic components within a unified framework. A major gap in developments on hydro-economic modeling to date has been the weak integration of surface and groundwater flows, based on the theoretically correct Darcy equations used by the hydrogeological community. The modeling approach taken here is integrated, avoiding the single-tank aquifer assumption, avoiding simplified assumptions on aquifer-river linkages, and bypassing iterations among separate hydrological and economic models. The groundwater flow formulation used in this paper harnesses the standard finite difference expressions for groundwater flow and groundwater-surface water exchange developed in the USGS MODFLOW groundwater model. The methodological contribution to previous modeling efforts is the explicit specification of aquifer-river interactions, important when aquifer systems make a sizable contribution to basin resources. The modeling framework is solved completely, and information among the economic and hydrological components over all periods and locations are jointly and simultaneously determined. This novel framework is applied to the Jucar basin (Spain), which is a good experimental region for an integrated basin scale analysis. The framework is used for assessing the impacts of a range of climate change scenarios and policy choices, especially the hydrologic, land use, and economic outcomes. The modeling framework

  6. A feasibility study to estimate minimum surface-casing depths of oil and gas wells to prevent ground-water contamination in four areas of western Pennsylvania

    Science.gov (United States)

    Buckwalter, T.F.; Squillace, P.J.

    1995-01-01

    Hydrologic data were evaluated from four areas of western Pennsylvania to estimate the minimum depth of well surface casing needed to prevent contamination of most of the fresh ground-water resources by oil and gas wells. The areas are representative of the different types of oil and gas activities and of the ground-water hydrology of most sections of the Appalachian Plateaus Physiographic Province in western Pennsylvania. Approximate delineation of the base of the fresh ground-water system was attempted by interpreting the following hydrologic data: (1) reports of freshwater and saltwater in oil and gas well-completion reports, (2) water well-completion reports, (3) geophysical logs, and (4) chemical analyses of well water. Because of the poor quality and scarcity of ground-water data, the altitude of the base of the fresh ground-water system in the four study areas cannot be accurately delineated. Consequently, minimum surface-casing depths for oil and gas wells cannot be estimated with confidence. Conscientious and reliable reporting of freshwater and saltwater during drilling of oil and gas wells would expand the existing data base. Reporting of field specific conductance of ground water would greatly enhance the value of the reports of ground water in oil and gas well-completion records. Water-bearing zones in bedrock are controlled mostly by the presence of secondary openings. The vertical and horizontal discontinuity of secondary openings may be responsible, in part, for large differences in altitudes of freshwater zones noted on completion records of adjacent oil and gas wells. In upland and hilltop topographies, maximum depths of fresh ground water are reported from several hundred feet below land surface to slightly more than 1,000 feet, but the few deep reports are not substantiated by results of laboratory analyses of dissolved-solids concentrations. Past and present drillers for shallow oil and gas wells commonly install surface casing to below the

  7. Ground-water-level monitoring, basin boundaries, and potentiometric surfaces of the aquifer system at Edwards Air Force Base, California, 1992

    Science.gov (United States)

    Rewis, D.L.

    1995-01-01

    A ground-water-level monitoring program was implemented at Edwards Air Force Base, California, from January through December 1992 to monitor spatial and temporal changes in poten-tiometric surfaces that largely are affected by ground-water pumping. Potentiometric-surface maps are needed to determine the correlation between declining ground- water levels and the distribution of land subsidence. The monitoring program focused on areas of the base where pumping has occurred, especially near Rogers Lake, and involved three phases of data collection: (1) well canvassing and selection, (2) geodetic surveys, and (3) monthly ground-water-level measurements. Construction and historical water- level data were compiled for 118 wells and pi-ezometers on or near the base, and monthly ground-water-level measurements were made in 82 wells and piezometers on the base. The compiled water-level data were used in conjunction with previously collected geologic data to identify three types of no-flow boundaries in the aquifer system: structural boundaries, a principal-aquifer boundary, and ground-water divides. Heads were computed from ground-water-level measurements and land-surface altitudes and then were used to map seasonal potentiometric surfaces for the principal and deep aquifers underlying the base. Pumping has created a regional depression in the potentiometric surface of the deep aquifer in the South Track, South Base, and Branch Park well-field area. A 15-foot decline in the potentiometric surface from April to September 1992 and 20- to 30-foot drawdowns in the three production wells in the South Track well field caused locally unconfined conditions in the deep aquifer.

  8. Application of ESPRIT in Broad Beam HF Ground Wave Radar Sea Surface Current Mapping

    Institute of Scientific and Technical Information of China (English)

    Liu Dan-hong; Wu Xiong-bin; Wen Bi-yang; Cheng Feng

    2004-01-01

    HF surface wave radar system OSMAR2000 is a broad-beam sea-state detecting radar. ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) algorithm is proposed to apply in DOA (direction of arrival) determination of sea echoes. The algorithm of ESPRIT is briefly introduced first. Then discussions are made on the technique for application in the OSMAR2000 framework. Numerical simulation results are presented to demonstrate the feasibility of radial current mapping based on this method. The algorithm manifests significant performance and computational advantages compared with that of MUSIC. Data acquired by OSMAR2000 are processed to give radial current map and the synthesized vector currents are compared with the in-situ measurement with traditional means. The results show the validity of ESPRIT application in DOA determination for broad-beam radar.

  9. W-Band Characterization of Grounded Frequency Selective Surface Arrays Composed of Nonequal Slot Length Subarrays

    Directory of Open Access Journals (Sweden)

    S. Islam

    2009-01-01

    Full Text Available We present the design and construction of Frequency Selective Surface arrays composed of two subarrays of different slot lengths. We investigated their response variations with the variation of slot length differences of the elementary sub-arrays. Such nonhomogeneous arrays cannot be simulated with Computer Aided Design (CAD programs because the boundary conditions are not fulfilled by the simulator. In infinite array simulation, the periodic boundary conditions are prescribed on the walls of the unit cell, whereas in the case of sub-arrays of unequal slot length such boundary conditions are not applicable. The CAD simulation of such combined array gives incorrect values of amplitude and phase responses. In this work, we investigate the characteristics of such complex arrays by using heuristic experimental approach. The results of the experimental approach demonstrate that the resultant reflection amplitude and phase of such complex array depend on the difference of slot lengths (ΔL of the two sub-arrays.

  10. From Ground Truth to Space: Surface, Subsurface and Remote Observations Associated with Nuclear Test Detection

    Science.gov (United States)

    Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.

    2016-12-01

    Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.

  11. Surface and Ground Water Quality in Köprüören Basin (Kütahya), Turkey

    Science.gov (United States)

    Arslan, Şebnem; Çelik, Mehmet; Erdem Dokuz, Uǧur; Abadi Berhe, Berihu

    2014-05-01

    In this study, quality of the water resources in Köprüören Basin, located to the west of Kütahya city in western Anatolia, were investigated. The total catchment area of the basin is 275 km2 and it is located upstream of Kütahya and Eskişehir plains. Therefore, besides 6,000 people residing in the basin, a much larger population will be impacted by the quality of surface and groundwater resources. Groundwater occurs under confined conditions in the limestones of Pliocene units. Groundwater flow is from north to south and south to north towards Kocasu stream, which flows to Enne Dam. The surface and ground water quality in this area are negatively affected by the mining activities. In the northern part of the area, there are coal deposits present in Miocene Tunçbilek formation. Ground waters in contact with the coal deposits contain low concentrations of arsenic (up to 30 µg/l). In the southern part, the only silver deposit of Turkey is present, which is developed in metamorphic basement rocks, Early Miocene volcanics and Pliocene units near Gümüşköy (Gümüş means silver, köy means village in Turkish). The amount of silver manufactured annually in this silver plant is huge and comprises about 1% of the World's Silver Production. The wastes, enriched in cyanide, arsenic, stibnite, lead and zinc, are stored in waste pools and there is extensive leakage of these heavy metals from these pools. Therefore, surface waters, soils and plants in the affected areas contain high concentrations of arsenic, stibnite and lead. The As, Sb, Pb and Zn concentrations are up to 733 µg/l, 158 µg/l, 48 µg/l, and 286 µg/l in surface waters (in dry season), 6180 ppm, 410 ppm, 4180 ppm, 9950 ppm in soils and 809 ppm, 399 ppm, 800 ppm, 2217 ppm in plants, respectively. Today, most of the As, Sb, Pb and Zn are absorbed by the soils and only a small part are dissolved in water. However, conditions might change in future leading to desorption of these contaminants. Therefore

  12. High resolution imaging of vadose zone transport using surface and crosswell ground penetrating radar methods

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kenneth H.; Kowalsky, Mike B.; Peterson, John E.

    2002-11-05

    To effectively clean up many contaminated sites there is a need for information on heterogeneities at scales ranging from one centimeter to tens of meters, as these features can alter contaminant transport significantly. At the Department of Energy's Hanford, Washington site heterogeneities of interest can range from localized phenomena such as silt or gravel lenses, fractures, clastic dikes, to large-scale lithologic discontinuities. In the vadose zone it is critical to understand the parameters controlling flow. These features have been suspected of leading to funneling and fingering, additional physical mechanisms that could alter and possibly accelerate the transport of contaminants to underlying groundwater. For example, it has been observed from the studies to date that over relatively short distances there are heterogeneities in the physical structure of the porous medium and structural differences between repacked soil cores and the field site from which the materials initially came (Raymond and Shdo, 1966). Analysis of cores taken from the vadose zone (i.e., soil surface to water table) has been useful in identifying localized zones of contamination. Unfortunately, these analyses are sparse (limited to a few boreholes) and extremely expensive. The high levels of radioactivity at many of the contaminated sites increase drilling and sample costs and analysis time. Cost of drilling and core analysis for the SX tank farm has exceeded $1M per borehole (50 meter deep) for sampling. The inability to track highly mobile species through the vadose zone highlights an important need: the need for methods to describe the complete vadose zone plume and to determine processes controlling accelerated contamination of groundwater at Hanford. A combination of surface and crosswell (i.e. borehole) geophysical measurements is one means to provide this information. The main questions addressed with the radar methods in this study are: (1) What parts of the vadose zone

  13. Estimating Daily Maximum and Minimum Land Air Surface Temperature Using MODIS Land Surface Temperature Data and Ground Truth Data in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Phan Thanh Noi

    2016-12-01

    Full Text Available This study aims to evaluate quantitatively the land surface temperature (LST derived from MODIS (Moderate Resolution Imaging Spectroradiometer MOD11A1 and MYD11A1 Collection 5 products for daily land air surface temperature (Ta estimation over a mountainous region in northern Vietnam. The main objective is to estimate maximum and minimum Ta (Ta-max and Ta-min using both TERRA and AQUA MODIS LST products (daytime and nighttime and auxiliary data, solving the discontinuity problem of ground measurements. There exist no studies about Vietnam that have integrated both TERRA and AQUA LST of daytime and nighttime for Ta estimation (using four MODIS LST datasets. In addition, to find out which variables are the most effective to describe the differences between LST and Ta, we have tested several popular methods, such as: the Pearson correlation coefficient, stepwise, Bayesian information criterion (BIC, adjusted R-squared and the principal component analysis (PCA of 14 variables (including: LST products (four variables, NDVI, elevation, latitude, longitude, day length in hours, Julian day and four variables of the view zenith angle, and then, we applied nine models for Ta-max estimation and nine models for Ta-min estimation. The results showed that the differences between MODIS LST and ground truth temperature derived from 15 climate stations are time and regional topography dependent. The best results for Ta-max and Ta-min estimation were achieved when we combined both LST daytime and nighttime of TERRA and AQUA and data from the topography analysis.

  14. Field experiment provides ground truth for surface nuclear magnetic resonance measurement

    Science.gov (United States)

    Knight, R.; Grunewald, E.; Irons, T.; Dlubac, K.; Song, Y.; Bachman, H.N.; Grau, B.; Walsh, D.; Abraham, J.D.; Cannia, J.

    2012-01-01

    The need for sustainable management of fresh water resources is one of the great challenges of the 21st century. Since most of the planet's liquid fresh water exists as groundwater, it is essential to develop non-invasive geophysical techniques to characterize groundwater aquifers. A field experiment was conducted in the High Plains Aquifer, central United States, to explore the mechanisms governing the non-invasive Surface NMR (SNMR) technology. We acquired both SNMR data and logging NMR data at a field site, along with lithology information from drill cuttings. This allowed us to directly compare the NMR relaxation parameter measured during logging,T2, to the relaxation parameter T2* measured using the SNMR method. The latter can be affected by inhomogeneity in the magnetic field, thus obscuring the link between the NMR relaxation parameter and the hydraulic conductivity of the geologic material. When the logging T2data were transformed to pseudo-T2* data, by accounting for inhomogeneity in the magnetic field and instrument dead time, we found good agreement with T2* obtained from the SNMR measurement. These results, combined with the additional information about lithology at the site, allowed us to delineate the physical mechanisms governing the SNMR measurement. Such understanding is a critical step in developing SNMR as a reliable geophysical method for the assessment of groundwater resources.

  15. Directional site resonances and the influence of near-surface geology on ground motion

    Science.gov (United States)

    Bonamassa, Ornella; Vidale, John E.; Houston, Heidi; Schwartz, Susan Y.

    1991-05-01

    We examine the horizontal motions at close stations from earthquakes in the Loma Prieta and Whittier Narrows sequences to study the shear wave polarizations. We use a dense, six station array recording 10 aftershocks for the former, and use two events and 11 stations across the Los Angeles area for the latter.We compute the average azimuth of strongest shaking in the shear wave as a function of frequency from 1 to 18 Hz for each record of each earthquake. The direction of shaking at a given frequency often correlates much better with an empirical site resonance direction than with the direction of shaking expected from the focal mechanism of the earthquake. The effect tends to be greatest at the frequencies that are the most amplified. This phenomenon can complicate determination of the earthquake source at frequencies higher than 1 Hz.Further, since sites only 25 meters apart show different preferred directions, very near-surface geology is probably responsible. Estimation of directional site resonances may prove useful for seismic design.

  16. Estimation of the near surface soil water content during evaporation using air-launched ground-penetrating radar

    KAUST Repository

    Moghadas, Davood

    2014-01-01

    Evaporation is an important process in the global water cycle and its variation affects the near sur-face soil water content, which is crucial for surface hydrology and climate modelling. Soil evaporation rate is often characterized by two distinct phases, namely, the energy limited phase (stage-I) and the soil hydraulic limited period (stage-II). In this paper, a laboratory experiment was conducted using a sand box filled with fine sand, which was subject to evaporation for a period of twenty three days. The setup was equipped with a weighting system to record automatically the weight of the sand box with a constant time-step. Furthermore, time-lapse air-launched ground penetrating radar (GPR) measurements were performed to monitor the evaporation process. The GPR model involves a full-waveform frequency-domain solution of Maxwell\\'s equations for wave propagation in three-dimensional multilayered media. The accuracy of the full-waveform GPR forward modelling with respect to three different petrophysical models was investigated. Moreover, full-waveform inversion of the GPR data was used to estimate the quantitative information, such as near surface soil water content. The two stages of evaporation can be clearly observed in the radargram, which indicates qualitatively that enough information is contained in the GPR data. The full-waveform GPR inversion allows for accurate estimation of the near surface soil water content during extended evaporation phases, when a wide frequency range of GPR (0.8-5.0 GHz) is taken into account. In addition, the results indicate that the CRIM model may constitute a relevant alternative in solving the frequency-dependency issue for full waveform GPR modelling.

  17. Hydrophilic anthropogenic markers for quantification of wastewater contamination in ground- and surface waters.

    Science.gov (United States)

    Kahle, Maren; Buerge, Ignaz J; Müller, Markus D; Poiger, Thomas

    2009-12-01

    Hydrophilic, persistent markers are useful to detect, locate, and quantify contamination of natural waters with domestic wastewater. The present study focused on occurrence and fate of seven marker candidates including carbamazepine (CBZ), 10,11-dihydro-10,11-dihydroxycarbamazepine (DiOH-CBZ), primidone (PMD), crotamiton (CTMT), N-acetyl-4-aminoantipyrine (AAA), N-formyl-4-aminoantipyrine (FAA), and benzotriazole (BTri) in wastewater treatment plants (WWTPs), lakes, and groundwater. In WWTPs, concentrations from 0.14 microg/L to several micrograms per liter were observed for all substances, except CTMT, which was detected at lower concentrations. Loads determined in untreated and treated wastewater indicated that removal of the potential markers in WWTPs is negligible; only BTri was partly eliminated (average 33%). In lakes, five compounds, CBZ, DiOH-CBZ, FAA, AAA, and BTri, were consistently detected in concentrations of 2 to 70 ng/L, 3 to 150 ng/L, less than the limit of quantification to 30 ng/L, 2 to 80 ng/L, and 11 to 920 ng/L, respectively. Mean per capita loads in the outflows of the lakes suggested possible dissipation in surface waters, especially of AAA and FAA. Nevertheless, concentrations of CBZ, DiOH-CBZ, and BTri correlated with the actual anthropogenic burden of the lakes by domestic wastewater, indicating that these compounds are suitable for quantification of wastewater contamination in lakes. Marker candidates were also detected in a number of groundwater samples. Carbamazepine concentrations up to 42 ng/L were observed in aquifers with significant infiltration of river water, receiving considerable wastewater discharges from WWTPs. Concentration ratios between compounds indicated some elimination of BTri and DiOH-CBZ during subsurface passage or in groundwater, while CBZ and PMD appeared to be more stable and thus are promising wastewater markers for groundwater. The wastewater burden in groundwater, estimated with the markers CBZ and PMD

  18. Ab initio potential energy surface and excited vibrational states for the electronic ground state of Li2H

    Institute of Scientific and Technical Information of China (English)

    鄢国森; 先晖; 谢代前

    1997-01-01

    A 285-pomt multi-reference configuration-interaction involving single and double excitations ( MRS DCI) potential energy surface for the electronic ground state of L12H is determined by using 6-311G (2df,2pd)basis set.A Simons-Parr-Finlan polynomial expansion is used to fit the discrete surface with a x2 of 4.64×106 The equn librium geometry occurs at Rc=0.172 nm and,LiHL1=94.10°.The dissociation energy for reaction I2H(2A)→L12(1∑g)+H(2S) is 243.910 kJ/mol,and that for reaction L12H(2A’)→HL1(1∑) + L1(2S) is 106.445 kl/mol The inversion barrier height is 50.388 kj/mol.The vibrational energy levels are calculated using the discrete variable representation (DVR) method.

  19. Effect of cloud-to-ground lightning and meteorological conditions on surface NOx and O3 in Hong Kong

    Science.gov (United States)

    Fei, Leilei; Chan, L. Y.; Bi, Xinhui; Guo, Hai; Liu, Yonglin; Lin, Qinhao; Wang, Xinming; Peng, Ping'an; Sheng, Guoying

    2016-12-01

    Cloud-to-ground (CG) lightning, meteorological conditions and corresponding surface nitrogen oxides (NOx) and ozone (O3) variations in relation to thunderstorm and lightning activities over Hong Kong at Kwai Chung (urban), Tung Chung (new town) and Tap Mun (background) during active lightning seasons from 2009 to 2013 were studied by analyzing respective air quality monitoring station data along with CG lightning and meteorological data. We observed NOx enhancement and significant O3 decline on lightning days. Influences of land use types, lightning activities and meteorological conditions on surface NOx and O3 were examined. NOx and O3 concentrations shifted towards higher and lower levels, respectively, during lightning days especially in the dominant wind directions. Principal component analysis/absolute principal component scores (PCA/APCS) method and stepwise multiple linear regression (MLR) analysis were employed to examine the influence of thunderstorm related lightning and meteorological parameters on surface NOx and O3. Wind speed was supposed to be the most important meteorological parameter affecting the concentration of NOx, and lightning activities were observed to make a positive contribution to NOx. Negative contribution of hot, cloudy and wet weather and positive contribution of wind speed were found to affect the concentration of O3. Lightning parameters were also found to make a small positive contribution to O3 concentration at Tap Mun and Tung Chung, but the net effect of lightning activities and corresponding meteorological conditions was the decrease of O3 on lightning days. Reasonably good agreement between the predicted and observed NOx and O3 values indicates that PCA/APCS-MLR is a valuable method to study the thunderstorm induced NOx and O3 variations.

  20. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B.; Bergman, Torbjoern (Geological Survey of Sweden, Uppsala (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden)); Petersson, Jesper (SwedPower AB, Stockholm (Sweden))

    2008-12-15

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  1. Differences in rates of decrease of environmental radiation dose rates by ground surface property in Fukushima City after the Fukushima Daiichi nuclear power plant accident.

    Science.gov (United States)

    Kakamu, Takeyasu; Kanda, Hideyuki; Tsuji, Masayoshi; Kobayashi, Daisuke; Miyake, Masao; Hayakawa, Takehito; Katsuda, Shin-ichiro; Mori, Yayoi; Okouchi, Toshiyasu; Hazama, Akihiro; Fukushima, Tetsuhito

    2013-01-01

    After the Great East Japan Earthquake on 11 March 2011, the environmental radiation dose in Fukushima City increased. On 11 April, 1 mo after the earthquake, the environmental radiation dose rate at various surfaces in the same area differed greatly by surface property. Environmental radiation measurements continue in order to determine the estimated time to 50% reduction in environmental radiation dose rates by surface property in order to make suggestions for decontamination in Fukushima. The measurements were carried out from 11 April to 11 November 2011. Forty-eight (48) measurement points were selected, including four kinds of ground surface properties: grass (13), soil (5), artificial turf (7), and asphalt (23). Environmental radiation dose rate was measured at heights of 100 cm above the ground surface. Time to 50% reduction of environmental radiation dose rates was estimated for each ground surface property. Radiation dose rates on 11 November had decreased significantly compared with those on 11 April for all surface properties. Artificial turf showed the longest time to 50% reduction (544.32 d, standard error: 96.86), and soil showed the shortest (213.20 d, standard error: 35.88). The authors found the environmental radiation dose rate on artificial materials to have a longer 50% reduction time than that on natural materials. These results contribute to determining an order of priority for decontamination after nuclear disasters.

  2. Investigation of the influence of topographic irregularities and two dimensional effects on the intensity of surface ground motion with one- and two-dimensional analyses

    Directory of Open Access Journals (Sweden)

    L. Yılmazoğlu

    2013-12-01

    Full Text Available In this work, the surface ground motion that occurs during an earthquake in ground sections having different topographic forms has been examined with one and two dynamic site response analyses. One-dimensional analyses were undertaken using the Equivalent-Linear Earthquake Response Analysis program based on the equivalent linear analysis principle and the Deepsoil program which is able to make both equivalent linear and nonlinear analyses and two-dimensional analyses using the Plaxis software. The viscous damping parameters used in the dynamic site response analyses undertaken with the Plaxis software were obtained using the DeepSoil program. In the dynamic site response analyses, the synthetic acceleration over a 475 yr replication period representing the earthquakes in Istanbul was used as the basis of the bedrock ground motion. The peak ground acceleration obtained different depths of soils and acceleration spectrum values have been compared. The surface topography and layer boundaries in the 5-5' section were selected in order to examine the effect of the land topography and layer boundaries on the analysis results were flattened and compared with the actual status. The analysis results showed that the characteristics of the surface ground motion changes in relation to the varying local soil conditions and land topography.

  3. A Semiautomated Multilayer Picking Algorithm for Ice-sheet Radar Echograms Applied to Ground-Based Near-Surface Data

    Science.gov (United States)

    Onana, Vincent De Paul; Koenig, Lora Suzanne; Ruth, Julia; Studinger, Michael; Harbeck, Jeremy P.

    2014-01-01

    Snow accumulation over an ice sheet is the sole mass input, making it a primary measurement for understanding the past, present, and future mass balance. Near-surface frequency-modulated continuous-wave (FMCW) radars image isochronous firn layers recording accumulation histories. The Semiautomated Multilayer Picking Algorithm (SAMPA) was designed and developed to trace annual accumulation layers in polar firn from both airborne and ground-based radars. The SAMPA algorithm is based on the Radon transform (RT) computed by blocks and angular orientations over a radar echogram. For each echogram's block, the RT maps firn segmented-layer features into peaks, which are picked using amplitude and width threshold parameters of peaks. A backward RT is then computed for each corresponding block, mapping the peaks back into picked segmented-layers. The segmented layers are then connected and smoothed to achieve a final layer pick across the echogram. Once input parameters are trained, SAMPA operates autonomously and can process hundreds of kilometers of radar data picking more than 40 layers. SAMPA final pick results and layer numbering still require a cursory manual adjustment to correct noncontinuous picks, which are likely not annual, and to correct for inconsistency in layer numbering. Despite the manual effort to train and check SAMPA results, it is an efficient tool for picking multiple accumulation layers in polar firn, reducing time over manual digitizing efforts. The trackability of good detected layers is greater than 90%.

  4. Evaluation of the toxicological properties of ground- and surface-water samples from the Aral Sea Basin

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, K. [University of Salzburg, Department of Cell Biology, Hellbrunnerstr. 34, A-5020 Salzburg (Austria); Erdinger, L. [University of Heidelberg, Department for Hygiene and Medical Microbiology, Heidelberg (Germany); Ingel, F. [Russian Academy of Medical Sciences, A.N.Sysin Institute of Human Ecology and Environmental Hygiene, Moscow (Russian Federation); Khussainova, S. [Scientific Center of Pediatrics and Chrildren' s Surgery, Almaty (Kazakhstan); Utegenova, E. [Kazakh Sanitary-Epidemiological Station, Almaty (Kazakhstan); Bresgen, N. [University of Salzburg, Department of Cell Biology, Hellbrunnerstr. 34, A-5020 Salzburg (Austria); Eckl, P.M. [University of Salzburg, Department of Cell Biology, Hellbrunnerstr. 34, A-5020 Salzburg (Austria)]. E-mail: peter.eckl@sbg.ac.at

    2007-03-01

    In order to determine whether there is a potential health risk associated with the water supply in the Aral Sea Basin, ground- and surface-water samples were collected in and around Aralsk and from the Aral Sea in 2002. Water samples from Akchi, a small town close to Almaty, served as controls. Bioassays with different toxicological endpoints were employed to assess the general toxicological status. Additionally, the samples were analysed for microbial contamination. The samples were tested in the primary hepatocyte assay for their potential to induce micronuclei and chromosomal aberrations as cumulative indicators for genotoxicity. In parallel, the effects on cell proliferation evidenced by mitotic index and cytotoxicity such as the appearance of necrotic and apoptotic cells, were determined. Furthermore, samples were examined using the Microtox assay for general toxicity. Chemical analysis according to European regulations was performed and soil and water samples were analysed for DDT and DDE. The results obtained indicated no increased cyto- or genotoxic potential of the water samples, nor levels of DDT or DDE exceeding the thresholds levels suggested by WHO. Our data therefore do not support the hypothesis that the contamination of the drinking water in and around Aralsk is responsible for the health effects previously described such as increased rates of liver disease and in particular liver cancer. Microbiological analysis, however, revealed the presence of contamination in most samples analysed.

  5. Characteristics of Ground Surface Temperatures as in situ Observed in Elevational Permafrost on the Northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Luo, D.; Jin, H.; Marchenko, S. S.; Romanovsky, V. E.

    2016-12-01

    Elevational permafrost is primarily distributed on the Qinghai-Tibet Plateau (QTP) at mid-latitudes, where the average elevation is higher than 4,000 m a.s.l. The topography, including the elevation and aspect, obviously is the decisive controlling factor of thermal regimes of elevational permafrost, which is warm and extremely sensitive to anthropogenic activities and climate changes. Due to the harsh weather conditions and unfavorable logistics accommodations, however, the elevational permafrost on the QTP, especially in the rugged topography, is hard to be plotted through ground-based field investigations. The exact distribution of elevational permafrost could be simulated through GST. In this study, we set up three monitoring sites of GST at the beginning of 2015. One located in the rugged mountain of the source area of the Yellow River, one located in the sunny slope of the Bayan Har Mountain Pass, and one another located in a degrading alpine meadow of the source area of the Yangtze River. Based on these GST records, the daily, monthly, seasonal and year-average values of GST, freezing and thawing indices calculated from GST, and empirical Stefan Equation to calculate the ALT, as well as the GIPL-2.0 model to simulate the freezing and thawing processes of the active layer were integrative executed for these three sites. Results demonstrate that GST could be a much more reliable driving parameter to simulate the active layer and permafrost than the air temperature and land surface temperature.

  6. [Effects of ground surface mulching in tea garden on soil water and nutrient dynamics and tea plant growth].

    Science.gov (United States)

    Sun, Li-tao; Wang, Yu; Ding, Zhao-tang

    2011-09-01

    Taking a 2-year-old tea garden in Qingdao of Shandong Province as test object, this paper studied the effects of different mulching modes on the soil water and nutrient dynamics and tea plant growth. Four treatments were installed, i.e., no mulching (CK), straw mulching (T1), plastic film mulching (T2), and straw plus plastic film mulching (T3). Comparing with CK, mulching could keep the soil water content at a higher level, and enhance the water use efficiency. In treatments T1 and T3, the tea growth water use efficiency and yield water use efficiency increased by 43%-48% and 7%-13%, respectively, compared with CK. Also in treatments T1 and T3, the contents of soil organic matter, available-N, nitrate-N, and ammonium-N increased significantly, with the soil fertility improved, and the leaf nitrate-N content and nitrate reductase activity increased, which promoted the tea growth and yield (12%-13% higher than CK) and made the peak period of bud growth appeared earlier. Considering the tea growth and yield, water and nutrient use efficiency, environment safety and economic benefit, straw mulching could be an effective ground surface mulching mode for young tea garden.

  7. The effects of nutrient losses from agriculture on ground and surface water quality: the position of science in developing indicators for regulation

    NARCIS (Netherlands)

    Schröder, J.J.; Scholefield, D.; Cabral, F.; Hofmans, G.

    2004-01-01

    The magnitude of current nutrient losses from agriculture to ground and surface water calls for effective environmental policy, including the use of regulation. Nutrient loss is experienced in many countries despite differences in the organisation and intensity of agricultural production. However, a

  8. Validation of the Cooray‐Rubinstein (C‐R) formula for a rough ground surface by using three‐dimensional (3‐D) FDTD

    National Research Council Canada - National Science Library

    Li, Dongshuai; Zhang, Qilin; Liu, Tao; Wang, Zhenhui

    2013-01-01

    In this paper, we have extended the Cooray‐Rubinstein (C‐R) approximate formula into the fractal rough ground surface and then validate its accuracy by using three‐dimensional (3‐D) finite‐difference time‐domain (FDTD...

  9. Where’s the Ground Surface? – Elevation Bias in LIDAR-derived Digital Elevation Models Due to Dense Vegetation in Oregon Tidal Marshes

    Science.gov (United States)

    Light Detection and Ranging (LIDAR) is a powerful resource for coastal and wetland managers and its use is increasing. Vegetation density and other land cover characteristics influence the accuracy of LIDAR-derived ground surface digital elevation models; however the degree to wh...

  10. Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996

    Science.gov (United States)

    Parnell, J.M.

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.

  11. Parasite remains in archaeological sites.

    Science.gov (United States)

    Bouchet, Françoise; Guidon, Niéde; Dittmar, Katharina; Harter, Stephanie; Ferreira, Luiz Fernando; Chaves, Sergio Miranda; Reinhard, Karl; Araújo, Adauto

    2003-01-01

    Organic remains can be found in many different environments. They are the most significant source for paleoparasitological studies as well as for other paleoecological reconstruction. Preserved paleoparasitological remains are found from the driest to the moistest conditions. They help us to understand past and present diseases and therefore contribute to understanding the evolution of present human sociality, biology, and behavior. In this paper, the scope of the surviving evidence will be briefy surveyed, and the great variety of ways it has been preserved in different environments will be discussed. This is done to develop to the most appropriated techniques to recover remaining parasites. Different techniques applied to the study of paleoparasitological remains, preserved in different environments, are presented. The most common materials used to analyze prehistoric human groups are reviewed, and their potential for reconstructing ancient environment and disease are emphasized. This paper also urges increased cooperation among archaeologists, paleontologists, and paleoparasitologists.

  12. Parasite remains in archaeological sites

    Directory of Open Access Journals (Sweden)

    Françoise Bouchet

    2003-01-01

    Full Text Available Organic remains can be found in many different environments. They are the most significant source for paleoparasitological studies as well as for other paleoecological reconstruction. Preserved paleoparasitological remains are found from the driest to the moistest conditions. They help us to understand past and present diseases and therefore contribute to understanding the evolution of present human sociality, biology, and behavior. In this paper, the scope of the surviving evidence will be briefly surveyed, and the great variety of ways it has been preserved in different environments will be discussed. This is done to develop to the most appropriated techniques to recover remaining parasites. Different techniques applied to the study of paleoparasitological remains, preserved in different environments, are presented. The most common materials used to analyze prehistoric human groups are reviewed, and their potential for reconstructing ancient environment and disease are emphasized. This paper also urges increased cooperation among archaeologists, paleontologists, and paleoparasitologists.

  13. Transport of a nematicide in surface and ground waters in a farmed tropical catchment with volcanic substratum

    Science.gov (United States)

    Charlier, J.-B.; Cattan, P.; Voltz, M.; Moussa, R.

    2009-04-01

    Assessment of water-pollution risks in agricultural regions requires studying pesticide transport processes in soil and water compartments at the catchment scale. In tropical regions, banana (Musa spp.) plantations are located in zones with abundant rainfalls and soils with high infiltration rates, which lead to washout and leaching of soil-applied pesticides, causing severe diffuse pollution of water resources. The aim of this paper is to determine how the nematicide cadusafos [S,S-di-sec-butyl O-ethyl phosphorodithioate], used in banana plantations, contaminates water and soils at the two scales of subcatchment and catchment. The study site was a small banana-growing catchment on the tropical volcanic island of Guadeloupe in the Caribbean (FWI). The catchment is located in pedoclimatic conditions where rainfall is abundant (> 4000 mm/year), and soil permeable (saturated hydraulic conductivity of Andosol Ks > 30 mm/h). Two campaigns of nematicide application were conducted, one in 2003 over 40% of the catchment and one in 2006 over 12%. For 100 days after application, we monitored the surface water and groundwater flows and the cadusafos concentrations in the soil and in surface and ground waters in a 2400 m² subcatchment and a 17.8 ha catchment. The results show that at the subcatchment scale the high retention in the A horizon of the soil limited the transport of cadusafos by runoff, whereas the lower retention of the molecule in the B horizon favoured percolation towards the shallow groundwater. The contamination levels of surface water, as well as shallow and deep groundwaters, reflected the geological structure of the Féfé catchment: i.e. a shallow aquifer in the most recent volcanic deposits that is rapidly exposed to pollution and a deeper aquifer that is relatively protected from the pollution coming from the treated fields. Comparing the losses of cadusafos at the subcatchment and at the catchment scales revealed that the nematicide re-infiltrated in

  14. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    Science.gov (United States)

    Barton, Gary J.

    2004-01-01

    The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated

  15. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    Energy Technology Data Exchange (ETDEWEB)

    MYERS DA; CUBBAGE R; BRAUCHLA R; O' BRIEN G

    2008-07-24

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity{trademark} surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects.

  16. Ground-penetrating radar (GPR) responses for sub-surface salt contamination and solid waste: modeling and controlled lysimeter studies.

    Science.gov (United States)

    Wijewardana, Y N S; Shilpadi, A T; Mowjood, M I M; Kawamoto, K; Galagedara, L W

    2017-02-01

    The assessment of polluted areas and municipal solid waste (MSW) sites using non-destructive geophysical methods is timely and much needed in the field of environmental monitoring and management. The objectives of this study are (i) to evaluate the ground-penetrating radar (GPR) wave responses as a result of different electrical conductivity (EC) in groundwater and (ii) to conduct MSW stratification using a controlled lysimeter and modeling approach. A GPR wave simulation was carried out using GprMax2D software, and the field test was done on two lysimeters that were filled with sand (Lysimeter-1) and MSW (Lysimeter-2). A Pulse EKKO-Pro GPR system with 200- and 500-MHz center frequency antennae was used to collect GPR field data. Amplitudes of GPR-reflected waves (sub-surface reflectors and water table) were studied under different EC levels injected to the water table. Modeling results revealed that the signal strength of the reflected wave decreases with increasing EC levels and the disappearance of the subsurface reflection and wave amplitude reaching zero at higher EC levels (when EC >0.28 S/m). Further, when the EC level was high, the plume thickness did not have a significant effect on the amplitude of the reflected wave. However, it was also found that reflected signal strength decreases with increasing plume thickness at a given EC level. 2D GPR profile images under wet conditions showed stratification of the waste layers and relative thickness, but it was difficult to resolve the waste layers under dry conditions. These results show that the GPR as a non-destructive method with a relatively larger sample volume can be used to identify highly polluted areas with inorganic contaminants in groundwater and waste stratification. The current methods of MSW dumpsite investigation are tedious, destructive, time consuming, costly, and provide only point-scale measurements. However, further research is needed to verify the results under heterogeneous aquifer

  17. Analysis of isotope element by electrolytic enrichment method for ground water and surface water in Saurashtra region, Gujarat, India

    Directory of Open Access Journals (Sweden)

    Sajal Singh

    2016-12-01

    Full Text Available The present study has been aimed for the assessment of isotope element Tritium (3H. It is a great threat to human health and environment for lengthy duration. The tritium exists in earth in diverse forms such as (1 small amounts of natural tritium are produced by alpha decay of lithium-7, (2 natural atmospheric tritium is also generated by secondary neutron cosmic ray bombardment of nitrogen, (3 atmospheric nuclear bomb testing in the 1950s, although the contribution from nuclear power plants is small. Tritium or 3H is a radioactive isotope of hydrogen with a half-life of 12.32 ± 0.02 years. Water samples from ground water, surface water, and precipitation were collected from different locations in Gujarat area and were analyzed for the same. Distillation of samples was done to reduce the conductivity. Deuterium and Hydrogen were removed by the process of physico-chemical fractionation in the tritium enrichment unit. The basis of physico-chemical fractionation is the difference in the strength of bonds formed by the light vs. the heavier isotope of a given element. A total of 10 cycles (runs were executed using Quintals process. Tritium concentration files were created with help of WinQ and Quick start software in Quintals process (Liquid Scintillation Spectrometer. The concentration of tritium in terms of tritium units (TU of various samples has been determined. The TU values of the samples vary in the range of 0.90–6.62 TU.

  18. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    Science.gov (United States)

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  19. Organic Chemicals Remain High Prices

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Phenol In early April 2007, China's phenol price remained bullish, and with the restart of phenol/acetone units in Sinopec Beijing Yanhua Petrochemical being ahead of schedule, there were few trading actions in the market, and the price of phenol dropped considerably afterwards.

  20. EXAMINATION ABOUT INFLUENCE FOR PRECISION OF 3D IMAGE MEASUREMENT FROM THE GROUND CONTROL POINT MEASUREMENT AND SURFACE MATCHING

    Directory of Open Access Journals (Sweden)

    T. Anai

    2015-05-01

    Full Text Available As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results

  1. Surface aerosol and rehabilitation properties of ground-level atmosphere in the mountains of the North Caucasus

    Science.gov (United States)

    Reps, Valentina; Efimenko, Natalia; Povolotskaya, Nina; Abramtsova, Anna; Ischenko, Dmitriy; Senik, Irina; Slepikh, Victor

    2017-04-01

    The rehabilitative properties (RP) of ground-level atmosphere (GA) of Russian resorts are considered as natural healing resources and received state legal protection [1]. Due to global urbanization the chemical composition and particle size distribution of the surface aerosol are changing rapidly. However, the influence of surface aerosol on the RP of GA has been insufficiently studied. At the resort region of the North Caucasus complex monitoring (aerosol, trace gases NOx, CO, O3, CH4; periodically - heavy metals) is performed at two high levels (860 masl - a park zone of a large mountain resort, 2070 masl - alpine grassland, the net station). The results of the measurements are used in programs of bioclimatic, landscape and medical monitoring to specify the influence of aerosol on rehabilitation properties of the environment and human adaptative reserves. The aerosol particles of size range 500-1000 nm are used as a marker of the pathogenic effect of aerosol [2]. In the conditions of regional urbanization and complicated mountain atmospheric circulation the influence of aerosol on RP of GA and the variability of heart rhythm with the volunteers at different heights were investigated. At the height of 860 masl (urbanized resort) there have been noticed aerosol variations in the range of 0,04-0,35 particles/cm3 (slightly aerosol polluted), in mountain conditions - background pollution aerosol level. The difference of bioclimatic conditions at the specified high-rise levels has been referred to the category of contrasts. The natural aero ionization ∑(N+)+(N-) varied from 960 ion/cm3 to 1460 ion/cm3 in the resort park (860 m); from 1295 ion/cm3 to 4850 ion/cm3 on the Alpine meadow (2070 m); from 1128 ion/cm3 to 3420 ion/cm3 - on the tested site near the edge of the pinewood (1720 m). In the group of volunteers the trip from low-hill terrain zone (860 m) to the lower zone of highlands (2070 m) caused the activation of neuro and humoral regulation, vegetative and

  2. Examination about Influence for Precision of 3d Image Measurement from the Ground Control Point Measurement and Surface Matching

    Science.gov (United States)

    Anai, T.; Kochi, N.; Yamada, M.; Sasaki, T.; Otani, H.; Sasaki, D.; Nishimura, S.; Kimoto, K.; Yasui, N.

    2015-05-01

    As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching) by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results of analysis made

  3. Road impacts on the Baca National Wildlife Refuge, Colorado, with emphasis on effects to surface- and shallow ground-water hydrology - A literature review

    Science.gov (United States)

    Andersen, Douglas C.

    2007-01-01

    A review of published research on unpaved road effects on surface-water and shallow ground-water hydrology was undertaken to assist the Baca National Wildlife Refuge, Colorado, in understanding factors potentially influencing refuge ecology. Few studies were found that addressed hydrological effects of roads on a comparable area of shallow slope in a semiarid region. No study dealt with road effects on surface- and ground-water supplies to ephemeral wetlands, which on the refuge are sustained by seasonal snowmelt in neighboring mountains. Road surfaces increase runoff, reduce infiltration, and serve as a sediment source. Roadbeds can interfere with normal surface- and ground-water flows and thereby influence the quantity, timing, and duration of water movement both across landscapes and through the soil. Hydrologic effects can be localized near the road as well as widespread and distant. The number, arrangement, and effectiveness of road-drainage structures (culverts and other devices) largely determine the level of hydrologic alteration produced by a road. Undesirable changes to natural hydrologic patterns can be minimized by considering potential impacts during road design, construction, and maintenance. Road removal as a means to restore desirable hydrologic conditions to landscapes adversely affected by roads has yet to be rigorously evaluated.

  4. Effects of surface applications of biosolids on soil, crops, ground water, and streambed sediment near Deer Trail, Colorado, 1999-2003

    Science.gov (United States)

    Yager, Tracy J.B.; Smith, David B.; Crock, James G.

    2004-01-01

    The U.S. Geological Survey, in cooperation with Metro Wastewater Reclamation District and North Kiowa Bijou Groundwater Management District, studied natural geochemical effects and the effects of biosolids applications to the Metro Wastewater Reclamation District properties near Deer Trail, Colorado, during 1999 through 2003 because of public concern about potential contamination of soil, crops, ground water, and surface water from biosolids applications. Parameters analyzed for each monitoring component included arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc (the nine trace elements regulated by Colorado for biosolids), gross alpha and gross beta radioactivity, and plutonium, as well as other parameters. Concentrations of the nine regulated trace elements in biosolids were relatively uniform and did not exceed applicable regulatory standards. All plutonium concentrations in biosolids were below the minimum detectable level and were near zero. The most soluble elements in biosolids were arsenic, molybdenum, nickel, phosphorus, and selenium. Elevated concentrations of bismuth, mercury, phosphorus, and silver would be the most likely inorganic biosolids signature to indicate that soil or streambed sediment has been affected by biosolids. Molybdenum and tungsten, and to a lesser degree antimony, cadmium, cobalt, copper, mercury, nickel, phosphorus, and selenium, would be the most likely inorganic 'biosolids signature' to indicate ground water or surface water has been affected by biosolids. Soil data indicate that biosolids have had no measurable effect on the concentration of the constituents monitored. Arsenic concentrations in soil of both Arapahoe and Elbert County monitoring sites (like soil from all parts of Colorado) exceed the Colorado soil remediation objectives and soil cleanup standards, which were determined by back-calculating a soil concentration equivalent to a one-in-a-million cumulative cancer risk. Lead concentrations

  5. Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3

    Science.gov (United States)

    Westermann, S.; Langer, M.; Boike, J.; Heikenfeld, M.; Peter, M.; Etzelmüller, B.; Krinner, G.

    2016-02-01

    Thawing of permafrost in a warming climate is governed by a complex interplay of different processes of which only conductive heat transfer is taken into account in most model studies. However, observations in many permafrost landscapes demonstrate that lateral and vertical movement of water can have a pronounced influence on the thaw trajectories, creating distinct landforms, such as thermokarst ponds and lakes, even in areas where permafrost is otherwise thermally stable. Novel process parameterizations are required to include such phenomena in future projections of permafrost thaw and subsequent climatic-triggered feedbacks. In this study, we present a new land-surface scheme designed for permafrost applications, CryoGrid 3, which constitutes a flexible platform to explore new parameterizations for a range of permafrost processes. We document the model physics and employed parameterizations for the basis module CryoGrid 3, and compare model results with in situ observations of surface energy balance, surface temperatures, and ground thermal regime from the Samoylov permafrost observatory in NE Siberia. The comparison suggests that CryoGrid 3 can not only model the evolution of the ground thermal regime in the last decade, but also consistently reproduce the chain of energy transfer processes from the atmosphere to the ground. In addition, we demonstrate a simple 1-D parameterization for thaw processes in permafrost areas rich in ground ice, which can phenomenologically reproduce both formation of thermokarst ponds and subsidence of the ground following thawing of ice-rich subsurface layers. Long-term simulation from 1901 to 2100 driven by reanalysis data and climate model output demonstrate that the hydrological regime can both accelerate and delay permafrost thawing. If meltwater from thawed ice-rich layers can drain, the ground subsides, as well as the formation of a talik, are delayed. If the meltwater pools at the surface, a pond is formed that enhances heat

  6. Validation of the Cooray-Rubinstein (C-R) formula for a rough ground surface by using three-dimensional (3-D) FDTD

    Science.gov (United States)

    Li, Dongshuai; Zhang, Qilin; Liu, Tao; Wang, Zhenhui

    2013-11-01

    this paper, we have extended the Cooray-Rubinstein (C-R) approximate formula into the fractal rough ground surface and then validate its accuracy by using three-dimensional (3-D) finite-difference time-domain (FDTD) method at distances of 50 m and 100 m from the lightning channel. The results show that the extended C-R formula has an accepted accuracy for predicting the lightning-radiated horizontal electric field above the fractal rough and conducting ground, and its accuracy increases a little better with the higher of the earth conductivity. For instance, when the conductivity of the rough ground is 0.1 S/m, the error of the peak value predicted by the extended C-R formula is less than about 2.3%, while its error is less than about 6.7% for the conductivity of 0.01 S/m. The rough ground has much effect on the lightning horizontal field, and the initial peak value of the horizontal field obviously decreases with the increase of the root-mean-square height of the rough ground at early times (within several microseconds of the beginning of return stroke).

  7. Alarms Remain,Efforts Continue

    Institute of Scientific and Technical Information of China (English)

    Alice

    2007-01-01

    @@ China must come to terms with the fact that it has quality problems in at least 1% of its products.Though there is no country in the world that can completely avoid problems,given the responsible role China plays on the intemational stage,China should stop to take a look at itself and find ways to improve.China must examine herself carefully,when looking at the production chain;we have to keep aware that some alarms still remain.

  8. Water quality and ground-water/surface-water interactions along the John River near Anaktuvuk Pass, Alaska, 2002-2003

    Science.gov (United States)

    Moran, Edward H.; Brabets, Timothy P.

    2005-01-01

    The headwaters of the John River are located near the village ofAnaktuvuk Pass in the central Brooks Range of interior Alaska. With the recent construction of a water-supply system and a wastewater-treatment plant, most homes in Anaktuvuk Pass now have modern water and wastewater systems. The effluent from the treatment plant discharges into a settling pond near a tributary of the John River. The headwaters of the John River are adjacent to Gates of the Arctic National Park and Preserve, and the John River is a designated Wild River. Due to the concern about possible water-quality effects from the wastewater effluent, the hydrology of the John River near Anaktuvuk Pass was studied from 2002 through 2003. Three streams form the John River atAnaktuvuk Pass: Contact Creek, Giant Creek, and the John RiverTributary. These streams drain areas of 90.3 km (super 2) , 120 km (super 2) , and 4.6 km (super 2) , respectively. Water-qualitydata collected from these streams from 2002-03 indicate that the waters are a calcium-bicarbonate type and that Giant Creek adds a sulfate component to the John River. The highest concentrations of bicarbonate, calcium, sodium, sulfate, and nitrate were found at the John River Tributary below the wastewater-treatment lagoon. These concentrations have little effect on the water quality of the John River because the flow of the John River Tributary is only about 2 percent of the John River flow. To better understand the ground-water/surface-water interactions of the upper John River, a numerical groundwater-flow model of the headwater area of the John River was constructed. Processes that occur during spring break-up, such as thawing of the active layer and the frost table and the resulting changes of storage capacity of the aquifer, were difficult to measure and simulate. Application and accuracy of the model is limited by the lack of specific hydrogeologic data both spatially and temporally. However

  9. Advanced ceramics: evaluation of the ground surface Cerâmicas avançadas: avaliação da superfície polida

    Directory of Open Access Journals (Sweden)

    E. C. Bianchi

    2003-09-01

    Full Text Available The aim of this research is to evaluate the influence of grinding and cutting conditions on surfaces of advanced ceramics ground with diamond grinding wheels containing a binding resin bond. The quality surface was analyzed by Scanning Electron Microscopy (SEM.O objetivo desta pesquisa é a avaliação da influência das condições de usinagem na superfície gerada de cerâmicas avançadas retificadas com rebolo diamantado com ligante resinóide. A qualidade superficial foi analisada utilizando-se a Microscopia Eletrônica de Varredura (MEV

  10. And the Dead Remain Behind

    Directory of Open Access Journals (Sweden)

    Peter Read

    2013-08-01

    Full Text Available In most cultures the dead and their living relatives are held in a dialogic relationship. The dead have made it clear, while living, what they expect from their descendants. The living, for their part, wish to honour the tombs of their ancestors; at the least, to keep the graves of the recent dead from disrepair. Despite the strictures, the living can fail their responsibilities, for example, by migration to foreign countries. The peripatetic Chinese are one of the few cultures able to overcome the dilemma of the wanderer or the exile. With the help of a priest, an Australian Chinese migrant may summon the soul of an ancestor from an Asian grave to a Melbourne temple, where the spirit, though removed from its earthly vessel, will rest and remain at peace. Amongst cultures in which such practices are not culturally appropriate, to fail to honour the family dead can be exquisitely painful. Violence is the cause of most failure.

  11. The ion chemistry of surface and ground waters in the Taklimakan Desert of Tarim Basin, western China

    Institute of Scientific and Technical Information of China (English)

    ZHU BingQi; YANG XiaoPing

    2007-01-01

    The physio-chemical and chemical features of water in natural conditions are controlled by the weathering of bedrocks, local climate, landforms and other geo-environmental parameters. In order to understand the characteristics of water and the origins of the dissolved loads in the rivers and in the ground waters of the Taklimakan Desert, western China, we studied the ions in the water samples collected from rivers and wells. We collected water samples from four rivers (Keriya River, Cele River, Tumiya River and Yulongkashi River) in the southern desert and ground water samples from many parts of the desert. Major cations and anions were measured using ion-chromatograph and titration with HCl. The total dissolved solids (TDS), pH and conductivity were examined on site by a portable multi-parameter analyzer. The data show that the water in the rivers of southern Taklimakan is still of fresh water quality and slight alkalinity, although the TDS is comparatively higher than that of many other rivers of the world. The ground water is fresh to slightly saline, with TDS a little higher than that of river water in the study area. The concentration of ions is slightly different between the four rivers in the southern Taklimakan. However, the chemistries of ground water in all samples are to a large degree controlled by sodium and chloride. The ions in the ground water are concluded to be mainly from dissolving of evaporites, consistent with the dry climate in the region, whereas the ions in the rivers are mainly from rock weathering. Low-level human imprints are recognized in the ground water samples also.

  12. Hydrology of the Beryl-Enterprise area, Escalante Desert, Utah, with emphasis on ground water; With a section on surface water

    Science.gov (United States)

    Mower, Reed W.; Sandberg, George Woodard

    1982-01-01

    An investigation of the water resources of the Beryl-Enterprise area, Escalante Desert, Utah (pl. 1), was made during 1976-78 as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights. Wells were the most important source of water for all purposes in the Beryl-Enterprise area during 1978, but it has not always been so. For nearly a century after the first settlers arrived in about 1860, streams supplied most of the irrigation water and springs supplied much of the water for domestic and stock use. A few shallow wells were dug by the early settlers for domestic and stock water, but the widespread use of ground water did not start until the 1920's when shallow wells were first dug to supply irrigation water. Ground-water withdrawals from wells, principally for irrigation, have increased nearly every year since the 1920's. The quantity withdrawn from wells surpassed that diverted from surface sources during the mid-1940's and was about eight times that amount during the 1970's. As a result, water levels have declined measurably throughout the area resulting in administrative water-rights problems.The primary purpose of this report is to describe the water resources with emphasis on ground water. The surface-water resources are evaluated only as they pertain to the understanding of the ground-water resources. A secondary purpose is to discuss the extent and effects of the development of ground water in order to provide the hydrologic information needed for the orderly and optimum development of the resource and for the effective administration and adjudication of water rights in the area. The hydrologic data on which this report is based are given in a companion report by Mower (1981).

  13. A large 3D physical model: a tool to investigate the consequences of ground movements on the surface structures

    Directory of Open Access Journals (Sweden)

    Hor B.

    2010-06-01

    Full Text Available Soil subsidence of various extend and amplitude can result from the failure of underground cavities, whether natural (for example caused by the dissolution of rocks by underground water flow or man-made (such as mines. The impact of the ground movements on existing structures (houses, buildings, bridges, etc… is generally dramatic. A large small-scale physical model is developed in order to improve our understanding of the behaviour of the building subjected to ground subsidence or the collapse of cavities. We focus on the soil-structure interaction and on the mitigation techniques allowing reducing the vulnerability of the buildings (structures.

  14. Full-wave modelling of ground-penetrating radars: antenna mutual coupling phenomena and sub-surface scattering processes

    NARCIS (Netherlands)

    Caratelli, D.; Yarovoy, A.

    2011-01-01

    Ground-penetrating radar (GPR) technology finds applications in many areas such as geophysical prospecting, archaeology, civil engineering, environmental engineering, and defence applications as a non-invasive sensing tool [3], [6], [18]. One key component in any GPR system is the receiver/transmitt

  15. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange.

    Science.gov (United States)

    Alamdar, Ambreen; Syed, Jabir Hussain; Malik, Riffat Naseem; Katsoyiannis, Athanasios; Liu, Junwen; Li, Jun; Zhang, Gan; Jones, Kevin C

    2014-02-01

    This study was conducted to examine organochlorine pesticides (OCPs) contamination levels in the surface soil and air samples together with air-soil exchange fluxes at an obsolete pesticide dumping ground and the associated areas from Hyderabad City, Pakistan. Among all the sampling sites, concentrations of OCPs in the soil and air samples were found highest in obsolete pesticide dumping ground, whereas dominant contaminants were dichlorodiphenyltrichloroethane (DDTs) (soil: 77-212,200 ng g(-1); air: 90,700 pg m(-3)) and hexachlorocyclohexane (HCHs) (soil: 43-4,090 ng g(-1); air: 97,400 pg m(-3)) followed by chlordane, heptachlor and hexachlorobenzene (HCB). OCPs diagnostic indicative ratios reflect historical use as well as fresh input in the study area. Moreover, the air and soil fugacity ratios (0.9-1.0) at the dumping ground reflecting a tendency towards net volatilization of OCPs, while at the other sampling sites, the fugacity ratios indicate in some cases deposition and in other cases volatilization. Elevated concentrations of DDTs and HCHs at pesticide dumping ground and its surroundings pose potential exposure risk to biological organisms, to the safety of agricultural products and to the human health. Our study thus emphasizes the need of spatio-temporal monitoring of OCPs at local and regional scale to assess and remediate the future adverse implications.

  16. Silicon photonics: some remaining challenges

    Science.gov (United States)

    Reed, G. T.; Topley, R.; Khokhar, A. Z.; Thompson, D. J.; Stanković, S.; Reynolds, S.; Chen, X.; Soper, N.; Mitchell, C. J.; Hu, Y.; Shen, L.; Martinez-Jimenez, G.; Healy, N.; Mailis, S.; Peacock, A. C.; Nedeljkovic, M.; Gardes, F. Y.; Soler Penades, J.; Alonso-Ramos, C.; Ortega-Monux, A.; Wanguemert-Perez, G.; Molina-Fernandez, I.; Cheben, P.; Mashanovich, G. Z.

    2016-03-01

    This paper discusses some of the remaining challenges for silicon photonics, and how we at Southampton University have approached some of them. Despite phenomenal advances in the field of Silicon Photonics, there are a number of areas that still require development. For short to medium reach applications, there is a need to improve the power consumption of photonic circuits such that inter-chip, and perhaps intra-chip applications are viable. This means that yet smaller devices are required as well as thermally stable devices, and multiple wavelength channels. In turn this demands smaller, more efficient modulators, athermal circuits, and improved wavelength division multiplexers. The debate continues as to whether on-chip lasers are necessary for all applications, but an efficient low cost laser would benefit many applications. Multi-layer photonics offers the possibility of increasing the complexity and effectiveness of a given area of chip real estate, but it is a demanding challenge. Low cost packaging (in particular, passive alignment of fibre to waveguide), and effective wafer scale testing strategies, are also essential for mass market applications. Whilst solutions to these challenges would enhance most applications, a derivative technology is emerging, that of Mid Infra-Red (MIR) silicon photonics. This field will build on existing developments, but will require key enhancements to facilitate functionality at longer wavelengths. In common with mainstream silicon photonics, significant developments have been made, but there is still much left to do. Here we summarise some of our recent work towards wafer scale testing, passive alignment, multiplexing, and MIR silicon photonics technology.

  17. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan

    2015-09-18

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  18. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Khan Zaib Jadoon

    2015-09-01

    Full Text Available We tested an off-ground ground-penetrating radar (GPR system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  19. Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface.

    Science.gov (United States)

    Ishizuka, Masahide; Mikami, Masao; Tanaka, Taichu Y; Igarashi, Yasuhito; Kita, Kazuyuki; Yamada, Yutaka; Yoshida, Naohiro; Toyoda, Sakae; Satou, Yukihiko; Kinase, Takeshi; Ninomiya, Kazuhiko; Shinohara, Atsushi

    2017-01-01

    A size-resolved, one-dimensional resuspension scheme for soil particles from the ground surface is proposed to evaluate the concentration of radioactivity in the atmosphere due to the secondary emission of radioactive material. The particle size distributions of radioactive particles at a sampling point were measured and compared with the results evaluated by the scheme using four different soil textures: sand, loamy sand, sandy loam, and silty loam. For sandy loam and silty loam, the results were in good agreement with the size-resolved atmospheric radioactivity concentrations observed at a school ground in Tsushima District, Namie Town, Fukushima, which was heavily contaminated after the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Though various assumptions were incorporated into both the scheme and evaluation conditions, this study shows that the proposed scheme can be applied to evaluate secondary emissions caused by aeolian resuspension of radioactive materials associated with mineral dust particles from the ground surface. The results underscore the importance of taking soil texture into account when evaluating the concentrations of resuspended, size-resolved atmospheric radioactivity.

  20. Surface and sub-surface anatomy of the landscape: integrating Unmanned Aerial Vehicle Structure from Motion (UAV-SfM) and Ground Penetrating Radar (GRP) to investigate sedimentary features in the field. - an example from NW Australia

    Science.gov (United States)

    Callow, Nik; Leopold, Matthias; May, Simon Matthias

    2015-04-01

    Geomorphology is confronted by the challenge of reconstructing landscape features at appropriate scales, resolution and accuracy, that allows meaningful analysis of environmental processes and their implications. Field geomorphology offers a discrete snapshot (i.e. one or two field campaigns) to reconstruct how features have changed, evolved or responded over time. We explore the application of an emerging photogrammetry technique called Structure-from-Motion (SfM), which uses multiple photographs of the same feature (but taken at different locations) to create high-accuracy three-dimensional models of surface of sedimentary fans formed by extreme wave events. This approach is complimented by investigation of the sub-surface morphology using Ground Penetrating Radar (GPR). Using an UAV "octocopter", we captured 1208 photos with a DSLR camera (Canon EoS-M) at the height of 50m with a ground pixel resolution of 9mm, above a cyclone wash-over fan in the Exmouth Gulf (Western Australia) that measured about 500m inland by 300m wide. Based on 38 ground control point targets (with between 4 and 45 individual photographs per target) the SfM surface had an absolute total (XYZ) accuracy of 51mm (39mm X, 29mm Y and 14mm Y), based on RTK-DGPS surveying from a local ground reference station (with an absolute AUSPOS accuracy of 57mm X, 6mm Y, 50mm Z to AHD) and an overall relative point accuracy of 7mm. A sparse point cloud of over 5.5 million data points was generated using only points with a reconstruction accuracy of RGB colour of each XYZ pixel) using K-Means clustering within Python. The output was then manually classified into ground and non-ground points, and the geostatistical analyst functionality of ArcGIS used to produce a final bare-earth DEM. This approach has allowed the study team to economically collect an unprecedented high-resolution and accuracy topographic model of this feature to compliment on-ground sediment, geophysics and dating work to analyse the

  1. Contribution of ground surface altitude difference to thermal anomaly detection using satellite images: Application to volcanic/geothermal complexes in the Andes of Central Chile

    Science.gov (United States)

    Gutiérrez, Francisco J.; Lemus, Martín; Parada, Miguel A.; Benavente, Oscar M.; Aguilera, Felipe A.

    2012-09-01

    Detection of thermal anomalies in volcanic-geothermal areas using remote sensing methodologies requires the subtraction of temperatures, not provided by geothermal manifestations (e.g. hot springs, fumaroles, active craters), from satellite image kinetic temperature, which is assumed to correspond to the ground surface temperature. Temperatures that have been subtracted in current models include those derived from the atmospheric transmittance, reflectance of the Earth's surface (albedo), topography effect, thermal inertia and geographic position effect. We propose a model that includes a new parameter (K) that accounts for the variation of temperature with ground surface altitude difference in areas where steep relief exists. The proposed model was developed and applied, using ASTER satellite images, in two Andean volcanic/geothermal complexes (Descabezado Grande-Cerro Azul Volcanic Complex and Planchón-Peteroa-Azufre Volcanic Complex) where field data of atmosphere and ground surface temperature as well as radiation for albedo calibration were obtained in 10 selected sites. The study area was divided into three zones (Northern, Central and Southern zones) where the thermal anomalies were obtained independently. K value calculated for night images of the three zones are better constrained and resulted to be very similar to the Environmental Lapse Rate (ELR) determined for a stable atmosphere (ELR > 7 °C/km). Using the proposed model, numerous thermal anomalies in areas of ≥ 90 m × 90 m were identified that were successfully cross-checked in the field. Night images provide more reliable information for thermal anomaly detection than day images because they record higher temperature contrast between geothermal areas and its surroundings and correspond to more stable atmospheric condition at the time of image acquisition.

  2. Ground tests with prototype of CeBr3 active gamma ray spectrometer proposed for future venus surface missions

    Science.gov (United States)

    Litvak, M. L.; Sanin, A. B.; Golovin, D. V.; Jun, I.; Mitrofanov, I. G.; Shvetsov, V. N.; Timoshenko, G. N.; Vostrukhin, A. A.

    2017-03-01

    The results of a series of ground tests with a prototype of an active gamma-ray spectrometer based on a new generation of scintillation crystal (CeBr3) are presented together with a consideration to its applicability to future Venus landing missions. We evaluated the instrument's capability to distinguish the subsurface elemental composition of primary rock forming elements such as O, Na, Mg, Al, Si, K and Fe. Our study uses heritage from previous ground and field tests and applies to the analysis of gamma lines from activation reaction products generated by a pulsed neutron generator. We have estimated that the expected accuracies achieved in this approach could be as high as 1-10% for the particular chemical element being studied.

  3. Algae metabolism and organic carbon in sediments determining arsenic mobilisation in ground- and surface water. A field study in Doñana National Park, Spain.

    Science.gov (United States)

    Kohfahl, Claus; Navarro, Daniel Sánchez-Rodas; Mendoza, Jorge Armando; Vadillo, Iñaki; Giménez-Forcada, Elena

    2016-02-15

    A study has been performed to explore the origin, spatiotemporal behaviour and mobilisation mechanism of the elevated arsenic (As) concentrations found in ground water and drinking ponds of the Doñana National Park, Southern Spain. At a larger scale, 13 piezometers and surface water samples of about 50 artificial drinking ponds and freshwater lagoons throughout the National Park were collected and analysed for major ions, metals and trace elements. At a smaller scale, 5 locations were equipped with piezometers and groundwater was sampled up to 4 times for ambient parameters, major ions, metals, trace elements and iron (Fe) speciation. As was analysed for inorganic and organic speciation. Undisturbed sediment samples were analysed for physical parameters, mineralogy, geochemistry as well as As species. Sediment analyses yielded total As between 0.1 and 18 mg/kg and are not correlated with As concentration in water. Results of the surface- and groundwater sampling revealed elevated concentration of As up to 302 μg/L within a restricted area of the National Park. Results of groundwater sampling reveals strong correlation of As with Fe(2+) pointing to As mobilisation due to reductive dissolution of hydroferric oxides (HFO) in areas of locally elevated amounts of organic matter within the sediments. High As concentrations in surface water ponds are correlated with elevated alkalinity and pH attributed to algae metabolism, leading to As desorption from HFO. The algae metabolism is responsible for the presence of methylated arsenic species in surface water, in contrast to ground water in which only inorganic As species was found. Temporal variations in surface water and groundwater are also related to changes in pH and alkalinity as a result of enhanced algae metabolism in surface water or related to changes in the redox level in the case of groundwater.

  4. Rotational, steric, and coriolis effects on the F + HCl --> HF + Cl reaction on the 1(2)A' ground-state surface.

    Science.gov (United States)

    Defazio, Paolo; Petrongolo, Carlo

    2009-04-23

    We present a quantum study of the reaction F((2)P) + HCl(X(1)Sigma(+)) --> HF(X(1)Sigma(+)) + Cl((2)P) on a recently computed 1(2)A' ground-state surface, considering HCl in the ground vibrational state, with up to 16 rotational quanta j(0). We employ the real wavepacket (WP) and flux methods for calculating coupled-channel (CC) and centrifugal-sudden (CS) initial-state probabilities up to J = 80 and 140, respectively. We also report CC and CS ground-state cross sections and CS excited-state cross sections and discuss the dynamics analyzing WP time evolutions. The HCl rotation highly enhances reaction probabilities and cross sections, as it was previously found for probabilities at J Coriolis couplings favor instead the energy flow from the HCl rotation to the F-H---Cl reactive vibration. WP snapshots confirm and explain the HCl rotational effects, because the density into the nearly collinear F-H---Cl product channel increases remarkably with j(0). Finally, our CS rate constant is underestimated with respect to the experiment, pointing out the need of more accurate multisurface and CC calculations.

  5. Use of borehole and surface geophysics to investigate ground-water quality near a road-deicing salt-storage facility, Valparaiso, Indiana

    Science.gov (United States)

    Risch, M.R.; Robinson, B.A.

    2001-01-01

    Borehole and surface geophysics were used to investigate ground-water quality affected by a road-deicing salt-storage facility located near a public water-supply well field. From 1994 through 1998, borehole geophysical logs were made in an existing network of monitoring wells completed near the bottom of a thick sand aquifer. Logs of natural gamma activity indicated a uniform and negligible contribution of clay to the electromagnetic conductivity of the aquifer so that the logs of electromagnetic conductivity primarily measured the amount of dissolved solids in the ground water near the wells. Electromagneticconductivity data indicated the presence of a saltwater plume near the bottom of the aquifer. Increases in electromagnetic conductivity, observed from sequential logging of wells, indicated the saltwater plume had moved north about 60 to 100 feet per year between 1994 and 1998. These rates were consistent with estimates of horizontal ground-water flow based on velocity calculations made with hydrologic data from the study area.

  6. Immunolocalization of NGF and its receptors in ovarian surface epithelium of the wild ground squirrel during the breeding and nonbreeding seasons.

    Science.gov (United States)

    Bao, L; Li, Q; Liu, Y; Li, B; Sheng, X; Han, Y; Weng, Q

    2014-05-09

    The ovarian surface epithelium (OSE) plays an important role in normal ovarian physiology. During each reproductive cycle, the OSE takes part in the cyclical ovulatory ruptures and repair. The aim of this study was to investigate the immunolocalization of nerve growth factor (NGF) and its receptors, tyrosine kinase A (TrkA) and p75, in the OSE cells of the wild ground squirrels during the breeding and nonbreeding seasons. There were marked variations in ovarian weight and size between the breeding and the nonbreeding seasons. Histologically, cuboidal cells and squamous cells were identified in the OSE of both seasons. Yet, stronger immunostaining of NGF, TrkA and p75 were observed in cuboidal cells and squamous cells in the breeding season as compared to the nonbreeding season. In addition, plasma gonadotropin concentrations were higher in the breeding season than in the nonbreeding season, suggesting that the expression patterns of NGF, TrkA and p75 in the OSE were correlated with changes in plasma gonadotropins. These findings suggested that NGF and its receptor TrkA and p75 may be involved in the regulation of seasonal changes in the OSE of wild ground squirrel.in the OSE of wild ground squirrel.

  7. Simultaneous investigation of blast induced ground vibration and airblast effects on safety level of structures and human in surface blasting

    Institute of Scientific and Technical Information of China (English)

    Faramarzi Farhad⇑; Ebrahimi Farsangi Mohammad Ali; Mansouri Hamid

    2014-01-01

    The significance of studying, monitoring and predicting blast induced vibration and noise level in mining and civil activities is justified in the capability of imposing damages, sense of uncertainty due to negative psychological impacts on involved personnel and also judicial complaints of local inhabitants in the nearby area. This paper presents achieved results during an investigation carried out at Sungun Copper Mine, Iran. Besides, the research also studied the significance of blast induced ground vibration and air-blast on safety aspects of nearby structures, potential risks, frequency analysis, and human response. According to the United States Bureau of Mines (USBM) standard, the attenuation equations were devel-oped using field records. A general frequency analysis and risk evaluation revealed that:94%of generated frequencies are less than 14 Hz which is within the natural frequency of structures that increases risk of damage. At the end, studies of human response showed destructive effects of the phenomena by ranging between 2.54 and 25.40 mm/s for ground vibrations and by the average value of 110 dB for noise levels which could increase sense of uncertainty among involved employees.

  8. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry

    KAUST Repository

    Pecher, Lisa

    2017-09-15

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained.

  9. Evaluation of ground grain versus pre- and post-pellet whole grain additions to poultry diets via a response surface design.

    Science.gov (United States)

    Moss, Amy F; Chrystal, Peter V; Truong, Ha H; Selle, Peter H; Liu, Sonia Yun

    2017-09-12

    1. The objective of this study was to compare the effects of pre- and post-pellet whole grain wheat additions to diets on growth performance, gizzard and pancreas development, nutrient utilisation and starch and protein (N) digestibility coefficients in broiler chickens via an equilateral triangle response surface design. 2. The three apical treatments of the equilateral triangle comprised (1A) a standard diet containing 600 g/kg ground wheat, (2B) the same diet containing 600 g/kg pre-pellet whole wheat and (3C) the same diet containing 300 g/kg ground wheat and 300 g/kg post-pellet whole wheat. Seven blends of the three apical diets were located within the triangle to complete the design and a total of 360 male Ross 308 chicks were offered the ten experimental diets from 7 to 28 d post-hatch. Model prediction and response surface plots were generated with R 3.0.3 software. 3. The most efficient FCR of 1.466 was observed in birds offered an almost equal mixture of the pre- and post-pellet whole grain apical dietary treatments, which corresponded to 172 g/kg ground grain, 256 g/kg pre-pellet whole grain, 172 g/kg post-pellet whole grain in a diet containing 600 g/kg wheat. 4. The most efficient energy utilisation (ME:GE ratio of 0.766) was observed in birds offered a blend of the ground grain and pre-pellet whole grain apical dietary treatments which corresponded to a mixture of 384 g/kg pre-pellet whole grain and 216 g/kg ground grain. 5. Pre-pellet whole grain feeding generated the most pronounced responses in increased relative gizzard contents, reduced gizzard pH and increased relative pancreas weights. Consideration is given to the likely differences between pre- and post-pellet whole grain feeding.

  10. Identifying the hotspots of non-renewable water use using HiGW-MAT: A new land surface model coupled with human interventions and ground water reservoir

    Science.gov (United States)

    Oki, T.; Pokhrel, Y. N.; Yeh, P. J.; Koirala, S.; Kanae, S.; Hanasaki, N.

    2011-12-01

    The real hydrological cycles on the Earth are not natural anymore. Global hydrological model simulations of the water cycle and available water resources should have an ability to consider the effects of human interventions on hydrological cycles. Anthropogenic activity modules (Hanasaki et al., 2008), such as reservoir operation, crop growth and water demand in crop lands, and environmental flows, were incorporated into a land surface model called MATSIRO (Takata et al., 2003), to form a new model, MAT-HI (Pokhrel et al., 2011). Total terrestrial water storages (TWS) in large river basins were estimated using the new model by off-line simulation, and compared with the TWS observed by GRACE for 2002-2007. The results showed MAT-HI has an advantage estimating TWS particularly in arid river basins compared with H08 (Hanasaki et al., 2008). MAT-HI was further coupled with a module representing the ground water level fluctuations (Yeh et al., 2005), and consists a new land surface scheme HiGW-MAT (Human Intervention and Ground Water coupled MATSIRO). HiGW-MAT is also associated with a scheme tracing the origin and flow path with the consideration on the sources of water withdrawal from stream flow, medium-size reservoirs and nonrenewable groundwater in addition to precipitation to croplands enabled the assessment of the origin of water producing major crops as Hanasaki et al. (2010). Areas highly dependent on nonrenewable groundwater are detected in the Pakistan, Bangladesh, western part of India, north and western parts of China, some regions in the Arabian Peninsula and the western part of the United States through Mexico. Cumulative nonrenewable groundwater withdrawals estimated by the model are corresponding fairly well with the country statistics of total groundwater withdrawals. Ground water table depletions in large aquifers in US estimated by HiGW-MAT were compared with in-situ observational data, and the correspondences are very good. Mean global exploitation

  11. Geochemical processes in ground water resulting from surface mining of coal at the Big Sky and West Decker Mine areas, southeastern Montana

    Science.gov (United States)

    Clark, D.W.

    1995-01-01

    A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which geochemical processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. Geochemical models were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous geochemical characteristics. Geochemical processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.

  12. Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States

    Science.gov (United States)

    Webb, R.H.; Leake, S.A.

    2006-01-01

    Riverine riparian vegetation has changed throughout the southwestern United States, prompting concern about losses of habitat and biodiversity. Woody riparian vegetation grows in a variety of geomorphic settings ranging from bedrock-lined channels to perennial streams crossing deep alluvium and is dependent on interaction between ground-water and surface-water resources. Historically, few reaches in Arizona, southern Utah, or eastern California below 1530 m elevation had closed gallery forests of cottonwood and willow; instead, many alluvial reaches that now support riparian gallery forests once had marshy grasslands and most bedrock canyons were essentially barren. Repeat photography using more than 3000 historical images of rivers indicates that riparian vegetation has increased over much of the region. These increases appear to be related to several factors, notably the reduction in beaver populations by trappers in the 19th century, downcutting of arroyos that drained alluvial aquifers between 1880 and 1910, the frequent recurrence of winter floods during discrete periods of the 20th century, an increased growing season, and stable ground-water levels. Reductions in riparian vegetation result from agricultural clearing, excessive ground-water use, complete flow diversion, and impoundment of reservoirs. Elimination of riparian vegetation occurs either where high ground-water use lowers the water table below the rooting depth of riparian species, where base flow is completely diverted, or both. We illustrate regional changes using case histories of the San Pedro and Santa Cruz Rivers, which are adjacent watersheds in southern Arizona with long histories of water development and different trajectories of change in riparian vegetation.

  13. Surface-water, water-quality, and ground-water assessment of the Municipio of Comerio, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Comerio, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System, and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resource data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 13 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land- and water-use conditions. A sanitary quality survey of streams utilized 24 sampling stations to evaluate about 84 miles of stream channels with drainage to or within the municipio of Comerio. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions to evaluate the sanitary quality of streams. Bacteriological analyses indicate that about 27 miles of stream reaches within the municipio of Comerio may have fecal coliform bacteria concentrations above the water-quality goal established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include illegal discharge of sewage to storm-water drains, malfunction of sanitary

  14. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform

  15. Determination of trace levels of herbicides and their degradation products in surface and ground waters by gas chromatography/ion-trap mass spectrometry

    Science.gov (United States)

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.

    1990-01-01

    A rapid, specific and highly sensitive method is described for the determination of several commonly used herbicides and their degradation products in surface and ground waters by using gas chromatography/ion-trap mass spectrometry. The compounds included atrazine, and its degradation products desethylatrazine and desisopropylatrazine; Simazine; Cyanazine; Metolachlor; and alachlor and its degradation products, 2-chloro-2', 6'-diethylacetanilide, 2-hydroxy-2', 6'-diethylacetanilide and 2,6-diethylaniline. The method was applied to surface-water samples collected from 16 different stations along the lower Mississippi River and its major tributaries, and ground-water samples beneath a cornfield in central Nebraska. Average recovery of a surrogate herbicide, terbuthylazine, was greater than 99%. Recoveries of the compounds of interest from river water spiked at environmental levels are also presented. Full-scan mass spectra of these compounds were obtained on 1 ng or less of analyte. Data were collected in the full-scan acquisition mode. Quantitation was based on a single characteristic ion for each compound. The detection limit was 60 pg with a signal-to-noise ratio of greater than 10:1.

  16. Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, B.M.; Finsterle, S.; Onstott, T.C.; Toole, P.; Pratt, L.M.

    2008-10-10

    We have developed a borehole methodology to estimate formation thermal conductivity in situ with a spatial resolution of one meter. In parallel with a fiber-optic distributed temperature sensor (DTS), a resistance heater is deployed to create a controlled thermal perturbation. The transient thermal data is inverted to estimate the formation's thermal conductivity. We refer to this instrumentation as a Distributed Thermal Perturbation Sensor (DTPS), given the distributed nature of the DTS measurement technology. The DTPS was deployed in permafrost at the High Lake Project Site (67 degrees 22 minutes N, 110 degrees 50 minutes W), Nunavut, Canada. Based on DTPS data, a thermal conductivity profile was estimated along the length of a wellbore. Using the thermal conductivity profile, the baseline geothermal profile was then inverted to estimate a ground surface temperature history (GSTH) for the High Lake region. The GSTH exhibits a 100-year long warming trend, with a present-day ground surface temperature increase of 3.0 {+-} 0.8 C over the long-term average.

  17. Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity.

    Science.gov (United States)

    Costard, F; Forget, F; Mangold, N; Peulvast, J P

    2002-01-04

    The observation of small gullies associated with recent surface runoff on Mars has renewed the question of liquid water stability at the surface of Mars. The gullies could be formed by groundwater seepage from underground aquifers; however, observations of gullies originating from isolated peaks and dune crests question this scenario. We show that these landforms may result from the melting of water ice in the top few meters of the martian subsurface at high obliquity. Our conclusions are based on the analogy between the martian gullies and terrestrial debris flows observed in Greenland and numerical simulations that show that above-freezing temperatures can occur at high obliquities in the near surface of Mars, and that such temperatures are only predicted at latitudes and for slope orientations corresponding to where the gullies have been observed on Mars.

  18. Formation of Recent Martian Debris Flows by Melting of Near-Surface Ground Ice at High Obliquity

    Science.gov (United States)

    Costard, F.; Forget, F.; Mangold, N.; Peulvast, J. P.

    2002-01-01

    The observation of small gullies associated with recent surface runoff on Mars has renewed the question of liquid water stability at the surface of Mars. The gullies could be formed by groundwater seepage from underground aquifers; however, observations of gullies originating from isolated peaks and dune crests question this scenario. We show that these landforms may result from the melting of water ice in the top few meters of the martian subsurface at high obliquity. Our conclusions are based on the analogy between the martian gullies and terrestrial debris flows observed in Greenland and numerical simulations that show that above-freezing temperatures can occur at high obliquities in the near surface of Mars, and that such temperatures are only predicted at latitudes and for slope orientations corresponding to where the gullies have been observed on Mars.

  19. Assessing Expected Fractional Damage of Above-ground Buildings from Air-to-surface Weapons based on Indirect Fire Concept

    Directory of Open Access Journals (Sweden)

    Jong Yil Park

    2010-08-01

    Full Text Available For the expected fractional damage of building targets from air-to-surface weapons, the US has used the JMEM/AS method, which is based on the direct-fire concept. However, the damage redistribution assumption in the direct-fire concept could induce serious errors in damage estimation of building targets. In this paper, a method for the expected fractional damage of building targets is proposed based on the indirect-fire concept. From the proposed model, it is shown that the joint munitions effectiveness manuals/air-to-surface (JMEM/AS method is not appropriate for building targets, especially for attacks with multiple aiming points. It is recommended that the indirect-fire concept should be adopted for weaponeering even for air-to-surface weapons. fire concept could induce serious errors in damage estimation of building targets. In this paper, a method for the expected fractional damage of building targets is proposed based on the indirect-fire concept. From the proposed model, it is shown that the JMEM/AS method is not appropriate for building targets, especially for attacks with multiple aiming points. It is recommended that the indirect-fire concept should be adopted for weaponeering even for air-to-surface weapons.Defence Science Journal, 2010, 60(5, pp.491-496, DOI:http://dx.doi.org/10.14429/dsj.60.571

  20. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry.

    Science.gov (United States)

    Pecher, Lisa; Laref, Slimane; Raupach, Marc; Tonner, Ralf Ewald

    2017-09-15

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Can satellite land surface temperature data be used similarly to ground discharge measurements for distributed hydrological model calibration?

    NARCIS (Netherlands)

    Corbari, C.; Mancini, M.; Li, J.; Su, Zhongbo

    2015-01-01

    This study proposes a new methodology for the calibration of distributed hydrological models at basin scale by constraining an internal model variable using satellite data of land surface temperature. The model algorithm solves the system of energy and mass balances in terms of a representative equi

  2. Above- and below-ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization

    NARCIS (Netherlands)

    Wang, Peng; Limpens, Juul; Mommer, Liesje; Ruijven, van Jasper; Nauta, Ake L.; Berendse, Frank; Schaepman-Strub, Gabriela; Blok, Daan; Maximov, Trofim C.; Heijmans, Monique M.P.D.

    2017-01-01

    Climate warming is faster in the Arctic than the global average. Nutrient availability in the tundra soil is expected to increase by climate warming through (i) accelerated nutrient mobilization in the surface soil layers, and (ii) increased thawing depths during the growing season which

  3. Shear shedding of drops and the use of superhydrophobic surfaces in microgravity: PFC and ground based results

    Science.gov (United States)

    Milne, Andrew; Amirfazli, Alidad

    In free fall, the absence of gravity poses many challenges for fluid handling systems. One such example of this is condensers. On earth, the condensed liquid is removed from the tilted condenser plate by gravity forced shedding. In microgravity, proposed solutions include the use of surfaces with gradients in wettability [1], the use of electrowetting [2], and shearing airflow [3]. In this talk, shear shedding results for a variety of surface (hydrophilic to superhydrophobic (extremely water repelling)) will be presented. Surface science and aerodynamics are used to reveal fundamental parameters controlling incipient motion for drops exposed to shearing airflow. It is found that wetting parameters such as contact angle and surface tension are very influential in determining the minimum required air velocity for drop shedding. Based on experimental results for drops of water and hexadecane (0.5-100 l) on PMMA, Teflon, and a superhydrophobic aluminum surface, an exponential function is proposed that relates the critical air velocity for shedding to the ratio of drop base length to projected area. The results for the water systems can be collapsed to a self similar curve by normalization, which also explains results from other researchers. Since shedding from superhydrophobic surfaces (SHS) is seen to be easier compared to other surfaces, the behaviour of SHS is also probed in this talk. SHS have space-based applications to shedding, self cleaning, anti-icing (spacecraft launch/re-entry), anti-fouling, fluid actuation, and decreased fluid friction. The mechanism for SHS is understood to be the existence of an air layer between large portions of the drop and solid. The first concrete visual evidence of this was gained performing a parabolic flight experiment with the ESA. Results of this experi-ment will be discussed, showing the extreme water repelling potential of SHS in microgravity, and demonstrating how the wetting behaviours seen (partial penetration, transition

  4. Formation of recent gullies and debris-flows on Mars by the melting of near-surface ground ice at high obliquity

    Science.gov (United States)

    Forget, F.; Costard, F.; Mangold, N.; Peulvast, J.-P.

    2001-11-01

    The observation of small gullies associated with recent surface run-off on Mars by Mars Global Surveyor has renewed the question of liquid water stability at the surface of Mars. In their initial analyses, Malin and Edgett [1] suggested that the gullies could be formed by groundwater seepage from underground aquifers. However, observations of gullies originating from the top of peaks question this scenario. We show here that these landforms are more likely to result from the melting of liquid water in the first meter of the Martian subsurface at high obliquity. On the one hand, this is suggested by the analogy between the martian gullies and terrestrial debris flows observed in Greenland which are known to result from the thawing of near-surface ground when above-freezing temperatures are reached. On the other hand, numerical simulations show that above-freezing temperatures can occur at high obliquities in the near-surface of Mars, and that such temperatures are only predicted at latitudes and for slope orientations corresponding exactly to where the gullies have been observed on Mars. [1] Malin M.C. and Edgett K.E. Science 288, 2330-2335 (2000).

  5. Modeling the impact of soil and water conservation on surface and ground water based on the SCS and Visual MODFLOW.

    Science.gov (United States)

    Wang, Hong; Gao, Jian-en; Zhang, Shao-long; Zhang, Meng-jie; Li, Xing-hua

    2013-01-01

    Soil and water conservation measures can impact hydrological cycle, but quantitative analysis of this impact is still difficult in a watershed scale. To assess the effect quantitatively, a three-dimensional finite-difference groundwater flow model (MODFLOW) with a surface runoff model-the Soil Conservation Service (SCS) were calibrated and applied based on the artificial rainfall experiments. Then, three soil and water conservation scenarios were simulated on the sand-box model to assess the effect of bare slope changing to grass land and straw mulching on water volume, hydraulic head, runoff process of groundwater and surface water. Under the 120 mm rainfall, 60 mm/h rainfall intensity, 5 m(2) area, 3° slope conditions, the comparative results indicated that the trend was decrease in surface runoff and increase in subsurface runoff coincided with the land-use converted from bare slope to grass land and straw mulching. The simulated mean surface runoff modulus was 3.64×10(-2) m(3)/m(2)/h in the bare slope scenario, while the observed values were 1.54×10(-2) m(3)/m(2)/h and 0.12×10(-2) m(3)/m(2)/h in the lawn and straw mulching scenarios respectively. Compared to the bare slope, the benefits of surface water reduction were 57.8% and 92.4% correspondingly. At the end of simulation period (T = 396 min), the simulated mean groundwater runoff modulus was 2.82×10(-2) m(3)/m(2)/h in the bare slope scenario, while the observed volumes were 3.46×10(-2) m(3)/m(2)/h and 4.91×10(-2) m(3)/m(2)/h in the lawn and straw mulching scenarios respectively. So the benefits of groundwater increase were 22.7% and 60.4% correspondingly. It was concluded that the soil and water conservation played an important role in weakening the surface runoff and strengthening the underground runoff. Meanwhile the quantitative analysis using a modeling approach could provide a thought for the study in a watershed scale to help decision-makers manage water resources.

  6. Evaluation of Cavity Collapse and Surface Crater Formation at the Norbo Underground Nuclear Test in U8c, Nevada Nuclear Security Site, and the Impact on Stability of the Ground Surface

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A

    2012-06-18

    Lawrence Livermore National Laboratory (LLNL) Containment Program performed a review of nuclear test-related data for the Norbo underground nuclear test in U8c to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. This request is similar to one made for the Salut site in U8c (Pawloski, 2012b). Review of the Norbo site is complicated because the test first exhibited subsurface collapse, which was not unusual, but it then collapsed to the surface over one year later, which was unusual. Of particular interest is the stability of the ground surface above the Norbo detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeology due to the nuclear detonation. Aviva Sussman from the Los Alamos National Laboratory (LANL) has also proposed work at this site. Both proposals require physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Security Site (NNSS), formerly the Nevada Test Site (NTS), and focus on possible activities such as visual observation, multispectral measurements, and shallow and deep geophysical surveys.

  7. Evaluation of Cavity Collapse and Surface Crater Formation at the Salut Underground Nuclear Test in U20ak, Nevada National Security Site, and the Impact of Stability of the Ground Surface

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A

    2012-04-25

    At the request of Jerry Sweeney, the LLNL Containment Program performed a review of nuclear test-related data for the Salut underground nuclear test in U20ak to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. Review of the Salut site is complicated because the test experienced a subsurface, rather than surface, collapse. Of particular interest is the stability of the ground surface above the Salut detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeologogy due to the nuclear detonation. Sweeney's proposal requires physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Test Site (NNSS, formerly the Nevada Test Site), and focuses on possible activities such as visual observation, multispectral measurements, and shallow, and deep geophysical surveys.

  8. Surface aerosol radiative forcing derived from collocated ground-based radiometric observations during PRIDE, SAFARI, and ACE-Asia.

    Science.gov (United States)

    Hansell, Richard A; Tsay, Si-Chee; Ji, Qiang; Liou, K N; Ou, Szu-Cheng

    2003-09-20

    An approach is presented to estimate the surface aerosol radiative forcing by use of collocated cloud-screened narrowband spectral and thermal-offset-corrected radiometric observations during the Puerto Rico Dust Experiment 2000, South African Fire Atmosphere Research Initiative (SAFARI) 2000, and Aerosol Characterization Experiment-Asia 2001. We show that aerosol optical depths from the Multiple-Filter Rotating Shadowband Radiometer data match closely with those from the Cimel sunphotometer data for two SAFARI-2000 dates. The observed aerosol radiative forcings were interpreted on the basis of results from the Fu-Liou radiative transfer model, and, in some cases, cross checked with satellite-derived forcing parameters. Values of the aerosol radiative forcing and forcing efficiency, which quantifies the sensitivity of the surface fluxes to the aerosol optical depth, were generated on the basis of a differential technique for all three campaigns, and their scientific significance is discussed.

  9. Dissected Mantle Terrain on Mars: Formation Mechanisms and the Implications for Mid- latitude Near-surface Ground Ice

    Science.gov (United States)

    Searls, M. L.; Mellon, M. T.

    2008-12-01

    Determining the present and past distribution of surface and subsurface ice on Mars is critical for understanding the volatile inventory and climatic history of the planet. An analysis of a latitude-dependent layer of surface material known as the dissected mantle terrain can provide valuable insight into the distribution of ice in the recent past. The dissected mantle terrain is a surface unit that occurs globally in the mid-latitude of Mars. This unit is characterized by a smooth mantle of uniform thickness and albedo that is draped over the existing topography. This smooth mantle is disaggregated and dissected in places resulting in a hummocky pitted appearance. We propose that the mid-latitude dissected terrain results from collapse of a dusty mantle into the void left from desiccation of an underlying ice-rich (pure or dirty ice) layer. During period(s) of high obliquity, it is possible for ice to become stable at lower latitudes. Due to lack of direct solar insolation, surface ice deposits will preferentially accumulate on pole-ward facing slopes first. A mantle of dust and dirt is then deposited on top of these ice-rich deposits. As the climate changes, desiccation of the now buried ice leads to collapse of the overlying dusty layer resulting in a hummocky pitted appearance. This theory is supported by the pole-ward preference for the dissection pits as well an increase in dissection with increasing latitude. A study of the global distribution of the mid-latitude dissected terrain can provide invaluable clues towards unlocking the distribution of ice in the recent past. An analysis of HiRISE images and MOLA data indicate that the distribution of dissection pits varies from one region to the next. Knowing the distribution of ice in conjunction with ice stability modeling can provide a global view of the climate and orbital history of Mars at the time these features formed.

  10. Characterization of surface and ground water δ18O seasonal variation and its use for estimating groundwater residence times

    Science.gov (United States)

    Reddy, Michael M.; Schuster, Paul; Kendall, Carol; Reddy, Micaela B.

    2006-01-01

    18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well-instrumented research catchment in north-central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed-basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments.

  11. Surface-Water, Water-Quality, and Ground-Water Assessment of the Municipio of Mayaguez, Puerto Rico, 1999-2002

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Santiago-Rivera, Luis; Guzman-Rios, Senen; Gómez-Gómez, Fernando; Oliveras-Feliciano, Mario L.

    2004-01-01

    The surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers, because the supply of safe drinking water was a critical issue during recent dry periods. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 20 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land use, water-use, and climatic conditions. A survey of streams and rivers utilized 37 sampling stations to evaluate the sanitary quality of about 165 miles of stream channels. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Mayaguez may have fecal coliform bacteria concentrations above the water-quality goal (standard) established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include: illegal discharge of sewage to storm-water drains, malfunctioning sanitary sewer ejectors, clogged and leaking sewage pipes, septic tank leakage, unfenced livestock, and runoff from livestock pens. Long-term fecal coliform data from five sampling stations located within or in the vicinity of the municipio of Mayaguez have been in compliance with the water-quality goal for fecal coliform concentration established in July 1990. Geologic, topographic, soil, hydrogeologic, and streamflow data were compiled into a database and used to divide the municipio of Mayaguez into

  12. The application of Anthropogenic Gadolinium as a tracer in ground and surface water: examples from France and the Netherlands

    Science.gov (United States)

    Klaver, G.; Verheul, M.; Petelet-Giraud, E.; Negrel, P. J.

    2011-12-01

    Gadolinium chelates have been used since 1988 as contrasts agents in medical imaging (MRI) and produce positive anthropogenic Gd anomalies in rare element shale normalized patterns (REEnasc) of river and lake waters. Both in the Netherlands and France the presence of a positive Gd anomaly in surface and groundwater is used as a common tool in complex surface-surface and surface-groundwater studies. In this poster 3 examples of this common practice are given. The "Ile du Chambon" catchment (100 ha) is located in the Allier Valley, within Oligocene alluvial formations (sand and gravel). The nitrate content in the wells of the drinking water supply is ≥ 50 mg/l and two sources for the origin of the nitrates are hypothesized: agriculture or wastewater from a waste water treatment plant. Widory et al. (2005), using a coupled chemical (Cl and NO3) and isotopic (nitrogen and boron) approach, could show that the wastewater was the main source of the nitrate pollution. The presence of a Gd anomaly in the shale normalized rare earth patterns of wells contaminated by the waste water confirms the findings of Widory et al. (2005). In the second case the Gd anomaly is used to follow the infiltration of river water into a small lake in the Netherlands. During dry periods in this small river, Meuse water with a distinct Gd anomaly is fed into this river. The REE were monitored in the river, in a piezometer installed in the dike between the river and the lake and in the lake before, during and after the Meuse water was fed into this river. With the time series analyses the infiltration of the Meuse water into the dike and the small lake could be clearly followed. In a third case, in the center of the Netherlands, the flow of inlet Meuse water with a distinct Gd anomaly into a polder and subsequently from the larger into the smaller ditches of this polder were followed by analyzing the REEs. In such dry periods the ditches in the polder are also fed by groundwater that does not

  13. Ground-water quality and its relation to hydrogeology, land use, and surface-water quality in the Red Clay Creek basin, Piedmont Physiographic Province, Pennsylvania and Delaware

    Science.gov (United States)

    Senior, Lisa A.

    1996-01-01

    The Red Clay Creek Basin in the Piedmont Physiographic Province of Pennsylvania and Delaware is a 54-square-mile area underlain by a structurally complex assemblage of fractured metamorphosed sedimentary and igneous rocks that form a water-table aquifer. Ground-water-flow systems generally are local, and ground water discharges to streams. Both ground water and surface water in the basin are used for drinking-water supply. Ground-water quality and the relation between ground-water quality and hydrogeologic and land-use factors were assessed in 1993 in bedrock aquifers of the basin. A total of 82 wells were sampled from July to November 1993 using a stratified random sampling scheme that included 8 hydrogeologic and 4 land-use categories to distribute the samples evenly over the area of the basin. The eight hydrogeologic units were determined by formation or lithology. The land-use categories were (1) forested, open, and undeveloped; (2) agricultural; (3) residential; and (4) industrial and commercial. Well-water samples were analyzed for major and minor ions, nutrients, volatile organic compounds (VOC's), pesticides, polychlorinated biphenyl compounds (PCB's), and radon-222. Concentrations of some constituents exceeded maximum contaminant levels (MCL) or secondary maximum contaminant levels (SMCL) established by the U.S. Environmental Protection Agency for drinking water. Concentrations of nitrate were greater than the MCL of 10 mg/L (milligrams per liter) as nitrogen (N) in water from 11 (13 percent) of 82 wells sampled; the maximum concentration was 38 mg/L as N. Water from only 1 of 82 wells sampled contained VOC's or pesticides that exceeded a MCL; water from that well contained 3 mg/L chlordane and 1 mg/L of PCB's. Constituents or properties of well-water samples that exceeded SMCL's included iron, manganese, dissolved solids, pH, and corrosivity. Water from 70 (85 percent) of the 82 wells sampled contained radon-222 activities greater than the proposed MCL of

  14. Ground-water quality and its relation to hydrogeology, land use, and surface-water quality in the Red Clay Creek basin, Piedmont Physiographic Province, Pennsylvania and Delaware

    Science.gov (United States)

    Senior, Lisa A.

    1996-01-01

    The Red Clay Creek Basin in the Piedmont Physiographic Province of Pennsylvania and Delaware is a 54-square-mile area underlain by a structurally complex assemblage of fractured metamorphosed sedimentary and igneous rocks that form a water-table aquifer. Ground-water-flow systems generally are local, and ground water discharges to streams. Both ground water and surface water in the basin are used for drinking-water supply. Ground-water quality and the relation between ground-water quality and hydrogeologic and land-use factors were assessed in 1993 in bedrock aquifers of the basin. A total of 82 wells were sampled from July to November 1993 using a stratified random sampling scheme that included 8 hydrogeologic and 4 land-use categories to distribute the samples evenly over the area of the basin. The eight hydrogeologic units were determined by formation or lithology. The land-use categories were (1) forested, open, and undeveloped; (2) agricultural; (3) residential; and (4) industrial and commercial. Well-water samples were analyzed for major and minor ions, nutrients, volatile organic compounds (VOC's), pesticides, polychlorinated biphenyl compounds (PCB's), and radon-222. Concentrations of some constituents exceeded maximum contaminant levels (MCL) or secondary maximum contaminant levels (SMCL) established by the U.S. Environmental Protection Agency for drinking water. Concentrations of nitrate were greater than the MCL of 10 mg/L (milligrams per liter) as nitrogen (N) in water from 11 (13 percent) of 82 wells sampled; the maximum concentration was 38 mg/L as N. Water from only 1 of 82 wells sampled contained VOC's or pesticides that exceeded a MCL; water from that well contained 3 mg/L chlordane and 1 mg/L of PCB's. Constituents or properties of well-water samples that exceeded SMCL's included iron, manganese, dissolved solids, pH, and corrosivity. Water from 70 (85 percent) of the 82 wells sampled contained radon-222 activities greater than the proposed MCL of

  15. Correlation of near-surface stratigraphy and physical properties of clayey sediments from Chalco Basin, Mexico, using Ground Penetrating Radar

    Science.gov (United States)

    Carreón-Freyre, Dora; Cerca, Mariano; Hernández-Marín, Martín.

    2003-08-01

    Detailed measurements of water content, liquid and plastic limits, electric conductivity, grain-size distribution, specific gravity, and compressibility were performed on the upper 7 m of the lacustrine sequence from the Chalco Basin, Valley of Mexico. Eight stratigraphic units consisting of alternating layers of clay, silt, sand, and gravel of volcanic origin are described for this sequence. The analysis of contrasts in the physical properties permitted to identify potential reflectors of radar waves: (i) change in the electrical conductivity at 0.4 m depth; (ii) increment in the clay and water content at 0.8 m depth; (iii) bimodal behavior of the water content at 1.3 m depth; (iv) increment in the sand content and decrease in water content at 2.6 m depth; and (v) the presence of a pyroclastic unit at 3.7 m depth. Radargrams with frequencies of 900 and 300 MHz were collected on a grid of profiles covering the study area. Correlation of radargrams with the reference section permitted the spatial interpolation of variations in the physical properties and the near-surface stratigraphy. Contrary to the expected in these clayey sediments, electric contrast enhanced by variations in water content and grain size permitted the recording of the near-surface sedimentary structures. Distinctive radar signatures were identified between reflectors. Furthermore, lateral discontinuities of the reflectors and their vertical displacements permitted the identification of deformational features within the sequence.

  16. Regional subsidence modelling in Murcia city (SE Spain using 1-D vertical finite element analysis and 2-D interpolation of ground surface displacements

    Directory of Open Access Journals (Sweden)

    S. Tessitore

    2015-11-01

    Full Text Available Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982–1984, 1992–1995 and 2004–2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.

  17. Highly efficient DNA extraction method from skeletal remains

    Directory of Open Access Journals (Sweden)

    Irena Zupanič Pajnič

    2011-03-01

    Full Text Available Background: This paper precisely describes the method of DNA extraction developed to acquire high quality DNA from the Second World War skeletal remains. The same method is also used for molecular genetic identification of unknown decomposed bodies in routine forensic casework where only bones and teeth are suitable for DNA typing. We analysed 109 bones and two teeth from WWII mass graves in Slovenia. Methods: We cleaned the bones and teeth, removed surface contaminants and ground the bones into powder, using liquid nitrogen . Prior to isolating the DNA in parallel using the BioRobot EZ1 (Qiagen, the powder was decalcified for three days. The nuclear DNA of the samples were quantified by real-time PCR method. We acquired autosomal genetic profiles and Y-chromosome haplotypes of the bones and teeth with PCR amplification of microsatellites, and mtDNA haplotypes 99. For the purpose of traceability in the event of contamination, we prepared elimination data bases including genetic profiles of the nuclear and mtDNA of all persons who have been in touch with the skeletal remains in any way. Results: We extracted up to 55 ng DNA/g of the teeth, up to 100 ng DNA/g of the femurs, up to 30 ng DNA/g of the tibias and up to 0.5 ng DNA/g of the humerus. The typing of autosomal and YSTR loci was successful in all of the teeth, in 98 % dekalof the femurs, and in 75 % to 81 % of the tibias and humerus. The typing of mtDNA was successful in all of the teeth, and in 96 % to 98 % of the bones. Conclusions: We managed to obtain nuclear DNA for successful STR typing from skeletal remains that were over 60 years old . The method of DNA extraction described here has proved to be highly efficient. We obtained 0.8 to 100 ng DNA/g of teeth or bones and complete genetic profiles of autosomal DNA, Y-STR haplotypes, and mtDNA haplotypes from only 0.5g bone and teeth samples.

  18. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Athanasopoulou, Eleni; Speyer, Orestis; Raptis, Panagiotis I.; Marinou, Eleni; Proestakis, Emmanouil; Solomos, Stavros; Gerasopoulos, Evangelos; Amiridis, Vassilis; Bais, Alkiviadis; Kontoes, Charalabos

    2017-07-01

    This study assesses the impact of dust on surface solar radiation focussing on an extreme dust event. For this purpose, we exploited the synergy of AERONET measurements and passive and active satellite remote sensing (MODIS and CALIPSO) observations, in conjunction with radiative transfer model (RTM) and chemical transport model (CTM) simulations and the 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). The area of interest is the eastern Mediterranean where anomalously high aerosol loads were recorded between 30 January and 3 February 2015. The intensity of the event was extremely high, with aerosol optical depth (AOD) reaching 3.5, and optical/microphysical properties suggesting aged dust. RTM and CTM simulations were able to quantify the extent of dust impact on surface irradiances and reveal substantial reduction in solar energy exploitation capacity of PV and CSP installations under this high aerosol load. We found that such an extreme dust event can result in Global Horizontal Irradiance (GHI) attenuation by as much as 40-50 % and a much stronger Direct Normal Irradiance (DNI) decrease (80-90 %), while spectrally this attenuation is distributed to 37 % in the UV region, 33 % in the visible and around 30 % in the infrared. CAMS forecasts provided a reliable available energy assessment (accuracy within 10 % of that obtained from MODIS). Spatially, the dust plume resulted in a zonally averaged reduction of GHI and DNI of the order of 150 W m-2 in southern Greece, and a mean increase of 20 W m-2 in the northern Greece as a result of lower AOD values combined with local atmospheric processes. This analysis of a real-world scenario contributes to the understanding and quantification of the impact range of high aerosol loads on solar energy and the potential for forecasting power generation failures at sunshine-privileged locations where solar power plants exist, are under construction or are being planned.

  19. Ground-based FTIR measurements of CO from the Jungfraujoch: characterisation and comparison with in situ surface and MOPITT data

    Directory of Open Access Journals (Sweden)

    B. Barret

    2003-01-01

    Full Text Available CO vertical profiles have been retrieved from solar absorption FTIR spectra recorded at the NDSC station of the Jungfraujoch (46.5º N, 8º E and 3580 m a.s.l. for the period from January 1997 to May 2001. The characterisation of these profiles has been established by an information content analysis and an estimation of the error budgets. A partial validation of the profiles has been performed through comparisons with correlative measurements. The average volume mixing ratios (vmr in the 3 km layer above the station have been compared with coincident surface measurements. The agreement between monthly means from both measurement techniques is very good, with a correlation coefficient of 0.87, and no significant bias observed. The FTIR total columns have also been compared to CO partial columns above 3580 m a.s.l. derived from the MOPITT (Measurement Of Pollution In The Troposphere instrument for the period March 2000 to May 2001. Relative to the FTIR columns, the MOPITT partial columns exhibit a positive bias of 8±8% for daytime and of 4±7% for nighttime measurements.

  20. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  1. Reconstruction of the 500-year ground surface temperature history of northern Awaji Island, southwest Japan, using a layered thermal property model

    Science.gov (United States)

    Goto, Shusaku; Yamano, Makoto

    2010-12-01

    Changes in the ground surface temperature (GST), propagating underground, can be recorded as thermal perturbations to the background thermal field. This paper presents a forward model of conductive propagation of GST in a layered material model with uniform thermal properties in each layer and a series of step functions as GST history. This model, which is expressed using the same mathematical form of that for a uniform thermal property model with a series of step functions as GST history, calculates subsurface temperature perturbations that originate from the GST change by superimposing numerically solved solutions of the model with surface boundary condition of a unit function. Using this model, we reconstruct the recent 500-year GST history from borehole temperature data in northern Awaji Island, southwest Japan, by Bayesian inversion. The reconstructed GST history shows the onset of warming in the mid-18th century to the early 19th century and an increase of 1.1-1.3 K up to the mid-20th century. From the middle to late 20th century, the GST decreased by about 0.2 K. The GST change in the 20th century fits the trend of mean annual surface air temperature records in Kobe, opposite the coast of northern Awaji Island. The GST history in northern Awaji Island differs from that in Ulsan, in the southeastern Republic of Korea, which is located at the same latitude as northern Awaji Island. Differences of the GST histories of these regions most likely reflect differences in sea surface temperatures in these regions.

  2. Grounded theory.

    Science.gov (United States)

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  3. Analyses of freshwater stress with a couple ground and surface water model in the Pra Basin, Ghana

    Science.gov (United States)

    Owusu, George; Owusu, Alex B.; Amankwaa, Ebenezer Forkuo; Eshun, Fatima

    2015-04-01

    The optimal management of water resources requires that the collected hydrogeological, meteorological, and spatial data be simulated and analyzed with appropriate models. In this study, a catchment-scale distributed hydrological modeling approach is applied to simulate water stress for the years 2000 and 2050 in a data scarce Pra Basin, Ghana. The model is divided into three parts: The first computes surface and groundwater availability as well as shallow and deep groundwater residence times by using POLFLOW model; the second extends the POLFLOW model with water demand (Domestic, Industrial and Agricultural) model; and the third part involves modeling water stress indices—from the ratio of water demand to water availability—for every part of the basin. On water availability, the model estimated long-term annual Pra river discharge at the outflow point of the basin, Deboase, to be 198 m3/s as against long-term average measurement of 197 m3/s. Moreover, the relationship between simulated discharge and measured discharge at 9 substations in the basin scored Nash-Sutcliffe model efficiency coefficient of 0.98, which indicates that the model estimation is in agreement with the long-term measured discharge. The estimated total water demand significantly increases from 959,049,096 m3/year in 2000 to 3,749,559,019 m3/year in 2050 (p < 0.05). The number of districts experiencing water stress significantly increases (p = 0.00044) from 8 in 2000 to 21 out of 35 by the year 2050. This study will among other things help the stakeholders in water resources management to identify and manage water stress areas in the basin.

  4. MCSCF/CI ground state potential energy surface, dipole moment function, and gas phase vibrational frequencies for the nitrogen dioxide positive ion

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, D.G.

    1980-05-01

    The ground state potential energy surface for the nitrogen dioxide positive ion, NO/sup +//sub 2/X /sup 1/..sigma../sup +//sub g/(..sigma../sup +/,A/sub 1/,A'), has been scanned with a correlated wave function to obtain directly, for the first time, the gas phase equilibrium geometry, force constants, vibrational frequencies, and dipole moment function. The wave function for this scan was constructed from a double-zeta plus polarization one-electron basis with a 12 configuration MCSCF determination of the orbital basis for a full valence /sup 1/..sigma../sup +//sub g/ configuration interaction expansion. The calculated equilibrium bond length is 1.12 A. The vibrational frequencies are computed to be ..nu../sub 1/=1514, ..nu../sub 2/=679, and ..nu../sub 3/=2614 cm/sup -1/ The present ab initio results differ significantly from crystalline spectroscopic studies and are, thus, the best values available for the gas phase vibrational frequencies. The dipole moment function is nonzero at the ..sigma../sup +/, A/sub 1/, and A' geometries included in the potential surface scan, and is obtained here to provide for the future a priori calculation of the infrared band intensities.

  5. Geochemical background and ecological risk of heavy metals in surface sediments from the west Zhoushan Fishing Ground of East China Sea.

    Science.gov (United States)

    Xu, Gang; Liu, Jian; Pei, Shaofeng; Hu, Gang; Kong, Xianghuai

    2015-12-01

    Surface sediment grain size as well as the spatial distribution, pollution status, and source identification of heavy metals in the west Zhoushan Fishing Ground (ZFG) of the East China Sea were analyzed to study the geochemical background concentrations of heavy metals and to assess their potential ecological risk. Our results show that surface sediments in the eastern part of study area were mainly composed of sand-sized components. Spatial distributions of heavy metals were mainly controlled by grain size and terrigenous materials, and their concentrations in the coarsest grain sediments formed primarily during the Holocene transgressive period could represent the element background values of our study area. Contamination factor suggests that there was no pollution of Pb, Zn, and Cr generally in our study area and slight pollution of Cu, Cd, and As (especially Cu) at some stations. In addition, ecological harm coefficient indicates that the ecological risk of each heavy metal, except for Cd, at two stations was low as well. These results are consistent with the pollution load index and ecological risk index, which suggest both the overall level of pollution and the overall ecological risk of six studied metals in sediment were relatively low in our study area. Enrichment factor indicates that the heavy metals came mostly from the natural source. Summarily, the quality level of sediment in our study area was relatively good, and heavy metals in sediments could not exert threat to aquatic lives in the ZFG until now.

  6. Nutrient removal capacity of wood residues for the Agro-environmental safety of ground and surface waters

    Directory of Open Access Journals (Sweden)

    Paulo A. Dumont

    2014-07-01

    Full Text Available The aim of this study was to determine the effectiveness of wood residues in the removal of nutrients (ammonium-N; NH4-N from nutrient-rich (NH4-N waters. The water holding capacity of the wood materials was also determined. Carried out at Rothamsted Research, North Wyke, UK, this controlled laboratory experiment tested two wood residues; in length, one being 1-2cm and the other from 150 µm (microns to 9.5mm. Although a wide range of studies have shown the effectiveness and performance of various absorbent materials as animal beddings, such as straw (cereal straw, woodchip (sawdust, bark or wood shavings, bracken and rushes, only few have focused on the NH4-N sorption/desorption capacity. The depuration capacity of wood residues from nutrient-rich effluents such as those from cattle bedded on woodchip or straw will be controlled by processes such as sorption (adsorption-absorption and desorption of nutrients. Studies have reported the nitrogen removal capacity of woodchip materials and biochar from woodchip as well as removal of NH4+-N from domestic and municipal wastewater, farm dirty water, landfill and industry effluents. These studies have observed that the mechanism of removal of nitrogen is by either increasing NO3--N removal form leachate by enhancing N2O losses via denitrification (biochar as carbon source for denitrifiers or by decreasing NH4+-N in leachate through adsorption to negatively charged sites. Results showed that although the cation exchange capacity (CEC and surface area (SA are both fundamental properties of adsorbent materials, no correlation was found with CEC and adsorption or desorption. Nor did changes in pH appear to be sufficiently important to cause changes in CEC. For this reason, osmotic pressure appeared to be a more predominant parameter controlling processes of adsorption and desorption of NH4+-N in both wood residues. Thus, wood residues high in NH4+-N should be avoided, as they could have an opposite effect

  7. Scott's Lake Excavation Letters on Human Remains

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is two letters written about the repatriation of Santee Indian human remains and funerary objects to Santee Sioux Tribe. Includes an inventory of human remains...

  8. Effects of Different Methods on the Comparison between Land Surface and Ground Phenology—A Methodological Case Study from South-Western Germany

    Directory of Open Access Journals (Sweden)

    Gourav Misra

    2016-09-01

    Full Text Available Several methods exist for extracting plant phenological information from time series of satellite data. However, there have been only a few successful attempts to temporarily match satellite observations (Land Surface Phenology or LSP with ground based phenological observations (Ground Phenology or GP. The classical pixel to point matching problem along with the temporal and spatial resolution of remote sensing data are some of the many issues encountered. In this study, MODIS-sensor’s Normalised Differenced Vegetation Index (NDVI time series data were smoothed using two filtering techniques for comparison. Several start of season (SOS methods established in the literature, namely thresholds of amplitude, derivatives and delayed moving average, were tested for determination of LSP-SOS for broadleaf forests at a site in southwestern Germany using 2001–2013 time series of NDVI data. The different LSP-SOS estimates when compared with species-rich GP dataset revealed that different LSP-SOS extraction methods agree better with specific phases of GP, and the choice of data processing or smoothing strongly affects the LSP-SOS extracted. LSP methods mirroring late SOS dates, i.e., 75% amplitude and 1st derivative, indicated a better match in means and trends, and high, significant correlations of up to 0.7 with leaf unfolding and greening of late understory and broadleaf tree species. GP-SOS of early understory leaf unfolding partly were significantly correlated with earlier detecting LSP-SOS, i.e., 20% amplitude and 3rd derivative. Early understory SOS were, however, more difficult to detect from NDVI due to the lack of a high resolution land cover information.

  9. Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light.

    Science.gov (United States)

    Sommers, Christopher H; Scullen, O J; Sheen, Shiowshuh

    2016-01-01

    Extraintestinal pathogenic Escherichia coli, including uropathogenic E. coli (UPEC), are common contaminants in poultry meat and may cause urinary tract infections after colonization of the gastrointestinal tract and transfer of contaminated feces to the urethra. Three non-thermal processing technologies used to improve the safety and shelf-life of both human and pet foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). Multi-isolate cocktails of UPEC were inoculated into ground chicken which was then treated with HPP (4°C, 0-25 min) at 300, 400, or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When the UPEC was inoculated into ground chicken and gamma irradiated (4 and -20°C) the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken suspended in exudate and placed on stainless steel and plastic food contact surfaces ranged from 11.4 to 12.9 mJ/cm(2). UV-C inactivated ca. 0.6 log of UPEC on chicken breast meat. These results indicate that existing non-thermal processing technologies such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or exudate and provide safer poultry products for at-risk consumers.

  10. Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light

    Directory of Open Access Journals (Sweden)

    Christopher H Sommers

    2016-04-01

    Full Text Available Extraintestinal pathogenic Escherichia coli (ExPEC, including uropathogenic E. coli (UPEC are common contaminants in poultry meat and may cause urinary tract infections after colonization of the gastrointestinal tract and transfer of contaminated feces to the urethra. Three nonthermal processing technologies used to improve the safety and shelf-life of both human and pet foods include high pressure processing (HPP, ionizing (gamma radiation (GR, and ultraviolet light (UV-C. Multi-isolate cocktails of UPEC were inoculated into ground chicken which was then treated with HPP (4 oC, 0-25 min at 300, 400 or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When the UPEC was inoculated into ground chicken and gamma irradiated (4 and -20 oC the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken suspended in exudate and placed on stainless steel and plastic food contact surfaces ranged from 11.4 to 12.9 mJ/cm2. UV-C inactivated ca. 0.6 log of UPEC on chicken breast meat. These results indicate that existing nonthermal processing technologies such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or exudate and provide safer poultry products for at-risk consumers.

  11. Ground-Control Networks for Image Based Surface Reconstruction: An Investigation of Optimum Survey Designs Using UAV Derived Imagery and Structure-from-Motion Photogrammetry

    Directory of Open Access Journals (Sweden)

    Toby N. Tonkin

    2016-09-01

    Full Text Available The use of small UAV (Unmanned Aerial Vehicle and Structure-from-Motion (SfM with Multi-View Stereopsis (MVS for acquiring survey datasets is now commonplace, however, aspects of the SfM-MVS workflow require further validation. This work aims to provide guidance for scientists seeking to adopt this aerial survey method by investigating aerial survey data quality in relation to the application of ground control points (GCPs at a site of undulating topography (Ennerdale, Lake District, UK. Sixteen digital surface models (DSMs were produced from a UAV survey using a varying number of GCPs (3-101. These DSMs were compared to 530 dGPS spot heights to calculate vertical error. All DSMs produced reasonable surface reconstructions (vertical root-mean-square-error (RMSE of <0.2 m, however, an improvement in DSM quality was found where four or more GCPs (up to 101 GCPs were applied, with errors falling to within the suggested point quality range of the survey equipment used for GCP acquisition (e.g., vertical RMSE of <0.09 m. The influence of a poor GCP distribution was also investigated by producing a DSM using an evenly distributed network of GCPs, and comparing it to a DSM produced using a clustered network of GCPs. The results accord with existing findings, where vertical error was found to increase with distance from the GCP cluster. Specifically vertical error and distance to the nearest GCP followed a strong polynomial trend (R2 = 0.792. These findings contribute to our understanding of the sources of error when conducting a UAV-SfM survey and provide guidance on the collection of GCPs. Evidence-driven UAV-SfM survey designs are essential for practitioners seeking reproducible, high quality topographic datasets for detecting surface change.

  12. Theoretical study of solvent effects on the ground and low-lying excited free energy surfaces of a push-pull substituted azobenzene.

    Science.gov (United States)

    Corchado, Jose C; Sánchez, M Luz; Fdez Galván, Ignacio; Martín, M Elena; Muñoz-Losa, Aurora; Barata-Morgado, Rute; Aguilar, Manuel A

    2014-10-30

    The ground and low-lying excited free energy surfaces of 4-amino-4'-cyano azobenzene, a molecule that has been proposed as building block for chiroptical switches, are studied in gas phase and a variety of solvents (benzene, chloroform, acetone, and water). Solvent effects on the absorption and emission spectra and on the cis-trans thermal and photo isomerizations are analyzed using two levels of calculation: TD-DFT and CASPT2/CASSCF. The solvent effects are introduced using a polarizable continuum model and a QM/MM method, which permits one to highlight the role played by specific interactions. We found that, in gas phase and in agreement with the results found for other azobenzenes, the thermal cis-trans isomerization follows a rotation-assisted inversion mechanism where the inversion angle must reach values close to 180° but where the rotation angle can take almost any value. On the contrary, in polar solvents the mechanism is controlled by the rotation of the CN═NC angle. The change in the mechanism is mainly related to a better solvation of the nitrogen atoms of the azo group in the rotational transition state. The photoisomerization follows a rotational pathway both in gas phase and in polar and nonpolar solvents. The solvent introduces only small modifications in the nπ* free energy surface (S1), but it has a larger effect on the ππ* surface (S2) that, in polar solvents, gets closer to S1. In fact, the S2 band of the absorption spectrum is red-shifted 0.27 eV for the trans isomer and 0.17 eV for the cis. In the emission spectrum the trend is similar: only S2 is appreciably affected by the solvent, but in this case a blue shift is found.

  13. Rapid detection and characterization of surface CO2 leakage through the real-time measurement of δ13C signatures in CO2 flux from the ground

    Science.gov (United States)

    Krevor, Samuel; Benson, Sally; Rella, Chris; Perrin, Jean-Christophe; Esposito, Ariel; Crosson, Eric

    2010-05-01

    The surface monitoring of CO2 over geologic sequestration sites will be an essential tool in the monitoring and verification of sequestration projects. Surface monitoring is the only tool that currently provides the opportunity to detect and quantify leakages on the order of 1000 tons/year CO2. Near-surface detection and quantification can be made complicated, however, due to large temporal and spatial variations in natural background CO2 fluxes from biological processes. In addition, current surface monitoring technologies, such as the use of IR spectroscopy in eddy covariance towers and aerial surveys, radioactive or noble gas isotopic tracers, and flux chamber gas measurements can generally accomplish one or two of the necessary tasks of leak detection, identification, and quantification, at both large spatial scales and high spatial resolution. It would be useful, however, to combine the utility of these technologies so that a much simplified surface monitoring program can be deployed. Carbon isotopes of CO2 provide an opportunity to distinguish between natural biogenic CO2 fluxes from the ground and CO2 leaking from a sequestration reservoir that has ultimate origins in a process giving it a distinct isotopic signature such as natural gas processing. Until recently, measuring isotopic compositions of gases was a time-consuming and expensive process utilizing mass-spectrometry, not practical for deployment in a high-resolution survey of a potential leakage site at the surface. Recent developments in commercially available instruments utilizing wavelength scanned cavity ringdown spectroscopy (WS-CRDS) and Fourier transform infrared spectroscopy (FT-IR) have made it possible to rapidly measure the isotopic composition of gases including the 13C and 12C isotopic composition of CO2 in a field setting. A portable stable carbon isotope ratio analyzer for carbon dioxide, based on wavelength scanned cavity ringdown spectroscopy, has been used to rapidly detect and

  14. Grounded cognition.

    Science.gov (United States)

    Barsalou, Lawrence W

    2008-01-01

    Grounded cognition rejects traditional views that cognition is computation on amodal symbols in a modular system, independent of the brain's modal systems for perception, action, and introspection. Instead, grounded cognition proposes that modal simulations, bodily states, and situated action underlie cognition. Accumulating behavioral and neural evidence supporting this view is reviewed from research on perception, memory, knowledge, language, thought, social cognition, and development. Theories of grounded cognition are also reviewed, as are origins of the area and common misperceptions of it. Theoretical, empirical, and methodological issues are raised whose future treatment is likely to affect the growth and impact of grounded cognition.

  15. Monitoring of ground surface deformation in mining area with InSAR technique%利用InSAR技术监测矿区地表形变

    Institute of Scientific and Technical Information of China (English)

    朱建军; 邢学敏; 胡俊; 李志伟

    2011-01-01

    The application status and research progress of InSAR technique in the monitoring of the ground surface deformation in mining area were introduced. Firstly, the advantages of D-InSAR technique were analyzed by comparing to the traditional surveying methods. Then, the limitations of D-InSAR in the mining deformation detection were described. According to the limitations of the traditional D-InSAR method, the advanced InSAR technique, e.g., small baseline subset (SBAS), permanent scatterer (PS) and corner reflector (CR) techniques were discussed. Using real mining subsidence monitoring as example, the characteristics and application status of those advanced InSAR techniques were studied, and the key problems still existing in the current research were summarized. Finally, it is indicated that the development trend of InSAR monitoring surface deformation in mining area is the combination of advanced InSAR and high-resolution SAR images.%介绍了InSAR技术在矿区地表形变监测中的应用现状及进展,分析了D-InSAR技术相比于传统测量手段的优势,并指出其在矿区地表形变监测中的不足.针对传统D-InSAR技术的局限性,重点讨论了短基线(SBAS)、永久散射体(PS)和角反射器(CR)等高级差分干涉技术,并结合矿区沉降监测实例,分析了其特点与应用现状,讨论了现有研究中仍存在的问题.高级InSAR技术和高分辨率SAR影像的结合将是矿区地表形变监测的发展趋势.

  16. Determination of pharmaceutical compounds in surface- and ground-water samples by solid-phase extraction and high-performance liquid chromatography-electrospray ionization mass spectrometry

    Science.gov (United States)

    Cahill, J.D.; Furlong, E.T.; Burkhardt, M.R.; Kolpin, D.; Anderson, L.G.

    2004-01-01

    Commonly used prescription and over-the-counter pharmaceuticals are possibly present in surface- and ground-water samples at ambient concentrations less than 1 μg/L. In this report, the performance characteristics of a combined solid-phase extraction isolation and high-performance liquid chromatography–electrospray ionization mass spectrometry (HPLC–ESI-MS) analytical procedure for routine determination of the presence and concentration of human-health pharmaceuticals are described. This method was developed and used in a recent national reconnaissance of pharmaceuticals in USA surface waters. The selection of pharmaceuticals evaluated for this method was based on usage estimates, resulting in a method that contains compounds from diverse chemical classes, which presents challenges and compromises when applied as a single routine analysis. The method performed well for the majority of the 22 pharmaceuticals evaluated, with recoveries greater than 60% for 12 pharmaceuticals. The recoveries of angiotensin-converting enzyme inhibitors, a histamine (H2) receptor antagonist, and antihypoglycemic compound classes were less than 50%, but were retained in the method to provide information describing the potential presence of these compounds in environmental samples and to indicate evidence of possible matrix enhancing effects. Long-term recoveries, evaluated from reagent-water fortifications processed over 2 years, were similar to initial method performance. Method detection limits averaged 0.022 μg/L, sufficient for expected ambient concentrations. Compound-dependent matrix effects on HPLC/ESI-MS analysis, including enhancement and suppression of ionization, were observed as a 20–30% increase in measured concentrations for three compounds and greater than 50% increase for two compounds. Changing internal standard and more frequent ESI source maintenance minimized matrix effects. Application of the method in the national survey demonstrates that several

  17. Study of the Pierre Auger Observatory ground detectors: tests, simulation and calibration; Etude des detecteurs de surface de l'observatoire Pierre Auger: tests, simulation et etalonnage

    Energy Technology Data Exchange (ETDEWEB)

    Creusot, A

    2004-10-01

    The Pierre Auger Observatory is intended to the ultra high energy cosmic rays study. This study is realized through the particles showers coming from the interaction between the cosmic rays and the atmosphere. The ground detection of these showers requires a comprehensive understanding of the detectors. Several test tanks have been elaborated for this purpose, especially the Orsay one. The first chapter is dedicated to the presentation of the cosmic rays and of the Pierre Auger Observatory. The second one describes the detectors used for the Observatory surface array. The Orsay test tank is then presented and detailed. We study the results we have got with the Orsay test tank in the fourth chapter and compare these results with those of the Observatory detectors in the fifth chapter. The sixth chapter is dedicated to the validation of the results set through the simulation (GEANT4 software). Finally, the first detected particles showers are presented in the seventh chapter. The data acquisition has begun this year. The construction will be finished by end of 2005. From this moment, The Pierre Auger Observatory will allow us to contribute to solving the cosmic rays puzzle. (author)

  18. Carbonaceous and nitrogenous disinfection by-product formation in the surface and ground water treatment plants using Yellow River as water source

    Institute of Scientific and Technical Information of China (English)

    Yukun Hou; Wenhai Chu; Meng Ma

    2012-01-01

    This work investigated the formation of carbonaceous and nitrogenous disinfection by-preducts (C-DBPs,N-DBPs) upon chlorination of water samples collected from a surface water and a ground water treatment plant (SWTP and GWTP) where the conventional treatment processes,i.e.,coagulation,sedimentation,and filtration were employed.Twenty DBPs,including four trihalomethanes,nine haloacetic acids,seven N-DBPs (dichloroacetamide,trichloroacetamide,dichloroacetonitrile,trich loroacetonitrile,bromochloroacetonitrile,dibromoacetonitrile and trichloronitromethane),and eight volatile chlorinated compounds (dichlomethane (DCM),1,2-dichloroethane,tetrachloroethylene,chlorobenzene,1,2-dichlorobenzene,1,4-dichlorobenzene,1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene) were detected in the two WTPs.The concentrations of these contaminants were all below their corresponding maximum contamination levels (MCLs) regulated by the Standards for Drinking Water Quality of China (GB5749-2006) except for DCM (17.1 μg/L detected vs.20 μg/L MCL).The SWTP had much higher concentrations of DBPs detected in the treated water as well as the DBP formation potentials tested in the filtered water than the GWTP,probably because more precursors (e.g.,dissolved organic carbon,dissolved organic nitrogen) were present in the water source of the SWTP.

  19. Wind-induced ground motion

    Science.gov (United States)

    Naderyan, Vahid; Hickey, Craig J.; Raspet, Richard

    2016-02-01

    Wind noise is a problem in seismic surveys and can mask the seismic signals at low frequency. This research investigates ground motions caused by wind pressure and shear stress perturbations on the ground surface. A prediction of the ground displacement spectra using the measured ground properties and predicted pressure and shear stress at the ground surface is developed. Field measurements are conducted at a site having a flat terrain and low ambient seismic noise. Triaxial geophones are deployed at different depths to study the wind-induced ground vibrations as a function of depth and wind velocity. Comparison of the predicted to the measured wind-induced ground displacement spectra shows good agreement for the vertical component but significant underprediction for the horizontal components. To validate the theoretical model, a test experiment is designed to exert controlled normal pressure and shear stress on the ground using a vertical and a horizontal mass-spring apparatus. This experiment verifies the linear elastic rheology and the quasi-static displacements assumptions of the model. The results indicate that the existing surface shear stress models significantly underestimate the wind shear stress at the ground surface and the amplitude of the fluctuation shear stress must be of the same order of magnitude as the normal pressure. Measurement results show that mounting the geophones flush with the ground provides a significant reduction in wind noise on all three components of the geophone. Further reduction in wind noise with depth of burial is small for depths up to 40 cm.

  20. Luminescence of thermally altered human skeletal remains

    NARCIS (Netherlands)

    Krap, Tristan; Nota, Kevin; Wilk, Leah; van de Goot, Frank; Ruijter, Jan; Duijst, Wilma; Oostra, Roelof Jan

    2017-01-01

    Literature on luminescent properties of thermally altered human remains is scarce and contradictory. Therefore, the luminescence of heated bone was systemically reinvestigated. A heating experiment was conducted on fresh human bone, in two different media, and cremated human remains were recovered

  1. Mammalian Remains from Indian Sites on Aruba

    NARCIS (Netherlands)

    Hooijer, D.A.

    1960-01-01

    Mr. H. R. VAN HEEKEREN and Mr. C. J. DU RY, of the Rijksmuseum voor Volkenkunde at Leiden, entrusted me with the identification of some animal remains collected from Indian sites on Aruba by Professor J. P. B. DE JOSSELIN DE JONG in 1923. These remains relate for the most part to marine turtles (Che

  2. 基于GIS的矿山地表移动信息管理与分析系统%GIS BASED INFORMATION MANAGEMENT AND ANALYZING SYSTEM FOR GROUND SURFACE MOVEMENT AT MINES

    Institute of Scientific and Technical Information of China (English)

    邓清海; 马凤山; 袁仁茂; 丁德民; 张亚民; 王杰; 郭捷

    2009-01-01

    In accordance with engineering practice of Jinchuan Nickel Mine in Gansu Province, China, this paper studies the method and process of developing ground surface movement information management and analyzing system for mines. The system is a GIS based secondary development. The paper discusses the structure and functions of the system. The system contains three modules: management of ground surface movement information, analysis and evaluation of ground surface movement, and ground surface movement forecast. The system makes the best of powerful information management and spatial analyzing capabilities of GIS, and can carry out the analysis and evaluation of ground surface movement by combining Surfer 8.0. And in the module of forecast, using the technique of MATLAB 6.5 program with VB 6.0, the system can achieve the ANN prediction model for GPS monitoring data. The study results shall improve management and analyzing efficiency for ground surface movement information in Jinchuan Nickel Mine, and can be used in developing the information system of ground surface movement in other mines.%以金川矿区为例,介绍了应用GIS进行二次开发来构建矿山地表移动信息管理与分析系统的方法、过程以及该系统的主要功能.该系统包括地表移动信息管理、地表移动分析与评价、地表移动预测3个模块,充分利用了GIS强大的空间数据管理与分析能力,实现了GIS与Surfer结合进行矿山地表移动分析与评价,GIS与Matlab结合进行监测数据的非线性神经网络时序预测.该系统不但有助于提高金川矿山地表移动信息的检索和分析效率,对其他矿山地表移动信息系统的建立也具有借鉴意义.

  3. 地表水文监测在岩溶隧道施工中的应用%Application of Ground Surface Hydrology Monitoring in Construction of Karst Tunnels

    Institute of Scientific and Technical Information of China (English)

    周坤; 方俊波

    2013-01-01

    为探讨岩溶隧道施工涌水对地表水文环境的影响程度及范围,以圆梁山深埋特长隧道工程施工为依托,对隧道地表水文进行监测和分析.主要研究内容及结论为:1)介绍圆梁山隧道向斜段地表水文地质情况,说明进行悬挂泉流量及地表井泉水位监测可以评估隧道突涌水对地表环境的影响程度及范围;2)进行地表大气降雨及隧道涌水量观测并对比,可以据此判定隧道与地表的水力连通性;3)证明隧道施工会对隧道洞身上方泉眼产生影响,但对山顶植被影响较轻;4)在岩溶隧道施工中进行地表水文监测是必要的,对施工具有指导作用.%The ground surface hydrology of Yuanliangshan deep-buried extra-long tunnel is monitored and analyzed,so as to obtain the degree and range of the influence on the ground surface hydrology imposed by water burst occurring during the construction of karst tunnels.Conclusions drawn are as follows:1) The degree and range of the influence of water bursts on the ground surface hydrology can be evaluated by means of monitoring the flow volume of hanging springs and the water levels of ground surface well springs.2) The hydraulic conductivity between the tunnel and the ground surface can be deduced from monitoring of and comparison and contrast between ground surface rainfalls and water bursts.3) The tunnel construction has some influence on the springs above the tunnel,but has little influence on the vegetations.4) It is necessary to monitor the ground surface hydrology,which can provide reference for the construction of karst tunnels.

  4. Rock mass response to strong ground motion generated by mining induced seismic events and blasting observed at the surface of the excavations in deep level gold mines in South Africa

    Science.gov (United States)

    Milev, Alexander; Durrheim, Ray; Ogasawara, Hiroshi

    2014-05-01

    The strong ground motion generated by mining induced seismic events was studied to characterize the rock mass response and to estimate the site effect on the surface of the underground excavations. A stand-alone instruments, especially designed for recording strong ground motions, were installed underground at a number of deep level gold mines in South Africa. The instruments were recording data at the surface of the stope hangingwalls. A maximum value of 3 m/s was measured. Therefore data were compared to the data recorded in the solid rock by the mine seismic networks to determine the site response. The site response was defined as the ratio of the peak ground velocity measured at the surface of the excavations to the peak ground velocity inferred from the mine seismic data measured in the solid rocks. The site response measured at all mines studied was found to be 9 ± 3 times larger on average. A number of simulated rockbursts were conducted underground in order to estimate the rock mass response when subjected to extreme ground motion and derive the attenuation factors in near field. The rockbursts were simulated by means of large blasts detonated in solid rock close to the sidewall of a tunnel. The numerical models used in the design of the simulated rockbursts were calibrated by small blasts taking place at each experimental site. A dense array of shock type accelerometers was installed along the blasting wall to monitor the attenuation of the strong ground motion as a function of the distance from the source. The attenuation of the ground motion was found to be proportional to the distance from the source following R^-1.1 & R^-1.7 for compact rock and R^-3.1 & R^-3.4 for more fractured rock close to the surface of the tunnel. In addition the ground motion was compared to the quasi-static deformations taking place around the underground excavations. The quasi-static deformations were measured by means of strain, tilt and closure. A good correspondence

  5. Ab initio ground and excited state potential energy surfaces for NO-Kr complex and dynamics of Kr solids with NO impurity.

    Science.gov (United States)

    Castro-Palacios, Juan Carlos; Rubayo-Soneira, Jesús; Ishii, Keisaku; Yamashita, Koichi

    2007-04-01

    The intermolecular potentials for the NO(X 2Pi)-Kr and NO(A 2Sigma+)-Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1 2A' state [NO(X 2Pi)-Kr] and the multireference singles and doubles configuration interaction method for the excited 2 2A' state [NO(A 2Sigma+)-Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr-NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr-NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr-NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match

  6. Remaining Life Expectancy With and Without Polypharmacy

    DEFF Research Database (Denmark)

    Wastesson, Jonas W; Canudas-Romo, Vladimir; Lindahl-Jacobsen, Rune

    2016-01-01

    OBJECTIVES: To investigate the remaining life expectancy with and without polypharmacy for Swedish women and men aged 65 years and older. DESIGN: Age-specific prevalence of polypharmacy from the nationwide Swedish Prescribed Drug Register (SPDR) combined with life tables from Statistics Sweden...... was used to calculate the survival function and remaining life expectancy with and without polypharmacy according to the Sullivan method. SETTING: Nationwide register-based study. PARTICIPANTS: A total of 1,347,564 individuals aged 65 years and older who had been prescribed and dispensed a drug from July 1...... to September 30, 2008. MEASUREMENTS: Polypharmacy was defined as the concurrent use of 5 or more drugs. RESULTS: At age 65 years, approximately 8 years of the 20 remaining years of life (41%) can be expected to be lived with polypharmacy. More than half of the remaining life expectancy will be spent...

  7. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 13. Mineral Microscopy and Chemistry of Mined and Unmined Porphyry Molybdenum Mineralization Along the Red River, New Mexico: Implications for Ground- and Surface-Water Quality

    Science.gov (United States)

    Plumlee, Geoff; Lowers, Heather; Ludington, Steve; Koenig, Alan; Briggs, Paul

    2005-01-01

    This report is one in a series presenting results of an interdisciplinary U.S. Geological Survey (USGS) study of ground-water quality in the lower Red River watershed prior to open-pit and underground molybdenite mining at Molycorp's Questa mine. The stretch of the Red River watershed that extends from just upstream of the town of Red River to just above the town of Questa includes several mineralized areas in addition to the one mined by Molycorp. Natural erosion and weathering of pyrite-rich rocks in the mineralized areas has created a series of erosional scars along this stretch of the Red River that contribute acidic waters, as well as mineralized alluvial material and sediments, to the river. The overall goal of the USGS study is to infer the pre-mining ground-water quality at the Molycorp mine site. An integrated geologic, hydrologic, and geochemical model for ground water in the mineralized but unmined Straight Creek drainage is being used as an analogue for the geologic, geochemical, and hydrologic conditions that influenced ground-water quality and quantity at the mine site prior to mining. This report summarizes results of reconnaissance mineralogical and chemical characterization studies of rock samples collected from the various scars and the Molycorp open pit, and of drill cuttings or drill core from bedrock beneath the scars and adjacent debris fans.

  8. Long-term effects of surface coal mining on ground-water levels and quality in two small watersheds in eastern Ohio

    Science.gov (United States)

    Cunningham, W.L.; Jones, R.L.

    1990-01-01

    . The postmining median concentrations of iron and manganese were 3,900?g/L and 1,900? g/L, respectively. For the upper aquifer of a watershed located in Jefferson County, the water-quality data were grouped into three time periods of premining, early postmining, and late postmining. The premining median pH and concentrations of dissolved solids and sulfate were 7.0, 335 mg/L, and 85 mg/L, respectively. The premining median concentrations of iron and manganese were 30? g/L for each constituent. Late postmining median pH and concentrations of dissolved solids and sulfate were 6.7, 1,495 mg/L, and 825 mg/L, respectively. The postmining median concentrations of iron and manganese were 31? g/L and 1,015? g/L, respectively. Chemistry of water in the middle aquifer in each watershed underwent similar changes. In general, statistically significant increases in concentrations of dissolved constituents occurred because of surface mining. In some constituents, concentrations increased by more than an order of magnitude. The continued decrease in pH indicated that ground water had no reached geochemical equilibrium in either watershed more than 8 years after mining.

  9. Ground Wars

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Kleis

    Political campaigns today are won or lost in the so-called ground war--the strategic deployment of teams of staffers, volunteers, and paid part-timers who work the phones and canvass block by block, house by house, voter by voter. Ground Wars provides an in-depth ethnographic portrait of two...... infrastructures that utilize large databases with detailed individual-level information for targeting voters, and armies of dedicated volunteers and paid part-timers. Nielsen challenges the notion that political communication in America must be tightly scripted, controlled, and conducted by a select coterie...... of professionals. Yet he also quashes the romantic idea that canvassing is a purer form of grassroots politics. In today's political ground wars, Nielsen demonstrates, even the most ordinary-seeming volunteer knocking at your door is backed up by high-tech targeting technologies and party expertise. Ground Wars...

  10. Combined land use and climate change impact on Surface and Ground water resources in the Rio Cobre and Great River basin, Jamaica

    Science.gov (United States)

    Setegn, S. G.; Melesse, A. M.; Grey, O.; Webber, D.

    2011-12-01

    Possible adverse impacts of land use and climate change on one hand and population pressure, extended droughts, and environmental degradation on the other hand are major factors limiting water resources availability in the watersheds of Jamaica. The main objective of this study is to analyze the combined impact of land use/ land cover changes as well as climate change on the hydrological processes and water recourses availability in the Rio Cobre and Great River basins. A spatially distributed model SWAT was calibrated and validated in the basin and used for the study of land use and climate change impacts in the watersheds. Different land cover types were tested to analyze its impact on the hydrology of the watershed. The main land cover parameters considered within the Great and Rio Cobre River Watershed includes Agriculture, Tourism, Water, Road Infrastructure, Population, Forestry and land cover Information. The outputs of different Global climate model (GCM) were downscaled to the watershed level and used for assessing the impact of climate change on water resources availability in the area. The analysis of climate change impact on the surface and ground water resources of the basin indicated that the basin will experience a change in water balance due to changes in the major climate variables in the forthcoming decades. The direction of streamflow change follows mainly the direction of changes in rainfall. Many of the models show statistically-significant declines in mean annual streamflow (up to 60% reduction in streamflow) for the different time-periods and scenarios. The combined effect of climate and land-use/land-cover change on the hydrological processes and water recourses variability is an important step to develop sustainable adaptation strategy.

  11. Radon as a tracer to characterize the interactions between groundwater and surface water around the ground source heat pump system in riverside area

    Science.gov (United States)

    Kim, Jaeyeon; Lee, Seong-Sun; Lee, Kang-Kun

    2016-04-01

    The interaction characteristics between groundwater and surface water was examined by using Radon-222 at Han River Environmental Research Center (HRERC) in Korea where a geothermal resource using indirect open loop ground source heat pump (GSHP) has been developed. For designing a high efficiency performance of the open loop system in shallow aquifer, the riverside area was selected for great advantage of full capacity of well. From this reason groundwater properties of the study site can be easily influenced by influx of surrounding Han River. Therefore, 12 groundwater wells were used for monitoring radon concentration and groundwater level with fluctuation of river stage from May, 2014 to Apr., 2015. The short term monitoring data showed that the radon concentration was changed in accordance with flow meter data which was reflected well by the river stage fluctuation. The spatial distribution of radon concentration from long term monitoring data was also found to be affected by water level fluctuation by nearby dam activity and seasonal effect such as heavy rainfall and groundwater pumping. The estimated residence time indicates that river flows to the study site change its direction according to the combined effect of river stage and groundwater hydrology. In the linear regression of the values, flow velocities were yielded around 0.04 to 0.25 m/day which were similar to flow meter data. These results reveal that Radon-222 can be used as an appropriate environmental tracer in examining the characteristics of interaction in consideration of fluctuating river flow on operation of GSHP in the riverside area. ACKNOWLEDGEMENT This work was supported by the research project of "Advanced Technology for Groundwater Development and Application in Riversides (Geowater+) in "Water Resources Management Program (code 11 Technology Innovation C05)" of the MOLIT and the KAIA in Korea.

  12. Transport of Bacteria and Virus-Sized Particles and Bacteriophage from Ground Surface to Depth in a Bedrock Aquifer - A Field Experiment

    Science.gov (United States)

    Novakowski, K. S.; Trimper, S.; Praamsma, T.; Springthorpe, S.

    2010-12-01

    Shallow, unprotected bedrock aquifers are common sources of drinking water supply in eastern North America. The vulnerability of these aquifers to contamination from pathogens is widely recognised, although little is actually known about the transport processes involved, particularly where the source is located near to or on ground surface (i.e. a septic system). In this experiment we explore the transport of fluorescent microspheres having diameters of 1.75 and 0.3 µm and the bacteriophage Φ-X174 in a sparsely-fractured gneissic terrain having minimal overburden cover. The experiment was conducted by ponding water in a 7 m2 area on the edge of an outcrop having observable vertical fractures and measuring the arrival of particles in two nearby monitoring wells. A conservative solute tracer (Lissamine FF) was also used to follow the solute front. In order to encourage transport to the wells and to provide a discharge stream to sample, pumping was conducted at a rate of 7.7 L/min from the lower half of the 15-m deep well farthest from the pond (approximately 7 m away). Sampling was conducted from the pumping stream, the upper 5 m of that well and the upper 5 m of an additional well located about 5 m from the surface pond. The experiment was conducted over a 48 hr period and samples were obtained every 15 min initially declining to once every 2 hrs towards the end of the experiment. Analysis of the bacteriophage was conducted using the Double Agar Layer method and the concentration of microspheres was determined using epi-fluorescent microscopy. As the latter is very time consuming, only preliminary results are available for the microsphere transport. The results show widespread migration of both the microspheres and the bacteriophage, as arrival in all sampling locations was detected. Mass recovery was low but similar for both the bacteriophage and the solute tracer, although the majority of the bacteriophage arrived much earlier than the majority of the solute

  13. Effects of near surface soil moisture profiles during evaporation on far-field ground-penetrating radar data: A numerical study

    KAUST Repository

    Moghadas, Davood

    2013-01-01

    We theoretically investigated the effect of vapor flow on the drying front that develops in soils when water evaporates from the soil surface and on GPR data. The results suggest the integration of the full-wave GPR model with a coupled water, vapor, and heat flow model to accurately estimate the soil hydraulic properties. We investigated the Effects of a drying front that emerges below an evaporating soil surface on the far-field ground-penetrating radar (GPR) data. First, we performed an analysis of the width of the drying front in soils with 12 different textures by using an analytical model. Then, we numerically simulated vertical soil moisture profiles that develop during evaporation for the soil textures. We performed the simulations using a Richards flow model that considers only liquid water flow and a model that considers coupled water, vapor, and heat flows. The GPR signals were then generated from the simulated soil water content profiles taking into account the frequency dependency of apparent electrical conductivity and dielectric permittivity. The analytical approach indicated that the width of the drying front at the end of Stage I of the evaporation was larger in silty soils than in other soil textures and smaller in sandy soils. We also demonstrated that the analytical estimate of the width of the drying front can be considered as a proxy for the impact that a drying front could have on far-field GPR data. The numerical simulations led to the conclusion that vapor transport in soil resulted in S-shaped soil moisture profiles, which clearly influenced the GPR data. As a result, vapor flow needs to be considered when GPR data are interpreted in a coupled inversion approach. Moreover, the impact of vapor flow on the GPR data was larger for silty than for sandy soils. These Effects on the GPR data provide promising perspectives regarding the use of radars for evaporation monitoring. © Soil Science Society of America 5585 Guilford Rd., Madison, WI

  14. Luminescence of thermally altered human skeletal remains.

    Science.gov (United States)

    Krap, Tristan; Nota, Kevin; Wilk, Leah S; van de Goot, Franklin R W; Ruijter, Jan M; Duijst, Wilma; Oostra, Roelof-Jan

    2017-07-01

    Literature on luminescent properties of thermally altered human remains is scarce and contradictory. Therefore, the luminescence of heated bone was systemically reinvestigated. A heating experiment was conducted on fresh human bone, in two different media, and cremated human remains were recovered from a modern crematory. Luminescence was excited with light sources within the range of 350 to 560 nm. The excitation light was filtered out by using different long pass filters, and the luminescence was analysed by means of a scoring method. The results show that temperature, duration and surrounding medium determine the observed emission intensity and bandwidth. It is concluded that the luminescent characteristic of bone can be useful for identifying thermally altered human remains in a difficult context as well as yield information on the perimortem and postmortem events.

  15. Fish remains and humankind: part two

    Directory of Open Access Journals (Sweden)

    Andrew K G Jones

    1998-07-01

    Full Text Available The significance of aquatic resources to past human groups is not adequately reflected in the published literature - a deficiency which is gradually being acknowledged by the archaeological community world-wide. The publication of the following three papers goes some way to redress this problem. Originally presented at an International Council of Archaeozoology (ICAZ Fish Remains Working Group meeting in York, U.K. in 1987, these papers offer clear evidence of the range of interest in ancient fish remains across the world. Further papers from the York meeting were published in Internet Archaeology 3 in 1997.

  16. Shape estimation of the buried body from the ground surface potential distributions generated by current injection; Tsuryu ni yoru chihyomen den`i bunpu wo riyoshita maizobutsu keijo no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Y.; Okamoto, Y. [Chiba Institute of Technology, Chiba (Japan); Noguchi, K. [Waseda University, Tokyo (Japan); Teramachi, Y. [University of Industrial Technology, Kanagawa (Japan); Akabane, H.; Agu, M. [Ibaraki University, Ibaraki (Japan)

    1996-10-01

    Ground surface potential distribution generated by current injection was studied to estimate the shape of buried bodies. Since the uniform ground system including a homogeneous buried body is perfectly determined with the surface shape of a buried body and resistivities in/around a buried body, inversion is easy if the surface shape is described with some parameters. N electrodes are arranged in 2-D grid manner on the ground, and two electrodes among them are used for current injection, while the others for measurement of potentials. M times of measurements are repeated while changing combination of electrodes for current injection. The potential distribution measured by the mth electrode pair is represented by N-2 dimensional vectors. The square error between this distribution and calculated one is the function of k parameters on the surface shape and resistivities on a buried body. Both shape and resistivities can be estimated by solving an optimum value problem using the square error as evaluation function. Analysis is easy for a spherical body with 6 unknown parameters, however, it is difficult for more complex bodies than elliptical one or more than two bodies. 5 refs., 9 figs.

  17. Simulated water budgets and ground-water/surface-water interactions in Bushkill and parts of Monocacy Creek watersheds, Northampton County, Pennsylvania--a preliminary study with identification of data needs

    Science.gov (United States)

    Risser, Dennis W.

    2006-01-01

    This report, prepared in cooperation with the Department of Environmental Protection, Office of Mineral Resources Management, provides a preliminary analysis of water budgets and generalized ground-water/surface-water interactions for Bushkill and parts of Monocacy Creek watersheds in Northampton County, Pa., by use of a ground-water flow model. Bushkill Creek watershed was selected for study because it has areas of rapid growth, ground-water withdrawals from a quarry, and proposed stream-channel modifications, all of which have the potential for altering ground-water budgets and the interaction between ground water and streams. Preliminary 2-dimensional, steady-state simulations of ground-water flow by the use of MODFLOW are presented to show the status of work through September 2005 and help guide ongoing data collection in Bushkill Creek watershed. Simulations were conducted for (1) predevelopment conditions, (2) a water table lowered for quarry operations, and (3) anthropogenic changes in hydraulic conductivity of the streambed and aquifer. Preliminary results indicated under predevelopment conditions, the divide between the Bushkill and Monocacy Creek ground-water basins may not have been coincident with the topographic divide and as much as 14 percent of the ground-water discharge to Bushkill Creek may have originated from recharge in the Monocacy Creek watershed. For simulated predevelopment conditions, Schoeneck Creek and parts of Monocacy Creek were dry, but Bushkill Creek was gaining throughout all reaches. Simulated lowering of the deepest quarry sump to an altitude of 147 feet for quarry operations caused ground-water recharge and streamflow leakage to be diverted to the quarry throughout about 14 square miles and caused reaches of Bushkill and Little Bushkill Creeks to change from gaining to losing streams. Lowering the deepest quarry sump to an altitude of 100 feet caused simulated ground-water discharge to the quarry to increase about 4 cubic feet

  18. Predicting the remaining service life of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, J.F.

    1991-11-01

    Nuclear power plants are providing, currently, about 17 percent of the U.S. electricity and many of these plants are approaching their licensed life of 40 years. The U.S. Nuclear Regulatory Commission and the Department of Energy`s Oak Ridge National Laboratory are carrying out a program to develop a methodology for assessing the remaining safe-life of the concrete components and structures in nuclear power plants. This program has the overall objective of identifying potential structural safety issues, as well as acceptance criteria, for use in evaluations of nuclear power plants for continued service. The National Institute of Standards and Technology (NIST) is contributing to this program by identifying and analyzing methods for predicting the remaining life of in-service concrete materials. This report examines the basis for predicting the remaining service lives of concrete materials of nuclear power facilities. Methods for predicting the service life of new and in-service concrete materials are analyzed. These methods include (1) estimates based on experience, (2) comparison of performance, (3) accelerated testing, (4) stochastic methods, and (5) mathematical modeling. New approaches for predicting the remaining service lives of concrete materials are proposed and recommendations for their further development given. Degradation processes are discussed based on considerations of their mechanisms, likelihood of occurrence, manifestations, and detection. They include corrosion, sulfate attack, alkali-aggregate reactions, frost attack, leaching, radiation, salt crystallization, and microbiological attack.

  19. Juveniles' Motivations for Remaining in Prostitution

    Science.gov (United States)

    Hwang, Shu-Ling; Bedford, Olwen

    2004-01-01

    Qualitative data from in-depth interviews were collected in 1990-1991, 1992, and 2000 with 49 prostituted juveniles remanded to two rehabilitation centers in Taiwan. These data are analyzed to explore Taiwanese prostituted juveniles' feelings about themselves and their work, their motivations for remaining in prostitution, and their difficulties…

  20. Identification of ancient remains through genomic sequencing

    Science.gov (United States)

    Blow, Matthew J.; Zhang, Tao; Woyke, Tanja; Speller, Camilla F.; Krivoshapkin, Andrei; Yang, Dongya Y.; Derevianko, Anatoly; Rubin, Edward M.

    2008-01-01

    Studies of ancient DNA have been hindered by the preciousness of remains, the small quantities of undamaged DNA accessible, and the limitations associated with conventional PCR amplification. In these studies, we developed and applied a genomewide adapter-mediated emulsion PCR amplification protocol for ancient mammalian samples estimated to be between 45,000 and 69,000 yr old. Using 454 Life Sciences (Roche) and Illumina sequencing (formerly Solexa sequencing) technologies, we examined over 100 megabases of DNA from amplified extracts, revealing unbiased sequence coverage with substantial amounts of nonredundant nuclear sequences from the sample sources and negligible levels of human contamination. We consistently recorded over 500-fold increases, such that nanogram quantities of starting material could be amplified to microgram quantities. Application of our protocol to a 50,000-yr-old uncharacterized bone sample that was unsuccessful in mitochondrial PCR provided sufficient nuclear sequences for comparison with extant mammals and subsequent phylogenetic classification of the remains. The combined use of emulsion PCR amplification and high-throughput sequencing allows for the generation of large quantities of DNA sequence data from ancient remains. Using such techniques, even small amounts of ancient remains with low levels of endogenous DNA preservation may yield substantial quantities of nuclear DNA, enabling novel applications of ancient DNA genomics to the investigation of extinct phyla. PMID:18426903

  1. Kadav Moun PSA (:60) (Human Remains)

    Centers for Disease Control (CDC) Podcasts

    2010-02-18

    This is an important public health announcement about safety precautions for those handling human remains. Language: Haitian Creole.  Created: 2/18/2010 by Centers for Disease Control and Prevention (CDC).   Date Released: 2/18/2010.

  2. The case for fencing remains intact.

    Science.gov (United States)

    Packer, C; Swanson, A; Canney, S; Loveridge, A; Garnett, S; Pfeifer, M; Burton, A C; Bauer, H; MacNulty, D

    2013-11-01

    Creel et al. argue against the conservation effectiveness of fencing based on a population measure that ignores the importance of top predators to ecosystem processes. Their statistical analyses consider, first, only a subset of fenced reserves and, second, an incomplete examination of 'costs per lion.' Our original conclusions remain unaltered.

  3. Removing the remaining ridges in fingerprint segmentation

    Institute of Scientific and Technical Information of China (English)

    ZHU En; ZHANG Jian-ming; YIN Jian-ping; ZHANG Guo-min; HU Chun-feng

    2006-01-01

    Fingerprint segmentation is an important step in fingerprint recognition and is usually aimed to identify non-ridge regions and unrecoverable low quality ridge regions and exclude them as background so as to reduce the time expenditure of image processing and avoid detecting false features. In high and in low quality ridge regions, often are some remaining ridges which are the afterimages of the previously scanned finger and are expected to be excluded from the foreground. However, existing segmentation methods generally do not take the case into consideration, and often, the remaining ridge regions are falsely classified as foreground by segmentation algorithm with spurious features produced erroneously including unrecoverable regions as foreground. This paper proposes two steps for fingerprint segmentation aimed at removing the remaining ridge region from the foreground. The non-ridge regions and unrecoverable low quality ridge regions are removed as background in the first step, and then the foreground produced by the first step is further analyzed for possible remove of the remaining ridge region. The proposed method proved effective in avoiding detecting false ridges and in improving minutiae detection.

  4. Why Agricultural Educators Remain in the Classroom

    Science.gov (United States)

    Crutchfield, Nina; Ritz, Rudy; Burris, Scott

    2013-01-01

    The purpose of this study was to identify and describe factors that are related to agricultural educator career retention and to explore the relationships between work engagement, work-life balance, occupational commitment, and personal and career factors as related to the decision to remain in the teaching profession. The target population for…

  5. Essential Qualities of Math Teaching Remain Unknown

    Science.gov (United States)

    Cavanagh, Sean

    2008-01-01

    According to a new federal report, the qualities of an effective mathematics teacher remain frustratingly elusive. The report of the National Mathematics Advisory Panel does not show what college math content and coursework are most essential for teachers. While the report offered numerous conclusions about math curriculum, cognition, and…

  6. Juveniles' Motivations for Remaining in Prostitution

    Science.gov (United States)

    Hwang, Shu-Ling; Bedford, Olwen

    2004-01-01

    Qualitative data from in-depth interviews were collected in 1990-1991, 1992, and 2000 with 49 prostituted juveniles remanded to two rehabilitation centers in Taiwan. These data are analyzed to explore Taiwanese prostituted juveniles' feelings about themselves and their work, their motivations for remaining in prostitution, and their difficulties…

  7. Infrasonic induced ground motions

    Science.gov (United States)

    Lin, Ting-Li

    On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body

  8. 汶川地震强震动地面倾斜研究%Study of ground surface tilts from strong motion records of the Wenchuan earthquake

    Institute of Scientific and Technical Information of China (English)

    彭小波; 李小军

    2012-01-01

    根据三分量强震动传感器水平摆和竖向摆对倾斜的动力响应差异,利用谱比法计算出汶川Ms8.0地震中近断层强震动的断层法线方向和平行方向的同震地面倾斜.结果表明,本次地震中强震动观测台处地面倾斜一般小于1°,影响频段主要在0.1 Hz以下,发生较大倾斜的台站主要在距地表破裂迹线30 km以内,在100 km之外或水平向加速度幅值均方根在200 cm/s2以下时很少发生0.01°以上的同震地面倾斜.总体上看,上盘区域的倾斜值普遍小于下盘区域,法线方向倾斜值一般大于平行线方向倾斜值.位于前山断裂与中央断裂之间区域的绵竹清平台谱比较低但平缓且频带较宽,可能反应了该区域的运动特殊性,而汶川卧龙台则显示了上盘边缘区域地面倾斜较大.逆冲段与走滑段台站倾斜对比显示,地面倾斜可能受局部场地条件影响较大.%Based on the difference of dynamic response to tilts between horizontal pendulums and vertical pendulum, spectral ratio method was applied to estimate the coseismic surface tilts deduced from strong motion records of the Wen-chuan earthquake. The result shows that the ground surface tilts are generally less than 1 degree and mainly appears within 30 km to fault rupture surface traces, while rarely discovered in the area outside 100 km or root-mean-squared horizontal peak accelerations are less than 200 cm/s2. The frequency band influenced by tilts is less than 0. 1 Hz. In general, tilts in hanging wall is greater than that in footwall in near fault areas, and tilts in normal direction of fault is less than those in parallel direction. The spectral ratio of Qingping station located between central fault and front mount fault is relatively low and stable, which may imply ae special movement feature of the area. The tilts of Wolong station may be controlled by deformation transition from the hanging wall to laterally stationary area. Comparison of tilts

  9. Remaining Phosphorus Estimate Through Multiple Regression Analysis

    Institute of Scientific and Technical Information of China (English)

    M. E. ALVES; A. LAVORENTI

    2006-01-01

    The remaining phosphorus (Prem), P concentration that remains in solution after shaking soil with 0.01 mol L-1 CaCl2 containing 60 μg mL-1 P, is a very useful index for studies related to the chemistry of variable charge soils. Although the Prem determination is a simple procedure, the possibility of estimating accurate values of this index from easily and/or routinely determined soil properties can be very useful for practical purposes. The present research evaluated the Premestimation through multiple regression analysis in which routinely determined soil chemical data, soil clay content and soil pH measured in 1 mol L-1 NaF (pHNaF) figured as Prem predictor variables. The Prem can be estimated with acceptable accuracy using the above-mentioned approach, and PHNaF not only substitutes for clay content as a predictor variable but also confers more accuracy to the Prem estimates.

  10. Contact allergy to rubber accelerators remains prevalent

    DEFF Research Database (Denmark)

    Schwensen, J F; Menné, T; Johansen, J D

    2016-01-01

    INTRODUCTION: Chemicals used for the manufacturing of rubber are known causes of allergic contact dermatitis on the hands. Recent European studies have suggested a decrease in thiuram contact allergy. Moreover, while an association with hand dermatitis is well established, we have recently observ.......2% (19/54) and 35.4% (17/48) of the cases respectively. CONCLUSION: Contact allergy to rubber accelerators remains prevalent. Clinicians should be aware of the hitherto unexplored clinical association with facial dermatitis....

  11. [Professional confidentiality: speak out or remain silent? ].

    Science.gov (United States)

    Daubigney, Jean-claude

    2014-01-01

    People who work with children, in their daily tasks, must choose whether to disclose information entrusted to them. However, they are subject to the law, which authorises or imposes speaking out or remaining silent. In terms of ethics, they can seek the best possible response while respecting professional secrecy when meeting an individual, in a situation, in a place or at a particular time. They must then take responsibility for that decision.

  12. Terminology for houses and house remains

    OpenAIRE

    Rosberg, Karin

    2013-01-01

    In order to obtain lucidity, it is essential to choose adequate terminology when speaking of prehistoric houses. The understanding of house construction requires a terminology with a focus on construction. Very often, archaeologists instead use a terminology with a focus on the remains, and use an inadequate terminology for constructions, indicating that they do not fully consider how the constructions work. The article presents some suggestions for adequate construction terminology.

  13. Why do some cores remain starless ?

    CERN Document Server

    Anathpindika, S

    2016-01-01

    Physical conditions that could render a core starless(in the local Universe) is the subject of investigation in this work. To this end we studied the evolution of four starless cores, B68, L694-2, L1517B, L1689, and L1521F, a VeLLO. The density profile of a typical core extracted from an earlier simulation developed to study core-formation in a molecular cloud was used for the purpose. We demonstrate - (i) cores contracted in quasistatic manner over a timescale on the order of $\\sim 10^{5}$ years. Those that remained starless did briefly acquire a centrally concentrated density configuration that mimicked the density profile of a unstable Bonnor Ebert sphere before rebounding, (ii) three of our test cores viz. L694-2, L1689-SMM16 and L1521F remained starless despite becoming thermally super-critical. On the contrary B68 and L1517B remained sub-critical; L1521F collapsed to become a VeLLO only when gas-cooling was enhanced by increasing the size of dust-grains. This result is robust, for other cores viz. B68, ...

  14. Evaluation of multimodal ground cues

    DEFF Research Database (Denmark)

    Nordahl, Rolf; Lecuyer, Anatole; Serafin, Stefania

    2012-01-01

    This chapter presents an array of results on the perception of ground surfaces via multiple sensory modalities,with special attention to non visual perceptual cues, notably those arising from audition and haptics, as well as interactions between them. It also reviews approaches to combining synth...... synthetic multimodal cues, from vision, haptics, and audition, in order to realize virtual experiences of walking on simulated ground surfaces or other features....

  15. Distribution of albatross remains in the Far East regions during the Holocene, based on zooarchaeological remains.

    Science.gov (United States)

    Eda, Masaki; Higuchi, Hiroyoshi

    2004-07-01

    Many albatross remains have been found in the Japanese Islands and the surrounding areas, such as Sakhalin and South Korea. These remains are interesting for two reasons: numerous sites from which albatross remains have been found are located in coastal regions of the Far East where no albatrosses have been distributed recently, and there are some sites in which albatross remains represent a large portion of avian remains, although albatrosses are not easily preyed upon by human beings. We collected data on albatross remains from archaeological sites in the Far East regions during the Holocene and arranged the remains geographically, temporally and in terms of quantity. Based on these results, we showed that coastal areas along the Seas of Okhotsk and Japan have rarely been used by albatrosses in Modern times, though formerly there were many albatrosses. We proposed two explanations for the shrinkage of their distributional range: excessive hunting in the breeding areas, and distributional changes of prey for albatrosses.

  16. Vulnerability of shallow ground water and drinking-water wells to nitrate in the United States: Model of predicted nitrate concentration in shallow, recently recharged ground water -- Input data set for fresh surface water withdrawal (gwava-s_swus)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the amount of fresh surface water withdrawal for irrigation, in megaliters per day, in the conterminous United States. The data set was used...

  17. Prediction and Characteristic Analysis of Ground Surface Settlement Caused by Construction of Twin-tube Tunnels%盾构法双管隧道施工引起的地表沉降预测及特征分析

    Institute of Scientific and Technical Information of China (English)

    晏莉

    2015-01-01

    盾构法双管隧道施工产生的地表沉降预测方法按照不同的分析原理,可归纳为半经验分析法、理论分析法和数值分析法。分析了各种方法的优缺点,搜集国内外41条双管盾构隧道工程的地表沉降实测曲线,通过对曲线分布形态及其成因的分析以及地表最大沉降值数据的归纳整理,总结了双管隧道施工地表沉降分布的3大特点,即:1)地表沉降曲线主要呈现“单峰”和“双峰”2种形态,双管隧道间距及埋深是决定曲线形态的重要因素;2)影响地表沉降曲线形态的因素主要为地质和环境因素以及施工因素;3)地表最大沉降值与隧道埋深、双管隧道的间距、地层条件以及采用的盾构方法等均有密切的联系。%Based on the different analysis principles, the methods used to predict the ground surface settlement caused by the construction of twin-tube tunnels are classified into semi-empirical analysis method, theoretical analysis method and numerical analysis method, whose advantages and disadvantages are analyzed. Curves of measured ground surface settlement caused by the construction of 41 twin-tube tunnels at home and abroad are collected. Through the analysis on the shape and causes of the curves as well as the analysis on the data of the maximum ground surface settlement, the following three main characteristics are summarized for the distribution curves of the ground surface settlement caused by the shield construction of twin-tube tunnels:1 ) The ground surface settlement curves mainly present “unimodal” and“bimodal” forms. Both the distance between twin tubes and the tunnel depth have great influence on the curve forms;2 ) The main factors that have influence on the ground surface settlement distribution curves include the geological fac-tors , the environmental factors and the construction factors;3 ) The maximum ground surface settlement is closely related to the tunnel

  18. Smoothing function suitable for estimation of amplification factor of the surface ground from microtremor and its application; Joji bido no suihei/joge supekutoru hi wo mochiiru zofuku bairitsu no suitei ni tekishita heikatsuka to sono tekiyorei

    Energy Technology Data Exchange (ETDEWEB)

    Konno, K. [Shibaura Institute of Technology, Tokyo (Japan); Omachi, T. [Tokyo Institute of Technology, Tokyo (Japan)

    1995-10-21

    When properly smoothed spectral ratios between horizontal and vertical components of Rayleigh waves are well correlated with amplification factors of SH waves in the surface ground. This is demonstrated by a series of numerical simulations for various soft surface layers. For this reason, a smoothing function is newly proposed and applied to estimation of the amplification factor from microtremor data observed in Tokyo area. An amplification factor map resulting from the estimation shows a good resemblance with an existing map to a satisfactory level of accuracy. 20 refs., 25 figs., 2 tabs.

  19. 30 CFR 77.801 - Grounding resistors.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding resistors. 77.801 Section 77.801 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.801 Grounding...

  20. So close: remaining challenges to eradicating polio.

    Science.gov (United States)

    Toole, Michael J

    2016-03-14

    The Global Polio Eradication Initiative, launched in 1988, is close to achieving its goal. In 2015, reported cases of wild poliovirus were limited to just two countries - Afghanistan and Pakistan. Africa has been polio-free for more than 18 months. Remaining barriers to global eradication include insecurity in areas such as Northwest Pakistan and Eastern and Southern Afghanistan, where polio cases continue to be reported. Hostility to vaccination is either based on extreme ideologies, such as in Pakistan, vaccination fatigue by parents whose children have received more than 15 doses, and misunderstandings about the vaccine's safety and effectiveness such as in Ukraine. A further challenge is continued circulation of vaccine-derived poliovirus in populations with low immunity, with 28 cases reported in 2015 in countries as diverse as Madagascar, Ukraine, Laos, and Myanmar. This paper summarizes the current epidemiology of wild and vaccine-derived poliovirus, and describes the remaining challenges to eradication and innovative approaches being taken to overcome them.

  1. Does hypertension remain after kidney transplantation?

    Directory of Open Access Journals (Sweden)

    Gholamreza Pourmand

    2015-05-01

    Full Text Available Hypertension is a common complication of kidney transplantation with the prevalence of 80%. Studies in adults have shown a high prevalence of hypertension (HTN in the first three months of transplantation while this rate is reduced to 50- 60% at the end of the first year. HTN remains as a major risk factor for cardiovascular diseases, lower graft survival rates and poor function of transplanted kidney in adults and children. In this retrospective study, medical records of 400 kidney transplantation patients of Sina Hospital were evaluated. Patients were followed monthly for the 1st year, every two months in the 2nd year and every three months after that. In this study 244 (61% patients were male. Mean ± SD age of recipients was 39.3 ± 13.8 years. In most patients (40.8% the cause of end-stage renal disease (ESRD was unknown followed by HTN (26.3%. A total of 166 (41.5% patients had been hypertensive before transplantation and 234 (58.5% had normal blood pressure. Among these 234 individuals, 94 (40.2% developed post-transplantation HTN. On the other hand, among 166 pre-transplant hypertensive patients, 86 patients (56.8% remained hypertensive after transplantation. Totally 180 (45% patients had post-transplantation HTN and 220 patients (55% didn't develop HTN. Based on the findings, the incidence of post-transplantation hypertension is high, and kidney transplantation does not lead to remission of hypertension. On the other hand, hypertension is one of the main causes of ESRD. Thus, early screening of hypertension can prevent kidney damage and reduce further problems in renal transplant recipients.

  2. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    Science.gov (United States)

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  3. "Recent" macrofossil remains from the Lomonosov Ridge, central Arctic Ocean

    Science.gov (United States)

    Le Duc, Cynthia; de Vernal, Anne; Archambault, Philippe; Brice, Camille; Roberge, Philippe

    2016-04-01

    The examination of surface sediment samples collected from 17 sites along the Lomonosov Ridge at water depths ranging from 737 to 3339 meters during Polarstern Expedition PS87 in 2014 (Stein, 2015), indicates a rich biogenic content almost exclusively dominated by calcareous remains. Amongst biogenic remains, microfossils (planktic and benthic foraminifers, pteropods, ostracods, etc.) dominate but millimetric to centrimetric macrofossils occurred frequently at the surface of the sediment. The macrofossil remains consist of a large variety of taxa, including gastropods, bivalvia, polychaete tubes, scaphopods, echinoderm plates and spines, and fish otoliths. Among the Bivalvia, the most abundant taxa are Portlandia arctica, Hyalopecten frigidus, Cuspidaria glacilis, Policordia densicostata, Bathyarca spp., and Yoldiella spp. Whereas a few specimens are well preserved and apparently pristine, most mollusk shells displayed extensive alteration features. Moreover, most shells were covered by millimeter scale tubes of the serpulid polychaete Spirorbis sp. suggesting transport from low intertidal or subtidal zone. Both the ecological affinity and known geographic distribution of identified bivalvia as named above support the hypothesis of transportation rather than local development. In addition to mollusk shells, more than a hundred fish otoliths were recovered in surface sediments. The otoliths mostly belong to the Gadidae family. Most of them are well preserved and without serpulid tubes attached to their surface, suggesting a local/regional origin, unlike the shell remains. Although recovered at the surface, the macrofaunal assemblages of the Lomonosov Ridge do not necessarily represent the "modern" environments as they may result from reworking and because their occurrence at the surface of the sediment may also be due to winnowing of finer particles. Although the shells were not dated, we suspect that their actual ages may range from modern to several thousands of

  4. Review of Selected References and Data sets on Ambient Ground- and Surface-Water Quality in the Metedeconk River, Toms River, and Kettle Creek Basins, New Jersey, 1980-2001

    Science.gov (United States)

    Nicholson, Robert S.; Hunchak-Kariouk, Kathryn; Cauller, Stephen J.

    2003-01-01

    Surface water and ground water from unconfined aquifers are the primary sources of drinking water for much of the population, about 391,000, in the Metedeconk River, Toms River, and Kettle Creek watersheds in the New Jersey Coastal Plain. The quality of these sources of drinking water is a concern because they are vulnerable to contamination. Indications of the occurrence, distribution, and likely sources and transport mechanisms of certain contaminants were obtained from 48 selected reports and 2 selected data sets on water quality in or near the watersheds (1980-2001). These indications are described and briefly summarized in this report. The findings of studies on ground-water quality indicate that shallow ground water within the study area generally meets primary drinking-water standards, with notable exceptions. Volatile organic compounds, mercury, arsenic, radionuclides, nitrate, and coliform bacteria have been detected in shallow ground water in some areas at levels that exceed Federal and State drinking-water standards. For example, results of analyses of untreated samples collected from more than 13,000 private wells during 1983-99 indicated that concentrations of volatile organic compounds in samples from 7.3 percent of the wells exceeded at least 1 of 11 drinking-water standards, according to records maintained by the Ocean County Health Department. In cases of exceedances, however, water treatment, well replacement, and (or) retesting assured that applicable drinking-water standards were being met at the tap. Reported concentrations of the pesticide chlordane in some areas exceeded the drinking-water standard; few data are available on the occurrence of other pesticides. Studies of nearby areas, however, indicate that pesticide concentrations generally could be expected to be below drinking-water standards. The combination of low pH and low dissolved solids in many areas results in shallow ground water that is highly corrosive and, if untreated, able to

  5. Review of Selected References and Data sets on Ambient Ground- and Surface-Water Quality in the Metedeconk River, Toms River, and Kettle Creek Basins, New Jersey, 1980-2001

    Science.gov (United States)

    Nicholson, Robert S.; Hunchak-Kariouk, Kathryn; Cauller, Stephen J.

    2003-01-01

    Surface water and ground water from unconfined aquifers are the primary sources of drinking water for much of the population, about 391,000, in the Metedeconk River, Toms River, and Kettle Creek watersheds in the New Jersey Coastal Plain. The quality of these sources of drinking water is a concern because they are vulnerable to contamination. Indications of the occurrence, distribution, and likely sources and transport mechanisms of certain contaminants were obtained from 48 selected reports and 2 selected data sets on water quality in or near the watersheds (1980-2001). These indications are described and briefly summarized in this report. The findings of studies on ground-water quality indicate that shallow ground water within the study area generally meets primary drinking-water standards, with notable exceptions. Volatile organic compounds, mercury, arsenic, radionuclides, nitrate, and coliform bacteria have been detected in shallow ground water in some areas at levels that exceed Federal and State drinking-water standards. For example, results of analyses of untreated samples collected from more than 13,000 private wells during 1983-99 indicated that concentrations of volatile organic compounds in samples from 7.3 percent of the wells exceeded at least 1 of 11 drinking-water standards, according to records maintained by the Ocean County Health Department. In cases of exceedances, however, water treatment, well replacement, and (or) retesting assured that applicable drinking-water standards were being met at the tap. Reported concentrations of the pesticide chlordane in some areas exceeded the drinking-water standard; few data are available on the occurrence of other pesticides. Studies of nearby areas, however, indicate that pesticide concentrations generally could be expected to be below drinking-water standards. The combination of low pH and low dissolved solids in many areas results in shallow ground water that is highly corrosive and, if untreated, able to

  6. Recovery of human remains after shark attack.

    Science.gov (United States)

    Byard, Roger W; James, Ross A; Heath, Karen J

    2006-09-01

    Two cases of fatal shark attack are reported where the only tissues recovered were fragments of lung. Case 1: An 18-year-old male who was in the sea behind a boat was observed by friends to be taken by a great white shark (Carcharodon carcharias). The shark dragged him under the water and then, with a second shark, dismembered the body. Witnesses noted a large amount of blood and unrecognizable body parts coming to the surface. The only tissues recovered despite an intensive beach and sea search were 2 fragments of lung. Case 2: A 19-year-old male was attacked by a great white shark while diving. A witness saw the shark swim away with the victim's body in its mouth. Again, despite intensive beach and sea searches, the only tissue recovered was a single piece of lung, along with pieces of wetsuit and diving equipment. These cases indicate that the only tissue to escape being consumed or lost in fatal shark attacks, where there is a significant attack with dismemberment and disruption of the integrity of the body, may be lung. The buoyancy of aerated pulmonary tissue ensures that it rises quickly to the surface, where it may be recovered by searchers soon after the attack. Aeration of the lung would be in keeping with death from trauma rather than from drowning and may be a useful marker in unwitnessed deaths to separate ante- from postmortem injury, using only relatively small amounts of tissues. Early organ recovery enhances the identification of human tissues as the extent of morphologic alterations by putrefactive processes and sea scavengers will have been minimized. DNA testing is also possible on such recovered fragments, enabling confirmation of the identity of the victim.

  7. Remaining Useful Lifetime (RUL - Probabilistic Predictive Model

    Directory of Open Access Journals (Sweden)

    Ephraim Suhir

    2011-01-01

    Full Text Available Reliability evaluations and assurances cannot be delayed until the device (system is fabricated and put into operation. Reliability of an electronic product should be conceived at the early stages of its design; implemented during manufacturing; evaluated (considering customer requirements and the existing specifications, by electrical, optical and mechanical measurements and testing; checked (screened during manufacturing (fabrication; and, if necessary and appropriate, maintained in the field during the product’s operation Simple and physically meaningful probabilistic predictive model is suggested for the evaluation of the remaining useful lifetime (RUL of an electronic device (system after an appreciable deviation from its normal operation conditions has been detected, and the increase in the failure rate and the change in the configuration of the wear-out portion of the bathtub has been assessed. The general concepts are illustrated by numerical examples. The model can be employed, along with other PHM forecasting and interfering tools and means, to evaluate and to maintain the high level of the reliability (probability of non-failure of a device (system at the operation stage of its lifetime.

  8. The Human Remains from HMS Pandora

    Directory of Open Access Journals (Sweden)

    D.P. Steptoe

    2002-04-01

    Full Text Available In 1977 the wreck of HMS Pandora (the ship that was sent to re-capture the Bounty mutineers was discovered off the north coast of Queensland. Since 1983, the Queensland Museum Maritime Archaeology section has carried out systematic excavation of the wreck. During the years 1986 and 1995-1998, more than 200 human bone and bone fragments were recovered. Osteological investigation revealed that this material represented three males. Their ages were estimated at approximately 17 +/-2 years, 22 +/-3 years and 28 +/-4 years, with statures of 168 +/-4cm, 167 +/-4cm, and 166cm +/-3cm respectively. All three individuals were probably Caucasian, although precise determination of ethnicity was not possible. In addition to poor dental hygiene, signs of chronic diseases suggestive of rickets and syphilis were observed. Evidence of spina bifida was seen on one of the skeletons, as were other skeletal anomalies. Various taphonomic processes affecting the remains were also observed and described. Compact bone was observed under the scanning electron microscope and found to be structurally coherent. Profiles of the three skeletons were compared with historical information about the 35 men lost with the ship, but no precise identification could be made. The investigation did not reveal the cause of death. Further research, such as DNA analysis, is being carried out at the time of publication.

  9. Smart Point Cloud: Definition and Remaining Challenges

    Science.gov (United States)

    Poux, F.; Hallot, P.; Neuville, R.; Billen, R.

    2016-10-01

    Dealing with coloured point cloud acquired from terrestrial laser scanner, this paper identifies remaining challenges for a new data structure: the smart point cloud. This concept arises with the statement that massive and discretized spatial information from active remote sensing technology is often underused due to data mining limitations. The generalisation of point cloud data associated with the heterogeneity and temporality of such datasets is the main issue regarding structure, segmentation, classification, and interaction for an immediate understanding. We propose to use both point cloud properties and human knowledge through machine learning to rapidly extract pertinent information, using user-centered information (smart data) rather than raw data. A review of feature detection, machine learning frameworks and database systems indexed both for mining queries and data visualisation is studied. Based on existing approaches, we propose a new 3-block flexible framework around device expertise, analytic expertise and domain base reflexion. This contribution serves as the first step for the realisation of a comprehensive smart point cloud data structure.

  10. SMART POINT CLOUD: DEFINITION AND REMAINING CHALLENGES

    Directory of Open Access Journals (Sweden)

    F. Poux

    2016-10-01

    Full Text Available Dealing with coloured point cloud acquired from terrestrial laser scanner, this paper identifies remaining challenges for a new data structure: the smart point cloud. This concept arises with the statement that massive and discretized spatial information from active remote sensing technology is often underused due to data mining limitations. The generalisation of point cloud data associated with the heterogeneity and temporality of such datasets is the main issue regarding structure, segmentation, classification, and interaction for an immediate understanding. We propose to use both point cloud properties and human knowledge through machine learning to rapidly extract pertinent information, using user-centered information (smart data rather than raw data. A review of feature detection, machine learning frameworks and database systems indexed both for mining queries and data visualisation is studied. Based on existing approaches, we propose a new 3-block flexible framework around device expertise, analytic expertise and domain base reflexion. This contribution serves as the first step for the realisation of a comprehensive smart point cloud data structure.

  11. Turbidite plays` immaturity means big potential remains

    Energy Technology Data Exchange (ETDEWEB)

    Pettingill, H.S. [Repsol Exploracion SA, Madrid (Spain)

    1998-10-05

    The international exploration and production industry is increasingly focusing on deepwater plays. Turbidites are not the only reservoir type that occurs in deepwater frontiers, but they are the primary reservoir type of those plays. A worldwide data base assembled from published information on 925 fields and discoveries with deepwater clastic reservoirs (turbidites sensu lato) has been employed to investigate the large-scale exploration and production trends. Coverage of the Former Soviet Union, China, and the Indian subcontinent has been minor, but with the large data base of fields and discoveries from the rest of the world, the broad conclusions should remain valid. This article describes the global turbidite play in terms of: (1) basins of the world where turbidite fields have been discovered; (2) the five largest basins in terms of total discovered resources; and (3) a summary of trap type, which is a critical geological factor in turbidite fields. The second article will summarize a population of the world`s 43 largest turbidite fields and discoveries.

  12. 'Grounded' Politics

    DEFF Research Database (Denmark)

    Schmidt, Garbi

    2012-01-01

    play within one particular neighbourhood: Nørrebro in the Danish capital, Copenhagen. The article introduces the concept of grounded politics to analyse how groups of Muslim immigrants in Nørrebro use the space, relationships and history of the neighbourhood for identity political statements....... The article further describes how national political debates over the Muslim presence in Denmark affect identity political manifestations within Nørrebro. By using Duncan Bell’s concept of mythscape (Bell, 2003), the article shows how some political actors idealize Nørrebro’s past to contest the present...

  13. Avaliação dos efeitos de três métodos de remoção da resina remanescente do braquete na superfície do esmalte Effects evaluation of remaining resin removal (three modes on enamel surface after bracket debonding

    Directory of Open Access Journals (Sweden)

    Karine Macieski

    2011-10-01

    Full Text Available INTRODUÇÃO: é fundamental, para alcançar a correta técnica de descolagem, a seleção adequada do instrumental para remover o braquete e a resina remanescente. OBJETIVO: avaliar a superfície do esmalte com Microscópio Eletrônico de Varredura (MEV após a utilização de três métodos de remoção da resina remanescente da descolagem do braquete. MÉTODOS: foram selecionados 18 incisivos bovinos, divididos em três grupos (A, B e C, contendo 6 dentes cada. Previamente à colagem do braquete, os dentes foram moldados com silicone de adição e preenchidos com resina epóxi, para o registro das características do esmalte, assim formando o Grupo Controle. Os métodos de remoção da resina remanescente utilizados foram: Grupo A - Soflex granulações grossa e média; Grupo B - broca Carbide em baixa rotação; Grupo C - broca Carbide em alta rotação. Polimento com Soflex granulações fina e ultrafina no Grupo A, pontas de borracha nos grupos B e C, e pasta de polimento para esmalte nos três grupos. Após cada etapa de remoção da resina remanescente e polimento, os dentes foram novamente moldados, duplicados e as réplicas analisadas em MEV. Foram, então, comparadas as características do esmalte inicial (Grupo Controle com o aspecto do esmalte após as etapas de remoção de resina, assim possibilitando avaliar o método que gerou menor abrasão ao esmalte. RESULTADOS E CONCLUSÃO: a remoção do remanescente adesivo com broca Carbide multilaminada em baixa rotação, polimento com pontas de borracha, e polimento final com pasta de polimento é o procedimento que ocasiona menor dano ao esmalte.INTRODUCTION: To achieve the correct debonding technique, it's essential the appropriate instruments selection to remove the bracket and the remaining resin. OBJECTIVE: To evaluate the enamel surface in a Scanning Electron Microscope (SEM after the utilization of three methods for removing the remaining resin after debonding the bracket

  14. Acid neutralization capacity measurements in surface and ground waters in the Upper River Severn, Plynlimon: from hydrograph splitting to water flow pathways

    OpenAIRE

    Neal, C.; Hill, T.; Hill, S.; B. Reynolds

    1997-01-01

    International audience; Acid Neutralization Capacity (ANC) data for ephemeral stream and shallow groundwater for the catchments of the upper River Severn show a highly heterogeneous system of within-catchment water flow pathways and chemical weathering on scales of less than 100m. Ephemeral streams draining permeable soils seem to be supplied mainly from shallow groundwater sources. For these streams, large systematic differences in pH and alkalinity occur due to the variability of the ground...

  15. Remaining phosphorus estimated by pedotransfer function

    Directory of Open Access Journals (Sweden)

    Joice Cagliari

    2011-02-01

    Full Text Available Although the determination of remaining phosphorus (Prem is simple, accurate values could also be estimated with a pedotransfer function (PTF aiming at the additional use of soil analysis data and/or Prem replacement by an even simpler determination. The purpose of this paper was to develop a pedotransfer function to estimate Prem values of soils of the State of São Paulo based on properties with easier or routine laboratory determination. A pedotransfer function was developed by artificial neural networks (ANN from a database of Prem values, pH values measured in 1 mol L-1 NaF solution (pH NaF and soil chemical and physical properties of samples collected during soil classification activities carried out in the State of São Paulo by the Agronomic Institute of Campinas (IAC. Furthermore, a pedotransfer function was developed by regressing Prem values against the same predictor variables of the ANN-based PTF. Results showed that Prem values can be calculated more accurately with the ANN-based pedotransfer function with the input variables pH NaF values along with the sum of exchangeable bases (SB and the exchangeable aluminum (Al3+ soil content. In addition, the accuracy of the Prem estimates by ANN-based PTF were more sensitive to increases in the experimental database size. Although the database used in this study was not comprehensive enough for the establishment of a definitive pedotrasnfer function for Prem estimation, results indicated the inclusion of Prem and pH NaF measurements among the soil testing evaluations as promising ind order to provide a greater database for the development of an ANN-based pedotransfer function for accurate Prem estimates from pH NaF, SB, and Al3+ values.

  16. Ghost Remains After Black Hole Eruption

    Science.gov (United States)

    2009-05-01

    NASA's Chandra X-ray Observatory has found a cosmic "ghost" lurking around a distant supermassive black hole. This is the first detection of such a high-energy apparition, and scientists think it is evidence of a huge eruption produced by the black hole. This discovery presents astronomers with a valuable opportunity to observe phenomena that occurred when the Universe was very young. The X-ray ghost, so-called because a diffuse X-ray source has remained after other radiation from the outburst has died away, is in the Chandra Deep Field-North, one of the deepest X-ray images ever taken. The source, a.k.a. HDF 130, is over 10 billion light years away and existed at a time 3 billion years after the Big Bang, when galaxies and black holes were forming at a high rate. "We'd seen this fuzzy object a few years ago, but didn't realize until now that we were seeing a ghost", said Andy Fabian of the Cambridge University in the United Kingdom. "It's not out there to haunt us, rather it's telling us something - in this case what was happening in this galaxy billions of year ago." Fabian and colleagues think the X-ray glow from HDF 130 is evidence for a powerful outburst from its central black hole in the form of jets of energetic particles traveling at almost the speed of light. When the eruption was ongoing, it produced prodigious amounts of radio and X-radiation, but after several million years, the radio signal faded from view as the electrons radiated away their energy. HDF 130 Chandra X-ray Image of HDF 130 However, less energetic electrons can still produce X-rays by interacting with the pervasive sea of photons remaining from the Big Bang - the cosmic background radiation. Collisions between these electrons and the background photons can impart enough energy to the photons to boost them into the X-ray energy band. This process produces an extended X-ray source that lasts for another 30 million years or so. "This ghost tells us about the black hole's eruption long after

  17. Surface-water/ground-water interaction of the Spokane River and the Spokane Valley/Rathdrum Prairie aquifer, Idaho and Washington

    Science.gov (United States)

    Caldwell, Rodney R.; Bowers, Craig L.

    2003-01-01

    Historical mining in the Coeur d’Alene River Basin of northern Idaho has resulted in elevated concentrations of some trace metals (particularly cadmium, lead, and zinc) in water and sediment of Coeur d’Alene Lake and downstream in the Spokane River in Idaho and Washington. These elevated trace-metal concentrations in the Spokane River have raised concerns about potential contamination of ground water in the underlying Spokane Valley/Rathdrum Prairie aquifer, the primary source of drinking water for the city of Spokane and surrounding areas. A study conducted as part of the U.S. Geological Survey’s National Water-Quality Assessment Program examined the interaction of the river and aquifer using hydrologic and chemical data along a losing reach of the Spokane River. The river and ground water were extensively monitored over a range of hydrologic conditions at a streamflow-gaging station and 25 monitoring wells situated from 40 to 3,500 feet from the river. River stage, ground-water levels, water temperature, and specific conductance were measured hourly to biweekly. Water samples were collected on nearly a monthly basis between 1999 and 2001 from the Spokane River and were collected up to nine times between June 2000 and August 2001 from the monitoring wells.

  18. Acoustic Ground-Impedance Meter

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    Helmoltz resonator used in compact, portable meter measures acoustic impedance of ground or other surfaces. Earth's surface is subject of increasing acoustical investigations because of its importance in aircraft noise prediction and measurment. Meter offers several advantages. Is compact and portable and set up at any test site, irrespective of landscape features, weather or other environmental condition.

  19. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    Science.gov (United States)

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  20. Outdoor ground impedance models.

    Science.gov (United States)

    Attenborough, Keith; Bashir, Imran; Taherzadeh, Shahram

    2011-05-01

    Many models for the acoustical properties of rigid-porous media require knowledge of parameter values that are not available for outdoor ground surfaces. The relationship used between tortuosity and porosity for stacked spheres results in five characteristic impedance models that require not more than two adjustable parameters. These models and hard-backed-layer versions are considered further through numerical fitting of 42 short range level difference spectra measured over various ground surfaces. For all but eight sites, slit-pore, phenomenological and variable porosity models yield lower fitting errors than those given by the widely used one-parameter semi-empirical model. Data for 12 of 26 grassland sites and for three beech wood sites are fitted better by hard-backed-layer models. Parameter values obtained by fitting slit-pore and phenomenological models to data for relatively low flow resistivity grounds, such as forest floors, porous asphalt, and gravel, are consistent with values that have been obtained non-acoustically. Three impedance models yield reasonable fits to a narrow band excess attenuation spectrum measured at short range over railway ballast but, if extended reaction is taken into account, the hard-backed-layer version of the slit-pore model gives the most reasonable parameter values.

  1. Experiment Analysis on Impact of Ground Vegetation and Soil Pores for Surface Runoff%地表植被覆盖与土壤大孔隙对地表径流影响实验分析

    Institute of Scientific and Technical Information of China (English)

    舒茂; 何国清

    2015-01-01

    There are two important factors to impact surface runoff. One is ground vegetation,another is soil pores. Vegetation can reduce the speed and flow of runoff,which make a strong impact to erodibility. The existence of soil pores improves the infiltration rate of the rainfall. The rain which enters into the soil bypasses most of the soil matrix and speeds up the response speed of groundwater. Groundwater was added before soil water has not yet reached to the field capacity. Thereby distribution of surface runoff was changed and velocity and flow of the surface runoff were both controlled. In this paper,we did the experiment of indoor soil box: made soil pores,artificial rainfall and planted vegetation on the surface. We analyzed the impact of ground vegetation and soil pores to surface runoff according to velocity,flow,subsurface flow and ground water formation. Then we get a further understanding that surface vegetation and soil pores play an important role in soil and water conservation.%地表植被与土壤大孔隙均为影响地表径流的重要因素,植被能够降低径流速度和流量,将对侵蚀程度有很大影响;大孔隙的存在,提高了降雨进入土壤的入渗率,而进入土壤中的水就绕过大部分土壤基质,加快了地下水的响应速度,地下水在土壤水还未达到田间持水量时就得到补充,改变了地表径流分配,对地表径流流速、流量均起到了抑制作用。文章采用室内土槽实验的方法人造大孔隙,在地表种植植被,通过人工降雨,从地表径流流量、流速及壤中流、地下水产生方式分析地表植被与土壤大孔隙对地表径流的影响程度,进一步认识地表植被及土壤大孔隙对水土保持的作用。

  2. Ground Wood Fiber Length Distributions

    OpenAIRE

    Lauri Ilmari Salminen; Sari Liukkonen; Alava, Mikko J.

    2014-01-01

    This study considers ground wood fiber length distributions arising from pilot grindings. The empirical fiber length distributions appear to be independent of wood fiber length as well as feeding velocity. In terms of mathematics the fiber fragment distributions of ground wood pulp combine an exponential distribution for high-length fragments and a power-law distribution for smaller lengths. This implies that the fiber length distribution is influenced by the stone surface. A fragmentation-ba...

  3. Regional potentiometric-surface contours by Bedinger and Harrill (2004), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The contours in this digital data set represent the regional potentiometric surface developed by Bedinger and Harrill (2004) to assess potential interbasin flow in...

  4. Satellite Lithium-Ion Battery Remaining Cycle Life Prediction with Novel Indirect Health Indicator Extraction

    OpenAIRE

    Haitao Liao; Wei Xie; Yu Peng; Datong Liu; Hong Wang

    2013-01-01

    Prognostics and remaining useful life (RUL) estimation for lithium-ion batteries play an important role in intelligent battery management systems (BMS). The capacity is often used as the fade indicator for estimating the remaining cycle life of a lithium-ion battery. For spacecraft requiring high reliability and long lifetime, in-orbit RUL estimation and reliability verification on ground should be carefully addressed. However, it is quite challenging to monitor and estimate the capacity of a...

  5. Application of bamboo net and geotextile in shallow surface treatment of soft ground%竹网+土工织物在软土地基浅表层处理中的应用

    Institute of Scientific and Technical Information of China (English)

    向继华; 曹琰; 祁先涛

    2015-01-01

    The bamboo net and geotextile technology takes the bamboo as the main construction material to deal with the surface of soft ground.Binding the bamboo net with geotextiles and other geosynthetics to form a reinforced semi-steel body,the upper surface of which is covered with the sand layer or soil cushion with a certain thickness to enhance the bearing capacity of the soft ground base and meet the requirements of the operation surface for the light & medium sized equipment construction.In the WE3 road surface soft foundation treatment of the eastern part of the economic zone and municipal infrastructure construction projects of Shantou city,according to the thickness of the silt layer,we adopt the bamboo net treatment technology,and quicken the construction progress and save the construction cost.%竹网+土工织物是一种以原生竹材为主要施工材料处理松软地基表层的工艺。该工艺一般为绑扎竹网配以土工布等土工合成材料,形成加筋半刚性体,上覆一定厚度的砂或土垫层以增强软土地基表层承载力,满足作业面轻型、中型设备施工条件的要求。在汕头市东部经济带市政基础设施建设项目WE3路浅表软基处理施工中,结合现场淤泥层厚度采用了竹网浅表软基处理工艺,有效地提高了施工进度,节约了施工成本。

  6. Focused feasibility study for surface soil at the main pits and pushout area, J-field toxic burning pits area, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Patton, T.; Benioff, P.; Biang, C.; Butler, J. [and others

    1996-06-01

    The Environmental Management Division of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). J-Field is located within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning/open detonation. Portions of J-Field continue to be used for the detonation and disposal of unexploded ordnance (UXO) by open burning/open detonation under authority of the Resource Conservation and Recovery Act.

  7. Mineral content of the dentine remaining after chemomechanical caries removal.

    Science.gov (United States)

    Yip, H K; Beeley, J A; Stevenson, A G

    1995-01-01

    Although the dentine remaining after chemomechanical caries removal appears sound by normal clinical criteria, no definitive evidence has yet been obtained to confirm that the dentine surface is in fact mineralised. The aim of this study was to use backscattered electron (BSE) imaging and electron probe micro-analysis (EPMA) to ascertain the level of mineralisation of the dentine remaining in cavities prepared by this technique. Carious dentine was removed from carious lesions by means of N-monochloro-DL-2-aminobutyric acid (NMAB) or NMAB containing 2 mol/l urea. Sections of teeth in which caries removal was complete by normal clinical criteria were examined by EPMA and BSE. Dentine adjacent to the pulp was found to be less mineralised than the surrounding dentine. Although the superficial layer of dentine remaining on the cavity floors frequently appeared to have a slightly reduced mineral content, the results clearly indicated that there was no significant difference between this dentine and the underlying sound dentine.

  8. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  9. Refined ab initio intermolecular ground-state potential energy surface for the He-C2H2 van der Waals complex

    DEFF Research Database (Denmark)

    Fernández, Berta; Henriksen, Christian; Farrelly, David

    2013-01-01

    , are fitted to a 15-parameter analytic function. The potential is characterised by minima of-24.21 cm-1 at distances between the rare gas atom and the C2H2 centre of mass of 4.3453 Å, and with the complex in a linear configuration. At intermediate distances the surface is rather similar to that developed...

  10. Streamflow gains and losses along San Francisquito Creek and characterization of surface-water and ground-water quality, southern San Mateo and northern Santa Clara counties, California, 1996-97

    Science.gov (United States)

    Metzger, Loren F.

    2002-01-01

    San Francisquito Creek is an important source of recharge to the 22-square-mile San Francisquito Creek alluvial fan ground-water subbasin in the southern San Mateo and northern Santa Clara Counties of California. Ground water supplies as much as 20 percent of the water to some area communities. Local residents are concerned that infiltration and consequently ground-water recharge would be reduced if additional flood-control measures are implemented along San Francisquito Creek. To improve the understanding of the surface-water/ground-water interaction between San Francisquito Creek and the San Francisquito Creek alluvial fan, the U.S. Geological Survey (USGS) estimated streamflow gains and losses along San Francisquito Creek and determined the chemical quality and isotopic composition of surface and ground water in the study area.Streamflow was measured at 13 temporary streamflow-measurement stations to determine streamflow gains and losses along a 8.4-mile section of San Francisquito Creek. A series of five seepage runs between April 1996 and May 1997 indicate that losses in San Francisquito Creek were negligible until it crossed the Pulgas Fault at Sand Hill Road. Streamflow losses increased between Sand Hill Road and Middlefield Road where the alluvial deposits are predominantly coarse-grained and the water table is below the bottom of the channel. The greatest streamflow losses were measured along a 1.8-mile section of the creek between the San Mateo Drive bike bridge and Middlefield Road; average losses between San Mateo Drive and Alma Street and from there to Middlefield Road were 3.1 and 2.5 acre-feet per day, respectively.Downstream from Middlefield Road, streamflow gains and losses owing to seepage may be masked by urban runoff, changes in bank storage, and tidal effects from San Francisco Bay. Streamflow gains measured between Middlefield Road and the 1200 block of Woodland Avenue may be attributable to urban runoff and (or) ground-water inflow. Water

  11. 盾构掘进速度及非正常停机对地面沉降的影响%Influences of shield advance rate and abnormal machine halt on tunnelling-induced ground surface settlements

    Institute of Scientific and Technical Information of China (English)

    林存刚; 吴世明; 张忠苗; 刘俊伟; 李宗梁

    2012-01-01

    Shield tunnelling in soft soils inevitably disturbs the surrounding environment and induces ground surface settlements. The serviceability and safety of the structures in the vicinity can be jeopardized in case that excess settlements are observed. A comprehensive understanding of the influencing factors of shield tunnelling induced ground settlements and an accurate settlement prediction are of great importance for minimizing the environment impacts of shield tunnelling. Taking the load of the shield into account, the Mindlin's solution is introduced to calculate the additional stress in soils beneath the shield, and the layer-wise summation method is applied to calculate the final one-dimensional consolidation settlement. The duration of additional stress in soils relies on the shield advance rate and its halt time, and the corresponding consolidation settlement can be calculated using the Terzaghi's one-dimensional consolidation theory. Finally, the relationship between consolidation settlements and ground surface settlements is established by Peck equation. The theory is verified by in-situ monitored ground surface settlements in construction of Hangzhou Qing-chun Road cross-river tunnel in China. These studies show that the shield advance rate and machine halt duration have a significant impact on the ground surface settlements, and the increase in shield advance rate and decrease in machine halt duration favors the settlement control.%软土中盾构隧道施工不可避免地扰动周围地层,进而引起地面沉降,沉降过大时将危及邻近建(构)筑物的正常使用和结构安全.全面理解盾构隧道施工引起的地面沉降的影响因素及对沉降的准确预测,对于减少施工环境危害十分重要.考虑盾构压重后,引入Mindlin解计算盾构下卧土层中的附加应力,采用单向压缩分层总和法计算盾构下卧土层的总固结沉降,由盾构掘进速度及停机时间确定附加应力作用时间后,应用

  12. Application of Tracer-Injection Techniques to Demonstrate Surface-Water and Ground-Water Interactions Between an Alpine Stream and the North Star Mine, Upper Animas River Watershed, Southwestern Colorado

    Science.gov (United States)

    Wright, Winfield G.; Moore, Bryan

    2003-01-01

    Tracer-injection studies were done in Belcher Gulch in the upper Animas River watershed, southwestern Colorado, to determine whether the alpine stream infiltrates into underground mine workings of the North Star Mine and other nearby mines in the area. The tracer-injection studies were designed to determine if and where along Belcher Gulch the stream infiltrates into the mine. Four separate tracer-injec-tion tests were done using lithium bromide (LiBr), optical brightener dye, and sodium chloride (NaCl) as tracer solu-tions. Two of the tracers (LiBr and dye) were injected con-tinuously for 24 hours, one of the NaCl tracers was injected continuously for 12 hours, and one of the NaCl tracers was injected over a period of 1 hour. Concentration increases of tracer constituents were detected in water discharging from the North Star Mine, substantiating a surface-water and ground-water connection between Belcher Gulch and the North Star Mine. Different timing and magnitude of tracer breakthroughs indicated multiple flow paths with different residence times from the stream to the mine. The Pittsburgh and Sultan Mines were thought to physically connect to the North Star Mine, but tracer breakthroughs were inconclusive in water from these mines. From the tracer-injection tests and synoptic measure-ments of streamflow discharge, a conceptual model was devel-oped for surface-water and ground-water interactions between Belcher Gulch and the North Star Mine. This information, combined with previous surface geophysical surveys indicat-ing the presence of subsurface voids, may assist with decision-making process for preventing infiltration and for the remedia-tion of mine drainage from these mines.

  13. Ground water and climate change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  14. Ground water and climate change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2013-04-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  15. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  16. 泥水盾构施工引起的地面固结沉降实例研究%Case study of ground surface consolidation settlements induced by slurry shield tunnelling

    Institute of Scientific and Technical Information of China (English)

    张忠苗; 林存刚; 吴世明; 邹健; 刘俊伟

    2012-01-01

    Extensive analysis of consolidation settlements induced by slurry shield tunnelling in construction of Hangzhou Qiantang River Tunnel was executed to explore their characteristics. A practical method to distinguish the consolidation settlements from immediate settlements was put forward. Formation mechanism, influencing factors, and control measures of consolidation settlements due to slurry shield tunnelling were summarized. This case study shows that: ①Both immediate and settlement long-term ground surface settlement in the transverse direction can be fitted using Peck equation with great precision. ②The transverse ground surface consolidation settlements usually do not conform to Gaussian curves. Maximum consolidation settlements develop at the ground surface above the tunnel centre or in the vicinity, from where they descend gradually with increasing distance. ③ Consolidation settlements contribute to widening the settlement trough width. ④The time corresponding to the turning point in settlement-time curve or settlement rate-time curve is proposed to be chosen as boundary to divide the immediate and consolidation settlements. ⑤Optimized control of slurry shield excavation parameters contributes to smaller disturbances to surrounding soils, consequently lowering consolidation settlements and their duration.%通过对杭州钱塘江隧道泥水盾构施工的分析,研究了泥水盾构施工引起的地面固结沉降的特点,提出划分地层损失沉降和固结沉降的实用方法,总结了盾构施工引起扰动土体固结沉降的机理、影响因素及控制措施.分析表明:无论是地层损失沉降还是长期沉降,均可用Peck公式较好地拟合;横向地面固结沉降曲线不符合高斯曲线形式,一般隧道轴线或附近地面固结沉降最大,向两侧递减;扰动土体固结使得横向沉降槽不断拓宽;软土地区盾构隧道施工,可取地面沉降曲线或沉降速度曲线的转折点作为地层损

  17. Simulation Analysis on Power Frequency Electric Field at Ground Surface Near EHV Power Transmission Tower%超高压输电线路铁塔附近地面工频电场仿真分析

    Institute of Scientific and Technical Information of China (English)

    李永明; 范与舟; 徐禄文

    2013-01-01

    根据铁塔实际结构和导线抛物线方程,建立了铁塔附近三维电场计算模型.基于模拟电荷法分析了500 kV输电线路铁塔周围地面上的工频电场分布,分析了铁塔对其附近电场环境的影响,并讨论了影响电场计算结果的因素.研究结果表明:铁塔对其附近地面电场有一定屏蔽作用,电场强度在铁塔下方显著降低且在金属构架处产生畸变;铁塔的影响范围和铁塔高度及塔基尺寸有关;铁塔构架等效半径、线单元剖分段数以及铁塔不同简化模型都会影响计算结果.%Based on actual structure of power transmission tower and parabolic equation of transmission lines,a three-dimensional model to compute power frequency electric field at ground surface near transmission tower is built.According to charge simulation method,the distribution of power frequency electric field at ground surface near 500kV transmission tower as well as the impacts of transmission tower on nearby electric field is analyzed,and the factors impacting computational results of electric field are discussed.Research results show that there is a certain screening effect of transmission tower on ground surface electric field nearby the tower,so the electric field intensity beneath the tower decreases obviously and electric field distortion appears at the positions where metal frameworks are erected.The impacting area is related to the height of the tower and the size of tower foundation; computational result of electric field will be impacted by the equivalent radius of tower framework,the number of line segments and different simplified models of the tower.

  18. OX40: Structure and function - What questions remain?

    Science.gov (United States)

    Willoughby, Jane; Griffiths, Jordana; Tews, Ivo; Cragg, Mark S

    2017-03-01

    OX40 is a type 1 transmembrane glycoprotein, reported nearly 30 years ago as a cell surface antigen expressed on activated T cells. Since its discovery, it has been validated as a bone fide costimulatory molecule for T cells and member of the TNF receptor family. However, many questions still remain relating to its function on different T cell sub-sets and with recent interest in its utility as a target for antibody-mediated immunotherapy, there is a growing need to gain a better understanding of its biology. Here, we review the expression pattern of OX40 and its ligand, discuss the structure of the receptor:ligand interaction, the downstream signalling it can elicit, its function on different T cell subsets and how antibodies might engage with it to provide effective immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Quantitative Campylobacter spp., antibiotic resistance genes, and veterinary antibiotics in surface and ground water following manure application: Influence of tile drainage control.

    Science.gov (United States)

    Frey, Steven K; Topp, Edward; Khan, Izhar U H; Ball, Bonnie R; Edwards, Mark; Gottschall, Natalie; Sunohara, Mark; Lapen, David R

    2015-11-01

    This work investigated chlortetracycline, tylosin, and tetracycline (plus transformation products), and DNA-based quantitative Campylobacter spp. and Campylobacter tetracycline antibiotic resistant genes (tet(O)) in tile drainage, groundwater, and soil before and following a liquid swine manure (LSM) application on clay loam plots under controlled (CD) and free (FD) tile drainage. Chlortetracycline/tetracycline was strongly bound to manure solids while tylosin dominated in the liquid portion of manure. The chlortetracycline transformation product isochlortetracycline was the most persistent analyte in water. Rhodamine WT (RWT) tracer was mixed with manure and monitored in tile and groundwater. RWT and veterinary antibiotic (VA) concentrations were strongly correlated in water which supported the use of RWT as a surrogate tracer. While CD reduced tile discharge and eliminated application-induced VA movement (via tile) to surface water, total VA mass loading to surface water was not affected by CD. At both CD and FD test plots, the biggest 'flush' of VA mass and highest VA concentrations occurred in response to precipitation received 2d after application, which strongly influenced the flow abatement capacity of CD on account of highly elevated water levels in field initiating overflow drainage for CD systems (when water level <0.3m below surface). VA concentrations in tile and groundwater became very low within 10d following application. Both Campylobacter spp. and Campylobacter tet(O) genes were present in groundwater and soil prior to application, and increased thereafter. Unlike the VA compounds, Campylobacter spp. and Campylobacter tet(O) gene loadings in tile drainage were reduced by CD, in relation to FD.

  20. Impact of Mina Ratones (Albala Caceres) in surface and ground waters: hidrochemistry modelization; Impacto de la Mina Ratones (Albala, Caceres) sobre las aguas superficiales y subterraneas: modelacion hidrogeoquimica

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Gonzalez, P.

    2002-07-01

    Weathering of rock materials,tailings and mine dumps produce acidic and metal-enriched waters that con contaminate surface and groundwaters. The understanding and quantification of the environmental impact of the Ratones old uranium mine (Albala, Caceres) are the main objectives of this work. For this purpose, the hydro geochemistry around the mine has been studied based on a precise knowledge of the structure and hydrogeology of the zone. The hydrochemical study aims to establish the chemical the phases that control the concentration of the possible contaminants of the groundwaters. (Author)

  1. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 2. Coeruptive deflation, July-August 2008

    Science.gov (United States)

    Lu, Zhong; Dzurisin, Daniel

    2010-01-01

    A hydrovolcanic eruption near Cone D on the floor of Okmok caldera, Alaska, began on 12 July 2008 and continued until late August 2008. The eruption was preceded by inflation of a magma reservoir located beneath the center of the caldera and ~3 km below sea level (bsl), which began immediately after Okmok's previous eruption in 1997. In this paper we use data from several radar satellites and advanced interferometric synthetic aperture radar (InSAR) techniques to produce a suite of 2008 coeruption deformation maps. Most of the surface deformation that occurred during the eruption is explained by deflation of a Mogi-type source located beneath the center of the caldera and 2–3 km bsl, i.e., essentially the same source that inflated prior to the eruption. During the eruption the reservoir deflated at a rate that decreased exponentially with time with a 1/e time constant of ~13 days. We envision a sponge-like network of interconnected fractures and melt bodies that in aggregate constitute a complex magma storage zone beneath Okmok caldera. The rate at which the reservoir deflates during an eruption may be controlled by the diminishing pressure difference between the reservoir and surface. A similar mechanism might explain the tendency for reservoir inflation to slow as an eruption approaches until the pressure difference between a deep magma production zone and the reservoir is great enough to drive an intrusion or eruption along the caldera ring-fracture system.

  2. Laboratory investigations on the role of sediment surface and ground water chemistry in transport of bacteria through a contaminated Sandy Aquifer

    Science.gov (United States)

    Scholl, M.A.; Harvey, R.W.

    1992-01-01

    The effects of pH and sediment surface characteristics on sorption of indigenous groundwater bacteria were determined using contaminated and uncontaminated aquifer material from Cape Cod, MA. Over the pH range of the aquifer (5-7), the extent of bacterial sorption onto sediment in uncontaminated groundwater was strongly pH-dependent, but relatively pH-insensitive in contaminated groundwater from the site. Bacterial sorption was also affected by the presence of oxyhydroxide coatings (iron, aluminum, and manganese). Surface coating effects were most pronounced in uncontaminated groundwater (pH 6.4 at 10??C). Desorption of attached bacteria (up to 14% of the total number of labeled cells added) occurred in both field and laboratory experiments upon adjustment of groundwater to pH 8. The dependence of bacterial sorption upon environmental conditions suggests that bacterial immobilization could change substantially over relatively short distances in contaminated, sandy aquifers and that effects caused by changes in groundwater geochemistry can be significant.

  3. Rotational components of earthquake ground motions derived from surface waves%地震面波产生的地震动转动分量研究

    Institute of Scientific and Technical Information of China (English)

    李宏男; 孙立晔

    2001-01-01

    In this paper, the rotational components ot earthquake groundmotions are derived from the surface waves, the Rayleigh and Love waves by using the theory of elastic wave motion. The relevant calculational formula and approach are given. Especially, the dispersion of surface waves is introduced to the rotational components, whihc may be more suitable for engineering practice. Finally, numerical examples of the rotational components from the earthquake records are presented by using the given methods.%本文利用弹性波动理论对地面转动分量,即瑞利(Rayleigh)波和乐夫(Love)波产生的转动分量进行了研究,给出了相应的计算公式和计算方法。特别注意到面波的频散效应对转动分量的影响,并将这一特性引入到转动分量的求取中,使问题的解决更切合于实际。最后选取实际地震记录,利用得到的公式计算出地震面波产生的转动分量。

  4. Ground stability after exhaustive coal exploitation and stoppage of un-watering pumping; Stabilite de la surface apres l'exploitation totale du charbon et l'arret des pompages d'exhaure miniere

    Energy Technology Data Exchange (ETDEWEB)

    Degas, M. [INERIS, Dir. des Risques du Sol et du Sous-sol, 60 - Verneuil-en-Halatte (France); Wojtkowiak, F. [INERIS, Lab. Environnement Geomecanique et Ouvrages, Ecole des Mines de Nancy, 54 - Nancy (France); Metz, M.; Branchet, M. [Houilleres du Bassin de Lorraine, UGEPI, 57 - Freyming-Merlebach (France)

    2003-07-01

    Coal mines experience in France and in Western Europe for more than 50 years has shown that the most subsidence (90%) occurs during the extraction of panels. The subsidence is almost stabilised within 2 years by the end of the extraction. Beyond this period, the movements are no longer significant because they cannot be distinguished from the natural ground movements, and cannot be measured though leveling, even of high precision. The increase of water level when pumping is stopped can induce a centimetric rise of ground level, function of works depth, thickness of extracted seam (layer) and increase of the underground water level. The studies of Bekendam and Poettgens (1985, 2000) and of Fenk (1997) concerning respectively mining in the Netherlands and in Germany highlighted this phenomenon. The observations made in Lorraine in the sector of Faulquemont, where the works flooding has been stabilised, give similar results (Degas, 2001) (Wojtkowiak, 2001). No consequence on buildings and surface infrastructures due to this phenomenon has been noticed. (authors)

  5. Impact of Gobi desert dust on aerosol chemistry of Xi'an, inland China during spring 2009: differences in composition and size distribution between the urban ground surface and the mountain atmosphere

    Directory of Open Access Journals (Sweden)

    G. H. Wang

    2012-08-01

    Full Text Available Composition and size distribution of atmospheric aerosols from Xi'an city (~400 m, altitude in inland China during the spring of 2009 including a massive dust event on 24 April were measured and compared with a parallel measurement at the summit (2060 m, altitude of Mt. Hua, an alpine site nearby Xi'an. EC, OC and major ions in the city were 2–22 times higher than those on the mountaintop during the whole sampling period. Sulfate was the highest species in the nonevent time in Xi'an and Mt. Hua, followed by nitrate, OC and NH4+. In contrast, OC was the most abundant in the event at both sites, followed by sulfate, nitrate and Ca2+. Compared to those on the urban ground surface aerosols in the elevated troposphere over Mt. Hua contain more sulfate and less nitrate, because HNO3 is formed faster than H2SO4 and thus long-range transport of HNO3 is less significant than that of H2SO4. An increased water-soluble organic nitrogen (WSON was observed for the dust samples from Xi'an, indicating a significant deposition of anthropogenic WSON onto dust and/or an input of biogenic WSON from Gobi desert.

    As far as we know, it is for the first time to perform a simultaneous observation of aerosol chemistry between the ground surface and the free troposphere in inland East Asia. Our results showed that fine particles are more acidic on the mountaintop than on the urban ground surface in the nonevent, mainly due to continuous oxidation of SO2 to produce H2SO4 during the transport from lowland areas to the alpine atmosphere. However, we found the urban fine particles became more acidic in the event than in the nonevent, in contrast to the mountain atmosphere, where fine particles were less acidic when dust was present. The opposite changes in acidity of fine particles at both sites during the event are mostly caused by

  6. The Massachusetts Water Isotope Mapping Project: An Integrated Precipitation, Surface Water, and Ground Water IsoScape for Improved Understanding of Hydrologic Processes

    Science.gov (United States)

    Boutt, D. F.; Cole, A.

    2016-12-01

    The development of CRDS has revolutionized our ability to collect large spatially and temporally distributed datasets of water isotopes allowing un-paralleled insight into the hydrologic functioning of catchments through the lens of isotopic tracing of the water molecule. We present the results of an ongoing study of high spatial and temporal dataset across the state of Massachusetts, Northeast United States. Our current database consists of 1500 precipitation measurements across 15 stations, 2500 surface water measurements across 150 sites, and 2000 groundwater from 200 wells screened in overburden and bedrock wells. Isotopic composition of the region varies significantly as a function of topography and season. Because of the coastal orientation of the region, there is a large variability in the mean 18O-H2O composition of precipitation due to locally dominant precipitation sources. Deuterium excess of precipitation in the range of 10 - 14 ‰ are typical. Five years of surface water samples across the region show a strong seasonal trend ranging from -10 to -3 ‰ δ18O-H2O. Surface waters depict seasonal evaporative enrichment in the heavy isotopes and demonstrate a similar magnitude of deuterium excess compared to the precipitation. During the winters of 2014 and 2015 typical seasonal trends are interrupted by distinctly depleted stream waters of the order of -12 to -11 ‰ δ18O-H2O. These excursions are consistent with a source of water vapor to the region from more northerly (colder) regions. Mean stream water δ18O- H2O isotopic compositions show a strong relationship to upgradient drainage area. Groundwater compositions range from -12 to -5 ‰ δ18O-H2O across all the sites. A correlation between groundwater well elevation and δ18O-H2O is observed with higher elevation sites depleted in heavy isotopes with variations of 2-3 ‰ δ18O-H2O at any given elevation. Groundwater isotopic composition is distinct between overburden aquifer types (till, glacial

  7. Pushpoint sampling for defining spatial and temporal variations in contaminant concentrations in sediment pore water near the ground-water / surface-water interface

    Science.gov (United States)

    Zimmerman, Marc J.; Massey, Andrew J.; Campo, Kimberly W.

    2005-01-01

    During four periods from April 2002 to June 2003, pore-water samples were taken from river sediment within a gaining reach (Mill Pond) of the Sudbury River in Ashland, Massachusetts, with a temporary pushpoint sampler to determine whether this device is an effective tool for measuring small-scale spatial variations in concentrations of volatile organic compounds and selected field parameters (specific conductance and dissolved oxygen concentration). The pore waters sampled were within a subsurface plume of volatile organic compounds extending from the nearby Nyanza Chemical Waste Dump Superfund site to the river. Samples were collected from depths of 10, 30, and 60 centimeters below the sediment surface along two 10-meter-long, parallel transects extending into the river. Twenty-five volatile organic compounds were detected at concentrations ranging from less than 1 microgram per liter to hundreds of micrograms per liter (for example, 1,2-dichlorobenzene, 490 micrograms per liter; cis-1,2-dichloroethene, 290 micrograms per liter). The most frequently detected compounds were either chlorobenzenes or chlorinated ethenes. Many of the compounds were detected only infrequently. Quality-control sampling indicated a low incidence of trace concentrations of contaminants. Additional samples collected with passive-water-diffusion-bag samplers yielded results comparable to those collected with the pushpoint sampler and to samples collected in previous studies at the site. The results demonstrate that the pushpoint sampler can yield distinct samples from sites in close proximity; in this case, sampling sites were 1 meter apart horizontally and 20 or 30 centimeters apart vertically. Moreover, the pushpoint sampler was able to draw pore water when inserted to depths as shallow as 10 centimeters below the sediment surface without entraining surface water. The simplicity of collecting numerous samples in a short time period (routinely, 20 to 30 per day) validates the use of a

  8. Influence of surface-normal ground acceleration on the initiation of the Jih-Feng-Erh-Shan landslide during the 1999 Chi-Chi, Taiwan, earthquake

    Science.gov (United States)

    Huang, C.-C.; Lee, Y.-H.; Liu, Huaibao P.; Keefer, D.K.; Jibson, R.W.

    2001-01-01

    The 1999 Chi-Chi, Taiwan, earthquake triggered numerous landslides throughout a large area in the Central Range, to the east, southeast, and south of the fault rupture. Among them are two large rock avalanches, at Tsaoling and at Jih-Feng-Erh-Shan. At Jih-Feng-Erh-Shan, the entire thickness (30-50 m) of the Miocene Changhukeng Shale over an area of 1 km2 slid down its bedding plane for a distance of about 1 km. Initial movement of the landslide was nearly purely translational. We investigate the effect of surface-normal acceleration on the initiation of the Jih-Feng-Erh-Shan landslide using a block slide model. We show that this acceleration, currently not considered by dynamic slope-stability analysis methods, significantly influences the initiation of the landslide.

  9. Effects of selective handling of pyritic, acid-forming materials on the chemistry of pore gas and ground water at a reclaimed surface coal mine in Clarion County, PA, USA

    Science.gov (United States)

    Cravotta, Charles A.; Dugas, Diana L.; Brady, Keith; Kovalchuck, Thomas E.

    1994-01-01

    A change from dragline to “selective handling” mining methods at a reclaimed surface coal mine in western Pennsylvania did not significantly affect concentrations of metals in ground water because oxidation of pyrite and dissolution of siderite were not abated. Throughout the mine, placement of pyritic material near the land surface facilitated the oxidation of pyrite, causing the consumption of oxygen (O2) and release of acid, iron, and sulfate ions. Locally in the unsaturated zone, water sampled within or near pyritic zones was acidic, with concentrations of sulfate exceeding 3,000 milligrams per liter (mg/L). However, acidic conditions generally did not persist below the water table because of neutralization by carbonate minerals. Dissolution of calcite, dolomite, and siderite in unsaturated and saturated zones produced elevated concentrations of carbon dioxide (CO2), alkalinity, calcium, magnesium, iron, and manganese. Alkalinity concentrations of 600 to 800 mg/L as CaCO3 were common in water samples from the unsaturated zone in spoil, and alkalinities of 100 to 400 mg/L as CaCO3 were common in ground-water samples from the underlying saturated zone in spoil and bedrock. Saturation indices indicated that siderite could dissolve in water throughout the spoil, but that calcite dissolution or precipitation could occur locally. Calcite dissolution could be promoted as a result of pyrite oxidation, gypsum precipitation, and calcium ion exchange for sodium. Calcite precipitation could be promoted by evapotranspiration and siderite dissolution, and corresponding increases in concentrations of alkalinity and other solutes. Partial pressures of O2 (Po2) and CO2 (Pco2) in spoil pore gas indicated that oxidation of pyrite and precipitation of ferric hydroxide, coupled with dissolution of calcite, dolomite, and siderite were the primary reactions affecting water quality. Highest vertical gradients in Po2, particularly in the near-surface zone (0-1 m), did not correlate

  10. Radical ions with nearly degenerate ground