WorldWideScience

Sample records for ground surface beneath

  1. The Dumbarton Oaks Tlazolteotl: looking beneath the surface

    OpenAIRE

    MacLaren Walsh, Jane

    2014-01-01

    The Dumbarton Oaks Tlazolteotl: looking beneath the surface. Some of the earliest and most revered pre-Columbian artifacts in the world’s major museum and private collections were collected prior to the advent of systematic, scientific archaeological excavation, and have little or no reliable provenience data. They have consistently posed problems for researchers due to anomalies of theme, material, size, technical virtuosity and iconography. This paper offers a historical and scientific appr...

  2. Crawling beneath the free surface: Water snail locomotion

    Science.gov (United States)

    Lee, Sungyon; Bush, John W. M.; Hosoi, A. E.; Lauga, Eric

    2008-08-01

    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small-amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be nonzero for moderate values of the capillary number but vanishes in the limits of high and low capillary number. Physically, this force arises because the snail's foot deforms the free surface, thereby generating curvature pressures and lubrication flows inside the mucus layer that couple to the topography of the foot.

  3. Radiological status of the ground water beneath the Hanford project, January-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, P.A.; Wilbur, J.S.

    1980-04-01

    Operations on the Hanford Site since 1944 have resulted in discharge of large volumes of process cooling water and low-level liquid radioactive waste to the ground. Radioactivity and chemical substances have been carried with these discharges and have reached the Hanford ground water. For may years wells have been used as groundwater sampling structures to gather data on the distribution and movement of these discharges as they interact with the unconfined ground water beneath the site. During 1979, 317 wells were sampled on various frequencies from weekly to annually. This report is one of a series prepared annually to document the evaluation of the status of ground water on the Hanford Site. Data collected during 1979 describe the movement of radionuclide (Tritium and Beta) and nitrate plumes that respond to the influence of groundwater flow, ionic dispersion and radioactive decay.

  4. Crawling beneath the free surface: Water snail locomotion

    CERN Document Server

    Lee, Sungyon; Hosoi, A E; Lauga, Eric

    2008-01-01

    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be non-zero for moderate values of Capillar...

  5. Postcolonial Myth in Salman Rushdie’s The Ground Beneath Her Feet

    Directory of Open Access Journals (Sweden)

    Doncu Roxana Elena

    2014-01-01

    Full Text Available Postcolonial writers like Salman Rushdie often write back to the “empire” by appropriating myth and allegory. In The Ground beneath Her Feet, Rushdie rewrites the mythological story of Orpheus and Eurydice, using katabasis (the trope of the descent into Hell to comment both on the situation of the postcolonial writer from a personal perspective and to attempt a redefinition of postcolonial migrant identity-formation. Hell has a symbolic function, pointing both to the external context of globalization and migration (which results in the characters’ disorientation and to an interior space which can be interpreted either as a source of unrepressed energies and creativity (in a Romantic vein or as the space of the abject (in the manner of Julia Kristeva. The article sets out to investigate the complex ways in which the Orphic myth and katabasis are employed to shed light on the psychology of the creative artist and on the reconfiguration of identity that becomes the task of the postcolonial migrant subject. The journey into the underworld functions simultaneously as an allegory of artistic creation and identity reconstruction.

  6. Shallow ground-water quality beneath rice areas in the Sacramento Valley, California, 1997

    Science.gov (United States)

    Dawson, Barbara J.

    2001-01-01

    In 1997, the U.S. Geological Survey installed and sampled 28 wells in rice areas in the Sacramento Valley as part of the National Water-Quality Assessment Program. The purpose of the study was to assess the shallow ground-water quality and to determine whether any effects on water quality could be related to human activities and particularly rice agriculture. The wells installed and sampled were between 8.8 and 15.2 meters deep, and water levels were between 0.4 and 8.0 meters below land surface. Ground-water samples were analyzed for 6 field measurements, 29 inorganic constituents, 6 nutrient constituents, dissolved organic carbon, 86 pesticides, tritium (hydrogen- 3), deuterium (hydrogen-2), and oxygen-18. At least one health-related state or federal drinking-water standard (maximum contaminant or long-term health advisory level) was exceeded in 25 percent of the wells for barium, boron, cadmium, molybdenum, or sulfate. At least one state or federal secondary maximum contaminant level was exceeded in 79 percent of the wells for chloride, iron, manganese, specific conductance, or dissolved solids. Nitrate and nitrite were detected at concentrations below state and federal 2000 drinking-water standards; three wells had nitrate concentrations greater than 3 milligrams per liter, a level that may indicate impact from human activities. Ground-water redox conditions were anoxic in 26 out of 28 wells sampled (93 percent). Eleven pesticides and one pesticide degradation product were detected in ground-water samples. Four of the detected pesticides are or have been used on rice crops in the Sacramento Valley (bentazon, carbofuran, molinate, and thiobencarb). Pesticides were detected in 89 percent of the wells sampled, and rice pesticides were detected in 82 percent of the wells sampled. The most frequently detected pesticide was the rice herbicide bentazon, detected in 20 out of 28 wells (71 percent); the other pesticides detected have been used for rice, agricultural

  7. The upper mantle beneath the Gulf of California from surface wave dispersion. Geologica Ultraiectina (299)

    NARCIS (Netherlands)

    Zhang, X.|info:eu-repo/dai/nl/304835773

    2009-01-01

    This thesis is a study on upper mantle shear velocity structure beneath the Gulf of California. Surface wave interstation dispersion data were measured in the Gulf of California area and vicinity to obtain a 3-D shear velocity structure of the upper mantle. This work has particular significance for

  8. The upper mantle beneath the Gulf of California from surface wave dispersion. Geologica Ultraiectina (299)

    NARCIS (Netherlands)

    Zhang, X.

    2009-01-01

    This thesis is a study on upper mantle shear velocity structure beneath the Gulf of California. Surface wave interstation dispersion data were measured in the Gulf of California area and vicinity to obtain a 3-D shear velocity structure of the upper mantle. This work has particular significance for

  9. The detectability of archaeological structures beneath the soil using the ground penetrating radar technique

    Science.gov (United States)

    Ferrara, C.; Barone, P. M.; Pajewski, L.; Pettinelli, E.; Rossi, G.

    2012-04-01

    The traditional excavation tools applied to Archaeology (i.e. trowels, shovels, bulldozers, etc.) produce, generally, a fast and invasive reconstruction of the ancient past. The geophysical instruments, instead, seem to go in the opposite direction giving, rapidly and non-destructively, geo-archaeological information. Moreover, the economic aspect should not be underestimated: where the former invest a lot of money in order to carry out an excavation or restoration, the latter spend much less to manage a geophysical survey, locating precisely the targets. Survey information gathered using non-invasive methods contributes to the creation of site strategies, conservation, preservation and, if necessary, accurate location of excavation and restoration units, without destructive testing methods, also in well-known archaeological sites [1]-[3]. In particular, Ground Penetrating Radar (GPR) has, recently, become the most important physical technique in archaeological investigations, allowing the detection of targets with both very high vertical and horizontal resolution, and has been successfully applied both to archaeological and diagnostic purposes in historical and monumental sites [4]. GPR configuration, antenna frequency and survey modality can be different, depending on the scope of the measurements, the nature of the site or the type of targets. Two-dimensional (2D) time/depth slices and radargrams should be generated and integrated with information obtained from other buried or similar artifacts to provide age, structure and context of the surveyed sites. In the present work, we present three case-histories on well-known Roman archaeological sites in Rome, in which GPR technique has been successfully used. To obtain 2D maps of the explored area, a bistatic GPR (250MHz and 500MHz antennas) was applied, acquiring data along several parallel profiles. The GPR results reveal the presence of similar circular anomalies in all the investigated archaeological sites. In

  10. A three-dimensional full Stokes model of the grounding line dynamics: effect of a pinning point beneath the ice shelf

    Directory of Open Access Journals (Sweden)

    L. Favier

    2012-01-01

    Full Text Available The West Antarctic ice sheet is confined by a large area of ice shelves, fed by inland ice through fast flowing ice streams. The dynamics of the grounding line, which is the line-boundary between grounded ice and the downstream ice shelf, has a major influence on the dynamics of the whole ice sheet. However, most ice sheet models use simplifications of the flow equations, as they do not include all the stress components, and are known to fail in their representation of the grounding line dynamics. Here, we present a 3-D full Stokes model of a marine ice sheet, in which the flow problem is coupled with the evolution of the upper and lower free surfaces, and the position of the grounding line is determined by solving a contact problem between the shelf/sheet lower surface and the bedrock. Simulations are performed using the open-source finite-element code Elmer/Ice within a parallel environment. The model's ability to cope with a curved grounding line and the effect of a pinning point beneath the ice shelf are investigated through prognostic simulations. Starting from a steady state, the sea level is slightly decreased to create a contact point between a seamount and the ice shelf. The model predicts a dramatic decrease of the shelf velocities, leading to an advance of the grounding line until both grounded zones merge together, during which an ice rumple forms above the contact area at the pinning point. Finally, we show that once the contact is created, increasing the sea level to its initial value does not release the pinning point and has no effect on the ice dynamics, indicating a stabilising effect of pinning points.

  11. Probing Earth’s conductivity structure beneath oceans by scalar geomagnetic data: autonomous surface vehicle solution

    DEFF Research Database (Denmark)

    Kuvshinov, Alexey; Matzka, Jürgen; Poedjono, Benny

    2016-01-01

    this method, known as magnetotellurics, to oceanic regions is challenging since only vector instruments placed at the sea bottom can provide such data. Here, we discuss a concept of marine induction surveying which is based on sea-surface scalar magnetic field measurements from a modern position...... to the conductivity structure beneath the ocean. We conclude that the sensitivity, depending on the bathymetry gradient, is typically largest near the coast offshore. We show that such sea-surface marine induction surveys can be performed with the Wave Glider, an easy-to-deploy, autonomous, energy-harvesting floating...

  12. Upper-Mantle Shear Velocities beneath Southern California Determined from Long-Period Surface Waves

    OpenAIRE

    Polet, J.; Kanamori, H.

    1997-01-01

    We used long-period surface waves from teleseismic earthquakes recorded by the TERRAscope network to determine phase velocity dispersion of Rayleigh waves up to periods of about 170 sec and of Love waves up to about 150 sec. This enabled us to investigate the upper-mantle velocity structure beneath southern California to a depth of about 250 km. Ten and five earthquakes were used for Rayleigh and Love waves, respectively. The observed surface-wave dispersion shows a clear Love/Rayleigh-wave d...

  13. Helioseismic Observations of the Structure and Dynamics of a Rotating Sunspot Beneath the Solar Surface

    Science.gov (United States)

    Zhao, Junwei; Kosovichev, Alexander G.

    2003-01-01

    Time-distance helioseismology is applied to study the subphotospheric structures and dynamics of an unusually fast-rotating sunspot observed by the Michelson Doppler Imager on bead SOH0 in 2000 August. The subsurface sound speed structures and velocity fields are obtained for the sunspot region at different depths from 0 to 12 Mm. By comparing the subsurface sound speed variations with the surface magnetic field, we find evidence for structural twists beneath the visible surface of this active region, which may indicate that magnetic twists often seen at the photosphere also exist beneath the photosphere. We also report on the observation of subsurface horizontal vortical flows that extend to a depth of 5 Mm around this rotating sunspot and present evidence that opposite vortical flows may exist below 9 Mm. It is suggested that the vortical flows around this active region may build up a significant amount of magnetic helicity and energy to power solar eruptions. Monte Carlo simulation has been performed to estimate the error propagation, and in addition the sunspot umbra is masked to test the reliability of our inversion results. On the basis of the three-dimensional velocity fields obtained from the time-distance helioseismology inversions, we estimate the subsurface kinetic helicity at different depths for the first time and conclude that it is comparable to the current helicity estimated from vector magnetograms.

  14. COST Action TU1206 "SUB-URBAN - A European network to improve understanding and use of the ground beneath our cities"

    Science.gov (United States)

    Campbell, Diarmad; de Beer, Johannes; Lawrence, David; van der Meulen, Michiel; Mielby, Susie; Hay, David; Scanlon, Ray; Campenhout, Ignace; Taugs, Renate; Eriksson, Ingelov

    2014-05-01

    Sustainable urbanisation is the focus of SUB-URBAN, a European Cooperation in Science and Technology (COST) Action TU1206 - A European network to improve understanding and use of the ground beneath our cities. This aims to transform relationships between experts who develop urban subsurface geoscience knowledge - principally national Geological Survey Organisations (GSOs), and those who can most benefit from it - urban decision makers, planners, practitioners and the wider research community. Under COST's Transport and Urban Development Domain, SUB-URBAN has established a network of GSOs and other researchers in over 20 countries, to draw together and evaluate collective urban geoscience research in 3D/4D characterisation, prediction and visualisation. Knowledge exchange between researchers and City-partners within 'SUB-URBAN' is already facilitating new city-scale subsurface projects, and is developing a tool-box of good-practice guidance, decision-support tools, and cost-effective methodologies that are appropriate to local needs and circumstances. These are intended to act as catalysts in the transformation of relationships between geoscientists and urban decision-makers more generally. As a result, the importance of the urban sub-surface in the sustainable development of our cities will be better appreciated, and the conflicting demands currently placed on it will be acknowledged, and resolved appropriately. Existing city-scale 3D/4D model exemplars are being developed by partners in the UK (Glasgow, London), Germany (Hamburg) and France (Paris). These draw on extensive ground investigation (10s-100s of thousands of boreholes) and other data. Model linkage enables prediction of groundwater, heat, SuDS, and engineering properties. Combined subsurface and above-ground (CityGML, BIMs) models are in preparation. These models will provide valuable tools for more holistic urban planning; identifying subsurface opportunities and saving costs by reducing uncertainty in

  15. RADIOLOGICAL STATUS OF THE GROUND-WATER BENEATH THE HANFORD PROJECT JANUARY-DECEMBER 1978

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, PA

    1979-04-01

    This report is one of a series prepared annually for the Department of Energy, to provide an evaluation of the status of ground-water contamination resulting from Hanford's onsite discharges. Data collected during 1978 describe the movement of major plumes {{beta}{sub t}, {sup 3}H, NO{sub 3}) that respond to the influences of ground-water flow, ionic dispersion and radioactive decay. The total beta plume continues to recede, with the exception of a beta source that is beginning to show up in the 300 Area, a result of minor spills and leaks which have occurred during the operating life of the 300 Area. The tritium plume continues to expand and is mapped as having reached the Columbia River, although its contribution to the river cannot be distinguished from that attributable to atmospheric fallout. The plume now shows much the same configuration as in 1977. The nitrate plume shows general stability relative to its size with concentrations in the vicinity of the 100-H Area continuing to be high as a result of leaks from the evaporation facility. The results of a study to determine the vertical distribution of contaminants in the Hanford ground-water system indicate that the majority of contaminants are stratified in the upper portions of the unconfined aquifer.

  16. Density and stability of soil organic carbon beneath impervious surfaces in urban areas.

    Science.gov (United States)

    Wei, Zongqiang; Wu, Shaohua; Yan, Xiao; Zhou, Shenglu

    2014-01-01

    Installation of impervious surfaces in urban areas has attracted increasing attention due to its potential hazard to urban ecosystems. Urban soils are suggested to have robust carbon (C) sequestration capacity; however, the C stocks and dynamics in the soils covered by impervious surfaces that dominate urban areas are still not well characterized. We compared soil organic C (SOC) densities and their stabilities under impervious surface, determined by a 28-d incubation experiment, with those in open areas in Yixing City, China. The SOC density (0-20 cm) under impervious surfaces was, on average, 68% lower than that in open areas. Furthermore, there was a significantly (Psoils, whereas the correlation was not apparent for the impervious-covered soils, suggesting that the artificial soil sealing in urban areas decoupled the cycle of C and N. Cumulative CO2-C evolved during the 28-d incubation was lower from the impervious-covered soils than from the open soils, and agreed well with a first-order decay model (Ct = C1+C0(1-e-kt)). The model results indicated that the SOC underlying capped surfaces had weaker decomposability and lower turnover rate. Our results confirm the unique character of urban SOC, especially that beneath impervious surface, and suggest that scientific and management views on regional SOC assessment may need to consider the role of urban carbon stocks.

  17. Modulation of the thermo-rheological properties of the crust beneath Ischia Island (Southern Italy) on the ground deformation pattern

    Science.gov (United States)

    Castaldo, Raffaele; Gola, Gianluca; Santilano, Alessandro; De Novellis, Vincenzo; Pepe, Susi; Manzo, Mariarosaria; Manzella, Adele; Tizzani, Pietro

    2017-04-01

    We present a model able to simulate the physical process responsible for the long-term ground deformation of Ischia Island Volcano (Southern Italy) by considering the role of the thermo-rheological properties of the crust. To this aim, we develop and implement in a Finite Element (FE) environment an innovative approach that integrates and homogenizes a large amount of data derived from several and different observation techniques (i.e, geological, geophysical and remote sensing). In detail, the main steps of the proposed approach are: (i) the generation of a 3D geological model of the crust beneath the Island by merging the available geological and geophysical information; (ii) the optimization of a 3D thermal model by exploiting the thermal measurements available in literature; (iii) the definition of the 3D B/D (Brittle/Ductile) transition by using the temperature distribution of the crust and the physical information of the rocks; (iv) the optimization of the ground deformation velocity model (that takes into account the rheological stratification) by considering the spatial and temporal information detected via satellite multi-orbit C-Band SAR (Synthetic Aperture Radar) measurements acquired during the 1992-2010 time period. The achieved results allow investigating the physical process responsible for the observed ground deformation pattern. In particular, they reveal how the rheology modulates the spatial and temporal evolution of long-term subsidence phenomenon, highlighting a coupling effect of the viscosities of the rocks and the gravitational loading of the volcano edifice. Moreover, the achieved results provide a very detailed and realistic image of the subsurface crust of the Ischia Island Volcano in order to study the ongoing deformation phenomena.

  18. Ground Penetrating Radar at Alcatraz Island: Imaging Civil-War Era Fortifications Beneath the Recreation Yard

    Science.gov (United States)

    Everett, M. E.; de Smet, T. S.; Warden, R.; Komas, T.; Hagin, J.

    2013-12-01

    As part of a cultural resources assessment and historical preservation project supported by the U.S. National Park Service, GPR surveys using 200 MHz antennas, with ~3.0 m depth of penetration and ~0.1 m lateral and vertical resolution, were conducted by our team in June 2012 over the recreation yard and parade ground at historic Alcatraz Island in order to image the underlying buried Civil War-era fortifications. The recreation yard at the Alcatraz high-security federal penitentiary served as a secure outdoor facility where the prisoners could take exercise. The facility, enclosed by a high perimeter wall and sentry walk, included basketball courts, a baseball diamond, and bleacher-style seating. The site previously consisted of coastal batteries built by the U.S. Army in the early to mid 1850's. As the need for harbor defense diminished, the island was converted into a military prison during the 1860's. In 1933, the military prison was transferred to federal control leading to the establishment of the high-security penitentiary. The rec yard was constructed in 1908-1913 directly over existing earthen fortifications, namely a trio of embankments known as 'traverses I, J, and K.' These mounds of earth, connected by tunnels, were in turn built over concrete and brick magazines. The processed GPR sections show good correlations between radar reflection events and the locations of the buried fortification structures derived from historical map analysis. A 3-D data cube was constructed and two of the cut-away perspective views show that traverse K, in particular, has a strong radar signature.

  19. UNSTEADY WAVES DUE TO AN IMPULSIVE OSEENLET BENEATH THE CAPILLARY SURFACE OF A VISCOUS FLUID

    Institute of Scientific and Technical Information of China (English)

    LU Dong-qiang; CHEN Xiao-bo

    2008-01-01

    The two-dimensional free-surface waves due to a point force steadily moving beneath the capillary surface of an incompressible viscous fluid of infinite depth were analytically investigated. The unsteady Oseen equations were taken as the governing equations for the viscous flows. The kinematic and dynamic conditions including the combined effects of surface tension and viscosity were linearized for small-amplitude waves on the free-surface. The point force is modeled as an impulsive Oseenlet. The complex dispersion relation for the capillary-gravity waves shows that the wave patterns are characterized by the Weber number and the Reynolds number. The asymptotic expansions for the wave profiles were explicitly derived by means of Lighthill's theorem for the Fourier transform of a function with a finite number of singularities. Furthermore, it is found that the unsteady wave system consists of four families, that is, the steady-state gravity wave, the steady-state capillary wave, the transient gravity wave, and the transient capillary wave. The effect of viscosity on the capillary-gravity was analytically expressed.

  20. Effect of urban stormwater runoff on ground water beneath recharge basins on Long Island, New York

    Science.gov (United States)

    Ku, H.F.; Simmons, D.L.

    1986-01-01

    Urban stormwater runoff was monitored during 1980-82 to investigate the source, type, quantity, and fate of contaminants routed to the more than 3,000 recharge basins on Long Island and to determine whether this runoff might be a significant source of contamination to the groundwater reservoir. Forty-six storms were monitored at five recharge basins in representative land use areas (strip commercial, shopping-mall parking lot, major highway, low-density residential, and medium-density residential). Runoff:precipitation ratios indicate that all storm runoff is derived from precipitation on impervious surfaces in the drainage area, except during storms of high intensity or long duration, when additional runoff can be derived from precipitation on permeable surfaces. Lead was present in highway runoff in concentrations up to 3300 micrograms/L, and chloride was found in parking lot runoff concentrations up to 1,100 mg/L during winter, when salt is used for deicing. In the five composite stormwater samples and nine groundwater grab samples that were analyzed for 113 EPA-designated ' priority pollutants, ' four constituents were detected in concentrations exceeding New York State guidelines of 50 micrograms/L for an individual organic compound in drinking water: p-chloro-m-cresol (79 micrograms/L); 2 ,4-dimethylphenol (96 micrograms/L); 4-nitrophenol (58 micrograms/L); and methylene chloride (230 micrograms/L in either groundwater or stormwater at the highway basin). One stormwater sample and two groundwater samples exceeded New York State guidelines for total organic compounds in drinking water (100 micrograms/L). The presence of these constituents is attributed to contamination from point sources rather than to the quality of runoff from urban areas. The median number of indicator bacteria in stormwater ranged from 0.1 to 10 billion MPN/100 ml. Fecal coliforms and fecal streptococci increased by 1 to 2 orders of magnitude during the warm season. The use of recharge

  1. Widespread Refreezing of Both Surface and Basal Melt Water Beneath the Greenland Ice Sheet

    Science.gov (United States)

    Bell, R. E.; Tinto, K. J.; Das, I.; Wolovick, M.; Chu, W.; Creyts, T. T.; Frearson, N.

    2013-12-01

    The isotopically and chemically distinct, bubble-free ice observed along the Greenland Ice Sheet margin both in the Russell Glacier and north of Jacobshavn must have formed when water froze from subglacial networks. Where this refreezing occurs and what impact it has on ice sheet processes remain unclear. We use airborne radar data to demonstrate that freeze-on to the ice sheet base and associated deformation produce large ice units up to 700 m thick throughout northern Greenland. Along the ice sheet margin, in the ablation zone, surface meltwater, delivered via moulins, refreezes to the ice sheet base over rugged topography. In the interior, water melted from the ice sheet base is refrozen and surrounded by folded ice. A significant fraction of the ice sheet is modified by basal freeze-on and associated deformation. For the Eqip and Petermann catchments, representing the ice sheet margin and interior respectively, extensive airborne radar datasets show that 10%-13% of the base of the ice sheet and up to a third of the catchment width is modified by basal freeze-on. The interior units develop over relatively subdued topography with modest water flux from basal melt where conductive cooling likely dominates. Steps in the bed topography associated with subglacial valley networks may foster glaciohydraulic supercooling. The ablation zone units develop where both surface melt and crevassing are widespread and large volumes of surface meltwater will reach the base of the ice sheet. The relatively steep topography at the upslope edge of the ablation zone units combined with the larger water flux suggests that supercooling plays a greater role in their formation. The ice qualities of the ablation zone units should reflect the relatively fresh surface melt whereas the chemistry of the interior units should reflect solute-rich basal melt. Changes in basal conditions such as the presence of till patches may contribute to the formation of the large basal units near the

  2. Probing Earth's conductivity structure beneath oceans by scalar geomagnetic data: autonomous surface vehicle solution

    Science.gov (United States)

    Kuvshinov, Alexey; Matzka, Jürgen; Poedjono, Benny; Samrock, Friedemann; Olsen, Nils; Pai, Sudhir

    2016-11-01

    The electric conductivity distribution of the Earth's crust and upper mantle provides a key to unraveling its structure. Information can be obtained from vector data time series of the natural variations of the magnetic and electric field in a directional stable reference frame. Applying this method, known as magnetotellurics, to oceanic regions is challenging since only vector instruments placed at the sea bottom can provide such data. Here, we discuss a concept of marine induction surveying which is based on sea-surface scalar magnetic field measurements from a modern position-keeping platform. The concept exploits scalar magnetic responses that relate variations of the scalar magnetic field at the survey sites with variations of the horizontal magnetic field at a reference site. A 3-D model study offshore Oahu Island (Hawaii) demonstrates that these responses are sensitive to the conductivity structure beneath the ocean. We conclude that the sensitivity, depending on the bathymetry gradient, is typically largest near the coast offshore. We show that such sea-surface marine induction surveys can be performed with the Wave Glider, an easy-to-deploy, autonomous, energy-harvesting floating platform with position-keeping capability.[Figure not available: see fulltext.

  3. Artificial Ground Water Recharge with Surface Water

    Science.gov (United States)

    Heviánková, Silvie; Marschalko, Marian; Chromíková, Jitka; Kyncl, Miroslav; Korabík, Michal

    2016-10-01

    With regard to the adverse manifestations of the recent climatic conditions, Europe as well as the world have been facing the problem of dry periods that reduce the possibility of drawing drinking water from the underground sources. The paper aims to describe artificial ground water recharge (infiltration) that may be used to restock underground sources with surface water from natural streams. Among many conditions, it aims to specify the boundary and operational conditions of the individual aspects of the artificial ground water recharge technology. The principle of artificial infiltration lies in the design of a technical system, by means of which it is possible to conduct surplus water from one place (in this case a natural stream) into another place (an infiltration basin in this case). This way, the water begins to infiltrate into the underground resources of drinking water, while the mixed water composition corresponds to the water parameters required for drinking water.

  4. Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater-surface water exchange

    Science.gov (United States)

    Steelman, Colby M.; Kennedy, Celia S.; Capes, Donovan C.; Parker, Beth L.

    2017-06-01

    Bedrock rivers occur where surface water flows along an exposed rock surface. Fractured sedimentary bedrock can exhibit variable groundwater residence times, anisotropic flow paths, and heterogeneity, along with diffusive exchange between fractures and rock matrix. These properties of the rock will affect thermal transients in the riverbed and groundwater-surface water exchange. In this study, surface electrical methods were used as a non-invasive technique to assess the scale and temporal variability of riverbed temperature and groundwater-surface water interaction beneath a sedimentary bedrock riverbed. Conditions were monitored at a semi-daily to semi-weekly interval over a full annual period that included a seasonal freeze-thaw cycle. Surface electromagnetic induction (EMI) and electrical resistivity tomography (ERT) methods captured conditions beneath the riverbed along a pool-riffle sequence of the Eramosa River in Canada. Geophysical datasets were accompanied by continuous measurements of aqueous specific conductance, temperature, and river stage. Time-lapse vertical temperature trolling within a lined borehole adjacent to the river revealed active groundwater flow zones along fracture networks within the upper 10 m of rock. EMI measurements collected during cooler high-flow and warmer low-flow periods identified a spatiotemporal riverbed response that was largely dependent upon riverbed morphology and seasonal groundwater temperature. Time-lapse ERT profiles across the pool and riffle sequence identified seasonal transients within the upper 2 and 3 m of rock, respectively, with spatial variations controlled by riverbed morphology (pool versus riffle) and dominant surficial rock properties (competent versus weathered rock rubble surface). While the pool and riffle both exhibited a dynamic resistivity through seasonal cooling and warming cycles, conditions beneath the pool were more variable, largely due to the formation of river ice during the winter season

  5. Phase structure within a fracture network beneath a surface pond: Field experiment

    Energy Technology Data Exchange (ETDEWEB)

    GLASS JR.,ROBERT J.; NICHOLL,M.J.

    2000-05-09

    The authors performed a simple experiment to elucidate phase structure within a pervasively fractured welded tuff. Dyed water was infiltrated from a surface pond over a 36 minute period while a geophysical array monitored the wetted region within vertical planes directly beneath. They then excavated the rock mass to a depth of {approximately}5 m and mapped the fracture network and extent of dye staining in a series of horizontal pavements. Near the pond the network was fully stained. Below, the phase structure immediately expanded and with depth, the structure became fragmented and complicated exhibiting evidence of preferential flow, fingers, irregular wetting patterns, and varied behavior at fracture intersections. Limited transient geophysical data suggested that strong vertical pathways form first followed by increased horizontal expansion and connection within the network. These rapid pathways are also the first to drain. Estimates also suggest that the excavation captured from {approximately}10% to 1% or less of the volume of rock interrogated by the infiltration slug and thus the penetration depth could have been quite large.

  6. Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier

    Science.gov (United States)

    McGary, R. Shane; Evans, Rob L.; Wannamaker, Philip E.; Elsenbeck, Jimmy; Rondenay, Stéphane

    2014-07-01

    Convergent margin volcanism originates with partial melting, primarily of the upper mantle, into which the subducting slab descends. Melting of this material can occur in one of two ways. The flow induced in the mantle by the slab can result in upwelling and melting through adiabatic decompression. Alternatively, fluids released from the descending slab through dehydration reactions can migrate into the hot mantle wedge, inducing melting by lowering the solidus temperature. The two mechanisms are not mutually exclusive. In either case, the buoyant melts make their way towards the surface to reside in the crust or to be extruded as lava. Here we use magnetotelluric data collected across the central state of Washington, USA, to image the complete pathway for the fluid-melt phase. By incorporating constraints from a collocated seismic study into the magnetotelluric inversion process, we obtain superior constraints on the fluids and melt in a subduction setting. Specifically, we are able to identify and connect fluid release at or near the top of the slab, migration of fluids into the overlying mantle wedge, melting in the wedge, and transport of the melt/fluid phase to a reservoir in the crust beneath Mt Rainier.

  7. Bacteriophages as surface and ground water tracers

    Directory of Open Access Journals (Sweden)

    P. Rossi

    1998-01-01

    Full Text Available Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra. In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  8. Bacteriophages as surface and ground water tracers

    Science.gov (United States)

    Rossi, P.; Dörfliger, N.; Kennedy, K.; Müller, I.; Aragno, M.

    Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra). In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  9. Passive heating of the ground surface

    Science.gov (United States)

    Tyburczyk, Anna

    2016-03-01

    The phenomenon of phase change is one of the most important contemporary issues of thermal engineering. In particular, this applies to all kinds of heat exchanger systems, which should achieve the highest possible efficiency while reducing investment and operating costs. Some of these systems are heat pipes or thermosyphons, which, among others, are used for the heat transfer, temperature stabilization and the regulation of heat flux density. Additionally, they are passive systems, and therefore do not require an external power supply. Heat pipes can be used to stabilize the surface temperature of roads and driveways. Large heat tubes can be applied for heating the surface of bridges and overpasses, which become icy in unfavorable climatic conditions. The paper presents research on the test facility, whose main component is a long vertical copper fin. The temperature at the base of the fin was kept constant for a given series of measurements. Heat receiving fluid was ethanol at atmospheric pressure. The measurement methodology and the results of investigations were discussed. The surface temperature distribution was measured with the infrared camera, and on this basis the local values of heat flow and the heat transfer coefficient were determined. The results were presented as boiling curves for both the fin with the smooth surface and the one covered with a metal capillary-porous structure. The results obtained are useful in the design of heat exchangers, including passive heating of the ground.

  10. Passive heating of the ground surface

    Directory of Open Access Journals (Sweden)

    Tyburczyk Anna

    2016-01-01

    Full Text Available The phenomenon of phase change is one of the most important contemporary issues of thermal engineering. In particular, this applies to all kinds of heat exchanger systems, which should achieve the highest possible efficiency while reducing investment and operating costs. Some of these systems are heat pipes or thermosyphons, which, among others, are used for the heat transfer, temperature stabilization and the regulation of heat flux density. Additionally, they are passive systems, and therefore do not require an external power supply. Heat pipes can be used to stabilize the surface temperature of roads and driveways. Large heat tubes can be applied for heating the surface of bridges and overpasses, which become icy in unfavorable climatic conditions. The paper presents research on the test facility, whose main component is a long vertical copper fin. The temperature at the base of the fin was kept constant for a given series of measurements. Heat receiving fluid was ethanol at atmospheric pressure. The measurement methodology and the results of investigations were discussed. The surface temperature distribution was measured with the infrared camera, and on this basis the local values of heat flow and the heat transfer coefficient were determined. The results were presented as boiling curves for both the fin with the smooth surface and the one covered with a metal capillary-porous structure. The results obtained are useful in the design of heat exchangers, including passive heating of the ground.

  11. Seismic imaging of the upper mantle beneath the northern Central Andean Plateau: Implications for surface topography

    Science.gov (United States)

    Ward, K. M.; Zandt, G.; Beck, S. L.; Wagner, L. S.

    2015-12-01

    Extending over 1,800 km along the active South American Cordilleran margin, the Central Andean Plateau (CAP) as defined by the 3 km elevation contour is second only to the Tibetan Plateau in geographic extent. The uplift history of the 4 km high Plateau remains uncertain with paleoelevation studies along the CAP suggesting a complex, non-uniform uplift history. As part of the Central Andean Uplift and the Geodynamics of High Topography (CAUGHT) project, we use surface waves measured from ambient noise and two-plane wave tomography to image the S-wave velocity structure of the crust and upper mantle to investigate the upper mantle component of plateau uplift. We observe three main features in our S-wave velocity model including (1), a high velocity slab (2), a low velocity anomaly above the slab where the slab changes dip from near horizontal to a normal dip, and (3), a high-velocity feature in the mantle above the slab that extends along the length of the Altiplano from the base of the Moho to a depth of ~120 km with the highest velocities observed under Lake Titicaca. A strong spatial correlation exists between the lateral extent of this high-velocity feature beneath the Altiplano and the lower elevations of the Altiplano basin suggesting a potential relationship. Non-uniqueness in our seismic models preclude uniquely constraining this feature as an uppermost mantle feature bellow the Moho or as a connected eastward dipping feature extending up to 300 km in the mantle as seen in deeper mantle tomography studies. Determining if the high velocity feature represents a small lithospheric root or a delaminating lithospheric root extending ~300 km into the mantle requires more integration of observations, but either interpretation shows a strong geodynamic connection with the uppermost mantle and the current topography of the northern CAP.

  12. Mapping of permafrost surface using ground-penetrating radar at Kangerlussuaq Airport, western Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Andreasen, Frank

    2007-01-01

    Kangerlussuaq Airport is located at 67°N and 51°W in the zone of continuous permafrost in western Greenland. Its proximity to the Greenlandic ice sheet results in a dry sub-arctic climate with a mean annual temperature of −5.7 °C. The airport is built on a river terrace mostly consisting of fluvial...... deposits overlying fine-grained marine melt-water sediments and bedrock. A ground-penetrating radar (GPR) survey was performed to study the frozen surface beneath the airfield. The measurements were carried out in late July 2005 on the southern parking area in Kangerlussuaq Airport. Five years earlier...

  13. Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater–surface water exchange

    Directory of Open Access Journals (Sweden)

    C. M. Steelman

    2017-06-01

    Full Text Available Bedrock rivers occur where surface water flows along an exposed rock surface. Fractured sedimentary bedrock can exhibit variable groundwater residence times, anisotropic flow paths, and heterogeneity, along with diffusive exchange between fractures and rock matrix. These properties of the rock will affect thermal transients in the riverbed and groundwater–surface water exchange. In this study, surface electrical methods were used as a non-invasive technique to assess the scale and temporal variability of riverbed temperature and groundwater–surface water interaction beneath a sedimentary bedrock riverbed. Conditions were monitored at a semi-daily to semi-weekly interval over a full annual period that included a seasonal freeze–thaw cycle. Surface electromagnetic induction (EMI and electrical resistivity tomography (ERT methods captured conditions beneath the riverbed along a pool–riffle sequence of the Eramosa River in Canada. Geophysical datasets were accompanied by continuous measurements of aqueous specific conductance, temperature, and river stage. Time-lapse vertical temperature trolling within a lined borehole adjacent to the river revealed active groundwater flow zones along fracture networks within the upper 10 m of rock. EMI measurements collected during cooler high-flow and warmer low-flow periods identified a spatiotemporal riverbed response that was largely dependent upon riverbed morphology and seasonal groundwater temperature. Time-lapse ERT profiles across the pool and riffle sequence identified seasonal transients within the upper 2 and 3 m of rock, respectively, with spatial variations controlled by riverbed morphology (pool versus riffle and dominant surficial rock properties (competent versus weathered rock rubble surface. While the pool and riffle both exhibited a dynamic resistivity through seasonal cooling and warming cycles, conditions beneath the pool were more variable, largely due to the formation of river

  14. High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography

    Science.gov (United States)

    Bao, X.; Song, X.; Li, J.

    2016-12-01

    We present a new high-resolution shear-velocity model of the lithosphere (down to about 160 km) beneath China using Rayleigh-wave tomography. We combined ambient noise and earthquake data recorded at 1316 seismic stations, the largest number used for the region to date. More than 700,000 dispersion curves were measured to generate group and phase velocity maps at periods of 10-140s. The resolution of our model is significantly improved over previous models with about 1-2°in eastern China and 2-3°in western China. We also derived models of the study region for crustal thickness and averaged S velocities for upper and mid-lower crust and uppermost mantle. These models reveal important lithospheric features beneath China and provide a fundamental data set for understanding continental dynamics and evolution. Different geological units show distinct features in the Moho depth, lithospheric thickness, and shear velocity. In particular, the North China Craton (NCC) lithosphere shows strong east-west structural variations with thin and low-velocity lithosphere in eastern NCC and thick and high-velocity lithosphere beneath western NCC and the lithosphere of the Ordos Block seems to have undergone strong erosion. The results support the progressive destruction of the NCC lithosphere from east to west at least partly caused by the thermal-chemical erosion of the cratonic lithosphere from the asthenosphere. Another pronounced feature of our model is the strong lateral variations of the mantle lithosphere beneath the Tibetan Plateau (TP). The Indian lithosphere beneath the TP shows variable northward advancement with nearly flat subduction in western and eastern TP and steep subduction in central TP with evidence for the tearing of Indian lithosphere beneath central TP, which may be important for the riftings at the surface in Himalayas and southern TP. The low-velocity zone in northern TP shows strong correlation with the region of the mid-Miocene to Quaternary potassic

  15. Prediction of ground surface displacement caused by grouting

    Institute of Scientific and Technical Information of China (English)

    郭风琪; 刘晓潭; 童无期; 单智

    2015-01-01

    Ground surface displacement caused by grouting was calculated with stochastic medium theory. Ground surface displacement was assumed to be caused by the cavity expansion of grouting, slurry seepage, and slurry contraction. A prediction method of ground surface displacement was developed. The reliability of the presented method was validated through a comparison between theoretical results and results from engineering practice. Results show that the present method is effective. The effect of parameters on uplift displacement was illustrated under different grouting conditions. Through analysis, it can be known that the ground surface uplift is mainly caused by osmosis of slurry and the primary influence angle of stratum βdetermines the influence range of surface uplift. Besides, the results show that ground surface uplift displacement decreases notably with increasing depth of the grouting cavity but it increases with increasing diffusion radius of grout and increasing grouting pressure.

  16. Simulation of Variable-Density Ground-Water Flow and Saltwater Intrusion beneath Manhasset Neck, Nassau County, New York, 1905-2005

    Science.gov (United States)

    Monti, Jack; Misut, Paul E.; Busciolano, Ronald

    2009-01-01

    The coastal-aquifer system of Manhasset Neck, Nassau County, New York, has been stressed by pumping, which has led to saltwater intrusion and the abandonment of one public-supply well in 1944. Measurements of chloride concentrations and water levels in 2004 from the deep, confined aquifers indicate active saltwater intrusion in response to public-supply pumping. A numerical model capable of simulating three-dimensional variable-density ground-water flow and solute transport in heterogeneous, anisotropic aquifers was developed using the U.S. Geological Survey finite-element, variable-density, solute-transport simulator SUTRA, to investigate the extent of saltwater intrusion beneath Manhasset Neck. The model is composed of eight layers representing the hydrogeologic system beneath Manhasset Neck. Four modifications to the area?s previously described hydrogeologic framework were made in the model (1) the bedrock-surface altitude at well N12191 was corrected from a previously reported value, (2) part of the extent of the Raritan confining unit was shifted, (3) part of the extent of the North Shore confining unit was shifted, and (4) a clay layer in the upper glacial aquifer was added in the central and southern parts of the Manhasset Neck peninsula. Ground-water flow and the location of the freshwater-saltwater interface were simulated for three conditions (time periods) (1) a steady-state (predevelopment) simulation of no pumping prior to about 1905, (2) a 40-year transient simulation based on 1939 pumpage representing the 1905-1944 period of gradual saltwater intrusion, and (3) a 60-year transient simulation based on 1995 pumpage representing the 1945-2005 period of stabilized withdrawals. The 1939 pumpage rate (12.1 million gallons per day (Mgal/d)) applied to the 1905-1944 transient simulation caused modeled average water-level declines of 2 and 4 feet (ft) in the shallow and deep aquifer systems from predevelopment conditions, respectively, a net decrease of 5

  17. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan Christian

    2005-01-01

    Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2 Hz. Unfortunately, environmental loads and the passage of blades past...... the tower may lead to excitation with frequencies of the same order of magnitude. Therefore, dynamic soil-structure interaction has to be accounted for in order to get an accurate prediction of the structural response. In this paper the particular problem of a rigid foundation on a layered subsoil...

  18. Impedance of Surface Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Clausen, Johan

    2007-01-01

    Traditionally only the static bearing capacity and stiffness of the ground is considered in the design of wind turbine foundations. However, modern wind turbines are flexible structures with resonance frequencies as low as 0.2 Hz. Unfortunately, environmental loads and the passage of blades past...... the tower may lead to excitation with frequencies of the same order of magnitude. Therefore, dynamic soilstructure interaction has to be accounted for in order to get an accurate prediction of the structural response. In this paper the particular problem of a rigid foundation on a layered subsoil...

  19. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during convention

  20. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  1. Digital Modeling Phenomenon Of Surface Ground Movement

    Directory of Open Access Journals (Sweden)

    Ioan Voina

    2016-11-01

    Full Text Available With the development of specialized software applications it was possible to approach and resolve complex problems concerning automating and process optimization for which are being used field data. Computerized representation of the shape and dimensions of the Earth requires a detailed mathematical modeling, known as "digital terrain model". The paper aims to present the digital terrain model of Vulcan mining, Hunedoara County, Romania. Modeling consists of a set of mathematical equations that define in detail the surface of Earth and has an approximate surface rigorously and mathematical, that calculated the land area. Therefore, the digital terrain model means a digital representation of the earth's surface through a mathematical model that approximates the land surface modeling, which can be used in various civil and industrial applications in. To achieve the digital terrain model of data recorded using linear and nonlinear interpolation method based on point survey which highlights the natural surface studied. Given the complexity of this work it is absolutely necessary to know in detail of all topographic elements of work area, without the actions to be undertaken to project and manipulate would not be possible. To achieve digital terrain model, within a specialized software were set appropriate parameters required to achieve this case study. After performing all steps we obtained digital terrain model of Vulcan Mine. Digital terrain model is the complex product, which has characteristics that are equivalent to the specialists that use satellite images and information stored in a digital model, this is easier to use.

  2. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    Science.gov (United States)

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh

  3. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    -small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  4. Evaluation of ground stiffness parameters using continuous surface wave geophysics

    DEFF Research Database (Denmark)

    Gordon, Anne; Foged, Niels

    2000-01-01

    -small-strain stiffness of the ground Gmax. Continuous surface wave geophysics offers a quick, non-intrusive and economical way of making such measurements. This paper reviews the continuous surface wave techniques and evaluates, in engineering terms, the applicability of the method to the site investigation industry....

  5. Power productivity of the ground surface

    Directory of Open Access Journals (Sweden)

    Gutu A.I.

    2008-12-01

    Full Text Available Here there is presented an attempt to estimate the efficiency degree when working with soil surface through the different methods of valorization incident solar radiation. Such technical methods are being analyzed as (solar collectors, photovoltaic cells, solar thermal power plants, power cultures field (bushes, wheat, sunflower, maize, rape, sorghum as well as microalgae crops. Here is the description of advantages and disadvantages for each group in part out of these three. The technical methods are up to date from the efficiency utilization view-point of industrial area. Microalgae crops are similar to technical methods from this point of view.

  6. Topography-Dependent Eikonal Traveltime Tomography for Upper Crustal Structure Beneath an Irregular Surface

    Science.gov (United States)

    Ma, Ting; Zhang, Zhongjie

    2015-06-01

    Seismic modeling of the crust with nonflat topography can be made by first-arrival traveltime tomography, which faces the challenge of an irregular free surface. A feasible way to deal with this problem consists of expanding the physical space by overlapping a low velocity layer above the irregular surface in order to have a flat topography, besides using the classical eikonal equation solver for traveltime computation. However, the undesirable consequences of this method include seismic ray deviations due to the transition from an irregular surface that is the free boundary to an inner discontinuity lying in the expanded computational space. An alternative solution, called irregular surface flattening, which involves the transformation between curvilinear and Cartesian coordinate systems, has been recently proposed through the formulation of the topography-dependent eikonal equation (TDEE) and a new solver for forward modeling of traveltimes. Based on the solution of this equation, we present topography-dependent eikonal traveltime tomography (hereafter TDETT) for seismic modeling of the upper crust. First-arrival traveltimes are calculated using the TDEE solver and the raypaths with the minimum traveltime that can be found by following the steepest traveltime gradient from the receiver to the source. By solving an algebraic equation system that connects the slowness perturbations with the already determined traveltimes, these variables can be obtained making use of the back-projection algorithm. This working scheme is evaluated through three numerical examples with different topographic complexities that are conducted from synthetic data and a fourth example with somewhat more complicated topography and real data acquired in northeastern Tibet. The comparison of the results obtained by both methods, i.e., physical space expansion above the irregular surface and irregular surface flattening, fully validates the tomography scheme that is proposed to construct

  7. Mining Hidden Gems Beneath the Surface: A Look At the Invisible Web.

    Science.gov (United States)

    Carlson, Randal D.; Repman, Judi

    2002-01-01

    Describes resources for researchers called the Invisible Web that are hidden from the usual search engines and other tools and contrasts them with those resources available on the surface Web. Identifies specialized search tools, databases, and strategies that can be used to locate credible in-depth information. (Author/LRW)

  8. A theoretical remark about waves on a static water surface beneath a layer of moving air

    Science.gov (United States)

    Kida, T.; Hayashi, R.; Yasutomi, Z.

    1990-12-01

    Grundy and Tuck (1987) treat the problem of large-amplitude waves on an air-water interface where the air is a steady nonuniform flow and the water is stationary. Both periodic nonlinear Stokes-like waves far downstream and a configuration of the water surface from the edge region of a hovercraft were computed. However, there is no work that treats the existence of such Stokes-like waves theoretically. The present work aims to prove the existence of such solutions in the case where the cushion pressure is low, that is, the depression at the upstream stagnation point from the mean water level is small.

  9. Identification of Upper Crustal Structures Beneath Central Java, Indonesia from of Surface Wave Dispersion Inversion

    Science.gov (United States)

    Zulhan, Zulfakriza; Saygin, Erdinc; Cummins, Phil; Widiyantoro, Sri; Nugraha, Andri Dian; Luehr, Birger-G.; Bodin, Thomas

    2015-04-01

    Our previous study on MERAMEX data (Zulfakriza et al., 2014) obtained features of the tomographic images which correlate well with the surface geology of central Java in periods between 1 to 12 sec. Kendeng Basin and active volcanoes in the central part of this region are clearly imaged with low group velocities with values around 0.8 km/sec, while the carbonate structures in the southern part of the region correspond to higher group velocities in the range of 1.8 to 2.0 km/sec. In this current study, we invert dispersion curves obtained from seismic noise tomography to estimate shear wave-depth profiles of the region. The results are used to discuss the spatial variation of shear wave velocities for a depth range down from the surface to upper crust. Most of the shear wave velocity anomalies, including the upper crustal areas of the Kendeng basin and active volcanoes, are consistent with our previous study of Rayleigh wave group velocities and fit to the regional geology. Keywords: Dispersion Inversion; shear wave velocity; Central Java, Indonesia. Reference: Zulfakriza, Z., Saygin, E., Cummins, P., Widiyantoro, S., Nugraha, A., Luehr, B.-G., Bodin, T., 2014. Upper crustal structure of central Java, Indonesia, from transdimensional seismic ambient noise tomography. Geophys. J. Int. 197.

  10. Uranium in US surface, ground, and domestic waters. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Drury, J.S.; Reynolds, S.; Owen, P.T.; Ross, R.H.; Ensminger, J.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  11. North American regional climate reconstruction from ground surface temperature histories

    Science.gov (United States)

    Jaume-Santero, Fernando; Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-12-01

    Within the framework of the PAGES NAm2k project, 510 North American borehole temperature-depth profiles were analyzed to infer recent climate changes. To facilitate comparisons and to study the same time period, the profiles were truncated at 300 m. Ground surface temperature histories for the last 500 years were obtained for a model describing temperature changes at the surface for several climate-differentiated regions in North America. The evaluation of the model is done by inversion of temperature perturbations using singular value decomposition and its solutions are assessed using a Monte Carlo approach. The results within 95 % confidence interval suggest a warming between 1.0 and 2.5 K during the last two centuries. A regional analysis, composed of mean temperature changes over the last 500 years and geographical maps of ground surface temperatures, show that all regions experienced warming, but this warming is not spatially uniform and is more marked in northern regions.

  12. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  13. Beneath the Surface

    Science.gov (United States)

    Bronner, Yigal; Gordon, Neve

    2008-01-01

    According to Israeli archaeologist Yonathan Mizrachi, archaeology has become a weapon of dispossession. He was referring to the way archaeology is being used in Silwan, a Palestinian neighborhood in the oldest part of Jerusalem, where, archaeological digs are being carried out as part of a concerted campaign to expel Palestinians from their…

  14. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  15. Mitigating ground vibration by periodic inclusions and surface structures

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Bucinskas, Paulius; Persson, Peter

    2016-01-01

    -dimensional finite-element model. The laboratory model employs soaked mattress foam placed within a box to mimic a finite volume of soil. The dynamic properties of the soaked foam ensure wavelengths representative of ground vibration in small scale. Comparison of the results from the two models leads......Ground vibration from traffic is a source of nuisance in urbanized areas. Trenches and wave barriers can provide mitigation of vibrations, but single barriers need to have a large depth to be effective-especially in the low-frequency range relevant to traffic-induced vibration. Alternatively...... well-defined behavior can be expected for transient loads and finite structures. However, some mitigation may occur. The paper aims at quantifying the mitigation effect of nearly periodic masses placed on the ground surface using two approaches: a small-scale laboratory model and a three...

  16. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  17. Analysis of ground penetrating radar data from the tunnel beneath the Temple of the Feathered Serpent in Teotihuacan, Mexico, using new multi-cross algorithms

    Science.gov (United States)

    López-Rodríguez, Flor; Velasco-Herrera, Víctor M.; Álvarez-Béjar, Román; Gómez-Chávez, Sergio; Gazzola, Julie

    2016-11-01

    The ground penetrating radar (GPR) -a non-invasive method based on the emission of electromagnetic waves and the reception of their reflections at the dielectric constant and electrical conductivity discontinuities of the materials surveyed- may be applied instead of the destructive and invasive methods used to find water in celestial bodies. As multichannel equipment is increasingly used, we developed two algorithms for multivariable wavelet analysis of GPR signals -multi-cross wavelet (MCW) and Fourier multi-cross function (FMC)- and applied them to analyze raw GPR traces of archeological subsurface strata. The traces were from the tunnel located beneath the Temple of the Feathered Serpent (The Citadel, Teotihuacan, Mexico), believed to represent the underworld, an outstanding region of the Mesoamerican mythology, home of telluric forces emanating from deities, where life was constantly created and recreated. GPR profiles obtained with 100 MHz antennas suggested the tunnel is 12-14 m deep and 100-120 m long with three chambers at its end, interpretations that were confirmed by excavations in 2014. Archeologists believe that due to the tunnel's sacredness and importance, one of the chambers may be the tomb of a ruler of the ancient city. The MCW and FMC algorithms determined the periods of subsurface strata of the tunnel. GPR traces inside-and-outside the tunnel/chamber, outside the tunnel/chamber and inside the tunnel/chamber analyzed with the MCW and filtered FMC algorithms determined the periods of the tunnel and chamber fillings, clay and matrix (limestone-clay compound). The tunnel filling period obtained by MCW analysis (14.37 ns) reflects the mixed limestone-clay compound of this stratum since its value is close to that of the period of the matrix (15.22 ns); periods of the chamber filling (11.40 ± 0.40 ns) and the matrix (11.40 ± 1.00 ns) were almost identical. FMC analysis of the tunnel obtained a period (5.08 ± 1.08 ns) close to that of the chamber

  18. The thermal regime beneath cultural blocky materials: Ground temperature measurements in and around the Scythian Kurgans of the Russian Altay Mountains.

    Science.gov (United States)

    van de Kerchove, Ruben; Goossens, Rudi

    2010-05-01

    During historical times, the Altay Mountains were repeatedly occupied by several, mainly nomadic, cultures. Among them were the Scythians who lived in the area (and far beyond), from the 8th until the 2nd century BC. This culture is widely known for their specific burial rituals, including the burying of their death in a kurgan: a burial mound consisting of a coarse debris surface layer, overlaying a burial chamber. Due to this composition, together with the continental alpine climate of the Altay Mountains, several of these graves were found frozen, thanks to the existence of ice lenses and permafrost beneath the structures. If frozen, these kurgans contained well preserved bodies, often with the tattoos on their skin intact. As nowadays a distinct temperature rising is showed in these continental mountain ranges, the hundreds of kurgans, and especially these ones located at the lower fringe of the permafrost area, are likely to defrost within decades. As a result, the valuable, frozen, organic and inorganic content will get lost, resulting in a loss of extremely valuable cultural heritage and knowledge. Therefore, extensive permafrost research regarding the thermal state of the frozen tombs and the spatial distribution of the mountain permafrost is necessary to forecast which of the tombs are endangered by thawing. In the framework of this project a first expedition was organized in the Russian Altay Mountains during the summer of 2008. During this expedition, the valleys of Dzhazator, Tarkhata, Kalanegir and Ulandryk were visited in succession and temperature installments were made in order to give an overview of the thermal regime in the area. Beside installments intended for regional modelling, special sensors were placed in order to focus on the specific thermal regime related to the Scythian kurgans. This poster gives the first results of the temperature data as recorded by sensors located in and around the burial mounds. At first attention is given to the

  19. Lithosphere/Asthenosphere Structure beneath the Mendocino Triple Junction from the Analysis of Surface Wave, Ambient Noise, and Receiver Functions

    Science.gov (United States)

    Liu, K.; Zhai, Y.; Levander, A.; Porritt, R. W.; Allen, R. M.; Schmandt, B.; Humphreys, E.; O'Driscoll, L.

    2010-12-01

    We have developed a 3-D shear velocity model using finite-frequency Rayleigh wave phase velocity dispersion, PdS receiver functions, and ambient noise tomography to better understand the complex lithosphere/asthenosphere structures in the Mendocino Triple Junction (MTJ) region. Using approximately 100 events (July 2007-December 2008) recorded by the stations of the Flexible Array Mendocino Experiment (FAME), the USArray Transportable Array (TA) network, and the Berkeley Digital Seismograph network, we have obtained the phase velocities (20-100s) from the finite-frequency Rayleigh wave tomography, which agrees well with the ambient noise tomography results (7-40 s, Porritt & Allen, 2010) in the overlapping period range. We subsequently inverted for a 3-D Vs model on a 0.25°x0.25° grid from the combined dispersion datasets, constrained by interface depths from the PdS receiver functions (Zhai & Levander, 2010). The resulting crustal and upper mantle Vs model (~150 km) reveals strong lateral heterogeneity in the subduction and transform regimes of the Mendocino Triple Junction region where the Gorda, Pacific, and North American plates intersect. The subducting Gorda slab is well-imaged as an eastward-dipping high-velocity anomaly to ~100 km depth. At the same depth to the east we observe a large-scale low velocity zone, which is the mantle wedge beneath the North American Plate. The southern edge of the Gorda plate (SEDGE) is imaged at 80-100 km depth and is in excellent agreement with measurements made from PdS receiver functions, body-wave tomography (Schmandt & Humphreys, 2010; Obrebski et al., 2010), and active source studies. At depths greater than 80 km, we interpret low velocities under the Cascadia subduction zone as the asthenosphere below the Gorda plate, in agreement with measured LAB depths from RFs. South of the SEDGE shallow strong low-velocities appear beneath the transform region, which we interpret as the asthenosphere in the slab-gap region left by

  20. Effect of ground-water recharge on configuration of the water table beneath sand dunes and on seepage in lakes in the sandhills of Nebraska, U.S.A.

    Science.gov (United States)

    Winter, T.C.

    1986-01-01

    Analysis of water-level fluctuations in about 30 observation wells and 5 lakes in the Crescent Lake National Wildlife Refuge in the sandhills of Nebraska indicates water-table configuration beneath sand dunes in this area varies considerably, depending on the configuration of the topography of the dunes. If the topography of an interlake dunal area is hummocky, ground-water recharge is focused at topographic lows causing formation of water-table mounds. These mounds prevent ground-water movement from topographically high lakes to adjacent lower lakes. If a dune ridge is sharp, the opportunity for focused recharge does not exist, resulting in water-table troughs between lakes. Lakes aligned in descending altitudes, parallel to the principal direction of regional ground-water movement, generally have seepage from higher lakes toward lower lakes. ?? 1986.

  1. From the Surface Topography to the Upper Mantle Beneath Central-Iberian-Zone. the Alcudia Seismic Experiments.

    Science.gov (United States)

    Carbonell, R.; Ehsan, S. A.; Ayarza, P.; Martinez-Poyatos, D. J.; Simancas, J. F.; Azor, A.; Pérez-Estaún, A.

    2014-12-01

    Normal incidence and wide-angle seismic reflection data acquired in the Central and southern parts of the Iberia Peninsula resolve the internal architecture and constrain the distribution of the physical properties along an almost 350 km long transect that samples the major tectonic domains of the Iberian Massif, including the Central Iberian Zone (CIZ) and the associated sutures. The internal architecture down to almost 70 km depth (~15 s TWTT) is resolved by the normal incidence data set. It images a number of elements that characterize the tectonics of the study area, which is one of the best exposed fragment of the Variscan orogenic Belt. A well marked brittle-to-ductile (B2D) transition separates the crust in two, the upper and mid-lower parts, approximately, 13 km and 18 km thick, respectively. The upper crust appears to be decoupled from the mid-lower crust and responded differently to shortening. The Mohorovicic discontinuity is located at ~10.5 s (TWTT) , it is relatively thick, and highly reflective beneath the CIZ. The wide-angle seismic transect extended the lithospheric section towards the north across the Madrid Basin. This profile provides very strong constraints on the distribution of physical properties (P- and S- wave velocities, Poisson's ratio) of the upper lithosphere as well as a high resolution image of the base of the crust beneath the area. This data is one of the first datasets to present solid evidence of a relatively significant crustal thickening beneath the Madrid Basin. The crustal thickness varies from ~31 km beneath the CIZ to ~35.5 km beneath the Madrid Basin. This data set also reveals two major discontinuity levels, the B2D and the Moho, both represent levels of lithological/rheological variations. The characteristics of the the PmP and SmS seismic phases suggest further details on the internal structure of the Moho. Furthermore, low fold wide-angle P and S wave stacks reveal a marked crust-mantle transition which is most

  2. Martian Surface Temperature and Spectral Response from the MSL REMS Ground Temperature Sensor

    Science.gov (United States)

    Martin-Torres, Javier; Martínez-Frías, Jesús; Zorzano, María-Paz; Serrano, María; Mendaza, Teresa; Hamilton, Vicky; Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; REMS Team

    2013-04-01

    The Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory (MSL) offers the opportunity to explore the near surface atmospheric conditions and, in particular will shed new light into the heat budget of the Martian surface. This is important for studies of the atmospheric boundary layer (ABL), as the ground and air temperatures measured directly by REMS control the coupling of the atmosphere with the surface [Zurek et al., 1992]. This coupling is driven by solar insolation. The ABL plays an important role in the general circulation and the local atmospheric dynamics of Mars. One of the REMS sensors, the ground temperature sensor (GTS), provides the data needed to study the thermal inertia properties of the regolith and rocks beneath the MSL rover. The GTS includes thermopile detectors, with infrared bands of 8-14 µm and 16-20 µm [Gómez-Elvira et al., 2012]. These sensors are clustered in a single location on the MSL mast and the 8-14 µm thermopile sounds the surface temperature. The infrared radiation reaching the thermopile is proportional to the emissivity of the surface minerals across these thermal wavelengths. We have developed a radiative transfer retrieval method for the REMS GTS using a database of thermal infrared laboratory spectra of analogue minerals and their mixtures. [Martín Redondo et al. 2009, Martínez-Frías et al. 2012 - FRISER-IRMIX database]. This method will be used to assess the perfomance of the REMS GTS as well as determine, through the error analysis, the surface temperature and emissivity values where MSL is operating. Comparisons with orbiter data will be performed. References Gómez-Elvira et al. [2012], REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover, Space Science Reviews, Volume 170, Issue 1-4, pp. 583-640. Martín-Redondo et al. [2009] Journal of Environmental Monitoring 11:, pp. 1428-1432. Martínez-Frías et al. [2012] FRISER-IRMIX database http

  3. Ground Surface Deformations Near a Fault-Bounded Groundwater Aquifer

    Science.gov (United States)

    Lipovsky, B.; Funning, G. J.; Ferretti, A.

    2011-12-01

    Geodetic data often reveal the presence of groundwater aquifers that are bounded by faults (Schmidt and Bürgmann, 2003; Galloway and Hoffmann, 2007; Bell et al., 2008). Whereas unrestricted groundwater aquifers exhibit a radially symmetric pattern of uplift with diffuse boundaries, aquifers that are bounded by faults have one or more sharp, linear boundaries. Interferometric synthetic aperture (InSAR) data, due to their high spatial density, are particularly well suited to observe fault bounded aquifers, and the Santa Clara Aquifer in the San Francisco Bay Area, California, constitutes an excellent example. The largest ground surface displacements in the Bay Area are due to the inflation of the Santa Clara aquifer, and InSAR data plainly show that the Santa Clara aquifer is partitioned by the Silver Creek fault. This study first develops a general model of the displacements at the surface of the Earth due to fluid diffusion through a buried permeable boundary such as a fault zone. This model is compared to InSAR data from the Silver Creek fault and we find that we are able to infer fault zone poromechanical properties from InSAR data that are comparable to in situ measurements. Our theoretical model is constrained by several geological and hydrological observations concerning the structure of fault zones. Analytical solutions are presented for the ground surface displacements due to a perfectly impermeable fault zone. This end-member family of models, however, does not fit the available data. We therefore make allowance for an arbitrarily layered, variably permeable, one-dimensional fault zone. Time-dependent ground surface deformations are calculated in the Laplace domain using an efficient semi-analytic method. This general model is applicable to other poroelastic regimes including geothermal and hydrocarbon systems. We are able to estimate fault zone hydraulic conductivity by comparing theoretical ground surface displacements in a permeable fault zone to

  4. Potential Energy Surfaces of Nitrogen Dioxide for the Ground State

    Institute of Scientific and Technical Information of China (English)

    SHAO Ju-Xiang; ZHU Zheng-He; CHENG Xin-Lu; YANG Xiang-Dong

    2007-01-01

    The potential energy function of nitrogen dioxide with the C2v symmetry in the ground state is represented using the simplified Sorbie-Murrell many-body expansion function in terms of the symmetry of NO2. Using the potential energy function, some potential energy surfaces of NO2(C2v, X2A1), such as the bond stretching contour plot for a fixed equilibrium geometry angle θ and contour for O moving around N-O (R1), in which R1 is fixed at the equilibrium bond length, are depicted. The potential energy surfaces are analysed. Moreover, the equilibrium parameters for NO2 with the C2v, Cs and D8h symmetries, such as equilibrium geometry structures and energies, are calculated by the ab initio (CBS-Q) method.

  5. Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    YANG MeiXue; YAO TanDong; GOU XiaoHua; HIROSE Nozomu; FUJII Hide Yuki; HAO LiSheng; D.F.LEVIA

    2007-01-01

    The exchange of energy and water between the lithosphere and atmosphere mainly takes place at the ground surface. Therefore, freeze/thaw condition at the ground surface is an important factor in examining the interactions between the land surface and atmosphere. Based on the observation data obtained by CEOP/CAMP-Tibet, the diurnal freeze/thaw cycles of the ground surface near Naqu, central Tibetan Plateau was preliminarily analyzed. The results show that the surface layer was completely frozen for approximately one month. However, the time that the ground surface experienced diurnal freeze/thaw cycles was about 6 months. The high frequency of freeze/thaw cycles at the ground surface significantly influences water and energy exchanges between ground and atmosphere over half a year. The interaction processes between the ground and atmosphere under different soil conditions (such as complete thaw, complete freeze and diurnal freeze/thaw cycles) are issues worthy of further examination.

  6. An appraisal of the geologic structure beneath the Ikogosi warm spring in south-western Nigeria using integrated surface geophysical methods

    Directory of Open Access Journals (Sweden)

    J.S Ojo

    2011-06-01

    Full Text Available An integrated surface geophysical investigation involving resistivity and magnetic methods was carried out in the immediate vicinity of the Ikogosi warm spring situated in south-western Nigeria with a view to delineating its subsurface geological sequence and evaluating the structural setting beneath the warmspring. Total field magnetic measurements and vertical electrical sounding (VES data were acquired along five N-S traverses. Magnetic and VES data interpretation
    involved inverse modelling. The inverse magnetic models delineated fractured quartzite/faulted areas within fresh massive quartzite at varying depths and beneath all traverses. The geoelectrical sections developed from VESinterpretation results also delineated a subsurface sequence consisting of a topsoil/weathered layer, fresh quartzite, fractured/faulted quartzite and fresh quartzite bedrock. It was deduced that the fractured/faulted quartzite may have acted as conduit for the
    movement of warm groundwater from profound depths to the surface while the spring outlet was located on a geological interface  (lineament.

  7. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  8. Determinism beneath Quantum Mechanics

    CERN Document Server

    Hooft, G

    2002-01-01

    Contrary to common belief, it is not difficult to construct deterministic models where stochastic behavior is correctly described by quantum mechanical amplitudes, in precise accordance with the Copenhagen-Bohr-Bohm doctrine. What is difficult however is to obtain a Hamiltonian that is bounded from below, and whose ground state is a vacuum that exhibits complicated vacuum fluctuations, as in the real world. Beneath Quantum Mechanics, there may be a deterministic theory with (local) information loss. This may lead to a sufficiently complex vacuum state, and to an apparent non-locality in the relation between the deterministic ("ontological") states and the quantum states, of the kind needed to explain away the Bell inequalities. Theories of this kind would not only be appealing from a philosophical point of view, but may also be essential for understanding causality at Planckian distance scales.

  9. GROUND SURFACE VISUALIZATION USING RED RELIEF IMAGE MAP FOR A VARIETY OF MAP SCALES

    Directory of Open Access Journals (Sweden)

    T. Chiba

    2016-06-01

    Full Text Available There are many methods to express topographical features of ground surface. In which, contour map has been the traditional method and along with development of digital data, surface model such as shaded relief map has been using for ground surface expression. Recently, data acquisition has been developed very much quick, demanding more advanced visualization method to express ground surface so as to effectively use the high quality data. In this study, the authors using the Red Relief Image Map (RRIM, Chiba et al., 2008 to express ground surface visualization for a variety of map scales. The authors used 30 m mesh data of SRTM to show the topographical features of western Mongolian and micro-topographical features of ground surface in tectonically active regions of Japan. The results show that, compared to traditional and other similar methods, the RRIM can express ground surface more precisely and 3-dimensionally, suggested its advanced usage for many fields of topographical visualization.

  10. Ground Surface Visualization Using Red Relief Image Map for a Variety of Map Scales

    Science.gov (United States)

    Chiba, T.; Hasi, B.

    2016-06-01

    There are many methods to express topographical features of ground surface. In which, contour map has been the traditional method and along with development of digital data, surface model such as shaded relief map has been using for ground surface expression. Recently, data acquisition has been developed very much quick, demanding more advanced visualization method to express ground surface so as to effectively use the high quality data. In this study, the authors using the Red Relief Image Map (RRIM, Chiba et al., 2008) to express ground surface visualization for a variety of map scales. The authors used 30 m mesh data of SRTM to show the topographical features of western Mongolian and micro-topographical features of ground surface in tectonically active regions of Japan. The results show that, compared to traditional and other similar methods, the RRIM can express ground surface more precisely and 3-dimensionally, suggested its advanced usage for many fields of topographical visualization.

  11. Exploration of water jet generated by Q-switched laser induced water breakdown with different depths beneath a flat free surface.

    Science.gov (United States)

    Chen, Ross C C; Yu, Y T; Su, K W; Chen, J F; Chen, Y F

    2013-01-14

    The dynamics of a water jet on a flat free surface are investigated using a nanosecond pulsed laser for creating an oscillating bubble with different depths beneath the free surface. A thin jet is shown to deform a crater surface resulted from surface depression and cause a circular ring-shaped crater on the connection surface between the crater of surface depression and the thin jet. The collapse of this circular ring-shaped crater is proposed to the crown-like formation around a thick jet. The evolution of the bubble depth suggests a classification of four distinctive ranges of the bubble depths: non-crown formation when the parameter of bubble depth over the maximum bubble radius γ ≤ 0.5, unstable crown formation when 0.5 ≤ γ ≤ 0.6, crown-like structure with a complete crown wall when 0.6 ≤ γ ≤ 1.1, and non-crown formation when 1.1 ≤ γ. Furthermore, the orientation of the crown wall gradually turns counterclockwise to vertical direction with increasing γ from 0.5 to 1.1, implying a high correlation between the orientation of the crown wall and the depth of the bubble. This correlation is explained and discussed by the directional change of the jet eruption from the collapse of circular ring-shaped crater.

  12. Surface-Water Exchange through Culverts beneath State Road 9336 within Everglades National Park, 2004-05

    Science.gov (United States)

    Schaffranek, Raymond W.; Stewart, Marc A.; Nowacki, Daniel J.

    2008-01-01

    The U.S. Geological Survey collected hydrologic data between June 2004 and December 2005 to investigate the temporal and spatial nature of flow exchanges through culverts beneath State Road 9336 within Everglades National Park. Continuous data collected during the study measured flow velocity, water level, salinity, conductivity, and water-temperature in or near seven culverts between Pa-hay-okee Overlook access road and Nine Mile Pond. The two culverts east of Pa-hay-okee Overlook access road flowed into Taylor Slough Basin from 87 to 96 percent of the study period, whereas flows through five culverts between Pa-hay-okee Overlook access road and Nine Mile Pond flowed into Shark River Slough Basin from 70 to 99 percent of the study period. Synoptic flow discharges measured at all culverts during three intensive field efforts revealed a net discharge into Taylor Slough Basin from Shark River Slough Basin through culverts between Royal Palm Road and Pa-hay-okee Overlook access road, and into Shark River Slough Basin from Taylor Slough Basin through culverts between Pa-hay-okee Overlook access road and Nine Mile Pond. Data collected during the study and presented in this report provided additional knowledge of the magnitude, direction, and nature of flow exchanges through the road culverts.

  13. Locally controlled globally smooth ground surface reconstruction from terrestrial point clouds

    CERN Document Server

    Rychkov, Igor

    2012-01-01

    Approaches to ground surface reconstruction from massive terrestrial point clouds are presented. Using a set of local least squares (LSQR) planes, the "holes" are filled either from the ground model of the next coarser level or by Hermite Radial Basis Functions (HRBF). Global curvature continuous as well as infinitely smooth ground surface models are obtained with Partition of Unity (PU) using either tensor product B-Splines or compactly supported exponential function. The resulting surface function has local control enabling fast evaluation.

  14. Shallow ground-water quality beneath cropland in the Red River of the North Basin, Minnesota and North Dakota, 1993-95

    Science.gov (United States)

    Cowdery, Timothy K.

    1997-01-01

    During 1993-95, the agriculture on two sandy, surficial aquifers in the Red River of the North Basin affected the quality of shallow ground water in each aquifer differently. The Sheyenne Delta aquifer, in the western part of the basin, had land-use, hydrogeological, and rainfall characteristics that allowed few agricultural chemicals to reach or remain in the shallow ground water. The Otter Tail outwash aquifer, in the eastern part of the basin, had characteristics that caused significant amounts of nutrients and pesticides to reach and remain in the shallow ground water. Shallow ground water from both aquifers is dominated by calcium, magnesium, and bicarbonate ions. During the respective sampling periods, water from the Sheyenne Delta aquifer was mostly anoxic and water from the Otter Tail outwash aquifer had a median dissolved oxygen concentration of 3.6 mg/L (milligrams per liter). The median nitrate concentration was 0.03 mg/L as nitrogen (mg/L-N) in shallow ground water from the Sheyenne Delta aquifer and 6.1 mg/L-N in that from the Otter Tail outwash aquifer. Of 18 herbicides and 4 insecticides commonly used in the aquifer areas and for which analyses were done, 5 herbicides and 1 herbicide metabolite were detected in the shallow ground water from the Sheyenne Delta aquifer and 8 herbicides and 2 metabolites were detected in that from the Otter Tail outwash aquifer. The total herbicide concentration median was less than the detection limit in shallow ground water from the Sheyenne Delta aquifer and 0.023 μg/L (micorgrams per liter) in that from the Otter Tail outwash aquifer. Triazine herbicides were the most commonly detected herbicides and were detected at the highest concentrations in the shallow ground water from both study areas. One sample from the Sheyenne Delta aquifer contained a high concentration of picloram. Agricultural chemicals in both aquifers were stratified vertically and their concentration correlated inversely with ground-water age. The

  15. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    Science.gov (United States)

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also

  16. Measured ground-surface movements, Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Massey, B.L.

    1981-01-01

    The Cerro Prieto geothermal area in the Mexicali Valley, 30 kilometers southeast of Mexicali, Baja California, incurred slight deformation because of the extraction of hot water and steam, and probably, active tectonism. During 1977 to 1978, the US Geological Survey established and measured two networks of horizontal control in an effort to define both types of movement. These networks consisted of: (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from stations on an existing US Geological Survey crustal-strain network north of the international border; and (2) a local net tied to stations in the regional net and encompassing the present and planned geothermal production area. Electronic distance measuring instruments were used to measure the distances between stations in both networks in 1978, 1979 and 1981. Lines in the regional net averaged 25 km. in length and the standard deviation of an individual measurement is estimated to be approx. 0.3 part per million of line length. The local network was measured using different instrumentation and techniques. The average line length was about 5 km. and the standard deviation of an individual measurement approached 3 parts per million per line length. Ground-surface movements in the regional net, as measured by both the 1979 and 1981 resurveys, were small and did not exceed the noise level. The 1979 resurvey of the local net showed an apparent movement of 2 to 3 centimeters inward toward the center of the production area. This apparent movement was restricted to the general limits of the production area. The 1981 resurvey of the local net did not show increased movement attributable to fluid extraction.

  17. Analysis of ground penetrating radar data from the tunnel beneath the Temple of the Feathered Serpent in Teotihuacan, Mexico, using new multi-cross algorithms

    CERN Document Server

    López-Rodríguez, Flor; Álvarez-Béjar, Román; Gómez-Chávez, Sergio; Gazzola, Julie

    2016-01-01

    As multichannel equipment is increasingly used, we developed two algorithms for multivariable wavelet analysis of GPR signals (multi-cross wavelet MCW and Fourier multi-cross function FMC) and applied them to analyze raw GPR traces of archeological subsurface strata. The traces were from the tunnel located beneath the Temple of the Feathered Serpent (The Citadel, Teotihuacan, Mexico). The MCW and FMC algorithms determined the periods of subsurface strata of the tunnel. GPR traces inside-and-outside the tunnel/chamber, outside the tunnel/chamber and inside the tunnel/chamber analyzed with the MCW and filtered FMC algorithms determined the periods of the tunnel and chamber fillings, clay and matrix (limestone-clay compound). The tunnel filling period obtained by MCW analysis (14.37 ns) reflects the mixed limestone-clay compound of this stratum since its value is close to that of the period of the matrix (15.22 ns); periods of the chamber filling (11.40 ns) and the matrix (11.40 ns) were almost identical. FMC an...

  18. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    Science.gov (United States)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  19. Surface fatigue life of CBN and vitreous ground carburized and hardened AISI 9310 spur gears

    Science.gov (United States)

    Townsend, Dennis P.; Patel, P. R.

    1988-01-01

    Spur gear surface endurance tests were conducted to investigate CBN ground AISI 9310 spur gears for use in aircraft applications, to determine their endurance characteristics and to compare the results with the endurance of standard vitreous ground AISI 9310 spur gears. Tests were conducted with VIM-VAR AISI 9310 carburized and hardened gears that were finish ground with either CBN or vitreous grinding methods. Test conditions were an inlet oil temeprature of 320 K (116 F), an outlet oil temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. The CBN ground gears exhibited a surface fatigue life that was slightly better than the vitreous ground gears. The subsurface residual stress of the CBN ground gears was approximately the same as that for the standard vitreous ground gears for the CBN grinding method used.

  20. Surface and borehole ground-penetrating-radar developments

    NARCIS (Netherlands)

    Slob, E.C.; Sato, M.; Olhoeft, G.

    2010-01-01

    During the past 80 years, ground-penetrating radar (GPR) has evolved from a skeptically received glacier sounder to a full multicomponent 3D volume-imaging and characterization device. The tool can be calibrated to allow for quantitative estimates of physical properties such as water content. Becau

  1. Mitigating ground vibration by periodic inclusions and surface structures

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Bucinskas, Paulius; Persson, Peter

    2016-01-01

    Ground vibration from traffic is a source of nuisance in urbanized areas. Trenches and wave barriers can provide mitigation of vibrations, but single barriers need to have a large depth to be effective-especially in the low-frequency range relevant to traffic-induced vibration. Alternatively, per...

  2. Near-ground cooling efficacies of trees and high-albedo surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, R M [Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering

    1997-05-01

    Daytime summer urban heat islands arise when the prevalence of dark-colored surfaces and lack of vegetation make a city warmer than neighboring countryside. Two frequently-proposed summer heat island mitigation measures are to plant trees and to increase the albedo (solar reflectivity) of ground surfaces. This dissertation examines the effects of these measures on the surface temperature of an object near the ground, and on solar heating of air near the ground. Near-ground objects include people, vehicles, and buildings. The variation of the surface temperature of a near-ground object with ground albedo indicates that a rise in ground albedo will cool a near-ground object only if the object`s albedo exceeds a critical value. This critical value of object albedo depends on wind speed, object geometry, and the height of the atmospheric thermal boundary layer. It ranges from 0.15 to 0.37 for a person. If an object has typical albedo of 0.3, increasing the ground albedo by.

  3. Topographical Anisotropy and Wetting of Ground Stainless Steel Surfaces

    Directory of Open Access Journals (Sweden)

    Cornelia Bellmann

    2012-12-01

    Full Text Available Microscopic and physico-chemical methods were used for a comprehensive surface characterization of different mechanically modified stainless steel surfaces. The surfaces were analyzed using high-resolution confocal microscopy, resulting in detailed information about the topographic properties. In addition, static water contact angle measurements were carried out to characterize the surface heterogeneity of the samples. The effect of morphological anisotropy on water contact angle anisotropy was investigated. The correlation between topography and wetting was studied by means of a model of wetting proposed in the present work, that allows quantifying the air volume of the interface water drop-stainless steel surface.

  4. Scratching beneath the surface while coupling atmosphere, ocean and waves: Analysis of a dense water formation event

    Science.gov (United States)

    Carniel, Sandro; Benetazzo, Alvise; Bonaldo, Davide; Falcieri, Francesco M.; Miglietta, Mario Marcello; Ricchi, Antonio; Sclavo, Mauro

    2016-05-01

    Cold Air Outbreaks (CAOs) over shallow seas may lead to dense water formation episodes, enhancing water, heat, nutrient and sediment exchanges across the continental margin, with associated seabed reshaping. During winter 2012, a CAO episode characterised by exceptional intensity stroke the northern Adriatic Sea, one of the most effective cool engines driving the Mediterranean circulation, providing a paramount opportunity for an integrated investigation of dense shelf water dynamics. In the present study, we describe this event using a fully coupled modeling approach exploring the effects of mutual interactions among atmosphere, ocean currents and sea surface waves, usually not completely accounted for, in the resulting dense water formation. Whilst atmospheric fields appear to be marginally affected by coupled dynamics in the present case, implications for sea surface elevation and circulation are far from negligible. Measurements collected in the northern Adriatic Sea showed that a physically consistent description of energy exchanges between ocean and atmosphere provides an improved estimate of heat fluxes and of air and sea temperatures. In addition, the explicit inclusion of wave action within the modeling system further enhances the modulation of air-sea exchanges and the propagation of its effect along the water column, resulting in a different intensity of northern Adriatic gyres and in different water fluxes flowing through the formation basin. Through these main controls on the water volume involved in the densification process and on the intensity of momentum input and cooling, a coupled modeling strategy accounting for atmosphere-waves-currents interactions can turn out to be crucial for improving the quantification of thermohaline properties and energy content, newly formed dense water mass, and provide a better description of its migration pathways and rates of off-shelf descent.

  5. Concentration distributions of thoron and radon near the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Katase, Akira [Tohwa Univ., Fukuoka (Japan). Faculty of Engineering

    1996-12-01

    One dimensional diffusion model with a constant diffusion coefficient is applied to the thoron concentration distributions in air above the ground. The experimental distributions are well described by the exponential function obtained from the model. Diffusion coefficients and thoron exhalation rates are estimated from the measured distributions, which are the average values for three months. The present values of thoron exhalation are however several times as small as those measured by other researchers. (author)

  6. Subsurface investigation with ground penetrating radar

    Science.gov (United States)

    Ground penetrating radar (GPR) data was collected on a small test plot at the OTF/OSU Turfgrass Research & Education Facility in Columbus, Ohio. This test plot was built to USGA standards for a golf course green, with a constructed sand layer just beneath the surface overlying a gravel layer, that i...

  7. Ground effects of space weather investigated by the surface impedance

    Science.gov (United States)

    Pirjola, R.; Boteler, D.; Trichtchenko, L.

    2009-02-01

    The objective of this paper is to provide a discussion of the surface impedance applicable in connection with studies of geomagnetically induced currents (GIC) in technological systems. This viewpoint means that the surface impedance is regarded as a tool to determine the horizontal (geo)electric field at the Earth's surface, which is the key quantity for GIC. Thus the approach is different from the traditional magnetotelluric viewpoint. The definition of the surface impedance usually involves wavenumber-frequency-domain fields, so inverse Fourier transforming the expression of the electric field in terms of the surface impedance and the geomagnetic field results in convolution integrals in the time and space domains. The frequency-dependent surface impedance has a high-pass filter character whereas the corresponding transfer function between the electric field and the time derivative of the magnetic field is of a low-pass filter type. The relative change of the latter transfer function with frequency is usually smaller than that of the surface impedance, which indicates that the geoelectric field is closer to the time derivative than to the magnetic field itself. An investigation of the surface impedance defined by the space-domain electric and magnetic components indicates that the largest electric fields are not always achieved by the plane wave assumption, which is sometimes regarded as an extreme case for GIC. It is also concluded in this paper that it is often possible to apply the plane wave relation locally between the surface electric and magnetic fields. The absolute value of the surface impedance decreases with an increasing wavenumber although the maximum may also be at a non-zero value of the wavenumber. The imaginary part of the surface impedance usually much exceeds the real part.

  8. Analysis on effect of surface fault to site ground motion using finite element method

    Institute of Scientific and Technical Information of China (English)

    曹炳政; 罗奇峰

    2003-01-01

    Dynamic contact theory is applied to simulate the sliding of surface fault. Finite element method is used to analyze the effect of surface fault to site ground motions. Calculated results indicate that amplification effect is obvious in the area near surface fault, especially on the site that is in the downside fault. The results show that the effect of surface fault should be considered when important structure is constructed in the site with surface fault.

  9. National Enforcement Initiative: Preventing Animal Waste from Contaminating Surface and Ground Water

    Science.gov (United States)

    This page describes EPA's goal in preventing animal waste from contaminating surface and ground Water. It is an EPA National Enforcement Initiative. Both enforcement cases, and a map of enforcement actions are provided.

  10. Subsurface imaging reveals a confined aquifer beneath an ice-sealed Antarctic lake

    DEFF Research Database (Denmark)

    Dugan, H. A.; Doran, P. T.; Tulaczyk, S.;

    2015-01-01

    Liquid water oases are rare under extreme cold desert conditions found in the Antarctic McMurdo Dry Valleys. Here we report geophysical results that indicate that Lake Vida, one of the largest lakes in the region, is nearly frozen and underlain by widespread cryoconcentrated brine. A ground...... Geophysical survey finds low resistivities beneath a lake in Antarctic Dry Valleys Liquid brine abundant beneath Antarctic lake Aquifer provides microbial refugium in cold desert environment...... penetrating radar survey profiled 20 m into lake ice and facilitated bathymetric mapping of the upper lake basin. An airborne transient electromagnetic survey revealed a low-resistivity zone 30-100 m beneath the lake surface. Based on previous knowledge of brine chemistry and local geology, we interpret...

  11. The Simulation of Grinding Wheels and Ground Surface Roughness Based on Virtual Reality Technology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The paper describes the feasibility and method of the application of virtual reality technology to grinding process, and introduces the modeling method of object entity in the environment of virtual reality. The simulation process of grinding wheels and ground surface roughness is discussed, and the computation program system of numerical simulation is compiled with Visual C++ programming language. At the same time, the three-dimensional simulation models of grinding wheels and ground surface roughness are ...

  12. Uncertainties and shortcomings of ground surface temperature histories derived from inversion of temperature logs

    OpenAIRE

    Hartmann, Andreas; Rath, Volker

    2008-01-01

    Analysing borehole temperature data in terms of ground surface history can add useful information to reconstructions of past climates. Therefore, a rigorous assessment of uncertainties and error sources is a necessary prerequisite for the meaningful interpretation of such ground surface temperature histories. This study analyses the most prominent sources of uncertainty. The diffusive nature of the process makes the inversion relatively robust against incomplete knowledge of the thermal diffu...

  13. Ground-water and surface-water quality data for the West Branch Canal Creek area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Spencer, Tracey A.; Phelan, Daniel J.; Olsen, Lisa D.; Lorah, Michelle M.

    2001-01-01

    This report presents ground-water and surface-water quality data from samples collected by the U.S. Geological Survey from November 1999 through May 2001 at West Branch Canal Creek, Aberdeen Proving Ground, Maryland. The report also provides a description of the sampling and analytical methods that were used to collect and analyze the samples, and includes an evaluation of the quality-assurance data. The ground-water sampling network included two 4-inch wells, two 2-inch wells, sixteen 1-inch piezometers, one hundred thirteen 0.75-inch piezometers, two 0.25-inch flexible-tubing piezo-meters, twenty-seven 0.25-inch piezometers, and forty-two multi-level monitoring system depths at six sites. Ground-water profiler samples were collected from nine sites at 34 depths. In addition, passive-diffusion-bag samplers were deployed at four sites, and porous-membrane sampling devices were installed in the upper sediment at five sites. Surface-water samples were collected from 20 sites. Samples were collected from wells and 0.75-inch piezometers for measurement of field parameters and reduction-oxidation constituents, and analysis of inorganic and organic constituents, during three sampling events in March?April and June?August 2000, and May 2001. Surface-water samples were collected from November 1999 through September 2000 during five sampling events for analysis of organic constituents. Ground-water profiler samples were collected in April?May 2000, and analyzed for field measure-ments, reduction-oxidation constituents, and inorganic constituents and organic constituents. Passive-diffusion-bag samplers were installed in September 2000, and samples were analyzed for organic constituents. Multi-level monitoring system samples were collected and analyzed for field measurements and reduction-oxidation con-stituents, inorganic constituents, and organic con-stituents in March?April and June?August 2000. Field measurements and organic constituents were collected from 0.25-inch

  14. Use of ground-water reservoirs for storage of surface water in the San Joaquin Valley, California

    Science.gov (United States)

    Davis, G.H.; Lofgren, B.E.; Mack, Seymour

    1964-01-01

    The San Joaquin Valley includes roughly the southern two-thirds of the Central Valley of California, extending 250 miles from Stockton on the north to Grapevine at the foot of the Tehachapi Mountains. The valley floor ranges in width from 25 miles near Bakersfield to about 55 miles near Visalia; it has a surface area of about 10,000 square miles. More than one-quarter of all the ground water pumped for irrigation in the United States is used in this highly productive valley. Withdrawal of ground water from storage by heavy pumping not only provides a needed irrigation water supply, but it also lowers the ground-water level and makes storage space available in which to conserve excess water during periods of heavy runoff. A storage capacity estimated to be 93 million acre-feet to a depth of 200 feet is available in this ground-water reservoir. This is about nine times the combined capacity of the existing and proposed surface-water reservoirs in the San Joaquin Valley under the California Water Plan. The landforms of the San Joaquin Valley include dissected uplands, low plains and fans, river flood plains and channels, and overflow lands and lake bottoms. Below the land surface, unconsolidated sediments derived from the surrounding mountain highlands extend downward for hundreds of feet. These unconsolidated deposits, consisting chiefly of alluvial deposits, but including some widespread lacustrine sediments, are the principal source of ground water in the valley. Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the valley, three distinct ground-water reservoirs are present. In downward succession these are 1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age, overlying the Corcoran clay member of the Tulare formation; 2) a body of fresh water confined beneath the Corcoran clay member, which

  15. Study on the Surface Free Energy of Ground CaO by IGC

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    CaO formed by decomposing CaCO3 at 1450℃ was ground in a vibrational mill,then the long-time ground sample was reheated at different temperatures.Inverse Gas Chromatography (IGC) was used to measure the variation of the sample′s surface free energy under grinding and reheating.It is concluded that the total surface free energy and the London dispersive component of the surface free energy increases with grinding,while the polar component first increases with grinding,and then decreases,and finally disappears.When the long-time ground sample was reheated,its total surface free energy decreases,among which the London component decreases,but the polar component appears again.

  16. Salmonella pollution in ground and surface waters. (Latest citations from Pollution abstracts). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The bibliography contains citations concerning the contamination of ground waters and surface waters by Salmonella bacteria. Articles discuss the occurence, survival, origin, and control of these bacteria in water sources including rivers, reservoirs, swimming pools, wastewater, aquifers, and ground water. Citations also address the use of Salmonella populations as biological indicators of pollution in aquatic systems. (Contains a minimum of 102 citations and includes a subject term index and title list.)

  17. On Ground Surface Extraction Using Full-Waveform Airborne Laser Scanner for Cim

    Science.gov (United States)

    Nakano, K.; Chikatsu, H.

    2015-05-01

    Satellite positioning systems such as GPS and GLONASS have created significant changes not only in terms of spatial information but also in the construction industry. It is possible to execute a suitable construction plan by using a computerized intelligent construction. Therefore, an accurate estimate of the amount of earthwork is important for operating heavy equipment, and measurement of ground surface with high accuracy is required. A full-waveform airborne laser scanner is expected to be capable of improving the accuracy of ground surface extraction for forested areas, in contrast to discrete airborne laser scanners, as technological innovation. For forested areas, fundamental studies for construction information management (CIM) were conducted to extract ground surface using full-waveform airborne laser scanners based on waveform information.

  18. ON GROUND SURFACE EXTRACTION USING FULL-WAVEFORM AIRBORNE LASER SCANNER FOR CIM

    Directory of Open Access Journals (Sweden)

    K. Nakano

    2015-05-01

    Full Text Available Satellite positioning systems such as GPS and GLONASS have created significant changes not only in terms of spatial information but also in the construction industry. It is possible to execute a suitable construction plan by using a computerized intelligent construction. Therefore, an accurate estimate of the amount of earthwork is important for operating heavy equipment, and measurement of ground surface with high accuracy is required. A full-waveform airborne laser scanner is expected to be capable of improving the accuracy of ground surface extraction for forested areas, in contrast to discrete airborne laser scanners, as technological innovation. For forested areas, fundamental studies for construction information management (CIM were conducted to extract ground surface using full-waveform airborne laser scanners based on waveform information.

  19. Topographical changes of ground surface affected by the Tarim Desert Highway

    Institute of Scientific and Technical Information of China (English)

    LI Shengyu; LEI Jiaqiang; XU Xinwen; WANG Lixin; ZHOU Zhibin; LI Hongzhong

    2006-01-01

    The Tarim Desert Highway is the longest highway crossing the mobile desert in the world. The highway and its sand protection system were established in 1995. This great project must have significant effect on the aeolian environment in its neighborhoods. In 2004, we investigated the topographic changes of ground surface within the sand protection system and its external adjacent area in the hinterland of the Taklimakan Desert. The results showed that (i) the original topographic patterns of ground surface were greatly changed, and erosion as well as deposition was distributed clearly on the ground surface, affected by the road and its sand protection system; (ii) sediment deposited in the sand protection system gradually heightened the ground surface, but each part in the system changed differently: in the sand-blocking belt, a transverse sand ridge was formed in the same direction as the upright sand barrier; in the sand-binding belt, sediment was aggraded on the original surface in a certain thickness; at the initial stages since the establishment of the sand protection system, erosion had taken place in the un-stabilized area named by the deposition belt between the sand-blocking belt and the sand-binding belt, the inner of sand-binding belt, the windward slope of dunes in the sand-binding belt, and the neighboring leeward area of the sand protection system.

  20. Determination of trace levels of herbicides and their degradation products in surface and ground waters by gas chromatography/ion-trap mass spectrometry

    Science.gov (United States)

    Pereira, W.E.; Rostad, C.E.; Leiker, T.J.

    1990-01-01

    A rapid, specific and highly sensitive method is described for the determination of several commonly used herbicides and their degradation products in surface and ground waters by using gas chromatography/ion-trap mass spectrometry. The compounds included atrazine, and its degradation products desethylatrazine and desisopropylatrazine; Simazine; Cyanazine; Metolachlor; and alachlor and its degradation products, 2-chloro-2', 6'-diethylacetanilide, 2-hydroxy-2', 6'-diethylacetanilide and 2,6-diethylaniline. The method was applied to surface-water samples collected from 16 different stations along the lower Mississippi River and its major tributaries, and ground-water samples beneath a cornfield in central Nebraska. Average recovery of a surrogate herbicide, terbuthylazine, was greater than 99%. Recoveries of the compounds of interest from river water spiked at environmental levels are also presented. Full-scan mass spectra of these compounds were obtained on 1 ng or less of analyte. Data were collected in the full-scan acquisition mode. Quantitation was based on a single characteristic ion for each compound. The detection limit was 60 pg with a signal-to-noise ratio of greater than 10:1.

  1. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  2. The Effect of Images on Surface Potential and Resistance Calculation of Grounding Systems

    Directory of Open Access Journals (Sweden)

    MARTINS, A.

    2015-05-01

    Full Text Available In the grounding systems with a two layers soil, the calculation of the surface potential using the image method is sometimes impossible due to singularities, avoiding researchers to use the method for electrodes in the bottom layer. In the literature this problem solution is refereed as unreliable or solved with other more complex methods. This paper presents a new approach to calculate the surface potentials in a two. layer soil, for electrodes in the bottom layer, when images are at surface. The singularities in computing surface voltage, when the first image upwards lies at surface, are analysed and it's shown that a small change in top layer thickness allows an approximate solution. Surface potentials due to grid conductor are also considered and the values of resistance are compared with those from other methodologies. Singularities for a ground rod that crosses the two layers are also treated. The obtained values of resistance are not satisfactory, due to lower segments images that overlap the upper segments. This paper also proposes shifting the surface of the upper part of the ground rod, in the upper layer, or taking the modulus of the mutual resistance, to overcome this difficulty.

  3. Size of craters produced by explosive charges on or above the ground surface

    Science.gov (United States)

    Ambrosini, R. D.; Luccioni, B. M.; Danesi, R. F.; Riera, J. D.; Rocha, M. M.

    The results of a series of tests performed with different amounts of explosive at short distances above and below ground level, as well as on the soil surface are briefly described. After an introductory description of both the main features of the blast wave and the mechanics of crater formation, a brief review of empirical methods for crater size prediction is presented. Next, the experimental design and the results obtained are described. The crater dimensions for underground explosions coincide with those found in the literature. For explosions at ground level the results are qualitatively described by empirical equations. For explosive charges situated above ground level, the dimensions of the craters are smaller than those observed in underground and near the surface explosions. Two new single prediction equations for this case are presented.

  4. Inferring snow pack ripening and melt out from distributed ground surface temperature measurements

    Directory of Open Access Journals (Sweden)

    M.-O. Schmid

    2012-02-01

    Full Text Available The seasonal snow cover and its melting are heterogeneous both in space and time. Describing and modelling this variability are important because it affects divers phenomena such as runoff, ground temperatures or slope movements. This study investigates the derivation of melting characteristics based on spatial clusters of temperature measurements. Results are based on data from Switzerland where ground surface temperatures were measured with miniature loggers (iButtons at 40 locations, referred to as footprints. At each footprint, ten iButtons have been distributed randomly few cm below the ground surface over an area of 10 m × 10 m. Footprints span elevations of 2100–3300 m a.s.l. and slope angles of 0–55°, as well as diverse slope expositions and types of surface cover and ground material. Based on two years of temperature data, the basal ripening date and the melt-out date are determined for each iButton, aggregated to the footprint level and further analysed. The date of melt out could be derived for nearly all iButtons, the ripening date could be extracted for only approximately half of them because it requires ground freezing below the snow pack. The variability within a footprint is often considerable and one to three weeks difference between melting or ripening of the points in one footprint is not uncommon. The correlation of mean annual ground surface temperatures, ripening date and melt-out date is moderate, making them useful intuitive complementary measured for model evaluation.

  5. Supplementary report on surface-water and ground-water surveys, Nueces River Basin, Texas

    Science.gov (United States)

    Broadhurst, W.L.; Ellsworth, C.E.

    1950-01-01

    A report on the ground-water and surface-water surveys of the Nueces River Basin was included in a report by the Bureau of Reclamation, entitled "Comprehensive plan for water-resources development of the Nueces River Basin project planning report number 5-14.04-3, February 1946".

  6. Ground states for a modified capillary surface equation in weighted Orlicz-Sobolev space

    Directory of Open Access Journals (Sweden)

    Guoqing Zhang

    2015-03-01

    Full Text Available In this article, we prove a compact embedding theorem for the weighted Orlicz-Sobolev space of radially symmetric functions. Using the embedding theorem and critical points theory, we prove the existence of multiple radial solutions and radial ground states for the following modified capillary surface equation $$\\displaylines{ -\\operatorname{div}\\Big(\\frac{|\

  7. Seismic interferometry of railroad induced ground motions: body and surface wave imaging

    Science.gov (United States)

    Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon

    2016-04-01

    Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.

  8. Evaluation of the ground surface Enthalpy balance from bedrock shallow borehole temperatures (Livingston Island, Maritime Antarctic

    Directory of Open Access Journals (Sweden)

    M. Ramos

    2008-03-01

    Full Text Available The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic is studied. The borehole is 2.4 m deep and is located in a quartzite outcrop in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth hourly temperature profiles from: (i the cooling periods of the frost seasons of 2000 to 2005, and (ii the warming periods of the thaw seasons of 2002–2003, 2003–2004 and 2004–2005, were studied. In this modelling approach, heat gains and losses across ground surface are considered to be the causes for the 0°C isotherm movement. A methodological approach to calculate the Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density is considered to be constant in the borehole and initial isothermal conditions at 0°C are assumed to run the model. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima.

  9. A shear wave ground surface vibration technique for the detection of buried pipes

    Science.gov (United States)

    Muggleton, J. M.; Papandreou, B.

    2014-07-01

    A major UK initiative, entitled 'Mapping the Underworld' aims to develop and prove the efficacy of a multi-sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics; the application of this technology for detecting buried infrastructure, in particular pipes, is currently being investigated. Here, a shear wave ground vibration technique for detecting buried pipes is described. For this technique, shear waves are generated at the ground surface, and the resulting ground surface vibrations measured. Time-extended signals are employed to generate the illuminating wave. Generalized cross-correlation functions between the measured ground velocities and a reference measurement adjacent to the excitation are calculated and summed using a stacking method to generate a cross-sectional image of the ground. To mitigate the effects of other potential sources of vibration in the vicinity, the excitation signal can be used as an additional reference when calculating the cross-correlation functions. Measurements have been made at two live test sites to detect a range of buried pipes. Successful detection of the pipes was achieved, with the use of the additional reference signal proving beneficial in the noisier of the two environments.

  10. Evaluation of the ground surface Enthalpy balance from bedrock shallow borehole temperatures (Livingston Island, Maritime Antarctic)

    Science.gov (United States)

    Ramos, M.; Vieira, G.

    2008-03-01

    The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic) is studied. The borehole is 2.4 m deep and is located in a quartzite outcrop in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth) hourly temperature profiles from: (i) the cooling periods of the frost seasons of 2000 to 2005, and (ii) the warming periods of the thaw seasons of 2002-2003, 2003-2004 and 2004-2005, were studied. In this modelling approach, heat gains and losses across ground surface are considered to be the causes for the 0°C isotherm movement. A methodological approach to calculate the Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density is considered to be constant in the borehole and initial isothermal conditions at 0°C are assumed to run the model. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima).

  11. Interannual changes in snow cover and its impact on ground surface temperatures in Livingston Island (Antarctica)

    Science.gov (United States)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2015-04-01

    In permafrost areas the seasonal snow cover is an important factor on the ground thermal regime. Snow depth and timing are important in ground insulation from the atmosphere, creating different snow patterns and resulting in spatially variable ground temperatures. The aim of this work is to characterize the interactions between ground thermal regimes and snow cover and the influence on permafrost spatial distribution. The study area is the ice-free terrains of northwestern Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". Air and ground temperatures and snow thickness data where analysed from 4 sites along an altitudinal transect in Hurd Peninsula from 2007 to 2012: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). The data covers 6 cold seasons showing different conditions: i) very cold with thin snow cover; ii) cold with a gradual increase of snow cover; iii) warm with thick snow cover. The data shows three types of periods regarding the ground surface thermal regime and the thickness of snow cover: a) thin snow cover and short-term fluctuation of ground temperatures; b) thick snow cover and stable ground temperatures; c) very thick snow cover and ground temperatures nearly constant at 0°C. a) Thin snow cover periods: Collado Ramos and Ohridski sites show frequent temperature variations, alternating between short-term fluctuations and stable ground temperatures. Nuevo Incinerador displays during most of the winter stable ground temperatures; b) Cold winters with a gradual increase of the snow cover: Nuevo Incinerador, Collado Ramos and Ohridski sites show similar behavior, with a long period of stable ground temperatures; c) Thick snow cover periods: Collado Ramos and Ohridski show long periods of stable ground, while Nuevo Incinerador shows temperatures close to 0°C since the beginning of the winter, due to early snow cover

  12. A preliminary study on surface ground deformation near shallow foundation induced by strike-slip faulting

    Science.gov (United States)

    Wong, Pei-Syuan; Lin, Ming-Lang

    2016-04-01

    According to investigation of recent earthquakes, ground deformation and surface rupture are used to map the influenced range of the active fault. The zones of horizontal and vertical surface displacements and different features of surface rupture are investigated in the field, for example, the Greendale Fault 2010, MW 7.1 Canterbury earthquake. The buildings near the fault rotated and displaced vertically and horizontally due to the ground deformation. Besides, the propagation of fault trace detoured them because of the higher rigidity. Consequently, it's necessary to explore the ground deformation and mechanism of the foundation induced by strike-slip faulting for the safety issue. Based on previous study from scaled analogue model of strike-slip faulting, the ground deformation is controlled by material properties, depth of soil, and boundary condition. On the condition controlled, the model shows the features of ground deformation in the field. This study presents results from shear box experiment on small-scale soft clay models subjected to strike-slip faulting and placed shallow foundations on it in a 1-g environment. The quantifiable data including sequence of surface rupture, topography and the position of foundation are recorded with increasing faulting. From the result of the experiment, first en echelon R shears appeared. The R shears rotated to a more parallel angle to the trace and cracks pulled apart along them with increasing displacements. Then the P shears crossed the basement fault in the opposite direction appears and linked R shears. Lastly the central shear was Y shears. On the other hand, the development of wider zones of rupture, higher rising surface and larger the crack area on surface developed, with deeper depth of soil. With the depth of 1 cm and half-box displacement 1.2 cm, en echelon R shears appeared and the surface above the fault trace elevated to 1.15 mm (Dv), causing a 1.16 cm-wide zone of ground-surface rupture and deformation

  13. Seasonal Distribution of Trace Metals in Ground and Surface Water of Golaghat District, Assam, India

    Directory of Open Access Journals (Sweden)

    M. Boarh

    2010-01-01

    Full Text Available A study has been carried out on the quality of ground and surface water with respect to chromium, manganese, zinc, copper, nickel, cadmium and arsenic contamination from 28 different sources in the predominantly rural Golaghat district of Assam (India. The metals were analysed by using atomic absorption spectrometer. Water samples were collected from groundwater and surface water during the dry and wet seasons of 2008 from the different sources in 28 locations (samples. The results are discussed in the light of possible health hazards from the metals in relation to their maximum permissible limits. The study shows the quality of ground and surface water in a sizeable number of water samples in the district not to be fully satisfactory with respect to presence of the metals beyond permissible limits of WHO. The metal concentration of groundwater in the district follows the trend As>Zn>Mn>Cr>Cu>Ni>Cd in both the seasons.

  14. Ground-water, surface-water, and bottom-sediment contamination in the O-field area, Aberdeen Proving Ground, Maryland, and the possible effects of selected remedial actions on ground water

    Science.gov (United States)

    Vroblesky, Don A.; Lorah, Michelle M.; Oliveros, James P.

    1995-01-01

    Disposal of munitions and chemical-warfare substances has introduced inorganic and organic contaminants to the ground water, surface water, and bottom sediment at O-Field, in the Edgewood area of Aberdeen Proving Ground, Maryland. Contaminants include chloride, arsenic, transition metals, chlorinated aliphatic hydrocarbons, aromatic compounds, and organosulfur and organophosphorus compounds. The hydrologic effects of several remedial actions were estimated by use of a ground-water-flow model. The remedial actions examined were an impermeable covering, encapsulation, subsurface barriers, a ground-water drain, pumping of wells to manage water levels or to remove contaminated ground water for treatment, and no action.

  15. Water-Table and Potentiometric-Surface Altitudes in the Upper Glacial, Magothy, and Lloyd Aquifers beneath Long Island, New York, March-April 2006

    Science.gov (United States)

    Monti, Jack; Busciolano, Ronald J.

    2009-01-01

    The U.S. Geological Survey (USGS), in cooperation with State and local agencies, systematically collects ground-water data at varying measurement frequencies to monitor the hydrologic situation on Long Island, New York. Each year during March and April, the USGS conducts a synoptic survey of hydrologic conditions to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island - the upper glacial, Magothy, and Lloyd aquifers. These data and the maps constructed from them are commonly used in studies of Long Island's hydrology, and by water managers and suppliers for aquifer management and planning purposes. Water-level measurements made in 502 wells across Long Island during March-April 2006, were used to prepare the maps in this report. Measurements were made by the wetted-tape method to the nearest hundredth of a foot. Water-table and potentiometric-surface altitudes in these aquifers were contoured using these measurements. The water-table contours were interpreted using water-level data collected from 341 wells screened in the upper glacial aquifer and (or) shallow Magothy aquifer; the Magothy aquifer's potentiometric-surface contours were interpreted from measurements at 102 wells screened in the middle to deep Magothy aquifer and (or) contiguous and hydraulically connected Jameco aquifer; and the Lloyd aquifer's potentiometric-surface contours were interpreted from measurements at 59 wells screened in the Lloyd aquifer or contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and, therefore, were turned off for a minimum of 24 hours before measurements were made so that the water levels in the wells could recover to the level of the potentiometric head in the surrounding aquifer. Full recovery time at some of these supply wells can exceed 24 hours; therefore, water levels measured at these wells are assumed to be less

  16. Determining the location of buried plastic water pipes from measurements of ground surface vibration

    Science.gov (United States)

    Muggleton, J. M.; Brennan, M. J.; Gao, Y.

    2011-09-01

    ‘Mapping the Underworld' is a UK-based project, which aims to create a multi-sensor device that combines complementary technologies for remote buried utility service detection and location. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and techniques for detecting buried infrastructure, in particular plastic water pipes, are being investigated. One of the proposed techniques involves excitation of the pipe at some known location with concurrent vibrational mapping of the ground surface in order to infer the location of the remainder of the pipe. In this paper, measurements made on a dedicated pipe rig are reported. Frequency response measurements relating vibrational velocity on the ground to the input excitation were acquired. Contour plots of the unwrapped phase revealed the location of the pipe to within 0.1-0.2 m. Magnitude contour plots revealed the excitation point and also the location of the pipe end. By examining the unwrapped phase gradients along a line above the pipe, it was possible to identify the wave-type within the pipe responsible for the ground surface vibration. Furthermore, changes in the ground surface phase speed computed using this method enabled the location of the end of the pipe to be confirmed.

  17. Homogenization of seismic surface wave profiling in highly heterogeneous improved ground

    Science.gov (United States)

    Lin, C.; Chien, C.

    2012-12-01

    Seismic surface wave profiling is gaining popularity in engineering practice for determining shear-wave velocity profile since the two-station SASW (Spectral Analysis of Surface Wave) was introduced. Recent developments in the multi-station approach (Multi-station Analysis of Surface Wave, MASW) result in several convenient commercial tools. Unlike other geophysical tomography methods, the surface wave method is essentially a 1-D method assuming horizontally-layered medium. Nevertheless, MASW is increasingly used to map lateral variation of S-wave velocity by multiple surveys overlooking the effect of lateral heterogeneity. MASW typically requires long receiver spread in order to have enough depth coverage. The accuracy and lateral resolution of 2-D S-wave velocity imaging by surface wave is not clear. Many geotechnical applications involves lateral variation in a scale smaller than the geophone spread and wave length. For example, soft ground is often improved to increase strength and stiffness by methods such as jet grouting and stone column which result in heterogeneous ground with improved columns. Experimental methods (Standard Penetration Test, sampling and laboratory testing, etc.) used to assess such ground improvement are subjected to several limitations such as small sampling volume, time-consuming, and cost ineffectiveness. It's difficult to assess the average property of the improved ground and the actual replacement ratio of ground improvement. The use of seismic surface wave method for such a purpose seems to be a good alternative. But what MASW measures in such highly heterogeneous improved ground remains to be investigated. This study evaluated the feasibility of MASW in highly heterogeneous ground with improved columns and investigated the homogenization of shear wave velocity measured by MASW. Field experiments show that MASW testing in such a composite ground behaves similar to testing in horizontally layered medium. It seems to measure some sort

  18. Impact of caprock permeability on vertical ground surface displacements in geological underground utilisation

    Science.gov (United States)

    Kempka, Thomas; Tillner, Elena

    2015-04-01

    Geological underground utilisation inducing pore pressure changes in underground reservoirs is generally accompanied by hydro-mechanical processes. Thereby, pore pressure increase due to fluid injection may trigger ground surface uplift, while a decrease in pore pressure due to reservoir fluid production is known to induce ground subsidence. Different coupled hydro-mechanical simulation studies (e.g. Klimkowski et al., 2015, Kempka et al., 2014, Tillner et al., 2014) indicate that ground surface displacements can achieve a magnitude of several decimetres, if storage or production operations are being carried out at an industrial scale. Consequently, detailed knowledge on the parameters impacting ground surface uplift or subsidence is of major interest for the success of any geological underground utilisation in order to avoid surface infrastructure damage by spatially varying deformations. Furthermore, ground subsidence may result increased groundwater levels as experienced in different underground coal mining districts. In the present study, we carried out coupled hydro-mechanical simulations to account for the impact of caprock permeability on ground surface displacements resulting from geological underground utilisation. Thereto, different simulation scenarios were investigated using a synthetic 3D coupled numerical simulation model with varying caprock permeability and vertical location of the open well section in the target reservoir. Material property ranges were derived from available literature, while a normal faulting stress state was applied in all simulation scenarios. Our simulation results demonstrate that caprock permeability has a significant impact on the pressure development, and thus on vertical displacements at the ground surface as well as at the reservoir top. An increase in caprock permeability from 1 x 10-20 m2 by two orders of magnitude doubles vertical displacements at the ground surface, whereas vertical displacements at the reservoir top

  19. Advantages of analytically computing the ground heat flux in land surface models

    Science.gov (United States)

    Pauwels, Valentijn R. N.; Daly, Edoardo

    2016-11-01

    It is generally accepted that the ground heat flux accounts for a significant fraction of the surface energy balance. In land surface models, the ground heat flux is typically estimated through a numerical solution of the heat conduction equation. Recent research has shown that this approach introduces errors in the estimation of the energy balance. In this paper, we calibrate a land surface model using a numerical solution of the heat conduction equation with four different vertical spatial resolutions. It is found that the thermal conductivity is the most sensitive parameter to the spatial resolution. More importantly, the thermal conductivity values are directly related to the spatial resolution, thus rendering any physical interpretation of this value irrelevant. The numerical solution is then replaced by an analytical solution. The results of the numerical and analytical solutions are identical when fine spatial and temporal resolutions are used. However, when using resolutions that are typical of land surface models, significant differences are found. When using the analytical solution, the ground heat flux is directly calculated without calculating the soil temperature profile. The calculation of the temperature at each node in the soil profile is thus no longer required, unless the model contains parameters that depend on the soil temperature, which in this study is not the case. The calibration is repeated, and thermal conductivity values independent of the vertical spatial resolution are obtained. The main conclusion of this study is that care must be taken when interpreting land surface model results that have been obtained using numerical ground heat flux estimates. The use of exact analytical solutions, when available, is recommended.

  20. Evaluation of the ground surface Enthalpy balance from bedrock temperatures (Livingston Island, Maritime Antarctic)

    Science.gov (United States)

    Ramos, M.; Vieira, G.

    2009-05-01

    The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic) is studied. The borehole is 2.4 m deep and is located in a massive quartzite outcrop with negligible water content, in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth) hourly temperature profiles from: (i) the cooling periods of the frost season of 2000 to 2005, and (ii) the warming periods of the thaw season of 2002-2003, 2003-2004 and 2004-2005, were studied. In this modelling approach, heat gains and losses across the ground surface are assumed to be the causes for the 0°C isotherm movement. A methodological approach to calculate the ground Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change into the rock is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density and thermal conductivity are considered to be constant and initial isothermal conditions at 0°C are assumed (based in collected data and local meteorological conditions in this area) to run the model in the beginning of each season. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima). The application of this method avoids error propagation induced by the heat exchange calculations from multiple sensors using the Fourier method.

  1. Evaluation of the ground surface Enthalpy balance from bedrock temperatures (Livingston Island, Maritime Antarctic

    Directory of Open Access Journals (Sweden)

    M. Ramos

    2009-05-01

    Full Text Available The annual evolution of the ground temperatures from Incinerador borehole in Livingston Island (South Shetlands, Antarctic is studied. The borehole is 2.4 m deep and is located in a massive quartzite outcrop with negligible water content, in the proximity of the Spanish Antarctic Station Juan Carlos I. In order to model the movement of the 0°C isotherm (velocity and maximum depth hourly temperature profiles from: (i the cooling periods of the frost season of 2000 to 2005, and (ii the warming periods of the thaw season of 2002–2003, 2003–2004 and 2004–2005, were studied. In this modelling approach, heat gains and losses across the ground surface are assumed to be the causes for the 0°C isotherm movement. A methodological approach to calculate the ground Enthalpy change based on the thermodynamic analysis of the ground during the cooling and warming periods is proposed. The Enthalpy change into the rock is equivalent to the heat exchange through the ground surface during each season, thus enabling to describe the interaction ground-atmosphere and providing valuable data for studies on permafrost and periglacial processes. The bedrock density and thermal conductivity are considered to be constant and initial isothermal conditions at 0°C are assumed (based in collected data and local meteorological conditions in this area to run the model in the beginning of each season. The final stages correspond to the temperatures at the end of the cooling and warming periods (annual minima and maxima. The application of this method avoids error propagation induced by the heat exchange calculations from multiple sensors using the Fourier method.

  2. Ground surface temperature and humidity, ground temperature cycles and the ice table depths in University Valley, McMurdo Dry Valleys of Antarctica

    Science.gov (United States)

    Fisher, David A.; Lacelle, Denis; Pollard, Wayne; Davila, Alfonso; McKay, Christopher P.

    2016-11-01

    In the upper McMurdo Dry Valleys, 90% of the measured ice table depths range from 0 to 80 cm; however, numerical models predict that the ice table is not in equilibrium with current climate conditions and should be deeper than measured. This study explored the effects of boundary conditions (air versus ground surface temperature and humidity), ground temperature cycles, and their diminishing amplitude with depth and advective flows (Darcy flow and wind pumping) on water vapor fluxes in soils and ice table depths using the REGO vapor diffusion model. We conducted a series of numerical experiments that illustrated different hypothetical scenarios and estimated the water vapor flux and ice table depth using the conditions in University Valley, a small high elevation valley. In situ measurements showed that while the mean annual ground surface temperature approximates that in the air, the mean annual ground surface relative humidity (>85%ice) was significantly higher than in the atmosphere ( 50%ice). When ground surface temperature and humidity were used as boundary conditions, along with damping diurnal and annual temperature cycles within the sandy soil, REGO predicted that measured ice table depths in the valley were in equilibrium with contemporary conditions. Based on model results, a dry soil column can become saturated with ice within centuries. Overall, the results from the new soil data and modeling have implications regarding the factors and boundary conditions that affect the stability of ground ice in cold and hyperarid regions where liquid water is rare.

  3. Electric Signals on and under the Ground Surface Induced by Seismic Waves

    Directory of Open Access Journals (Sweden)

    Akihiro Takeuchi

    2012-01-01

    Full Text Available We constructed three observation sites in northeastern Japan (Honjo, Kyowa, and Sennan with condenser-type large plate electrodes (4 × 4 m2 as sensors supported 4 m above the ground and with pairs of reference electrodes buried vertically at 0.5 m and 2.5 m depth (with a ground velocity sensor at Sennan only. Electrical signals of an earthquake (M6.3 in northeastern Japan were detected simultaneously with seismic waves. Their waveforms were damped oscillations, with greatly differing signal amplitudes among sites. Good positive correlation was found between the amplitudes of signals detected by all electrodes. We propose a signal generation model: seismic acceleration vertically shook pore water in the topsoil, generating the vertical streaming potential between the upper unsaturated water zone and the lower saturated water zone. Maximum electric earth potential difference was observed when one electrode was in the saturated water zone, and the other was within the unsaturated water zone, but not when the electrodes were in the saturated water zone. The streaming potential formed a charge on the ground surface, generating a vertical atmospheric electric field. The large plate electrode detected electric signals related to electric potential differences between the electrode and the ground surface.

  4. Kinetics of the forelimb in horses circling on different ground surfaces at the trot.

    Science.gov (United States)

    Chateau, Henry; Camus, Mathieu; Holden-Douilly, Laurène; Falala, Sylvain; Ravary, Bérangère; Vergari, Claudio; Lepley, Justine; Denoix, Jean-Marie; Pourcelot, Philippe; Crevier-Denoix, Nathalie

    2013-12-01

    Circling increases the expression of distal forelimb lameness in the horse, depending on rein, diameter and surface properties of the circle. However, there is limited information about the kinetics of horses trotting on circles. The aim of this study was to quantify ground reaction force (GRF) and moments in the inside and outside forelimb of horses trotting on circles and to compare the results obtained on different ground surfaces. The right front hoof of six horses was equipped with a dynamometric horseshoe, allowing the measurement of 3-dimensional GRF, moments and trajectory of the centre of pressure. The horses were lunged at slow trot (3 m/s) on right and left 4 m radius circles on asphalt and on a fibre sand surface. During circling, the inside forelimb produced a smaller peak vertical force and the stance phase was longer in comparison with the outside forelimb. Both right and left circling produced a substantial transversal force directed outwards. On a soft surface (sand fibre), the peak transversal force and moments around the longitudinal and vertical axes of the hoof were significantly decreased in comparison with a hard surface (asphalt). Sinking of the lateral or medial part of the hoof in a more compliant surface enables reallocation of part of the transversal force into a proximo-distal force, aligned with the limb axis, thus limiting extrasagittal stress on the joints.

  5. COSMO-SkyMed sensor constellation and GPS data to study the source responsible of ground deformation beneath the urban area of Naples (Southern Italy) in 2012-2013.

    Science.gov (United States)

    Pepe, Susi

    2016-04-01

    To understand uplift phenomenon occurred during the April 2012 - January 2013 time interval at Campi Flegrei caldera, we exploited the displacement time series obtained by processing 90 SAR images acquired from the COSMO-SkyMed sensor constellation along ascending orbits via the well-known DInSAR algorithm referred to as SBAS algorithm, and the measurements provided by 14 continuous GPS stations deployed within the caldera and belonging to the permanent INGV-OV monitoring network. In particular, the caldera has shown a rapid uplift of about 6 cm with a peak rate of about 3 cm/month in December 2012. This event led the Italian Civil Protection to raise the alert level of the volcano from green to yellow. Using a novel geodetic inversion technique we imaged the kinematics of the intrusion of a magmatic sill beneath the town of Pozzuoli at a depth of about 3100 m. The retrieved kinematics was then used as input to infer the dynamics of the sill intrusion using a recently developed numerical model. The best fit obtained by non-linear inverse approach that consider a time-varying deformation field is a penny-shaped source located at a depth of 3100 m. To study the detail of the intrusion process we have applied a geodetic imaging technique to determine the spatial and temporal kinematics of the ground deformation source in the selected period. The retrieved temporal pattern of the source geometry reflects that of a growing sill that, at the end of the considered period, has a roughly elliptical geometry with an extension of about 6 km in the EW direction and about 4 km in the NS one. The maximum aperture of the sill is of about 30 cm at its center. To understand the dynamics of this phenomenon we used a numerical model of the emplacement of a magmatic sill, to fit the retrieved geometry. The parameters to be determined are: the average magma viscosity, the amount of magma already present in the sill before the 2012-2013 episode and the magma injection rate. Results show

  6. New Measurements from Old Boreholes: A Look at Interaction Between Surface Air Temperature and Ground Surface Temperature

    Science.gov (United States)

    Heinle, S. M.; Gosnold, W. D.

    2007-12-01

    We recently logged new field measurements of several boreholes throughout the Midwest, including North Dakota, South Dakota, and Nebraska. We then compared these new measurements against measurements previously obtained. Our comparisons included inverse modeling of past and recent measurements as well as climate modeling based on past surface air temperatures obtained from the weather stations. The data show a good correlation between climate warming in the last century and ground surface warming. Of particular importance is that cooling of air temperatures beginning in the mid 1990s reflects in the ground surface temperatures. The boreholes included in the study consist of three boreholes located in north central North Dakota, including two deeper than 200 meters. Two boreholes in the southwestern part of South Dakota, and two from southeastern South Dakota, all approximately 180 meters deep. Also included, were two boreholes (135 meters and over 200 meters deep) located in southwestern Nebraska, and two boreholes in the panhandle of Nebraska, each over 100 meters deep. We obtained historical surface air temperature from climate stations located near the boreholes, both from the United States Historical Climatology Network and from the Western Regional Climate Center.

  7. ON GROUND SURFACE EXTRACTION USING FULL-WAVEFORM AIRBORNE LASER SCANNER FOR CIM

    OpenAIRE

    Nakano, K.; H. Chikatsu

    2015-01-01

    Satellite positioning systems such as GPS and GLONASS have created significant changes not only in terms of spatial information but also in the construction industry. It is possible to execute a suitable construction plan by using a computerized intelligent construction. Therefore, an accurate estimate of the amount of earthwork is important for operating heavy equipment, and measurement of ground surface with high accuracy is required. A full-waveform airborne laser scanner is expected to be...

  8. Efficiency of silver nanoparticles against bacterial contaminants isolated from surface and ground water in Egypt

    Directory of Open Access Journals (Sweden)

    Reem Dosoky

    2015-06-01

    Full Text Available The bactericidal efficiency of silver nanoparticles (AgNP was evaluated against bacteria isolated from surface and ground water samples in Egypt. The AgNP were synthesized by typical one-step synthesis protocol, and were characterized using transmission electron microscopy and atomic absorption spectrophotometer. The bactericidal efficiency of AgNP was evaluated by its application in three concentrations i.e., 0.1, 0.05 and 0.01 ppm to water sample, and allowed to interact with bacteria for different duration e.g., 5 min 15 min, 30 min, 1 h and 2 h. Then, the bactericidal efficiency of AgNPs was determined by comparing the counted bacteria before and after the treatments. Higher mean values of total bacterial count (TBC, total coliform count (TCC, and total streptococcal count (TFS were detected in surface water than in ground water. Also, the results showed that TBC, TCC and TFS exceeded permissible limits. Application of AgNP at different concentration, the number of bacteria in TBC was significantly reduced in all AgNP-exposed samples as compared to the control group (p<0.05. The highest concentration of AgNP exhibited highest bactericidal efficiency in TBC, where, after two hours, 0.1, 0.05 and 0.01 mg/L AgNP was found to be sufficient to inhibit 91.85, 89.14 and 74.92%, and 92.33, 85.23 and 53.17% in TBC of surface and ground water, respectively. Moreover, the inhibition efficiency of the highest concentration (0.1 ppm against TCC reached to 98.10 and 99.88% in surface water and 95.54 and 99.20% in ground water after 1 h and 2 h, respectively. Similar results were found against TFS count. The AgNPs were found to be effective against bacteria of water origin.

  9. Interpreting Ground Temperature Measurements for Thermophysical Properties on Complex Surfaces of the Moon and Mars

    Science.gov (United States)

    Vasavada, A. R.; Hamilton, V. E.; Team, M.

    2013-12-01

    With the successful deployments of the Diviner radiometer on the Lunar Reconnaissance Orbiter and the REMS ground temperature sensor on the Curiosity Mars rover, records of ground temperature with high accuracy and finely sampled diurnal and seasonal cycles have become available. The detailed shapes of these temperature profiles allow inferences beyond just bulk thermophysical properties. Subtle (or sometime significant) effects of surface roughness, slope, and lateral and vertical heterogeneity may be identified in the surface brightness temperature data. For example, changes in thermal or physical properties with depth in the shallow subsurface affect the conduction and storage of thermal energy. These affect the surface energy balance and therefore surface temperatures, especially the rate of cooling at night. Making unique determinations of subsurface soil properties requires minimizing the uncertainties introduced by other effects. On Mars, atmospheric aerosol opacity and wind-driven sensible heat fluxes also affect the diurnal and annual temperature profiles. On both bodies, variations in thermal inertia, slopes, roughness, albedo, and emissivity within the radiometer footprint will cause the composite brightness temperature to differ from a kinetic temperature. Nevertheless, we have detected potential effects of complex surfaces in the temperature data from both Diviner and Curiosity. On the Moon, the results reveal a nearly ubiquitous surface structure, created mechanically by impact gardening, that controls the thermal response of the surface. On Mars, the thermal response is controlled primarily by grain size, cementation, lithification, and composition. However, the secondary effects of near-surface layering aid in the interpretation of stratigraphy and in the identification of geologic processes that have altered the surface.

  10. Modeling ground surface uplift during CO2 sequestration: the case of In Salah, Algeria.

    Science.gov (United States)

    Rinaldi, Antonio Pio; Rutqvist, Jonny; Finsterle, Stefan; Liu, Hui-Hai

    2016-04-01

    Observable ground deformation, common in storage projects, carries useful information on processes occurring at the injection depth. The Krechba gas field at In Salah (Algeria) is one of the best known sites for studying ground surface deformation during geological storage. Being the first industrial-scale on-shore CO2 demonstration project, the site is well known for satellite-based ground-deformation monitoring data of remarkable quality. In this work, we carry out coupled fluid flow and geomechanical simulations to understand the uplift at three different CO2 injection wells (KB-501, KB-502, KB-503). Previous numerical studies focused on the KB-502 injection well, where a double-lobe uplift pattern has been observed in the ground-deformation data. The observed uplift patterns at KB-501 and KB-503 are different, but also indicate the influence of deep fracture zone mechanical responses. The current study improves the previous modeling approach by introducing an injection reservoir and a fracture zone, both responding to a Mohr-Coulomb failure criterion. In addition, we model a stress-dependent permeability and bulk modulus, according to a dual continuum model. Mechanical and hydraulic properties were determined through inverse modeling by matching the simulated spatial and temporal evolution of uplift to the corresponding InSAR observations as well as by matching simulated and measured pressures. The numerical simulations are in excellent agreement with observed spatial and temporal variation of ground surface uplift, as well as with measured pressures. The estimated values for the parameterized mechanical and hydraulic properties are in good agreement with previous numerical results, although with uncertainty.

  11. Surface Gap Soliton Ground States for the Nonlinear Schr\\"{o}dinger Equation

    CERN Document Server

    Dohnal, Tomáš; Reichel, Wolfgang

    2010-01-01

    We consider the nonlinear Schr\\"{o}dinger equation $(-\\Delta +V(x))u = \\Gamma(x) |u|^{p-1}u$, $x\\in \\R^n$ with $V(x) = V_1(x) \\chi_{\\{x_1>0\\}}(x)+V_2(x) \\chi_{\\{x_10\\}}(x)+\\Gamma_2(x) \\chi_{\\{x_1<0\\}}(x)$ and with $V_1, V_2, \\Gamma_1, \\Gamma_2$ periodic in each coordinate direction. This problem describes the interface of two periodic media, e.g. photonic crystals. We study the existence of ground state $H^1$ solutions (surface gap soliton ground states) for $0<\\min \\sigma(-\\Delta +V)$. Using a concentration compactness argument, we provide an abstract criterion for the existence based on ground state energies of each periodic problem (with $V\\equiv V_1, \\Gamma\\equiv \\Gamma_1$ and $V\\equiv V_2, \\Gamma\\equiv \\Gamma_2$) as well as a more practical criterion based on ground states themselves. Examples of interfaces satisfying these criteria are provided. In 1D it is shown that, surprisingly, the criteria can be reduced to conditions on the linear Bloch waves of the operators $-\\tfrac{d^2}{dx^2} +V_1(x)$ an...

  12. Relationship between subsurface damage and surface roughness of ground optical materials

    Institute of Scientific and Technical Information of China (English)

    LI Sheng-yi; WANG Zhuo; WU Yu-lie

    2007-01-01

    A theoretical model of relationship between subsurface damage and surface roughness was established to realize rapid and non-destructive measurement of subsurface damage of ground optical materials. Postulated condition of the model was that subsurface damage depth and peak-to-valley surface roughness are equal to depth of radial and lateral cracks in brittle surface induced by small-radius (radius≤200 μm) spherical indenter, respectively. And contribution of elastic stress field to the radial cracks propagation was also considered in the loading cycle. Subsurface damage depth of ground BK7 glasses was measured by magnetorheological finishing spot technique to validate theoretical ratio of subsurface damage to surface roughness. The results show that the ratio is directly proportional to load of abrasive grains and hardness of optical materials, while inversely proportional to granularity of abrasive grains and fracture toughness of optical materials. Moreover, the influence of the load and fracture toughness on the ratio is more significant than the granularity and hardness, respectively. The measured ratios of 80 grit and 120 grit fixed abrasive grinding of BK7 glasses are 5.8 and 5.4, respectively.

  13. The Ocean Boundary Layer beneath Hurricane Frances

    Science.gov (United States)

    Dasaro, E. A.; Sanford, T. B.; Terrill, E.; Price, J.

    2006-12-01

    The upper ocean beneath the peak winds of Hurricane Frances (57 m/s) was measured using several varieties of air-deployed floats as part of CBLAST. A multilayer structure was observed as the boundary layer deepened from 20m to 120m in about 12 hours. Bubbles generated by breaking waves create a 10m thick surface layer with a density anomaly, due to the bubbles, of about 1 kg/m3. This acts to lubricate the near surface layer. A turbulent boundary layer extends beneath this to about 40 m depth. This is characterized by large turbulent eddies spanning the boundary layer. A stratified boundary layer grows beneath this reaching 120m depth. This is characterized by a gradient Richardson number of 1/4, which is maintained by strong inertial currents generated by the hurricane, and smaller turbulent eddies driven by the shear instead of the wind and waves. There is little evidence of mixing beneath this layer. Heat budgets reveal the boundary layer to be nearly one dimensional through much of the deepening, with horizontal and vertical heat advection becoming important only after the storm had passed. Turbulent kinetic energy measurements support the idea of reduced surface drag at high wind speeds. The PWP model correctly predicts the degree of mixed layer deepening if the surface drag is reduced at high wind speed. Overall, the greatest uncertainty in understanding the ocean boundary layer at these extreme wind speeds is a characterization of the near- surface processes which govern the air-sea fluxes and surface wave properties.

  14. INVESTIGATION OF PROCESS PERTAINING TO INTERACTION OF TRACTOR DRIVING WHEELS WITH GROUND SURFACE

    Directory of Open Access Journals (Sweden)

    V. V. Guskov

    2017-01-01

    Full Text Available The paper presents results of investigations on the process pertaining to interaction of a driving wheel with ground surface and describes methodology for optimization of backbone parameters. The mentioned process has some specific differences in comparison with the process of wheel rolling along hard surface. Ground surface is represented by mixture of sandy and clay particles with plant residues and it has a number of physical and mechanical properties. The main of these properties is resistance of soil against compression and displacement. Compression process determines a track depth and resistance to motion and displacement process determines wheel gripping property and its tangential traction force. While executing the investigations laws of compression and displacement proposed by Prof.V. V. Katsygin as the most adequate reflection of actual processes have been used in the paper. Motion of the driving wheel along ground surface is accompanied by its slipping. It has been determined that the maximum wheel traction force is formed not with 100% slipping as it was supposed until present but the value has been obtained at 45–60 % slipping according to soil category. The developed integral equations with due account of the aspect make it possible to calculate road hold characteristics of driving wheels of the designed wheel tractor and evaluate its traction, speed and economic characteristics. Methodology has been developed for optimization of backbone parameters of wheeled running gear in the designed tractor such as design mass and adhesion weight, width, diameter and air pressure in a tire. The proposed methodology has been introduced in designing practice of wheeled tractors at OJSC “Minsk Tractor Works”.

  15. Spectrally selective surfaces for ground and space-based instrumentation: support for a resource base

    Science.gov (United States)

    McCall, Susan H.; Sinclair, R. Lawrence; Pompea, Stephen M.; Breault, Robert P.

    1993-11-01

    The performance of space telescopes, space instruments, and space radiator systems depends critically upon the selection of appropriate spectrally selective surfaces. Many space programs have suffered severe performance limitations, schedule setbacks, and spent hundreds of thousands of dollars in damage control because of a lack of readily-accessible, accurate data on the properties of spectrally selective surfaces, particularly black surfaces. A Canadian effort is underway to develop a resource base (database and support service) to help alleviate this problem. The assistance of the community is required to make the resource base comprehensive and useful to the end users. The paper aims to describe the objectives of this project. In addition, a request for information and support is made for various aspects of the project. The resource base will be useful for both ground and space-based instrumentation.

  16. The Potential Energy Surface for the Electronic Ground State of H 2Se Derived from Experiment

    Science.gov (United States)

    Jensen, P.; Kozin, I. N.

    1993-07-01

    The present paper reports a determination of the potential energy surface for the electronic ground state of the hydrogen selenide molecule through a direct least-squares fitting to experimental data using the MORBID (Morse oscillator rigid bender internal dynamics) approach developed by P. Jensen [ J. Mol. Spectrosc.128, 478-501 (1988); J. Chem. Soc. Faraday Trans. 284, 1315-1340 (1988)]. We have fitted a selection of 303 rotation-vibration energy spacings of H 280Se, D 280Se, and HD 80Se involving J ≤ 5 with a root-mean-square deviation of 0.0975 cm -1 for the rotational energy spacings and 0.268 cm -1 for the vibrational spacings. In the fitting, 14 parameters were varied. On the basis of the fitted potential surface we have studied the cluster effect in the vibrational ground state of H 2Se, i.e., the formation of nearly degenerate, four-member groups of rotational energy levels [see I. N. Kozin, S. Klee, P. Jensen, O. L. Polyansky, and I. M. Pavlichenkov. J. Mol. Spectrosc., 158, 409-422 (1993), and references therein]. The cluster formation becomes more pronounced with increasing J. For example, four-fold clusters formed in the vibrational ground state of H 280Se at J = 40 are degenerate to within a few MHz. Our predictions of the D 280Se energy spectrum show that for this molecule, the cluster formation is displaced towards higher J values than arc found for H 280Se. In the vibrational ground state, the qualitative deviation from the usual rigid rotor picture starts at J = 12 for H 280Se and at J = 18 for D 280Se, in full agreement with predictions from semiclassical theory. An interpretation of the cluster eigenstates is discussed.

  17. Conceptual Tenets of the Theory of Hydration of Heterogeneous Surface with Polar Order of Disperse Ground Layers of Sedimentary Genesis

    Directory of Open Access Journals (Sweden)

    Tamara G. Makeeva

    2012-09-01

    Full Text Available The article, basing on the established regularity defines the basic tenets of the theory of hydration of heterogeneous surface with polar order of disperse ground layers of sedimentary genesis. It offers classification and formula for the associated water density, valid corrections for the associated water density, calculates the water film thickness in disperse ground, develops the reliable physicochemical model of the disperse ground, determines the range of applicability of the existing laboratory and field methods.

  18. Influence of geology on arsenic concentrations in ground and surface water in central Lesvos, Greece.

    Science.gov (United States)

    Aloupi, Maria; Angelidis, Michael O; Gavriil, Apostolos M; Koulousaris, Michael; Varnavas, Soterios P

    2009-04-01

    The occurrence of As was studied in groundwater used for human consumption and irrigation, in stream water and sediments and in water from thermal springs in the drainage basin of Kalloni Gulf, island of Lesvos, Greece, in order to investigate the potential influence of the geothermal field of Polichnitos-Lisvori on the ground and surface water systems of the area. Total dissolved As varied in the range geology exerts a determinant influence on As geochemical behaviour. On the other hand, the geothermal activity manifested in the area of Polichnitos-Lisvori does not affect the presence of As in groundwater and streams.

  19. Asymmetric Rock Pressure on Shallow Tunnel in Strata with Inclined Ground Surface

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiao-jun; YANG Chang-yu

    2007-01-01

    By building a tunnel model with a semi-circular crown, the asymmetric rock pressure applied to the shallow tunnel in strata with inclined ground surface is analyzed. Formulae, which not only include the parameters related to both tunnel structure and surrounding rock mass, but the overburden depth, are developed. The computation for four tunnel models show that the method presented is feasible and convenient. Furthermore, the influence of the overburden depth on the rock pressure is elaborated, and the criterion to identify the deep or shallow tunnels is formulated as well.

  20. Ground-state charge transfer as a mechanism for surface-enhanced Raman scattering

    Science.gov (United States)

    Lippitsch, Max E.

    1984-03-01

    A model is presented for the contribution of ground-state charge transfer between a metal and adsorbate to surface-enhanced Raman scattering (SERS). It is shown that this contribution can be understood using the vibronic theory for calculating Raman intensities. The enhancement is due to vibronic coupling of the molecular ground state to the metal states, the coupling mechanism being a modulation of the ground-state charge-transfer energy by the molecular vibrations. An analysis of the coupling operator gives the selection rules for this process, which turn out to be dependent on the overall symmetry of the adsorbate-metal system, even if the charge transfer is small enough for the symmetry of the adsorbate to remain the same as that of the free molecule. It is shown that the model can yield predictions on the properties of SERS, e.g., specificity to adsorption geometry, appearance of forbidden bands, dependence on the applied potential, and dependence on the excitation wavelength. The predictions are in good agreement with experimental results. It is also deduced from this model that in many cases atomic-scale roughness is a prerequisite for the observation of SERS. A result on the magnitude of the enhancement can only be given in a crude approximation. Although in most cases an additional electromagnetic enhancement seems to be necessary to give an observable signal, this charge-transfer mechanism should be important in many SERS systems.

  1. Surface Signature Characterization at SPE through Ground-Proximal Methods: Methodology Change and Technical Justification

    Energy Technology Data Exchange (ETDEWEB)

    Schultz-Fellenz, Emily S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-09

    A portion of LANL’s FY15 SPE objectives includes initial ground-based or ground-proximal investigations at the SPE Phase 2 site. The area of interest is the U2ez location in Yucca Flat. This collection serves as a baseline for discrimination of surface features and acquisition of topographic signatures prior to any development or pre-shot activities associated with SPE Phase 2. Our team originally intended to perform our field investigations using previously vetted ground-based (GB) LIDAR methodologies. However, the extended proposed time frame of the GB LIDAR data collection, and associated data processing time and delivery date, were unacceptable. After technical consultation and careful literature research, LANL identified an alternative methodology to achieve our technical objectives and fully support critical model parameterization. Very-low-altitude unmanned aerial systems (UAS) photogrammetry appeared to satisfy our objectives in lieu of GB LIDAR. The SPE Phase 2 baseline collection was used as a test of this UAS photogrammetric methodology.

  2. Surface geophysical methods for characterising frozen ground in transitional permafrost landscapes

    Science.gov (United States)

    Briggs, Martin; Campbell, Seth; Nolan, Jay; Walvoord, Michelle Ann; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Lane, John

    2017-01-01

    The distribution of shallow frozen ground is paramount to research in cold regions, and is subject to temporal and spatial changes influenced by climate, landscape disturbance and ecosystem succession. Remote sensing from airborne and satellite platforms is increasing our understanding of landscape-scale permafrost distribution, but typically lacks the resolution to characterise finer-scale processes and phenomena, which are better captured by integrated surface geophysical methods. Here, we demonstrate the use of electrical resistivity imaging (ERI), electromagnetic induction (EMI), ground penetrating radar (GPR) and infrared imaging over multiple summer field seasons around the highly dynamic Twelvemile Lake, Yukon Flats, central Alaska, USA. Twelvemile Lake has generally receded in the past 30 yr, allowing permafrost aggradation in the receded margins, resulting in a mosaic of transient frozen ground adjacent to thick, older permafrost outside the original lakebed. ERI and EMI best evaluated the thickness of shallow, thin permafrost aggradation, which was not clear from frost probing or GPR surveys. GPR most precisely estimated the depth of the active layer, which forward electrical resistivity modelling indicated to be a difficult target for electrical methods, but could be more tractable in time-lapse mode. Infrared imaging of freshly dug soil pit walls captured active-layer thermal gradients at unprecedented resolution, which may be useful in calibrating emerging numerical models. GPR and EMI were able to cover landscape scales (several kilometres) efficiently, and new analysis software showcased here yields calibrated EMI data that reveal the complicated distribution of shallow permafrost in a transitional landscape.

  3. Quality of surface and ground waters, Yakima Indian Reservation, Washington, 1973-74

    Science.gov (United States)

    Fretwell, M.O.

    1977-01-01

    This report describes the quality of the surface and ground waters of the Yakima Indian Reservation in south-central Washington, during the period November 1973-October 1974. The average dissolved-solids concentrations ranged from 48 to 116 mg/L (milligrams per liter) in the mountain streams, and from 88 to 372 mg/L in the lowland streams, drains, and a canal. All the mountain streams contain soft water (classified as 0-60 mg/L hardness as CaC03), and the lowland streams, drains, and canal contain soft to very hard water (more than 180 mg/L hardness as CaC03). The water is generally of suitable quality for irrigation, and neither salinity nor sodium hazards are a problem in waters from any of the streams studied. The specific conductance of water from the major aquifers ranged from 20 to 1 ,540 micromhos. Ground water was most dilute in mineral content in the Klickitat River basin and most concentrated in part of the Satus Creek basin. The ground water in the Satus Creek basin with the most concentrated mineral content also contained the highest percentage composition of sulfate, chloride, and nitrate. For drinking water, the nitrate-nitrogen concentrations exceeded the U.S. Public Health Service 's recommended limit of 10 mg/L over an area of several square miles, with a maximum observed concentration of 170 mg/L. (Woodard-USGS).

  4. Mechanism and bounding of earthquake energy input to building structure on surface ground subjected to engineering bedrock motion

    OpenAIRE

    Kojima, K; Sakaguchi, K; Takewaki, I.

    2015-01-01

    The mechanism of earthquake energy input to building structures is clarified by considering the surface ground amplification and soil–structure interaction. The earthquake input energies to superstructures, soil–foundation systems and total swaying–rocking system are obtained by taking the corresponding appropriate free bodies into account and defining the energy transfer functions. It has been made clear that, when the ground surface motion is white, the input energy to the swaying–rocking m...

  5. Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D

    Science.gov (United States)

    Lautz, Laura K.; Siegel, Donald I.

    2006-11-01

    We used a three-dimensional MODFLOW model, paired with MT3D, to simulate hyporheic zones around debris dams and meanders along a semi-arid stream. MT3D simulates both advective transport and sink/source mixing of solutes, in contrast to particle tracking (e.g. MODPATH), which only considers advection. We delineated the hydrochemically active hyporheic zone based on a new definition, specifically as near-stream subsurface zones receiving a minimum of 10% surface water within a 10-day travel time. Modeling results indicate that movement of surface water into the hyporheic zone is predominantly an advective process. We show that debris dams are a key driver of surface water into the subsurface along the experimental reach, causing the largest flux rates of water across the streambed and creating hyporheic zones with up to twice the cross-sectional area of other hyporheic zones. Hyporheic exchange was also found in highly sinuous segments of the experimental reach, but flux rates are lower and the cross-sectional areas of these zones are generally smaller. Our modeling approach simulated surface and ground water mixing in the hyporheic zone, and thus provides numerical approximations that are more comparable to field-based observations of surface-groundwater exchange than standard particle-tracking simulations.

  6. Modelling the Influence of Ground Surface Relief on Electric Sounding Curves Using the Integral Equations Method

    Directory of Open Access Journals (Sweden)

    Balgaisha Mukanova

    2017-01-01

    Full Text Available The problem of electrical sounding of a medium with ground surface relief is modelled using the integral equations method. This numerical method is based on the triangulation of the computational domain, which is adapted to the shape of the relief and the measuring line. The numerical algorithm is tested by comparing the results with the known solution for horizontally layered media with two layers. Calculations are also performed to verify the fulfilment of the “reciprocity principle” for the 4-electrode installations in our numerical model. Simulations are then performed for a two-layered medium with a surface relief. The quantitative influences of the relief, the resistivity ratios of the contacting media, and the depth of the second layer on the apparent resistivity curves are established.

  7. Flux of benzo(a)pyrene to the ground surface and its distribution in the ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Milukaite, A. [Institute of Physics, Vilnius (Lithuania)

    1998-07-01

    Benzo(a)pyrene (BP) has been investigated in bulk atmospheric deposition, moss, needles of pine and some species of vascular plants. At two remote Lithuanian sites, for 1990-1995 the flux of benzo(a)pyrene from the atmosphere to the ground surface varied between 0.3 to 4.8 {mu}g{sup -2} mo{sup -1}. Consequently the territory of Lithuania (65,000 km{sup 2}) yearly was exposed to 624-2574 kg of carcinogen. The distribution of BP in soil and various vascular plant tissues (trifolium tepens, Elitrygea repens, Thymus serpyllum) indicates that benzo(a)pyrene is assimilated by flora. The concentration of BP is different in various organs of vascular plants and mostly depends on the degree of soil pollution. More than 300 samples of moss, mostly Hylocomium spendens and Pleurozium schreberi were analysed for BP. From 3.1 to 896.0 {mu}g kg{sup -1} of BP were measured in the moss samples. The flux of BP to the ground surface correlates well with its concentration in moss. A map of BP flux across Lithuania was created. 20 refs., 3 figs., 3 tabs.

  8. Human health impacts of drinking water (surface and ground) pollution Dakahlyia Governorate, Egypt

    Science.gov (United States)

    Mandour, R. A.

    2012-09-01

    This study was done on 30 drinking tap water samples (surface and ground) and 30 urine samples taken from patients who attended some of Dakahlyia governorate hospitals. These patients were complaining of poor-quality tap water in their houses, which was confirmed by this study that drinking water is contaminated with trace elements in some of the studied areas. The aim of this study was to determine the relationship between the contaminant drinking water (surface and ground) in Dakahlyia governorate and its impact on human health. This study reports the relationship between nickel and hair loss, obviously shown in water and urine samples. Renal failure cases were related to lead and cadmium contaminated drinking water, where compatibilities in results of water and urine samples were observed. Also, liver cirrhosis cases were related to iron-contaminated drinking water. Studies of these diseases suggest that abnormal incidence in specific areas is related to industrial wastes and agricultural activities that have released hazardous and toxic materials in the drinking water and thereby led to its contamination in these areas. We conclude that trace elements should be removed from drinking water for human safety.

  9. Analysis of selected herbicide metabolites in surface and ground water of the United States

    Science.gov (United States)

    Scribner, E.A.; Thurman, E.M.; Zimmerman, L.R.

    2000-01-01

    One of the primary goals of the US Geological Survey (USGS) Laboratory in Lawrence, Kansas, is to develop analytical methods for the analysis of herbicide metabolites in surface and ground water that are vital to the study of herbicide fate and degradation pathways in the environment. Methods to measure metabolite concentrations from three major classes of herbicides - triazine, chloroacetanilide and phenyl-urea - have been developed. Methods for triazine metabolite detection cover nine compounds: six compounds are detected by gas chromatography/mass spectrometry; one is detected by high-performance liquid chromatography with diode-array detection; and eight are detected by liquid chromatography/mass spectrometry. Two metabolites of the chloroacetanilide herbicides - ethane sulfonic acid and oxanilic acid - are detected by high-performance liquid chromatography with diode-array detection and liquid chromatography/mass spectrometry. Alachlor ethane sulfonic acid also has been detected by solid-phase extraction and enzyme-linked immunosorbent assay. Six phenylurea metabolites are all detected by liquid chromatography/mass spectrometry; four of the six metabolites also are detected by gas chromatography/mass spectrometry. Additionally, surveys of herbicides and their metabolites in surface water, ground water, lakes, reservoirs, and rainfall have been conducted through the USGS laboratory in Lawrence. These surveys have been useful in determining herbicide and metabolite occurrence and temporal distribution and have shown that metabolites may be useful in evaluation of non-point-source contamination. Copyright (C) 2000 Elsevier Science B.V.

  10. Seasonal Influences on Ground-Surface Water Interactions in an Arsenic-Affected Aquifer in Cambodia

    Science.gov (United States)

    Richards, L. A.; Magnone, D.; Van Dongen, B.; Bryant, C.; Boyce, A.; Ballentine, C. J.; Polya, D. A.

    2015-12-01

    Millions of people in South and Southeast Asia consume drinking water daily which contains dangerous levels of arsenic exceeding health-based recommendations [1]. A key control on arsenic mobilization in aquifers in these areas has been controversially identified as the interaction of 'labile' organic matter contained in surface waters with groundwaters and sediments at depth [2-4], which may trigger the release of arsenic from the solid- to aqueous-phase via reductive dissolution of iron-(hyr)oxide minerals [5]. In a field site in Kandal Province, Cambodia, which is an arsenic-affected area typical to others in the region, there are strong seasonal patterns in groundwater flow direction, which are closely related to monsoonal rains [6] and may contribute to arsenic release in this aquifer. The aim of this study is to explore the implications of the high susceptibility of this aquifer system to seasonal changes on potential ground-surface water interactions. The main objectives are to (i) identify key zones where there are likely ground-surface water interactions, (ii) assess the seasonal impact of such interactions and (iii) quantify the influence of interactions using geochemical parameters (such as As, Fe, NO3, NH4, 14C, 3T/3He, δ18O, δ2H). Identifying the zones, magnitude and seasonal influence of ground-surface water interactions elucidates new information regarding potential locations/pathways of arsenic mobilization and/or transport in affected aquifers and may be important for water management strategies in affected areas. This research is supported by NERC (NE/J023833/1) to DP, BvD and CJB and a NERC PhD studentship (NE/L501591/1) to DM. References: [1] World Health Organization, 2008. [2] Charlet & Polya (2006), Elements, 2, 91-96. [3] Harvey et al. (2002), Science, 298, 1602-1606. [4] Lawson et al. (2013), Env. Sci. Technol. 47, 7085 - 7094. [5] Islam et al. (2004), Nature, 430, 68-71. [6] Benner et al. (2008) Appl. Geochem. 23(11), 3072 - 3087.

  11. Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.

    2004-01-01

    Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the

  12. Beagle to the Moon: An Experiment Package to Measure Polar Ice and Volatiles in Permanently Shadowed Areas or Beneath the Lunar Surface

    Science.gov (United States)

    Gibson, E. K.; McKay, D. S.; Pillinger, C. T.; Wright, I. P.; Sims, M. R.; Richter, L.

    2007-01-01

    Near the beginning of the next decade we will see the launch of scientific payloads to the lunar surface to begin laying the foundations for the return to the moon in the Vision for Space Exploration. Shortly thereafter, astronauts will return to the lunar surface and have the ability to place scientific packages on the surface that will provide information about lunar resources and compositions of materials in permanently shadowed regions of the moon (1). One of the important questions which must be answered early in the program is whether there are lunar resources which would facilitate "living off the land" and not require the transport of resources and consumables from Earth (2). The Beagle science package is the ideal payload (3) to use on the lunar surface for determining the nature of hydrogen, water and lunar volatiles found in the polar regions which could support the Vision for Space Exploration

  13. Ground Surface Deformation around Tehran due to Groundwater Recharge: InSAR Monitoring.

    Science.gov (United States)

    Gourmelen, N.; Peyret, M.; Fritz, J. F.; Cherry, J.

    2003-04-01

    Tehran is located on an active tectonic and seismic zone. The surface deformation monitoring provides a powerful tool for getting a better understanding of faults kinematics and mechanisms. Used in conjunction with GPS networks, InSAR (Interferometric Synthetic Aperture Radar) provides dense and precise deformation measurements which are essential for mapping complex heterogeneous deformation fields. Moreover, urban and arid areas preserve interferometric phase coherence. The archived acquisitions of ERS that span 9 months between September 1998 and June 1999 reveal wide areas of surface uplift (by as much as 9 cm). This vertical deformation (gradual in time) has probably no tectonic meaning but is rather the ground response to ground water recharge. These zones are all located dowstream of large alluvial fans like the one of Karaj. The variation of effective stress caused by intersticial water draining could explain such surface deformation. It can also be noticed that some faults act as boundary for these deformation zones and fluid motion. The understanding of this deformation is relevant for groundwater monitoring and urban developement management. It is also necessary for discriminating it from tectonic deformation that also occurs on this zone. Due to the lack of attitude control of satellite ERS-2 since February 2001, the last images acquired could not be combined with the former acquisitions. Nevertheless, we expect to be able to enrich our set of images in order to map tectonic deformation on a longer period and to monitor in a more continuous way the deformation due to groundwater evolution. This would allow to quantify the permanent and reversible part of this signal.

  14. Sub-micron free-standing metal slabs with dielectric nano-voids of arbitrary shapes embedded beneath atomically-flat surface.

    Science.gov (United States)

    Kho, Kiang Wei; Shen, Zexiang; Olivo, Malini

    2011-05-23

    Thin metal slabs with plasmonic nano-voids buried within the skin depth (slab. By artificially varying the topography of the capping metal surface from ultra-smooth to moderately-rough, we show structural symmetricity in a nano-void-metal system can render the overall plasmonic responses becoming profoundly influenced by the surface smoothness. The current fabrication technique is thus of primary importance to the preparation of any kind of smooth nano-void-passivated metal slabs.

  15. Imaging beneath the skin of large tropical rivers: System morphodynamics of the Fly and Beni Rivers revealed by novel sub-surface sonar, deep coring, and modelling

    Science.gov (United States)

    Aalto, R. E.; Grenfell, M.; Lauer, J. W.

    2011-12-01

    Tropical rivers dominate Earth's fluvial fluxes for water, carbon, and mineral sediment. They are characterized by large channels and floodplains, old system histories, prolonged periods of flooding, and a clay-dominated sediment flux. However, the underlying bed & floodplain strata are poorly understood. Available data commonly stem from skin-deep approaches such as GIS analysis of imagery, shallow sampling & topographic profiling during lower river stages. Given the large temporal & spatial scales, new approaches are needed to see below lag deposits on mobile sandy beds & deep into expansive floodbasins. Furthermore, such data are needed to test whether we can interpret large tropical river morphology using analogies to small temperate systems. Systems in a dynamic state of response to sea level rise or an increase/contrast in sediment load would provide especially valuable insight. Last August we conducted a field campaign along the Fly and Strickland Rivers in Papua New Guinea (discharge ~5,350 CMS) and this September we investigated the Beni River in Northern Bolivia (discharge ~3,500 CMS). Results were obtained using a novel measurement method: a high-power (>4kW) dual-frequency SyQwest sub-bottom profiler customized to best image 10-20m below the river/lake bed in shallow water. We were able to distinguish sandy deposits from harder clay and silt lenses and also collected bed grab samples to verify our sonar results. Deep borehole samples (5-15m), bank samples, and push cores confirmed observations from the sonar profiling. We simultaneously collected side-scan sonar imagery plus DGPS records of water/bed elevations that could be used to parameterize numerical models. We have now analyzed these results in some detail. Findings for the Fly River include: 1) The prevalence of hard clay beneath the bed of the Lower Fly River and many locations along the Strickland River, retarding migration; 2) Unusual bed morphology along the lower Middle Fly River, where the

  16. Geologic Evidence for Late-Stage Equatorial Surface and Ground Ice on Mars

    Science.gov (United States)

    Chapman, M. G.

    2003-12-01

    New imagery data from the Mars Observer Camera suggest that the equatorial canyon of Valles Marineris contained surface and ground ice relatively late in Martian history. Some troughs (or chasmata) of Valles Marineris contain large mounds and mesas of interior layered deposits (ILDs) that formed in the Late Hesperian to Early Amazonian. Although the origin of the ILDs remains controversial, their characteristics suggest that the strongest hypotheses origin are lacustrine or volcanic processes; some workers have suggested a compromise origin, noting that many MOC observations of ILDs are similar to those of terrestrial sub-ice volcanoes that erupt in meltwater lakes. Lacustrine deposition and sub-ice volcanism require that chamata water or ice would have had to remain stable on the surface long enough to form either (1) extremely thick (1 km to > 4 km) deposits of fine-grained suspended lacustrine materials or (2) numerous sub-ice volcanic edifices with heights that compare to those of Hawaiian oceanic volcanoes. However, a dust cover on top of ice or an ice-covered lake could aid in preventing rapid sublimation. If the ILDs are sub-ice volcanoes than new MOLA topographic data can be used to (1) measure the heights of their subaerial caprock and (2) estimate corresponding volumes of ice. For example, the largest ILD mound in the 113,275 km3 void of Juventae Chasma resembles a capped sub-ice volcanic ridge. The mound is about 2 km high; with the highest point of the cap reaching an elevation of about +80 m. GIS measurement indicate that the maximum volume of ice below the elevation of +80 m is 56,423 km3, so roughly half of the Chasma could have been filled with ice. If the ILDs are lacustrine, then the heights of some other mounds that rival the surrounding plateau elevation would have required a volume of water almost equal to their enclosing chasma. Later in the Amazonian, after sublimation of any putative surface water or ice, MOC imagery attests to ground ice

  17. A Comprehensive Laboratory Study to Improve Ground Truth Calibration of Remotely Sensed Near-Surface Soil Moisture

    Science.gov (United States)

    Babaeian, E.; Tuller, M.; Sadeghi, M.; Sheng, W.; Jones, S. B.

    2016-12-01

    Optical satellite and airborne remote sensing (RS) have been widely applied for characterization of large-scale surface soil moisture distributions. However, despite the excellent spatial resolution of RS data, the electromagnetic radiation within the optical bands (400-2500 nm) penetrates the soil profile only to a depth of a few millimeters; hence obtained moisture estimates are limited to the soil surface region. Furthermore, moisture sensor networks employed for ground truth calibration of RS observations commonly exhibit very limited spatial resolution, which consequently leads to significant discrepancies between RS and ground truth observations. To better understand the relationship between surface and near-surface soil moisture, we employed a benchtop hyperspectral line-scan imaging system to generate high resolution surface reflectance maps during evaporation from soil columns filled with source soils covering a wide textural range and instrumented with a novel time domain reflectometry (TDR) sensor array that allows monitoring of near surface moisture at 0.5-cm resolution. A recently developed physical model for surface soil moisture predictions from shortwave infrared reflectance was applied to estimate surface soil moisture from surface reflectance and to explore the relationship between surface and near-surface moisture distributions during soil drying. Preliminary results are very promising and their applicability for ground truth calibration of RS observations will be discussed.

  18. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  19. Interfaces Supporting Surface Gap Soliton Ground States in the 1D Nonlinear Schroedinger Equation

    CERN Document Server

    Dohnal, Tomas; Plum, Michael; Reichel, Wolfgang

    2012-01-01

    We consider the problem of verifying the existence of $H^1$ ground states of the 1D nonlinear Schr\\"odinger equation for an interface of two periodic structures: $$-u" +V(x)u -\\lambda u = \\Gamma(x) |u|^{p-1}u \\ {on} \\R$$ with $V(x) = V_1(x), \\Gamma(x)=\\Gamma_1(x)$ for $x\\geq 0$ and $V(x) = V_2(x), \\Gamma(x)=\\Gamma_2(x)$ for $x1$. The article [T. Dohnal, M. Plum and W. Reichel, "Surface Gap Soliton Ground States for the Nonlinear Schr\\"odinger Equation," \\textit{Comm. Math. Phys.} \\textbf{308}, 511-542 (2011)] provides in the 1D case an existence criterion in the form of an integral inequality involving the linear potentials $V_{1},V_2$ and the Bloch waves of the operators $-\\tfrac{d^2}{dx^2}+V_{1,2}-\\lambda$. We choose here the classes of piecewise constant and piecewise linear potentials $V_{1,2}$ and check this criterion for a set of parameter values. In the piecewise constant case the Bloch waves are calculated explicitly and in the piecewise linear case verified enclosures of the Bloch waves are computed ...

  20. Ground Plane and Near-Surface Thermal Analysis for NASA's Constellation Program

    Science.gov (United States)

    Gasbarre, Joseph F.; Amundsen, Ruth M.; Scola, Salvatore; Leahy, Frank F.; Sharp, John R.

    2008-01-01

    Most spacecraft thermal analysis tools assume that the spacecraft is in orbit around a planet and are designed to calculate solar and planetary fluxes, as well as radiation to space. On NASA Constellation projects, thermal analysts are also building models of vehicles in their pre-launch condition on the surface of a planet. This process entails making some modifications in the building and execution of a thermal model such that the radiation from the planet, both reflected albedo and infrared, is calculated correctly. Also important in the calculation of pre-launch vehicle temperatures are the natural environments at the vehicle site, including air and ground temperatures, sky radiative background temperature, solar flux, and optical properties of the ground around the vehicle. A group of Constellation projects have collaborated on developing a cohesive, integrated set of natural environments that accurately capture worst-case thermal scenarios for the pre-launch and launch phases of these vehicles. The paper will discuss the standardization of methods for local planet modeling across Constellation projects, as well as the collection and consolidation of natural environments for launch sites. Methods for Earth as well as lunar sites will be discussed.

  1. Two decades of temperature-time monitoring experiment: air - ground surface - shallow subsurface interactions

    Science.gov (United States)

    Cermak, Vladimir; Dedecek, Petr; Safanda, Jan; Kresl, Milan

    2014-05-01

    Long-term observations (1994-2013) of air and shallow ground temperatures at borehole Prague-Sporilov (50º02'28.5"E, 14º28'40.2"N, 274 m a.s.l.) have been thoroughly analyzed to understand the relationship between these quantities and to describe the mechanism of heat transport at the land-atmosphere boundary layer. Data provided a surprisingly small mean ground-air temperature offset of only 0.31 K with no clear annual course and with the offset value changing irregularly even on a daily scale. Such value is substantially lower than similar values (1-2 K and more) found elsewhere, but may well characterize a mild temperate zone, when all so far available information referred rather to southern locations. Borehole data were correlated with similar observations in a polygon-site under four types of surface conditions (grass, soil, sand and asphalt) completed with registration of meteorological variables (wind direction & velocity, air & soil humidity, direct & reflected solar radiation, precipitation and snow cover). The "thermal orbits" technique proved to be an effective tool for the fast qualitative diagnostics of the thermal regime in the subsurface (conductive versus non-conductive).

  2. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Qiang; Li, Na; Wang, Jun; Wang, Bo, E-mail: bradywang@hit.edu.cn; Li, Guo; Ding, Fei; Jin, Huiliang

    2015-06-30

    Highlights: • The morphology evolution of ground fused silica, processed by atmospheric plasma, was investigated experimentally. • The roughness development results from opening and coalescing of the plasma-etched cracks. • The shapes of grain-like etched pits are the results of the adjacent cracks coalescing with one another. • The descent of the pits density is due to some smaller etched pits that are swallowed up by larger pits. • Leading role in surface smoothing is laterally etching away the side walls of the intersecting pits. - Abstract: Subsurface damage (SSD) is a defect that is inevitably induced during mechanical processes, such as grinding and polishing. This defect dramatically reduces the mechanical strength and the laser damage thresholds of optical elements. Compared with traditional mechanical machining, atmospheric pressure plasma processing (APPP) is a relatively novel technology that induces almost no SSD during the processing of silica-based optical materials. In this paper, a form of APPP, inductively coupled plasma (ICP), is used to process fused silica substrates with fluorocarbon precursor under atmospheric pressure. The surface morphology evolution of ICP-processed substrates was observed and characterized by confocal laser scanning microscope (CLSM), field emission scanning electron microscope (SEM), and atomic force microscopy (AFM). The results show that the roughness evolves with the etching depth, and the roughness evolution is a single-peaked curve. This curve results from the opening and the coalescing of surface cracks and fractures. The coalescence procedure of these microstructures was simulated with two common etched pits on a polished fused silica surface. Understanding the roughness evolution of plasma-processed surface might be helpful in optimizing the optical fabrication chain that contains APPP.

  3. Numerical modelling of ground-borne noise and vibration in buildings due to surface rail traffic

    Science.gov (United States)

    Fiala, P.; Degrande, G.; Augusztinovicz, F.

    2007-04-01

    This paper deals with the numerical computation of the structural and acoustic response of a building to an incoming wave field generated by high-speed surface railway traffic. The source model consists of a moving vehicle on a longitudinally invariant track, coupled to a layered ground modelled with a boundary element formulation. The receiver model is based on a substructuring formulation and consists of a boundary element model of the soil and a finite element model of the structure. The acoustic response of the building's rooms is computed by means of a spectral finite element formulation. The paper investigates the structural and acoustic response of a multi-story portal frame office building up to a frequency of 150 Hz to the passage of a Thalys high-speed train at constant velocity. The isolation performance of three different vibration countermeasures: a floating-floor, a room-in-room, and base-isolation, are examined.

  4. Sampling and analysis for radon-222 dissolved in ground water and surface water

    Science.gov (United States)

    DeWayne, Cecil L.; Gesell, T.F.

    1992-01-01

    Radon-222 is a naturally occurring radioactive gas in the uranium-238 decay series that has traditionally been called, simply, radon. The lung cancer risks associated with the inhalation of radon decay products have been well documented by epidemiological studies on populations of uranium miners. The realization that radon is a public health hazard has raised the need for sampling and analytical guidelines for field personnel. Several sampling and analytical methods are being used to document radon concentrations in ground water and surface water worldwide but no convenient, single set of guidelines is available. Three different sampling and analytical methods - bubbler, liquid scintillation, and field screening - are discussed in this paper. The bubbler and liquid scintillation methods have high accuracy and precision, and small analytical method detection limits of 0.2 and 10 pCi/l (picocuries per liter), respectively. The field screening method generally is used as a qualitative reconnaissance tool.

  5. Surface Properties and Characteristics of Mars Landing Sites from Remote Sensing Data and Ground Truth

    Science.gov (United States)

    Golombek, M. P.; Haldemann, A. F.; Simpson, R. A.; Furgason, R. L.; Putzig, N. E.; Huertas, A.; Arvidson, R. E.; Heet, T.; Bell, J. F.; Mellon, M. T.; McEwen, A. S.

    2008-12-01

    Surface characteristics at the six sites where spacecraft have successfully landed on Mars can be related favorably to their signatures in remotely sensed data from orbit and from the Earth. Comparisons of the rock abundance, types and coverage of soils (and their physical properties), thermal inertia, albedo, and topographic slope all agree with orbital remote sensing estimates and show that the materials at the landing sites can be used as ground truth for the materials that make up most of the equatorial and mid- to moderately high-latitude regions of Mars. The six landing sites sample two of the three dominant global thermal inertia and albedo units that cover ~80% of the surface of Mars. The Viking, Spirit, Mars Pathfinder, and Phoenix landing sites are representative of the moderate to high thermal inertia and intermediate to high albedo unit that is dominated by crusty, cloddy, blocky or frozen soils (duricrust that may be layered) with various abundances of rocks and bright dust. The Opportunity landing site is representative of the moderate to high thermal inertia and low albedo surface unit that is relatively dust free and composed of dark eolian sand and/or increased abundance of rocks. Rock abundance derived from orbital thermal differencing techniques in the equatorial regions agrees with that determined from rock counts at the surface and varies from ~3-20% at the landing sites. The size-frequency distributions of rocks >1.5 m diameter fully resolvable in HiRISE images of the landing sites follow exponential models developed from lander measurements of smaller rocks and are continuous with these rock distributions indicating both are part of the same population. Interpretation of radar data confirms the presence of load bearing, relatively dense surfaces controlled by the soil type at the landing sites, regional rock populations from diffuse scattering similar to those observed directly at the sites, and root-mean-squared slopes that compare favorably

  6. Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers

    Science.gov (United States)

    Hanjalić, K.; Hrebtov, M.

    2016-07-01

    We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.

  7. Scalable and Detail-Preserving Ground Surface Reconstruction from Large 3D Point Clouds Acquired by Mobile Mapping Systems

    Science.gov (United States)

    Craciun, D.; Serna Morales, A.; Deschaud, J.-E.; Marcotegui, B.; Goulette, F.

    2014-08-01

    The currently existing mobile mapping systems equipped with active 3D sensors allow to acquire the environment with high sampling rates at high vehicle velocities. While providing an effective solution for environment sensing over large scale distances, such acquisition provides only a discrete representation of the geometry. Thus, a continuous map of the underlying surface must be built. Mobile acquisition introduces several constraints for the state-of-the-art surface reconstruction algorithms. Smoothing becomes a difficult task for recovering sharp depth features while avoiding mesh shrinkage. In addition, interpolation-based techniques are not suitable for noisy datasets acquired by Mobile Laser Scanning (MLS) systems. Furthermore, scalability is a major concern for enabling real-time rendering over large scale distances while preserving geometric details. This paper presents a fully automatic ground surface reconstruction framework capable to deal with the aforementioned constraints. The proposed method exploits the quasi-flat geometry of the ground throughout a morphological segmentation algorithm. Then, a planar Delaunay triangulation is applied in order to reconstruct the ground surface. A smoothing procedure eliminates high frequency peaks, while preserving geometric details in order to provide a regular ground surface. Finally, a decimation step is applied in order to cope with scalability constraints over large scale distances. Experimental results on real data acquired in large urban environments are presented and a performance evaluation with respect to ground truth measurements demonstrate the effectiveness of our method.

  8. Monitoring surface geothermal features using time series of aerial and ground-based photographs

    Science.gov (United States)

    Bromley, C.; van Manen, S. M.; Graham, D.

    2010-12-01

    Geothermal systems are of high conservation and scientific value and monitoring of these is an important management tool to assess natural variations and changes resulting from development and utilization. This study examines time series of aerial and ground-based photographs of geothermal areas within the Taupo Volcanic Zone, New Zealand. A time series of aerial photographs from 1946-2007 of the Broadlands Road Scenic Reserve (Taupo, New Zealand) highlights large changes to this small area as the result of the start of geothermal fluid production for the nearby Wairakei power plant in 1958 and other causes. Prior to the opening of the plant the area was not geothermally active, but expansion of steam zones due to pressure drawdown has resulted in significant thermal changes in the subsurface. These subsurface thermal changes are evident in the aerial photographs as the appearance of hydrothermal eruption craters and areas of thermal bare ground, which are too hot for vegetation to grown on. In addition, in the late 1960’s thermotolerant vegetation started to establish itself in the adjacent area. Changes in the surface area covered by each of these, reflect changes in the geothermal system as well as changes in management (e.g. exclusion of livestock), and a time series of these changes has been produced using ArcMap™. Monthly photographs of surface geothermal expressions in the Rotorua area show changes in colour and size of chloride springs with time. Colour and size changes are difficult to quantify due to varying exposure settings, weather conditions, and vantage points. However, these qualitative descriptions can be combined with quantitative time series such as temperature measurements, to provide better insight into surface changes that have occurred at this geothermal field. This study highlights the value of both qualitative and quantitative data that can be obtained from time series of photographs, including photographs that were obtained before the

  9. Ground surface thermal regime of rock glaciers in the High Tatra Mts., Slovakia

    Science.gov (United States)

    Uxa, Tomáš; Mida, Peter

    2017-04-01

    Numerous lobate- or tongue-shaped debris accumulations, mostly interpreted as rock glaciers, have recently been recognized in the High Tatra Mts., Slovakia (49˚ 10' N, 20˚ 08' E). These prominent landforms arise due to creep of voluminous debris-ice mixtures, and as such they are excellent indicators of present or past permafrost existence. Hence rock glaciers are extensively utilized to model the distribution of permafrost in mountain areas. However, commonly applied rules of thumb may not be entirely indicative to discriminate particularly between the inactive (permafrost in disequilibrium with present climate) and relict (without permafrost) rock glaciers, which may substantially complicate permafrost modelling. Accordingly, the information about their thermal state is essential to calibrate and validate regional permafrost models. Limited ground temperature data have been, however, available from the High Tatra Mts. to date and therefore, we bring the updated and enhanced results from the thermal investigations of eleven rock glaciers located in the Slavkovská dolina and Veľká Studená dolina valleys at elevations between 1832 and 2090 m asl. Ground surface temperature (GST) has been continuously monitored at seven rock glaciers between October 2014 and September 2016 using nine Minikin Tie (EMS Brno Inc.) and iButton DS1922L (Maxim Integrated Inc.) loggers with an accuracy of ±0.2 and ±0.5 ˚ C, respectively. In addition, the bottom temperature of snow (BTS) was measured at 306 locations during spring of 2015 and 2016 to map potential permafrost occurrence within all the surveyed rock glaciers and in their immediate surroundings. Mean annual ground surface temperature (MAGST) of the rock glaciers ranged between -1.3 ˚ C and +2.6 ˚ C and averaged +1.0 ˚ C and +0.8 ˚ C in 2014-2015 and 2015-2016, respectively. Two sites continually showed negative MAGST and two other sites were below +0.5 ˚ C and +1.0 ˚ C, respectively. This strongly contrasts with

  10. Ground and surface water for drinking: a laboratory study on genotoxicity using plant tests

    Directory of Open Access Journals (Sweden)

    Donatella Feretti

    2012-02-01

    Full Text Available Surface waters are increasingly utilized for drinking water because groundwater sources are often polluted. Several monitoring studies have detected the presence of mutagenicity in drinking water, especially from surface sources due to the reaction of natural organic matter with disinfectant. The study aimed to investigate the genotoxic potential of the products of reaction between humic substances, which are naturally present in surface water, and three disinfectants: chlorine dioxide, sodium hypochlorite and peracetic acid. Commercial humic acids dissolved in distilled water at different total organic carbon (TOC concentrations were studied in order to simulate natural conditions of both ground water (TOC=2.5 mg/L and surface water (TOC=7.5 mg/L. These solutions were treated with the biocides at a 1:1 molar ratio of C:disinfectant and tested for genotoxicity using the anaphase chromosomal aberration and micronucleus tests in Allium cepa, and the Vicia faba and Tradescantia micronucleus tests. The tests were carried out after different times and with different modes of exposure, and at 1:1 and 1:10 dilutions of disinfected and undisinfected humic acid solutions. A genotoxic effect was found for sodium hypochlorite in all plant tests, at both TOCs considered, while chlorine dioxide gave positive results only with the A.cepa tests. Some positive effects were also detected for PAA (A.cepa and Tradescantia. No relevant differences were found in samples with different TOC values. The significant increase in all genotoxicity end-points induced by all tested disinfectants indicates that a genotoxic potential is exerted even in the presence of organic substances at similar concentrations to those frequently present in drinking water.

  11. Ground and surface water for drinking: a laboratory study on genotoxicity using plant tests.

    Science.gov (United States)

    Feretti, Donatella; Ceretti, Elisabetta; Gustavino, Bianca; Zerbini, Llaria; Zani, Claudia; Monarca, Silvano; Rizzoni, Marco

    2012-02-17

    Surface waters are increasingly utilized for drinking water because groundwater sources are often polluted. Several monitoring studies have detected the presence of mutagenicity in drinking water, especially from surface sources due to the reaction of natural organic matter with disinfectant. The study aimed to investigate the genotoxic potential of the products of reaction between humic substances, which are naturally present in surface water, and three disinfectants: chlorine dioxide, sodium hypochlorite and peracetic acid. Commercial humic acids dissolved in distilled water at different total organic carbon (TOC) concentrations were studied in order to simulate natural conditions of both ground water (TOC=2.5 mg/L) and surface water (TOC=7.5 mg/L). These solutions were treated with the biocides at a 1:1 molar ratio of C:disinfectant and tested for genotoxicity using the anaphase chromosomal aberration and micronucleus tests in Allium cepa, and the Vicia faba and Tradescantia micronucleus tests. The tests were carried out after different times and with different modes of exposure, and at 1:1 and 1:10 dilutions of disinfected and undisinfected humic acid solutions. A genotoxic effect was found for sodium hypochlorite in all plant tests, at both TOCs considered, while chlorine dioxide gave positive results only with the A.cepa tests. Some positive effects were also detected for PAA (A.cepa and Tradescantia). No relevant differences were found in samples with different TOC values. The significant increase in all genotoxicity end-points induced by all tested disinfectants indicates that a genotoxic potential is exerted even in the presence of organic substances at similar concentrations to those frequently present in drinking water.

  12. Large-aperture ground glass surface profile measurement using coherence scanning interferometry.

    Science.gov (United States)

    Bae, Eundeok; Kim, Yunseok; Park, Sanguk; Kim, Seung-Woo

    2017-01-23

    We present a coherence scanning interferometer configured to deal with rough glass surfaces exhibiting very low reflectance due to severe sub-surface light scattering. A compound light source is prepared by combining a superluminescent light-emitting diode with an ytterbium-doped fiber amplifier. The light source is attuned to offer a short temporal coherence length of 15 μm but with high spatial coherence to secure an adequate correlogram contrast by delivering strongly unbalanced optical power to the low reflectance target. In addition, the infrared spectral range of the light source is shifted close to the visible side at a 1,038 nm center wavelength, so a digital camera of multi-mega pixels available for industrial machine vision can be used to improve the correlogram contrast further with better lateral image resolutions. Experimental results obtained from a ground Zerodur mirror of 200 mm aperture size and 0.9 μm rms roughness are discussed to validate the proposed interferometer system.

  13. Atrazine and its degradation products in surface and ground waters in Zhangjiakou District, China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A method using the solid phase extraction (SPE) and liquid chromatography-mass spectrometry (LC-MS) to analyse atrazine and its degradation products at levels of low nanograms per liter in water has been developed. The environmental water samples were filtered and then extracted by SPE with a new sulfonation of poly(divinylbenzene-co-N- vinylpyrrolidone) sorbents MCX. HPLC/APCIMS was used for the analysis of atrazine and its degradation products, desethylatrazine (DEA), deisopropylatrazine (DIA), didealkylatrazine (DEDIA), and hydroxyatrazine (HYA). The detection limits ranged from 10-50 ng/L in water samples. Samples were collected from deep wells and a reservoir near a plant that produced atrazine. Atrazine concentration levels in most surface samples were above the limit of the China Surface Water Regulation (3 mg/L). In ground water, the levels of degradation product were more than 0.1 mg/L and 5-10 times greater than those of atrazine. The highest DEA concentration in the groundwater sample taken at the 130 m depth was 7.2 ug/L.

  14. Spectroscopic determination of ground and excited state vibrational potential energy surfaces

    Science.gov (United States)

    Laane, Jaan

    Far-infrared spectra, mid-infrared combination band spectra, Raman spectra, and dispersed fluorescence spectra of non-rigid molecules can be used to determine the energies of many of the quantum states of conformationally important vibrations such as out-of-plane ring modes, internal rotations, and molecular inversions in their ground electronic states. Similarly, the fluorescence excitation spectra of jet-cooled molecules, together with electronic absorption spectra, provide the information for determining the vibronic energy levels of electronic excited states. One- or two-dimensional potential energy functions, which govern the conformational changes along the vibrational coordinates, can be determined from these types of data for selected molecules. From these functions the molecular structures, the relative energies between different conformations, the barriers to molecular interconversions, and the forces responsible for the structures can be ascertained. This review describes the experimental and theoretical methodology for carrying out the potential energy determinations and presents a summary of work that has been carried out for both electronic ground and excited states. The results for the out-of-plane ring motions of four-, five-, and six-membered rings will be presented, and results for several molecules with unusual properties will be cited. Potential energy functions for the carbonyl wagging and ring modes for several cyclic ketones in their S1(n,pi*) states will also be discussed. Potential energy surfaces for the three internal rotations, including the one governing the photoisomerization process, will be examined for trans-stilbene in both its S0 and S1(pi,pi*) states. For the bicyclic molecules in the indan family, the two-dimensional potential energy surfaces for the highly interacting ring-puckering and ring-flapping motions in both the S0 and S1(pi,pi*) states have also been determined using all of the spectroscopic methods mentioned above

  15. Ozone treatment of coal- and coffee grounds-based active carbons: Water vapor adsorption and surface fractal micropores

    Energy Technology Data Exchange (ETDEWEB)

    Tsunoda, Ryoichi; Ozawa, Takayoshi; Ando, Junichi [Kanagawa Industrial Technology Research Inst., Ebina, Kanagawa (Japan)

    1998-09-15

    Characteristics of the adsorption iostherms of water vapor on active carbons from coal and coffee grounds and those ozonized ones from the surface fractal dimension analysis are discussed. The upswing of the adsorption isotherms in the low relative pressure of coffee grounds-based active carbon, of which isotherms were not scarcely affected on ozonization, was attributed to the adsorption of water molecules on the metallic oxides playing the role of oxygen-surface complexes, which formed the corrugated surfaces on the basal planes of micropore walls with the surface fractal dimension D{sub s} > 2. On the other hand, coal-based active carbon with D{sub s} < 2, which indicated the flat surfaces of micropore walls, showed little effect on the upswing even on ozonization, even though the adsorption amounts of water vapor were increased in the low relative pressure.

  16. Water-table and Potentiometric-surface altitudes in the Upper Glacial, Magothy, and Lloyd aquifers beneath Long Island, New York, April-May 2010

    Science.gov (United States)

    Monti, Jack; Como, Michael D.; Busciolano, Ronald

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with State and local agencies, systematically collects groundwater data at varying measurement frequencies to monitor the hydrologic conditions on Long Island, New York. Each year during April and May, the USGS conducts a synoptic survey of water levels to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island—the upper glacial, Magothy, and Lloyd aquifers (Smolensky and others, 1989)—and the hydraulically connected Jameco (Soren, 1971) and North Shore aquifers (Stumm, 2001). These data and the maps constructed from them are commonly used in studies of Long Island’s hydrology and are used by water managers and suppliers for aquifer management and planning purposes. Water-level measurements made in 503 monitoring wells, a network of observation and supply wells, and 16 streamgage locations across Long Island during April–May 2010 were used to prepare the maps in this report. Measurements were made by the wetted-tape method to the nearest hundredth of a foot. Water-table and potentiometric-surface altitudes in these aquifers were contoured by using these measurements. The water-table contours were interpreted by using water-level data collected from 16 streamgages, 349 observation wells, and 1 supply well screened in the upper glacial aquifer and (or) shallow Magothy aquifer; the Magothy aquifer’s potentiometric-surface contours were interpreted from measurements at 67 observation wells and 27 supply wells screened in the middle to deep Magothy aquifer and (or) the contiguous and hydraulically connected Jameco aquifer. The Lloyd aquifer’s potentiometric-surface contours were interpreted from measurements at 55 observation wells and 4 supply wells screened in the Lloyd aquifer or the contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and, therefore, were

  17. Groundwater Surface Trends at Van Norden Meadow, California, from Ground Penetrating Radar Profiles

    Science.gov (United States)

    Tadrick, N. I.; Blacic, T. M.; Yarnell, S. M.

    2014-12-01

    Van Norden meadow in the Donner Summit area west of Lake Tahoe is one of the largest sub-alpine meadows in the Sierra Nevada mountain range. As natural water retention basins, meadows attenuate floods, improve water quality and support vegetation that stabilizes stream banks and promotes high biodiversity. Like most meadows in the Sierras however, over-grazing, road-building, and development has resulted in localized stream incision, degradation, and partial conversion from wet to dry conditions in Van Norden. Additionally, a small dam at the base of the meadow has partially flooded the lower meadow creating reservoir conditions. Privately owned since the late 1800s, Van Norden was recently purchased by a local land trust to prevent further development and return the area to public ownership. Restoration of the natural meadow conditions will involve notching the dam in 2016 to reduce currently impounded water volumes from 250 to less than 50 acre-feet. To monitor the effects of notching the dam on the upstream meadow conditions, better understanding of the surface and groundwater hydrology both pre- and post-restoration is required. We surveyed the meadow in summer 2014 with ground penetrating radar (GPR) to map the groundwater surface prior to restoration activities using a 270MHz antenna to obtain a suite of longitudinal and transverse transects. Groundwater level within the meadow was assessed using both piezometer readings and sweeps of the GPR antenna. Seventeen piezometers were added this year to the 13 already in place to monitor temporal changes in the groundwater surface, while the GPR profiles provided information about lateral variations. Our results provide an estimate of the groundwater depth variations across the upper portion of the meadow before notching. We plan to return in 2015 to collect GPR profiles during wetter conditions, which will provide a more complete assessment of the pre-notching groundwater hydrology.

  18. Surface Nuclear Magnetic Resonance (SNMR - A new method for exploration of ground water and aquifer properties

    Directory of Open Access Journals (Sweden)

    U. Yaramanci

    2000-06-01

    Full Text Available The Surface Nuclear Magnetic Resonance (SNMR method is a fairly new technique in geophysics to assess ground water, i.e. existence, amount and productibility by measurements at the surface. The NMR technique used in medicine, physics and lately in borehole geophysics was adopted for surface measurements in the early eighties, and commercial equipment for measurements has been available since the mid nineties. The SNMR method has been tested at sites in Northern Germany with Quaternary sand and clay layers, to examine the suitability of this new method for groundwater exploration and environmental investigations. More information is obtained by SNMR, particularly with respect to aquifer parameters, than with other geophysical techniques. SNMR measurements were carried out at three borehole locations, together with 2D and 1D direct current geoelectrics and well logging (induction log, gamma-ray log and pulsed neutron-gamma log. Permeabilities were calculated from the grain-size distributions of core material determined in the laboratory. It is demonstrated that the SNMR method is able to detect groundwater and the results are in good agreement with other geophysical and hydrogeological data. Using the SNMR method, the water content of the unsaturated and saturated zones (i.e. porosity of an aquifer can be reliably determined. This information and resistivity data permit in-situ determination of other aquifer parameters. Comparison of the SNMR results with borehole data clearly shows that the water content determined by SNMR is the free or mobile water in the pores. The permeabilities estimated from the SNMR decay times are similar to those derived from sieve analysis of core material. Thus, the combination of SNMR with geoelectric methods promises to be a powerful tool for studying aquifer properties.

  19. Transport and fate of nitrate at the ground-water/surface-water interface

    Science.gov (United States)

    Puckett, L.J.; Zamora, C.; Essaid, H.; Wilson, J.T.; Johnson, H.M.; Brayton, M.J.; Vogel, J.R.

    2008-01-01

    Although numerous studies of hyporheic exchange and denitrification have been conducted in pristine, high-gradient streams, few studies of this type have been conducted in nutrient-rich, low-gradient streams. This is a particularly important subject given the interest in nitrogen (N) inputs to the Gulf of Mexico and other eutrophic aquatic systems. A combination of hydrologic, mineralogical, chemical, dissolved gas, and isotopic data, were used to determine the processes controlling transport and fate of NO3- in streambeds at five sites across the USA. Water samples were collected from streambeds at depths ranging from 0.3 to 3 m at three to five points across the stream and in two to five separate transects. Residence times of water ranging from 0.28 to 34.7 d m-1 in the streambeds of N-rich watersheds played an important role in allowing denitrification to decrease NO3- concentrations. Where potential electron donors were limited and residence times were short, denitrification was limited. Consequently, in spite of reducing conditions at some sites, NO3- was transported into the stream. At two of the five study sites, NO3- in surface water infiltrated the streambeds and concentrations decreased, supporting current models that NO3- would be retained in N-rich streams. At the other three study sites, hydrogeologic controls limited or prevented infiltration of surface water into the streambed, and ground-water discharge contributed to NO 3- loads. Our results also show that in these low hydrologic-gradient systems, storm and other high-flow events can be important factors for increasing surface-water movement into streambeds. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  20. A comparative study of the phosphate levels in some surface and ground water bodies of Swaziland

    Directory of Open Access Journals (Sweden)

    A.O. Fadiran

    2008-08-01

    Full Text Available The levels of total phosphate in selected surface water and groundwater bodies from Manzini and Lubombo regions of Swaziland were determined using UV spectroscopic method. Samples were collected from three rivers (upstream and downstream of each, three industrial effluents, one reservoir, one pond, one tap water and fifteen boreholes. Mean phosphate levels in the tap water and reservoir varied between 0.08-0.09 mg/L while for the river samples, the range was 0.11-0.37 and for the industrial discharge, it was 0.11-1.60 mg/L PO4–P. For the ground water systems it ranged between 0.10-0.49 mg/L PO4–P. The mean phosphate levels in all the analyzed surface and groundwater samples were below the recommended maximum contaminant level (MCL by SWSC (Swaziland Water Service Corporation – i.e. 1.0 mg/L for drinking water; 2.0 mg/L for rivers and industrial effluents, and the South African criterion of 1.0 mg/L PO4–P, for sewage effluents being discharged into receiving waters. However, pooled mean values for all the sites were higher than the USEPA criterion of 0.03 mg/L maximum for uncontaminated lakes. Dominant factors considered to have influenced the levels of phosphates in both the surface and groundwater samples analyzed include industrial activities (where present, agricultural activities (including livestock, population density, location (urban, suburban or rural, soil/rock type in the vicinity of the sampling point, climate and rainfall pattern of the area or region concerned.

  1. Questa baseline and pre-mining ground-water quality investigation. 10. Geologic influences on ground and surface waters in the lower Red River watershed, New Mexico

    Science.gov (United States)

    Ludington, Steve; Plumlee, Geoff; Caine, Jonathan; Bove, Dana; Holloway, JoAnn; Livo, Eric

    2005-01-01

    Introduction: This report is one in a series that presents results of an interdisciplinary U.S. Geological Survey (USGS) study of ground-water quality in the lower Red River watershed prior to open-pit and underground molybdenite mining at Molycorp's Questa mine. The stretch of the Red River watershed that extends from just upstream of the town of Red River, N. Mex., to just above the town of Questa includes several mineralized areas in addition to the one mined by Molycorp. Natural erosion and weathering of pyrite-rich rocks in the mineralized areas has created a series of erosional scars along this stretch of the Red River that contribute acidic waters, as well as mineralized alluvial material and sediments, to the river. The overall goal of the USGS study is to infer the premining ground-water quality at the Molycorp mine site. An integrated geologic, hydrologic, and geochemical model for ground water in the mineralized-but unmined-Straight Creek drainage (a tributary of the Red River) is being used as an analog for the geologic, geochemical, and hydrologic conditions that influenced ground-water quality and quantity in the Red River drainage prior to mining. This report provides an overall geologic framework for the Red River watershed between Red River and Questa, in northern New Mexico, and summarizes key geologic, mineralogic, structural and other characteristics of various mineralized areas (and their associated erosional scars and debris fans) that likely influence ground- and surface-water quality and hydrology. The premining nature of the Sulphur Gulch and Goat Hill Gulch scars on the Molycorp mine site can be inferred through geologic comparisons with other unmined scars in the Red River drainage.

  2. A mixed space-time and wavenumber-frequency domain procedure for modelling ground vibration from surface railway tracks

    Science.gov (United States)

    Koroma, S. G.; Thompson, D. J.; Hussein, M. F. M.; Ntotsios, E.

    2017-07-01

    This paper presents a methodology for studying ground vibration in which the railway track is modelled in the space-time domain using the finite element method (FEM) and, for faster computation, discretisation of the ground using either FEM or the boundary element method (BEM) is avoided by modelling it in the wavenumber-frequency domain. The railway track is coupled to the ground through a series of rectangular strips located at the surface of the ground; their vertical interaction is described by a frequency-dependent dynamic stiffness matrix whose elements are represented by discrete lumped parameter models. The effectiveness of this approach is assessed firstly through frequency domain analysis using as excitation a stationary harmonic load applied on the rail. The interaction forces at the ballast/ground interface are calculated using the FE track model in the space-time domain, transformed to the wavenumber domain, and used as input to the ground model for calculating vibration in the free field. Additionally, time domain simulations are also performed with the inclusion of nonlinear track parameters. Results are presented for the coupled track/ground model in terms of time histories and frequency spectra for the track vibration, interaction forces and free-field ground vibration. For the linear track model, the results from the mixed formulation are in excellent agreement with those from a semi-analytical model formulated in the wavenumber-frequency domain, particularly in the vicinity of the loading point. The accuracy of the mixed formulation away from the excitation point depends strongly on the inclusion of through-ground coupling in the lumped parameter model, which has been found to be necessary for both track dynamics and ground vibration predictions.

  3. Assessment of volatile organic compounds in surface water at West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 1999

    Science.gov (United States)

    Olsen, Lisa D.; Spencer, Tracey A.

    2000-01-01

    The U.S. Geological Survey (USGS) collected 13 surface-water samples and 3 replicates from 5 sites in the West Branch Canal Creek area at Aberdeen Proving Ground from February through August 1999, as a part of an investigation of ground-water contamination and natural attenuation processes. The samples were analyzed for volatile organic compounds, including trichloroethylene, 1,1,2,2-tetrachloroethane, carbon tetrachloride, and chloroform, which are the four major contaminants that were detected in ground water in the Canal Creek area in earlier USGS studies. Field blanks were collected during the sampling period to assess sample bias. Field replicates were used to assess sample variability, which was expressed as relative percent difference. The mean variability of the surface-water replicate analyses was larger (35.4 percent) than the mean variability of ground-water replicate analyses (14.6 percent) determined for West Branch Canal Creek from 1995 through 1996. The higher variability in surface-water analyses is probably due to heterogeneities in the composition of the surface water rather than differences in sampling or analytical procedures. The most frequently detected volatile organic compound was 1,1,2,2- tetrachloroethane, which was detected in every sample and in two of the replicates. The surface-water contamination is likely the result of cross-media transfer of contaminants from the ground water and sediments along the West Branch Canal Creek. The full extent of surface-water contamination in West Branch Canal Creek and the locations of probable contaminant sources cannot be determined from this limited set of data. Tidal mixing, creek flow patterns, and potential effects of a drought that occurred during the sampling period also complicate the evaluation of surface-water contamination.

  4. Ground surface temperature histories in northern Ontario and Québec for the past 500 years

    Science.gov (United States)

    Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-04-01

    We have used 19 temperature-depth profiles measured in boreholes from eastern Canada to reconstruct the ground surface temperature histories of the region. The boreholes are located north of 51oN, and west and east of James Bay in northern Ontario and Québec. The 8 boreholes in northern Ontario come from 3 sites in a region of extensive discontinuous permafrost, while the 11 holes from Québec come from 6 sites in a region of sporadic discontinuous permafrost. The depths of the holes range between 400 and 800 m, allowing a reconstruction of the ground surface temperature histories for the past 500 years. Present ground surface temperatures are higher in Québec, perhaps because the region receives more snowfall as shown by meteorological records and proxy data. The ground surface temperature histories indicate a present-day warming of ˜2-2.5oC in Ontario and ˜1-1.5oC in Québec relative to the reference surface temperature 500 years BP. These results are in agreement with available proxy data for the recent warming in eastern North America. Furthermore, they suggest that the higher snowfall and strong cooling during the Little Ice Age could have muted the borehole temperature record of climate change in Québec.

  5. An Upscaling Algorithm to Obtain the Representative Ground Truth of LAI Time Series in Heterogeneous Land Surface

    Directory of Open Access Journals (Sweden)

    Yuechan Shi

    2015-09-01

    Full Text Available Upscaling in situ leaf area index (LAI measurements to the footprint scale is important for the validation of medium resolution remote sensing products. However, surface heterogeneity and temporal variation of vegetation make this difficult. In this study, a two-step upscaling algorithm was developed to obtain the representative ground truth of LAI time series in heterogeneous surfaces based on in situ LAI data measured by the wireless sensor network (WSN observation system. Since heterogeneity within a site usually arises from the mixture of vegetation and non-vegetation surfaces, the spatial heterogeneity of vegetation and land cover types were separately considered. Representative LAI time series of vegetation surfaces were obtained by upscaling in situ measurements using an optimal weighted combination method, incorporating the expectation maximum (EM algorithm to derive the weights. The ground truth of LAI over the whole site could then be determined using area weighted combination of representative LAIs of different land cover types. The algorithm was evaluated using a dataset collected in Heihe Watershed Allied Telemetry Experimental Research (HiWater experiment. The proposed algorithm can effectively obtain the representative ground truth of LAI time series in heterogeneous cropland areas. Using the normal method of an average LAI measurement to represent the heterogeneous surface produced a root mean square error (RMSE of 0.69, whereas the proposed algorithm provided RMSE = 0.032 using 23 sampling points. The proposed ground truth derived method was implemented to validate four major LAI products.

  6. Seismic wave attenuation from borehole and surface records in the top 2.5 km beneath the city of Basel, Switzerland

    KAUST Repository

    Bethmann, Falko

    2012-08-01

    We investigate attenuation (Q−1) of sediments of 2.5–3.5km thickness underneath the city of Basel, Switzerland. We use recordings of 195 induced events that were obtained during and after the stimulation of a reservoir for a Deep Heat Mining Project in 2006 and 2007. The data set is ideally suited to estimate Q as all events are confined to a small source volume and were recorded by a dense surface network as well as six borehole sensors at various depths. The deepest borehole sensor is positioned at a depth of 2.7km inside the crystalline basement at a mean hypocentral distance of 1.8km. This allows us to measure Q for frequencies between 10 and 130 Hz. We apply two different methods to estimate Q. First, we use a standard spectral ratio technique to obtain Q, and as a second measure we estimate Q in the time domain, by convolving signals recorded by the deepest sensor with a Q operator and then comparing the convolved signals to recordings at the shallower stations. Both methods deliver comparable values for Q. We also observe similar attenuation for P- and S- waves (QP∼QS). As expected, Q increases with depth, but with values around 30–50, it is low even for the consolidated Permian and Mesozoic sediments between 500 and 2700 m.

  7. Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas ground-water basin, Ventura County, California

    Science.gov (United States)

    Hanson, Randall T.; Martin, Peter; Koczot, Kathryn M.

    2003-01-01

    Ground water is the main source of water in the Santa Clara-Calleguas ground-water basin that covers about 310 square miles in Ventura County, California. A steady increase in the demand for surface- and ground-water resources since the late 1800s has resulted in streamflow depletion and ground-water overdraft. This steady increase in water use has resulted in seawater intrusion, inter-aquifer flow, land subsidence, and ground-water contamination. The Santa Clara-Calleguas Basin consists of multiple aquifers that are grouped into upper- and lower-aquifer systems. The upper-aquifer system includes the Shallow, Oxnard, and Mugu aquifers. The lower-aquifer system includes the upper and lower Hueneme, Fox Canyon, and Grimes Canyon aquifers. The layered aquifer systems are each bounded below by regional unconformities that are overlain by extensive basal coarse-grained layers that are the major pathways for ground-water production from wells and related seawater intrusion. The aquifer systems are bounded below and along mountain fronts by consolidated bedrock that forms a relatively impermeable boundary to ground-water flow. Numerous faults act as additional exterior and interior boundaries to ground-water flow. The aquifer systems extend offshore where they crop out along the edge of the submarine shelf and within the coastal submarine canyons. Submarine canyons have dissected these regional aquifers, providing a hydraulic connection to the ocean through the submarine outcrops of the aquifer systems. Coastal landward flow (seawater intrusion) occurs within both the upper- and lower-aquifer systems. A numerical ground-water flow model of the Santa Clara-Calleguas Basin was developed by the U.S. Geological Survey to better define the geohydrologic framework of the regional ground-water flow system and to help analyze the major problems affecting water-resources management of a typical coastal aquifer system. Construction of the Santa Clara-Calleguas Basin model required

  8. Modeling short wave radiation and ground surface temperature: a validation experiment in the Western Alps

    Science.gov (United States)

    Pogliotti, P.; Cremonese, E.; Dallamico, M.; Gruber, S.; Migliavacca, M.; Morra di Cella, U.

    2009-12-01

    Permafrost distribution in high-mountain areas is influenced by topography (micro-climate) and high variability of ground covers conditions. Its monitoring is very difficult due to logistical problems like accessibility, costs, weather conditions and reliability of instrumentation. For these reasons physically-based modeling of surface rock/ground temperatures (GST) is fundamental for the study of mountain permafrost dynamics. With this awareness a 1D version of GEOtop model (www.geotop.org) is tested in several high-mountain sites and its accuracy to reproduce GST and incoming short wave radiation (SWin) is evaluated using independent field measurements. In order to describe the influence of topography, both flat and near-vertical sites with different aspects are considered. Since the validation of SWin is difficult on steep rock faces (due to the lack of direct measures) and validation of GST is difficult on flat sites (due to the presence of snow) the two parameters are validated as independent experiments: SWin only on flat morphologies, GST only on the steep ones. The main purpose is to investigate the effect of: (i) distance between driving meteo station location and simulation point location, (ii) cloudiness, (iii) simulation point aspect, (iv) winter/summer period. The temporal duration of model runs is variable from 3 years for the SWin experiment to 8 years for the validation of GST. The model parameterization is constant and tuned for a common massive bedrock of crystalline rock like granite. Ground temperature profile is not initialized because rock temperature is measured at only 10cm depth. A set of 9 performance measures is used for comparing model predictions and observations (including: fractional mean bias (FB), coefficient of residual mass (CMR), mean absolute error (MAE), modelling efficiency (ME), coefficient of determination (R2)). Results are very encouraging. For both experiments the distance (Km) between location of the driving meteo

  9. Lithosphere-asthenosphere interaction beneath the western United States from the joint inversion of body-wave traveltimes and surface-wave phase velocities

    Science.gov (United States)

    Obrebski, M.; Allen, R.M.; Pollitz, F.; Hung, S.-H.

    2011-01-01

    The relation between the complex geological history of the western margin of the North American plate and the processes in the mantle is still not fully documented and understood. Several pre-USArray local seismic studies showed how the characteristics of key geological features such as the Colorado Plateau and the Yellowstone Snake River Plains are linked to their deep mantle structure. Recent body-wave models based on the deployment of the high density, large aperture USArray have provided far more details on the mantle structure while surface-wave tomography (ballistic waves and noise correlations) informs us on the shallow structure. Here we combine constraints from these two data sets to image and study the link between the geology of the western United States, the shallow structure of the Earth and the convective processes in mantle. Our multiphase DNA10-S model provides new constraints on the extent of the Archean lithosphere imaged as a large, deeply rooted fast body that encompasses the stable Great Plains and a large portion of the Northern and Central Rocky Mountains. Widespread slow anomalies are found in the lower crust and upper mantle, suggesting that low-density rocks isostatically sustain part of the high topography of the western United States. The Yellowstone anomaly is imaged as a large slow body rising from the lower mantle, intruding the overlying lithosphere and controlling locally the seismicity and the topography. The large E-W extent of the USArray used in this study allows imaging the 'slab graveyard', a sequence of Farallon fragments aligned with the currently subducting Juan de Fuca Slab, north of the Mendocino Triple Junction. The lithospheric root of the Colorado Plateau has apparently been weakened and partly removed through dripping. The distribution of the slower regions around the Colorado Plateau and other rigid blocks follows closely the trend of Cenozoic volcanic fields and ancient lithospheric sutures, suggesting that the

  10. Active subglacial lakes and channelized water flow beneath the Kamb Ice Stream

    Science.gov (United States)

    Kim, Byeong-Hoon; Lee, Choon-Ki; Seo, Ki-Weon; Lee, Won Sang; Scambos, Ted

    2016-12-01

    We identify two previously unknown subglacial lakes beneath the stagnated trunk of the Kamb Ice Stream (KIS). Rapid fill-drain hydrologic events over several months are inferred from surface height changes measured by CryoSat-2 altimetry and indicate that the lakes are probably connected by a subglacial drainage network, whose structure is inferred from the regional hydraulic potential and probably links the lakes. The sequential fill-drain behavior of the subglacial lakes and concurrent rapid thinning in a channel-like topographic feature near the grounding line implies that the subglacial water repeatedly flows from the region above the trunk to the KIS grounding line and out beneath the Ross Ice Shelf. Ice shelf elevation near the hypothesized outlet is observed to decrease slowly during the study period. Our finding supports a previously published conceptual model of the KIS shutdown stemming from a transition from distributed flow to well-drained channelized flow of subglacial water. However, a water-piracy hypothesis in which the KIS subglacial water system is being starved by drainage in adjacent ice streams is also supported by the fact that the degree of KIS trunk subglacial lake activity is relatively weaker than those of the upstream lakes.

  11. Urban archaeological investigations using surface 3D Ground Penetrating Radar and Electrical Resistivity Tomography methods

    Science.gov (United States)

    Papadopoulos, Nikos; Sarris, Apostolos; Yi, Myeong-Jong; Kim, Jung-Ho

    2009-02-01

    Ongoing and extensive urbanisation, which is frequently accompanied with careless construction works, may threaten important archaeological structures that are still buried in the urban areas. Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) methods are most promising alternatives for resolving buried archaeological structures in urban territories. In this work, three case studies are presented, each of which involves an integrated geophysical survey employing the surface three-dimensional (3D) ERT and GPR techniques, in order to archaeologically characterise the investigated areas. The test field sites are located at the historical centres of two of the most populated cities of the island of Crete, in Greece. The ERT and GPR data were collected along a dense network of parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way, applying specific filters to the data in order to enhance their information content. Finally, horizontal depth slices representing the 3D variation of the physical properties were created. The GPR and ERT images significantly contributed in reconstructing the complex subsurface properties in these urban areas. Strong GPR reflections and high-resistivity anomalies were correlated with possible archaeological structures. Subsequent excavations in specific places at both sites verified the geophysical results. The specific case studies demonstrated the applicability of ERT and GPR techniques during the design and construction stages of urban infrastructure works, indicating areas of archaeological significance and guiding archaeological excavations before construction work.

  12. The impact of municipal landfill on surface and ground water quality in Bulawayo, Zimbabwe

    Directory of Open Access Journals (Sweden)

    R. Nyengera

    2012-11-01

    Full Text Available Leachate from Richmond municipal landfill, underlain by the Matsheumhlope unconfined aquifer in Bulawayo city and its consequent water resource quality impacts are evaluated. Leachate samples from collection ponds and water samples from a stream, and up and down-gradient boreholes fromthe landfill were tested for nine pollutants. The leachate pollutants found in both surface and ground water included metals (Fe, Pb and Hg and organic compounds that are hazardous to both human and the environmental health. Borehole water quality compliance with the relevant national and international regulations is reported. From borehole water samples, only chloride and nitrate with concentrations of 56.9 mg/ℓ and 2.26 mg/ℓ, respectively, were within the World Health Organisation (WHO recommended limits for drinking water of 250 mg/ℓ and 10 mg/ℓ, respectively. Lead and mercury concentrations of 0.22 mg/ℓ and 0.04 mg/ℓ were 10 times higher than WHO guidelines of 0.01 and 0.001 mg/ℓ, respectively. Both landfill and informal settlement activities near the landfill impact negatively to water resources quality in the area. City council should minimize waste by recycling, pre-treat collected leachate and drill monitoring wells around the landfill to check possible leachate leaks to water resources and take remedial actions, such assubmerged leachate combustion and evaporation.

  13. A study of the efficiency of spur gears made of powder metallurgy materials - ground versus super-finished surfaces

    OpenAIRE

    Li, Xinmin; Sosa, Mario; Andersson, Martin; Olofsson, Ulf

    2016-01-01

    Power loss is one of the main concerns in gear transmission systems. In this study a recirculating power back-to-back FZG test rig was used to investigate the efficiency of spur gears made of powder metallurgy (PM) material using two different surface manufacturing methods (ground and super-finished). The results were compared with previously presented results of standard gear material from the same test rig. The influence of the material (Wrought steel or PM) and surface roughness on the gea...

  14. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Vesna Kostik; Biljana Bauer; Zoran Kavrakovski

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  15. Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst

    Science.gov (United States)

    Katz, B.G.; Coplen, T.B.; Bullen, T.D.; Hal, Davis J.

    1997-01-01

    In the mantled karst terrane of northern Florida, the water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface. Chemical and isotopic analyses [18O/16O (??18O), 2H/1H (??D), 13C/12C (??13C), tritium(3H), and strontium-87/strontium-86(87Sr/86Sr)]along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of ground water as it evolves downgradient in two systems. In one system, surface water enters the Upper Floridan aquifer through a sinkhole located in the Northern Highlands physiographic unit. In the other system, surface water enters the aquifer through a sinkhole lake (Lake Bradford) in the Woodville Karst Plain. Differences in the composition of water isotopes (??18O and ??D) in rainfall, ground water, and surface water were used to develop mixing models of surface water (leakage of water to the Upper Floridan aquifer from a sinkhole lake and a sinkhole) and ground water. Using mass-balance calculations, based on differences in ??18O and ??D, the proportion of lake water that mixed with meteoric water ranged from 7 to 86% in water from wells located in close proximity to Lake Bradford. In deeper parts of the Upper Floridan aquifer, water enriched in 18O and D from five of 12 sampled municipal wells indicated that recharge from a sinkhole (1 to 24%) and surface water with an evaporated isotopic signature (2 to 32%) was mixing with ground water. The solute isotopes, ??13C and 87Sr/86Sr, were used to test the sensitivity of binary and ternary mixing models, and to estimate the amount of mass transfer of carbon and other dissolved species in geochemical reactions. In ground water downgradient from Lake Bradford, the dominant processes controlling carbon cycling in ground water were dissolution of carbonate minerals, aerobic degradation of organic matter, and hydrolysis of silicate minerals. In the deeper parts of the Upper

  16. Using distributed temperature sensing to monitor field scale dynamics of ground surface temperature and related substrate heat flux

    NARCIS (Netherlands)

    Bense, V.F.; Read, T.; Verhoef, A.

    2016-01-01

    We present one of the first studies of the use of distributed temperature sensing (DTS) along fibre-optic cables to purposely monitor spatial and temporal variations in ground surface temperature (GST) and soil temperature, and provide an estimate of the heat flux at the base of the canopy layer

  17. Channelization of plumes beneath ice shelves

    KAUST Repository

    Dallaston, M. C.

    2015-11-11

    © 2015 Cambridge University Press. We study a simplified model of ice-ocean interaction beneath a floating ice shelf, and investigate the possibility for channels to form in the ice shelf base due to spatial variations in conditions at the grounding line. The model combines an extensional thin-film description of viscous ice flow in the shelf, with melting at its base driven by a turbulent ocean plume. Small transverse perturbations to the one-dimensional steady state are considered, driven either by ice thickness or subglacial discharge variations across the grounding line. Either forcing leads to the growth of channels downstream, with melting driven by locally enhanced ocean velocities, and thus heat transfer. Narrow channels are smoothed out due to turbulent mixing in the ocean plume, leading to a preferred wavelength for channel growth. In the absence of perturbations at the grounding line, linear stability analysis suggests that the one-dimensional state is stable to initial perturbations, chiefly due to the background ice advection.

  18. Getting saturated hydraulic conductivity from surface Ground-Penetrating Radar measurements inside a ring infiltrometer

    Science.gov (United States)

    Leger, E.; Saintenoy, A.; Coquet, Y.

    2013-12-01

    Hydraulic properties of soils, described by the soil water retention and hydraulic conductivity functions, strongly influence water flow in the vadoze zone, as well as the partitioning of precipitation between infiltration into the soil and runoff along the ground surface. Their evaluation has important applications for modelling available water resources and for flood forecasting. It is also crucial to evaluate soil's capacity to retain chemical pollutants and to assess the potential of groundwater pollution. The determination of the parameters involved in soil water retention functions, 5 parameters when using the van Genuchten function, is usually done by laboratory experiments, such as the water hanging column. Hydraulic conductivity, on the other hand can be estimated either in laboratory, or in situ using infiltrometry tests. Among the large panel of existing tests, the single or double ring infiltrometers give the field saturated hydraulic conductivity by applying a positive charge on soils, whereas the disk infiltrometer allows to reconstruct the whole hydraulic conductivity curve, by applying different charges smaller than or equal to zero. In their classical use, volume of infiltrated water versus time are fitted to infer soil's hydraulic conductivity close to water saturation. Those tests are time-consuming and difficult to apply to landscape-scale forecasting of infiltration. Furthermore they involve many assumptions concerning the form of the infiltration bulb and its evolution. Ground-Penetrating Radar (GPR) is a geophysical method based on electromagnetic wave propagation. It is highly sensitive to water content variations directly related to the dielectric permittivity. In this study GPR was used to monitor water infiltration inside a ring infiltrometer and retrieve the saturated hydraulic conductivity. We carried out experiments in a quarry of Fontainebleau sand, using a Mala RAMAC system with antennae centered on 1600 MHz. We recorded traces at

  19. Implementing ground surface deformation tools to characterize field-scale properties of a fractured aquifer during a short hydraulic test

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Boudin, Frédérick; Durand, Stéphane

    2016-04-01

    In naturally fractured reservoirs, fluid flow is governed by the structural and hydromechanical properties of fracture networks or conductive fault zones. In order to ensure a sustained exploitation of resources or to assess the safety of underground storage, it is necessary to evaluate these properties. As they generally form highly heterogeneous and anisotropic reservoirs, fractured media may be well characterized by means of several complementary experimental methods or sounding techniques. In this framework, the observation of ground deformation has been proved useful to gain insight of a fractured reservoir's geometry and hydraulic properties. Commonly, large conductive structures like faults can be studied from surface deformation from satellite methods at monthly time scales, whereas meter scale fractures have to be examined under short-term in situ experiments using high accuracy intruments like tiltmeters or extensometers installed in boreholes or at the ground's surface. To the best of our knowledge, the feasability of a field scale (~ 100 m) characterization of a fractured reservoir with geodetic tools in a short term experiment has not yet been addressed. In the present study, we implement two complementary ground surface geodetic tools, namely tiltmetry and optical leveling, to monitor the deformation induced by a hydraulic recovery test at the Ploemeur hydrological observatory (France). Employing a simple purely elastic modeling approach, we show that the joint use of time constraining data (tilt) and spatially constraining data (vertical displacement) makes it possible to evaluate the geometry (dip, root depth and lateral extent) and the storativity of a hydraulically active fault zone, in good agreement with previous studies. Hence we demonstrate that the adequate use of two complementary ground surface deformation methods offer a rich insight of large conductive structure's properties using a single short term hydraulic load. Ground surface

  20. On the wettability diversity of C/SiC surface: Comparison of the ground C/SiC surface and ablated C/SiC surface from three aspects

    Science.gov (United States)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.

    2016-11-01

    The coefficient of thermal conductivity was influenced by the wetting state of material. The wetting state usually depends on the surface wettability. C/SiC is a promising ceramic composites with multi-components. The wettability of C/SiC composites is hard to resort to the classical wetting theory directly. So far, few investigations focused on C/SiC surface wettability diversity after different material removal processes. In this investigation, comparative studies of surface wettability of ground C/SiC surface and laser-ablated C/SiC surface were carried out through apparent contact angle (APCA) measurements. The results showed that water droplets easily reached stable state on ground C/SiC surface; while the water droplets rappidly penetrated into the laser-ablated C/SiC surface. In order to find out the reason for wettability distinctions between the ground C/SiC surface and the laser-ablated C/SiC surface, comparative studies on the surface micro-structure, surface C-O-Si distribution, and surface C-O-Si weight percentage were carried out. The results showed that (1) A large number of micro cracks in the fuzzy pattern layer over laser-ablated C/SiC surfaces easily destoried the surface tension of water droplets, while only a few cracks existed over the ground C/SiC surfaces. (2) Chemical components (C, O, Si) were non-uniformly distributed on ground C/SiC surfaces, while the chemical components (C, O, Si) were uniformly distributed on laser-ablated C/SiC surfaces. (3) The carbon weight percentage on ground C/SiC surfaces were higher than that on laser-ablated C/SiC surfaces. All these made an essential contribution to the surface wettability diversity of C/SiC surface. Although more investigations about the quantitative influence of surface topography and surface chemical composition on composites wettability are still needed, the conslusion can be used in application: the wettability of C/SiC surface can be controlled by different material removal process

  1. Impact of the variability of the seasonal snow cover on the ground surface regimes in Hurd Peninsula (Livingston Island, Antarctic)

    Science.gov (United States)

    Nieuwendam, Alexandre; Ramos, Miguel; Vieira, Gonçalo

    2014-05-01

    Seasonally snow cover has a great impact on the thermal regime of the active layer and permafrost. Ground temperatures over a year are strongly affected by the timing, duration, thickness, structure and physical and thermal properties of snow cover. The purpose of this communication is to characterize the shallow ground thermal regimes, with special reference to the understanding of the influence snow cover in permafrost spatial distribution, in the ice-free areas of the north western part of Hurd Peninsula in the vicinity of the Spanish Antarctic Station "Juan Carlos I" and Bulgarian Antarctic Station "St. Kliment Ohridski". We have analyzed and ground temperatures as well as snow thickness data in four sites distributed along an altitudinal transect in Hurd Peninsula from 2007 to 2013: Nuevo Incinerador (25 m asl), Collado Ramos (110 m), Ohridski (140 m) and Reina Sofia Peak (275 m). At each study site, data loggers were installed for the monitoring of air temperatures (at 1.5 m high), ground temperatures (5, 20 and 40 cm depth) and for snow depth (2, 5, 10, 20, 40, 80 and 160 cm) at 4-hour intervals. The winter data suggests the existence of three types of seasonal stages regarding the ground surface thermal regime and the thickness of snow cover: (a) shallow snow cover with intense ground temperatures oscillations; (b) thick snow cover and low variations of soil temperatures; and (c) stability of ground temperatures. Ground thermal conditions are also conditioned by a strong variability. Winter data indicates that Nuevo Incinerador site experiences more often thicker snow cover with higher ground temperatures and absence of ground temperatures oscillations. Collado Ramos and Ohridski show frequent variations of snow cover thickness, alternating between shallow snow cover with high ground temperature fluctuation and thick snow cover and low ground temperature fluctuation. Reina Sofia in all the years has thick snow cover with little variations in soil

  2. [Heavy metals in the surface sediment of the dumping ground outside Jiaozhou Bay and their potential ecological risk].

    Science.gov (United States)

    Cao, Cong-hua; Zhang, Nai-xing; Wu, Feng-cong; Sun, Bin; Ren, Rong-zhu; Sun, Xu; Lin, Sen; Zhang, Shao-ping

    2011-05-01

    Based on the monitoring data of heavy metals (Cr, Hg, Cd, Pb, Zn, Cu) in the surface sediment of the dumping ground outside Jiaozhou Bay from 2003 to 2008, the distribution patterns, factors controlling the distribution, and the potential ecological risks of heavy metals were studied with the data in 2007-08, and the fluctuation trends of heavy metals in the surface sediment over the 6 years were also discussed. The average concentrations of heavy metals Cr, Hg, Cd, Pb, Zn, Cu in the surface sediment were 29.47, 0.065, 0.105, 1.145, 9.63, 3.355 microg/g, respectively. Except for Cr, the concentration of heavy metals was high in the central dumping area while low outside the dumping ground, suggesting that the dredged material dumped was the main source of heavy metals. Organic carbon content in the surface sediment had a significant positive correlation with heavy metals except for Cr. Based on the results of ecological risk assessment, Hg had a medium potential ecological risk, while the other heavy metals had low potential ecological risk. The overall risk index (RI) of the heavy metals was 100.50, which was considered as a level of low potential ecological risk. The average concentration of heavy metals showed a decreasing trend over the 6 years, except Hg. In conclusion, the quality of surface sediment in term of heavy metals in the dumping ground outside Jiaozhou Bay is relatively good.

  3. Application of terrestrial laser scanning for detection of ground surface deformation in small mud volcano (Murono, Japan)

    Science.gov (United States)

    Hayakawa, Yuichi S.; Kusumoto, Shigekazu; Matta, Nobuhisa

    2016-07-01

    We perform terrestrial laser scanning (TLS) to detect changes in surface morphology of a mud volcano in Murono, north-central Japan. The study site underwent significant deformation by a strong earthquake in 2011, and the surface deformation has continued in the following years. The point cloud datasets were obtained by TLS at three different times in 2011, 2013 and 2014. Those point clouds were aligned by cloud-based registration, which minimizes the closest point distance of point clouds of unchanged ground features, and the TLS-based point cloud data appear to be suitable for detecting centimeter-order deformations in the central domain of the mud volcano, as well as for measurements of topographic features including cracks of paved ground surface. The spatial patterns and accumulative amount of the vertical deformation during 2011-2014 captured by TLS correspond well with those previously reported based on point-based leveling surveys, supporting the validity of TLS survey.

  4. Calculation of Electric Field at Ground Surface and ADSS Cable Prepared Hanging Point near EHV Power Transmission Tower

    Directory of Open Access Journals (Sweden)

    Xu Bao-Qing

    2016-01-01

    Full Text Available A simplified model of the 750kV tower is established by CDEGS software which is based on the Method Of Moment. The power frequency electric field distribution on the ground is achieved by software calculation and field-measuring. The validity of the calculation is proved when compare the calculation and experiment results. The model also can be used to calculate the electric field in prepared hanging points on the tower. Results show that the electric field distribution on the ground surface around the tower and prepared hanging points are meet the standard by calculation and experiment.

  5. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    Science.gov (United States)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher; Normand, Jonathan; Dermond, Jeffrey; Fang, Yilin; Sullivan, Charlotte

    2015-08-01

    One important issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine the resulting field-scale-induced displacements and consequences of overpressures on the mechanical integrity of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated for the first time on an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3 year-1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells are accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area shows sub- centimetric deformation in the western part of the city and close to the injection locations associated with ASR cycle. Deformations are found to be temporally out phased with the injection and recovery events due to complex groundwater flow. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections.

  6. Analysis of the Effects of Vitiates on Surface Heat Flux in Ground Tests of Hypersonic Vehicles

    Science.gov (United States)

    Cuda, Vincent; Gaffney, Richard L

    2008-01-01

    To achieve the high enthalpy conditions associated with hypersonic flight, many ground test facilities burn fuel in the air upstream of the test chamber. Unfortunately, the products of combustion contaminate the test gas and alter gas properties and the heat fluxes associated with aerodynamic heating. The difference in the heating rates between clean air and a vitiated test medium needs to be understood so that the thermal management system for hypersonic vehicles can be properly designed. This is particularly important for advanced hypersonic vehicle concepts powered by air-breathing propulsion systems that couple cooling requirements, fuel flow rates, and combustor performance by flowing fuel through sub-surface cooling passages to cool engine components and preheat the fuel prior to combustion. An analytical investigation was performed comparing clean air to a gas vitiated with methane/oxygen combustion products to determine if variations in gas properties contributed to changes in predicted heat flux. This investigation started with simple relationships, evolved into writing an engineering-level code, and ended with running a series of CFD cases. It was noted that it is not possible to simultaneously match all of the gas properties between clean and vitiated test gases. A study was then conducted selecting various combinations of freestream properties for a vitiated test gas that matched clean air values to determine which combination of parameters affected the computed heat transfer the least. The best combination of properties to match was the free-stream total sensible enthalpy, dynamic pressure, and either the velocity or Mach number. This combination yielded only a 2% difference in heating. Other combinations showed departures of up to 10% in the heat flux estimate.

  7. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 13. Mineral Microscopy and Chemistry of Mined and Unmined Porphyry Molybdenum Mineralization Along the Red River, New Mexico: Implications for Ground- and Surface-Water Quality

    Science.gov (United States)

    Plumlee, Geoff; Lowers, Heather; Ludington, Steve; Koenig, Alan; Briggs, Paul

    2005-01-01

    This report is one in a series presenting results of an interdisciplinary U.S. Geological Survey (USGS) study of ground-water quality in the lower Red River watershed prior to open-pit and underground molybdenite mining at Molycorp's Questa mine. The stretch of the Red River watershed that extends from just upstream of the town of Red River to just above the town of Questa includes several mineralized areas in addition to the one mined by Molycorp. Natural erosion and weathering of pyrite-rich rocks in the mineralized areas has created a series of erosional scars along this stretch of the Red River that contribute acidic waters, as well as mineralized alluvial material and sediments, to the river. The overall goal of the USGS study is to infer the pre-mining ground-water quality at the Molycorp mine site. An integrated geologic, hydrologic, and geochemical model for ground water in the mineralized but unmined Straight Creek drainage is being used as an analogue for the geologic, geochemical, and hydrologic conditions that influenced ground-water quality and quantity at the mine site prior to mining. This report summarizes results of reconnaissance mineralogical and chemical characterization studies of rock samples collected from the various scars and the Molycorp open pit, and of drill cuttings or drill core from bedrock beneath the scars and adjacent debris fans.

  8. Analysis of groundwater flow beneath ice sheets

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G. S.; Zatsepin, S.; Maillot, B. [Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix.

  9. Evaluation of the use of reach transmissivity to quantify leakage beneath Levee 31N, Miami-Dade County, Florida

    Science.gov (United States)

    Nemeth, Mark S.; Wilcox, Walter M.; Solo-Gabriele, Helena M.

    2000-01-01

    A coupled ground- and surface-water model (MODBRANCH) was developed to estimate ground-water flow beneath Levee 31N in Miami-Dade County, Florida, and to simulate hydrologic conditions in the surrounding area. The study included compilation of data from monitoring stations, measurement of vertical seepage rates in wetlands, and analysis of the hydrogeologic properties of the ground-water aquifer within the study area. In addition, the MODBRANCH code was modified to calculate the exchange between surface-water channels and ground water using a relation based on the concept of reach transmissivity. The modified reach-transmissivity version of the MODBRANCH code was successfully tested on three simple problems with known analytical solutions. It was also tested and determined to function adequately on one field problem that had previously been solved using the unmodified version of the software. The modified version of MODBRANCH was judged to have performed satisfactorily, and it required about 60 percent as many iterations to reach a solution. Additionally, its input parameters are more physically-based and less dependent on model-grid spacing. A model of the Levee 31N area was developed and used with the original and modified versions of MODBRANCH, which produced similar output. The mean annual modeled ground-water heads differed by only 0.02 foot, and the mean annual canal discharge differed by less than 1.0 cubic foot per second. Seepage meters were used to quantify vertical seepage rates in the Everglades wetlands area west of Levee 31N. A comparison between results from the seepage meters and from the computer model indicated substantial differences that seemed to be a result of local variations in the hydraulic properties in the topmost part of the Biscayne aquifer. The transmissivity of the Biscayne aquifer was estimated to be 1,400,000 square feet per day in the study area. The computer model was employed to simulate seepage of ground water beneath Levee 31N

  10. Ground water/surface water responses to global climate simulations, Santa Clara-Calleguas Basin, Ventura, California

    Science.gov (United States)

    Hanson, R.T.; Dettinger, M.D.

    2005-01-01

    Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa ClaraCalleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Nin??o Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate-driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/??C, compared to 0.9 m/??C in observations. This close agreement shows that the GCM-RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM-RGWM combination could be used for planning purposes and - when the GCM forecast skills are adequate - for near term predictions.

  11. Buckling instabilities of subducted lithosphere beneath the transition zone

    NARCIS (Netherlands)

    Ribe, N.M.; Stutzmann, E.; Ren, Y.; Hilst, R.D. van der

    2007-01-01

    A sheet of viscous fluid poured onto a surface buckles periodically to generate a pile of regular folds. Recent tomographic images beneath subduction zones, together with quantitative fluid mechanical scaling laws, suggest that a similar instability can occur when slabs of subducted oceanic

  12. Colored grounds of gilt stucco surfaces as analyzed by a combined microscopic, spectroscopic and elemental analytical approach.

    Science.gov (United States)

    Sansonetti, A; Striova, J; Biondelli, D; Castellucci, E M

    2010-08-01

    A survey of gilts applied to stucco surfaces that specifically focuses on the compositions of their colored grounds is reported. Gilt samples of a common geographical (Lombardy in Italy) and temporal provenance (17th-18th century) were studied in the form of polished cross-sections by optical and electron microscopy (SEM-EDS), micro-Raman (microRaman) spectroscopy and Fourier-transform infrared microspectroscopy (microFTIR). Comparing samples with superimposed grounds and gilts enabled light to be shed on the choice of specific materials, their stratigraphic functions, decorative effects, and technological performances. Iron oxide pigments were found in the older grounds, sometimes in the presence of lead white (2PbCO(3).Pb(OH)(2)) or minium (Pb(3)O(4)). In more recent grounds, chrome yellow (PbCrO(4)), chrome orange (PbCrO(4).PbO), cinnabar (alpha-HgS) and barium white (BaSO(4)), invariably mixed with lead white, were encountered. Evidence for the use of organic mordants (colophony and wax, or siccative oil) was obtained by microFTIR. This combined microFTIR and microRaman spectroscopic and elemental (SEM-EDS) analytical approach enhances knowledge of the composition of gold grounds, their variability and their chronological evolution.

  13. Study on the applicability of frequency spectrum of micro-tremor and dynamic characteristics of surface ground in Asia area

    Institute of Scientific and Technical Information of China (English)

    CHE Ai-lan; IWATATE Takahiro; ODA Yoshiya; GE Xiu-run

    2006-01-01

    The dynamic characteristics of ground soil using micro-tremor observation in Asia (Zushi and Ogasawara (Japan),Xi'an (China), Manila (Philippines), and Gujarat (India)) are studied. Ground micro-tremor signals were observed and analyzed by fast Fourier transform method (FFT). The response of ground soil to frequency of ground micro-tremor is revealed, and functions with frequency-dependence and frequency-selection of micro-tremor for different foundation soil strata are also researched.The horizontal to vertical spectral ratio (H/V, Nakamura technique) of micro-tremor observed at the surface ground was used to evaluate the site's predominant period. This paper also discusses the application of micro-tremor on site safety evaluation, and gives the observed calculation results obtained at multiple points. The experimental foundation and the deduction process of the method are described in detail. Some problems of the method are pointed out. Potential use of the technique's good expandable nature makes it a useable means for preventing and reducing disaster's harmful effects.

  14. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 2. Coeruptive deflation, July-August 2008

    Science.gov (United States)

    Lu, Zhong; Dzurisin, Daniel

    2010-01-01

    A hydrovolcanic eruption near Cone D on the floor of Okmok caldera, Alaska, began on 12 July 2008 and continued until late August 2008. The eruption was preceded by inflation of a magma reservoir located beneath the center of the caldera and ~3 km below sea level (bsl), which began immediately after Okmok's previous eruption in 1997. In this paper we use data from several radar satellites and advanced interferometric synthetic aperture radar (InSAR) techniques to produce a suite of 2008 coeruption deformation maps. Most of the surface deformation that occurred during the eruption is explained by deflation of a Mogi-type source located beneath the center of the caldera and 2–3 km bsl, i.e., essentially the same source that inflated prior to the eruption. During the eruption the reservoir deflated at a rate that decreased exponentially with time with a 1/e time constant of ~13 days. We envision a sponge-like network of interconnected fractures and melt bodies that in aggregate constitute a complex magma storage zone beneath Okmok caldera. The rate at which the reservoir deflates during an eruption may be controlled by the diminishing pressure difference between the reservoir and surface. A similar mechanism might explain the tendency for reservoir inflation to slow as an eruption approaches until the pressure difference between a deep magma production zone and the reservoir is great enough to drive an intrusion or eruption along the caldera ring-fracture system.

  15. The study of single station inverting the sea surface current by HF ground wave radar based on adjoint assimilation technology

    Science.gov (United States)

    Han, Shuzong; Yang, Hua; Xue, Wenhu; Wang, Xingchi

    2017-06-01

    This paper introduces the assimilation technology in an ocean dynamics model and discusses the feasibility of inverting the sea surface current in the detection zone by assimilating the sea current radial velocity detected by single station HF ground wave radar in ocean dynamics model. Based on the adjoint assimilation and POM model, the paper successfully inverts the sea surface current through single station HF ground wave radar in the Zhoushan sea area. The single station HF radar inversion results are also compared with the bistatic HF radar composite results and the fixed point measured results by Annderaa current meter. The error analysis shows that acquisition of flow velocity and flow direction data from the single station HF radar based on adjoint assimilation and POM model is viable and the data obtained have a high correlation and consistency with the flow field observed by HF radar.

  16. SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA

    Science.gov (United States)

    Mohanty, A. K.

    2009-12-01

    SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are

  17. Simulated potentiometric surface contours at end of simulation (1998) in model layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 1 of the Death Valley regional ground-water flow system...

  18. Simulated potentiometric surface contours of prepumping conditions in layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These simulated potentiometric surface contours represent prepumping (or steady-state) conditions for model layer 1 of the Death Valley regional ground-water flow...

  19. Simulated potentiometric surface contours of prepumping conditions in layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These simulated potentiometric surface contours represent prepumping (or steady-state) conditions for model layer 16 of the Death Valley regional ground-water flow...

  20. Simulated potentiometric surface contours at end of simulation (1998) in model layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 16 of the Death Valley regional ground-water flow system...

  1. Simulated potentiometric surface contours at end of simulation (1998) in model layer 1 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 1 of the Death Valley regional ground-water flow system...

  2. Simulated potentiometric surface contours at end of simulation (1998) in model layer 16 of the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These contours represent the simulated potentiometric surface at the end of simulation (1998) in model layer 16 of the Death Valley regional ground-water flow...

  3. Development of a Remotely Operated, Field-Deployable Tritium Analysis System for Surface and Ground Water Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J. [Westinghouse Savannah River Company, AIKEN, SC (United States); Cable, P.R.; Noakes, J.E. [University of Georgia, , GA (United States); Spaulding, J.D. [University of Georgia, , GA (United States); Neary, M. P. [University of Georgia, , GA (United States); Wasyl, M.S. [Packard Instrument Company, , ()

    1996-06-20

    The environmental contamination resulting from decades of testing and manufacturing of nuclear materials for a national defense purposes is a problem now being faced by the United States. The Center for Applied Isotope Studies at the University of Georgia, in cooperation with the Westinghouse Savannah River Company and Packard Instrument Company, have developed a prototype unit for remote, near real time, in situ analysis of tritium in surface and ground water samples.

  4. Variability of Basal Melt Beneath the Pine Island Glacier Ice Shelf, West Antarctica

    Science.gov (United States)

    Bindschadler, Robert; Vaughan, David G.; Vornberger, Patricia

    2011-01-01

    Observations from satellite and airborne platforms are combined with model calculations to infer the nature and efficiency of basal melting of the Pine Island Glacier ice shelf, West Antarctica, by ocean waters. Satellite imagery shows surface features that suggest ice-shelf-wide changes to the ocean s influence on the ice shelf as the grounding line retreated. Longitudinal profiles of ice surface and bottom elevations are analyzed to reveal a spatially dependent pattern of basal melt with an annual melt flux of 40.5 Gt/a. One profile captures a persistent set of surface waves that correlates with quasi-annual variations of atmospheric forcing of Amundsen Sea circulation patterns, establishing a direct connection between atmospheric variability and sub-ice-shelf melting. Ice surface troughs are hydrostatically compensated by ice-bottom voids up to 150m deep. Voids form dynamically at the grounding line, triggered by enhanced melting when warmer-than-average water arrives. Subsequent enlargement of the voids is thermally inefficient (4% or less) compared with an overall melting efficiency beneath the ice shelf of 22%. Residual warm water is believed to cause three persistent polynyas at the ice-shelf front seen in Landsat imagery. Landsat thermal imagery confirms the occurrence of warm water at the same locations.

  5. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region

    Science.gov (United States)

    Kassotis, Christopher D.; Tillitt, Donald E.; Davis, J. Wade; Hormann, Anette M.; Nagel, Susan C.

    2014-01-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized thataselected subset of chemicalsusedin natural gas drilling operationsandalso surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas–related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operationsmayresult in elevated endocrine-disrupting chemical activity in surface and ground water.

  6. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Vesna Kostik

    2014-07-01

    Full Text Available The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupled plasma-mass spectrometry, while in ground water samples from wells boreholes and mineral waters with the technique of ion chromatography. The research shows that lithium concentration in potable water ranging from 0.1 to 5.2 μg/L; in surface water from 0.5 to 15.0 μg/L; ground water from wells boreholes from 16.0 to 49.1 μg/L and mineral water from 125.2 to 484.9 μg/L. Obtained values are in accordance with the relevant international values for the lithium content in water.

  7. The potential surface in the ground electronic state of HCP with the isomerization process: the validity of calculating potential surface with DFT methods

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The density functional theory (DFT) provides us an effective way to calculate large cluster systems with moderate computational demands. We calculate potential energy surfaces (PES) with several different approaches of DFT. The PES in the ground electronic state are related to HCP's isomerization process. The calculated PES are compared with the “experimental” PES obtained by fitting from the experimental vibrational spectra and that given by the “accurate” quantum chemistry calculation with more expensive computations. The comparisons show that the potential surfaces calculated with DFT methods can reach the accuracy of less than 0.1 eV.

  8. Inversion of gravity data to define the pre-Tertiary surface and regional structures possibly influencing ground-water flow in the Pahute Mesa-Oasis Valley Region, Nye County, Nevada

    Science.gov (United States)

    Hildenbrand, T.G.; Langenheim, V.E.; Mankinen, E.A.; McKee, E.H.

    1999-01-01

    A three-dimensional inversion of gravity data from the Pahute Mesa–Oasis Valley region reveals a topographically complex pre-Tertiary basement surface. Beneath Pahute Mesa, the thickness of the Tertiary volcanic deposits may exceed 5 km within the Silent Canyon caldera complex. South of Pahute Mesa in Oasis Valley, basement is shallower (< 1 km) but between this valley and the Timber Mountain caldera complex is a basin that probably represents, in part, a moat related to the Timber Mountain caldera complex. Of particular interest is a NE-trending lineament, named here the Thirsty Canyon lineament (TCL), separating terranes at significantly different elevations. Southeast of the TCL, a highly undulating basement surface descends deeply into several calderas, whereas NW of the TCL basement is relatively flat and shallow. Because as many as four calderas seem to abruptly terminate at the TCL, the TCL may reflect a major buried fault zone, which influenced caldera growth. This inferred Thirsty Canyon fault zone and several EW basement ridges in the derived 3-dimensional basin thickness model may influence the flow of ground water from the Pahute Mesa region to Oasis Valley.

  9. Comparison of buried soil sensors, surface chambers and above ground measurements of carbon dioxide fluxes

    Science.gov (United States)

    Soil carbon dioxide (CO2) flux is an important component of the terrestrial carbon cycle. Accurate measurements of soil CO2 flux aids determinations of carbon budgets. In this study, we investigated soil CO2 fluxes with time and depth and above ground CO2 fluxes in a bare field. CO2 concentrations w...

  10. Areal-Averaged Spectral Surface Albedo in an Atlantic Coastal Area: Estimation from Ground-Based Transmission

    Directory of Open Access Journals (Sweden)

    Evgueni Kassianov

    2017-07-01

    Full Text Available Tower-based data combined with high-resolution satellite products have been used to produce surface albedo at various spatial scales over land. Because tower-based albedo data are available at only a few sites, surface albedos using these combined data are spatially limited. Moreover, tower-based albedo data are not representative of highly heterogeneous regions. To produce areal-averaged and spectrally-resolved surface albedo for regions with various degrees of surface heterogeneity, we have developed a transmission-based retrieval and demonstrated its feasibility for relatively homogeneous land surfaces. Here, we demonstrate its feasibility for a highly heterogeneous coastal region. We use the atmospheric transmission measured during a 19-month period (June 2009–December 2010 by a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR at five wavelengths (0.415, 0.5, 0.615, 0.673 and 0.87 µm at the Department of Energy’s Atmospheric Radiation Measurement (ARM Mobile Facility (AMF site located on Graciosa Island. We compare the MFRSR-retrieved areal-averaged surface albedo with albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS observations, and also a composite-based albedo. We demonstrate that these three methods produce similar spectral signatures of surface albedo; however, the MFRSR-retrieved albedo, is higher on average (≤0.04 than the MODIS-based areal-averaged surface albedo and the largest difference occurs in winter.

  11. Effect of the surface geology on strong ground motions due to the 2016 Central Tottori Earthquake, Japan

    Science.gov (United States)

    Kagawa, Takao; Noguchi, Tatsuya; Yoshida, Shohei; Yamamoto, Shinji

    2017-08-01

    On October 21, 2016, an earthquake with Japan Meteorological Agency (JMA) magnitude 6.6 hit the central part of Tottori Prefecture, Japan. This paper demonstrates two notable effects of the surface geology on strong ground motions due to the earthquake. One is a predominant period issue observed over a large area. A seismic intensity of 6 lower on the JMA scale was registered at three sites in the disaster area. However, the peak ground acceleration ranged from 0.3 to 1.4 G at the three sites because of the varying peak periods of observed strong ground motions. The spectral properties of the observations also reflect the damage around the sites. Three-component microtremors were observed in the area; the predominant ground period distributions based on horizontal to vertical spectral ratios were provided by the authors. The peak periods of the strong motion records agree well with predominant periods estimated from microtremor observations at a rather hard site; however, the predominant periods of the microtremors are slightly shorter than those of the main shock at the other two soft sites. We checked the nonlinear effect at the sites by comparing the site responses to small events and the main shock. The peak periods of the main shock were longer than those of the weak motions at the sites. This phenomenon indicates a nonlinear site effect due to large ground motions caused by the main shock. A horizontal component of the accelerogram showed rather pulsating swings that indicate cyclic mobility behavior, especially at a site close to a pond shore; ground subsidence of 20 cm was observed around the site. The peak periods of weak motions agree well with those of the microtremor observations. This implies an important issue that the predominant periods estimated by microtremors are not sufficient to estimate the effect of surface geology for disaster mitigation. We have to estimate the predominant periods under large ground motions considering the nonlinear site

  12. Comparison of MTI and Ground Truth Sea Surface Temperatures at Nauru

    Energy Technology Data Exchange (ETDEWEB)

    Kurzeja, R.

    2002-09-05

    This report evaluates MTI-derived surface water temperature near the tropical Pacific island of Nauru. The MTI sea-surface temperatures were determined by the Los Alamos National Laboratory based on the robust retrieval.

  13. Potential methane reservoirs beneath Antarctica.

    Science.gov (United States)

    Wadham, J L; Arndt, S; Tulaczyk, S; Stibal, M; Tranter, M; Telling, J; Lis, G P; Lawson, E; Ridgwell, A; Dubnick, A; Sharp, M J; Anesio, A M; Butler, C E H

    2012-08-30

    Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been evaluated. Large sedimentary basins containing marine sequences up to 14 kilometres thick and an estimated 21,000 petagrams (1 Pg equals 10(15) g) of organic carbon are buried beneath the Antarctic Ice Sheet. No data exist for rates of methanogenesis in sub-Antarctic marine sediments. Here we present experimental data from other subglacial environments that demonstrate the potential for overridden organic matter beneath glacial systems to produce methane. We also numerically simulate the accumulation of methane in Antarctic sedimentary basins using an established one-dimensional hydrate model and show that pressure/temperature conditions favour methane hydrate formation down to sediment depths of about 300 metres in West Antarctica and 700 metres in East Antarctica. Our results demonstrate the potential for methane hydrate accumulation in Antarctic sedimentary basins, where the total inventory depends on rates of organic carbon degradation and conditions at the ice-sheet bed. We calculate that the sub-Antarctic hydrate inventory could be of the same order of magnitude as that of recent estimates made for Arctic permafrost. Our findings suggest that the Antarctic Ice Sheet may be a neglected but important component of the global methane budget, with the potential to act as a positive feedback on climate warming during ice-sheet wastage.

  14. Force Restore Technique for Ground Surface Temperature and Moisture Content in a Dry Desert System

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Berkowicz, S.

    2000-01-01

    The level of the surface temperature as well as surface moisture content is important for the turbulent transports of sensible and latent heat, respectively, but this level is also crucial for the survival of shrubs, plants, insects, and small animals in a desert environment. To estimate the surface

  15. Crustal structure beneath Eastern Greenland

    DEFF Research Database (Denmark)

    Reiche, Sönke; Thybo, H.; Kaip, G.

    2011-01-01

    is recorded by 350 Reftek Texan receivers for 10 equidistant shot points along the profile. We use forward ray tracing modelling to construct a two-dimensional velocity model from the observed travel times. These results show the first images of the subsurface velocity structure beneath the Greenland ice...... these mountain belts is needed for assessing the isostatic balance of the crust and to gain insight into possible links between crustal composition, rifting history and present-day topography of the North Atlantic Region. However, the acquisition of geophysical data onshore Greenland is logistically complicated...

  16. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  17. Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle SpectroPolarimetric Imager

    Directory of Open Access Journals (Sweden)

    David J. Diner

    2012-12-01

    Full Text Available Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF model. GroundMSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of outdoor landscapes. The camera uses a very accurate photoelastic-modulator-based polarimetric imaging technique to acquire Stokes vector measurements in three of the instrument’s bands (470, 660, and 865 nm. A description of the instrument is presented, and observations of selected targets within a scene acquired on 6 January 2010 are analyzed. Data collected during the course of the day as the Sun moved across the sky provided a range of illumination geometries that facilitated evaluation of the surface model, which is comprised of a volumetric reflection term represented by the modified Rahman-Pinty-Verstraete function plus a specular reflection term generated by a randomly oriented array of Fresnel-reflecting microfacets. While the model is fairly successful in predicting the polarized reflection from two grass targets in the scene, it does a poorer job for two manmade targets (a parking lot and a truck roof, possibly due to their greater degree of geometric organization. Several empirical adjustments to the model are explored and lead to improved fits to the data. For all targets, the data support the notion of spectral invariance in the angular shape of the unpolarized and polarized surface reflection. As noted by others, this behavior provides valuable constraints on the aerosol retrieval problem, and highlights the importance of multiangle observations.

  18. Scientific Ground of a New Optical Device for Contactless Measurement of the Small Spatial Displacements of Control Object Surfaces

    Science.gov (United States)

    Miroshnichenko, I. P.; Parinov, I. A.

    2017-06-01

    It is proposed the computational-experimental ground of newly developed optical device for contactless measurement of small spatial displacements of control object surfaces based on the use of new methods of laser interferometry. The proposed device allows one to register linear and angular components of the small displacements of control object surfaces during the diagnosis of the condition of structural materials for forced elements of goods under exploring by using acoustic non-destructive testing methods. The described results are the most suitable for application in the process of high-precision measurements of small linear and angular displacements of control object surfaces during experimental research, the evaluation and diagnosis of the state of construction materials for forced elements of goods, the study of fast wave propagation in layered constructions of complex shape, manufactured of anisotropic composite materials, the study of damage processes in modern construction materials in mechanical engineering, shipbuilding, aviation, instrumentation, power engineering, etc.

  19. Construction and Testing of Broadband High Impedance Ground Planes (HIGPS) for Surface Mount Antennas

    Science.gov (United States)

    2008-03-01

    mushrooms (with side lengths of 7.6mm). Larger mushrooms (with side lengths of 16mm) were located to the edges of the substrate . The resulting...thickness and substrate permittivity are two of the main design parameters. But these parameters have production constraints, since they are ordered off...plane designs as a meta- substrate for a broadband bow-tie antenna were presented. Consequently, the high impedance ground plane provided a suitable

  20. DEM Development from Ground-Based LiDAR Data: A Method to Remove Non-Surface Objects

    Directory of Open Access Journals (Sweden)

    Maneesh Sharma

    2010-11-01

    Full Text Available Topography and land cover characteristics can have significant effects on infiltration, runoff, and erosion processes on watersheds. The ability to model the timing and routing of surface water and erosion is affected by the resolution of the digital elevation model (DEM. High resolution ground-based Light Detecting and Ranging (LiDAR technology can be used to collect detailed topographic and land cover characteristic data. In this study, a method was developed to remove vegetation from ground-based LiDAR data to create high resolution DEMs. Research was conducted on intensively studied rainfall–runoff plots on the USDA-ARS Walnut Gulch Experimental Watershed in Southeast Arizona. LiDAR data were used to generate 1 cm resolution digital surface models (DSM for 5 plots. DSMs created directly from LiDAR data contain non-surface objects such as vegetation cover. A vegetation removal method was developed which used a slope threshold and a focal mean filter method to remove vegetation and create bare earth DEMs. The method was validated on a synthetic plot, where rocks and vegetation were added incrementally. Results of the validation showed a vertical error of ±7.5 mm in the final DEM.

  1. Temperature rise in objects due to optical focused beam through atmospheric turbulence near ground and ocean surface

    Science.gov (United States)

    Stoneback, Matthew; Ishimaru, Akira; Reinhardt, Colin; Kuga, Yasuo

    2013-03-01

    We consider an optical beam propagated through the atmosphere and incident on an object causing a temperature rise. In clear air, the physical characteristics of the optical beam transmitted to the object surface are influenced primarily by the effect of atmospheric turbulence, which can be significant near the ground or ocean surface. We use a statistical model to quantify the expected power transfer through turbulent atmosphere and provide guidance toward the threshold of thermal blooming for the considered scenarios. The bulk thermal characteristics of the materials considered are used in a thermal diffusion model to determine the net temperature rise at the object surface due to the incident optical beam. These results of the study are presented in graphical form and are of particular interest to operators of high power laser systems operating over large distances through the atmosphere. Numerical examples include a CO2 laser (λ=10.6 μm) with: aperture size of 5 cm, varied pulse duration, and propagation distance of 0.5 km incident on 0.1-mm copper, 10-mm polyimide, 1-mm water, and 10-mm glass/resin composite targets. To assess the effect of near ground/ocean laser propagation, we compare turbulent (of varying degrees) and nonturbulent atmosphere.

  2. Evaluation of arsenic and other physico-chemical parameters of surface and ground water of Jamshoro, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Baig, Jameel Ahmed, E-mail: jab_mughal@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kazi, Tasneem Gul, E-mail: tgkazi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Arain, Muhammad Balal, E-mail: bilal_KU2004@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Afridi, Hassan Imran, E-mail: hassanimranafridi@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Kandhro, Ghulam Abbas, E-mail: gakandhro@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Sarfraz, Raja Adil, E-mail: rajaadilsarfraz@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Jamal, Muhammad Khan, E-mail: mkhanjamali@yahoo.com [Government Degree College Usta Muhammad, Balochistan 08300 (Pakistan); Shah, Abdul Qadir, E-mail: aqshah07@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)

    2009-07-30

    Arsenic contamination in water has caused severe health problems around the world. The purpose of this study was to evaluate the geological and anthropogenic aspects of As pollution in surface and groundwater resources of Jamshoro Sindh, Pakistan. Hydride generator atomic absorption spectrophotometry (HG-AAS) is employed for the determination of arsenic in water samples, with detection limit of 0.02 {mu}g l{sup -1}. Arsenic concentrations in surface and underground water range from 3.0 to 50.0, and 13 to 106 {mu}g l{sup -1}, respectively. In most of the water samples As levels exceeded the WHO provisional guideline values 10 {mu}g l{sup -1}. The high level of As in under study area may be due to widespread water logging from Indus river irrigation system which causes high saturation of salts in this semi-arid region and lead to enrichment of As in shallow groundwater. Among the physico-chemical parameters, electrical conductivity, Na{sup +}, K{sup +}, and SO{sub 4}{sup 2-} were found to be higher in surface and ground water, while elevated levels of Ca{sup 2+} and Cl{sup -} were detected only in ground water than WHO permissible limit. The high level of iron was observed in ground water, which is a possible source of As enrichment in the study area. The multivariate technique (cluster analysis) was used for the elucidation of high, medium and low As contaminated areas. It may be concluded that As originate from coal combustion at brick factories and power generation plants, and it was mobilized promotionally by the alkaline nature of the understudy groundwater samples.

  3. Geochemistry of the surface and ground waters of the upper bassin of the river Llobregat

    Directory of Open Access Journals (Sweden)

    Freixes, A.

    1996-12-01

    Full Text Available In this work the main geochemical characteristics of the surface and ground waters of the Upper basin of the River Llobregat are described and, discussed. The water samples analysed reveal sharply contrasting characteristics. In both the Fonts del Llobregat and River Bastareny catchments, calcium bicarbonated waters with a low mineral content clearly predominate. However, in the catchment of the River Arija, although the waters of the upper course and the main tributaries are also calcium bicarbonated, it is worth noting that at the confluence with the River Llobregat calcium sulphated water is found. The catchment of the River Saldes shows a greater heterogeneity, with calcium bicarbonated, sodium chloridized and calcium sulphated waters, and thus at the confluence with the River Llobregat the water is sodium-calcium bicarbonated-sulphated. Principal components analysis enables us to arrive at a synthesis which clearly explains these characteristics. These results are fundamentally interpreted on the basis of the lithologies drained by the different watercourses.

    [es] En el presente estudio se presentan y discuten las principales características geoquímicas de las aguas superficiales y subterráneas de la Alta cuenca del río Llobregat hasta la entrada del río al embalse de La Baells. El conjunto de aguas analizadas presentan características muy contrastadas. Así, tanto en la subcuenca de las fuentes del Llobregat como en la del río Bastareny predominan las aguas bicarbonatadas cálcicas poco mineralizadas. En la subcuenca del río Arija, sí bien las aguas del curso alto y las de los principales afluentes también son bicarbonatadas cálcicas, destaca el hecho de que en la confluencia con el río Llobregat el agua es sulfatada cálcica. La subcuenca del río Saldes es la que presenta una mayor heterogeneidad, con aguas bicarbonatadas cálcicas, cloruradas sódicas y sulfatadas cálcicas, las cuales provocan que en la confluencia

  4. Hydrochemical assessments of surface Nile water and ground water in an industry area – South West Cairo

    Directory of Open Access Journals (Sweden)

    Mona El-Sayed

    2015-09-01

    The data obtained were used for mathematical calculations of some parameters such as sodium adsorption ratio (SAR, sodium percentage (Na%, and the suitability of water samples for drinking, domestic, and irrigation purposes was evaluated. The results indicate that most studied surface Nile water samples show excellent to good categories and are suitable for drinking and irrigation. Most studied ground water samples are not suitable for drinking and need treatment for irrigation; few samples are not suitable for any purpose because of pollution from different sources in this area.

  5. Different Multifractal Scaling of the 0 cm Average Ground Surface Temperature of Four Representative Weather Stations over China

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2013-01-01

    Full Text Available The temporal scaling properties of the daily 0 cm average ground surface temperature (AGST records obtained from four selected sites over China are investigated using multifractal detrended fluctuation analysis (MF-DFA method. Results show that the AGST records at all four locations exhibit strong persistence features and different scaling behaviors. The differences of the generalized Hurst exponents are very different for the AGST series of each site reflecting the different scaling behaviors of the fluctuation. Furthermore, the strengths of multifractal spectrum are different for different weather stations and indicate that the multifractal behaviors vary from station to station over China.

  6. Vibrational Spectra and Potential Energy Surface for Electronic Ground State of Jet-Cooled Molecule S2O

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Yan; DING Shi-Liang

    2004-01-01

    The vibration states of transition molecule S2O, including both bending and stretching vibrations, are studied in the framework of dynamical symmetry groups U1(4) U2(4). We get all the vibration spectra of S2O by fitting 22 spectra data with 10 parameters. The fitting rms of the Hamiltonian is 2.12 cm-1. With the parameters and Lie algebraic theory, we give the analytical expression of the potential energy surface, which helps us to calculate the dissociation energy and force constants of S2O in the electronic ground state.

  7. Contamination of rural surface and ground water by endosulfan in farming areas of the Western Cape, South Africa

    Directory of Open Access Journals (Sweden)

    London Leslie

    2003-03-01

    Full Text Available Abstract Background In South Africa there is little data on environmental pollution of rural water sources by agrochemicals. Methods This study investigated pesticide contamination of ground and surface water in three intensive agricultural areas in the Western Cape: the Hex River Valley, Grabouw and Piketberg. Monitoring for endosulfan and chlorpyrifos at low levels was conducted as well as screening for other pesticides. Results The quantification limit for endosulfan was 0.1 μg/L. Endosulfan was found to be widespread in ground water, surface water and drinking water. The contamination was mostly at low levels, but regularly exceeded the European Drinking Water Standard of 0.1 μg/L. The two most contaminated sites were a sub-surface drain in the Hex River Valley and a dam in Grabouw, with 0.83 ± 1.0 μg/L (n = 21 and 3.16 ± 3.5 μg/L (n = 13 average endosulfan levels respectively. Other pesticides including chlorpyrifos, azinphos-methyl, fenarimol, iprodione, deltamethrin, penconazole and prothiofos were detected. Endosulfan was most frequently detected in Grabouw (69% followed by Hex River (46% and Piketberg (39%. Detections were more frequent in surface water (47% than in groundwater (32% and coincided with irrigation, and to a lesser extent, to spraying and trigger rains. Total dietary endosulfan intake calculated from levels found in drinking water did not exceed the Joint WHO/FAO Meeting on Pesticide Residues (JMPR criteria. Conclusion The study has shown the need for monitoring of pesticide contamination in surface and groundwater, and the development of drinking water quality standards for specific pesticides in South Africa.

  8. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7.

    Science.gov (United States)

    Abuladze, Tamar; Li, Manrong; Menetrez, Marc Y; Dean, Timothy; Senecal, Andre; Sulakvelidze, Alexander

    2008-10-01

    A bacteriophage cocktail (designated ECP-100) containing three Myoviridae phages lytic for Escherichia coli O157:H7 was examined for its ability to reduce experimental contamination of hard surfaces (glass coverslips and gypsum boards), tomato, spinach, broccoli, and ground beef by three virulent strains of the bacterium. The hard surfaces and foods contaminated by a mixture of three E. coli O157:H7 strains were treated with ECP-100 (test samples) or sterile phosphate-buffered saline buffer (control samples), and the efficacy of phage treatment was evaluated by comparing the number of viable E. coli organisms recovered from the test and control samples. Treatments (5 min) with the ECP-100 preparation containing three different concentrations of phages (10(10), 10(9), and 10(8) PFU/ml) resulted in statistically significant reductions (P = E. coli O157:H7 organisms recovered from the glass coverslips. Similar treatments resulted in reductions of 100%, 95%, and 85%, respectively, in the number of E. coli O157:H7 organisms recovered from the gypsum board surfaces; the reductions caused by the two most concentrated phage preparations were statistically significant. Treatment with the least concentrated preparation that elicited significantly less contamination of the hard surfaces (i.e., 10(9) PFU/ml) also significantly reduced the number of viable E. coli O157:H7 organisms on the four food samples. The observed reductions ranged from 94% (at 120 +/- 4 h posttreatment of tomato samples) to 100% (at 24 +/- 4 h posttreatment of spinach samples). The data suggest that naturally occurring bacteriophages may be useful for reducing contamination of various hard surfaces, fruits, vegetables, and ground beef by E. coli O157:H7.

  9. ENVIRONMENTAL SAFETY IMPROVEMENT OF SURFACE AND GROUND WATER CONTAMINATION AT THE AIRPORT AREA

    Directory of Open Access Journals (Sweden)

    Svitlana Madzhd

    2016-11-01

    Full Text Available Purpose: Taking into account that the airport "Kyiv" is located in one of the central districts of Kyiv and does not have clearly established sanitary protection zones, the problem of environmental pollution is topical and requires monitoring and research. In order to improve environmental compliance we made assessment of superficial and ground water quality in airport zone. Methods: Water quality was estimated by the biotesting method, hydrochemical analysis, and by oil products detection method. Results We performed analysis of wastewaters of airport “Kyiv” and superficial waters of river Nyvka. The samples took place: above the airport drainage, in the drainage place and below drainage place. We conducted assessment of ground waters, which are sources of water supply, on different distance from an airport (20 m, 500 m, 1000 m, 1500 min. Results of hydrochemical investigations of river indicated excess of nitrogen compounds content compare to regulatory discharge. Thus, it was defined excess of ammonia nitrogen in wastewaters in three times and in place of dispersion – in ten times; the content of nitrite nitrogen in the river sample after discharge exceeds in 22 times norm. Analysis of drinking water in airport zone has showed extremely high level of pollution by nitrite nitrogen exceeding norm in 7-17 times. After analysis it was defined high level of river pollution by oil products (in 26-32 times higher than MPC, and ground water in 1, 5-2 times. Results of biotesting confirmed data of hydrochemical investigations of superficial water state (acute toxicity was observed in drainage area and in place of drainage dispersion. Discussion: Increased content of nitrite indicates the strengthening of decomposition process of organic matter in conditions of slower oxidation of NO into NO. This parameter is major sanitary indicator which indicates pollution of water body. High content of such specific pollutant for aviation transport

  10. Influence of the underlying surface on the antenna system of the ground penetrating radar

    Science.gov (United States)

    Balzovsky, E. V.; Buyanov, Yu I.; Shipilov, S. E.

    2017-08-01

    Simulation results of the antenna system of the radar of subsurface sounding intended for contactless investigation of the road condition are presented. The elements of the antenna system of ground penetrating radar with extended bandwidth made as a combination of electric and magnetic type radiators have been designed. The transmission coefficient between the elements of the antenna array determining their mutual influence has been calculated. Despite the close arrangement of the elements in the array, the level of mutual influence of the elements is not critical. The developed antenna array can be used both for excitation with short ultrawideband pulses and for frequency steering in the range of 0.8-4 GHz.

  11. Assessment of volatile organic compounds in surface water at Canal Creek, Aberdeen Proving Ground, Maryland, November 1999-September 2000

    Science.gov (United States)

    Phelan, Daniel J.; Olsen, Lisa D.; Senus, Michael P.; Spencer, Tracey A.

    2001-01-01

    The purpose of this report is to describe the occurrence and distribution of volatile organic compounds in surface-water samples collected by the U.S. Geological Survey in the Canal Creek area of Aberdeen Proving Ground, Maryland, from November 1999 through September 2000. The report describes the differences between years with below normal and normal precipitation, the effects of seasons, tide stages, and location on volatile organic compound concentrations in surface water, and provides estimates of volatile organic concentration loads to the tidal Gunpowder River. Eighty-four environmental samples from 20 surface-water sites were analyzed. As many as 13 different volatile organic compounds were detected in the samples. Concentrations of volatile organic compounds in surface-water samples ranged from below the reporting limit of 0.5 micrograms per liter to a maximum of 50.2 micrograms per liter for chloroform. Chloroform was detected most frequently, and was found in 55 percent of the environmental samples that were analyzed for volatile organic compounds (46 of 84 samples). Carbon tetrachloride was detected in 56 percent of the surface-water samples in the tidal part of the creek (34 of 61 samples), but was only detected in 3 of 23 samples in the nontidal part of the creek. 1,1,2,2-Tetrachloroethane was detected in 43 percent of the tidal samples (26 of 61 samples), but was detected at only two nontidal sites and only during November 1999. Three samples were collected from the tidal Gunpowder River about 300 feet from the mouth of Canal Creek in May 2000, and none of the samples contained volatile organic compound concentrations above detection levels. Volatile organic compound concentrations in surface water were highest in the reaches of the creek adjacent to the areas with the highest known levels of ground-water contamination. The load of total volatile organic compounds from Canal Creek to the Gunpowder River is approximately 1.85 pounds per day (0

  12. Road impacts on the Baca National Wildlife Refuge, Colorado, with emphasis on effects to surface and shallow ground-water hydrology : a literature review

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A review of published research on unpaved road effects on surface-water and shallow ground-water hydrology was undertaken to assist the Baca National Wildlife...

  13. Estimated potentiometric surface by D'Agnese and others (1998), for the Death Valley regional ground-water flow system study, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — D'Agnese and others (1998) developed a potentiometric surface to conceptualize the regional ground-water flow system and to construct numerical flow models of the...

  14. AATSR Land Surface Temperature Product Validation Using Ground Measurements in China and Implications for SLSTR

    Science.gov (United States)

    Zhou, Ji; Zmuda, Andy; Desnos, Yves-Louis; Ma, Jin

    2016-08-01

    Land surface temperature (LST) is one of the most important parameters at the interface between the earth's surface and the atmosphere. It acts as a sensitive indicator of climate change and is an essential input parameter for land surface models. Because of the intense variability at different spatial and temporal scales, satellite remote sensing provides the sole opportunity to acquire LSTs over large regions. Validation of the LST products is an necessary step before their applications conducted by scientific community and it is essential for the developers to improve the LST products.

  15. Electrical conductivity anomaly beneath Mare Serenitatis detected by Lunokhod 2 and Apollo 16 magnetometers

    Science.gov (United States)

    Vanian, L. L.; Vnuchkova, T. A.; Egorov, I. V.; Basilevskii, A. T.; Eroshenko, E. G.; Fainberg, E. B.; Dyal, P.; Daily, W. D.

    1979-01-01

    Magnetic fluctuations measured by the Lunokhod 2 magnetometer in the Bay Le Monnier are distinctly anisotropic when compared to simultaneous Apollo 16 magnetometer data measured 1100 km away in the Descartes highlands. This anisotropy can be explained by an anomalous electrical conductivity of the upper mantle beneath Mare Serenitatis. A model is presented of anomalously lower electrical conductivity beneath Serenitatis and the simultaneous magnetic data from the Lunokhod 2 site at the mare edge and the Apollo 16 site are compared to the numerically calculated model solutions. This comparison indicates that the anisotropic fluctuations can be modeled by a nonconducting layer in the lunar lithosphere which is 150 km thick beneath the highlands and 300 km thick beneath Mare Serenitatis. A decreased electrical conductivity in the upper mantle beneath the mare may be due to a lower temperature resulting from heat carried out the magma source regions to the surface during mare flooding.

  16. 3D simulation of near-fault strong ground motion:comparison between surface rupture fault and buried fault

    Institute of Scientific and Technical Information of China (English)

    Liu Qifang; Yuan Yifan; Jin Xing

    2007-01-01

    In this paper,near-fault strong ground motions caused by a surface rupture fault(SRF)and a buried fault(BF) are numerically simulated and compared by using a time-space-decoupled,explicit finite element method combined with a multi-transmitting formula(MTF) of an artificial boundary.Prior to the comparison,verification of the explicit element method and the MTF is conducted.The comparison results show that the final dislocation of the SRF is larger than the BF for the same stress drop on the fault plane.The maximum final dislocation occurs on the fault upper line for the SRF;however,for the BF,the maximum final dislocation is located on the fault central part.Meanwhile,the PGA,PGV and PGD of long period ground motions(≤1 Hz)generated by the SRF are much higher than those of the BF in the near-fault region.The peak value of the velocity pulse generated by the SRF is also higher than the BF.Furthermore,it is found that in a very narrow region along the fault trace,ground motions caused by the SRF are much higher than by the BF.These results may explain why SRFs almost always cause heavy damage in near-fault regions compared to buried faults.

  17. Activities of the Commission for Ground Surface Protection against Mining Damage in the first quarter of 1985. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Chroszcz, A.

    1985-01-01

    Five meetings of the Commission held from January to March 1985 are reported. Underground coal mining in the safety pillar of Bytom was discussed in the light of rock bursts and fatal accidents in the Dymitrow mine. Three coal mines remove the safety pillar: Dymitrow, Szombierki and Rozbark. The Commission discussed: replacing longwall mining with caving by longwall mining with hydraulic stowing, using packings with reduced settling, reducing concentration of mining operations in the area of Bytom center, coordination of underground mining by 3 mines (coordination of mining order, thickness of coal slices or coal seams, concentration of longwall mining in seams with reduced hazards of rock bursts, methods for protection of buildings and industrial plants at the ground surface against ground deformation. The Commission also discussed program of coal mining with hydraulic stowing in the safety pillar of the Batory Steelworks, the Hajduki chemical plant and Chorzow (order of mining, schemes for slice mining, forecasting ground subsidence, methods for protection against mining damage), underground mining with caving or stowing in safety pillars of the Miechowice and Karb mines under Bytom, new regulations on geodetic surveys in underground coal mines.

  18. Environmental impact of highway construction and repair materials on surface and ground waters. Case study: crumb rubber asphalt concrete.

    Science.gov (United States)

    Azizian, Mohammad F; Nelson, Peter O; Thayumanavan, Pugazhendhi; Williamson, Kenneth J

    2003-01-01

    The practice of incorporating certain waste products into highway construction and repair materials (CRMs) has become more popular. These practices have prompted the National Academy of Science, National Cooperative Highway Research Program (NCHRP) to research the possible impacts of these CRMs on the quality of surface and ground waters. State department of transportations (DOTs) are currently experimenting with use of ground tire rubber ( crumb rubber) in bituminous construction and as a crack sealer. Crumb rubber asphalt concrete (CR-AC) leachates contain a mixture of organic and metallic contaminants. Benzothiazole and 2(3H)-benzothiazolone (organic compounds used in tire rubber manufacturing) and the metals mercury and aluminum were leached in potentially harmful concentrations (exceeding toxic concentrations for aquatic toxicity tests). CR-AC leachate exhibited moderate to high toxicity for algae ( Selenastrum capriconutum) and moderate toxicity for water fleas ( Daphnia magna). Benzothiazole was readily removed from CR-AC leachate by the environmental processes of soil sorption, volatilization, and biodegradation. Metals, which do not volatilize or photochemically or biologically degrade, were removed from the leachate by soil sorption. Contaminants from CR-AC leachates are thus degraded or retarded in their transport through nearby soils and ground waters.

  19. Determination of barium in surface and ground waters at Centro Experimental Aramar area

    Energy Technology Data Exchange (ETDEWEB)

    Matoso, Erika, E-mail: ematoso@hotmail.com [Centro Tecnologico da Marinha em Sao Paulo (CEA/CTMS), Ipero, SP (Brazil). Centro Experimental Aramar; Cadore, Solange, E-mail: cadore@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica. Departamento de Quimica Analica

    2015-07-01

    Barium can be found in waters up to 1 mg L{sup -1} and came from natural sources such as sedimentary rocks erosion rich in feldspar and barite. Also anthropogenic activities can release this element such as oil and gas industry, agricultural defensives, chemical industry and waste disposal. At high doses, barium can be harmful to human central nervous system and can also cause high blood pressure, heart problems, fatigue and anxiety. The water potability defined by Brazilian's Ministry of Healthy sets barium concentration up to 0.7 mg L{sup -1} and official regulation defines the same limit of this element to superficial waters (according CONAMA resolution 357/2005) and ground waters (Sao Paulo state regulation). In this work, barium was analyzed monthly in superficial waters from 4 different sampling locations, located in a ratio of 10-km-long from Centro Experimental Aramar (CEA) at Ipanema River, during one year, in order to evaluate the river in different conditions (seasons, temperature and rain period). The ground water was collected every six months. The analytical technique applied was ICP OES and the method conditions were optimized: wavelength, linearity, signal background ratio, detection and quantification limits. Data obtained in this work will contribute to evaluate the presence of barium at CEA region and nearby in order to compare it with current Brazilian regulations. (author)

  20. Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Fadong, E-mail: lifadong@igsnrr.ac.cn [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Zhang, Qiuying [Center for Agricultural Resources Research, Chinese Academy of Sciences, Shijiazhuang 050021 (China); Li, Jing [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Liu, Qiang [Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2014-08-15

    Water pollution in the form of nitrate nitrogen (NO{sub 3}{sup −}–N) contamination is a major concern in most agricultural areas in the world. Concentrations and nitrogen and oxygen isotopic compositions of nitrate, as well as oxygen and deuterium isotopic compositions of surface and groundwater from a typical irrigated region in the North China Plain (NCP) collected from May to October in 2012 were analyzed to examine the major nitrate sources and transformations. Concentrations of NO{sub 3}{sup −}–N ranged from 0.2 to 29.6 mg/L (mean of 11.2 mg/L) in surface water, and from 0.1 to 19.4 mg/L (mean of 2.8 mg/L) in groundwater. Approximately 46.7% of the surface water samples and 10% of the groundwater samples exceeded the World Health Organization (WHO) drinking water standard for NO{sub 3}{sup −}–N. Surface water samples that exceeded the standard were collected mainly in the dry season (May and October), while groundwater samples that exceeded the standard were collected in the wet season (June). Overall, the highest nitrate levels were observed in surface water in May and in groundwater in June, indicating that fertilizer application, precipitation, and irrigation strongly influence the NO{sub 3}{sup −}–N concentrations. Analyses of isotopic compositions suggest that the main sources of nitrate are nitrification of fertilizer and sewage in surface water, in contrast, mineralization of soil organic N and sewage is the groundwater sources during the dry season. When fertilizers are applied, nitrate will be transported by precipitation through the soil layers to the groundwater in the wet season (June). Denitrification only occurred in surface water in the wet season. Attempts should be made to minimize overuse of nitrogen fertilizers and to improve nitrogen use efficiency in irrigated agricultural regions. - Highlights: • Nitrate sources in surface and groundwater were identified by multiple isotopes. • Nitrate pollution displayed obvious

  1. Imaging beneath the skin of large tropical rivers: Clay controls on system morphodynamics revealed by novel CHIRP sub-surface sonar and deep coring along the Fly and Strickland Rivers, Papua New Guinea (Invited)

    Science.gov (United States)

    Aalto, R. E.; Grenfell, M.; Lauer, J. W.

    2010-12-01

    Tropical rivers dominate Earth’s fluvial fluxes for water, carbon, and mineral sediment. They are characterized by large channels and floodplains, old system histories (in comparison to many temperate rivers), frequent and prolonged periods of flooding, and a clay-dominated sediment flux transported above a sandy bed. However, limited insight is available regarding the underlying bed & floodplain strata -- material that underpins system mobility and morphodynamics. Available data commonly stems from “skin-deep” approaches such as GIS analysis of imagery, shallow sampling of a surface veneer, & topographic profiling during lower river stages. Given the large temporal & spatial scales of such systems, new approaches are needed to see below lag deposits on mobile sandy beds & deep into expansive floodbasins. Furthermore, such data are needed to test whether we can usefully interpret large tropical river morphology using direct analogies to observations from small temperate sytems. Systems responding to sea level rise, pending avulsions, or an increase/contrast in sediment load would provide especially valuable insight. We conducted a field campaign along the Fly and Strickland Rivers in Papua New Guinea (discharge ~ 5,400 CMS). Immediate results were obtained using a dual-frequency CHIRP sub-bottom profiler optimized for fluvial environments, with which we were able to image 10-20m below the river/lake bed. We were able to distinguish sandy deposits from harder clay and silt lenses and also collected bed grab samples to verify our sonar results. Deep borehole samples (5-15m), push cores, and cutbank profiles of material strength confirmed observations from the sonar profiling. We simultaneously collected side-scan sonar imagery plus DGPS water/bed elevations. Findings include: 1) The prevalence of hard clay beneath the bed at many locations along the Lower Fly and Strickland Rivers, retarding migration; 2) Unusual bed morphology along the lower Middle Fly River

  2. Be(1010): A test ground for surface electron-phonon coupling

    Science.gov (United States)

    Tang, Shu-Jung; Sprunger, Philip; Plummer, Ward; Yang, Wanli; Brouet, Veronique; Zhou, Xingjiang; Shen, Zhi-Xun

    2003-03-01

    The electron-phonon coupling on the Be(10bar10) surface has been investigated with high-resolution photoemission examining temperature dependence and dispersion distortion near the Fermi energy of the two zone boundary surface states. Two surface states (S1 and S2) coexist in a large gap in the bulk projection at the surface zone boundary barA. S1 is localized near the surface in the middle of the gap while S2 is near the bottom band edge and penetrates into the bulk. Using both a Debye and Einstein model to fit the temperature-dependent surface state line width produces an electron-phonon coupling strength with parameters, λ _S1 = 0.647 and λ _S2 = 0.491, more than two times larger than the bulk value, λ _bulk = 0.24. S2 data was measured with a 3D Debye model but the S1 data required an Einstein model with an optical phonon at energy 64 meV. Direct 2D images of the dispersion of the S1 state show dramatic distortion of the electron band dispersion within 64 meV of the Fermi energy. This data is used to extract the real and imaginary parts of the self-energy. Founded by NSF DMR-0105232 and Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725

  3. High resolution surface solar radiation patterns over Eastern Mediterranean: Satellite, ground-based, reanalysis data and radiative transfer simulations

    Science.gov (United States)

    Alexandri, G.; Georgoulias, A.; Meleti, C.; Balis, D.

    2013-12-01

    Surface solar radiation (SSR) and its long and short term variations play a critical role in the modification of climate and by extent of the social and financial life of humans. Thus, SSR measurements are of primary importance. SSR is measured for decades from ground-based stations for specific spots around the planet. During the last decades, satellite observations allowed for the assessment of the spatial variability of SSR at a global as well as regional scale. In this study, a detailed spatiotemporal view of the SSR over Eastern Mediterranean is presented at a high spatial resolution. Eastern Mediterranean is affected by various aerosol types (continental, sea, dust and biomass burning particles) and encloses countries with significant socioeconomical changes during the last decades. For the aims of this study, SSR data from satellites (Climate Monitoring Satellite Application Facility - CM SAF) and our ground station in Thessaloniki, a coastal city of ~1 million inhabitants in northern Greece, situated in the heart of Eastern Mediterranean (Eppley Precision pyranometer and Kipp & Zonen CM-11 pyranometer) are used in conjunction with radiative transfer simulations (Santa Barbara DISORT Atmospheric Radiative Transfer - SBDART). The CM SAF dataset used here includes monthly mean SSR observations at a high spatial resolution of 0.03x0.03 degrees for the period 1983-2005. Our ground-based SSR observations span from 1983 until today. SBDART radiative transfer simulations were implemented for a number of spots in the area of study in order to calculate the SSR. High resolution (level-2) aerosol and cloud data from MODIS TERRA and AQUA satellite sensors were used as input, as well as ground-based data from the AERONET. Data from other satellites (Earth Probe TOMS, OMI, etc) and reanalysis projects (ECMWF) were used where needed. The satellite observations, the ground-based measurements and the model estimates are validated against each other. The good agreement

  4. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    Science.gov (United States)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  5. Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission Data Alone: Toward an Operational Retrieval

    Directory of Open Access Journals (Sweden)

    Evgueni Kassianov

    2014-08-01

    Full Text Available We present here a simple retrieval of the areal-averaged spectral surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation. The feasibility of our retrieval for routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements: (1 spectral atmospheric transmission from the Multi-Filter Rotating Shadowband Radiometer (MFRSR at five wavelengths (415, 500, 615, 673, and 870 nm; (2 tower-based measurements of local surface albedo at the same wavelengths; and (3 areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS observations. These integrated datasets cover both temporally long (2008–2013 and short (April–May 2010 periods at the Atmospheric Radiation Measurement (ARM Southern Great Plains site and the National Oceanic and Atmospheric Administration (NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE, defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved areal-averaged albedo, is quite small (RMSE ≤ 0.015 and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between tower-based measurements of daily-averaged surface albedo for completely overcast and non-overcast conditions is also demonstrated.

  6. Survival of adenovirus types 2 and 41 in surface and ground waters measured by a plaque assay.

    Science.gov (United States)

    Rigotto, C; Hanley, K; Rochelle, P A; De Leon, R; Barardi, C R M; Yates, M V

    2011-05-01

    To manage artificial recharge systems, it is necessary to understand the inactivation process of microorganisms within aquifers so that requirements regarding storage times and treatment strategies for ground and surface waters can be developed and modeled to improve water management practices. This study was designed to investigate the survival of representative adenoviruses in surface- and groundwaters using a cell culture plaque assay with human lung carcinoma cells (A549) to enumerate surviving viruses. Adenovirus types 2 (Ad2) and 41 (Ad41) were seeded into 50 mL of three sterilized surface waters and groundwaters, and incubated at 10 and 19 °C for up to 301 days. Concentrations of Ad2 and Ad41 were relatively stable in all waters at 10 °C for at least 160 days and in some instances up to 301 days. At 19 °C, virus concentrations were reduced by 99.99% (4 log) after 301 days in surface water. There was approximately 90% (1 log) reduction of both viruses at 19 °C after 160 days of incubation in groundwater samples. There was no overall difference in survival kinetics in surface waters compared to groundwaters. The relatively high stability and long-term survival of adenoviruses in environmental waters at elevated temperatures should be considered in risk assessment models and drinking water management strategies.

  7. Evaluating the effects of urbanization and land-use planning using ground-water and surface-water models

    Science.gov (United States)

    Hunt, R.J.; Steuer, J.J.

    2001-01-01

    Why are the effects of urbanization a concern? As the city of Middleton, Wisconsin, and its surroundings continue to develop, the Pheasant Branch watershed (fig.l) is expected to undergo urbanization. For the downstream city of Middleton, urbanization in the watershed can mean increased flood peaks, water volume and pollutant loads. More subtly, it may also reduce water that sustains the ground-water system (called "recharge") and adversely affect downstream ecosystems that depend on ground water such as the Pheasant Branch Springs (hereafter referred to as the Springs). The relation of stormwater runoff and reduced ground-water recharge is complex because the surface-water system is coupled to the underlying ground-water system. In many cases there is movement of water from one system to the other that varies seasonally or daily depending on changing conditions. Therefore, it is difficult to reliably determine the effects of urbanization on stream baseflow and spring flows without rigorous investigation. Moreover, mitigating adverse effects after development has occurred can be expensive and administratively difficult. Overlying these concerns are issues such as stewardship of the resource, the rights of the public, and land owners' rights both of those developing their land and those whose land is affected by this development. With the often- contradictory goals, a scientific basis for assessing effects of urbanization and effectiveness of mitigation measures helps ensure fair and constructive decision-making. The U.S. Geological Survey, in cooperation with the City of Middleton and Wisconsin Department of Natural Resources, completed a study that helps address these issues through modeling of the hydrologic system. This Fact Sheet discusses the results of this work.

  8. Monitoring ground-surface heating during expansion of the Casa Diablo production well field at Mammoth Lakes, California

    Science.gov (United States)

    Bergfeld, D.; Vaughan, R. Greg; Evans, William C.; Olsen, Eric

    2015-01-01

    The Long Valley hydrothermal system supports geothermal power production from 3 binary plants (Casa Diablo) near the town of Mammoth Lakes, California. Development and growth of thermal ground at sites west of Casa Diablo have created concerns over planned expansion of a new well field and the associated increases in geothermal fluid production. To ensure that all areas of ground heating are identified prior to new geothermal development, we obtained high-resolution aerial thermal infrared imagery across the region. The imagery covers the existing and proposed well fields and part of the town of Mammoth Lakes. Imagery results from a predawn flight on Oct. 9, 2014 readily identified the Shady Rest thermal area (SRST), one of two large areas of ground heating west of Casa Diablo, as well as other known thermal areas smaller in size. Maximum surface temperatures at 3 thermal areas were 26–28 °C. Numerous small areas with ground temperatures >16 °C were also identified and slated for field investigations in summer 2015. Some thermal anomalies in the town of Mammoth Lakes clearly reflect human activity.Previously established projects to monitor impacts from geothermal power production include yearly surveys of soil temperatures and diffuse CO2 emissions at SRST, and less regular surveys to collect samples from fumaroles and gas vents across the region. Soil temperatures at 20 cm depth at SRST are well correlated with diffuse CO2 flux, and both parameters show little variation during the 2011–14 field surveys. Maximum temperatures were between 55–67 °C and associated CO2 discharge was around 12–18 tonnes per day. The carbon isotope composition of CO2 is fairly uniform across the area ranging between –3.7 to –4.4 ‰. The gas composition of the Shady Rest fumarole however has varied with time, and H2S concentrations in the gas have been increasing since 2009.

  9. Real-time Accurate Surface Reconstruction Pipeline for Vision Guided Planetary Exploration Using Unmanned Ground and Aerial Vehicles

    Science.gov (United States)

    Almeida, Eduardo DeBrito

    2012-01-01

    This report discusses work completed over the summer at the Jet Propulsion Laboratory (JPL), California Institute of Technology. A system is presented to guide ground or aerial unmanned robots using computer vision. The system performs accurate camera calibration, camera pose refinement and surface extraction from images collected by a camera mounted on the vehicle. The application motivating the research is planetary exploration and the vehicles are typically rovers or unmanned aerial vehicles. The information extracted from imagery is used primarily for navigation, as robot location is the same as the camera location and the surfaces represent the terrain that rovers traverse. The processed information must be very accurate and acquired very fast in order to be useful in practice. The main challenge being addressed by this project is to achieve high estimation accuracy and high computation speed simultaneously, a difficult task due to many technical reasons.

  10. An Approach for Predicting the Shape and Size of a Buried Basic Object on Surface Ground Penetrating Radar System

    Directory of Open Access Journals (Sweden)

    Nana Rachmana Syambas

    2012-01-01

    Full Text Available Surface ground-penetrating radar (GPR is one of the radar technology that is widely used in many applications. It is nondestructive remote sensing method to detect underground buried objects. However, the output target is only hyperbolic representation. This research develops a system to identify a buried object on surface GPR based on decision tree method. GPR data of many basic objects (with circular, triangular, and rectangular cross-section are classified and extracted to generate data training model as a unique template for each type of basic object. The pattern of object under test will be known by comparing its data with the training data using a decision tree method. A simple powerful algorithm to extract feature parameters of object which is based on linear extrapolation is proposed. The result showed that tested buried basic objects can be correctly predicted and the developed system works properly.

  11. A semiempirical study of the optimized ground and excited state potential energy surfaces of retinal and its protonated Schiff base

    Science.gov (United States)

    Parusel, A. B.; Pohorille, A.

    2001-01-01

    The electronic ground and first excited states of retinal and its Schiff base are optimized for the first time using the semiempirical AM1 Hamiltonian. The barrier for rotation about the C(11)-C(12) double bond is characterized by variation of both the twist angle delta(C(10)-C(11)-C(12)-C(13)) and the bond length d(C(11)-C(12)). The potential energy surface is obtained by varying these two parameters. The calculated ground state rotational barrier is equal to 15.6 kcal/mol for retinal and 20.5 kcal/mol for its Schiff base. The all-trans conformation is more stable by 3.7 kcal/mol than the 11-cis geometry. For the first excited state, S(1,) the 90 degrees twisted geometry represents a saddle point for retinal with the rotational barrier of 14.6 kcal/mol. In contrast, this conformation is an energy minimum for the Schiff base. It can be easily reached at room temperature from the planar minima since it is separated from them by a barrier of only 0.6 kcal/mol. The 90 degrees minimum conformation is more stable than the all-trans by 8.6 kcal/mol. We are thus able to present a reaction path on the S(1) surface of the retinal Schiff base with an almost barrier-less geometrical relaxation into a twisted minimum geometry, as observed experimentally. The character of the ground and first excited singlet states underscores the need for the inclusion of double excitations in the calculations.

  12. Influence of Holocene stratigraphic architecture on ground surface settlements: A case study from the City of Pisa (Tuscany, Italy)

    Science.gov (United States)

    Sarti, Giovanni; Rossi, Veronica; Amorosi, Alessandro

    2012-12-01

    The Holocene stratigraphic architecture of modern coastal and deltaic plains has peculiar characteristics that may influence ground surface settlements. In the Pisa urban area, the inhomogeneous spatial distribution of geotechnically weak layers, typically formed during the mid-late Holocene (highstand) coastal progradation, is inferred to be responsible for urban ground settlement and building damage, as evidenced by the tilt of several surface structures, among which the famous Leaning Tower of Pisa is the most prominent. On the basis of integrated stratigraphic, sedimentological and geotechnical data from a wide georeferenced database, three facies associations with high deformability potential (Units 1-3) are identified in the uppermost 30 m as opposed to depositional facies (Units 4-5) with higher geotechnical strength. Whereas Unit 1 represents a thick, laterally extensive lagoonal clay deposit, the overlying highly deformable units (Units 2-3) show more discontinuous spatial distribution controlled by the Holocene paleohydrographic evolution of the Arno coastal plain. Unit 2, dated between the Neolithic and the Etruscan age (ca. 5000-2000 yr BP), is composed of swamp clays and silty clays recording lagoon infilling due to Arno Delta progradation. Units 3 and 4, which consist of wet levee deposits and stiff floodplain clays, respectively, formed during the subsequent phases of alluvial plain construction started around the Roman age (from ca. 2000 yr BP). Whereas Units 3 and 4 are recorded within the uppermost 5 m, fluvial and distributary channel sands (Unit 5) cut the underlying deltaic-alluvial succession at various stratigraphic levels, down to Unit 1. The spatial distribution of these units gives rise to three, locally juxtaposed, stratigraphic motifs in Pisa underground, reflecting different potential risks for settlement under building loads. We show how lateral changes in stratigraphic architecture account for the irregular spatial distribution of

  13. Estimating Saturated Hydraulic Conductivity from Surface Ground-Penetrating Radar Monitoring of Infiltration

    CERN Document Server

    Léger, Emmanuel; Coquet, Yves

    2013-01-01

    In this study we used Hydrus-1D to simulate water infiltration from a ring infiltrometer. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity while knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the depth of the inflection point of the water content profile simulated at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relationship to invert the saturated hydraulic conductivity for constant and falling head infiltrations. We present our method on synthetic examples and on two experiments carried out on sand. We f...

  14. Simulation Analysis on Power Frequency Electric Field at Ground Surface Near EHV Power Transmission Tower%超高压输电线路铁塔附近地面工频电场仿真分析

    Institute of Scientific and Technical Information of China (English)

    李永明; 范与舟; 徐禄文

    2013-01-01

    根据铁塔实际结构和导线抛物线方程,建立了铁塔附近三维电场计算模型.基于模拟电荷法分析了500 kV输电线路铁塔周围地面上的工频电场分布,分析了铁塔对其附近电场环境的影响,并讨论了影响电场计算结果的因素.研究结果表明:铁塔对其附近地面电场有一定屏蔽作用,电场强度在铁塔下方显著降低且在金属构架处产生畸变;铁塔的影响范围和铁塔高度及塔基尺寸有关;铁塔构架等效半径、线单元剖分段数以及铁塔不同简化模型都会影响计算结果.%Based on actual structure of power transmission tower and parabolic equation of transmission lines,a three-dimensional model to compute power frequency electric field at ground surface near transmission tower is built.According to charge simulation method,the distribution of power frequency electric field at ground surface near 500kV transmission tower as well as the impacts of transmission tower on nearby electric field is analyzed,and the factors impacting computational results of electric field are discussed.Research results show that there is a certain screening effect of transmission tower on ground surface electric field nearby the tower,so the electric field intensity beneath the tower decreases obviously and electric field distortion appears at the positions where metal frameworks are erected.The impacting area is related to the height of the tower and the size of tower foundation; computational result of electric field will be impacted by the equivalent radius of tower framework,the number of line segments and different simplified models of the tower.

  15. STUDY OF PHYSICO-CHEMICAL PROPERTIES OF THE SURFACE AND GROUND WATER

    Directory of Open Access Journals (Sweden)

    A. Y. Al-Ghamdi

    2014-01-01

    Full Text Available Of all the natural resources, water is unarguably the most essential and precious. Life began in water and life is nurtured by water. Ninety seven percent of the world’s water is found in oceans. Only 2.5% of the world’s water are non-saline fresh water. Saudi Arabia is a desert country with no permanent rivers or lakes and very little rainfall. Water is scarce and extremely valuable and with the country’s rapid growth, the demand for water is increasing. Seven samples of water are collected, six samples from Wells (1-6 and the last sample from Al-Mallah Valley Dam, Mukhwa (7, Al-Mukhwah, in order to find impurities and pollutants and found some suitable solution. Some physical properties of water are measured such as turbidity, conductivity, pH and also, some pollutants such as iron, manganese, nitrate, nitrite fluoride, phosphate as well as calcium, magnesium, sulfate and chloride as well as detection of some microorganisms. The results shown that, the water of Al-Mallah Valley Dam has a high percentage of turbidity as a result of contamination of water with clay, plant residues and also some dead animals. On the other hand, the samples of ground water have high conductivity and high value of fluoride, nitrite, nitrate contents as well as Mn and Fe. Also the result of microorganisms showed the presence of some the water of Al-Mallah Valley Dam can be treated with a very simple method and become suitable for drinking. Also ground water can be treated with a suitable method to reduce the total hardness and some pollutants. But its content of fluoride is higher than that of gulf specifications so it must be treated before used.

  16. Characterizing Geothermal Surface Manifestation Based on Multivariate Geostatistics of Ground Measurements Data

    Science.gov (United States)

    Ishaq; Nur Heriawan, Mohamad; Saepuloh, Asep

    2016-09-01

    Mt. Wayang Windu is one of geothermal field located in West Java, Indonesia. The characterization of steam spots at surface manifestation zones based on the soil physical measurements of the area is presented in this study. The multivariate geostatistical methods incorporating the soil physical parameter data were used to characterize the zonation of geothermal surface manifestations. The purpose of this study is to evaluate the performance of spatial estimation method of multivariate geostatistics using Ordinary Cokriging (COK) to characterize the physical properties of geothermal surface manifestations at Mt. Wayang Windu. The COK method was selected because this method is favorable when the secondary variables has more number than the primary variables. There are four soil physical parameters used as the basis of COK method, i.e. Electrical Conductivity, Susceptibility, pH, and Temperature. The parameters were measured directly at and around geothermal surface manifestations including hot springs, fumaroles, and craters. Each location of surface manifestations was measured about 30 points with 30 x 30 m grids. The measurement results were analyzed by descriptive statistics to identify at the nature of data. The correlation among variables was analyzed using linear regression. When the correlation coefficient among variables is higher, the estimation results is expected to have better Linear Coregionalization Model (LCM). LCM was used to analyze the spatial correlation of each variable based on their variogram and cross-variogram model. In oder to evaluate the performance of multivariate geostatistical using COK method, a Root Mean Square Error (RMSE) was performed. Estimation result using COK method is well applicable for characterizing the surface physics parameters of radar images data.

  17. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    Science.gov (United States)

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near

  18. Ground-Water, Surface-Water, and Water-Chemistry Data, Black Mesa Area, Northeastern Arizona - 2006-07

    Science.gov (United States)

    Truini, Margot; Macy, J.P.

    2008-01-01

    The N aquifer is the major source of water in the 5,400 square-mile Black Mesa area in northeastern Arizona. Availability of water is an important issue in northeastern Arizona because of continued water requirements for industrial and municipal use and the needs of a growing population. Precipitation in the Black Mesa area is typically about 6 to 14 inches per year. The water-monitoring program in the Black Mesa area began in 1971 and is designed to provide information about the long-term effects of ground-water withdrawals from the N aquifer for industrial and municipal uses. This report presents results of data collected for the monitoring program in the Black Mesa area from January 2006 to September 2007. The monitoring program includes measurements of (1) ground-water withdrawals, (2) ground-water levels, (3) spring discharge, (4) surface-water discharge, and (5) ground-water chemistry. Periodic testing of ground-water withdrawal meters is completed every 4 to 5 years. The Navajo Tribal Utility Authority (NTUA) yearly totals for the ground-water metered withdrawal data were unavailable in 2006 due to an up-grade within the NTUA computer network. Because NTUA data is often combined with Bureau of Indian Affairs data for the total withdrawals in a well system, withdrawals will not be published in this year's annual report. From 2006 to 2007, annually measured water levels in the Black Mesa area declined in 3 of 11 wells measured in the unconfined areas of the N aquifer, and the median change was 0.0 feet. Measurements indicated that water levels declined in 8 of 17 wells measured in the confined area of the aquifer. The median change for the confined area of the aquifer was 0.2 feet. From the prestress period (prior to 1965) to 2007, the median water-level change for 30 wells was -11.1 feet. Median water-level changes were 2.9 feet for 11 wells measured in the unconfined areas and -40.2 feet for 19 wells measured in the confined area. Spring flow was measured

  19. On Irrotational Flows Beneath Periodic Traveling Equatorial Waves

    Science.gov (United States)

    Quirchmayr, Ronald

    2016-08-01

    We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.

  20. On Irrotational Flows Beneath Periodic Traveling Equatorial Waves

    Science.gov (United States)

    Quirchmayr, Ronald

    2017-06-01

    We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.

  1. Kelvin-Helmholtz wave generation beneath hovercraft skirts

    Science.gov (United States)

    Sullivan, P. A.; Walsh, C.; Hinchey, M. J.

    1993-05-01

    When a hovercraft is hovering over water, the air flow beneath its skirts can interact with the water surface and generate waves. These, in turn, can cause the hovercraft to undergo violent self-excited heave motions. This note shows that the wave generation is due to the classical Kelvin-Helmholtz mechanism where, beyond a certain air flow rate, small waves at the air water interface extract energy from the air stream and grow.

  2. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    DEFF Research Database (Denmark)

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian

    2012-01-01

    We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set ...

  3. Expanding surfaces: The viewer immersed in multiple modes of representation Following the drawing on the ground

    DEFF Research Database (Denmark)

    Carbone, Claudia

    2015-01-01

    The experience of the exhibition On the Surface – a retrospective of the work of Metis, the Edinburgh-based atelier of Mark Dorrian and Adrian Hawker, presented in the exhibition space of The Aarhus School of Architecture – is choreographed as a walk over superimposed fragments of architectural...

  4. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  5. Turbulence beneath finite amplitude water waves

    Energy Technology Data Exchange (ETDEWEB)

    Beya, J.F. [Universidad de Valparaiso, Escuela de Ingenieria Civil Oceanica, Facultad de Ingenieria, Valparaiso (Chile); The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Peirson, W.L. [The University of New South Wales, Water Research Laboratory, School of Civil and Environmental Engineering, Sydney, NSW (Australia); Banner, M.L. [The University of New South Wales, School of Mathematics and Statistics, Sydney, NSW (Australia)

    2012-05-15

    Babanin and Haus (J Phys Oceanogr 39:2675-2679, 2009) recently presented evidence of near-surface turbulence generated below steep non-breaking deep-water waves. They proposed a threshold wave parameter a {sup 2}{omega}/{nu} = 3,000 for the spontaneous occurrence of turbulence beneath surface waves. This is in contrast to conventional understanding that irrotational wave theories provide a good approximation of non-wind-forced wave behaviour as validated by classical experiments. Many laboratory wave experiments were carried out in the early 1960s (e.g. Wiegel 1964). In those experiments, no evidence of turbulence was reported, and steep waves behaved as predicted by the high-order irrotational wave theories within the accuracy of the theories and experimental techniques at the time. This contribution describes flow visualisation experiments for steep non-breaking waves using conventional dye techniques in the wave boundary layer extending above the wave trough level. The measurements showed no evidence of turbulent mixing up to a value of a {sup 2}{omega}/{nu} = 7,000 at which breaking commenced in these experiments. These present findings are in accord with the conventional understandings of wave behaviour. (orig.)

  6. Realization of Multi-Stable Ground States in a Nematic Liquid Crystal by Surface and Electric Field Modification

    Science.gov (United States)

    Gwag, Jin Seog; Kim, Young-Ki; Lee, Chang Hoon; Kim, Jae-Hoon

    2015-06-01

    Owing to the significant price drop of liquid crystal displays (LCDs) and the efforts to save natural resources, LCDs are even replacing paper to display static images such as price tags and advertising boards. Because of a growing market demand on such devices, the LCD that can be of numerous surface alignments of directors as its ground state, the so-called multi-stable LCD, comes into the limelight due to the great potential for low power consumption. However, the multi-stable LCD with industrial feasibility has not yet been successfully performed. In this paper, we propose a simple and novel configuration for the multi-stable LCD. We demonstrate experimentally and theoretically that a battery of stable surface alignments can be achieved by the field-induced surface dragging effect on an aligning layer with a weak surface anchoring. The simplicity and stability of the proposed system suggest that it is suitable for the multi-stable LCDs to display static images with low power consumption and thus opens applications in various fields.

  7. Modeling of ground temperatures in South Shetlands (Antarctic Peninsula): Forcing a land surface model with the reanalysis ERA-Interim

    Science.gov (United States)

    João Rocha, Maria; Dutra, Emanuel; Vieira, Gonçalo; Miranda, Pedro; Ramos, Miguel

    2010-05-01

    This study focus on Livingston Island (South Shetlands Antarctic Peninsula), one of the Earth's regions where warming has been more significant in the last 50 years. Our work is integrated in a project focusing on studying the influence of climate change on permafrost temperatures, which includes systematic and long-term terrain monitoring and also modeling using land surface models. A contribution will be the evaluation of the possibilities for using land surface modeling approaches to areas of the Antarctic Peninsula with lack of data on observational meteorological forcing data, as well as on permafrost temperatures. The climate variability of the Antarctic Peninsula region was studied using the new reanalysis product from European Centre for Medium-Range Weather Forecasts (ECMWF) Era-Interim and observational data from boreholes run by our group. Monthly and annual cycles of near surface climate variables are compared. The modeling approach includes the HTESSEL (Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land) forced with ERA-Interim for modeling ground temperatures in the study region. The simulation results of run of HTESSEL are compared against soil temperature observations. The results show a favorable match between simulated and observed soil temperatures. The use of different forcing parameters is compared and the model vs. observation results from different results is analyzed. The main variable needing further improvement in the modeling is snow cover. The developed methodology provides a good tool for the analysis of the influence of climate variability on permafrost of the Maritime Antarctic.

  8. Ground and surface temperature variability for remote sensing of soil moisture in a heterogeneous landscape

    Science.gov (United States)

    Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Finn, M.

    2009-01-01

    At the Little River Watershed (LRW) heterogeneous landscape near Tifton Georgia US an in situ network of stations operated by the US Department of Agriculture-Agriculture Research Service-Southeast Watershed Research Lab (USDA-ARS-SEWRL) was established in 2003 for the long term study of climatic and soil biophysical processes. To develop an accurate interpolation of the in situ readings that can be used to produce distributed representations of soil moisture (SM) and energy balances at the landscape scale for remote sensing studies, we studied (1) the temporal and spatial variations of ground temperature (GT) and infra red temperature (IRT) within 30 by 30 m plots around selected network stations; (2) the relationship between the readings from the eight 30 by 30 m plots and the point reading of the network stations for the variables SM, GT and IRT; and (3) the spatial and temporal variation of GT and IRT within agriculture landuses: grass, orchard, peanuts, cotton and bare soil in the surrounding landscape. The results showed high correlations between the station readings and the adjacent 30 by 30 m plot average value for SM; high seasonal independent variation in the GT and IRT behavior among the eight 30 by 30 m plots; and site specific, in-field homogeneity in each 30 by 30 m plot. We found statistical differences in the GT and IRT between the different landuses as well as high correlations between GT and IRT regardless of the landuse. Greater standard deviations for IRT than for GT (in the range of 2-4) were found within the 30 by 30 m, suggesting that when a single point reading for this variable is selected for the validation of either remote sensing data or water-energy models, errors may occur. The results confirmed that in this landscape homogeneous 30 by 30 m plots can be used as landscape spatial units for soil moisture and ground temperature studies. Under this landscape conditions small plots can account for local expressions of environmental

  9. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Delahaye, Thibault, E-mail: thibault.delahaye@univ-reims.fr; Rey, Michaël, E-mail: michael.rey@univ-reims.fr; Tyuterev, Vladimir G. [Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, BP 1039, F-51687, Reims Cedex 2 (France); Nikitin, Andrei [Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 634055 Tomsk, Russia and Quamer, State University of Tomsk (Russian Federation); Szalay, Péter G. [Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest (Hungary)

    2014-09-14

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C{sub 2}H{sub 4} obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C{sub 2}H{sub 4} molecule was obtained with a RMS(Obs.–Calc.) deviation of 2.7 cm{sup −1} for fundamental bands centers and 5.9 cm{sup −1} for vibrational bands up to 7800 cm{sup −1}. Large scale vibrational and rotational calculations for {sup 12}C{sub 2}H{sub 4}, {sup 13}C{sub 2}H{sub 4}, and {sup 12}C{sub 2}D{sub 4} isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm{sup −1} are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of {sup 13}C{sub 2}H{sub 4} and {sup 12}C{sub 2}D{sub 4} and rovibrational levels of {sup 12}C{sub 2}H{sub 4}.

  10. Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau

    Science.gov (United States)

    Gu, Lianglei; Yao, Jimin; Hu, Zeyong; Zhao, Lin

    2015-02-01

    Surface energy budgets were calculated using turbulent flux observation data and meteorological gradient data collected in 2008 from two sites: BJ, located in a seasonally frozen ground region, and Tanggula, located in a permafrost region. In 2008, the energy closure ratios for the BJ and Tanggula sites were 0.74 and 0.73, respectively, using 30-min instantaneous energy flux data but 0.87 and 0.99, respectively, using daily average energy flux data. Therefore, the energy closure status is related to the time scale that is used for the study. The variation in the surface energy budget at the two sites was similar: The sensible heat flux (Hs) was relatively high in spring and reduced in summer but gradually increased in autumn. The latent heat flux (LE) was higher in summer and autumn but lower in winter and spring. Comparably, the starting time for the significant increase in LE occurred earlier at the Tanggula site than that at the BJ site, because the freezing and thawing progress of the active layer of permafrost at Tanggula site significantly affected the Hs and LE distributions, but the freezing and thawing processes of the soil at BJ site did not significantly affect the Hs and LE distributions. The monsoon significantly affected the variation in Hs and LE at both the BJ and Tanggula sites. Regarding the diurnal variation of the energy budget at the two sites, the daily maximum of net radiation (Rn) occurred at approximately 14:00 Beijing Time, and the daily maximum of ground heat flux (G0) was earlier than those of Hs and LE. The albedo and Bowen ratio for the two sites were both low in summer but high in winter. The albedo increased significantly but the Bowen ratio became lower or even negative when the surface was covered with deep snow.

  11. Effect of Surface Geology on Ground Motions: The Case of Station TAP056 - Chutzuhu Site

    Directory of Open Access Journals (Sweden)

    Kuo-Liang Wen

    2008-01-01

    Full Text Available In the Tatun mountain area of northern Taiwan are two strong motion stations approximately 2.5 km apart, TAP056 and TAP066 of the TSMIP network. The accelerometer at station TAP056 is often triggered by earthquakes, but that at TAP066 station is not. Comparisons of vertical and horizontal peak ground accelerations reveal PGA in the vertical, east-west, and north-south components at TAP056 station to be 3.89, 7.57, and 5.45 times those at station TAP066, respectively. The PGA ratio does not seem to be related to earthquake source or path. Fourier spectra of earthquake records at station TAP056 always have approximately the same dominant frequency; however, those at station TAP066 are different due to different sources and paths of different events. This shows that spectra at TAP056 station are mainly controlled by local site effects. The spectral ratios of TAP056/TAP066 show the S-wave is amplified at around 8 ~ 10 Hz. The horizontal/vertical spectral ratios of station TAP056 also show a dominant frequency at about 6 and 8 ~ 10 Hz. After dense microtremor surveying and the addition of one accelerometer just 20 meters away from the original observation station, we can confirm that the top soft soil layer upon which the observation station is constructed generates the local site response at station TAP056.

  12. Modelling the Crust beneath the Kashmir valley in Northwestern Himalaya

    Science.gov (United States)

    Mir, R. R.; Parvez, I. A.; Gaur, V. K.; A.; Chandra, R.; Romshoo, S. A.

    2015-12-01

    We investigate the crustal structure beneath five broadband seismic stations in the NW-SE trendingoval shaped Kashmir valley sandwiched between the Zanskar and the Pir Panjal ranges of thenorthwestern Himalaya. Three of these sites were located along the southwestern edge of the valley andthe other two adjoined the southeastern. Receiver Functions (RFs) at these sites were calculated usingthe iterative time domain deconvolution method and jointly inverted with surface wave dispersiondata to estimate the shear wave velocity structure beneath each station. To further test the results ofinversion, we applied forward modelling by dividing the crust beneath each station into 4-6homogeneous, isotropic layers. Moho depths were separately calculated at different piercing pointsfrom the inversion of only a few stacked receiver functions of high quality around each piercing point.These uncertainties were further reduced to ±2 km by trial forward modelling as Moho depths werevaried over a range of ±6 km in steps of 2 km and the synthetic receiver functions matched with theinverted ones. The final values were also found to be close to those independently estimated using theH-K stacks. The Moho depths on the eastern edge of the valley and at piercing points in itssouthwestern half are close to 55 km, but increase to about 58 km on the eastern edge, suggesting thathere, as in the central and Nepal Himalaya, the Indian plate dips northeastwards beneath the Himalaya.We also calculated the Vp/Vs ratio beneath these 5 stations which were found to lie between 1.7 and1.76, yielding a Poisson's ratio of ~0.25 which is characteristic of a felsic composition.

  13. Mapping of the cumulative β-ray dose on the ground surface surrounding the Fukushima area

    Science.gov (United States)

    Endo, Satoru; Kajimoto, Tsuyoshi; Tanaka, Kenichi; Nguyen, Thanh T.; Hayashi, Gohei; Imanaka, Tetsuji

    2015-01-01

    A large amount of the fission products released by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on 11 March 2011 was deposited in a wide area from Tohoku to northern Kanto. A map of the estimated cumulative β-ray dose (70 μm dose equivalent) on the soil surface for one year after the FDNPP accident has been prepared using previously reported calculation methods and the 2-km mesh survey data by MEXT. From this map of estimated dose, areas with a high cumulative β-ray dose on the soil surface for one year after the FDNPP accident were found to be located in the Akogi-Teshichiro to Akogi-Kunugidaira region in Namie Town, and in the southern Futaba Town to the northern Tomioka Town region. The highest estimated cumulative β-ray dose was 710 mSv for one year at Akogi-Teshichiro, Namie Town. PMID:26519736

  14. Type of Ground Surface during Plyometric Training Affects the Severity of Exercise-Induced Muscle Damage

    Directory of Open Access Journals (Sweden)

    Hamid Arazi

    2016-03-01

    Full Text Available The purpose of this study was to compare the changes in the symptoms of exercise-induced muscle damage from a bout of plyometric exercise (PE; 10 × 10 vertical jumps performed in aquatic, sand and firm conditions. Twenty-four healthy college-aged men were randomly assigned to one of three groups: Aquatic (AG, n = 8, Sand (SG, n = 8 and Firm (FG, n = 8. The AG performed PE in an aquatic setting with a depth of ~130 cm. The SG performed PE on a dry sand surface at a depth of 20 cm, and the FG performed PE on a 10-cm-thick wooden surface. Plasma creatine kinase (CK activity, delayed onset muscle soreness (DOMS, knee range of motion (KROM, maximal isometric voluntary contraction (MIVC of the knee extensors, vertical jump (VJ and 10-m sprint were measured before and 24, 48 and 72 h after the PE. Compared to baseline values, FG showed significantly (p < 0.05 greater changes in CK, DOMS, and VJ at 24 until 48 h. The MIVC decreased significantly for the SG and FG at 24 until 48 h post-exercise in comparison to the pre-exercise values. There were no significant (p > 0.05 time or group by time interactions in KROM. In the 10-m sprint, all the treatment groups showed significant (p < 0.05 changes compared to pre-exercise values at 24 h, and there were no significant (p > 0.05 differences between groups. The results indicate that PE in an aquatic setting and on a sand surface induces less muscle damage than on a firm surface. Therefore, training in aquatic conditions and on sand may be beneficial for the improvement of performance, with a concurrently lower risk of muscle damage and soreness.

  15. Commons problems, common ground: Earth-surface dynamics and the social-physical interdisciplinary frontier

    Science.gov (United States)

    Lazarus, E.

    2015-12-01

    In the archetypal "tragedy of the commons" narrative, local farmers pasture their cows on the town common. Soon the common becomes crowded with cows, who graze it bare, and the arrangement of open access to a shared resource ultimately fails. The "tragedy" involves social and physical processes, but the denouement depends on who is telling the story. An economist might argue that the system collapses because each farmer always has a rational incentive to graze one more cow. An ecologist might remark that the rate of grass growth is an inherent control on the common's carrying capacity. And a geomorphologist might point out that processes of soil degradation almost always outstrip processes of soil production. Interdisciplinary research into human-environmental systems still tends to favor disciplinary vantages. In the context of Anthropocene grand challenges - including fundamental insight into dynamics of landscape resilience, and what the dominance of human activities means for processes of change and evolution on the Earth's surface - two disciplines in particular have more to talk about than they might think. Here, I use three examples - (1) beach nourishment, (2) upstream/downstream fluvial asymmetry, and (3) current and historical "land grabbing" - to illustrate a range of interconnections between physical Earth-surface science and common-pool resource economics. In many systems, decision-making and social complexity exert stronger controls on landscape expression than do physical geomorphological processes. Conversely, human-environmental research keeps encountering multi-scale, emergent problems of resource use made 'common-pool' by water, nutrient and sediment transport dynamics. Just as Earth-surface research can benefit from decades of work on common-pool resource systems, quantitative Earth-surface science can make essential contributions to efforts addressing complex problems in environmental sustainability.

  16. Monitoring of the ground surface temperature and the active layer in NorthEastern Canadian permafrost areas using remote sensing data assimilated in a climate land surface scheme.

    Science.gov (United States)

    Marchand, N.; Royer, A.; Krinner, G.; Roy, A.

    2014-12-01

    Projected future warming is particularly strong in the Northern high latitudes where increases of temperatures are up to 2 to 6 °C. Permafrost is present on 25 % of the northern hemisphere lands and contain high quantities of « frozen » carbon, estimated at 1400 Gt (40 % of the global terrestrial carbon). The aim of this study is to improve our understanding of the climate evolution in arctic areas, and more specifically of land areas covered by snow. The objective is to describe the ground temperature year round including under snow cover, and to analyse the active layer thickness evolution in relation to the climate variability. We use satellite data (fusion of MODIS land surface temperature « LST » and microwave AMSR-E brightness temperature « Tb ») assimilated in the Canadian Land Surface Scheme (CLASS) of the Canadian climate model coupled with a simple radiative transfer model (HUT). This approach benefits from the advantages of each of the data type in order to complete two objectives : 1- build a solid methodology for retrieving the ground temperature, with and without snow cover, in taïga and tundra areas ; 2 - from those retrieved ground temperatures, derive the summer melt duration and the active layer depth. We describe the coupling of the models and the methodology that adjusts the meteorological input parameters of the CLASS model (mainly air temperature and precipitations derived from the NARR database) in order to minimise the simulated LST and Tb ouputs in comparison with satellite measurements. Using ground-based meteorological data as validation references in NorthEastern Canadian tundra, the results show that the proposed approach improves the soil temperatures estimates when using the MODIS LST and Tb at 10 and 19 GHz to constrain the model in comparison with the model outputs without satellite data. Error analysis is discussed for the summer period (2.5 - 4 K) and for the snow covered winter period (2 - 3.5 K). Further steps are

  17. Results of ground-water, surface-water, and water-chemistry monitoring, Black Mesa area, northeastern Arizona, 1994

    Science.gov (United States)

    Littin, G.R.; Monroe, S.A.

    1995-01-01

    The Black Mesa monitoring program is designed to document long-term effects of ground-water pumping from the N aquifer by industrial and municipal users. The N aquifer is the major source of water in the 5,400-square-mile Black Mesa area, and the ground water occurs under confined and unconfined conditions. Monitoring activities include continuous and periodic measurements of (1) ground-water pumpage from the confined and unconfined areas of the aquifer, (2) ground-water levels in the confined and unconfined areas of the aquifer, (3) surface-water discharge, and (4) chemistry of the ground water and surface water. In 1994, ground-water withdrawals for industrial and municipal use totaled about 7,000 acre-feet, which is an 8-percent increase from the previous year. Pumpage from the confined part of the aquifer increased by about 9 percent to 5,400 acre-feet, and pumpage from the unconfined part of the aquifer increased by about 2 percent to 1,600 acre-feet. Water-level declines in the confined area during 1994 were recorded in 10 of 16 wells, and the median change was a decline of about 2.3 feet as opposed to a decline of 3.3 feet for the previous year. The median change in water levels in the unconfined area was a rise of 0.1 foot in 1994 as opposed to a decline of 0.5 foot in 1993. Measured low-flow discharge along Moenkopi Wash decreased from 3.0 cubic feet per second in 1993 to 2.9 cubic feet per second in 1994. Eleven low-flow measurements were made along Laguna Creek between Tsegi, Arizona, and Chinle Wash to determine the amount of discharge that would occur as seepage from the N aquifer under optimal base-flow conditions. Discharge was 5.6 cubic feet per second near Tsegi and 1.5 cubic feet per second above the confluence with Chinle Wash. Maximum discharge was 5.9 cubic feet per second about 4 miles upstream from Dennehotso. Discharge was measured at three springs. The changes in discharge at Burro and Whisky Springs were small and within the uncertainty of

  18. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin

    Science.gov (United States)

    Zhang, L.; Lu, Zhiming; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W.

    2012-01-01

    Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool to detect long-term seismotectonic motions by reducing the atmospheric artifacts, thereby providing more precise deformation signal. The commonly used approaches such as persistent scatterer InSAR (PSInSAR) and small baseline subset (SBAS) algorithms need to resolve the phase ambiguities in interferogram stacks either by searching a predefined solution space or by sparse phase unwrapping methods; however the efficiency and the success of phase unwrapping cannot be guaranteed. We present here an alternative approach - temporarily coherent point (TCP) InSAR (TCPInSAR) - to estimate the long term deformation rate without the need of phase unwrapping. The proposed approach has a series of innovations including TCP identification, TCP network and TCP least squares estimator. We apply the proposed method to the Los Angeles Basin in southern California where structurally active faults are believed capable of generating damaging earthquakes. The analysis is based on 55 interferograms from 32 ERS-1/2 images acquired during Oct. 1995 and Dec. 2000. To evaluate the performance of TCPInSAR on a small set of observations, a test with half of interferometric pairs is also performed. The retrieved TCPInSAR measurements have been validated by a comparison with GPS observations from Southern California Integrated GPS Network. Our result presents a similar deformation pattern as shown in past InSAR studies but with a smaller average standard deviation (4.6. mm) compared with GPS observations, indicating that TCPInSAR is a promising alternative for efficiently mapping ground deformation even from a relatively smaller set of interferograms. ?? 2011.

  19. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites.

    Science.gov (United States)

    Farmer, John G; Thomas, Rhodri P; Graham, Margaret C; Geelhoed, Jeanine S; Lumsdon, David G; Paterson, Edward

    2002-04-01

    Chromium concentrations of up to 91 mg l(-1) were found by ICP-OES for ground water from nine boreholes at four landfill sites in an area of S.E. Glasgow/S. Lanarkshire where high-lime chromite ore processing residue (COPR) from a local chemical works had been deposited from 1830 to 1968. Surface water concentrations of up to 6.7 mg l(-1) in a local tributary stream fell to 0.11 mg l(-1) in the River Clyde. Two independent techniques of complexation/colorimetry and speciated isotope dilution mass spectrometry (SIDMS) showed that Cr was predominantly (>90%) in hexavalent form (CrVI) as CrO4(2-), as anticipated at the high pH (7.5-12.5) of the sites. Some differences between the implied and directly determined concentrations of dissolved CrIII, however, appeared related to the total organic carbon (TOC) content. This was most significant for the ground water from one borehole that had the highest TOC concentration of 300 mg l(-1) and at which ultrafiltration produced significant decreases in Cr concentration with decreasing size fractions, e.g. complex. This showed for the main Cr-containing fraction, 100 kDa-0.45 microm, that the Cr was associated with a dark brown band characteristic of organic (humic) matter. Comparison of gel electrophoresis and FTIR results for ultrafilter retentates of ground water from this borehole with those for a borehole at another site where CrVI predominated suggested the influence of carboxylate groups, both in reducing CrVI and in forming soluble CrIII-humic complexes. The implications of this for remediation strategies (especially those based on the addition of organic matter) designed to reduce highly mobile and carcinogenic Cr(VI)O4(2-) to the much less harmful CrIII as insoluble Cr(OH)3 are discussed.

  20. The study of coastal ground surfaces to predict the ways of increasing efficiency of research mobile robots

    Science.gov (United States)

    Makarov, Vladimir; Kurkin, Andrey; Belyalov, Vladimir; Tyugin, Dmitry; Zezyulin, Denis

    2017-04-01

    The increase in spatial scales of studying coastal areas can be achieved by the use of mobile robotic systems (MRS) equipped with scanning equipment, video inspection system and positioning system. The project aims at increasing the capabilities for designing effective ground MRS through the use of advanced methods of forecasting characteristics of vehicle-terrain interaction in coastal zones, where hydrosphere, lithosphere, atmosphere and biosphere interact. In the period from 14 May to 18 June 2016 there was organized the expedition to Sakhalin Island for conducting full-scale testing autonomous MRS for coastal monitoring and forecasting marine natural disasters [Kurkin A.A., Zeziulin D.V., Makarov V.S., Zaitsev A.I., Belyaev A.M., Beresnev P.O., Belyakov V.V., Pelinovsky E.N., Tyugin D.Yu. Investigations of coastal areas of the Okhotsk sea using a ground mobile robot // Ecological systems and devices. 2016. No. 8. P. 11-17]. Within the framework of the expedition specific areas of terrain in the vicinity of Cape Svobodny were investigated (with the support of SRB AMR FEB RAS). Terrain areas were studied from the standpoint of possibility of the MRS movement. As a result of measuring all the necessary data on the physical-mechanical and geometric characteristics of the coastal zones, required to calculate the force factors acting on the MRS, and, accordingly, the parameters of its motion were received. The obtained data will be used for developing new statistical models of the physical-mechanical and geometrical characteristics of the coastal ground surfaces, creating methodology for assessing the efficiency and finding ways to optimize the design of the MRS.

  1. The effects of oxalate treatment on the smear layer of ground surfaces of human dentine.

    Science.gov (United States)

    Pashley, D H; Galloway, S E

    1985-01-01

    The layer was evaluated by scanning electron microscopy and by measurement of hydraulic conductance before and after 2-min topical treatment with potassium chloride, neutral potassium oxalate, half-neutralized oxalic acid or both neutral and acidic oxalates. The treated smear layers were then re-evaluated microscopically and functionally both before and after acid challenge. The layers treated with KCl were not altered either microscopically or functionally and were susceptible to acid etching. Dentine surfaces treated with either oxalate solutions became less permeable and were acid-resistant.

  2. Pesticide levels in ground and surface waters of Primavera do Leste Region, Mato Grosso, Brazil.

    Science.gov (United States)

    Dores, Eliana F G C; Carbo, Leandro; Ribeiro, Maria L; De-Lamonica-Freire, Ermelinda M

    2008-08-01

    Residues of the herbicides simazine, metribuzin, metolachlor, trifluralin, atrazine, and two metabolites of atrazine, deisopropylatrazine (DIA) and deethylatrazine (DEA), are surveyed in the surface and groundwater of the Primavera do Leste region, Mato Grosso, Brazil during September and December 1998 and April 1999. Different water source sampling stations of groundwater (irrigation water well, drinking water well, and water hole) and surface water (dam and river) are set up based on agricultural land use. A solid-phase extraction procedure followed by gas chromatography-nitrogen-phosphorus detection is used for the determination of these compounds. All compounds are detected at least once in water samples. A temporal trend of pesticide contamination is observed, with the highest contamination frequency occurring in December during the main application season. Metribuzin shows the highest individual detection frequencies throughout the monitoring period, followed by metolachlor, simazine, and DEA. The maximum mean concentrations of pesticides in this study are in the range from 0.14 to 1.7 microg/L. We deduct that the contamination of water resources is predominantly caused by non-point pollution of pesticides used in intensive cash-crop cultures of the Cerrado area. Therefore, a continuous monitoring of pesticide concentrations in water resources of this tropical region is necessary to detect the longer term contamination trends and developing health risks.

  3. A study of SO2 emissions and ground surface displacements at Lastarria volcano, Antofagasta Region, Northern Chile

    Science.gov (United States)

    Krewcun, Lucie G.

    Lastarria volcano (Chile) is located at the North-West margin of the 'Lazufre' ground inflation signal (37x45 km2), constantly uplifting at a rate of ˜2.5 cm/year since 1996 (Pritchard and Simons 2002; Froger et al. 2007). The Lastarria volcano has the double interest to be superimposed on a second, smaller-scale inflation signal and to be the only degassing area of the Lazufre signal. In this project, we compared daily SO2 burdens recorded by AURA's OMI mission for 2005-2010 with Ground Surface Displacements (GSD) calculated from the Advanced Synthetic Aperture Radar (ASAR) images for 2003-2010. We found a constant maximum displacement rate of 2.44 cm/year for the period 2003-2007 and 0.80- 0.95 cm/year for the period 2007-2010. Total SO 2 emitted is 67.0 kT for the period 2005-2010, but detection of weak SO2 degassing signals in the Andes remains challenging owing to increased noise in the South Atlantic radiation Anomaly region.

  4. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2009-12-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer, CAR, and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  5. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2010-03-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  6. Assessment of dry season surface, ground, and treated water quality in the Cape Coast municipality of Ghana.

    Science.gov (United States)

    Quagraine, E K; Adokoh, C K

    2010-01-01

    This aim of this monitoring was to assess water quality in a dry season for the Cape Coast municipality in Ghana, which has been experiencing chronic water shortages. Fifteen different sampling stations--four surface, five ground, and six tap water samples--were analyzed for physicochemical and microbiological parameters during January to April 2005. Levels or trends in water quality that may be deleterious to sensitive water uses, including drinking, irrigation, and livestock watering have been noted with reference to well-established guidelines. Exceedances to some health-based drinking water guidelines included positive coliform for various water samples; pH for all groundwater samples (pH 5.9+/-0.3); conductivity for 50% groundwater; color for about a third of groundwater and tap water; Mn for 44% tap water, 67% groundwater, and 50% surface water samples. The World Health Organization laundry staining Fe guideline of 0.3 mg/l was exceeded by 75% of surface water, 44% tap water, and 53% groundwater samples. The corresponding Mn guideline of 0.1 mg/l was exceeded by all the water samples. Respectively, all surface water samples and also 75% of the surface water exceeded some known Cu and Zn guideline for the protection of aquatic life. Compared to some historic data for Fosu Lagoon, the current study shows a lowering of approximately 1 pH unit, increase of approximately 65% NH3, one to two orders of magnitude increase in PO4(3-), and more than two orders of magnitude increase in NO3-. In several instances, tap water samples collected at the consumers' end of the distribution system did not reflect on the true quality of the treated water. Mn, SO4(2-), PO4(3-), Cu, and Zn were among the chemical contaminations observed to occur in the distribution system.

  7. Areal-averaged and Spectrally-resolved Surface Albedo from Ground-based Transmission Data Alone: Toward an Operational Retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.

    2014-08-22

    We present here a simple retrieval of the areal-averaged and spectrally resolved surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties in the visible and near-infrared spectral range. The feasibility of our approach for the routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements:(1) spectrally resolved atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR) at wavelength 415, 500, 615, 673, and 870 nm, (2) tower-based measurements of local surface albedo at the same wavelengths, and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both long (2008-2013) and short (April-May, 2010) periods at the ARM Southern Great Plains (SGP) site and the NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE), which is defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved area-averaged albedo, is quite small (RMSE≤0.01) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between the tower-based daily averages of surface albedo for the completely overcast and non-overcast conditions is also demonstrated. This agreement suggests that our retrieval originally developed for the overcast conditions likely will work for non-overcast conditions as well.

  8. Dynamic subsidence prediction of ground surface above salt cavern gas storage considering the creep of rock salt

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new model is proposed to predict the dynamic subsidence of ground surface above salt cavern gas storage during the leaching and storage, which takes into account the creep of rock salt. In the model, the extended form of Gaussian curve is adopted to figure out the shape of subsidence areas. The corresponding theoretical formulas are derived. In addition, parameters are studied to investigate the surface subsidence as a function of the salt ejection rate, internal pressure, buried depth, diameter, height, running time, etc. Through an example, the subsidence of the salt cavern gas storage located at Jiangsu of China obtained by the new model was compared with those by Peter A F formula, Schober & Sroka formula and FLAC3D through simulation. The results showed the proposed model is precise and correct, and can meet the actual engineering demands. The surface subsidence is equidirectional with the increase of salt ejection rate, depth, diameter, height, and running time, but reverse to the increase of internal pressure. The depth, diameter, running time and internal pressure have great effects on the subsidence, whereas the salt ejection rate and height have little influences on it.

  9. Detection of underground voids in Tahura Japan Cave Bandung using ground penetrating radar

    Science.gov (United States)

    Azimmah, Azizatun; Widodo

    2017-07-01

    The detection of underground voids is important due to their effects on subsidence higher risk. Ground Penetrating Radar is one of geophysical electromagnetic methods that has been proven to be able to detect and locate any void beneath the surface effectively at a shallow depth. This method uses the contrasts of dielectric properties, resistivity and magnetic permeability to investigate and map what lies beneath the surface. Hence, this research focused on how GPR could be applied for detecting underground voids at the site of investigation, The Japan Cave in Taman Hutan Raya located in Dago, Bandung, Indonesia. A 100 MHz GPR shielded antenna frequency were used to measure three >80 meters long measurement lines. These three GPR profiles were positioned on the surface above the Japan Cave. The radargram results showed existences of different amplitude regions proven to be the air-filled cavities, at a depth of <10 meters, and interfaces between the underneath layers.

  10. Hydro-economic modeling of conjunctive ground and surface water use to guide sustainable basin management

    Science.gov (United States)

    Taher Kahil, Mohamed; Ward, Frank A.; Albiac, Jose; Eggleston, Jack; Sanz, David

    2016-04-01

    Water demands for irrigation, urban and environmental uses in arid and semiarid regions continue to grow, while freshwater supplies from surface and groundwater resources are becoming scarce and are expected to decline with climate change. Policymakers in these regions face hard choices on water management and policies. Hydro-economic modeling is the state-of-the art tool that could be used to guide the design and implementation of sustainable water management policies in basins. The strength of hydro-economic modeling lies in its capacity to integrate key biophysical and socio-economic components within a unified framework. A major gap in developments on hydro-economic modeling to date has been the weak integration of surface and groundwater flows, based on the theoretically correct Darcy equations used by the hydrogeological community. The modeling approach taken here is integrated, avoiding the single-tank aquifer assumption, avoiding simplified assumptions on aquifer-river linkages, and bypassing iterations among separate hydrological and economic models. The groundwater flow formulation used in this paper harnesses the standard finite difference expressions for groundwater flow and groundwater-surface water exchange developed in the USGS MODFLOW groundwater model. The methodological contribution to previous modeling efforts is the explicit specification of aquifer-river interactions, important when aquifer systems make a sizable contribution to basin resources. The modeling framework is solved completely, and information among the economic and hydrological components over all periods and locations are jointly and simultaneously determined. This novel framework is applied to the Jucar basin (Spain), which is a good experimental region for an integrated basin scale analysis. The framework is used for assessing the impacts of a range of climate change scenarios and policy choices, especially the hydrologic, land use, and economic outcomes. The modeling framework

  11. The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons

    Science.gov (United States)

    Eaton, David W.; Darbyshire, Fiona; Evans, Rob L.; Grütter, Herman; Jones, Alan G.; Yuan, Xiaohui

    2009-04-01

    The lithosphere-asthenosphere boundary (LAB) is a first-order structural discontinuity that accommodates differential motion between tectonic plates and the underlying mantle. Although it is the most extensive type of plate boundary on the planet, its definitive detection, especially beneath cratons, is proving elusive. Different proxies are used to demarcate the LAB, depending on the nature of the measurement. Here we compare interpretations of the LAB beneath three well studied Archean regions: the Kaapvaal craton, the Slave craton and the Fennoscandian Shield. For each location, xenolith and xenocryst thermobarometry define a mantle stratigraphy, as well as a steady-state conductive geotherm that constrains the minimum pressure (depth) of the base of the thermal boundary layer (TBL) to 45-65 kbar (170-245 km). High-temperature xenoliths from northern Lesotho record Fe-, Ca- and Ti-enrichment, grain-size reduction and globally unique supra-adiabatic temperatures at 53-61 kbar (200-230 km depth), all interpreted to result from efficient advection of asthenosphere-derived melts and heat into the TBL. Using a recently compiled suite of olivine creep parameters together with published geotherms, we show that beneath cratons the probable deformation mechanism near the LAB is dislocation creep, consistent with widely observed seismic and electrical anisotropy fabrics. If the LAB is dry, it is probably diffuse (> 50 km thick) and high levels of shear stress (> 2 MPa or > 20 bar) are required to accommodate plate motion. If the LAB is wet, lower shear stress is required to accommodate plate motion and the boundary may be relatively sharp (≤ 20 km thick). The seismic LAB beneath cratons is typically regarded as the base of a high-velocity mantle lid, although some workers infer its location based on a distinct change in seismic anisotropy. Surface-wave inversion studies provide depth-constrained velocity models, but are relatively insensitive to the sharpness of the LAB

  12. A feasibility study to estimate minimum surface-casing depths of oil and gas wells to prevent ground-water contamination in four areas of western Pennsylvania

    Science.gov (United States)

    Buckwalter, T.F.; Squillace, P.J.

    1995-01-01

    Hydrologic data were evaluated from four areas of western Pennsylvania to estimate the minimum depth of well surface casing needed to prevent contamination of most of the fresh ground-water resources by oil and gas wells. The areas are representative of the different types of oil and gas activities and of the ground-water hydrology of most sections of the Appalachian Plateaus Physiographic Province in western Pennsylvania. Approximate delineation of the base of the fresh ground-water system was attempted by interpreting the following hydrologic data: (1) reports of freshwater and saltwater in oil and gas well-completion reports, (2) water well-completion reports, (3) geophysical logs, and (4) chemical analyses of well water. Because of the poor quality and scarcity of ground-water data, the altitude of the base of the fresh ground-water system in the four study areas cannot be accurately delineated. Consequently, minimum surface-casing depths for oil and gas wells cannot be estimated with confidence. Conscientious and reliable reporting of freshwater and saltwater during drilling of oil and gas wells would expand the existing data base. Reporting of field specific conductance of ground water would greatly enhance the value of the reports of ground water in oil and gas well-completion records. Water-bearing zones in bedrock are controlled mostly by the presence of secondary openings. The vertical and horizontal discontinuity of secondary openings may be responsible, in part, for large differences in altitudes of freshwater zones noted on completion records of adjacent oil and gas wells. In upland and hilltop topographies, maximum depths of fresh ground water are reported from several hundred feet below land surface to slightly more than 1,000 feet, but the few deep reports are not substantiated by results of laboratory analyses of dissolved-solids concentrations. Past and present drillers for shallow oil and gas wells commonly install surface casing to below the

  13. Ground-water-level monitoring, basin boundaries, and potentiometric surfaces of the aquifer system at Edwards Air Force Base, California, 1992

    Science.gov (United States)

    Rewis, D.L.

    1995-01-01

    A ground-water-level monitoring program was implemented at Edwards Air Force Base, California, from January through December 1992 to monitor spatial and temporal changes in poten-tiometric surfaces that largely are affected by ground-water pumping. Potentiometric-surface maps are needed to determine the correlation between declining ground- water levels and the distribution of land subsidence. The monitoring program focused on areas of the base where pumping has occurred, especially near Rogers Lake, and involved three phases of data collection: (1) well canvassing and selection, (2) geodetic surveys, and (3) monthly ground-water-level measurements. Construction and historical water- level data were compiled for 118 wells and pi-ezometers on or near the base, and monthly ground-water-level measurements were made in 82 wells and piezometers on the base. The compiled water-level data were used in conjunction with previously collected geologic data to identify three types of no-flow boundaries in the aquifer system: structural boundaries, a principal-aquifer boundary, and ground-water divides. Heads were computed from ground-water-level measurements and land-surface altitudes and then were used to map seasonal potentiometric surfaces for the principal and deep aquifers underlying the base. Pumping has created a regional depression in the potentiometric surface of the deep aquifer in the South Track, South Base, and Branch Park well-field area. A 15-foot decline in the potentiometric surface from April to September 1992 and 20- to 30-foot drawdowns in the three production wells in the South Track well field caused locally unconfined conditions in the deep aquifer.

  14. Application of ESPRIT in Broad Beam HF Ground Wave Radar Sea Surface Current Mapping

    Institute of Scientific and Technical Information of China (English)

    Liu Dan-hong; Wu Xiong-bin; Wen Bi-yang; Cheng Feng

    2004-01-01

    HF surface wave radar system OSMAR2000 is a broad-beam sea-state detecting radar. ESPRIT (Estimation of Signal Parameters via Rotational Invariance Technique) algorithm is proposed to apply in DOA (direction of arrival) determination of sea echoes. The algorithm of ESPRIT is briefly introduced first. Then discussions are made on the technique for application in the OSMAR2000 framework. Numerical simulation results are presented to demonstrate the feasibility of radial current mapping based on this method. The algorithm manifests significant performance and computational advantages compared with that of MUSIC. Data acquired by OSMAR2000 are processed to give radial current map and the synthesized vector currents are compared with the in-situ measurement with traditional means. The results show the validity of ESPRIT application in DOA determination for broad-beam radar.

  15. W-Band Characterization of Grounded Frequency Selective Surface Arrays Composed of Nonequal Slot Length Subarrays

    Directory of Open Access Journals (Sweden)

    S. Islam

    2009-01-01

    Full Text Available We present the design and construction of Frequency Selective Surface arrays composed of two subarrays of different slot lengths. We investigated their response variations with the variation of slot length differences of the elementary sub-arrays. Such nonhomogeneous arrays cannot be simulated with Computer Aided Design (CAD programs because the boundary conditions are not fulfilled by the simulator. In infinite array simulation, the periodic boundary conditions are prescribed on the walls of the unit cell, whereas in the case of sub-arrays of unequal slot length such boundary conditions are not applicable. The CAD simulation of such combined array gives incorrect values of amplitude and phase responses. In this work, we investigate the characteristics of such complex arrays by using heuristic experimental approach. The results of the experimental approach demonstrate that the resultant reflection amplitude and phase of such complex array depend on the difference of slot lengths (ΔL of the two sub-arrays.

  16. From Ground Truth to Space: Surface, Subsurface and Remote Observations Associated with Nuclear Test Detection

    Science.gov (United States)

    Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.

    2016-12-01

    Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.

  17. 盾构掘进速度及非正常停机对地面沉降的影响%Influences of shield advance rate and abnormal machine halt on tunnelling-induced ground surface settlements

    Institute of Scientific and Technical Information of China (English)

    林存刚; 吴世明; 张忠苗; 刘俊伟; 李宗梁

    2012-01-01

    Shield tunnelling in soft soils inevitably disturbs the surrounding environment and induces ground surface settlements. The serviceability and safety of the structures in the vicinity can be jeopardized in case that excess settlements are observed. A comprehensive understanding of the influencing factors of shield tunnelling induced ground settlements and an accurate settlement prediction are of great importance for minimizing the environment impacts of shield tunnelling. Taking the load of the shield into account, the Mindlin's solution is introduced to calculate the additional stress in soils beneath the shield, and the layer-wise summation method is applied to calculate the final one-dimensional consolidation settlement. The duration of additional stress in soils relies on the shield advance rate and its halt time, and the corresponding consolidation settlement can be calculated using the Terzaghi's one-dimensional consolidation theory. Finally, the relationship between consolidation settlements and ground surface settlements is established by Peck equation. The theory is verified by in-situ monitored ground surface settlements in construction of Hangzhou Qing-chun Road cross-river tunnel in China. These studies show that the shield advance rate and machine halt duration have a significant impact on the ground surface settlements, and the increase in shield advance rate and decrease in machine halt duration favors the settlement control.%软土中盾构隧道施工不可避免地扰动周围地层,进而引起地面沉降,沉降过大时将危及邻近建(构)筑物的正常使用和结构安全.全面理解盾构隧道施工引起的地面沉降的影响因素及对沉降的准确预测,对于减少施工环境危害十分重要.考虑盾构压重后,引入Mindlin解计算盾构下卧土层中的附加应力,采用单向压缩分层总和法计算盾构下卧土层的总固结沉降,由盾构掘进速度及停机时间确定附加应力作用时间后,应用

  18. Surface and Ground Water Quality in Köprüören Basin (Kütahya), Turkey

    Science.gov (United States)

    Arslan, Şebnem; Çelik, Mehmet; Erdem Dokuz, Uǧur; Abadi Berhe, Berihu

    2014-05-01

    In this study, quality of the water resources in Köprüören Basin, located to the west of Kütahya city in western Anatolia, were investigated. The total catchment area of the basin is 275 km2 and it is located upstream of Kütahya and Eskişehir plains. Therefore, besides 6,000 people residing in the basin, a much larger population will be impacted by the quality of surface and groundwater resources. Groundwater occurs under confined conditions in the limestones of Pliocene units. Groundwater flow is from north to south and south to north towards Kocasu stream, which flows to Enne Dam. The surface and ground water quality in this area are negatively affected by the mining activities. In the northern part of the area, there are coal deposits present in Miocene Tunçbilek formation. Ground waters in contact with the coal deposits contain low concentrations of arsenic (up to 30 µg/l). In the southern part, the only silver deposit of Turkey is present, which is developed in metamorphic basement rocks, Early Miocene volcanics and Pliocene units near Gümüşköy (Gümüş means silver, köy means village in Turkish). The amount of silver manufactured annually in this silver plant is huge and comprises about 1% of the World's Silver Production. The wastes, enriched in cyanide, arsenic, stibnite, lead and zinc, are stored in waste pools and there is extensive leakage of these heavy metals from these pools. Therefore, surface waters, soils and plants in the affected areas contain high concentrations of arsenic, stibnite and lead. The As, Sb, Pb and Zn concentrations are up to 733 µg/l, 158 µg/l, 48 µg/l, and 286 µg/l in surface waters (in dry season), 6180 ppm, 410 ppm, 4180 ppm, 9950 ppm in soils and 809 ppm, 399 ppm, 800 ppm, 2217 ppm in plants, respectively. Today, most of the As, Sb, Pb and Zn are absorbed by the soils and only a small part are dissolved in water. However, conditions might change in future leading to desorption of these contaminants. Therefore

  19. Lithospheric thinning beneath rifted regions of Southern California.

    Science.gov (United States)

    Lekic, Vedran; French, Scott W; Fischer, Karen M

    2011-11-11

    The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere.

  20. The Biogeochemistry beneath the Whillans Ice Stream, West Antarctica: Evidence for a Chemoautotrophically Driven Ecosystem

    Science.gov (United States)

    Purcell, A.; Mikucki, J.; Achberger, A.; Christner, B. C.; Michaud, A. B.; Mitchell, A. C.; Priscu, J. C.; Skidmore, M. L.; Vick-Majors, T.

    2015-12-01

    Antarctic sub ice environments represent some of the most understudied microbial ecosystems on Earth. The Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project recently sampled sediments and water from Subglacial Lake Whillans (SLW) and its hydrologically connected grounding zone where this lake system empties beneath the Ross Ice Shelf. Here we highlight findings on the diversity and metabolic capabilities of the microbial community detected in these samples. We utilized a hot water drill with a novel filtration and UV treatment system to insure that our entry and sampling did not contaminate our samples or the pristine subglacial ecosystem. Geochemical and microbiological data suggests the water column hosts an active microbial community sustained by the production of fixed carbon from chemosynthesis with energy derived from reduced nitrogen, sulfur, and iron compounds. These energy sources appear to be influenced by bedrock weathering at the sediment surface. For example, dominant 16S rRNA gene phylotypes in the water column suggest ammonia oxidation as a potential source of chemoautotrophic energy. While in the SLW surficial sediments, diversity analysis of functional genes involved in both sulfur oxidation and sulfate reduction (aprA, dsrA, and rdsrA), aprA gene abundance, and 16S rRNA gene analysis indicate that sulfur-oxidizing microbes are dominant. These preliminary results represents the first data on microbial community structure and function from an Antarctic subglacial lake and its grounding zone.

  1. High resolution imaging of vadose zone transport using surface and crosswell ground penetrating radar methods

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Kenneth H.; Kowalsky, Mike B.; Peterson, John E.

    2002-11-05

    To effectively clean up many contaminated sites there is a need for information on heterogeneities at scales ranging from one centimeter to tens of meters, as these features can alter contaminant transport significantly. At the Department of Energy's Hanford, Washington site heterogeneities of interest can range from localized phenomena such as silt or gravel lenses, fractures, clastic dikes, to large-scale lithologic discontinuities. In the vadose zone it is critical to understand the parameters controlling flow. These features have been suspected of leading to funneling and fingering, additional physical mechanisms that could alter and possibly accelerate the transport of contaminants to underlying groundwater. For example, it has been observed from the studies to date that over relatively short distances there are heterogeneities in the physical structure of the porous medium and structural differences between repacked soil cores and the field site from which the materials initially came (Raymond and Shdo, 1966). Analysis of cores taken from the vadose zone (i.e., soil surface to water table) has been useful in identifying localized zones of contamination. Unfortunately, these analyses are sparse (limited to a few boreholes) and extremely expensive. The high levels of radioactivity at many of the contaminated sites increase drilling and sample costs and analysis time. Cost of drilling and core analysis for the SX tank farm has exceeded $1M per borehole (50 meter deep) for sampling. The inability to track highly mobile species through the vadose zone highlights an important need: the need for methods to describe the complete vadose zone plume and to determine processes controlling accelerated contamination of groundwater at Hanford. A combination of surface and crosswell (i.e. borehole) geophysical measurements is one means to provide this information. The main questions addressed with the radar methods in this study are: (1) What parts of the vadose zone

  2. Estimating Daily Maximum and Minimum Land Air Surface Temperature Using MODIS Land Surface Temperature Data and Ground Truth Data in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Phan Thanh Noi

    2016-12-01

    Full Text Available This study aims to evaluate quantitatively the land surface temperature (LST derived from MODIS (Moderate Resolution Imaging Spectroradiometer MOD11A1 and MYD11A1 Collection 5 products for daily land air surface temperature (Ta estimation over a mountainous region in northern Vietnam. The main objective is to estimate maximum and minimum Ta (Ta-max and Ta-min using both TERRA and AQUA MODIS LST products (daytime and nighttime and auxiliary data, solving the discontinuity problem of ground measurements. There exist no studies about Vietnam that have integrated both TERRA and AQUA LST of daytime and nighttime for Ta estimation (using four MODIS LST datasets. In addition, to find out which variables are the most effective to describe the differences between LST and Ta, we have tested several popular methods, such as: the Pearson correlation coefficient, stepwise, Bayesian information criterion (BIC, adjusted R-squared and the principal component analysis (PCA of 14 variables (including: LST products (four variables, NDVI, elevation, latitude, longitude, day length in hours, Julian day and four variables of the view zenith angle, and then, we applied nine models for Ta-max estimation and nine models for Ta-min estimation. The results showed that the differences between MODIS LST and ground truth temperature derived from 15 climate stations are time and regional topography dependent. The best results for Ta-max and Ta-min estimation were achieved when we combined both LST daytime and nighttime of TERRA and AQUA and data from the topography analysis.

  3. Field experiment provides ground truth for surface nuclear magnetic resonance measurement

    Science.gov (United States)

    Knight, R.; Grunewald, E.; Irons, T.; Dlubac, K.; Song, Y.; Bachman, H.N.; Grau, B.; Walsh, D.; Abraham, J.D.; Cannia, J.

    2012-01-01

    The need for sustainable management of fresh water resources is one of the great challenges of the 21st century. Since most of the planet's liquid fresh water exists as groundwater, it is essential to develop non-invasive geophysical techniques to characterize groundwater aquifers. A field experiment was conducted in the High Plains Aquifer, central United States, to explore the mechanisms governing the non-invasive Surface NMR (SNMR) technology. We acquired both SNMR data and logging NMR data at a field site, along with lithology information from drill cuttings. This allowed us to directly compare the NMR relaxation parameter measured during logging,T2, to the relaxation parameter T2* measured using the SNMR method. The latter can be affected by inhomogeneity in the magnetic field, thus obscuring the link between the NMR relaxation parameter and the hydraulic conductivity of the geologic material. When the logging T2data were transformed to pseudo-T2* data, by accounting for inhomogeneity in the magnetic field and instrument dead time, we found good agreement with T2* obtained from the SNMR measurement. These results, combined with the additional information about lithology at the site, allowed us to delineate the physical mechanisms governing the SNMR measurement. Such understanding is a critical step in developing SNMR as a reliable geophysical method for the assessment of groundwater resources.

  4. Directional site resonances and the influence of near-surface geology on ground motion

    Science.gov (United States)

    Bonamassa, Ornella; Vidale, John E.; Houston, Heidi; Schwartz, Susan Y.

    1991-05-01

    We examine the horizontal motions at close stations from earthquakes in the Loma Prieta and Whittier Narrows sequences to study the shear wave polarizations. We use a dense, six station array recording 10 aftershocks for the former, and use two events and 11 stations across the Los Angeles area for the latter.We compute the average azimuth of strongest shaking in the shear wave as a function of frequency from 1 to 18 Hz for each record of each earthquake. The direction of shaking at a given frequency often correlates much better with an empirical site resonance direction than with the direction of shaking expected from the focal mechanism of the earthquake. The effect tends to be greatest at the frequencies that are the most amplified. This phenomenon can complicate determination of the earthquake source at frequencies higher than 1 Hz.Further, since sites only 25 meters apart show different preferred directions, very near-surface geology is probably responsible. Estimation of directional site resonances may prove useful for seismic design.

  5. Estimation of the near surface soil water content during evaporation using air-launched ground-penetrating radar

    KAUST Repository

    Moghadas, Davood

    2014-01-01

    Evaporation is an important process in the global water cycle and its variation affects the near sur-face soil water content, which is crucial for surface hydrology and climate modelling. Soil evaporation rate is often characterized by two distinct phases, namely, the energy limited phase (stage-I) and the soil hydraulic limited period (stage-II). In this paper, a laboratory experiment was conducted using a sand box filled with fine sand, which was subject to evaporation for a period of twenty three days. The setup was equipped with a weighting system to record automatically the weight of the sand box with a constant time-step. Furthermore, time-lapse air-launched ground penetrating radar (GPR) measurements were performed to monitor the evaporation process. The GPR model involves a full-waveform frequency-domain solution of Maxwell\\'s equations for wave propagation in three-dimensional multilayered media. The accuracy of the full-waveform GPR forward modelling with respect to three different petrophysical models was investigated. Moreover, full-waveform inversion of the GPR data was used to estimate the quantitative information, such as near surface soil water content. The two stages of evaporation can be clearly observed in the radargram, which indicates qualitatively that enough information is contained in the GPR data. The full-waveform GPR inversion allows for accurate estimation of the near surface soil water content during extended evaporation phases, when a wide frequency range of GPR (0.8-5.0 GHz) is taken into account. In addition, the results indicate that the CRIM model may constitute a relevant alternative in solving the frequency-dependency issue for full waveform GPR modelling.

  6. Hydrophilic anthropogenic markers for quantification of wastewater contamination in ground- and surface waters.

    Science.gov (United States)

    Kahle, Maren; Buerge, Ignaz J; Müller, Markus D; Poiger, Thomas

    2009-12-01

    Hydrophilic, persistent markers are useful to detect, locate, and quantify contamination of natural waters with domestic wastewater. The present study focused on occurrence and fate of seven marker candidates including carbamazepine (CBZ), 10,11-dihydro-10,11-dihydroxycarbamazepine (DiOH-CBZ), primidone (PMD), crotamiton (CTMT), N-acetyl-4-aminoantipyrine (AAA), N-formyl-4-aminoantipyrine (FAA), and benzotriazole (BTri) in wastewater treatment plants (WWTPs), lakes, and groundwater. In WWTPs, concentrations from 0.14 microg/L to several micrograms per liter were observed for all substances, except CTMT, which was detected at lower concentrations. Loads determined in untreated and treated wastewater indicated that removal of the potential markers in WWTPs is negligible; only BTri was partly eliminated (average 33%). In lakes, five compounds, CBZ, DiOH-CBZ, FAA, AAA, and BTri, were consistently detected in concentrations of 2 to 70 ng/L, 3 to 150 ng/L, less than the limit of quantification to 30 ng/L, 2 to 80 ng/L, and 11 to 920 ng/L, respectively. Mean per capita loads in the outflows of the lakes suggested possible dissipation in surface waters, especially of AAA and FAA. Nevertheless, concentrations of CBZ, DiOH-CBZ, and BTri correlated with the actual anthropogenic burden of the lakes by domestic wastewater, indicating that these compounds are suitable for quantification of wastewater contamination in lakes. Marker candidates were also detected in a number of groundwater samples. Carbamazepine concentrations up to 42 ng/L were observed in aquifers with significant infiltration of river water, receiving considerable wastewater discharges from WWTPs. Concentration ratios between compounds indicated some elimination of BTri and DiOH-CBZ during subsurface passage or in groundwater, while CBZ and PMD appeared to be more stable and thus are promising wastewater markers for groundwater. The wastewater burden in groundwater, estimated with the markers CBZ and PMD

  7. Ab initio potential energy surface and excited vibrational states for the electronic ground state of Li2H

    Institute of Scientific and Technical Information of China (English)

    鄢国森; 先晖; 谢代前

    1997-01-01

    A 285-pomt multi-reference configuration-interaction involving single and double excitations ( MRS DCI) potential energy surface for the electronic ground state of L12H is determined by using 6-311G (2df,2pd)basis set.A Simons-Parr-Finlan polynomial expansion is used to fit the discrete surface with a x2 of 4.64×106 The equn librium geometry occurs at Rc=0.172 nm and,LiHL1=94.10°.The dissociation energy for reaction I2H(2A)→L12(1∑g)+H(2S) is 243.910 kJ/mol,and that for reaction L12H(2A’)→HL1(1∑) + L1(2S) is 106.445 kl/mol The inversion barrier height is 50.388 kj/mol.The vibrational energy levels are calculated using the discrete variable representation (DVR) method.

  8. Multi-scale Modelling of the Ocean Beneath Ice Shelves

    Science.gov (United States)

    Candy, A. S.; Kimura, S.; Holland, P.; Kramer, S. C.; Piggott, M. D.; Jenkins, A.; Pain, C. C.

    2011-12-01

    Quantitative prediction of future sea-level is currently limited because we lack an understanding of how the mass balance of the Earth's great ice sheets respond to and influence the climate. Understanding the behaviour of the ocean beneath an ice shelf and its interaction with the sheet above presents a great scientific challenge. A solid ice cover, in many places kilometres thick, bars access to the water column, so that observational data can only be obtained by drilling holes through, or launching autonomous vehicles beneath, the ice. In the absence of a comprehensive observational database, numerical modelling can be a key tool to advancing our understanding of the sub-ice-shelf regime. While we have a reasonable understanding of the overall ocean circulation and basic sensitivities, there remain critical processes that are difficult or impossible to represent in current operational models. Resolving these features adequately within a domain that includes the entire ice shelf and continental shelf to the north can be difficult with a structured horizontal resolution. It is currently impossible to adequately represent the key grounding line region, where the water column thickness reduces to zero, with a structured vertical grid. In addition, fronts and pycnoclines, the ice front geometry, shelf basal irregularities and modelling surface pressure all prove difficult in current approaches. The Fluidity-ICOM model (Piggott et al. 2008, doi:10.1002/fld.1663) simulates non-hydrostatic dynamics on meshes that can be unstructured in all three dimensions and uses anisotropic adaptive resolution which optimises the mesh and calculation in response to evolving solution dynamics. These features give it the flexibility required to tackle the challenges outlined above and the opportunity to develop a model that can improve understanding of the physical processes occurring under ice shelves. The approaches taken to develop a multi-scale model of ice shelf ocean cavity

  9. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins

    Science.gov (United States)

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Harris, Willie G.; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L-1 and decreases in nitrate nitrogen (NO3-–N) from 2.7 mg L-1 to -1, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0–7.8 mg L-1), resulting in NO3-–N of 1.3 to 3.3 mg L-1 in shallow groundwater. Enrichment of d15N and d18O of NO3- combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO3- transport beneath the sandy basin. Soil-extractable NO3-–N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO3- impacts.

  10. Effect of cloud-to-ground lightning and meteorological conditions on surface NOx and O3 in Hong Kong

    Science.gov (United States)

    Fei, Leilei; Chan, L. Y.; Bi, Xinhui; Guo, Hai; Liu, Yonglin; Lin, Qinhao; Wang, Xinming; Peng, Ping'an; Sheng, Guoying

    2016-12-01

    Cloud-to-ground (CG) lightning, meteorological conditions and corresponding surface nitrogen oxides (NOx) and ozone (O3) variations in relation to thunderstorm and lightning activities over Hong Kong at Kwai Chung (urban), Tung Chung (new town) and Tap Mun (background) during active lightning seasons from 2009 to 2013 were studied by analyzing respective air quality monitoring station data along with CG lightning and meteorological data. We observed NOx enhancement and significant O3 decline on lightning days. Influences of land use types, lightning activities and meteorological conditions on surface NOx and O3 were examined. NOx and O3 concentrations shifted towards higher and lower levels, respectively, during lightning days especially in the dominant wind directions. Principal component analysis/absolute principal component scores (PCA/APCS) method and stepwise multiple linear regression (MLR) analysis were employed to examine the influence of thunderstorm related lightning and meteorological parameters on surface NOx and O3. Wind speed was supposed to be the most important meteorological parameter affecting the concentration of NOx, and lightning activities were observed to make a positive contribution to NOx. Negative contribution of hot, cloudy and wet weather and positive contribution of wind speed were found to affect the concentration of O3. Lightning parameters were also found to make a small positive contribution to O3 concentration at Tap Mun and Tung Chung, but the net effect of lightning activities and corresponding meteorological conditions was the decrease of O3 on lightning days. Reasonably good agreement between the predicted and observed NOx and O3 values indicates that PCA/APCS-MLR is a valuable method to study the thunderstorm induced NOx and O3 variations.

  11. Interactions between surface water and ground water and effects on mercury transport in the north-central Everglades

    Science.gov (United States)

    Harvey, Judson W.; Krupa, Steven L.; Gefvert, Cynthia; Mooney, Robert H.; Choi, Jungyill; King, Susan A.; Giddings, Jefferson B.

    2002-01-01

    The hydrology of the north-central Everglades was altered substantially in the past century by canal dredging, land subsidence, ground-water pumping, and levee construction. Vast areas of seasonal and perennial wetlands were converted to uses for agriculture, light industry, and suburban development. As the catchment area for the Everglades decreased, so did the sources of water from local precipitation and runoff from surrounding uplands. Partly in response to those alterations, water-resources managers compartmentalized the remaining wetlands in the north-central Everglades into large retention basins, called Water Conservation Areas (WCAs). In spite of efforts to improve how water resources are managed, the result has been frequent periods of excessive drying out or flooding of the WCAs because the managed system does not have the same water-storage capacity as the pre-drainage Everglades. Linked to the hydrological modifications are ecological changes including large-scale invasions of cattail, loss of tree islands, and diminishing bird populations in the Everglades. Complex interactions among numerous physical, chemical, and biological factors are responsible for the long-term degradation of the ecological character of the Everglades.Over the past 15 years, a new set of smaller wetland basins, called Stormwater Treatment Areas (STAs), have been designed and constructed by water-resources engineers on the former wetlands adjacent to WCAs. The purpose of STAs is to remove excess nutrients from agricultural drainage water prior to its input to WCAs. STAs tend to be about one-tenth the size of a WCA, and they are located on former wetlands on the northwestern side of WCAs on sites that were managed as farmland for much of the twentieth century in an area referred to as the Everglades Agricultural Area, or EAA. The objective of the present investigation was to quantify interactions between surface water and ground water in the Everglades Nutrient Removal Project

  12. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B.; Bergman, Torbjoern (Geological Survey of Sweden, Uppsala (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden)); Petersson, Jesper (SwedPower AB, Stockholm (Sweden))

    2008-12-15

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  13. Estimates of deep percolation beneath native vegetation, irrigated fields, and the Amargosa-River Channel, Amargosa Desert, Nye County, Nevada

    Science.gov (United States)

    Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.

    2003-01-01

    The presence and approximate rates of deep percolation beneath areas of native vegetation, irrigated fields, and the Amargosa-River channel in the Amargosa Desert of southern Nevada were evaluated using the chloride mass-balance method and inferred downward velocities of chloride and nitrate peaks. Estimates of deep-percolation rates in the Amargosa Desert are needed for the analysis of regional ground-water flow and transport. An understanding of regional flow patterns is important because ground water originating on the Nevada Test Site may pass through the area before discharging from springs at lower elevations in the Amargosa Desert and in Death Valley. Nine boreholes 10 to 16 meters deep were cored nearly continuously using a hollow-stem auger designed for gravelly sediments. Two boreholes were drilled in each of three irrigated fields in the Amargosa-Farms area, two in the Amargosa-River channel, and one in an undisturbed area of native vegetation. Data from previously cored boreholes beneath undisturbed, native vegetation were compared with the new data to further assess deep percolation under current climatic conditions and provide information on spatial variability. The profiles beneath native vegetation were characterized by large amounts of accumulated chloride just below the root zone with almost no further accumulation at greater depths. This pattern is typical of profiles beneath interfluvial areas in arid alluvial basins of the southwestern United States, where salts have been accumulating since the end of the Pleistocene. The profiles beneath irrigated fields and the Amargosa-River channel contained more than twice the volume of water compared to profiles beneath native vegetation, consistent with active deep percolation beneath these sites. Chloride profiles beneath two older fields (cultivated since the 1960?s) as well as the upstream Amargosa-River site were indicative of long-term, quasi-steady deep percolation. Chloride profiles beneath the

  14. Differences in rates of decrease of environmental radiation dose rates by ground surface property in Fukushima City after the Fukushima Daiichi nuclear power plant accident.

    Science.gov (United States)

    Kakamu, Takeyasu; Kanda, Hideyuki; Tsuji, Masayoshi; Kobayashi, Daisuke; Miyake, Masao; Hayakawa, Takehito; Katsuda, Shin-ichiro; Mori, Yayoi; Okouchi, Toshiyasu; Hazama, Akihiro; Fukushima, Tetsuhito

    2013-01-01

    After the Great East Japan Earthquake on 11 March 2011, the environmental radiation dose in Fukushima City increased. On 11 April, 1 mo after the earthquake, the environmental radiation dose rate at various surfaces in the same area differed greatly by surface property. Environmental radiation measurements continue in order to determine the estimated time to 50% reduction in environmental radiation dose rates by surface property in order to make suggestions for decontamination in Fukushima. The measurements were carried out from 11 April to 11 November 2011. Forty-eight (48) measurement points were selected, including four kinds of ground surface properties: grass (13), soil (5), artificial turf (7), and asphalt (23). Environmental radiation dose rate was measured at heights of 100 cm above the ground surface. Time to 50% reduction of environmental radiation dose rates was estimated for each ground surface property. Radiation dose rates on 11 November had decreased significantly compared with those on 11 April for all surface properties. Artificial turf showed the longest time to 50% reduction (544.32 d, standard error: 96.86), and soil showed the shortest (213.20 d, standard error: 35.88). The authors found the environmental radiation dose rate on artificial materials to have a longer 50% reduction time than that on natural materials. These results contribute to determining an order of priority for decontamination after nuclear disasters.

  15. Research on lithospheric density distributions beneath North China Craton and its destruction mechanism by gravity and seismic observations

    Science.gov (United States)

    Wang, X.; Fang, J.; Hsu, H.

    2011-12-01

    North China Craton (NCC) has been a research hotspot for geoscientists all over the world. Partial North China Craton (NCC) has lost its lithospheric keel since Mesozoic. Researchers have reached a consensus on destruction of NCC' lithosphere, however, the destruction mechanism and dynamic processes still remain controversy. In this study, a three-dimensional density distribution of lithosphere beneath NCC is determined using gravity datum combined with P-wave travel times by sequential inversion method. After the analyses and discussions on our density results referred to other geophysical and geochemical researches and then gave our viewpoint about destruction mechanisms of NCC lithosphere from the standpoint of density distribution. A linear velocity-density relationship is used to achieve mutual transformations and constraints between density and velocity. As we know, the gravity anomalies measured on the ground surface are the integrated reflection of the interface undulations and underground density inhomogeneous. In order to invert the lithospheric density structures, we firstly separated the gravity effects of lithospheric density inhomogeneous by removing the effects of other contributions to the gravity field from the observed integrated gravity filed before density inversion. The method of Zhao et al.,(1994) is used for seismic tomography, while Algebraic Reconstruction Technique (ART) is applied in density inversion, which highly improved the calculation velocity compared to common least squares method. The inversion results indicate that, the lithospheric density beneath NCC is extremely inhomogeneous and its distributions are coherent with surface regional tectonics; Low density anomalies exist in lower crust beneath rift basins around Ordos block. High poisson' ratios are found in these regions (about 3.0), which may indicate partial melting occurred. Receive function studies prevailed thinned ( 8.2km/s) is also found in this region. The prominent

  16. Investigation of the influence of topographic irregularities and two dimensional effects on the intensity of surface ground motion with one- and two-dimensional analyses

    Directory of Open Access Journals (Sweden)

    L. Yılmazoğlu

    2013-12-01

    Full Text Available In this work, the surface ground motion that occurs during an earthquake in ground sections having different topographic forms has been examined with one and two dynamic site response analyses. One-dimensional analyses were undertaken using the Equivalent-Linear Earthquake Response Analysis program based on the equivalent linear analysis principle and the Deepsoil program which is able to make both equivalent linear and nonlinear analyses and two-dimensional analyses using the Plaxis software. The viscous damping parameters used in the dynamic site response analyses undertaken with the Plaxis software were obtained using the DeepSoil program. In the dynamic site response analyses, the synthetic acceleration over a 475 yr replication period representing the earthquakes in Istanbul was used as the basis of the bedrock ground motion. The peak ground acceleration obtained different depths of soils and acceleration spectrum values have been compared. The surface topography and layer boundaries in the 5-5' section were selected in order to examine the effect of the land topography and layer boundaries on the analysis results were flattened and compared with the actual status. The analysis results showed that the characteristics of the surface ground motion changes in relation to the varying local soil conditions and land topography.

  17. A Semiautomated Multilayer Picking Algorithm for Ice-sheet Radar Echograms Applied to Ground-Based Near-Surface Data

    Science.gov (United States)

    Onana, Vincent De Paul; Koenig, Lora Suzanne; Ruth, Julia; Studinger, Michael; Harbeck, Jeremy P.

    2014-01-01

    Snow accumulation over an ice sheet is the sole mass input, making it a primary measurement for understanding the past, present, and future mass balance. Near-surface frequency-modulated continuous-wave (FMCW) radars image isochronous firn layers recording accumulation histories. The Semiautomated Multilayer Picking Algorithm (SAMPA) was designed and developed to trace annual accumulation layers in polar firn from both airborne and ground-based radars. The SAMPA algorithm is based on the Radon transform (RT) computed by blocks and angular orientations over a radar echogram. For each echogram's block, the RT maps firn segmented-layer features into peaks, which are picked using amplitude and width threshold parameters of peaks. A backward RT is then computed for each corresponding block, mapping the peaks back into picked segmented-layers. The segmented layers are then connected and smoothed to achieve a final layer pick across the echogram. Once input parameters are trained, SAMPA operates autonomously and can process hundreds of kilometers of radar data picking more than 40 layers. SAMPA final pick results and layer numbering still require a cursory manual adjustment to correct noncontinuous picks, which are likely not annual, and to correct for inconsistency in layer numbering. Despite the manual effort to train and check SAMPA results, it is an efficient tool for picking multiple accumulation layers in polar firn, reducing time over manual digitizing efforts. The trackability of good detected layers is greater than 90%.

  18. Evaluation of the toxicological properties of ground- and surface-water samples from the Aral Sea Basin

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, K. [University of Salzburg, Department of Cell Biology, Hellbrunnerstr. 34, A-5020 Salzburg (Austria); Erdinger, L. [University of Heidelberg, Department for Hygiene and Medical Microbiology, Heidelberg (Germany); Ingel, F. [Russian Academy of Medical Sciences, A.N.Sysin Institute of Human Ecology and Environmental Hygiene, Moscow (Russian Federation); Khussainova, S. [Scientific Center of Pediatrics and Chrildren' s Surgery, Almaty (Kazakhstan); Utegenova, E. [Kazakh Sanitary-Epidemiological Station, Almaty (Kazakhstan); Bresgen, N. [University of Salzburg, Department of Cell Biology, Hellbrunnerstr. 34, A-5020 Salzburg (Austria); Eckl, P.M. [University of Salzburg, Department of Cell Biology, Hellbrunnerstr. 34, A-5020 Salzburg (Austria)]. E-mail: peter.eckl@sbg.ac.at

    2007-03-01

    In order to determine whether there is a potential health risk associated with the water supply in the Aral Sea Basin, ground- and surface-water samples were collected in and around Aralsk and from the Aral Sea in 2002. Water samples from Akchi, a small town close to Almaty, served as controls. Bioassays with different toxicological endpoints were employed to assess the general toxicological status. Additionally, the samples were analysed for microbial contamination. The samples were tested in the primary hepatocyte assay for their potential to induce micronuclei and chromosomal aberrations as cumulative indicators for genotoxicity. In parallel, the effects on cell proliferation evidenced by mitotic index and cytotoxicity such as the appearance of necrotic and apoptotic cells, were determined. Furthermore, samples were examined using the Microtox assay for general toxicity. Chemical analysis according to European regulations was performed and soil and water samples were analysed for DDT and DDE. The results obtained indicated no increased cyto- or genotoxic potential of the water samples, nor levels of DDT or DDE exceeding the thresholds levels suggested by WHO. Our data therefore do not support the hypothesis that the contamination of the drinking water in and around Aralsk is responsible for the health effects previously described such as increased rates of liver disease and in particular liver cancer. Microbiological analysis, however, revealed the presence of contamination in most samples analysed.

  19. Characteristics of Ground Surface Temperatures as in situ Observed in Elevational Permafrost on the Northeastern Qinghai-Tibet Plateau

    Science.gov (United States)

    Luo, D.; Jin, H.; Marchenko, S. S.; Romanovsky, V. E.

    2016-12-01

    Elevational permafrost is primarily distributed on the Qinghai-Tibet Plateau (QTP) at mid-latitudes, where the average elevation is higher than 4,000 m a.s.l. The topography, including the elevation and aspect, obviously is the decisive controlling factor of thermal regimes of elevational permafrost, which is warm and extremely sensitive to anthropogenic activities and climate changes. Due to the harsh weather conditions and unfavorable logistics accommodations, however, the elevational permafrost on the QTP, especially in the rugged topography, is hard to be plotted through ground-based field investigations. The exact distribution of elevational permafrost could be simulated through GST. In this study, we set up three monitoring sites of GST at the beginning of 2015. One located in the rugged mountain of the source area of the Yellow River, one located in the sunny slope of the Bayan Har Mountain Pass, and one another located in a degrading alpine meadow of the source area of the Yangtze River. Based on these GST records, the daily, monthly, seasonal and year-average values of GST, freezing and thawing indices calculated from GST, and empirical Stefan Equation to calculate the ALT, as well as the GIPL-2.0 model to simulate the freezing and thawing processes of the active layer were integrative executed for these three sites. Results demonstrate that GST could be a much more reliable driving parameter to simulate the active layer and permafrost than the air temperature and land surface temperature.

  20. [Effects of ground surface mulching in tea garden on soil water and nutrient dynamics and tea plant growth].

    Science.gov (United States)

    Sun, Li-tao; Wang, Yu; Ding, Zhao-tang

    2011-09-01

    Taking a 2-year-old tea garden in Qingdao of Shandong Province as test object, this paper studied the effects of different mulching modes on the soil water and nutrient dynamics and tea plant growth. Four treatments were installed, i.e., no mulching (CK), straw mulching (T1), plastic film mulching (T2), and straw plus plastic film mulching (T3). Comparing with CK, mulching could keep the soil water content at a higher level, and enhance the water use efficiency. In treatments T1 and T3, the tea growth water use efficiency and yield water use efficiency increased by 43%-48% and 7%-13%, respectively, compared with CK. Also in treatments T1 and T3, the contents of soil organic matter, available-N, nitrate-N, and ammonium-N increased significantly, with the soil fertility improved, and the leaf nitrate-N content and nitrate reductase activity increased, which promoted the tea growth and yield (12%-13% higher than CK) and made the peak period of bud growth appeared earlier. Considering the tea growth and yield, water and nutrient use efficiency, environment safety and economic benefit, straw mulching could be an effective ground surface mulching mode for young tea garden.

  1. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    I. Wong

    2004-11-05

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

  2. The effects of nutrient losses from agriculture on ground and surface water quality: the position of science in developing indicators for regulation

    NARCIS (Netherlands)

    Schröder, J.J.; Scholefield, D.; Cabral, F.; Hofmans, G.

    2004-01-01

    The magnitude of current nutrient losses from agriculture to ground and surface water calls for effective environmental policy, including the use of regulation. Nutrient loss is experienced in many countries despite differences in the organisation and intensity of agricultural production. However, a

  3. Validation of the Cooray‐Rubinstein (C‐R) formula for a rough ground surface by using three‐dimensional (3‐D) FDTD

    National Research Council Canada - National Science Library

    Li, Dongshuai; Zhang, Qilin; Liu, Tao; Wang, Zhenhui

    2013-01-01

    In this paper, we have extended the Cooray‐Rubinstein (C‐R) approximate formula into the fractal rough ground surface and then validate its accuracy by using three‐dimensional (3‐D) finite‐difference time‐domain (FDTD...

  4. Where’s the Ground Surface? – Elevation Bias in LIDAR-derived Digital Elevation Models Due to Dense Vegetation in Oregon Tidal Marshes

    Science.gov (United States)

    Light Detection and Ranging (LIDAR) is a powerful resource for coastal and wetland managers and its use is increasing. Vegetation density and other land cover characteristics influence the accuracy of LIDAR-derived ground surface digital elevation models; however the degree to wh...

  5. Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996

    Science.gov (United States)

    Parnell, J.M.

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.

  6. High-resolution electrical resistivity tomography applied to patterned ground, Wedel Jarlsberg Land, south-west Spitsbergen

    Directory of Open Access Journals (Sweden)

    Marek Kasprzak

    2015-06-01

    Full Text Available This article presents results of two-dimensional electrical resistivity tomography (ERT applied to three types of patterned ground in Wedel-Jarlsberg Land (Svalbard, carried out in late July 2012. The structures investigated include sorted circles, non-sorted polygons and a net with sorted coarser material. ERT was used to recognize the internal ground structure, the shape of permafrost table below the active layer and the geometric relationships between permafrost, ground layering and surface patterns. Results of inversion modelling indicate that the permafrost table occurs at a depth of 0.5–1 m in a mountain valley and 1–2.5 m on raised marine terraces. The permafrost table was nearly planar beneath non-sorted deposits and wavy beneath sorted materials. The mutual relationships between the permafrost table and the shape of a stone circle are different from those typically presented in literature. Ground structure beneath the net with sorted coarser materials is complex as implied in convective models. In non-sorted polygons, the imaging failed to reveal vertical structures between them.

  7. Transport of a nematicide in surface and ground waters in a farmed tropical catchment with volcanic substratum

    Science.gov (United States)

    Charlier, J.-B.; Cattan, P.; Voltz, M.; Moussa, R.

    2009-04-01

    Assessment of water-pollution risks in agricultural regions requires studying pesticide transport processes in soil and water compartments at the catchment scale. In tropical regions, banana (Musa spp.) plantations are located in zones with abundant rainfalls and soils with high infiltration rates, which lead to washout and leaching of soil-applied pesticides, causing severe diffuse pollution of water resources. The aim of this paper is to determine how the nematicide cadusafos [S,S-di-sec-butyl O-ethyl phosphorodithioate], used in banana plantations, contaminates water and soils at the two scales of subcatchment and catchment. The study site was a small banana-growing catchment on the tropical volcanic island of Guadeloupe in the Caribbean (FWI). The catchment is located in pedoclimatic conditions where rainfall is abundant (> 4000 mm/year), and soil permeable (saturated hydraulic conductivity of Andosol Ks > 30 mm/h). Two campaigns of nematicide application were conducted, one in 2003 over 40% of the catchment and one in 2006 over 12%. For 100 days after application, we monitored the surface water and groundwater flows and the cadusafos concentrations in the soil and in surface and ground waters in a 2400 m² subcatchment and a 17.8 ha catchment. The results show that at the subcatchment scale the high retention in the A horizon of the soil limited the transport of cadusafos by runoff, whereas the lower retention of the molecule in the B horizon favoured percolation towards the shallow groundwater. The contamination levels of surface water, as well as shallow and deep groundwaters, reflected the geological structure of the Féfé catchment: i.e. a shallow aquifer in the most recent volcanic deposits that is rapidly exposed to pollution and a deeper aquifer that is relatively protected from the pollution coming from the treated fields. Comparing the losses of cadusafos at the subcatchment and at the catchment scales revealed that the nematicide re-infiltrated in

  8. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    Science.gov (United States)

    Barton, Gary J.

    2004-01-01

    The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated

  9. Three-dimensional numerical modeling of thermal regime and slab dehydration beneath Kanto and Tohoku, Japan

    Science.gov (United States)

    Ji, Yingfeng; Yoshioka, Shoichi; Manea, Vlad Constantin; Manea, Marina; Matsumoto, Takumi

    2017-01-01

    Although the thermal regime of the interface between two overlapping subducting plates, such as those beneath Kanto, Japan, is thought to play an important role in affecting the distribution of interplate and intraslab earthquakes, the estimation of the thermal regime remains challenging to date. We constructed a three-dimensional (3-D) thermal convection model to simulate the subduction of the Pacific plate along the Japan Trench and Izu-Bonin Trench, including the subduction of the Philippine Sea beneath Kanto and investigated the slab thermal regime and slab water contents in this complex tectonic setting. Based on the subduction parameters tested in generic models with two flat oceanic plates, a faster or thicker plate subducting in a more trench-normal direction produces a colder slab thermal regime. The interplate temperature of the cold anomaly beneath offshore Kanto was approximately 300°C colder than that beneath offshore Tohoku at a same depth of 40 km and approximately 600°C colder at a depth of 70 km. The convergence between the two subducting plates produces an asymmetric thermal structure in the slab contact zone beneath Kanto, which is characterized by clustered seismicity in the colder southwestern half. The thermo-dehydration state of the mid-ocean ridge basalt near the upper surface of the subducted Pacific plate controls the interplate seismicity beneath the Kanto-Tohoku region according to the spatial concurrence of the thermo-dehydration and seismicity along the megathrust fault zone of the subducted Pacific plate.

  10. Downbursts and microbursts - An aviation hazard. [downdrafts beneath thunderstorms

    Science.gov (United States)

    Fujita, T. T.

    1980-01-01

    Downburst and microburst phenomena occurring since 1975 are studied, based on meteorological analyses of aircraft accidents, aerial surveys of wind effects left behind downbursts, and studies of sub-mesoscale wind systems. It is concluded that microbursts beneath small, air mass thunderstorms are unpredictable in terms of weather forecast. Most aircraft incidents, however, were found to have occurred in the summer months, June through August. An intense microburst could produce 150 mph horizontal winds as well as 60 fps downflows at the tree-top level. The largest contributing factor to aircraft difficulties seemed to be a combination of the headwind decrease and the downflow. Anemometers and/or pressure sensors placed near runways were found effective for detecting gust fronts, but not for detecting downbursts. It is recommended that new detection systems placed on the ground or airborne, be developed, and that pilots be trained for simulated landing and go-around through microbursts.

  11. Ocean mixing beneath Pine Island Glacier Ice Shelf

    Science.gov (United States)

    Kimura, Satoshi; Dutrieux, Pierre; Jenkins, Adrian; Forryan, Alexander; Naveira Garabato, Alberto; Firing, Yvonne

    2016-04-01

    Ice shelves around Antarctica are vulnerable to increase in ocean-driven melting, with the melt rate depending on ocean temperature and strength of sub-ice-shelf-cavity circulations. We present repeated measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate and thermal variance dissipation rate beneath Pine Island Glacier Ice Shelf, collected by CTD, ADCP and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The turbulence quantities measured by the AUV outside the ice shelf are in good agreement with ship-based measurements. The highest rate of turbulent kinetic energy dissipation is found near the grounding line, while its temporal fluctuation over seabed ridge within the cavity corresponds to the tidal fluctuation predicted in the Pine Island Bay to the west. The highest thermal variance dissipation rate is found when the AUV was 0.5 m away from the ice, and the thermal variance dissipation generally increases with decreasing distance between the AUV and ice.

  12. Recharge Rates and Chemistry Beneath Playas of the High Plains Aquifer - A Literature Review and Synthesis

    Science.gov (United States)

    Gurdak, Jason J.; Roe, Cassia D.

    2009-01-01

    Playas are ephemeral, closed-basin wetlands that are important zones of recharge to the High Plains (or Ogallala) aquifer and critical habitat for birds and other wildlife in the otherwise semiarid, shortgrass prairie and agricultural landscape. The ephemeral nature of playas, low regional recharge rates, and a strong reliance on ground water from the High Plains aquifer has prompted many questions regarding the contribution of recharge from playas to the regional aquifer. To address these questions and concerns, the U.S. Geological Survey, in cooperation with the Playa Lakes Joint Venture, present a review and synthesis of the more than 175 publications about recharge rates and chemistry beneath playas and interplaya settings. Although a number of questions remain regarding the controls on recharge rates and chemistry beneath playas, the results from most published studies indicate that recharge rates beneath playas are substantially (1 to 2 orders of magnitude) higher than recharge rates beneath interplaya settings. The synthesis presented here supports the conceptual model that playas are important zones of recharge to the High Plains aquifer and are not strictly evaporative pans. The major findings of this synthesis yield science-based implications for the protection and management of playas and ground-water resources of the High Plains aquifer and directions for future research.

  13. SURFACE GEOPHYSICAL EXPLORATION OF TX-TY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH GROUND PENETRATING RADAR

    Energy Technology Data Exchange (ETDEWEB)

    MYERS DA; CUBBAGE R; BRAUCHLA R; O' BRIEN G

    2008-07-24

    Ground penetrating radar surveys of the TX and TY tank farms were performed to identify existing infrastructure in the near surface environment. These surveys were designed to provide background information supporting Surface-to-Surface and Well-to-Well resistivity surveys of Waste Management Area TX-TY. The objective of the preliminary investigation was to collect background characterization information with GPR to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity{trademark} surveys. The results of the background characterization confirm the existence of documented infrastructure, as well as highlight locations of possible additional undocumented subsurface metallic objects.

  14. Ground-penetrating radar (GPR) responses for sub-surface salt contamination and solid waste: modeling and controlled lysimeter studies.

    Science.gov (United States)

    Wijewardana, Y N S; Shilpadi, A T; Mowjood, M I M; Kawamoto, K; Galagedara, L W

    2017-02-01

    The assessment of polluted areas and municipal solid waste (MSW) sites using non-destructive geophysical methods is timely and much needed in the field of environmental monitoring and management. The objectives of this study are (i) to evaluate the ground-penetrating radar (GPR) wave responses as a result of different electrical conductivity (EC) in groundwater and (ii) to conduct MSW stratification using a controlled lysimeter and modeling approach. A GPR wave simulation was carried out using GprMax2D software, and the field test was done on two lysimeters that were filled with sand (Lysimeter-1) and MSW (Lysimeter-2). A Pulse EKKO-Pro GPR system with 200- and 500-MHz center frequency antennae was used to collect GPR field data. Amplitudes of GPR-reflected waves (sub-surface reflectors and water table) were studied under different EC levels injected to the water table. Modeling results revealed that the signal strength of the reflected wave decreases with increasing EC levels and the disappearance of the subsurface reflection and wave amplitude reaching zero at higher EC levels (when EC >0.28 S/m). Further, when the EC level was high, the plume thickness did not have a significant effect on the amplitude of the reflected wave. However, it was also found that reflected signal strength decreases with increasing plume thickness at a given EC level. 2D GPR profile images under wet conditions showed stratification of the waste layers and relative thickness, but it was difficult to resolve the waste layers under dry conditions. These results show that the GPR as a non-destructive method with a relatively larger sample volume can be used to identify highly polluted areas with inorganic contaminants in groundwater and waste stratification. The current methods of MSW dumpsite investigation are tedious, destructive, time consuming, costly, and provide only point-scale measurements. However, further research is needed to verify the results under heterogeneous aquifer

  15. Analysis of isotope element by electrolytic enrichment method for ground water and surface water in Saurashtra region, Gujarat, India

    Directory of Open Access Journals (Sweden)

    Sajal Singh

    2016-12-01

    Full Text Available The present study has been aimed for the assessment of isotope element Tritium (3H. It is a great threat to human health and environment for lengthy duration. The tritium exists in earth in diverse forms such as (1 small amounts of natural tritium are produced by alpha decay of lithium-7, (2 natural atmospheric tritium is also generated by secondary neutron cosmic ray bombardment of nitrogen, (3 atmospheric nuclear bomb testing in the 1950s, although the contribution from nuclear power plants is small. Tritium or 3H is a radioactive isotope of hydrogen with a half-life of 12.32 ± 0.02 years. Water samples from ground water, surface water, and precipitation were collected from different locations in Gujarat area and were analyzed for the same. Distillation of samples was done to reduce the conductivity. Deuterium and Hydrogen were removed by the process of physico-chemical fractionation in the tritium enrichment unit. The basis of physico-chemical fractionation is the difference in the strength of bonds formed by the light vs. the heavier isotope of a given element. A total of 10 cycles (runs were executed using Quintals process. Tritium concentration files were created with help of WinQ and Quick start software in Quintals process (Liquid Scintillation Spectrometer. The concentration of tritium in terms of tritium units (TU of various samples has been determined. The TU values of the samples vary in the range of 0.90–6.62 TU.

  16. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    Science.gov (United States)

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  17. EXAMINATION ABOUT INFLUENCE FOR PRECISION OF 3D IMAGE MEASUREMENT FROM THE GROUND CONTROL POINT MEASUREMENT AND SURFACE MATCHING

    Directory of Open Access Journals (Sweden)

    T. Anai

    2015-05-01

    Full Text Available As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results

  18. Surface aerosol and rehabilitation properties of ground-level atmosphere in the mountains of the North Caucasus

    Science.gov (United States)

    Reps, Valentina; Efimenko, Natalia; Povolotskaya, Nina; Abramtsova, Anna; Ischenko, Dmitriy; Senik, Irina; Slepikh, Victor

    2017-04-01

    The rehabilitative properties (RP) of ground-level atmosphere (GA) of Russian resorts are considered as natural healing resources and received state legal protection [1]. Due to global urbanization the chemical composition and particle size distribution of the surface aerosol are changing rapidly. However, the influence of surface aerosol on the RP of GA has been insufficiently studied. At the resort region of the North Caucasus complex monitoring (aerosol, trace gases NOx, CO, O3, CH4; periodically - heavy metals) is performed at two high levels (860 masl - a park zone of a large mountain resort, 2070 masl - alpine grassland, the net station). The results of the measurements are used in programs of bioclimatic, landscape and medical monitoring to specify the influence of aerosol on rehabilitation properties of the environment and human adaptative reserves. The aerosol particles of size range 500-1000 nm are used as a marker of the pathogenic effect of aerosol [2]. In the conditions of regional urbanization and complicated mountain atmospheric circulation the influence of aerosol on RP of GA and the variability of heart rhythm with the volunteers at different heights were investigated. At the height of 860 masl (urbanized resort) there have been noticed aerosol variations in the range of 0,04-0,35 particles/cm3 (slightly aerosol polluted), in mountain conditions - background pollution aerosol level. The difference of bioclimatic conditions at the specified high-rise levels has been referred to the category of contrasts. The natural aero ionization ∑(N+)+(N-) varied from 960 ion/cm3 to 1460 ion/cm3 in the resort park (860 m); from 1295 ion/cm3 to 4850 ion/cm3 on the Alpine meadow (2070 m); from 1128 ion/cm3 to 3420 ion/cm3 - on the tested site near the edge of the pinewood (1720 m). In the group of volunteers the trip from low-hill terrain zone (860 m) to the lower zone of highlands (2070 m) caused the activation of neuro and humoral regulation, vegetative and

  19. Examination about Influence for Precision of 3d Image Measurement from the Ground Control Point Measurement and Surface Matching

    Science.gov (United States)

    Anai, T.; Kochi, N.; Yamada, M.; Sasaki, T.; Otani, H.; Sasaki, D.; Nishimura, S.; Kimoto, K.; Yasui, N.

    2015-05-01

    As the 3D image measurement software is now widely used with the recent development of computer-vision technology, the 3D measurement from the image is now has acquired the application field from desktop objects as wide as the topography survey in large geographical areas. Especially, the orientation, which used to be a complicated process in the heretofore image measurement, can be now performed automatically by simply taking many pictures around the object. And in the case of fully textured object, the 3D measurement of surface features is now done all automatically from the orientated images, and greatly facilitated the acquisition of the dense 3D point cloud from images with high precision. With all this development in the background, in the case of small and the middle size objects, we are now furnishing the all-around 3D measurement by a single digital camera sold on the market. And we have also developed the technology of the topographical measurement with the air-borne images taken by a small UAV [1~5]. In this present study, in the case of the small size objects, we examine the accuracy of surface measurement (Matching) by the data of the experiments. And as to the topographic measurement, we examine the influence of GCP distribution on the accuracy by the data of the experiments. Besides, we examined the difference of the analytical results in each of the 3D image measurement software. This document reviews the processing flow of orientation and the 3D measurement of each software and explains the feature of the each software. And as to the verification of the precision of stereo-matching, we measured the test plane and the test sphere of the known form and assessed the result. As to the topography measurement, we used the air-borne image data photographed at the test field in Yadorigi of Matsuda City, Kanagawa Prefecture JAPAN. We have constructed Ground Control Point which measured by RTK-GPS and Total Station. And we show the results of analysis made

  20. Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity

    Science.gov (United States)

    Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.

    2012-12-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.

  1. Subglacial lake drainage detected beneath the Greenland ice sheet.

    Science.gov (United States)

    Palmer, Steven; McMillan, Malcolm; Morlighem, Mathieu

    2015-10-09

    The contribution of the Greenland ice sheet to sea-level rise has accelerated in recent decades. Subglacial lake drainage events can induce an ice sheet dynamic response--a process that has been observed in Antarctica, but not yet in Greenland, where the presence of subglacial lakes has only recently been discovered. Here we investigate the water flow paths from a subglacial lake, which drained beneath the Greenland ice sheet in 2011. Our observations suggest that the lake was fed by surface meltwater flowing down a nearby moulin, and that the draining water reached the ice margin via a subglacial tunnel. Interferometric synthetic aperture radar-derived measurements of ice surface motion acquired in 1995 suggest that a similar event may have occurred 16 years earlier, and we propose that, as the climate warms, increasing volumes of surface meltwater routed to the bed will cause such events to become more common in the future.

  2. Subglacial lake drainage detected beneath the Greenland ice sheet

    Science.gov (United States)

    Palmer, Steven; McMillan, Malcolm; Morlighem, Mathieu

    2015-01-01

    The contribution of the Greenland ice sheet to sea-level rise has accelerated in recent decades. Subglacial lake drainage events can induce an ice sheet dynamic response—a process that has been observed in Antarctica, but not yet in Greenland, where the presence of subglacial lakes has only recently been discovered. Here we investigate the water flow paths from a subglacial lake, which drained beneath the Greenland ice sheet in 2011. Our observations suggest that the lake was fed by surface meltwater flowing down a nearby moulin, and that the draining water reached the ice margin via a subglacial tunnel. Interferometric synthetic aperture radar-derived measurements of ice surface motion acquired in 1995 suggest that a similar event may have occurred 16 years earlier, and we propose that, as the climate warms, increasing volumes of surface meltwater routed to the bed will cause such events to become more common in the future. PMID:26450175

  3. Imaging of subducted lithosphere beneath South America

    NARCIS (Netherlands)

    Engdahl, E.R.; Hilst, R.D. van der; Berrocal, J.

    1995-01-01

    Tomographic images are produced for the deep structure of the Andean subduction zone beneath western South America. The data used in the imaging are the delay times of P, pP and pwP phases from relocated teleseismic earthquakes in the region. Regionally, structural features larger than about 150 km

  4. DS926 Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system in Florida and parts of Georgia, Alabama, and South Carolina -- Area where upper confining unit is thin or absent beneath the surficial aquifer

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...

  5. Road impacts on the Baca National Wildlife Refuge, Colorado, with emphasis on effects to surface- and shallow ground-water hydrology - A literature review

    Science.gov (United States)

    Andersen, Douglas C.

    2007-01-01

    A review of published research on unpaved road effects on surface-water and shallow ground-water hydrology was undertaken to assist the Baca National Wildlife Refuge, Colorado, in understanding factors potentially influencing refuge ecology. Few studies were found that addressed hydrological effects of roads on a comparable area of shallow slope in a semiarid region. No study dealt with road effects on surface- and ground-water supplies to ephemeral wetlands, which on the refuge are sustained by seasonal snowmelt in neighboring mountains. Road surfaces increase runoff, reduce infiltration, and serve as a sediment source. Roadbeds can interfere with normal surface- and ground-water flows and thereby influence the quantity, timing, and duration of water movement both across landscapes and through the soil. Hydrologic effects can be localized near the road as well as widespread and distant. The number, arrangement, and effectiveness of road-drainage structures (culverts and other devices) largely determine the level of hydrologic alteration produced by a road. Undesirable changes to natural hydrologic patterns can be minimized by considering potential impacts during road design, construction, and maintenance. Road removal as a means to restore desirable hydrologic conditions to landscapes adversely affected by roads has yet to be rigorously evaluated.

  6. Anelastic properties beneath the Niigata-Kobe Tectonic Zone, Japan

    Science.gov (United States)

    Nakajima, Junichi; Matsuzawa, Toru

    2017-02-01

    We estimate the three-dimensional (3D) P-wave attenuation structure beneath the Niigata-Kobe Tectonic Zone (NKTZ), central Japan, using high-quality waveform data from a large number of stations. The obtained results confirm the segmentation of the NKTZ into three regions, as suggested by 3D seismic velocity models, and reveal characteristic structures related to surface deformation, shallow subduction of the Philippine Sea slab, and magmatism. The lower crust beneath the NKTZ west of the Itoigawa-Shizuoka Tectonic Line (ISTL) is overall characterized by distinct high attenuation, whereas the upper crust shows marked high attenuation to the east of the ISTL. Differences in the depths of anelastically weakened parts of the crust probably result in a first-order spatial variation in surface deformation, forming wide (width of 100 km) and narrow (width of 25-40 km) deformation zones on the western and eastern sides of the ISTL, respectively. Many M ≥ 6.5 earthquakes occur in the upper crust where seismic attenuation in the underlying lower crust varies sharply, suggesting that spatial variations in rates of anelastic deformation in the lower crust result in stress concentration in the overlying brittle crust. We interpret a moderate- to low-attenuation zone located in the lower crust at the northeast of Biwa Lake to reflect low-temperature conditions that are developed locally as a result of shallow subduction of the cold Philippine Sea slab.

  7. Effects of surface applications of biosolids on soil, crops, ground water, and streambed sediment near Deer Trail, Colorado, 1999-2003

    Science.gov (United States)

    Yager, Tracy J.B.; Smith, David B.; Crock, James G.

    2004-01-01

    The U.S. Geological Survey, in cooperation with Metro Wastewater Reclamation District and North Kiowa Bijou Groundwater Management District, studied natural geochemical effects and the effects of biosolids applications to the Metro Wastewater Reclamation District properties near Deer Trail, Colorado, during 1999 through 2003 because of public concern about potential contamination of soil, crops, ground water, and surface water from biosolids applications. Parameters analyzed for each monitoring component included arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc (the nine trace elements regulated by Colorado for biosolids), gross alpha and gross beta radioactivity, and plutonium, as well as other parameters. Concentrations of the nine regulated trace elements in biosolids were relatively uniform and did not exceed applicable regulatory standards. All plutonium concentrations in biosolids were below the minimum detectable level and were near zero. The most soluble elements in biosolids were arsenic, molybdenum, nickel, phosphorus, and selenium. Elevated concentrations of bismuth, mercury, phosphorus, and silver would be the most likely inorganic biosolids signature to indicate that soil or streambed sediment has been affected by biosolids. Molybdenum and tungsten, and to a lesser degree antimony, cadmium, cobalt, copper, mercury, nickel, phosphorus, and selenium, would be the most likely inorganic 'biosolids signature' to indicate ground water or surface water has been affected by biosolids. Soil data indicate that biosolids have had no measurable effect on the concentration of the constituents monitored. Arsenic concentrations in soil of both Arapahoe and Elbert County monitoring sites (like soil from all parts of Colorado) exceed the Colorado soil remediation objectives and soil cleanup standards, which were determined by back-calculating a soil concentration equivalent to a one-in-a-million cumulative cancer risk. Lead concentrations

  8. Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3

    Science.gov (United States)

    Westermann, S.; Langer, M.; Boike, J.; Heikenfeld, M.; Peter, M.; Etzelmüller, B.; Krinner, G.

    2016-02-01

    Thawing of permafrost in a warming climate is governed by a complex interplay of different processes of which only conductive heat transfer is taken into account in most model studies. However, observations in many permafrost landscapes demonstrate that lateral and vertical movement of water can have a pronounced influence on the thaw trajectories, creating distinct landforms, such as thermokarst ponds and lakes, even in areas where permafrost is otherwise thermally stable. Novel process parameterizations are required to include such phenomena in future projections of permafrost thaw and subsequent climatic-triggered feedbacks. In this study, we present a new land-surface scheme designed for permafrost applications, CryoGrid 3, which constitutes a flexible platform to explore new parameterizations for a range of permafrost processes. We document the model physics and employed parameterizations for the basis module CryoGrid 3, and compare model results with in situ observations of surface energy balance, surface temperatures, and ground thermal regime from the Samoylov permafrost observatory in NE Siberia. The comparison suggests that CryoGrid 3 can not only model the evolution of the ground thermal regime in the last decade, but also consistently reproduce the chain of energy transfer processes from the atmosphere to the ground. In addition, we demonstrate a simple 1-D parameterization for thaw processes in permafrost areas rich in ground ice, which can phenomenologically reproduce both formation of thermokarst ponds and subsidence of the ground following thawing of ice-rich subsurface layers. Long-term simulation from 1901 to 2100 driven by reanalysis data and climate model output demonstrate that the hydrological regime can both accelerate and delay permafrost thawing. If meltwater from thawed ice-rich layers can drain, the ground subsides, as well as the formation of a talik, are delayed. If the meltwater pools at the surface, a pond is formed that enhances heat

  9. Validation of the Cooray-Rubinstein (C-R) formula for a rough ground surface by using three-dimensional (3-D) FDTD

    Science.gov (United States)

    Li, Dongshuai; Zhang, Qilin; Liu, Tao; Wang, Zhenhui

    2013-11-01

    this paper, we have extended the Cooray-Rubinstein (C-R) approximate formula into the fractal rough ground surface and then validate its accuracy by using three-dimensional (3-D) finite-difference time-domain (FDTD) method at distances of 50 m and 100 m from the lightning channel. The results show that the extended C-R formula has an accepted accuracy for predicting the lightning-radiated horizontal electric field above the fractal rough and conducting ground, and its accuracy increases a little better with the higher of the earth conductivity. For instance, when the conductivity of the rough ground is 0.1 S/m, the error of the peak value predicted by the extended C-R formula is less than about 2.3%, while its error is less than about 6.7% for the conductivity of 0.01 S/m. The rough ground has much effect on the lightning horizontal field, and the initial peak value of the horizontal field obviously decreases with the increase of the root-mean-square height of the rough ground at early times (within several microseconds of the beginning of return stroke).

  10. High basal melting forming a channel at the grounding line of Ross Ice Shelf, Antarctica

    Science.gov (United States)

    Marsh, Oliver J.; Fricker, Helen A.; Siegfried, Matthew R.; Christianson, Knut; Nicholls, Keith W.; Corr, Hugh F. J.; Catania, Ginny

    2016-01-01

    Antarctica's ice shelves are thinning at an increasing rate, affecting their buttressing ability. Channels in the ice shelf base unevenly distribute melting, and their evolution provides insight into changing subglacial and oceanic conditions. Here we used phase-sensitive radar measurements to estimate basal melt rates in a channel beneath the currently stable Ross Ice Shelf. Melt rates of 22.2 ± 0.2 m a-1 (>2500% the overall background rate) were observed 1.7 km seaward of Mercer/Whillans Ice Stream grounding line, close to where subglacial water discharge is expected. Laser altimetry shows a corresponding, steadily deepening surface channel. Two relict channels to the north suggest recent subglacial drainage reorganization beneath Whillans Ice Stream approximately coincident with the shutdown of Kamb Ice Stream. This rapid channel formation implies that shifts in subglacial hydrology may impact ice shelf stability.

  11. Water quality and ground-water/surface-water interactions along the John River near Anaktuvuk Pass, Alaska, 2002-2003

    Science.gov (United States)

    Moran, Edward H.; Brabets, Timothy P.

    2005-01-01

    The headwaters of the John River are located near the village ofAnaktuvuk Pass in the central Brooks Range of interior Alaska. With the recent construction of a water-supply system and a wastewater-treatment plant, most homes in Anaktuvuk Pass now have modern water and wastewater systems. The effluent from the treatment plant discharges into a settling pond near a tributary of the John River. The headwaters of the John River are adjacent to Gates of the Arctic National Park and Preserve, and the John River is a designated Wild River. Due to the concern about possible water-quality effects from the wastewater effluent, the hydrology of the John River near Anaktuvuk Pass was studied from 2002 through 2003. Three streams form the John River atAnaktuvuk Pass: Contact Creek, Giant Creek, and the John RiverTributary. These streams drain areas of 90.3 km (super 2) , 120 km (super 2) , and 4.6 km (super 2) , respectively. Water-qualitydata collected from these streams from 2002-03 indicate that the waters are a calcium-bicarbonate type and that Giant Creek adds a sulfate component to the John River. The highest concentrations of bicarbonate, calcium, sodium, sulfate, and nitrate were found at the John River Tributary below the wastewater-treatment lagoon. These concentrations have little effect on the water quality of the John River because the flow of the John River Tributary is only about 2 percent of the John River flow. To better understand the ground-water/surface-water interactions of the upper John River, a numerical groundwater-flow model of the headwater area of the John River was constructed. Processes that occur during spring break-up, such as thawing of the active layer and the frost table and the resulting changes of storage capacity of the aquifer, were difficult to measure and simulate. Application and accuracy of the model is limited by the lack of specific hydrogeologic data both spatially and temporally. However

  12. A Bed-Deformation Experiment Beneath Engabreen, Norway

    Science.gov (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    2001-12-01

    Although deformation of sediment beneath ice masses may contribute to their motion and may sometimes enable fast glacier flow, both the kinematics and mechanics of deformation are controversial. This controversy stems, in part, from subglacial measurements that are difficult to interpret. Measurements have been made either beneath ice margins or remotely through boreholes with interpretive limitations caused by uncertain instrument position and performance, uncertain sediment thickness and bed geometry, and unknown disturbance of the bed and stress state by drilling. We have used a different approach made possible by the Svartisen Subglacial Laboratory, which enables human access to the bed of Engabreen, Norway, beneath 230 m of temperate ice. A trough (2 m x 1.5 m x 0.4 m deep) was blasted in the rock bed and filled with sediment (75 percent sand and gravel, 20 percent silt, 5 percent clay). Instruments were placed in the sediment to record shear deformation (tiltmeters), dilation and contraction, total normal stress, and pore-water pressure. Pore pressure was manipulated by feeding water to the base of the sediment with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. After irregular deformation during closure of ice on the sediment, shear deformation and volume change stopped, and total normal stress became constant at 2.2 MPa. Subsequent pump tests, which lasted several hours, induced pore-water pressures greater than 70 percent of the total normal stress and resulted in shear deformation over most of the sediment thickness with attendant dilation. Ice separated from the sediment when effective normal stress was lowest, arresting shear deformation. Displacement profiles during pump tests were similar to those observed by Boulton and co-workers at Breidamerkurjökull, Iceland, with rates of shear strain increasing upward toward the glacier sole. Such deformation does not require viscous deformation resistance and is expected in a

  13. Strong S-wave attenuation and actively degassing magma beneath Taal volcano, Philippines, inferred from source location analysis using high-frequency seismic amplitudes

    Science.gov (United States)

    Kumagai, H.; Lacson, R. _Jr., Jr.; Maeda, Y.; Figueroa, M. S., II; Yamashina, T.

    2014-12-01

    Taal volcano, Philippines, is one of the world's most dangerous volcanoes given its history of explosive eruptions and its close proximity to populated areas. A key feature of these eruptions is that the eruption vents were not limited to Main Crater but occurred on the flanks of Volcano Island. This complex eruption history and the fact that thousands of people inhabit the island, which has been declared a permanent danger zone, together imply an enormous potential for disasters. The Philippine Institute of Volcanology and Seismology (PHIVOLCS) constantly monitors Taal, and international collaborations have conducted seismic, geodetic, electromagnetic, and geochemical studies to investigate the volcano's magma system. Realtime broadband seismic, GPS, and magnetic networks were deployed in 2010 to improve monitoring capabilities and to better understand the volcano. The seismic network has recorded volcano-tectonic (VT) events beneath Volcano Island. We located these VT events based on high-frequency seismic amplitudes, and found that some events showed considerable discrepancies between the amplitude source locations and hypocenters determined by using onset arrival times. Our analysis of the source location discrepancies points to the existence of a region of strong S-wave attenuation near the ground surface beneath the east flank of Volcano Island. This region is beneath the active fumarolic area and above sources of pressure contributing inflation and deflation, and it coincides with a region of high electrical conductivity. The high-attenuation region matches that inferred from an active-seismic survey conducted at Taal in 1993. Our results, synthesized with previous results, suggest that this region represents actively degassing magma near the surface, and imply a high risk of future eruptions on the east flank of Volcano Island.

  14. A new tomographic image on the Philippine Sea Slab beneath Tokyo - Implication to seismic hazard in the Tokyo metropolitan region -

    Science.gov (United States)

    Hirata, N.; Sakai, S.; Nakagawa, S.; Ishikawa, M.; Sato, H.; Kasahara, K.; Kimura, H.; Honda, R.

    2012-12-01

    In central Japan, the Philippine Sea plate (PSP) subducts beneath the Tokyo metropolitan region. Devastating M8-class earthquakes occurred on the upper surface of the Philippine Sea plate (SPS), examples of which are the Genroku earthquake of 1703 (magnitude M=8.0) and the Kanto earthquake of 1923 (M=7.9), which had 105,000 fatalities. A M7 or greater (M7+) earthquake in this region at present has high potential to produce devastating loss of life and property with even greater global economic repercussions although it is smaller than the megathrust type M8-class earthquakes. This great earthquake is evaluated to occur with a probability of 70 % in 30 years by the Earthquake Research Committee of Japan. The M7+ earthquakes may occur either on the upper surface or intra slab of PSP. The Central Disaster Management Council of Japan estimates the next great M7+ earthquake will cause 11,000 fatalities and 112 trillion yen (1 trillion US$) economic loss at worst case if it occur beneath northern Tokyo bay with M7.3. However, the estimate is based on a source fault model by conventional studies about the PSP geometry. To evaluate seismic hazard due to the great quake we need to clarify the geometry of PSP and also the Pacific palate (PAP) that subducs beneath PSP. We identify those plates with use of seismic tomography and available deep seismic reflection profiling and borehole data in southern Kanto area. We deployed about 300 seismic stations in the greater Tokyo urban region under the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area. We obtain clear P- and S- wave velocity (Vp and Vs) tomograms which show a clear image of PSP and PAP. A depth to the top of PSP, 20 to 30 kilometer beneath northern part of Tokyo bay, is about 10 km shallower than previous estimates based on the distribution of seismicity (Ishida, 1992). This shallower plate geometry changes estimations of strong ground motion for seismic hazards analysis within the Tokyo

  15. Advanced ceramics: evaluation of the ground surface Cerâmicas avançadas: avaliação da superfície polida

    Directory of Open Access Journals (Sweden)

    E. C. Bianchi

    2003-09-01

    Full Text Available The aim of this research is to evaluate the influence of grinding and cutting conditions on surfaces of advanced ceramics ground with diamond grinding wheels containing a binding resin bond. The quality surface was analyzed by Scanning Electron Microscopy (SEM.O objetivo desta pesquisa é a avaliação da influência das condições de usinagem na superfície gerada de cerâmicas avançadas retificadas com rebolo diamantado com ligante resinóide. A qualidade superficial foi analisada utilizando-se a Microscopia Eletrônica de Varredura (MEV

  16. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  17. Mantle structure beneath Indonesia inferred from high-resolution tomographic imaging

    NARCIS (Netherlands)

    Widiyantoro, Sri; Hilst, R.D. van der

    1997-01-01

    We investigated mantle structure beneath the Indonesian region by means of tomographic inversions of traveltime residuals of direct P and the surface-reflected depth phases pP and pwP. The hypocentres and phase data used in the inversions were derived from the reprocessing of data reported to intern

  18. The ion chemistry of surface and ground waters in the Taklimakan Desert of Tarim Basin, western China

    Institute of Scientific and Technical Information of China (English)

    ZHU BingQi; YANG XiaoPing

    2007-01-01

    The physio-chemical and chemical features of water in natural conditions are controlled by the weathering of bedrocks, local climate, landforms and other geo-environmental parameters. In order to understand the characteristics of water and the origins of the dissolved loads in the rivers and in the ground waters of the Taklimakan Desert, western China, we studied the ions in the water samples collected from rivers and wells. We collected water samples from four rivers (Keriya River, Cele River, Tumiya River and Yulongkashi River) in the southern desert and ground water samples from many parts of the desert. Major cations and anions were measured using ion-chromatograph and titration with HCl. The total dissolved solids (TDS), pH and conductivity were examined on site by a portable multi-parameter analyzer. The data show that the water in the rivers of southern Taklimakan is still of fresh water quality and slight alkalinity, although the TDS is comparatively higher than that of many other rivers of the world. The ground water is fresh to slightly saline, with TDS a little higher than that of river water in the study area. The concentration of ions is slightly different between the four rivers in the southern Taklimakan. However, the chemistries of ground water in all samples are to a large degree controlled by sodium and chloride. The ions in the ground water are concluded to be mainly from dissolving of evaporites, consistent with the dry climate in the region, whereas the ions in the rivers are mainly from rock weathering. Low-level human imprints are recognized in the ground water samples also.

  19. Hydrology of the Beryl-Enterprise area, Escalante Desert, Utah, with emphasis on ground water; With a section on surface water

    Science.gov (United States)

    Mower, Reed W.; Sandberg, George Woodard

    1982-01-01

    An investigation of the water resources of the Beryl-Enterprise area, Escalante Desert, Utah (pl. 1), was made during 1976-78 as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights. Wells were the most important source of water for all purposes in the Beryl-Enterprise area during 1978, but it has not always been so. For nearly a century after the first settlers arrived in about 1860, streams supplied most of the irrigation water and springs supplied much of the water for domestic and stock use. A few shallow wells were dug by the early settlers for domestic and stock water, but the widespread use of ground water did not start until the 1920's when shallow wells were first dug to supply irrigation water. Ground-water withdrawals from wells, principally for irrigation, have increased nearly every year since the 1920's. The quantity withdrawn from wells surpassed that diverted from surface sources during the mid-1940's and was about eight times that amount during the 1970's. As a result, water levels have declined measurably throughout the area resulting in administrative water-rights problems.The primary purpose of this report is to describe the water resources with emphasis on ground water. The surface-water resources are evaluated only as they pertain to the understanding of the ground-water resources. A secondary purpose is to discuss the extent and effects of the development of ground water in order to provide the hydrologic information needed for the orderly and optimum development of the resource and for the effective administration and adjudication of water rights in the area. The hydrologic data on which this report is based are given in a companion report by Mower (1981).

  20. Climate variability effects on urban recharge beneath low impact development

    Science.gov (United States)

    Newcomer, M. E.; Gurdak, J. J.

    2012-12-01

    Groundwater resources in urban and coastal environments are highly vulnerable to human pressures and climate variability and change, and many communities face water shortages and need to find alternative water supplies. Therefore, understanding how low impact development (LID) site planning and integrated/best management practices (BMPs) affect recharge rates and volumes is important because of the increasing use of LID and BMP to reduce stormwater runoff and improve surface-water quality. Often considered a secondary management benefit, many BMPs may also enhance recharge to local aquifers; however these hypothesized benefits have not been thoroughly tested or quantified. In this study, we quantify stormwater capture and recharge enhancement beneath a BMP infiltration trench of the LID research network at San Francisco State University, San Francisco, California. Stormwater capture and retention was analyzed using the SCS TR-55 curve number method and in-situ infiltration rates to assess LID storage. Recharge was quantified using vadose zone monitoring equipment, a detailed water budget analysis, and a Hydrus-2D model. Additionally, the effects of historical and predicted future precipitation on recharge rates were examined using precipitation from the Geophysical Fluid Dynamic Laboratory (GFDL) A1F1 climate scenario. Observed recharge rates beneath the infiltration trench range from 1,600 to 3,700 mm/year and are an order of magnitude greater than recharge beneath an irrigated grass lawn and a natural setting. The Hydrus-2D model results indicate increased recharge under the GFDL A1F1 scenario compared with historical and GFDL modeled 20th century rates because of the higher frequency of large precipitation events that induce runoff into the infiltration trench. However, under a simulated A1F1 El Niño year, recharge calculated by a water budget does not increase compared with current El Niño recharge rates. In comparison, simulated recharge rates were

  1. A large 3D physical model: a tool to investigate the consequences of ground movements on the surface structures

    Directory of Open Access Journals (Sweden)

    Hor B.

    2010-06-01

    Full Text Available Soil subsidence of various extend and amplitude can result from the failure of underground cavities, whether natural (for example caused by the dissolution of rocks by underground water flow or man-made (such as mines. The impact of the ground movements on existing structures (houses, buildings, bridges, etc… is generally dramatic. A large small-scale physical model is developed in order to improve our understanding of the behaviour of the building subjected to ground subsidence or the collapse of cavities. We focus on the soil-structure interaction and on the mitigation techniques allowing reducing the vulnerability of the buildings (structures.

  2. Subglacial Sediment Deformation: An Experiment Beneath Engabreen, Norway

    Science.gov (United States)

    Fischer, U. H.; Iverson, N. R.; Hooyer, T. S.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    A detailed study of sediment deformation processes was carried out beneath Engabreen, Norway, by taking advantage of unique access to the bed of the glacier beneath 230 m of temperate ice via the Svartisen Subglacial Laboratory. One of the strengths of this novel approach is that many interpretive limitations caused by un- certainties inherent in similarly motivated borehole investigations are eliminated. A trough (approx. 2 m x 1.5 m x 0.4 m deep) was blasted in the rock bed and filled with sediment (75 per cent sand and gravel, 20 per cent silt, 5 per cent clay). Instruments were placed in the sediment to record shear deformation, dilation and contraction, total normal stress, and pore-water pressure. Pore pressure was manipulated by feeding wa- ter to the base of the sediment with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. After irregular deformation during closure of ice on the sed- iment, shear deformation and volume change stopped, and total normal stress became constant at 2.1 MPa. Pump tests conducted subsequently, which lasted several hours, induced pore-water pressures > 70 per cent of the total normal stress and resulted in shear deformation over most of the sediment thickness with attendant dilation. Ice sep- arated from the sediment when effective pressure was lowest, and shear deformation stopped. Velocity profiles averaged over the duration of pump tests indicate that rates of shear strain increase upward toward the glacier sole.

  3. Full-wave modelling of ground-penetrating radars: antenna mutual coupling phenomena and sub-surface scattering processes

    NARCIS (Netherlands)

    Caratelli, D.; Yarovoy, A.

    2011-01-01

    Ground-penetrating radar (GPR) technology finds applications in many areas such as geophysical prospecting, archaeology, civil engineering, environmental engineering, and defence applications as a non-invasive sensing tool [3], [6], [18]. One key component in any GPR system is the receiver/transmitt

  4. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange.

    Science.gov (United States)

    Alamdar, Ambreen; Syed, Jabir Hussain; Malik, Riffat Naseem; Katsoyiannis, Athanasios; Liu, Junwen; Li, Jun; Zhang, Gan; Jones, Kevin C

    2014-02-01

    This study was conducted to examine organochlorine pesticides (OCPs) contamination levels in the surface soil and air samples together with air-soil exchange fluxes at an obsolete pesticide dumping ground and the associated areas from Hyderabad City, Pakistan. Among all the sampling sites, concentrations of OCPs in the soil and air samples were found highest in obsolete pesticide dumping ground, whereas dominant contaminants were dichlorodiphenyltrichloroethane (DDTs) (soil: 77-212,200 ng g(-1); air: 90,700 pg m(-3)) and hexachlorocyclohexane (HCHs) (soil: 43-4,090 ng g(-1); air: 97,400 pg m(-3)) followed by chlordane, heptachlor and hexachlorobenzene (HCB). OCPs diagnostic indicative ratios reflect historical use as well as fresh input in the study area. Moreover, the air and soil fugacity ratios (0.9-1.0) at the dumping ground reflecting a tendency towards net volatilization of OCPs, while at the other sampling sites, the fugacity ratios indicate in some cases deposition and in other cases volatilization. Elevated concentrations of DDTs and HCHs at pesticide dumping ground and its surroundings pose potential exposure risk to biological organisms, to the safety of agricultural products and to the human health. Our study thus emphasizes the need of spatio-temporal monitoring of OCPs at local and regional scale to assess and remediate the future adverse implications.

  5. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan

    2015-09-18

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  6. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Khan Zaib Jadoon

    2015-09-01

    Full Text Available We tested an off-ground ground-penetrating radar (GPR system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  7. Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface.

    Science.gov (United States)

    Ishizuka, Masahide; Mikami, Masao; Tanaka, Taichu Y; Igarashi, Yasuhito; Kita, Kazuyuki; Yamada, Yutaka; Yoshida, Naohiro; Toyoda, Sakae; Satou, Yukihiko; Kinase, Takeshi; Ninomiya, Kazuhiko; Shinohara, Atsushi

    2017-01-01

    A size-resolved, one-dimensional resuspension scheme for soil particles from the ground surface is proposed to evaluate the concentration of radioactivity in the atmosphere due to the secondary emission of radioactive material. The particle size distributions of radioactive particles at a sampling point were measured and compared with the results evaluated by the scheme using four different soil textures: sand, loamy sand, sandy loam, and silty loam. For sandy loam and silty loam, the results were in good agreement with the size-resolved atmospheric radioactivity concentrations observed at a school ground in Tsushima District, Namie Town, Fukushima, which was heavily contaminated after the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Though various assumptions were incorporated into both the scheme and evaluation conditions, this study shows that the proposed scheme can be applied to evaluate secondary emissions caused by aeolian resuspension of radioactive materials associated with mineral dust particles from the ground surface. The results underscore the importance of taking soil texture into account when evaluating the concentrations of resuspended, size-resolved atmospheric radioactivity.

  8. Surface and sub-surface anatomy of the landscape: integrating Unmanned Aerial Vehicle Structure from Motion (UAV-SfM) and Ground Penetrating Radar (GRP) to investigate sedimentary features in the field. - an example from NW Australia

    Science.gov (United States)

    Callow, Nik; Leopold, Matthias; May, Simon Matthias

    2015-04-01

    Geomorphology is confronted by the challenge of reconstructing landscape features at appropriate scales, resolution and accuracy, that allows meaningful analysis of environmental processes and their implications. Field geomorphology offers a discrete snapshot (i.e. one or two field campaigns) to reconstruct how features have changed, evolved or responded over time. We explore the application of an emerging photogrammetry technique called Structure-from-Motion (SfM), which uses multiple photographs of the same feature (but taken at different locations) to create high-accuracy three-dimensional models of surface of sedimentary fans formed by extreme wave events. This approach is complimented by investigation of the sub-surface morphology using Ground Penetrating Radar (GPR). Using an UAV "octocopter", we captured 1208 photos with a DSLR camera (Canon EoS-M) at the height of 50m with a ground pixel resolution of 9mm, above a cyclone wash-over fan in the Exmouth Gulf (Western Australia) that measured about 500m inland by 300m wide. Based on 38 ground control point targets (with between 4 and 45 individual photographs per target) the SfM surface had an absolute total (XYZ) accuracy of 51mm (39mm X, 29mm Y and 14mm Y), based on RTK-DGPS surveying from a local ground reference station (with an absolute AUSPOS accuracy of 57mm X, 6mm Y, 50mm Z to AHD) and an overall relative point accuracy of 7mm. A sparse point cloud of over 5.5 million data points was generated using only points with a reconstruction accuracy of RGB colour of each XYZ pixel) using K-Means clustering within Python. The output was then manually classified into ground and non-ground points, and the geostatistical analyst functionality of ArcGIS used to produce a final bare-earth DEM. This approach has allowed the study team to economically collect an unprecedented high-resolution and accuracy topographic model of this feature to compliment on-ground sediment, geophysics and dating work to analyse the

  9. Contribution of ground surface altitude difference to thermal anomaly detection using satellite images: Application to volcanic/geothermal complexes in the Andes of Central Chile

    Science.gov (United States)

    Gutiérrez, Francisco J.; Lemus, Martín; Parada, Miguel A.; Benavente, Oscar M.; Aguilera, Felipe A.

    2012-09-01

    Detection of thermal anomalies in volcanic-geothermal areas using remote sensing methodologies requires the subtraction of temperatures, not provided by geothermal manifestations (e.g. hot springs, fumaroles, active craters), from satellite image kinetic temperature, which is assumed to correspond to the ground surface temperature. Temperatures that have been subtracted in current models include those derived from the atmospheric transmittance, reflectance of the Earth's surface (albedo), topography effect, thermal inertia and geographic position effect. We propose a model that includes a new parameter (K) that accounts for the variation of temperature with ground surface altitude difference in areas where steep relief exists. The proposed model was developed and applied, using ASTER satellite images, in two Andean volcanic/geothermal complexes (Descabezado Grande-Cerro Azul Volcanic Complex and Planchón-Peteroa-Azufre Volcanic Complex) where field data of atmosphere and ground surface temperature as well as radiation for albedo calibration were obtained in 10 selected sites. The study area was divided into three zones (Northern, Central and Southern zones) where the thermal anomalies were obtained independently. K value calculated for night images of the three zones are better constrained and resulted to be very similar to the Environmental Lapse Rate (ELR) determined for a stable atmosphere (ELR > 7 °C/km). Using the proposed model, numerous thermal anomalies in areas of ≥ 90 m × 90 m were identified that were successfully cross-checked in the field. Night images provide more reliable information for thermal anomaly detection than day images because they record higher temperature contrast between geothermal areas and its surroundings and correspond to more stable atmospheric condition at the time of image acquisition.

  10. Life beneath the surface of the central Texan Balcones Escarpment: genus Anillinus Casey, 1918 (Coleoptera, Carabidae, Bembidiini): new species, a key to the Texas species, and notes about their way of life and evolution

    Science.gov (United States)

    Sokolov, Igor M.; Reddell, James R.; Kavanaugh, David H.

    2014-01-01

    Abstract The Texas fauna of the genus Anillinus Casey, 1918 includes three previously described species (A. affabilis (Brues), 1902, A. depressus (Jeannel), 1963 and A. sinuatus (Jeannel), 1963) and four new species here described: A. acutipennis Sokolov & Reddell, sp. n. (type locality: Fort Hood area, Bell County, Texas); A. comalensis Sokolov & Kavanaugh, sp. n. (type locality: 7 miles W of New Braunfels, Comal County, Texas); A. forthoodensis Sokolov & Reddell, sp. n. (type locality: Fort Hood area, Bell County, Texas); A. wisemanensis Sokolov & Kavanaugh, sp. n. (type locality: Wiseman Sink, Hays County, Texas). A key for identification of adults of these species is provided. The fauna includes both soil- and cave-inhabiting species restricted to the Balcones Fault Zone and Lampasas Cut Plain and adjacent areas underlain by the Edwards-Trinity Aquifer. Based on morphological and distributional data, we hypothesize that four lineages of endogean Anillinus species extended their geographical ranges from a source area in the Ouachita-Ozark Mountains to the Balconian region in central Texas. There the cavernous Edwards-Trinity aquifer system provided an excellent refugium as the regional climate in the late Tertiary and early Quaternary became increasingly drier, rendering life at the surface nearly impossible for small, litter-inhabiting arthropods. Isolated within the Edwards-Trinity aquifer system, these anilline lineages subsequently differentiated, accounting for the currently known diversity. The paucity of specimens and difficulty in collecting them suggest that additional undiscovered species remain to be found in the region. PMID:25061356

  11. Life beneath the surface of the central Texan Balcones Escarpment: genus Anillinus Casey, 1918 (Coleoptera, Carabidae, Bembidiini: new species, a key to the Texas species, and notes about their way of life and evolution

    Directory of Open Access Journals (Sweden)

    Igor Sokolov

    2014-06-01

    Full Text Available The Texas fauna of the genus Anillinus Casey, 1918 includes three previously described species (A. affabilis (Brues, 1902, A. depressus (Jeannel, 1963 and A. sinuatus (Jeannel, 1963 and four new species here described: A. acutipennis Sokolov & Reddell sp. n. (type locality: Fort Hood area, Bell County, Texas; A. comalensis Sokolov & Kavanaugh sp. n. (type locality: 7 miles W of New Braunfels, Comal County, Texas; A. forthoodensis Sokolov & Reddell sp. n. (type locality: Fort Hood area, Bell County, Texas; A. wisemanensis Sokolov & Kavanaugh sp. n. (type locality: Wiseman Sink, Hays County, Texas. A key for identification of adults of these species is provided. The fauna includes both soil- and cave-inhabiting species restricted to the Balcones Fault Zone and Lampasas Cut Plain and adjacent areas underlain by the Edwards-Trinity Aquifer. Based on morphological and distributional data, we hypothesize that four lineages of endogean Anillinus species extended their geographical ranges from a source area in the Ouachita-Ozark Mountains to the Balconian region in central Texas. There the cavernous Edwards-Trinity aquifer system provided an excellent refugium as the regional climate in the late Tertiary and early Quaternary became increasingly drier, rendering life at the surface nearly impossible for small, litter-inhabiting arthropods. Isolated within the Edwards-Trinity aquifer system, these anilline lineages subsequently differentiated, accounting for the currently known diversity. The paucity of specimens and difficulty in collecting them suggest that additional undiscovered species remain to be found in the region.

  12. Ground tests with prototype of CeBr3 active gamma ray spectrometer proposed for future venus surface missions

    Science.gov (United States)

    Litvak, M. L.; Sanin, A. B.; Golovin, D. V.; Jun, I.; Mitrofanov, I. G.; Shvetsov, V. N.; Timoshenko, G. N.; Vostrukhin, A. A.

    2017-03-01

    The results of a series of ground tests with a prototype of an active gamma-ray spectrometer based on a new generation of scintillation crystal (CeBr3) are presented together with a consideration to its applicability to future Venus landing missions. We evaluated the instrument's capability to distinguish the subsurface elemental composition of primary rock forming elements such as O, Na, Mg, Al, Si, K and Fe. Our study uses heritage from previous ground and field tests and applies to the analysis of gamma lines from activation reaction products generated by a pulsed neutron generator. We have estimated that the expected accuracies achieved in this approach could be as high as 1-10% for the particular chemical element being studied.

  13. Algae metabolism and organic carbon in sediments determining arsenic mobilisation in ground- and surface water. A field study in Doñana National Park, Spain.

    Science.gov (United States)

    Kohfahl, Claus; Navarro, Daniel Sánchez-Rodas; Mendoza, Jorge Armando; Vadillo, Iñaki; Giménez-Forcada, Elena

    2016-02-15

    A study has been performed to explore the origin, spatiotemporal behaviour and mobilisation mechanism of the elevated arsenic (As) concentrations found in ground water and drinking ponds of the Doñana National Park, Southern Spain. At a larger scale, 13 piezometers and surface water samples of about 50 artificial drinking ponds and freshwater lagoons throughout the National Park were collected and analysed for major ions, metals and trace elements. At a smaller scale, 5 locations were equipped with piezometers and groundwater was sampled up to 4 times for ambient parameters, major ions, metals, trace elements and iron (Fe) speciation. As was analysed for inorganic and organic speciation. Undisturbed sediment samples were analysed for physical parameters, mineralogy, geochemistry as well as As species. Sediment analyses yielded total As between 0.1 and 18 mg/kg and are not correlated with As concentration in water. Results of the surface- and groundwater sampling revealed elevated concentration of As up to 302 μg/L within a restricted area of the National Park. Results of groundwater sampling reveals strong correlation of As with Fe(2+) pointing to As mobilisation due to reductive dissolution of hydroferric oxides (HFO) in areas of locally elevated amounts of organic matter within the sediments. High As concentrations in surface water ponds are correlated with elevated alkalinity and pH attributed to algae metabolism, leading to As desorption from HFO. The algae metabolism is responsible for the presence of methylated arsenic species in surface water, in contrast to ground water in which only inorganic As species was found. Temporal variations in surface water and groundwater are also related to changes in pH and alkalinity as a result of enhanced algae metabolism in surface water or related to changes in the redox level in the case of groundwater.

  14. Constraints on the anisotropic contributions to velocity discontinuities at ˜60 km depth beneath the Pacific

    Science.gov (United States)

    Rychert, Catherine A.; Harmon, Nicholas

    2017-08-01

    Strong, sharp, negative seismic discontinuities, velocity decreases with depth, are observed beneath the Pacific seafloor at ˜60 km depth. It has been suggested that these are caused by an increase in radial anisotropy with depth, which occurs in global surface wave models. Here we test this hypothesis in two ways. We evaluate whether an increase in surface wave radial anisotropy with depth is robust with synthetic resolution tests. We do this by fitting an example surface wave data set near the East Pacific Rise. We also estimate the apparent isotropic seismic velocity discontinuities that could be caused by changes in radial anisotropy in S-to-P and P-to-S receiver functions and SS precursors using synthetic seismograms. We test one model where radial anisotropy is caused by olivine alignment and one model where it is caused by compositional layering. The result of our surface wave inversion suggests strong shallow azimuthal anisotropy beneath 0-10 Ma seafloor, which would also have a radial anisotropy signature. An increase in radial anisotropy with depth at 60 km depth is not well-resolved in surface wave models, and could be artificially observed. Shallow isotropy underlain by strong radial anisotropy could explain moderate apparent velocity drops (effect is diminished if strong anisotropy also exists at 0-60 km depth as suggested by surface waves. Overall, an increase in radial anisotropy with depth may not exist at 60 km beneath the oceans and does not explain the scattered wave observations.

  15. Effect of liquid municipal biosolid application method on tile and ground water quality.

    Science.gov (United States)

    Lapen, D R; Topp, E; Edwards, M; Sabourin, L; Curnoe, W; Gottschall, N; Bolton, P; Rahman, S; Ball-Coelho, B; Payne, M; Kleywegt, S; McLaughlin, N

    2008-01-01

    This study examined bacteria and nutrient quality in tile drainage and shallow ground water resulting from a fall land application of liquid municipal biosolids (LMB), at field application rates of 93,500 L ha(-1), to silt-clay loam agricultural field plots using two different land application approaches. The land application methods were a one-pass AerWay SSD approach (A), and surface spreading plus subsequent incorporation (SS). For both treatments, it took between 3 and 39 min for LMB to reach tile drains after land application. The A treatment significantly (p Kjeldahl N (TKN), NH(4)-N, Total P (TP), PO(4)-P, E. coli., and Clostridium perfringens. E. coli contamination resulting from application occurred to at least 2.0-m depth in ground water, but was more notable in ground water immediately beneath tile depth (1.2 m). Treatment ground water concentrations of selected nutrients and bacteria for the study period ( approximately 46 d) at 1.2-m depth were significantly higher in the treatment plots, relative to control plots. The TKN and TP ground water concentrations at 1.2-m depth were significantly (p 0.1) treatment differences for the bacteria. For the macroporous field conditions observed, pre-tillage by equipment such as the AerWay SSD, will reduce LMB-induced tile and shallow ground water contamination compared to surface spreading over non-tilled soil, followed by incorporation.

  16. Anatomy of a meltwater drainage system beneath the ancestral East Antarctic ice sheet

    Science.gov (United States)

    Simkins, Lauren M.; Anderson, John B.; Greenwood, Sarah L.; Gonnermann, Helge M.; Prothro, Lindsay O.; Halberstadt, Anna Ruth W.; Stearns, Leigh A.; Pollard, David; Deconto, Robert M.

    2017-09-01

    Subglacial hydrology is critical to understand the behaviour of ice sheets, yet active meltwater drainage beneath contemporary ice sheets is rarely accessible to direct observation. Using geophysical and sedimentological data from the deglaciated western Ross Sea, we identify a palaeo-subglacial hydrological system active beneath an area formerly covered by the East Antarctic ice sheet. A long channel network repeatedly delivered meltwater to an ice stream grounding line and was a persistent pathway for episodic meltwater drainage events. Embayments within grounding-line landforms coincide with the location of subglacial channels, marking reduced sedimentation and restricted landform growth. Consequently, channelized drainage at the grounding line influenced the degree to which these landforms could provide stability feedbacks to the ice stream. The channel network was connected to upstream subglacial lakes in an area of geologically recent rifting and volcanism, where elevated heat flux would have produced sufficient basal melting to fill the lakes over decades to several centuries; this timescale is consistent with our estimates of the frequency of drainage events at the retreating grounding line. Based on these data, we hypothesize that ice stream dynamics in this region were sensitive to the underlying hydrological system.

  17. Microbial life beneath a high arctic glacier.

    Science.gov (United States)

    Skidmore, M L; Foght, J M; Sharp, M J

    2000-08-01

    The debris-rich basal ice layers of a high Arctic glacier were shown to contain metabolically diverse microbes that could be cultured oligotrophically at low temperatures (0.3 to 4 degrees C). These organisms included aerobic chemoheterotrophs and anaerobic nitrate reducers, sulfate reducers, and methanogens. Colonies purified from subglacial samples at 4 degrees C appeared to be predominantly psychrophilic. Aerobic chemoheterotrophs were metabolically active in unfrozen basal sediments when they were cultured at 0.3 degrees C in the dark (to simulate nearly in situ conditions), producing (14)CO(2) from radiolabeled sodium acetate with minimal organic amendment (> or =38 microM C). In contrast, no activity was observed when samples were cultured at subfreezing temperatures (glacier provides a viable habitat for life and that microbes may be widespread where the basal ice is temperate and water is present at the base of the glacier and where organic carbon from glacially overridden soils is present. Our observations raise the possibility that in situ microbial production of CO(2) and CH(4) beneath ice masses (e.g., the Northern Hemisphere ice sheets) is an important factor in carbon cycling during glacial periods. Moreover, this terrestrial environment may provide a model for viable habitats for life on Mars, since similar conditions may exist or may have existed in the basal sediments beneath the Martian north polar ice cap.

  18. Rotational, steric, and coriolis effects on the F + HCl --> HF + Cl reaction on the 1(2)A' ground-state surface.

    Science.gov (United States)

    Defazio, Paolo; Petrongolo, Carlo

    2009-04-23

    We present a quantum study of the reaction F((2)P) + HCl(X(1)Sigma(+)) --> HF(X(1)Sigma(+)) + Cl((2)P) on a recently computed 1(2)A' ground-state surface, considering HCl in the ground vibrational state, with up to 16 rotational quanta j(0). We employ the real wavepacket (WP) and flux methods for calculating coupled-channel (CC) and centrifugal-sudden (CS) initial-state probabilities up to J = 80 and 140, respectively. We also report CC and CS ground-state cross sections and CS excited-state cross sections and discuss the dynamics analyzing WP time evolutions. The HCl rotation highly enhances reaction probabilities and cross sections, as it was previously found for probabilities at J Coriolis couplings favor instead the energy flow from the HCl rotation to the F-H---Cl reactive vibration. WP snapshots confirm and explain the HCl rotational effects, because the density into the nearly collinear F-H---Cl product channel increases remarkably with j(0). Finally, our CS rate constant is underestimated with respect to the experiment, pointing out the need of more accurate multisurface and CC calculations.

  19. Use of borehole and surface geophysics to investigate ground-water quality near a road-deicing salt-storage facility, Valparaiso, Indiana

    Science.gov (United States)

    Risch, M.R.; Robinson, B.A.

    2001-01-01

    Borehole and surface geophysics were used to investigate ground-water quality affected by a road-deicing salt-storage facility located near a public water-supply well field. From 1994 through 1998, borehole geophysical logs were made in an existing network of monitoring wells completed near the bottom of a thick sand aquifer. Logs of natural gamma activity indicated a uniform and negligible contribution of clay to the electromagnetic conductivity of the aquifer so that the logs of electromagnetic conductivity primarily measured the amount of dissolved solids in the ground water near the wells. Electromagneticconductivity data indicated the presence of a saltwater plume near the bottom of the aquifer. Increases in electromagnetic conductivity, observed from sequential logging of wells, indicated the saltwater plume had moved north about 60 to 100 feet per year between 1994 and 1998. These rates were consistent with estimates of horizontal ground-water flow based on velocity calculations made with hydrologic data from the study area.

  20. Immunolocalization of NGF and its receptors in ovarian surface epithelium of the wild ground squirrel during the breeding and nonbreeding seasons.

    Science.gov (United States)

    Bao, L; Li, Q; Liu, Y; Li, B; Sheng, X; Han, Y; Weng, Q

    2014-05-09

    The ovarian surface epithelium (OSE) plays an important role in normal ovarian physiology. During each reproductive cycle, the OSE takes part in the cyclical ovulatory ruptures and repair. The aim of this study was to investigate the immunolocalization of nerve growth factor (NGF) and its receptors, tyrosine kinase A (TrkA) and p75, in the OSE cells of the wild ground squirrels during the breeding and nonbreeding seasons. There were marked variations in ovarian weight and size between the breeding and the nonbreeding seasons. Histologically, cuboidal cells and squamous cells were identified in the OSE of both seasons. Yet, stronger immunostaining of NGF, TrkA and p75 were observed in cuboidal cells and squamous cells in the breeding season as compared to the nonbreeding season. In addition, plasma gonadotropin concentrations were higher in the breeding season than in the nonbreeding season, suggesting that the expression patterns of NGF, TrkA and p75 in the OSE were correlated with changes in plasma gonadotropins. These findings suggested that NGF and its receptor TrkA and p75 may be involved in the regulation of seasonal changes in the OSE of wild ground squirrel.in the OSE of wild ground squirrel.

  1. Imaging magma plumbing beneath Askja volcano, Iceland

    Science.gov (United States)

    Greenfield, Tim; White, Robert S.

    2015-04-01

    Volcanoes during repose periods are not commonly monitored by dense instrumentation networks and so activity during periods of unrest is difficult to put in context. We have operated a dense seismic network of 3-component, broadband instruments around Askja, a large central volcano in the Northern Volcanic Zone, Iceland, since 2006. Askja last erupted in 1961, with a relatively small basaltic lava flow. Since 1975 the central caldera has been subsiding and there has been no indication of volcanic activity. Despite this, Askja has been one of the more seismically active volcanoes in Iceland. The majority of these events are due to an extensive geothermal area within the caldera and tectonically induced earthquakes to the northeast which are not related to the magma plumbing system. More intriguing are the less numerous deeper earthquakes at 12-24km depth, situated in three distinct areas within the volcanic system. These earthquakes often show a frequency content which is lower than the shallower activity, but they still show strong P and S wave arrivals indicative of brittle failure, despite their location being well below the brittle-ductile boundary, which, in Askja is ~7km bsl. These earthquakes indicate the presence of melt moving or degassing at depth while the volcano is not inflating, as only high strain rates or increased pore fluid pressures would cause brittle fracture in what is normally an aseismic region in the ductile zone. The lower frequency content must be the result of a slower source time function as earthquakes which are both high frequency and low frequency come from the same cluster, thereby discounting a highly attenuating lower crust. To image the plumbing system beneath Askja, local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. Travel-time tables were created using a finite difference technique and the residuals were used to solve simultaneously for both the earthquake locations

  2. Simultaneous investigation of blast induced ground vibration and airblast effects on safety level of structures and human in surface blasting

    Institute of Scientific and Technical Information of China (English)

    Faramarzi Farhad⇑; Ebrahimi Farsangi Mohammad Ali; Mansouri Hamid

    2014-01-01

    The significance of studying, monitoring and predicting blast induced vibration and noise level in mining and civil activities is justified in the capability of imposing damages, sense of uncertainty due to negative psychological impacts on involved personnel and also judicial complaints of local inhabitants in the nearby area. This paper presents achieved results during an investigation carried out at Sungun Copper Mine, Iran. Besides, the research also studied the significance of blast induced ground vibration and air-blast on safety aspects of nearby structures, potential risks, frequency analysis, and human response. According to the United States Bureau of Mines (USBM) standard, the attenuation equations were devel-oped using field records. A general frequency analysis and risk evaluation revealed that:94%of generated frequencies are less than 14 Hz which is within the natural frequency of structures that increases risk of damage. At the end, studies of human response showed destructive effects of the phenomena by ranging between 2.54 and 25.40 mm/s for ground vibrations and by the average value of 110 dB for noise levels which could increase sense of uncertainty among involved employees.

  3. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry

    KAUST Repository

    Pecher, Lisa

    2017-09-15

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained.

  4. Evaluation of ground grain versus pre- and post-pellet whole grain additions to poultry diets via a response surface design.

    Science.gov (United States)

    Moss, Amy F; Chrystal, Peter V; Truong, Ha H; Selle, Peter H; Liu, Sonia Yun

    2017-09-12

    1. The objective of this study was to compare the effects of pre- and post-pellet whole grain wheat additions to diets on growth performance, gizzard and pancreas development, nutrient utilisation and starch and protein (N) digestibility coefficients in broiler chickens via an equilateral triangle response surface design. 2. The three apical treatments of the equilateral triangle comprised (1A) a standard diet containing 600 g/kg ground wheat, (2B) the same diet containing 600 g/kg pre-pellet whole wheat and (3C) the same diet containing 300 g/kg ground wheat and 300 g/kg post-pellet whole wheat. Seven blends of the three apical diets were located within the triangle to complete the design and a total of 360 male Ross 308 chicks were offered the ten experimental diets from 7 to 28 d post-hatch. Model prediction and response surface plots were generated with R 3.0.3 software. 3. The most efficient FCR of 1.466 was observed in birds offered an almost equal mixture of the pre- and post-pellet whole grain apical dietary treatments, which corresponded to 172 g/kg ground grain, 256 g/kg pre-pellet whole grain, 172 g/kg post-pellet whole grain in a diet containing 600 g/kg wheat. 4. The most efficient energy utilisation (ME:GE ratio of 0.766) was observed in birds offered a blend of the ground grain and pre-pellet whole grain apical dietary treatments which corresponded to a mixture of 384 g/kg pre-pellet whole grain and 216 g/kg ground grain. 5. Pre-pellet whole grain feeding generated the most pronounced responses in increased relative gizzard contents, reduced gizzard pH and increased relative pancreas weights. Consideration is given to the likely differences between pre- and post-pellet whole grain feeding.

  5. Identifying the hotspots of non-renewable water use using HiGW-MAT: A new land surface model coupled with human interventions and ground water reservoir

    Science.gov (United States)

    Oki, T.; Pokhrel, Y. N.; Yeh, P. J.; Koirala, S.; Kanae, S.; Hanasaki, N.

    2011-12-01

    The real hydrological cycles on the Earth are not natural anymore. Global hydrological model simulations of the water cycle and available water resources should have an ability to consider the effects of human interventions on hydrological cycles. Anthropogenic activity modules (Hanasaki et al., 2008), such as reservoir operation, crop growth and water demand in crop lands, and environmental flows, were incorporated into a land surface model called MATSIRO (Takata et al., 2003), to form a new model, MAT-HI (Pokhrel et al., 2011). Total terrestrial water storages (TWS) in large river basins were estimated using the new model by off-line simulation, and compared with the TWS observed by GRACE for 2002-2007. The results showed MAT-HI has an advantage estimating TWS particularly in arid river basins compared with H08 (Hanasaki et al., 2008). MAT-HI was further coupled with a module representing the ground water level fluctuations (Yeh et al., 2005), and consists a new land surface scheme HiGW-MAT (Human Intervention and Ground Water coupled MATSIRO). HiGW-MAT is also associated with a scheme tracing the origin and flow path with the consideration on the sources of water withdrawal from stream flow, medium-size reservoirs and nonrenewable groundwater in addition to precipitation to croplands enabled the assessment of the origin of water producing major crops as Hanasaki et al. (2010). Areas highly dependent on nonrenewable groundwater are detected in the Pakistan, Bangladesh, western part of India, north and western parts of China, some regions in the Arabian Peninsula and the western part of the United States through Mexico. Cumulative nonrenewable groundwater withdrawals estimated by the model are corresponding fairly well with the country statistics of total groundwater withdrawals. Ground water table depletions in large aquifers in US estimated by HiGW-MAT were compared with in-situ observational data, and the correspondences are very good. Mean global exploitation

  6. Geochemical processes in ground water resulting from surface mining of coal at the Big Sky and West Decker Mine areas, southeastern Montana

    Science.gov (United States)

    Clark, D.W.

    1995-01-01

    A potential hydrologic effect of surface mining of coal in southeastern Montana is a change in the quality of ground water. Dissolved-solids concen- trations in water in spoils aquifers generally are larger than concentrations in water in the coal aquifers they replaced; however, laboratory experiments have indicated that concentrations can decrease if ground water flows from coal-mine spoils to coal. This study was conducted to determine if decreases in concentrations occur onsite and, if so, which geochemical processes caused the decreases. Solid-phase core samples of spoils, unmined over- burden, and coal, and ground-water samples were collected from 16 observation wells at two mine areas. In the Big Sky Mine area, changes in ground- water chemistry along a flow path from an upgradient coal aquifer to a spoils aquifer probably were a result of dedolomitization. Dissolved-solids concentrations were unchanged as water flowed from a spoils aquifer to a downgradient coal aquifer. In the West Decker Mine area, dissolved-solids concentrations apparently decreased from about 4,100 to 2,100 milligrams per liter as water moved along an inferred flow path from a spoils aquifer to a downgradient coal aquifer. Geochemical models were used to analyze changes in water chemistry on the basis of results of solid-phase and aqueous geochemical characteristics. Geochemical processes postulated to result in the apparent decrease in dissolved-solids concentrations along this inferred flow path include bacterial reduction of sulfate, reverse cation exchange within the coal, and precipitation of carbonate and iron-sulfide minerals.

  7. Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States

    Science.gov (United States)

    Webb, R.H.; Leake, S.A.

    2006-01-01

    Riverine riparian vegetation has changed throughout the southwestern United States, prompting concern about losses of habitat and biodiversity. Woody riparian vegetation grows in a variety of geomorphic settings ranging from bedrock-lined channels to perennial streams crossing deep alluvium and is dependent on interaction between ground-water and surface-water resources. Historically, few reaches in Arizona, southern Utah, or eastern California below 1530 m elevation had closed gallery forests of cottonwood and willow; instead, many alluvial reaches that now support riparian gallery forests once had marshy grasslands and most bedrock canyons were essentially barren. Repeat photography using more than 3000 historical images of rivers indicates that riparian vegetation has increased over much of the region. These increases appear to be related to several factors, notably the reduction in beaver populations by trappers in the 19th century, downcutting of arroyos that drained alluvial aquifers between 1880 and 1910, the frequent recurrence of winter floods during discrete periods of the 20th century, an increased growing season, and stable ground-water levels. Reductions in riparian vegetation result from agricultural clearing, excessive ground-water use, complete flow diversion, and impoundment of reservoirs. Elimination of riparian vegetation occurs either where high ground-water use lowers the water table below the rooting depth of riparian species, where base flow is completely diverted, or both. We illustrate regional changes using case histories of the San Pedro and Santa Cruz Rivers, which are adjacent watersheds in southern Arizona with long histories of water development and different trajectories of change in riparian vegetation.

  8. Surface-water, water-quality, and ground-water assessment of the Municipio of Comerio, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Comerio, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System, and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resource data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 13 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land- and water-use conditions. A sanitary quality survey of streams utilized 24 sampling stations to evaluate about 84 miles of stream channels with drainage to or within the municipio of Comerio. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions to evaluate the sanitary quality of streams. Bacteriological analyses indicate that about 27 miles of stream reaches within the municipio of Comerio may have fecal coliform bacteria concentrations above the water-quality goal established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include illegal discharge of sewage to storm-water drains, malfunction of sanitary

  9. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform

  10. Pn anisotropic tomography and mantle dynamics beneath China

    Science.gov (United States)

    Zhou, Zhigang; Lei, Jianshe

    2016-08-01

    We present a new high-resolution Pn anisotropic tomographic model of the uppermost mantle beneath China inferred from 52,061 Pn arrival-time data manually picked from seismograms recorded at provincial seismic stations in China and temporary stations in Tibet and the Tienshan orogenic belt. Significant features well correlated with surface geology are revealed and provide new insights into the deep dynamics beneath China. Prominent high Pn velocities are visible under the stable cratonic blocks (e.g., the Tarim, Junngar, and Sichuan basins, and the Ordos block), whereas remarkable low Pn velocities are observed in the tectonically active areas (e.g., Pamir, the Tienshan orogenic belt, central Tibet and the Qilian fold belt). A distinct N-S trending low Pn velocity zone around 86°E is revealed under the rift running from the Himalayan block through the Lhasa block to the Qiangtang block, which indicates the hot material upwelling due to the breaking-off of the subducting Indian slab. Two N-S trending low Pn velocity belts with an approximate N-S Pn fast direction along the faults around the Chuan-Dian diamond block suggest that these faults may serve as channels of mantle flow from Tibet. The fast Pn direction changes from N-S in the north across 27°N to E-W in the south, which may reflect different types of mantle deformation. The anisotropy in the south could be caused by the asthenospheric flow resulted from the eastward subduction of the Indian plate down to the mantle transition zone beneath the Burma arc. Across the Talas-Fergana fault in the Tienshan orogenic belt, an obvious difference in velocity and anisotropy is revealed. To the west, high Pn velocities and an arc-shaped fast Pn direction are observed, implying the Indo-Asian collision, whereas to the east low Pn velocities and a range-parallel Pn fast direction are imaged, reflecting the northward underthrusting of the Tarim lithosphere and the southward underthrusting of the Kazakh lithosphere. In

  11. 3D Imaging of Brittle/Ductile transition of the crust beneath the resurgent calderas

    Science.gov (United States)

    Tizzani, P.; Castaldo, R.; Pepe, S.; Solaro, G.

    2012-04-01

    Rheology is a crucial factor to understand the mechanical behaviour and evolution of the crust in young and tectonically active belts. The aim of this paper is to investigate the rheological properties of the crust beneath resurgent calderas as Long Valley caldera (California USA) and Campi Flegrei (Southern Italy). Through the rheological proprieties of the calderas area, we highlight the driving process that determine the cut off of the local seismicity [K. Ito, 1993]. In this context, we consider the thermal proprieties and mechanical heterogeneity of the crust in order to develop a 3D conductive time dependent thermal model of the upper crust beneath the two calderas. More specifically we integrate geophysical information (gravimetric, seismic and boreholes data) available for the considered area in FEM environment [Manconi A. et al., 2010]. We performed a numerical solution of Fourier equation to carry out an advance optimization of the real measured data. We produce a set of forward models and propose, in order to analyse and solve the statistical problem, the Monte Carlo optimization procedures as Genetic Algorithm [Manconi A. et al., 2009]. In particular we search for the heat production, the volume source distribution and the surface emissivity parameters that providing the best-fit of the geothermal profiles data measured at boreholes, by solving the non stationary heat flow equation (Campanian Ignimbrite eruption about 40 kyr for Campi Flegrei caldera and Bishop tuff eruption about 700 kyr for Long Valley caldera). The performed thermal fields allow us to obtain the rheological stratification of the crust beneath two resurgent calderas; the models suggest that the uprising of a ductile layer which connects the upper mantle to the volcanic feeding system could determine the stress conditions that controlled the distribution of seismicity. In fact, the computed 3D imaging of Brittle/Ductile transition well agrees with the seismic hypocentral distribution

  12. Teaching in West Africa: Dig beneath the Surface

    Science.gov (United States)

    Briam, Carol

    2007-01-01

    In this article, the author shares her experience teaching English to adult learners at the American Cultural Center in Dakar, Senegal, a poor, primarily Muslim country and former French colony in West Africa. Her class was composed of about 30 students, whose age ranged from about 18 to 50. They were mostly men and mostly Senegalese, along with a…

  13. Beneath the Surface: Intelligence Preparation of the Battlespace for Counterterrorism

    Science.gov (United States)

    2004-11-01

    is Pam Hess with United Press International. Could you tell us if you all have actually done anything besides the exercise in 163pref.fm Page xxvi...Comment Removed] Q: General, it’s Pam Hess from UPI again. I’m interested in the vocabulary you’re using. You keep using the word “prosecute.” Is...the operational level. This COG is enabled by their ability to find sanctuary in urban areas like Bilbao and San Sebastian and the ability to maintain

  14. Beneath the Surface: The Unintended Consequences of Information Technology.

    Science.gov (United States)

    Link, Terry

    1999-01-01

    Looks behind the wonders of technology to real and potential losses by using the literature of sociology, education, psychology, philosophy, and semantics. Considers speed, the information glut, cultural amplification, the demise of community, and status, and suggests possible approaches to rethinking information technology. (Author/LRW)

  15. Teaching in West Africa: Dig beneath the Surface

    Science.gov (United States)

    Briam, Carol

    2007-01-01

    In this article, the author shares her experience teaching English to adult learners at the American Cultural Center in Dakar, Senegal, a poor, primarily Muslim country and former French colony in West Africa. Her class was composed of about 30 students, whose age ranged from about 18 to 50. They were mostly men and mostly Senegalese, along with a…

  16. Beneath the surface: killing of fish as a moral problem

    NARCIS (Netherlands)

    Bovenkerk, B.; Braithwaite, V.A.

    2016-01-01

    Are we morally justified in killing fish and if so, for what purposes? We do not focus on the suffering that is done during the killing, but on the question whether death itself is harmful for fish. We need to distinguish two questions; first, can death be considered a harm for fish? And second, if

  17. Dynamical models for sand ripples beneath surface waves

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Chabanol, M.-L.; v. Hecke, M.

    2001-01-01

    We introduce order parameter models for describing the dynamics of sand ripple patterns under oscillatory flow. A crucial ingredient of these models is the mass transport between adjacent ripples, which we obtain from detailed numerical simulations for a range of ripple sizes. Using this mass...... transport function, our models predict the existence of a stable band of wave numbers limited by secondary instabilities. Small ripples coarsen in our models and this process leads to a sharply selected final wave number, in agreement with experimental observations....

  18. Ground surface temperature reconstructions: Using in situ estimates for thermal conductivity acquired with a fiber-optic distributed thermal perturbation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Freifeld, B.M.; Finsterle, S.; Onstott, T.C.; Toole, P.; Pratt, L.M.

    2008-10-10

    We have developed a borehole methodology to estimate formation thermal conductivity in situ with a spatial resolution of one meter. In parallel with a fiber-optic distributed temperature sensor (DTS), a resistance heater is deployed to create a controlled thermal perturbation. The transient thermal data is inverted to estimate the formation's thermal conductivity. We refer to this instrumentation as a Distributed Thermal Perturbation Sensor (DTPS), given the distributed nature of the DTS measurement technology. The DTPS was deployed in permafrost at the High Lake Project Site (67 degrees 22 minutes N, 110 degrees 50 minutes W), Nunavut, Canada. Based on DTPS data, a thermal conductivity profile was estimated along the length of a wellbore. Using the thermal conductivity profile, the baseline geothermal profile was then inverted to estimate a ground surface temperature history (GSTH) for the High Lake region. The GSTH exhibits a 100-year long warming trend, with a present-day ground surface temperature increase of 3.0 {+-} 0.8 C over the long-term average.

  19. Hydrogeology and trichloroethene contamination in the sea-level aquifer beneath the Logistics Center, Fort Lewis, Washington

    Science.gov (United States)

    Dinicola, Richard S.

    2005-01-01

    The U.S. Army disposed of waste trichloroethene (TCE) and other materials in the East Gate Disposal Yard near the Logistics Center on Fort Lewis, Washington, from the 1940s to the early 1970s. As a result, ground water contaminated with primarily TCE extends more than 3 miles downgradient from the East Gate Disposal Yard. The site is underlain by a complex and heterogeneous sequence of glacial and non-glacial deposits that have been broadly categorized into an upper and a lower aquifer (the latter referred to as the sea-level aquifer). TCE contamination was detected in both aquifers. This report describes an investigation by the U.S. Geological Survey (USGS) of the source, migration, and attenuation of TCE in the sea-level aquifer. A refined conceptual model for ground-water flow and contaminant migration into and through the sea-level aquifer was developed in large part from interpretation of environmental tracer data. The tracers used included stable isotopes of oxygen (18O), hydrogen (2H), and carbon (13C); the radioactive hydrogen isotope tritium (3H); common ions and redox-related analytes; chlorofluorocarbons; and sulfur hexafluoride. Tracer and TCE concentrations were determined for samples collected by the USGS from 37 wells and two surface-water sites in American Lake during 1999-2000. Ground-water levels were measured by the USGS in more than 40 wells during 2000-01, and were combined with measurements by the U.S. Army and others to create potentiometric-surface maps. Localized ground-water flow features were identified that are of particular relevance to the migration of TCE in the study area. A ridge of ground water beneath American Lake diverts the flow of TCE-contaminated ground water in the sea-level aquifer to the west around the southern end of the lake. Tracer data provided clear evidence that American Lake is a significant source of recharge to the sea-level aquifer that has created that ridge of ground water. High ground-water altitudes at

  20. Ocean mixing beneath Pine Island Glacier ice shelf, West Antarctica

    Science.gov (United States)

    Kimura, Satoshi; Jenkins, Adrian; Dutrieux, Pierre; Forryan, Alexander; Naveira Garabato, Alberto C.; Firing, Yvonne

    2016-12-01

    Ice shelves around Antarctica are vulnerable to an increase in ocean-driven melting, with the melt rate depending on ocean temperature and the strength of flow inside the ice-shelf cavities. We present measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate, and thermal variance dissipation rate beneath Pine Island Glacier ice shelf, West Antarctica. These measurements were obtained by CTD, ADCP, and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The highest turbulent kinetic energy dissipation rate is found near the grounding line. The thermal variance dissipation rate increases closer to the ice-shelf base, with a maximum value found ˜0.5 m away from the ice. The measurements of turbulent kinetic energy dissipation rate near the ice are used to estimate basal melting of the ice shelf. The dissipation-rate-based melt rate estimates is sensitive to the stability correction parameter in the linear approximation of universal function of the Monin-Obukhov similarity theory for stratified boundary layers. We argue that our estimates of basal melting from dissipation rates are within a range of previous estimates of basal melting.

  1. Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity.

    Science.gov (United States)

    Costard, F; Forget, F; Mangold, N; Peulvast, J P

    2002-01-04

    The observation of small gullies associated with recent surface runoff on Mars has renewed the question of liquid water stability at the surface of Mars. The gullies could be formed by groundwater seepage from underground aquifers; however, observations of gullies originating from isolated peaks and dune crests question this scenario. We show that these landforms may result from the melting of water ice in the top few meters of the martian subsurface at high obliquity. Our conclusions are based on the analogy between the martian gullies and terrestrial debris flows observed in Greenland and numerical simulations that show that above-freezing temperatures can occur at high obliquities in the near surface of Mars, and that such temperatures are only predicted at latitudes and for slope orientations corresponding to where the gullies have been observed on Mars.

  2. Formation of Recent Martian Debris Flows by Melting of Near-Surface Ground Ice at High Obliquity

    Science.gov (United States)

    Costard, F.; Forget, F.; Mangold, N.; Peulvast, J. P.

    2002-01-01

    The observation of small gullies associated with recent surface runoff on Mars has renewed the question of liquid water stability at the surface of Mars. The gullies could be formed by groundwater seepage from underground aquifers; however, observations of gullies originating from isolated peaks and dune crests question this scenario. We show that these landforms may result from the melting of water ice in the top few meters of the martian subsurface at high obliquity. Our conclusions are based on the analogy between the martian gullies and terrestrial debris flows observed in Greenland and numerical simulations that show that above-freezing temperatures can occur at high obliquities in the near surface of Mars, and that such temperatures are only predicted at latitudes and for slope orientations corresponding to where the gullies have been observed on Mars.

  3. Magma heating by decompression-driven crystallization beneath andesite volcanoes.

    Science.gov (United States)

    Blundy, Jon; Cashman, Kathy; Humphreys, Madeleine

    2006-09-01

    Explosive volcanic eruptions are driven by exsolution of H2O-rich vapour from silicic magma. Eruption dynamics involve a complex interplay between nucleation and growth of vapour bubbles and crystallization, generating highly nonlinear variation in the physical properties of magma as it ascends beneath a volcano. This makes explosive volcanism difficult to model and, ultimately, to predict. A key unknown is the temperature variation in magma rising through the sub-volcanic system, as it loses gas and crystallizes en route. Thermodynamic modelling of magma that degasses, but does not crystallize, indicates that both cooling and heating are possible. Hitherto it has not been possible to evaluate such alternatives because of the difficulty of tracking temperature variations in moving magma several kilometres below the surface. Here we extend recent work on glassy melt inclusions trapped in plagioclase crystals to develop a method for tracking pressure-temperature-crystallinity paths in magma beneath two active andesite volcanoes. We use dissolved H2O in melt inclusions to constrain the pressure of H2O at the time an inclusion became sealed, incompatible trace element concentrations to calculate the corresponding magma crystallinity and plagioclase-melt geothermometry to determine the temperature. These data are allied to ilmenite-magnetite geothermometry to show that the temperature of ascending magma increases by up to 100 degrees C, owing to the release of latent heat of crystallization. This heating can account for several common textural features of andesitic magmas, which might otherwise be erroneously attributed to pre-eruptive magma mixing.

  4. Assessing Expected Fractional Damage of Above-ground Buildings from Air-to-surface Weapons based on Indirect Fire Concept

    Directory of Open Access Journals (Sweden)

    Jong Yil Park

    2010-08-01

    Full Text Available For the expected fractional damage of building targets from air-to-surface weapons, the US has used the JMEM/AS method, which is based on the direct-fire concept. However, the damage redistribution assumption in the direct-fire concept could induce serious errors in damage estimation of building targets. In this paper, a method for the expected fractional damage of building targets is proposed based on the indirect-fire concept. From the proposed model, it is shown that the joint munitions effectiveness manuals/air-to-surface (JMEM/AS method is not appropriate for building targets, especially for attacks with multiple aiming points. It is recommended that the indirect-fire concept should be adopted for weaponeering even for air-to-surface weapons. fire concept could induce serious errors in damage estimation of building targets. In this paper, a method for the expected fractional damage of building targets is proposed based on the indirect-fire concept. From the proposed model, it is shown that the JMEM/AS method is not appropriate for building targets, especially for attacks with multiple aiming points. It is recommended that the indirect-fire concept should be adopted for weaponeering even for air-to-surface weapons.Defence Science Journal, 2010, 60(5, pp.491-496, DOI:http://dx.doi.org/10.14429/dsj.60.571

  5. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry.

    Science.gov (United States)

    Pecher, Lisa; Laref, Slimane; Raupach, Marc; Tonner, Ralf Ewald

    2017-09-15

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Can satellite land surface temperature data be used similarly to ground discharge measurements for distributed hydrological model calibration?

    NARCIS (Netherlands)

    Corbari, C.; Mancini, M.; Li, J.; Su, Zhongbo

    2015-01-01

    This study proposes a new methodology for the calibration of distributed hydrological models at basin scale by constraining an internal model variable using satellite data of land surface temperature. The model algorithm solves the system of energy and mass balances in terms of a representative equi

  7. Above- and below-ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization

    NARCIS (Netherlands)

    Wang, Peng; Limpens, Juul; Mommer, Liesje; Ruijven, van Jasper; Nauta, Ake L.; Berendse, Frank; Schaepman-Strub, Gabriela; Blok, Daan; Maximov, Trofim C.; Heijmans, Monique M.P.D.

    2017-01-01

    Climate warming is faster in the Arctic than the global average. Nutrient availability in the tundra soil is expected to increase by climate warming through (i) accelerated nutrient mobilization in the surface soil layers, and (ii) increased thawing depths during the growing season which

  8. Active convection beneath ridges: a new spin

    Science.gov (United States)

    Katz, R. F.

    2009-12-01

    The role of buoyancy-driven, "active" upwelling beneath mid-ocean ridges has been long debated [1,2,3], with the naysayers holding sway in recent years. Recent work on tomographic imaging of the sub-ridge mantle has revealed patterns in velocity variation that seem inconsistent with what we expect of passive upwelling and melting [4]. The irregular distribution, asymmetry, and off-axis locations of slow regions in tomographic results are suggestive of time-dependent convective flow. Using 2D numerical simulations of internally consistent mantle and magmatic flow plus melting/freezing [5,6], I investigate the parametric subspace in which active convection is expected to occur. For low mantle viscosities, interesting symmetry-breaking behavior is predicted. References: [1] Rabinowicz, et al., EPSL, 1984; [2] Buck & Su, GRL, 1989; [3] Scott & Stevenson, JGR, 1989; [4] Toomey et al., Nature, 2007; [5] McKenzie, J.Pet., 1984; [6] Katz, J.Pet., 2008;

  9. Shear shedding of drops and the use of superhydrophobic surfaces in microgravity: PFC and ground based results

    Science.gov (United States)

    Milne, Andrew; Amirfazli, Alidad

    In free fall, the absence of gravity poses many challenges for fluid handling systems. One such example of this is condensers. On earth, the condensed liquid is removed from the tilted condenser plate by gravity forced shedding. In microgravity, proposed solutions include the use of surfaces with gradients in wettability [1], the use of electrowetting [2], and shearing airflow [3]. In this talk, shear shedding results for a variety of surface (hydrophilic to superhydrophobic (extremely water repelling)) will be presented. Surface science and aerodynamics are used to reveal fundamental parameters controlling incipient motion for drops exposed to shearing airflow. It is found that wetting parameters such as contact angle and surface tension are very influential in determining the minimum required air velocity for drop shedding. Based on experimental results for drops of water and hexadecane (0.5-100 l) on PMMA, Teflon, and a superhydrophobic aluminum surface, an exponential function is proposed that relates the critical air velocity for shedding to the ratio of drop base length to projected area. The results for the water systems can be collapsed to a self similar curve by normalization, which also explains results from other researchers. Since shedding from superhydrophobic surfaces (SHS) is seen to be easier compared to other surfaces, the behaviour of SHS is also probed in this talk. SHS have space-based applications to shedding, self cleaning, anti-icing (spacecraft launch/re-entry), anti-fouling, fluid actuation, and decreased fluid friction. The mechanism for SHS is understood to be the existence of an air layer between large portions of the drop and solid. The first concrete visual evidence of this was gained performing a parabolic flight experiment with the ESA. Results of this experi-ment will be discussed, showing the extreme water repelling potential of SHS in microgravity, and demonstrating how the wetting behaviours seen (partial penetration, transition

  10. Formation of recent gullies and debris-flows on Mars by the melting of near-surface ground ice at high obliquity

    Science.gov (United States)

    Forget, F.; Costard, F.; Mangold, N.; Peulvast, J.-P.

    2001-11-01

    The observation of small gullies associated with recent surface run-off on Mars by Mars Global Surveyor has renewed the question of liquid water stability at the surface of Mars. In their initial analyses, Malin and Edgett [1] suggested that the gullies could be formed by groundwater seepage from underground aquifers. However, observations of gullies originating from the top of peaks question this scenario. We show here that these landforms are more likely to result from the melting of liquid water in the first meter of the Martian subsurface at high obliquity. On the one hand, this is suggested by the analogy between the martian gullies and terrestrial debris flows observed in Greenland which are known to result from the thawing of near-surface ground when above-freezing temperatures are reached. On the other hand, numerical simulations show that above-freezing temperatures can occur at high obliquities in the near-surface of Mars, and that such temperatures are only predicted at latitudes and for slope orientations corresponding exactly to where the gullies have been observed on Mars. [1] Malin M.C. and Edgett K.E. Science 288, 2330-2335 (2000).

  11. Modeling the impact of soil and water conservation on surface and ground water based on the SCS and Visual MODFLOW.

    Science.gov (United States)

    Wang, Hong; Gao, Jian-en; Zhang, Shao-long; Zhang, Meng-jie; Li, Xing-hua

    2013-01-01

    Soil and water conservation measures can impact hydrological cycle, but quantitative analysis of this impact is still difficult in a watershed scale. To assess the effect quantitatively, a three-dimensional finite-difference groundwater flow model (MODFLOW) with a surface runoff model-the Soil Conservation Service (SCS) were calibrated and applied based on the artificial rainfall experiments. Then, three soil and water conservation scenarios were simulated on the sand-box model to assess the effect of bare slope changing to grass land and straw mulching on water volume, hydraulic head, runoff process of groundwater and surface water. Under the 120 mm rainfall, 60 mm/h rainfall intensity, 5 m(2) area, 3° slope conditions, the comparative results indicated that the trend was decrease in surface runoff and increase in subsurface runoff coincided with the land-use converted from bare slope to grass land and straw mulching. The simulated mean surface runoff modulus was 3.64×10(-2) m(3)/m(2)/h in the bare slope scenario, while the observed values were 1.54×10(-2) m(3)/m(2)/h and 0.12×10(-2) m(3)/m(2)/h in the lawn and straw mulching scenarios respectively. Compared to the bare slope, the benefits of surface water reduction were 57.8% and 92.4% correspondingly. At the end of simulation period (T = 396 min), the simulated mean groundwater runoff modulus was 2.82×10(-2) m(3)/m(2)/h in the bare slope scenario, while the observed volumes were 3.46×10(-2) m(3)/m(2)/h and 4.91×10(-2) m(3)/m(2)/h in the lawn and straw mulching scenarios respectively. So the benefits of groundwater increase were 22.7% and 60.4% correspondingly. It was concluded that the soil and water conservation played an important role in weakening the surface runoff and strengthening the underground runoff. Meanwhile the quantitative analysis using a modeling approach could provide a thought for the study in a watershed scale to help decision-makers manage water resources.

  12. Evaluation of Cavity Collapse and Surface Crater Formation at the Norbo Underground Nuclear Test in U8c, Nevada Nuclear Security Site, and the Impact on Stability of the Ground Surface

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A

    2012-06-18

    Lawrence Livermore National Laboratory (LLNL) Containment Program performed a review of nuclear test-related data for the Norbo underground nuclear test in U8c to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. This request is similar to one made for the Salut site in U8c (Pawloski, 2012b). Review of the Norbo site is complicated because the test first exhibited subsurface collapse, which was not unusual, but it then collapsed to the surface over one year later, which was unusual. Of particular interest is the stability of the ground surface above the Norbo detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeology due to the nuclear detonation. Aviva Sussman from the Los Alamos National Laboratory (LANL) has also proposed work at this site. Both proposals require physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Security Site (NNSS), formerly the Nevada Test Site (NTS), and focus on possible activities such as visual observation, multispectral measurements, and shallow and deep geophysical surveys.

  13. Evaluation of Cavity Collapse and Surface Crater Formation at the Salut Underground Nuclear Test in U20ak, Nevada National Security Site, and the Impact of Stability of the Ground Surface

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G A

    2012-04-25

    At the request of Jerry Sweeney, the LLNL Containment Program performed a review of nuclear test-related data for the Salut underground nuclear test in U20ak to assist in evaluating this legacy site as a test bed for application technologies for use in On-Site Inspections (OSI) under the Comprehensive Nuclear Test Ban Treaty. Review of the Salut site is complicated because the test experienced a subsurface, rather than surface, collapse. Of particular interest is the stability of the ground surface above the Salut detonation point. Proposed methods for on-site verification include radiological signatures, artifacts from nuclear testing activities, and imaging to identify alteration to the subsurface hydrogeologogy due to the nuclear detonation. Sweeney's proposal requires physical access at or near the ground surface of specific underground nuclear test locations at the Nevada Nuclear Test Site (NNSS, formerly the Nevada Test Site), and focuses on possible activities such as visual observation, multispectral measurements, and shallow, and deep geophysical surveys.

  14. Surface aerosol radiative forcing derived from collocated ground-based radiometric observations during PRIDE, SAFARI, and ACE-Asia.

    Science.gov (United States)

    Hansell, Richard A; Tsay, Si-Chee; Ji, Qiang; Liou, K N; Ou, Szu-Cheng

    2003-09-20

    An approach is presented to estimate the surface aerosol radiative forcing by use of collocated cloud-screened narrowband spectral and thermal-offset-corrected radiometric observations during the Puerto Rico Dust Experiment 2000, South African Fire Atmosphere Research Initiative (SAFARI) 2000, and Aerosol Characterization Experiment-Asia 2001. We show that aerosol optical depths from the Multiple-Filter Rotating Shadowband Radiometer data match closely with those from the Cimel sunphotometer data for two SAFARI-2000 dates. The observed aerosol radiative forcings were interpreted on the basis of results from the Fu-Liou radiative transfer model, and, in some cases, cross checked with satellite-derived forcing parameters. Values of the aerosol radiative forcing and forcing efficiency, which quantifies the sensitivity of the surface fluxes to the aerosol optical depth, were generated on the basis of a differential technique for all three campaigns, and their scientific significance is discussed.

  15. Dissected Mantle Terrain on Mars: Formation Mechanisms and the Implications for Mid- latitude Near-surface Ground Ice

    Science.gov (United States)

    Searls, M. L.; Mellon, M. T.

    2008-12-01

    Determining the present and past distribution of surface and subsurface ice on Mars is critical for understanding the volatile inventory and climatic history of the planet. An analysis of a latitude-dependent layer of surface material known as the dissected mantle terrain can provide valuable insight into the distribution of ice in the recent past. The dissected mantle terrain is a surface unit that occurs globally in the mid-latitude of Mars. This unit is characterized by a smooth mantle of uniform thickness and albedo that is draped over the existing topography. This smooth mantle is disaggregated and dissected in places resulting in a hummocky pitted appearance. We propose that the mid-latitude dissected terrain results from collapse of a dusty mantle into the void left from desiccation of an underlying ice-rich (pure or dirty ice) layer. During period(s) of high obliquity, it is possible for ice to become stable at lower latitudes. Due to lack of direct solar insolation, surface ice deposits will preferentially accumulate on pole-ward facing slopes first. A mantle of dust and dirt is then deposited on top of these ice-rich deposits. As the climate changes, desiccation of the now buried ice leads to collapse of the overlying dusty layer resulting in a hummocky pitted appearance. This theory is supported by the pole-ward preference for the dissection pits as well an increase in dissection with increasing latitude. A study of the global distribution of the mid-latitude dissected terrain can provide invaluable clues towards unlocking the distribution of ice in the recent past. An analysis of HiRISE images and MOLA data indicate that the distribution of dissection pits varies from one region to the next. Knowing the distribution of ice in conjunction with ice stability modeling can provide a global view of the climate and orbital history of Mars at the time these features formed.

  16. Characterization of surface and ground water δ18O seasonal variation and its use for estimating groundwater residence times

    Science.gov (United States)

    Reddy, Michael M.; Schuster, Paul; Kendall, Carol; Reddy, Micaela B.

    2006-01-01

    18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well-instrumented research catchment in north-central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed-basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments.

  17. Subduction or delamination beneath the Apennines? Evidence from regional tomography

    NARCIS (Netherlands)

    Koulakov, I.; Jakovlev, A.; Zabelina, I.; Roure, F.; Cloetingh, S.; El Khrepy, S.; Al-Arifi, N.

    2015-01-01

    In this study we present a new regional tomography model of the upper mantle beneath Italy and the surrounding area derived from the inversion of travel times of P and S waves from the updated International Seismological Centre (ISC) catalogue. Beneath Italy, we identify a high-velocity anomaly whic

  18. Surface-Water, Water-Quality, and Ground-Water Assessment of the Municipio of Mayaguez, Puerto Rico, 1999-2002

    Science.gov (United States)

    Rodríguez-Martínez, Jesús; Santiago-Rivera, Luis; Guzman-Rios, Senen; Gómez-Gómez, Fernando; Oliveras-Feliciano, Mario L.

    2004-01-01

    The surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers, because the supply of safe drinking water was a critical issue during recent dry periods. Low-flow characteristics were evaluated at one continuous-record gaging station based on graphical curve-fitting techniques and log-Pearson Type III frequency curves. Estimates of low-flow characteristics for 20 partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics for the continuous- and partial-record stations were estimated using the relation curves developed for the low-flow study. Stream low-flow statistics document the general hydrology under current land use, water-use, and climatic conditions. A survey of streams and rivers utilized 37 sampling stations to evaluate the sanitary quality of about 165 miles of stream channels. River and stream samples for fecal coliform and fecal streptococcus analyses were collected on two occasions at base-flow conditions. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Mayaguez may have fecal coliform bacteria concentrations above the water-quality goal (standard) established by the Puerto Rico Environmental Quality Board (Junta de Calidad Ambiental de Puerto Rico) for inland surface waters. Sources of fecal contamination may include: illegal discharge of sewage to storm-water drains, malfunctioning sanitary sewer ejectors, clogged and leaking sewage pipes, septic tank leakage, unfenced livestock, and runoff from livestock pens. Long-term fecal coliform data from five sampling stations located within or in the vicinity of the municipio of Mayaguez have been in compliance with the water-quality goal for fecal coliform concentration established in July 1990. Geologic, topographic, soil, hydrogeologic, and streamflow data were compiled into a database and used to divide the municipio of Mayaguez into

  19. Well-response model of the confined area, Bunker Hill ground-water basin, San Bernardino County, California

    Science.gov (United States)

    Durbin, Timothy J.; Morgan, Charles O.

    1978-01-01

    The Bunker Hill ground-water basin, in the vicinity of San Bernardino, Calif., is being artificially recharged with imported water. Current and future artificial recharge of the basin may cause the potentiometric surface in an area of confined ground water to rise above land surface and water to flow from uncapped and unplugged wells. This could cause damage to structures where the soil becomes waterlogged and where buried wells begin to flow beneath the structures. A well-response model was used to generate a series of water-level hydrographs representing the response of the ground-water basin to six possible combinations of conditions for each well; one pumping rate, two artificial-recharge rate, and three natural-recharge rates. Inflow to the ground-water basin exceeds outflow for all tested combinations. According to model predictions, the accumulation of stored ground water resulting from the excess of inflow is sufficient to cause the water level in the selected wells to rise above land surface for all but one of the combinations of conditions tested. Water levels in wells are predicted to rise above the land surface as early as 1981 for the combination with the greatest excess of inflow. (Woodard-USGS)

  20. The application of Anthropogenic Gadolinium as a tracer in ground and surface water: examples from France and the Netherlands

    Science.gov (United States)

    Klaver, G.; Verheul, M.; Petelet-Giraud, E.; Negrel, P. J.

    2011-12-01

    Gadolinium chelates have been used since 1988 as contrasts agents in medical imaging (MRI) and produce positive anthropogenic Gd anomalies in rare element shale normalized patterns (REEnasc) of river and lake waters. Both in the Netherlands and France the presence of a positive Gd anomaly in surface and groundwater is used as a common tool in complex surface-surface and surface-groundwater studies. In this poster 3 examples of this common practice are given. The "Ile du Chambon" catchment (100 ha) is located in the Allier Valley, within Oligocene alluvial formations (sand and gravel). The nitrate content in the wells of the drinking water supply is ≥ 50 mg/l and two sources for the origin of the nitrates are hypothesized: agriculture or wastewater from a waste water treatment plant. Widory et al. (2005), using a coupled chemical (Cl and NO3) and isotopic (nitrogen and boron) approach, could show that the wastewater was the main source of the nitrate pollution. The presence of a Gd anomaly in the shale normalized rare earth patterns of wells contaminated by the waste water confirms the findings of Widory et al. (2005). In the second case the Gd anomaly is used to follow the infiltration of river water into a small lake in the Netherlands. During dry periods in this small river, Meuse water with a distinct Gd anomaly is fed into this river. The REE were monitored in the river, in a piezometer installed in the dike between the river and the lake and in the lake before, during and after the Meuse water was fed into this river. With the time series analyses the infiltration of the Meuse water into the dike and the small lake could be clearly followed. In a third case, in the center of the Netherlands, the flow of inlet Meuse water with a distinct Gd anomaly into a polder and subsequently from the larger into the smaller ditches of this polder were followed by analyzing the REEs. In such dry periods the ditches in the polder are also fed by groundwater that does not

  1. Ground-water quality and its relation to hydrogeology, land use, and surface-water quality in the Red Clay Creek basin, Piedmont Physiographic Province, Pennsylvania and Delaware

    Science.gov (United States)

    Senior, Lisa A.

    1996-01-01

    The Red Clay Creek Basin in the Piedmont Physiographic Province of Pennsylvania and Delaware is a 54-square-mile area underlain by a structurally complex assemblage of fractured metamorphosed sedimentary and igneous rocks that form a water-table aquifer. Ground-water-flow systems generally are local, and ground water discharges to streams. Both ground water and surface water in the basin are used for drinking-water supply. Ground-water quality and the relation between ground-water quality and hydrogeologic and land-use factors were assessed in 1993 in bedrock aquifers of the basin. A total of 82 wells were sampled from July to November 1993 using a stratified random sampling scheme that included 8 hydrogeologic and 4 land-use categories to distribute the samples evenly over the area of the basin. The eight hydrogeologic units were determined by formation or lithology. The land-use categories were (1) forested, open, and undeveloped; (2) agricultural; (3) residential; and (4) industrial and commercial. Well-water samples were analyzed for major and minor ions, nutrients, volatile organic compounds (VOC's), pesticides, polychlorinated biphenyl compounds (PCB's), and radon-222. Concentrations of some constituents exceeded maximum contaminant levels (MCL) or secondary maximum contaminant levels (SMCL) established by the U.S. Environmental Protection Agency for drinking water. Concentrations of nitrate were greater than the MCL of 10 mg/L (milligrams per liter) as nitrogen (N) in water from 11 (13 percent) of 82 wells sampled; the maximum concentration was 38 mg/L as N. Water from only 1 of 82 wells sampled contained VOC's or pesticides that exceeded a MCL; water from that well contained 3 mg/L chlordane and 1 mg/L of PCB's. Constituents or properties of well-water samples that exceeded SMCL's included iron, manganese, dissolved solids, pH, and corrosivity. Water from 70 (85 percent) of the 82 wells sampled contained radon-222 activities greater than the proposed MCL of

  2. Ground-water quality and its relation to hydrogeology, land use, and surface-water quality in the Red Clay Creek basin, Piedmont Physiographic Province, Pennsylvania and Delaware

    Science.gov (United States)

    Senior, Lisa A.

    1996-01-01

    The Red Clay Creek Basin in the Piedmont Physiographic Province of Pennsylvania and Delaware is a 54-square-mile area underlain by a structurally complex assemblage of fractured metamorphosed sedimentary and igneous rocks that form a water-table aquifer. Ground-water-flow systems generally are local, and ground water discharges to streams. Both ground water and surface water in the basin are used for drinking-water supply. Ground-water quality and the relation between ground-water quality and hydrogeologic and land-use factors were assessed in 1993 in bedrock aquifers of the basin. A total of 82 wells were sampled from July to November 1993 using a stratified random sampling scheme that included 8 hydrogeologic and 4 land-use categories to distribute the samples evenly over the area of the basin. The eight hydrogeologic units were determined by formation or lithology. The land-use categories were (1) forested, open, and undeveloped; (2) agricultural; (3) residential; and (4) industrial and commercial. Well-water samples were analyzed for major and minor ions, nutrients, volatile organic compounds (VOC's), pesticides, polychlorinated biphenyl compounds (PCB's), and radon-222. Concentrations of some constituents exceeded maximum contaminant levels (MCL) or secondary maximum contaminant levels (SMCL) established by the U.S. Environmental Protection Agency for drinking water. Concentrations of nitrate were greater than the MCL of 10 mg/L (milligrams per liter) as nitrogen (N) in water from 11 (13 percent) of 82 wells sampled; the maximum concentration was 38 mg/L as N. Water from only 1 of 82 wells sampled contained VOC's or pesticides that exceeded a MCL; water from that well contained 3 mg/L chlordane and 1 mg/L of PCB's. Constituents or properties of well-water samples that exceeded SMCL's included iron, manganese, dissolved solids, pH, and corrosivity. Water from 70 (85 percent) of the 82 wells sampled contained radon-222 activities greater than the proposed MCL of

  3. Geophysical investigation of seepage beneath an earthen dam.

    Science.gov (United States)

    Ikard, S J; Rittgers, J; Revil, A; Mooney, M A

    2015-01-01

    A hydrogeophysical survey is performed at small earthen dam that overlies a confined aquifer. The structure of the dam has not shown evidence of anomalous seepage internally or through the foundation prior to the survey. However, the surface topography is mounded in a localized zone 150 m downstream, and groundwater discharges from this zone periodically when the reservoir storage is maximum. We use self-potential and electrical resistivity tomography surveys with seismic refraction tomography to (1) determine what underlying hydrogeologic factors, if any, have contributed to the successful long-term operation of the dam without apparent indicators of anomalous seepage through its core and foundation; and (2) investigate the hydraulic connection between the reservoir and the seepage zone to determine whether there exists a potential for this success to be undermined. Geophysical data are informed by hydraulic and geotechnical borehole data. Seismic refraction tomography is performed to determine the geometry of the phreatic surface. The hydro-stratigraphy is mapped with the resistivity data and groundwater flow patterns are determined with self-potential data. A self-potential model is constructed to represent a perpendicular profile extending out from the maximum cross-section of the dam, and self-potential data are inverted to recover the groundwater velocity field. The groundwater flow pattern through the aquifer is controlled by the bedrock topography and a preferential flow pathway exists beneath the dam. It corresponds to a sandy-gravel layer connecting the reservoir to the downstream seepage zone.

  4. Correlation of near-surface stratigraphy and physical properties of clayey sediments from Chalco Basin, Mexico, using Ground Penetrating Radar

    Science.gov (United States)

    Carreón-Freyre, Dora; Cerca, Mariano; Hernández-Marín, Martín.

    2003-08-01

    Detailed measurements of water content, liquid and plastic limits, electric conductivity, grain-size distribution, specific gravity, and compressibility were performed on the upper 7 m of the lacustrine sequence from the Chalco Basin, Valley of Mexico. Eight stratigraphic units consisting of alternating layers of clay, silt, sand, and gravel of volcanic origin are described for this sequence. The analysis of contrasts in the physical properties permitted to identify potential reflectors of radar waves: (i) change in the electrical conductivity at 0.4 m depth; (ii) increment in the clay and water content at 0.8 m depth; (iii) bimodal behavior of the water content at 1.3 m depth; (iv) increment in the sand content and decrease in water content at 2.6 m depth; and (v) the presence of a pyroclastic unit at 3.7 m depth. Radargrams with frequencies of 900 and 300 MHz were collected on a grid of profiles covering the study area. Correlation of radargrams with the reference section permitted the spatial interpolation of variations in the physical properties and the near-surface stratigraphy. Contrary to the expected in these clayey sediments, electric contrast enhanced by variations in water content and grain size permitted the recording of the near-surface sedimentary structures. Distinctive radar signatures were identified between reflectors. Furthermore, lateral discontinuities of the reflectors and their vertical displacements permitted the identification of deformational features within the sequence.

  5. Unsteady propulsion in ground effects

    Science.gov (United States)

    Park, Sung Goon; Kim, Boyoung; Sung, Hyung Jin

    2016-11-01

    Many animals in nature experience hydrodynamic benefits by swimming or flying near the ground, and this phenomenon is commonly called 'ground effect'. A flexible fin flapping near the ground was modelled, inspired by animals swimming. A transverse heaving motion was prescribed at the leading edge, and the posterior parts of the fin were passively fluttering by the fin-fluid interaction. The fin moved freely horizontally in a quiescent flow, by which the swimming speed was dynamically determined. The fin-fluid interaction was considered by using the penalty immersed boundary method. The kinematics of the flexible fin was altered by flapping near the ground, and the vortex structures generated in the wake were deflected upward, which was qualitatively analyzed by using the vortex dipole model. The swimming speed and the thrust force of the fin increased by the ground effects. The hydrodynamic changes from flapping near the ground affected the required power input in two opposite ways; the increased and decreased hydrodynamic pressures beneath the fin hindered the flapping motion, increasing the power input, while the transversely reduced flapping motion induced the decreased power input. The Froude propulsive efficiency was increased by swimming in the ground effects Creative Research Initiatives (No. 2016-004749) program of the National Research Foundation of Korea (MSIP).

  6. Regional subsidence modelling in Murcia city (SE Spain using 1-D vertical finite element analysis and 2-D interpolation of ground surface displacements

    Directory of Open Access Journals (Sweden)

    S. Tessitore

    2015-11-01

    Full Text Available Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982–1984, 1992–1995 and 2004–2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.

  7. Lithospheric structure beneath the High Lava Plains, Oregon, imaged by scattered teleseismic waves

    Science.gov (United States)

    Chen, Chin-Wu; James, David E.; Fouch, Matthew J.; Wagner, Lara S.

    2013-11-01

    We compute high-resolution seismic images from scattered wavefield to detect discontinuities beneath the High Lava Plains (HLP), using data recorded at a dense broadband array. Our images of the HLP and surrounding regions reveal (1) a prominent Moho discontinuity with varying depth, with thinnest crust of 35 km beneath the volcanic track, and thickened crust of ˜45 km beneath the Owyhee Plateau (OP); (2) distinct intracrustal velocity reversals beneath regions of pre-2.0 Ma volcanism and within the OP; and (3) intermittent negative velocity discontinuities in the uppermost mantle beneath regions of Holocene volcanism and volcanic centers near Steens Mountain and Newberry volcano. These features exhibit remarkable similarity with those seen in the surface wave tomography and Ps receiver functions. We fail to find evidence for a ubiquitous regional lithosphere-asthenosphere boundary (LAB). In concert with petrological constraints on the equilibration depths of primitive basaltic melts, our results suggest that the present-day HLP mantle lithosphere is thin or absent, perhaps a consequence of episodes of extensive mantle inflow, lithospheric extension, and possibly melting induced by rapid slab rollback and trench retreat. It remains possible, however, that strong E-W seismic anisotropy reported across this region may reduce the effective S-wave velocity contrast to render the LAB less detectable. In contrast, the Owyhee Plateau exhibits a clear LAB, consistent with it being a block of older preexisting lithosphere. Our images demonstrate the complexity of mantle dynamics in the Cascadian back-arc and the close casual link between subduction-related processes and the origin of HLP volcanism.

  8. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Athanasopoulou, Eleni; Speyer, Orestis; Raptis, Panagiotis I.; Marinou, Eleni; Proestakis, Emmanouil; Solomos, Stavros; Gerasopoulos, Evangelos; Amiridis, Vassilis; Bais, Alkiviadis; Kontoes, Charalabos

    2017-07-01

    This study assesses the impact of dust on surface solar radiation focussing on an extreme dust event. For this purpose, we exploited the synergy of AERONET measurements and passive and active satellite remote sensing (MODIS and CALIPSO) observations, in conjunction with radiative transfer model (RTM) and chemical transport model (CTM) simulations and the 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). The area of interest is the eastern Mediterranean where anomalously high aerosol loads were recorded between 30 January and 3 February 2015. The intensity of the event was extremely high, with aerosol optical depth (AOD) reaching 3.5, and optical/microphysical properties suggesting aged dust. RTM and CTM simulations were able to quantify the extent of dust impact on surface irradiances and reveal substantial reduction in solar energy exploitation capacity of PV and CSP installations under this high aerosol load. We found that such an extreme dust event can result in Global Horizontal Irradiance (GHI) attenuation by as much as 40-50 % and a much stronger Direct Normal Irradiance (DNI) decrease (80-90 %), while spectrally this attenuation is distributed to 37 % in the UV region, 33 % in the visible and around 30 % in the infrared. CAMS forecasts provided a reliable available energy assessment (accuracy within 10 % of that obtained from MODIS). Spatially, the dust plume resulted in a zonally averaged reduction of GHI and DNI of the order of 150 W m-2 in southern Greece, and a mean increase of 20 W m-2 in the northern Greece as a result of lower AOD values combined with local atmospheric processes. This analysis of a real-world scenario contributes to the understanding and quantification of the impact range of high aerosol loads on solar energy and the potential for forecasting power generation failures at sunshine-privileged locations where solar power plants exist, are under construction or are being planned.

  9. Constraining the crustal root geometry beneath the Rif Cordillera (North Morocco)

    Science.gov (United States)

    Diaz, Jordi; Gil, Alba; Carbonell, Ramon; Gallart, Josep; Harnafi, Mimoun

    2016-04-01

    The analyses of wide-angle reflections of controlled source experiments and receiver functions calculated from teleseismic events provide consistent constraints of an over-thickened crust beneath the Rif Cordillera (North Morocco). Regarding active source data, we investigate now offline arrivals of Moho-reflected phases recorded in RIFSIS project to get new estimations of 3D crustal thickness variations beneath North Morocco. Additional constrains on the onshore-offshore transition are derived from onland recording of marine airgun shots from the coeval Gassis-Topomed profiles. A regional crustal thickness map is computed from all these results. In parallel, we use natural seismicity data collected throughout TopoIberia and PICASSO experiments, and from a new RIFSIS deployment, to obtain teleseismic receiver functions and explore the crustal thickness variations with a H-κ grid-search approach. The use of a larger dataset including new stations covering the complex areas beneath the Rif Cordillera allow us to improve the resolution of previous contributions, revealing abrupt crustal changes beneath the region. A gridded surface is built up by interpolating the Moho depths inferred for each seismic station, then compared with the map from controlled source experiments. A remarkably consistent image is observed in both maps, derived from completely independent data and methods. Both approaches document a large modest root, exceeding 50 km depth in the central part of the Rif, in contrast with the rather small topographic elevations. This large crustal thickness, consistent with the available Bouguer anomaly data, favor models proposing that the high velocity slab imaged by seismic tomography beneath the Alboran Sea is still attached to the lithosphere beneath the Rif, hence pulling down the lithosphere and thickening the crust. The thickened area corresponds to a quiet seismic zone located between the western Morocco arcuate seismic zone, the deep seismicity area

  10. [Guided bone regeneration beneath titanium foils].

    Science.gov (United States)

    Otto, Katharina; Schopper, Christian; Ewers, Rolf; Lambrecht, J Thomas

    2004-01-01

    The aim of this study was to examine the clinical and histological bony healing process beneath titanium foils used for guided tissue regeneration as well as of the Frios Algipore graft which was applied with autologous bone. 66 sinus floor elevations were carried out and examined over a period of three years and eight months. A success rate of 64% was recorded with foil incorporation. Complications occurred in form of primary and secondary disturbances in the healing process caused by exposure of the foil. 12 of the 66 foils had to be removed early. In all but one case, the augmented bone material was macroscopically well integrated despite the loss of the foil. Primary stability of the inserted dental implants into the ossified augmented site after operations of the sinus maxillaris was reached in all cases with absence of post-operative complications, and in 94% when there was postoperative exposure of the membrane. Histologically, a thin layer of connective tissue poor in cells but rich in collagen fibers appeared underneath the titanium foil. This was followed by newly-formed bony tissue transforming into osseous lamella parallel to the membrane underneath the new periost. In 65 out of 66 cases a sufficient amount of stable bone was built up locally suggesting good bio-compatibility and barrier function. Further, the foil also provided mechanical rest and supporting function for the space underneath. However, the occurrence of healing complications in 36% of the cases showed a need to improve on the titanium foils.

  11. Ground-based FTIR measurements of CO from the Jungfraujoch: characterisation and comparison with in situ surface and MOPITT data

    Directory of Open Access Journals (Sweden)

    B. Barret

    2003-01-01

    Full Text Available CO vertical profiles have been retrieved from solar absorption FTIR spectra recorded at the NDSC station of the Jungfraujoch (46.5º N, 8º E and 3580 m a.s.l. for the period from January 1997 to May 2001. The characterisation of these profiles has been established by an information content analysis and an estimation of the error budgets. A partial validation of the profiles has been performed through comparisons with correlative measurements. The average volume mixing ratios (vmr in the 3 km layer above the station have been compared with coincident surface measurements. The agreement between monthly means from both measurement techniques is very good, with a correlation coefficient of 0.87, and no significant bias observed. The FTIR total columns have also been compared to CO partial columns above 3580 m a.s.l. derived from the MOPITT (Measurement Of Pollution In The Troposphere instrument for the period March 2000 to May 2001. Relative to the FTIR columns, the MOPITT partial columns exhibit a positive bias of 8±8% for daytime and of 4±7% for nighttime measurements.

  12. Reconstruction of the 500-year ground surface temperature history of northern Awaji Island, southwest Japan, using a layered thermal property model

    Science.gov (United States)

    Goto, Shusaku; Yamano, Makoto

    2010-12-01

    Changes in the ground surface temperature (GST), propagating underground, can be recorded as thermal perturbations to the background thermal field. This paper presents a forward model of conductive propagation of GST in a layered material model with uniform thermal properties in each layer and a series of step functions as GST history. This model, which is expressed using the same mathematical form of that for a uniform thermal property model with a series of step functions as GST history, calculates subsurface temperature perturbations that originate from the GST change by superimposing numerically solved solutions of the model with surface boundary condition of a unit function. Using this model, we reconstruct the recent 500-year GST history from borehole temperature data in northern Awaji Island, southwest Japan, by Bayesian inversion. The reconstructed GST history shows the onset of warming in the mid-18th century to the early 19th century and an increase of 1.1-1.3 K up to the mid-20th century. From the middle to late 20th century, the GST decreased by about 0.2 K. The GST change in the 20th century fits the trend of mean annual surface air temperature records in Kobe, opposite the coast of northern Awaji Island. The GST history in northern Awaji Island differs from that in Ulsan, in the southeastern Republic of Korea, which is located at the same latitude as northern Awaji Island. Differences of the GST histories of these regions most likely reflect differences in sea surface temperatures in these regions.

  13. Grounded theory.

    Science.gov (United States)

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  14. Analyses of freshwater stress with a couple ground and surface water model in the Pra Basin, Ghana

    Science.gov (United States)

    Owusu, George; Owusu, Alex B.; Amankwaa, Ebenezer Forkuo; Eshun, Fatima

    2015-04-01

    The optimal management of water resources requires that the collected hydrogeological, meteorological, and spatial data be simulated and analyzed with appropriate models. In this study, a catchment-scale distributed hydrological modeling approach is applied to simulate water stress for the years 2000 and 2050 in a data scarce Pra Basin, Ghana. The model is divided into three parts: The first computes surface and groundwater availability as well as shallow and deep groundwater residence times by using POLFLOW model; the second extends the POLFLOW model with water demand (Domestic, Industrial and Agricultural) model; and the third part involves modeling water stress indices—from the ratio of water demand to water availability—for every part of the basin. On water availability, the model estimated long-term annual Pra river discharge at the outflow point of the basin, Deboase, to be 198 m3/s as against long-term average measurement of 197 m3/s. Moreover, the relationship between simulated discharge and measured discharge at 9 substations in the basin scored Nash-Sutcliffe model efficiency coefficient of 0.98, which indicates that the model estimation is in agreement with the long-term measured discharge. The estimated total water demand significantly increases from 959,049,096 m3/year in 2000 to 3,749,559,019 m3/year in 2050 (p < 0.05). The number of districts experiencing water stress significantly increases (p = 0.00044) from 8 in 2000 to 21 out of 35 by the year 2050. This study will among other things help the stakeholders in water resources management to identify and manage water stress areas in the basin.

  15. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    For the UMTRA Project site located near Canonsburg, Pennsylvania (the Canonsburg site), the Surface Project cleanup occurred from 1983 to 1985, and involved removing the uranium processing mill tailings and radioactively contaminated soils and materials from their original locations and placing them in a disposal cell located on the former Canonsburg uranium mill site. This disposal cell is designed to minimize radiation emissions and further contamination of ground water beneath the site. The Ground Water Project will evaluate the nature and the extent of ground water contamination resulting from uranium processing at the former Canonsburg uranium mill site, and will determine a ground water strategy for complying with the US Environmental Protection Agency`s (EPA) ground water standards established for the UMTRA Project. For the Canonsburg site, an evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Canonsburg site. The results of this report and further site characterization of the Canonsburg site will be used to determine how to protect public health and the environment, and how to comply with the EPA standards.

  16. MCSCF/CI ground state potential energy surface, dipole moment function, and gas phase vibrational frequencies for the nitrogen dioxide positive ion

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, D.G.

    1980-05-01

    The ground state potential energy surface for the nitrogen dioxide positive ion, NO/sup +//sub 2/X /sup 1/..sigma../sup +//sub g/(..sigma../sup +/,A/sub 1/,A'), has been scanned with a correlated wave function to obtain directly, for the first time, the gas phase equilibrium geometry, force constants, vibrational frequencies, and dipole moment function. The wave function for this scan was constructed from a double-zeta plus polarization one-electron basis with a 12 configuration MCSCF determination of the orbital basis for a full valence /sup 1/..sigma../sup +//sub g/ configuration interaction expansion. The calculated equilibrium bond length is 1.12 A. The vibrational frequencies are computed to be ..nu../sub 1/=1514, ..nu../sub 2/=679, and ..nu../sub 3/=2614 cm/sup -1/ The present ab initio results differ significantly from crystalline spectroscopic studies and are, thus, the best values available for the gas phase vibrational frequencies. The dipole moment function is nonzero at the ..sigma../sup +/, A/sub 1/, and A' geometries included in the potential surface scan, and is obtained here to provide for the future a priori calculation of the infrared band intensities.

  17. Geochemical background and ecological risk of heavy metals in surface sediments from the west Zhoushan Fishing Ground of East China Sea.

    Science.gov (United States)

    Xu, Gang; Liu, Jian; Pei, Shaofeng; Hu, Gang; Kong, Xianghuai

    2015-12-01

    Surface sediment grain size as well as the spatial distribution, pollution status, and source identification of heavy metals in the west Zhoushan Fishing Ground (ZFG) of the East China Sea were analyzed to study the geochemical background concentrations of heavy metals and to assess their potential ecological risk. Our results show that surface sediments in the eastern part of study area were mainly composed of sand-sized components. Spatial distributions of heavy metals were mainly controlled by grain size and terrigenous materials, and their concentrations in the coarsest grain sediments formed primarily during the Holocene transgressive period could represent the element background values of our study area. Contamination factor suggests that there was no pollution of Pb, Zn, and Cr generally in our study area and slight pollution of Cu, Cd, and As (especially Cu) at some stations. In addition, ecological harm coefficient indicates that the ecological risk of each heavy metal, except for Cd, at two stations was low as well. These results are consistent with the pollution load index and ecological risk index, which suggest both the overall level of pollution and the overall ecological risk of six studied metals in sediment were relatively low in our study area. Enrichment factor indicates that the heavy metals came mostly from the natural source. Summarily, the quality level of sediment in our study area was relatively good, and heavy metals in sediments could not exert threat to aquatic lives in the ZFG until now.

  18. Nutrient removal capacity of wood residues for the Agro-environmental safety of ground and surface waters

    Directory of Open Access Journals (Sweden)

    Paulo A. Dumont

    2014-07-01

    Full Text Available The aim of this study was to determine the effectiveness of wood residues in the removal of nutrients (ammonium-N; NH4-N from nutrient-rich (NH4-N waters. The water holding capacity of the wood materials was also determined. Carried out at Rothamsted Research, North Wyke, UK, this controlled laboratory experiment tested two wood residues; in length, one being 1-2cm and the other from 150 µm (microns to 9.5mm. Although a wide range of studies have shown the effectiveness and performance of various absorbent materials as animal beddings, such as straw (cereal straw, woodchip (sawdust, bark or wood shavings, bracken and rushes, only few have focused on the NH4-N sorption/desorption capacity. The depuration capacity of wood residues from nutrient-rich effluents such as those from cattle bedded on woodchip or straw will be controlled by processes such as sorption (adsorption-absorption and desorption of nutrients. Studies have reported the nitrogen removal capacity of woodchip materials and biochar from woodchip as well as removal of NH4+-N from domestic and municipal wastewater, farm dirty water, landfill and industry effluents. These studies have observed that the mechanism of removal of nitrogen is by either increasing NO3--N removal form leachate by enhancing N2O losses via denitrification (biochar as carbon source for denitrifiers or by decreasing NH4+-N in leachate through adsorption to negatively charged sites. Results showed that although the cation exchange capacity (CEC and surface area (SA are both fundamental properties of adsorbent materials, no correlation was found with CEC and adsorption or desorption. Nor did changes in pH appear to be sufficiently important to cause changes in CEC. For this reason, osmotic pressure appeared to be a more predominant parameter controlling processes of adsorption and desorption of NH4+-N in both wood residues. Thus, wood residues high in NH4+-N should be avoided, as they could have an opposite effect

  19. Electromagnetic evidence for volatile-rich upwelling beneath the society hotspot, French Polynesia

    Science.gov (United States)

    Tada, Noriko; Tarits, Pascal; Baba, Kiyoshi; Utada, Hisashi; Kasaya, Takafumi; Suetsugu, Daisuke

    2016-12-01

    We have conducted a seafloor magnetotelluric survey that images, for the first time, three-dimensional electrical conductivity structure in the upper mantle beneath the Society hotspot. A striking feature in our model is a high-conductivity anomaly a few hundred kilometers in diameter, which is continuous from the lowest part of the upper mantle to a depth of approximately 50 km below sea level. Using theoretical and experimental results from mineral physics, we interpret the high-conductivity anomaly as evidence of the melt fraction up to 2.2 vol.%, which is robust regardless of assumed temperature, and the existence of carbonated silicate melt beneath the hotspot. Our results suggest that the Society hotspot is a pathway for ascending volatiles from the deeper part of the upper mantle to the surface.

  20. Using Sealed Wells to Measure Water Levels Beneath Streams and Floodplains.

    Science.gov (United States)

    Noorduijn, Saskia L; Cook, Peter G; Wood, Cameron; White, Nick

    2015-01-01

    The design of wells beneath streams and floodplains has often employed with tall standpipes to prevent incursion of surface water into the well during flood events. Here, an approach has been presented to minimise the infrastructure demands in these environments by sealing the well top (e.g., prevent water entering the well) and monitor the total pressure in the water column using an absolute (non-vented) pressure transducer. The sealed well design was tested using a laboratory experiment where the total pressure responses were monitored in both an unsealed and sealed well, while the water level was varied. It is observed that, whether the well is sealed or not, the total pressure at a given depth in the aquifer will be