WorldWideScience

Sample records for ground state triplet

  1. Toward Triplet Ground State NaLi Molecules

    Science.gov (United States)

    Ebadi, Sepehr; Jamison, Alan; Rvachov, Timur; Jing, Li; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang

    2016-05-01

    The NaLi molecule is expected to have a long lifetime in the triplet ground-state due to its fermionic nature, large rotational constant, and weak spin-orbit coupling. The triplet state has both electric and magnetic dipole moments, affording unique opportunities in quantum simulation and ultracold chemistry. We have mapped the excited state NaLi triplet potential by means of photoassociation spectroscopy. We report on this and our further progress toward the creation of the triplet ground-state molecules using STIRAP. NSF, ARO-MURI, Samsung, NSERC.

  2. Triplet-singlet conversion in ultracold Cs$_2$ and production of ground state molecules

    CERN Document Server

    Bouloufa, Nadia; Aymar, Mireille; Dulieu, Olivier

    2010-01-01

    We propose a process to convert ultracold metastable Cs$_2$ molecules in their lowest triplet state into (singlet) ground state molecules in their lowest vibrational levels. Molecules are first pumped into an excited triplet state, and the triplet-singlet conversion is facilitated by a two-step spontaneous decay through the coupled $A^{1}\\Sigma_{u}^{+} \\sim b ^{3}\\Pi_{u}$ states. Using spectroscopic data and accurate quantum chemistry calculations for Cs$_2$ potential curves and transition dipole moments, we show that this process has a high rate and competes favorably with the single-photon decay back to the lowest triplet state. In addition, we demonstrate that this conversion process represents a loss channel for vibrational cooling of metastable triplet molecules, preventing an efficient optical pumping cycle down to low vibrational levels.

  3. Inelastic collisions of ultracold triplet Rb$_\\textbf{2}$ molecules in the rovibrational ground state

    CERN Document Server

    Drews, Björn; Jachymski, Krzysztof; Idziaszek, Zbigniew; Denschlag, Johannes Hecker

    2016-01-01

    Exploring inelastic and reactive collisions on the quantum level is a main goal of the developing field of ultracold chemistry. We present first experimental studies of inelastic collisions of metastable ultracold triplet molecules in the vibrational ground state. The measurements are performed with nonpolar Rb$_2$ dimers which are prepared in precisely-defined quantum states and trapped in an array of quasi-1D potential tubes. We investigate collisions of molecules in the lowest triplet energy level where any inelastic process requires a relaxation to the singlet state. These are compared to two sets of collision experiments, carried out either with triplet molecules that have two quanta of rotational angular momentum or with vibrationally highly excited Feshbach molecules. We find no evidence for suppression of the inelastic collisions due to the necessary spin-flip, shedding light on this so far unsettled issue. For each of the molecular states studied here, we extract the decay rate constant and compare t...

  4. Forbidden Electronic Transitions between the Singlet Ground State and the Triplet Excited State of Pt(II) Complexes.

    Science.gov (United States)

    Zheng, Greg Y.; Rillema, D. Paul; DePriest, Jeff; Woods, Clifton

    1998-07-13

    Direct access to the triplet emitting state from the ground state is observed for Pt(II) complexes containing heterocyclic (CwedgeC', CwedgeN, NwedgeN') and bis(diphenylphosphino)alkane (PwedgeP') ligands. Extinction coefficients for such transitions are in the range 4-25 M(-)(1) cm(-)(1). Emission quantum yields resulting from singlet-to-triplet excitation are as high as 61-77 times the emission quantum yields resulting from singlet-to-singlet excitation at 296 K. The intersystem crossing quantum yield from the singlet excited state to triplet emitting state is lower than 2% at 296 K but is greatly enhanced at 77 K. The forbidden electronic transition observed for Pt(II) complexes is attributed to result from spin-orbit coupling due to the presence of Pt(II) in the skeleton structure. The importance of excitation spectra on the computation of emission quantum yields is discussed.

  5. Spin-Free CC2 Implementation of Induced Transitions between Singlet Ground and Triplet Excited States.

    Science.gov (United States)

    Helmich-Paris, Benjamin; Hättig, Christof; van Wüllen, Christoph

    2016-04-12

    In most organic molecules, phosphorescence has its origin in transitions from triplet exited states to the singlet ground state, which are spin-forbidden in nonrelativistic quantum mechanics. A sufficiently accurate description of phosphorescence lifetimes for molecules that contain only light elements can be achieved by treating the spin-orbit coupling (SOC) with perturbation theory (PT). We present an efficient implementation of this approach for the approximate coupled cluster singles and doubles model CC2 in combination with the resolution-of-the-identity approximation for the electron repulsion integrals. The induced oscillator strengths and phosphorescence lifetimes from SOC-PT are computed within the response theory framework. In contrast to previous work, we employ an explicitly spin-coupled basis for singlet and triplet operators. Thereby, a spin-orbital treatment can be entirely avoided for closed-shell molecules. For compounds containing only light elements, the phosphorescence lifetimes obtained with SOC-PT-CC2 are in good agreement with those of exact two-component (X2C) CC2, whereas the calculations are roughly 12 times faster than with X2C. Phosphorescence lifetimes computed for two thioketones with the SOC-PT-CC2 approach agree very well with reference results from experiment and are similar to those obtained with multireference spin-orbit configuration interaction and with X2C-CC2. An application to phosphorescent emitters for metal-free organic light-emitting diodes (OLEDs) with almost 60 atoms and more than 1800 basis functions demonstrates how the approach extends the applicability of coupled cluster methods for studying phosphorescence. The results indicate that other decay channels like vibrational relaxation may become important in such systems if lifetimes are large.

  6. Inelastic collisions of ultracold triplet Rb2 molecules in the rovibrational ground state

    Science.gov (United States)

    Drews, Björn; Deiß, Markus; Jachymski, Krzysztof; Idziaszek, Zbigniew; Hecker Denschlag, Johannes

    2017-01-01

    Exploring and controlling inelastic and reactive collisions on the quantum level is a main goal of the developing field of ultracold chemistry. For this, the preparation of precisely defined initial atomic and molecular states in tailored environments is necessary. Here we present experimental studies of inelastic collisions of metastable ultracold Rb2 molecules in an array of quasi-1D potential tubes. In particular, we investigate collisions of molecules in the absolute lowest triplet energy level where any inelastic process requires a change of the electronic state. Remarkably, we find similar decay rates as for collisions between rotationally or vibrationally excited triplet molecules where other decay paths are also available. The decay rates are close to the ones for universal reactions but vary considerably when confinement and collision energy are changed. This might be exploited to control the collisional properties of molecules. PMID:28332492

  7. Density Functional Theory (DFT) studies on the ground state of NO3(2A '2) radical and the first triplet state of NO3+ cation

    Institute of Scientific and Technical Information of China (English)

    CAO, Xiao-Yan(曹晓燕); HONG, Gong-Yi(洪功义); WANG, Dian-Xun(王殿勋); LI, Le-Min(黎乐民); XU, Guang-Xian(徐光宪)

    2000-01-01

    Density Functional Theory (DFT) studies on the ground states (2A'2) of NO3 radical and on the ground state (1A'1) and the first triplet state (3E") of NO3+ cation provide an unambiguous prediction about their geometrical structure: the ground states of both NO3 radical and NO3+ cation have D3h symmetry and the geometrical configuration of the first triplet state 3E" of NO3+ cation has C2v symmetry. It is shown that s far as the ionization energy calculations on NO3 radical are concerned, the results are only slightly different, no mater that gradient corrections of the exchange-correlation energy are included during self-consistent iterations of they are included as perturbations after the self-consistent iterations.

  8. Triplet State Resonance Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N. H.; Pagsberg, Palle Bjørn

    1978-01-01

    Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied......Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied...

  9. Excited triplet state spectroscopy in the infrared

    Science.gov (United States)

    Baiardo, Joseph; Mukherjee, Ranajit; Vala, Martin

    1982-03-01

    A new method for the investigation of the infrared spectra of metastable excitedelectronic states is presented. With a Fourier Transform infrared spectrometer as the probe and a CW Xe lamp source as the pump, the infrared spectrum of the lowest triplet state of triphenylene isolated in a N 2 matrix at 15K has been examined. CH out-of-plane wagging modes are prominent and shifted from their ground state frequencies. It is expected that when fully developed this method will provide important information on excited state force constants and potential energy surfaces.

  10. Bright Solid State Source of Photon Triplets

    CERN Document Server

    Khoshnegar, Milad; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed

    2015-01-01

    Producing advanced quantum states of light is a priority in quantum information technologies. While remarkable progress has been made on single photons and photon pairs, multipartite correlated photon states are usually produced in purely optical systems by post-selection or cascading, with extremely low efficiency and exponentially poor scaling. Multipartite states enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It would be favorable to directly generate these states using solid state systems, for better scaling, simpler handling, and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The wavefunctions of photogenerated excitons localized in these ground states are correlated via molecular hybridization and Coulomb interactions. The formation of a triexciton leads...

  11. Triplet State Resonance Raman Spectrum of all-trans-diphenylbutadiene

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Grossman, W.E.L.; Killough, P.M

    1984-01-01

    The resonance Raman spectrum of all-trans-diphenylbutadiene (DPB) in its ground state and the resonance Raman spectrum (RRS) of DPB in its short-lived electronically excited triplet state are reported. Transient spectra were obtained by a pump-probe technique using two pulsed lasers...

  12. Step-Scan FTIR spectroscopy and quantum chemical calculations of xanthone in the triplet state

    Science.gov (United States)

    Buschhaus, L.; Kleinermanns, K.

    2014-10-01

    Step-Scan-FTIR spectroscopy has been used to measure the infrared spectrum of xanthone in the triplet state using chloroform as solvent. Xanthone is an important triplet sensitizer and therefore suitable as model system. Xanthone was excited at 266 nm and its IR triplet spectrum measured in the range 1000-1750 cm-1. The spectrum was analyzed by comparison with DFT/B3LYP/TZVP/COSMO calculations. Further on the results were compared to gas phase IR measurements of triplet xanthone and calculations of isolated xanthone. Mainly based on the calculations we tried to identify the geometry changes from the electronic ground state to the first triplet state.

  13. Nonradiative formation of the positron-helium triplet bound state

    Science.gov (United States)

    di Rienzi, Joseph; Drachman, Richard J.

    2007-02-01

    We have previously calculated the cross section for radiative formation of the interesting bound state consisting of a positron bound to helium, where the atomic electrons are in the triplet spin state. That process uses the metastable triplet helium system as target, and, as expected, it has a very small cross section. In this paper we examine a more probable process in which the state of interest is produced in an exchange rearrangement collision between a positronium atom and the singlet helium ground state: Ps+He(Se1)→PsHe+(Se3)+e- . The present calculation is done in the plane-wave Born approximation, using simple initial and final wave functions and compares post and prior forms.

  14. Time-Varying Triplet State Lifetimes of Single Molecules

    NARCIS (Netherlands)

    Veerman, J.A.; Garcia-Parajo, M.F.; Kuipers, L.; Hulst, van N.F.

    1999-01-01

    It is found that triplet state lifetimes and intersystem crossing yields of individual molecules embedded in a polymer host at room temperature are not constant in time. The range over which the triplet lifetime of a single molecule varies during long observation times shows a strong similarity with

  15. Investigation of the role of triplet states in the Wulf bands of ozone

    Science.gov (United States)

    Braunstein, M.; Martin, R. L.; Hay, P. J.

    1995-03-01

    Results of spin-orbit interaction calculations on the three lowest triplet states of ozone, 3B2, 3A2, and 3B1, are presented. These calculations use a one-electron, one-center approximation of the spin-orbit operator and a modest number of configurations within a 3s2p1d basis to estimate the amount of singlet character in these predominantly triplet states and triplet character in the predominantly singlet ground state. The results are given in the context of recent studies which predict that one of these triplet states gives rise to the Wulf optical absorption bands of ozone, a series of weak diffuse peaks in the near infrared, just above the O2+O dissociation threshold. Without spin-orbit coupling, these triplet states are spin forbidden from the singlet ozone ground state, 1A1. The present results point to the 3A2 and 3B1 states as playing a possible role in the Wulf bands, but more complete calculations will be needed to confirm this.

  16. Ion-Pair States in Triplet Molecular Hydrogen

    Science.gov (United States)

    Setzer, W.; Baker, B. C.; Ashman, S.; Morgan, T. J.

    2016-05-01

    An experimental search is underway to observe the long range triplet ionic states H+ H- of molecular hydrogen. Resonantly enhanced multi-photon ionization of the metastable c 3∏u- 2 pπ state is used access to the R(1)nd1 n = 21 Rydberg state that serves as an intermediate stepping stone state to probe the energy region above the ionization limit with a second tunable laser photon. The metastable state is prepared by electron capture of 6 keV H2+ions in potassium in a molecular beam. Formation of the H+ H- triplet configuration involves triplet excited states of the H- ion, especially the 2p23Pe state, the second bound state of H- predicted to exist with a lifetime long compared to typical auto ionization lifetimes but not yet observed experimentally. Details of the experiment and preliminary results to date will be presented at the conference.

  17. Vibrational states of the triplet electronic state of H3+. The role of non-adiabatic coupling and geometrical phase

    CERN Document Server

    Alijah, Alexander

    2015-01-01

    Vibrational energies and wave functions of the triplet state of the H3+ ion have been determined. In the calculations, the ground and first excited triplet electronic states are included as well as the non-Born-Oppenheimer coupling between them. A diabatization procedure transforming the two adiabatic ab initio potential energy surfaces of the triplet-H3+ state into a 2x2 matrix is employed. The diabatization takes into account the non-Born-Oppenheimer coupling and the effect of the geometrical phase due to the conical intersection between the two adiabatic potential surfaces. The results are compared to the calculation involving only the lowest adiabatic potential energy surface of the triplet-H3+ ion and neglecting the geometrical phase. The energy difference between results with and without the non-adiabatic coupling and the geometrical phase is about a wave number for the lowest vibrational levels.

  18. Properties of the Triplet State of Coumarin Substituted Compounds

    Science.gov (United States)

    Bryantseva, N. G.; Gadirov, R. M.; Nikonov, S. Yu.; Sokolova, I. V.

    2015-03-01

    The absorption spectra of the triplet excited state of coumarin sensitizers are investigated both theoretically and experimentally. The most intense triplet-triplet (TT) absorption bands are determined. The experimental spectra of the T-T absorption are compared with the theoretical T-T transitions. The phosphorescence spectra of five compounds are measured at a temperature of 77 K. The quantum phosphorescence yield is determined by the method of comparison with an etalon (8-methoxypsoralen). The phosphorescence lifetime is determined for the examined molecules at a temperature of 77 K. For 3,4-phenyl-4',5'-cyclohexylpsoralen, 4'-methyl-3,4-cycloheptylpsoralen, and 4'5'-dimethyl-3,4-cyclohexylpsoralen compounds, this time is equal to 1.1, 1.25, and 2.5 s, respectively. The main energy deactivation channel for all examined compounds is the phosphorescence. The positions of the lower excited triplet states, calculated by the quantum-chemical method of intermediate neglect of differential overlap with spectroscopic parameterization (INDO/S), are confirmed by the available experimental data.

  19. Distinct properties of the triplet pair state from singlet fission.

    Science.gov (United States)

    Trinh, M Tuan; Pinkard, Andrew; Pun, Andrew B; Sanders, Samuel N; Kumarasamy, Elango; Sfeir, Matthew Y; Campos, Luis M; Roy, Xavier; Zhu, X-Y

    2017-07-01

    Singlet fission, the conversion of a singlet exciton (S1) to two triplets (2 × T1), may increase the solar energy conversion efficiency beyond the Shockley-Queisser limit. This process is believed to involve the correlated triplet pair state (1)(TT). Despite extensive research, the nature of the (1)(TT) state and its spectroscopic signature remain actively debated. We use an end-connected pentacene dimer (BP0) as a model system and show evidence for a tightly bound (1)(TT) state. It is characterized in the near-infrared (IR) region (~1.0 eV) by a distinct excited-state absorption (ESA) spectral feature, which closely resembles that of the S1 state; both show vibronic progressions of the aromatic ring breathing mode. We assign these near-IR spectra to (1)(TT)→Sn and S1→Sn' transitions; Sn and Sn' likely come from the antisymmetric and symmetric linear combinations, respectively, of the S2 state localized on each pentacene unit in the dimer molecule. The (1)(TT)→Sn transition is an indicator of the intertriplet electronic coupling strength, because inserting a phenylene spacer or twisting the dihedral angle between the two pentacene chromophores decreases the intertriplet electronic coupling and diminishes this ESA peak. In addition to spectroscopic signature, the tightly bound (1)(TT) state also shows chemical reactivity that is distinctively different from that of an individual T1 state. Using an electron-accepting iron oxide molecular cluster [Fe8O4] linked to the pentacene or pentacene dimer (BP0), we show that electron transfer to the cluster occurs efficiently from an individual T1 in pentacene but not from the tightly bound (1)(TT) state. Thus, reducing intertriplet electronic coupling in (1)(TT) via molecular design might be necessary for the efficient harvesting of triplets from intramolecular singlet fission.

  20. Room temperature triplet state spectroscopy of organic semiconductors.

    Science.gov (United States)

    Reineke, Sebastian; Baldo, Marc A

    2014-01-21

    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.

  1. Intramolecular triplet energy transfer via higher triplet excited state during stepwise two-color two-laser irradiation.

    Science.gov (United States)

    Oseki, Yosuke; Fujitsuka, Mamoru; Sakamoto, Masanori; Majima, Tetsuro

    2007-10-01

    We studied the energy transfer processes in the molecular array consisting of pyrene (Py), biphenyl (Ph2), and bisphthalimidethiophene (ImT), (Py-Ph2)2-ImT, during two-color two-laser flash photolysis (2-LFP). The first laser irradiation predominantly generates ImT in the lowest triplet excited state (ImT(T1)) because of the efficient singlet energy transfer from Py in the lowest singlet excited state to ImT and, then, intersystem crossing of ImT. ImT(T1) was excited to the higher triplet excited state (Tn) with the second laser irradiation. Then, the triplet energy was rapidly transferred to Py via a two-step triplet energy transfer (TET) process through Ph2. The efficient generation of Py(T1) was suggested from the nanosecond-picosecond 2-LFP. The back-TET from Py(T1) to ImT was observed for several tens of microseconds after the second laser irradiation. The estimated intramolecular TET rate from Py(T1) to ImT was as slow as 3.1 x 104 s-1. Hence, long-lived Py(T1) was selectively and efficiently produced during the 2-LFP.

  2. Model for Triplet State Engineering in Organic Light Emitting Diodes

    CERN Document Server

    Prodhan, Suryoday; Ramasesha, S

    2014-01-01

    Engineering the position of the lowest triplet state (T1) relative to the first excited singlet state (S1) is of great importance in improving the efficiencies of organic light emitting diodes and organic photovoltaic cells. We have carried out model exact calculations of substituted polyene chains to understand the factors that affect the energy gap between S1 and T1. The factors studied are backbone dimerisation, different donor-acceptor substitutions and twisted geometry. The largest system studied is an eighteen carbon polyene which spans a Hilbert space of about 991 million. We show that for reverse intersystem crossing (RISC) process, the best system involves substituting all carbon sites on one half of the polyene with donors and the other half with acceptors.

  3. The Electronic Investigation of Singlet and Triplet States of Oxyhemoglobin by Hartree-Fock Procedure and Associated Hyperfine Interaction.

    Science.gov (United States)

    Dubey, Archana; Badu, S. R.; Scheicher, R. H.; Sahoo, N.; Pink, R. H.; Schulte, A.; Saha, H. P.; Chow, Lee; Nagamine, K.; Das, T. P.

    2008-03-01

    The observation of paramagnetic susceptibility [1] in Oxy-Hb from measurements over a broad temperature range has stimulated interest in the occurrence of a low-lying excited triplet state close to the ground singlet state of Oxy-Hb. An earlier theoretical investigation [2] has shown the existence of such a triplet state providing support to the interpretation of the susceptibility data [1]. Support for the low-lying excited triplet state has been augmented recently [3] from microscopic relaxation rate measurements for muon attached to the heme group of Oxy-Hb. We are studying by first principles Hartree-Fock procedure the energies and the electronic wave functions of the ground and triplet states and the quantitative theoretical prediction of muon magnetic hyperfine interaction in room temperature μSR measurements on Oxy-Hb. Results will be presented for hyperfine interactions of muon and other nuclei in Oxy-Hb [1] M.Cerdonio etal. Proc. Nat. Acad. Sci USA 75, 4916(1978). [2] Zalek S. Herman and Gilda H Loew JACS 102, 1815(1980).[ 3] K. Nagamine etal Proc. Jpn. Acad.Ser.B 83,120(2007).

  4. Delocalisation of photoexcited triplet states probed by transient EPR and hyperfine spectroscopy

    Science.gov (United States)

    Richert, Sabine; Tait, Claudia E.; Timmel, Christiane R.

    2017-07-01

    Photoexcited triplet states play a crucial role in photochemical mechanisms: long known to be of paramount importance in the study of photosynthetic reaction centres, they have more recently also been shown to play a major role in a number of applications in the field of molecular electronics. Their characterisation is crucial for an improved understanding of these processes with a particular focus on the determination of the spatial distribution of the triplet state wavefunction providing information on charge and energy transfer efficiencies. Currently, active research in this field is mostly focussed on the investigation of materials for organic photovoltaics (OPVs) and organic light emitting diodes (OLEDs). As the properties of triplet states and their spatial extent are known to have a major impact on device performance, a detailed understanding of the factors governing triplet state delocalisation is at the basis of the further development and improvement of these devices. Electron Paramagnetic Resonance (EPR) has proven a valuable tool in the study of triplet state properties and both experimental methods as well as data analysis and interpretation techniques have continuously improved over the last few decades. In this review, we discuss the theoretical and practical aspects of the investigation of triplet states and triplet state delocalisation by transient continuous wave and pulse EPR and highlight the advantages and limitations of the presently available techniques and the current trends in the field. Application of EPR in the study of triplet state delocalisation is illustrated on the example of linear multi-porphyrin chains designed as molecular wires.

  5. Dynamics of excited-state intramolecular proton transfer reactions in piroxicam. Role of triplet states

    Science.gov (United States)

    Cho, Dae Won; Kim, Yong Hee; Yoon, Minjoong; Jeoung, Sae Chae; Kim, Dongho

    1994-08-01

    The picosecond time-resolved fluorescence and transient absorption behavior of piroxicam at room temperature are reported. The keto tautomer in the excited singlet state ( 1K*) formed via the fast intramolecular proton transfer (≈ 20 ps) is observed. The short-lived (7.5 ns) triplet state of keto tauomer ( 3K*) is generated from 1K * in toluene whereas it is hardly observed in ethanol. Consequently, rapid reverse proton transfer takes place from 3K * to the enol triplet state ( 3E *.

  6. Excited triplet state photophysics of the sulphonated aluminium phthalocyanines bound to human serum albumin.

    Science.gov (United States)

    Foley, M S; Beeby, A; Parker, A W; Bishop, S M; Phillips, D

    1997-03-01

    The binding of the sulphonated aluminum phthalocyanines to human serum albumin (HSA) in aqueous phosphate buffer solution at 25 degrees C has been studied by measuring the properties of the triplet excited states of these dyes. The triplet lifetimes were measured by triplet-triplet absorption flash photolysis. The triplet lifetime of the disulphonated AlS2Pc (2.5 microM) varies from 500 +/- 30 microseconds in the absence of protein to 1.100 microseconds and longer with HSA concentrations above 100 microM. Under identical conditions, the maximum triplet lifetimes of the mono-, tri- and tetrasulphonated compounds bound to HSA are shorter than those for the disulphonated species. The increase in the triplet state lifetimes is attributed to the ability of the bulk aqueous phase to interact with the sensitizer at the site of binding; the site of binding being dependent on the degree of sulphonation. For AlS2Pc and AlS3Pc at all HSA concentrations, and regardless of the degree of sulphonation, all the triplet state decay profiles follow simple pseudo-first-order kinetics. The exponential decay of the triplet phthalocyanine at all HSA concentrations is ascribed to the rapid association and dissociation of the phthalocyanine-HSA complex on the time-scales of the triplet state lifetimes. A simplified one-step binding model is utilized to describe the results. The association of AlS1Pc with HSA results in substantial quenching of the triplet state quantum yield, and a more complex model is required to analyze the results. The tetrasulphonated compound (AlS4Pc) binds to the protein at a site where it experiences some protection from the aqueous phase.

  7. Expressions of excited states by triplet dimers in heisenberg antiferromagnetic ladders. Analysis of magnetic Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Natsume, Yuhei; Tada, Shinichiro; Suzuki, Toshihiko [Chiba Univ., Graduate School of Science and Technology, Chiba (Japan)

    2002-06-01

    Characteristic properties of excited states in antiferromagnetic ladder systems with spin-1/2 are investigated in relation with the theoretical analysis of the quite asymmetric shape of the peak for twice the spin gap {delta}{sub g} in magnetic Raman spectra. Here, the structure of exchange-scattering spectra are reproduced by the numerical calculation for the finite Heisenberg ladder, in which legs with antiferromagnetic bond J{sub c} is connected by rungs with antiferromagnetic bond J{sub r}. The singlet ground state in this system can be expressed as the ordering of singlet dimers on rungs in the ladder for J{sub c}/J{sub r} {yields} +0. In fact, the value of 0.1 is adopted to be the ratio of J{sub c}/J{sub r} in order to discuss the experimental work of the magnetic Raman spectra for the ladder of V{sup 4+} ions in the oxide compound CaV{sub 2}O{sub 5} reported in Konstantinovic et al., Phys. Rev. B61 (2000), 15185. As for this peak of 2{delta}{sub g}, quite an asymmetric observed shape is explained by the present calculation. According to the analysis of spectra, we discuss the expression of excited states by triplet dimers on rungs: The dominant contribution of the pair of triplet dimers on adjacent rungs to the corresponding state for 2{delta}{sub g} peak is pointed out. (author)

  8. Direct optical access to the triplet manifold of states in H2

    Science.gov (United States)

    Jungen, Ch.; Glass-Maujean, M.

    2016-03-01

    A number of unassigned lines in the absorption spectrum of diatomic hydrogen are attributed to nominally forbidden transitions from the ground state to the n f manifold of states (Rydberg electron with ℓ =3 orbital momentum). They appear via weak ℓ - mixing interactions leading to local level perturbations. Our analysis is based on multichannel quantum defect theory and uses known theoretical information from the literature. The upper levels of most of these transitions are known to give rise to molecular fluorescence, and they are shown to be singlet-triplet mixed. We conclude that the well-known metastable c 3Πu- state can be populated via one-photon absorption of uv photons followed by cascade emission 4 f →3 d →2 p .

  9. Resonance raman and absorption spectra of isomeric retinals in their lowest excited triplet states

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N.-H.; Houee-Levin, C.

    1985-01-01

    implications about the size of the energy barriers separating the various triplet species are discussed. The resonance Raman spectra obtained by using either anthracene (ET = 177.7 kJ mol-1) or naphthalene (ET = 254.8 kJ mol-1) as sensitizers were virtually identical for the corresponding triplet states from...

  10. Triplet States of Thioflavin T in Fluorescent Molecular Rotor Model

    Science.gov (United States)

    Kuz‧mitskii, V. A.; Stepuro, V. I.

    2017-01-01

    Quantum-chemical INDO/S calculations of Thiofl avin T have been carried out taking account of variation of the angle φ between the planes of the benzothiazole (BTZ) and dimethylaniline (DMA) rings. It was found that when the angle φ changes from 40° to 90° the energy of the triplet state increases by 4000 cm-1, whereas the energy of the singlet state S 1 decreases by 1900 cm-1 and reaches a minimum. The function {E}_{T_1}(φ) has a minimum at φ = 30°, which is 300 cm-1 less than at φ = 40°. The calculated T 1 S 0 interval at φ = 30-40° amounts to 15,600-16,000 cm-1, which agrees well with the phosphorescence data (17,100-17,400 cm-1). For φ = 80-90° the T 1, T 2 , and T 3 levels ( T 1 and T 2 are lower than S 1 ) are close to the S 1 level. The S 1 and T 3 levels intersect at φ 85°, and at φ = 90° the interval Δ {E}_{S_1{T}_3} amounts to only 100 cm-1 due to the small value of the exchange integral corresponding to electron transfer DMA → BTZ.

  11. Decomposition of formyl fluoride on the lowest triplet state surface

    Science.gov (United States)

    Sumathi, R.; Chandra, A. K.

    1992-09-01

    Decomposition of formyl fluoride on the lowest triplet potential energy hypersurface is studied using ab initio quantum chemical methods. Dissociation energies and the barrier to dissociation from the lowest triplet HFCO into H( 2S) and FCO( 2A') are reported. Results reveal that the barrier to dissociation into F( 2P) + HCO( 2A') is very high. The triatomic radical, FCO( 2A') decomposes into F( 2P) + CO( 1Σ) from the high vibrational levels of the C-F stretch.

  12. Interplay between singlet and triplet excited states in a conformationally locked donor–acceptor dyad

    KAUST Repository

    Filatov, Mikhail A.

    2015-10-13

    The synthesis and photophysical characterization of a palladium(II) porphyrin – anthracene dyad bridged via short and conformationally rigid bicyclo[2.2.2]octadiene spacer were achieved. A spectroscopic investigation of the prepared molecule in solution has been undertaken to study electronic energy transfer in excited singlet and triplet states between the anthracene and porphyrin units. By using steady-state and time-resolved photoluminescence spectroscopy it was shown that excitation of the singlet excited state of the anthracene leads to energy transfer to the lower-lying singlet state of porphyrin. Alternatively, excitation of the porphyrin followed by intersystem crossing to the triplet state leads to very fast energy transfer to the triplet state of anthracene. The rate of this energy transfer has been determined by transient absorption spectroscopy. Comparative studies of the dynamics of triplet excited states of the dyad and reference palladium octaethylporphyrin (PdOEP) have been performed.

  13. Ground State Spin Logic

    CERN Document Server

    Whitfield, J D; Biamonte, J D

    2012-01-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground state subspace encoding the truth tables of Boolean formulas. The ground state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  14. Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls

    Energy Technology Data Exchange (ETDEWEB)

    Niedzwiedzki, Dariusz; Blankenship, R. E.

    2010-11-18

    Ten naturally occurring chlorophylls (a, b, c{sub 2}, d) and bacteriochlorophylls (a, b, c, d, e, g) were purified and studied using the optical spectroscopic techniques of both steady state and time-resolved absorption and fluorescence. The studies were carried out at room temperature in nucleophilic solvents in which the central Mg is hexacoordinated. The comprehensive studies of singlet excited state lifetimes show a clear dependency on the structural features of the macrocycle and terminal substituents. The wide-ranging studies of triplet state lifetime demonstrate the existence of an energy gap law for these molecules. The knowledge of the dynamics and the energies of the triplet state that were obtained in other studies allowed us to construct an energy gap law expression that can be used to estimate the triplet state energies of any (B)chlorophyll molecule from its triplet lifetime obtained in a liquid environment.

  15. Zero-field splitting of the first excited triplet state in biradicals estimated from magnetic effects on the fluorescence decays

    Energy Technology Data Exchange (ETDEWEB)

    LeJeune, V.; Despres, A.; Migirdicyan, E. (Universite Paris-Sud, Orsay (France))

    1990-12-27

    The fluorescence decay of matrix-isolated m-xylylene biradicals is nonexponential and attributed to the emission from different sublevels of the first excited triplet state. In the presence of a magnetic field, the lifetime of the slow decay component decreases. Its dependence as a function of a weak magnetic field can be calculated for different values of the zero-field splitting parameter D. The best fitting value is {vert bar}D{vert bar} = 0.04 {plus minus} 0.01 cm{sup {minus}1}. This D value is found to be significantly larger in the first excited triplet state than in the ground state of the m-xylylene biradicals.

  16. The origin of efficient triplet state population in sulfur-substituted nucleobases

    Science.gov (United States)

    Mai, Sebastian; Pollum, Marvin; Martínez-Fernández, Lara; Dunn, Nicholas; Marquetand, Philipp; Corral, Inés; Crespo-Hernández, Carlos E.; González, Leticia

    2016-10-01

    Elucidating the photophysical mechanisms in sulfur-substituted nucleobases (thiobases) is essential for designing prospective drugs for photo- and chemotherapeutic applications. Although it has long been established that the phototherapeutic activity of thiobases is intimately linked to efficient intersystem crossing into reactive triplet states, the molecular factors underlying this efficiency are poorly understood. Herein we combine femtosecond transient absorption experiments with quantum chemistry and nonadiabatic dynamics simulations to investigate 2-thiocytosine as a necessary step to unravel the electronic and structural elements that lead to ultrafast and near-unity triplet-state population in thiobases in general. We show that different parts of the potential energy surfaces are stabilized to different extents via thionation, quenching the intrinsic photostability of canonical DNA and RNA nucleobases. These findings satisfactorily explain why thiobases exhibit the fastest intersystem crossing lifetimes measured to date among bio-organic molecules and have near-unity triplet yields, whereas the triplet yields of canonical nucleobases are nearly zero.

  17. Magnetic excitons in singlet-ground-state ferromagnets

    DEFF Research Database (Denmark)

    Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.

    1971-01-01

    The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...

  18. The photochemistry of lipoic acid: photoionization and observation of a triplet excited state of a disulfide.

    Science.gov (United States)

    Bucher, Götz; Lu, Changyuan; Sander, Wolfram

    2005-12-09

    Under short-wavelength UV irradiation, lipoic acid (LipSS) and its reduced form, dihydrolipoic acid (DHLA), undergo photoionization processes through a bi- or monophotonic pathway. After ionization, the LipSS radical cation (LipSS*+) and radical anion (LipSS*-) are generated. LipSS*- can be converted to equimolar amounts of LipSS and DHLA through second-order decay. Triplet acetone can be quenched by LipSS and DHLA with a rate close to the diffusion-controlled limit. The mechanism was further confirmed by continuous irradiation experiments. When LipSS is directly irradiated with UVA light, the first excited triplet state of LipSS is observed, with a lifetime tau=75 ns. Characteristic reactions include triplet energy transfer to oxygen and beta-carotene and addition to isoprene. The lifetime of triplet LipSS is also shortened by addition of water and methanol.

  19. Triplet state in photosystem II reaction centers as studied by 130 GHz EPR

    Energy Technology Data Exchange (ETDEWEB)

    Pashenko, S.V.; Proskuryakov, I.I.; Germano, M.; Gorkom, H.J. van; Gast, P

    2003-11-01

    The triplet state in the reaction centers of photosystem II was studied by high-field/high-frequency (130 GHz) EPR in the temperature range 50-90 K. At 50 K, the zero-field splitting parameters of the EPR spectrum correspond well to those of a chlorophyll monomer, in agreement with earlier studies. In the high magnetic field of 4.6 T employed in this study, the g-anisotropy of the triplet state becomes apparent and leads to a shift of the canonical positions of the triplet EPR spectrum. Assuming that triplet g- and zero-field tensors are coaxial, the principal values of the triplet g-tensor are determined to be 2.00324, 2.00306 and 2.00231 with an error of {+-}0.00004. Lifting this assumption results in higher g-anisotropy. At higher temperatures, the shape of the spectra changes significantly. Triplet excitation hopping involving the accessory chlorophyll B{sub A} and P{sub A} or P{sub B} (equivalents of the special pair bacteriochlorophylls of the bacterial reaction centers) can partially explain those changes, but the most prominent features indicate that also the electron acceptor I{sub A} (a pheophytin molecule) must be involved.

  20. Solvation of triplet Rydberg states of molecular hydrogen in superfluid helium

    Science.gov (United States)

    Kiljunen, Toni; Lehtovaara, Lauri; Kunttu, Henrik; Eloranta, Jussi

    2004-01-01

    We report ab initio interaction potentials, transition dipole moments, and radiative lifetimes for the four lowest triplet states of H2: b 3Σ+u, c 3Πu, a 3Σ+g, and e 3Σ+u, and their response to the perturbation due to approaching ground state He atom. Hybrid density functional quantum Monte Carlo calculations employing the ab initio interaction potentials are then used for calculating the liquid structure around the molecular excimers in bulk superfluid 4He. Calculations demonstrate a wide variety of possible solvation structures, both spherical and highly anisotropic in geometry, depending on the electronic state of H2. The experimentally observed H2 (3e3a) emission bands [Trottier et al., Phys. Rev. A 61, 052504 (2000)] are simulated and the origins of the line shifts discussed. Absorption spectra of the same system are predicted to be broader and more blue shifted compared to the gas phase. Feasibility of the metastable 3c state for absorption experiments in liquid helium is proposed.

  1. Triplet State Formation in Photovoltaic Blends of DPP-Type Copolymers and PC71BM

    KAUST Repository

    Ochsmann, Julian R.

    2015-04-29

    The exciton dynamics in pristine films of two structurally related low-bandgap diketopyrrolopyrrole (DPP)-based donor–acceptor copolymers and the photophysical processes in bulk heterojunction solar cells using DPP copolymer:PC71BM blends are investigated by broadband transient absorption (TA) pump-probe experiments covering the vis–near-infrared spectral and fs–μs dynamic range. The experiments reveal surprisingly short exciton lifetimes in the pristine poly­mer films in conjunction with fast triplet state formation. An in-depth analysis of the TA data by multivariate curve resolution analysis shows that in blends with fullerene as acceptor ultrafast exciton dissociation creates charge carriers, which then rapidly recombine on the sub-ns timescale. Furthermore, at the carrier densities created by pulsed laser excitation the charge carrier recombination leads to a substantial population of the polymer triplet state. In fact, virtually quantitative formation of triplet states is observed on the sub-ns timescale. However, the quantitative triplet formation on the sub-ns timescale is not in line with the power conversion efficiencies of devices indicating that triplet state formation is an intensity-dependent process in these blends and is reduced under solar illumination conditions, as free charge carriers can be extracted from the photoactive layer in devices.

  2. Conformational instability of the lowest triplet state of the benzene nucleus: I. The unsubstituted molecule

    NARCIS (Netherlands)

    van der Waals, J.H.; van Hemert, M.C.; Buma, W.J.

    1990-01-01

    Experiments on benzene have established that its lowest triplet state (3B1u) is conformationally unstable owing to vibronic coupling with the next higher state (3E1u). This instability was found to be critically dependent on the influence of a crystal field. An analogous vibronic coupling is to be

  3. Conformational instability of the lowest triplet state of the benzene nucleus: I. The unsubstituted molecule

    NARCIS (Netherlands)

    J.H. van der Waals; M.C. van Hemert; W.J. Buma

    1990-01-01

    Experiments on benzene have established that its lowest triplet state (3B1u) is conformationally unstable owing to vibronic coupling with the next higher state (3E1u). This instability was found to be critically dependent on the influence of a crystal field. An analogous vibronic coupling is to be e

  4. Two-step unsymmetrical quantum key distribution protocol using GHZ triplet states

    Institute of Scientific and Technical Information of China (English)

    HUANG Peng; LIU Ye; ZHOU Nan-run; ZENG Gui-hua

    2009-01-01

    The security, efficiency, transmission distance and error rate are important parameters of a quantum key distribution scheme. In this article, the former two parameters are focused on. To reach high efficiency, an unsymmetrical quantum key distribution scheme that employs Greenberger-Horne-Zeilinger (GHZ) triplet states and dense coding mechanism is proposed, in which a GHZ triplet state can be used to share two bits of classical information. The proposed scheme can be employed in a noisy or lossy quantum channel. In addition, a general approach to security analysis against general individual attacks is presented.

  5. Triplet excited state properties in variable gap π-conjugated donor–acceptor–donor chromophores

    KAUST Repository

    Cekli, Seda

    2016-02-12

    A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.

  6. Using less Quantum Resource for Probabilistic Controlled Teleportation of a Triplet W State

    Directory of Open Access Journals (Sweden)

    Xian-Ming Wang

    2012-10-01

    Full Text Available In a recent paper [CHIN. PHYS. LETT. Vol.26,No.7(2009070306 ], DONG et al. proposed a scheme for probabilistic controlled teleportation of a triplet W state using combined non-maximally entangled channel of two Einstein–Podolsky–Rosen (EPR states and one Greenberger–Horne–Zeilinger (GHZ state. In this paper ,only using one Einstein–Podolsky–Rosen (EPR state and one Greenberger–Horne–Zeilinger (GHZ state,the scheme for probabilistic controlled teleportation of a triplet W state is presented. Furthermore, Comparing with the widely used Bell-State measurement, Alice performs orthogonal complete basis measurement in the current work. Then Bob can faithfully reconstruct the original state by performing relevant unitary transformations. The total probability of successful teleportation is only dependent on channel coefficients of EPR state and GHZ state.  

  7. Exploring two-state reactivity pathways in the cycloaddition reactions of triplet methylene.

    Science.gov (United States)

    Pérez, Patricia; Andrés, J; Safont, V S; Contreras, Renato; Tapia, O

    2005-05-12

    Spin forbidden 1,2-cycloadditions of triplet methylene to alkenes have been theoretically studied as an example of the two-state reactivity paradigm in organic chemistry. The cycloadditions of triplet methylene to ethylene and the (E)- and (Z)-2-butene isomers show spin inversion after the transition state and therefore with no effect on the reaction rate. A local analysis shows that while triplet methylene addition to alkenes leading to the formation of a biradical intermediate is driven by spin polarization, the ring closure step to yield cyclopropane is a pericyclic process. We have found that at the regions in the potential energy surface where the spin crossover is likely to occur, the spin potential in the direction of increasing spin multiplicity, mu(+)(s), tends to equalize the one in the direction of decreasing spin multiplicity, mu(-)(s). This equalization facilitates the spin transfer process driven by changes in the spin density of the system.

  8. Charge Transfer and Triplet States in High Efficiency OPV Materials and Devices

    Science.gov (United States)

    Dyakonov, Vladimir

    2013-03-01

    The advantage of using polymers and molecules in electronic devices, such as light-emitting diodes (LED), field-effect transistors (FET) and, more recently, solar cells (SC) is justified by the unique combination of high device performance and processing of the semiconductors used. Power conversion efficiency of nanostructured polymer SC is in the range of 10% on lab scale, making them ready for up-scaling. Efficient charge carrier generation and recombination in SC are strongly related to dissociation of the primary singlet excitons. The dissociation (or charge transfer) process should be very efficient in photovoltaics. The mechanisms governing charge carrier generation, recombination and transport in SC based on the so-called bulk-heterojunctions, i.e. blends of two or more semiconductors with different electron affinities, appear to be very complex, as they imply the presence of the intermediate excited states, neutral and charged ones. Charge transfer states, or polaron pairs, are the intermediate states between free electrons/holes and strongly bound excitons. Interestingly, the mostly efficient OLEDs to date are based on the so-called triplet emitters, which utilize the triplet-triplet annihilation process. In SC, recent investigations indicated that on illumination of the device active layer, not only mobile charges but also triplet states were formed. With respect to triplets, it is unclear how these excited states are generated, via inter-system crossing or via back transfer of the electron from acceptor to donor. Triplet formation may be considered as charge carrier loss channel; however, the fusion of two triplets may lead to a formation of singlet excitons instead. In such case, a generation of charges by utilizing of the so far unused photons will be possible. The fundamental understanding of the processes involving the charge transfer and triplet states and their relation to nanoscale morphology and/or energetics of blends is essential for the

  9. Singlet Ground State Magnetism:

    DEFF Research Database (Denmark)

    Loidl, A.; Knorr, K.; Kjems, Jørgen;

    1979-01-01

    The magneticGamma 1 –Gamma 4 exciton of the singlet ground state system TbP has been studied by inelastic neutron scattering above the antiferromagnetic ordering temperature. Considerable dispersion and a pronounced splitting was found in the [100] and [110] directions. Both the band width...... and the splitting increased rapidly as the transition temperature was approached in accordance with the predictions of the RPA-theory. The dispersion is analysed in terms of a phenomenological model using interactions up to the fourth nearest neighbour....

  10. Thermodynamic changes in the photoinduced proton-transfer reaction of the triplet state of safranine-T.

    Science.gov (United States)

    Borsarelli, Claudio D; Bertolotti, Sonia G; Previtali, Carlos M

    2002-08-01

    The enthalpy and volume changes occurring in the triplet excited state proton-transfer reactions of safranine-T (SH+) in aqueous solutions at pH 4.8, 8.3, and 10.4 were investigated using time-resolved photoacoustics (TRP). The transient triplet state species were also studied using laser-flash photolysis (LFP). The LFP experiments showed the prompt formation of 3SH+ with a triplet quantum yield phiT = 0.28 between pH 4.8 and 10.4. At pH 8.3 3SH+ decays directly to the ground state. However, at pH 4.8 and 10.4, 3SH+ reacts with protons or hydroxy ions to form the dication 3SH2(2+) or the neutral 3S species, with diffusion-controlled rate constants of kH+ = 1.6 x 10(10) M(-1) s(-1), and kHO- = 2.6 x 10(10) M(-1) s(-1), respectively. Under the same experimental conditions, the TRP measurements allowed the accurate determination of the energy content of the rapidly formed triplet state 3SH+ i.e. E(T) = 175 kJ mol(-1). The slow component (0.1-3 micros) of the TRP signal at pH 4.8 and 10.4 was attributed to the formation of the species 3SH2(2+) and 3S, respectively. The enthalpy changes associated with the proton-transfer reactions of 3SH+, calculated from the values of the heat released as obtained by TRP, were in remarkable agreement with the values estimated from the thermodynamic data of the acid-base equilibria of the triplet states of the dye. The formation of 3SH+ was accompanied by a volume expansion of 1.8 cm3 mol(-1), which was explained by changes in the hydrogen-bonding interaction of the dye with its solvation sphere. Instead, the volume changes observed upon the formation of 3SH2(2-) and 3S accounted for the electrostrictive effect produced by the change in the charge distribution on the dye after the proton-transfer reaction.

  11. Laser flash photolysis study on 9-phenylxanthenium tetrafluoroborate: Identification of new features due to the triplet state

    Indian Academy of Sciences (India)

    Sanghamitra Banerjee; Anunay Samanta

    2011-01-01

    Laser flash photolysis study on highly fluorescent and stable salt of 9-phenylxanthenium cation in neutral condition has been carried out for the first time. A new transient absorption band of this extensively studied system that perhaps remained buried under the fluorescence envelope and hitherto undetected has been identified and attributed to the triplet state of the system. This oxygen-insensitive triplet-triplet absorption band in the 480-600 nm range is expected to trigger new studies exploring the reactivity of the triplet state of this system, which has so far received very little attention.

  12. Accessing the Long-Lived Triplet Excited States in Transition-Metal Complexes: Molecular Design Rationales and Applications.

    Science.gov (United States)

    Cui, Xiaoneng; Zhao, Jianzhang; Mohmood, Zafar; Zhang, Caishun

    2016-02-01

    Transition-metal complex triplet photosensitizers are versatile compounds that have been widely used in photocatalysis, photovoltaics, photodynamic therapy (PDT) and triplet-triplet annihilation (TTA) upconversion. The principal photophysical processes in these applications are the intermolecular energy transfer or electron transfer. One of the major challenges facing these triplet photosensitizers is the short triplet-state lifetime, which is detrimental to the above-mentioned photophysical processes. In order to address this challenge, transition-metal complexes showing long-lived triplet excited states are highly desired. This review article summarizes the development of this fascinating area, including the molecular design rationales, the principal photophysical properties, and the applications of these complexes in PDT and TTA upconversion.

  13. Conditions for describing triplet states in reduced density matrix functional theory

    CERN Document Server

    Theophilou, Iris; Helbig, Nicole

    2016-01-01

    We consider necessary conditions for the one body-reduced density matrix (1RDM) to correspond to a triplet wave-function of a two electron system. The conditions concern the occupation numbers and are different for the high spin projections, $S_z=\\pm 1$, and the $S_z=0$ projection. We employ these conditions in reduced density matrix functional theory calculations for the triplet excitations of two electron systems. In addition, we propose that these conditions can be used in the calculation of triplet states of systems with more than two electrons by restricting the active space and assess this procedure in calculations for a few atomic and molecular systems. We show that the quality of the optimal 1RDMs improves by applying the conditions in all the cases we studied.

  14. Quantum confinement-tunable intersystem crossing and the triplet state lifetime of cationic porphyrin–CdTe quantum dot nano-assemblies

    KAUST Repository

    Ahmed, Ghada H.

    2015-03-27

    Here, we report a ground-state interaction between the positively charged cationic porphyrin and the negatively charged carboxylate groups of the thiol ligands on the surface of CdTe quantum dots (QDs), leading to the formation of a stable nanoassembly between the two components. Our time-resolved data clearly demonstrate that we can dramatically tune the intersystem crossing (ISC) and the triplet state lifetime of porphyrin by changing the size of the QDs in the nanoassembly.

  15. Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    CERN Document Server

    Li, Zhaokai; Chen, Hongwei; Lu, Dawei; Whitfield, James D; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng

    2011-01-01

    Quantum ground-state problems are computationally hard problems; for general many-body Hamiltonians, there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10^-5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wavefunctions than c...

  16. Ab initio calculations on the structure of pyridine in its lowest triplet state

    NARCIS (Netherlands)

    Buma, W.J.; Groenen, E.J.J.; Schmidt, J.

    1990-01-01

    Recently we have experimentally shown that pyridine-d5, as a guest in a single crystal of benzene-d6, adopts a boatlike structure upon excitation into the lowest triplet state T0. Here MRDCI ab initio calculations are presented that reveal that the observed nonplanarity of the molecule is not caused

  17. The photophysics of monomeric bacteriochlorophylls c and d and their derivatives: properties of the triplet state and singlet oxygen photogeneration and quenching

    Science.gov (United States)

    Krasnovsky, A. A. Jr; Cheng, P.; Blankenship, R. E.; Moore, T. A.; Gust, D.

    1993-01-01

    Measurements of pigment triplet-triplet absorption, pigment phosphorescence and photosensitized singlet oxygen luminescence were carried out on solutions containing monomeric bacteriochlorophylls (Bchl) c and d, isolated from green photosynthetic bacteria, and their magnesium-free and farnesyl-free analogs. The energies of the pigment triplet states fell in the range 1.29-1.34 eV. The triplet lifetimes in aerobic solutions were 200-250 ns; they increased to 280 +/- 70 microseconds after nitrogen purging in liquid solutions and to 0.7-2.1 ms in a solid matrix at ambient or liquid nitrogen temperatures. Rate constants for quenching of the pigment triplet state by oxygen were (2.0-2.5) x 10(9) M-1 s-1, which is close to 1/9 of the rate constant for diffusion-controlled reactions. This quenching was accompanied by singlet oxygen formation. The quantum yields for the triplet state formation and singlet oxygen production were 55-75% in air-saturated solutions. Singlet oxygen quenching by ground-state pigment molecules was observed. Quenching was the most efficient for magnesium-containing pigments, kq = (0.31-1.2) x 10(9) M-1 s-1. It is caused mainly by a physical process of singlet oxygen (1O2) deactivation. Thus, Bchl c and d and their derivatives, as well as chlorophyll and Bchl a, combine a high efficiency of singlet oxygen production with the ability to protect photochemical and photobiological systems against damage by singlet oxygen.

  18. Toward the Understanding of the Photophysics and Photochemistry of 1-Nitronaphthalene under Solar Radiation: The First Theoretical Evidence of a Photodegradation Intramolecular Rearrangement Mechanism Involving the Triplet States.

    Science.gov (United States)

    Giussani, Angelo

    2014-09-09

    1-Nitronaphthalene belongs to the class of nitrated polycyclic aromatic hydrocarbons, and constitutes an atmospheric pollutant commonly found in urban environments due to its production during incomplete combustions. On the basis of CASPT2//CASSCF quantum chemical calculations, the photophysics and photochemistry of the system under solar exposure have for the first time been studied. According to the characteristics of the incident radiation (either UVA or UVB, both present in the portion of the solar spectrum reaching the earth), a different excited state will be mainly populated. In both cases, the main decay path undertaken by the corresponding bright state leads to an efficient intersystem crossing process toward the (3)(πOπ*) triplet excited state. The population of the triplet manifold is then identified as the primary photoinduced process in the title molecule, not only after UVA interaction but also under UVB exposure. From the (3)(πOπ*) state, the system can either decay in a radiationless manner to the original ground state minimum, or undergo a photodegradation process mediated by the presence of an accessible singlet-triplet crossing region characterized by the formation of a oxaziridine ring. The determination of such a photodegradation path constitutes the first theoretical evidence supporting the hypothesis formulated almost 50 years ago in the seminal work of Chapman et al. (J. Am. Chem. Soc. 1966, 88, 5550), according to which the photolysis undertaken by nitrated polycyclic aromatic hydrocarbons proceeds through an intramolecular rearrangement mechanism, here characterized on the triplet manifold.

  19. Conformational instability of the lowest triplet state of the benzene nucleus: II. p-Xylene, the influence of substituents

    NARCIS (Netherlands)

    J.H. van der Waals; M.C. van Hemert; W.J. Buma

    1990-01-01

    A calculation of the potential-energy surface of the lowest triplet state of p-xylene as a function of the S8(,) distortion coordinate of the benzene skeleton has been made to learn more about the influence of substituents on the vibronically induced distortion of benzene in its metastable triplet s

  20. Proton and hydride affinities in excited states: magnitude reversals in proton and hydride affinities between the lowest singlet and triplet states of annulenyl and benzannulenyl anions and cations

    DEFF Research Database (Denmark)

    Rosenberg, Martin; Ottosson, Henrik; Kilså, Kristine

    2010-01-01

    Aromaticity has importance for proton and hydride affinities in the singlet ground state (S(0)) of annulenyl anions and cations so that, e.g., cyclopentadiene is an acidic hydrocarbon. For the lowest pipi* excited triplet state (T(1)), Baird's rule concludes that annulenes with 4n pi-electrons ar......Aromaticity has importance for proton and hydride affinities in the singlet ground state (S(0)) of annulenyl anions and cations so that, e.g., cyclopentadiene is an acidic hydrocarbon. For the lowest pipi* excited triplet state (T(1)), Baird's rule concludes that annulenes with 4n pi......-electrons are aromatic and those with 4n+2 pi-electrons are antiaromatic, opposite to Huckel's rule for aromaticity in S(0). Our hypothesis is now that the relative magnitudes of proton and hydride affinities of annulenyl anions and cations reverts systematically as one goes from S(0) to T(1) as a result of the opposite...... electron counting rules for aromaticity in the two states. Using quantum chemical calculations at the G3(MP2)//(U)B3LYP/6-311+G(d,p) level we have examined the validity of this hypothesis for eight proton and eight hydride addition reactions of anions and cations, respectively, of annulenyl...

  1. The spectroscopy of singlets and triplets excites electronic states, spatial and electronic structure of hydrocarbons and quantum classifications in chemmotology

    Science.gov (United States)

    Obukhov, A. E.

    2016-12-01

    In this work we demonstrate the physical foundations of the spectroscopy of the grounds states: E- and X-ray, (RR) Raman scattering the NMR 1H and 13C and IR-, EPR- absorption and the singlets and triplets electronic excited states in the multinuclear hydrocarbons in chemmotology. The parameters of UV-absorption, RR-Raman scattering of light, the fluorescence and the phosphorescence and day-lasers at the pumping laser and lamp, OLEDs and OTETs- are measurements. The spectral-energy properties are briefly studied. The quantum-chemical LCAO-MO SCF expanded-CI PPP/S and INDO/S methods in the electronic and spatial structure hidrocarbons are considered.

  2. Ground State of a Two-Electron Quantum Dot with a Gaussian Confining Potential

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2006-01-01

    We investigate the ground-state properties of a two-dimensional two-electron quantum dot with a Gaussian confining potential under the influence of perpendicular homogeneous magnetic field. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. A ground-state behaviour (singlet→triplet state transitions) as a function of the strength of a magnetic field has been found. It is found that the dot radius R of the Gaussian potential is important for the ground-state transition and the feature of ground-state for the Gaussian potential quantum dot (QD), and the parabolic potential QDs are similar when R is larger. The larger the quantum dot radius, the smaller the magnetic field for the singlet-triplet transition of the ground-state of two interacting electrons in the Gaussian quantum dot.

  3. Inelastic and elastic collision rates for triplet states of ultracold strontium

    Science.gov (United States)

    Traverso, A.; Chakraborty, R.; Martinez de Escobar, Y. N.; Mickelson, P. G.; Nagel, S. B.; Yan, M.; Killian, T. C.

    2009-06-01

    We report measurement of the inelastic and elastic collision rates for S88r atoms in the (5s5p)P30 state in a crossed-beam optical dipole trap. Since the (5s5p)P30 state is the lowest level of the triplet manifold, large loss rates indicate the importance of principle-quantum-number-changing collisions at short range. We also provide an estimate of the collisional loss rates for the (5s5p)P32 state. Large loss-rate coefficients for both states indicate that evaporative cooling toward quantum degeneracy in these systems is unlikely to be successful.

  4. Time-resolved spectroscopic studies of sulphonated aluminium phthalocyanine triplet states

    Science.gov (United States)

    Simpson, Mary S. C.; Beeby, A.; Bishop, Steven M.; MacRobert, Alexander J.; Parker, Andrew W.; Phillips, David

    1992-04-01

    The photophysical and photochemical properties of sulphonated aluminum and zinc phthalocyanines have been investigated in a range of solvents and model biological systems. Anomalous effects are observed upon deuteration of the solvent and addition of fluoride ions. In D2O the excited singlet and triplet state lifetimes and quantum yields of fluorescence and triplet state formation are increased relative to H2O. No solvent isotope effect is observed between CH3OH and CH3OD. It is proposed that relaxation of the excited state involves a tunnelling type interaction in which the phthalocyanine's highly energetic metal-axial ligand stretching vibrations are coupled to the HO-H or DO-D stretching vibrations. A significant increase in triplet lifetimes of phthalocyanine sensitizers bound to protein substrates is observed which is a function of the degree of sulphonation. The implications of these results to the determination of the quantum yields of singlet oxygen formation in D2O and lipophilic environments are discussed.

  5. Fluorescence via Reverse Intersystem Crossing from Higher Triplet States in a Bisanthracene Derivative

    CERN Document Server

    Sato, Tohru; Haruta, Naoki; Pu, Yong-Jin

    2016-01-01

    To elucidate the high external quantum efficiency observed for organic light-emitting diodes using a bisanthracene derivative, BD1, as the emitting molecule, off-diagonal vibronic coupling constants (VCCs) between the excited states of BD1, which govern non-radiative transition rates, were calculated employing time-dependent density functional theory. The VCCs were analysed based on the concept of vibronic coupling density. The VCC calculations suggest a fluorescence via higher triplets (FvHT) mechanism, which entails the conversion of a T$_4$ exciton generated during electrical excitation into an S$_2$ exciton via reverse intersystem crossing (RISC); moreover, the S$_2$ exciton relaxes to a fluorescent S$_1$ exciton because of large vibronic coupling between S$_2$ and S$_1$. This mechanism is valid as long as the relaxation of triplet states higher than T$_1$ to lower states is suppressed. The symmetry-controlled thermally activated delayed fluorescence (SC-TADF) and inverted singlet and triplet (iST) struct...

  6. Progress in dynamic study on the triplet excited states and radical ions of DNA and its components

    Institute of Scientific and Technical Information of China (English)

    宋钦华; 林念芸; 姚思德; 张加山

    2000-01-01

    Progress in dynamic study on the triplet excited states and radical ions of DNA and its components is reviewed. It has been found that acetone is the only effective sensitizer for the study of the triplet excited states of DNA components. The transient absorption spectrum of guanyl radical cation resulting from the interaction of triplet acetone and DNA was observed directly, and the original evidence for selective damage of DNA by excited photosensitizer was obtained for the first time, which offered a new pathway for obtaining the main transient species of selective damage of DNA by photonucleases and illustrating initial oxidation mechanism of DNA via electron transfer.

  7. EPR characterisation of the triplet state in photosystem II reaction centers with singly reduced primary acceptor Q(A).

    Science.gov (United States)

    Feikema, W Onno; Gast, Peter; Klenina, Irina B; Proskuryakov, Ivan I

    2005-09-05

    The triplet states of photosystem II core particles from spinach were studied using time-resolved cw EPR technique at different reduction states of the iron--quinone complex of the reaction center primary electron acceptor. With doubly reduced primary acceptor, the well-known photosystem II triplet state characterised by zero-field splitting parameters |D|=0.0286 cm(-1), |E|=0.0044 cm(-1) was detected. When the primary acceptor was singly reduced either chemically or photochemically, a triplet state of a different spectral shape was observed, bearing the same D and E values and characteristic spin polarization pattern arising from RC radical pair recombination. The latter triplet state was strongly temperature dependent disappearing at T=100 K, and had a much faster decay than the former one. Based on its properties, this triplet state was also ascribed to the photosystem II reaction center. A sequence of electron-transfer events in the reaction centers is proposed that explains the dependence of the triplet state properties on the reduction state of the iron--quinone primary acceptor complex.

  8. Quenching of the triplet state of certain porphyrins by cyanocobalamin and co-phthalocyanine

    Science.gov (United States)

    Sapunov, V. V.

    1992-10-01

    The bimolecular exchange-resonance energy transfer efficiency from the triplet level of a number of Pd porphyrins to cyanocobalamin (vitamin B-12) is much lower in ethanol than in aqueous solutions. This is explained by a change in a cyanocobalamin-molecule geometry in ethanol from that in aqueous solutions. This change can be the detachment of the nucleotide from the cobalt ion or a change in the cyanocobalamin-molecule conformation. As a result, stearic hindrance of intermolecular energy transfer arises, or the mobility of the cyanocobalamin molecules decreases. No quenching of the triplet state of tetraphenyl tetrahydroporphin by cyanocobalamine is detected, whereas quenching of Co-phthalocyanine occurs with a high rate constant.

  9. Charge transfer and triplet states in OPV materials and devices (Presentation Recording)

    Science.gov (United States)

    Dyakonov, Vladimir

    2015-10-01

    Electron back transfer (EBT), potentially occurring after electron transfer from donor to acceptor may populate the lower lying donor or acceptor triplet state and serve as recombination channel.[1] Here we report on studies of charge transfer and triplet states in blends of highly efficient benzodithiophene PTB7 polymer in combination with the fullerene-derivative PC71BM using the spin sensitive optically detected magnetic resonance (ODMR) technique and compare the results with those obtained in P3HT (poly(3- hexylthiophene):PC61BM blends. Although PTB7:PC71BM absorbers yield much higher power conversion efficiencies in solar cells exceeding 7%, we found a significant increase of triplet exciton generation, which was absent in the P3HT based blends. We discuss this observation within the EBT scenario with the emphasis on the influence of morphology, fullerene load, HOMO/LUMO energy and presence of additives (DIO). Suppressing the EBT process by morphology and/or energetics of polymer and molecules is important to achieve the full potential of highly efficient OPV materials. [1] M. Liedtke, et al., JACS 133, 9088 (2011).

  10. Triplet state dissolved organic matter in aquatic photochemistry: reaction mechanisms, substrate scope, and photophysical properties.

    Science.gov (United States)

    McNeill, Kristopher; Canonica, Silvio

    2016-11-09

    Excited triplet states of chromophoric dissolved organic matter ((3)CDOM*) play a major role among the reactive intermediates produced upon absorption of sunlight by surface waters. After more than two decades of research on the aquatic photochemistry of (3)CDOM*, the need for improving the knowledge about the photophysical and photochemical properties of these elusive reactive species remains considerable. This critical review examines the efforts to date to characterize (3)CDOM*. Information on (3)CDOM* relies mainly on the use of probe compounds because of the difficulties associated with directly observing (3)CDOM* using transient spectroscopic methods. Singlet molecular oxygen ((1)O2), which is a product of the reaction between (3)CDOM* and dissolved oxygen, is probably the simplest indicator that can be used to estimate steady-state concentrations of (3)CDOM*. There are two major modes of reaction of (3)CDOM* with substrates, namely triplet energy transfer or oxidation (via electron transfer, proton-coupled electron transfer or related mechanisms). Organic molecules, including several environmental contaminants, that are susceptible to degradation by these two different reaction modes are reviewed. It is proposed that through the use of appropriate sets of probe compounds and model photosensitizers an improved estimation of the distribution of triplet energies and one-electron reduction potentials of (3)CDOM* can be achieved.

  11. Inelastic and elastic collision rates for triplet states of ultracold strontium

    CERN Document Server

    Traverso, A; de Escobar, Y N Martinez; Mickelson, P G; Nagel, S B; Yan, M; Killian, T C

    2008-01-01

    We report measurement of the inelastic and elastic collision rates for ^{88}Sr atoms in the (5s5p)^3P_0 state in a crossed-beam optical dipole trap. This is the first measurement of ultracold collision properties of a ^3P_0 level in an alkaline-earth atom or atom with similar electronic structure. Since the (5s5p)^3P_0 state is the lowest level of the triplet manifold, large loss rates indicate the importance of principle-quantum-number-changing collisions at short range. We also provide an estimate of the collisional loss rates for the (5s5p){^3P_2} state.

  12. On the hyperfine structure of the triplet $n^{3}S-$states of the four-electron atoms and ions

    CERN Document Server

    Frolov, Alexei M

    2016-01-01

    Hyperfine structures of the triplet $n^3S-$states in the four-electron Be-atom(s) and Be-like ions are considered. It is shown that to determine the hyperfine structure splitting in such atomic systems one needs to know the triplet electron density at the central atomic nucleus $\\rho_T(0)$. We have developed the procedure which allows allows one to determine the triplet electron density $\\rho_T(0)$ for arbitrary four-electron atoms and ions.

  13. Intermolecular electron transfer from naphthalene derivatives in the higher triplet excited states.

    Science.gov (United States)

    Sakamoto, Masanori; Cai, Xichen; Hara, Michihiro; Fujitsuka, Mamoru; Majima, Tetsuro

    2004-08-11

    Intermolecular electron transfer (ELT) from a series of naphthalene derivatives (NpD) in the higher triplet excited states (T(n)) to carbon tetrachloride (CCl(4)) in Ar-saturated acetonitrile was observed using the two-color two-laser flash photolysis method. The ELT efficiency depended on the driving force of ELT. Since the ELT from the T(n) state occurred competitively with the internal conversion (IC, T(n) --> T(1)) and the triplet energy transfer (ENT), the ELT became apparent only when sufficient free energy change of ELT was attained. On the other hand, ELT from the T(1) state was not observed, although ELT from the T(1) state with sufficiently long lifetime has a slightly exothermic driving force. The fast ELT from the T(n) state and lack of the reactivity of the T(1) state were explained well by the "sticky" dissociative electron-transfer model based on one-electron reductive attachment to CCl(4) leading to the C-Cl bond cleavage.

  14. Spin-state dependent radical stabilization in nitrenes: the unusually small singlet-triplet splitting in 2-furanylnitrene.

    Science.gov (United States)

    Wenthold, Paul G

    2012-01-06

    Geometries and energies of the triplet and singlet states of 2-furanylnitrene and 3-furanylnitrene have been calculated by using spin-flip coupled-cluster methods. Calculations with triple-ζ basis sets predict a singlet-triplet splitting of 10.9 kcal/mol for 2-furanylnitrene, 4.5 kcal/mol smaller than that in phenylnitrene. In contrast, the singlet-triplet splitting in 3-furanylnitrene is computed to be 1.9 kcal/mol larger than that in phenylnitrene. The differences in the singlet-triplet splittings for the furanylnitrenes are attributed to the differences in the radical stabilizing abilities of the 2-furanyl- and 3-furanyl-groups compared to a phenyl ring. Comparison of the singlet-triplet splittings of more than 20 substituted aromatic nitrenes and the radical stabilizing ability of the aromatic systems reveals a high degree of correlation between the singlet-triplet splitting and the radical stabilizing ability, indicating that singlet states of aromatic nitrenes are preferentially stabilized by radical stabilizing substituents. The preferential stabilization of the singlet states is attributed to the decrease in electron pair repulsion resulting from increased delocalization of the radical electron.

  15. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections.

    Science.gov (United States)

    Khvostichenko, Daria; Choi, Andrew; Boulatov, Roman

    2008-04-24

    We investigated the effect of several computational variables, including the choice of the basis set, application of symmetry constraints, and zero-point energy (ZPE) corrections, on the structural parameters and predicted ground electronic state of model 5-coordinate hemes (iron(II) porphines axially coordinated by a single imidazole or 2-methylimidazole). We studied the performance of B3LYP and B3PW91 with eight Pople-style basis sets (up to 6-311+G*) and B97-1, OLYP, and TPSS functionals with 6-31G and 6-31G* basis sets. Only hybrid functionals B3LYP, B3PW91, and B97-1 reproduced the quintet ground state of the model hemes. With a given functional, the choice of the basis set caused up to 2.7 kcal/mol variation of the quintet-triplet electronic energy gap (DeltaEel), in several cases, resulting in the inversion of the sign of DeltaEel. Single-point energy calculations with triple-zeta basis sets of the Pople (up to 6-311G++(2d,2p)), Ahlrichs (TZVP and TZVPP), and Dunning (cc-pVTZ) families showed the same trend. The zero-point energy of the quintet state was approximately 1 kcal/mol lower than that of the triplet, and accounting for ZPE corrections was crucial for establishing the ground state if the electronic energy of the triplet state was approximately 1 kcal/mol less than that of the quintet. Within a given model chemistry, effects of symmetry constraints and of a "tense" structure of the iron porphine fragment coordinated to 2-methylimidazole on DeltaEel were limited to 0.3 kcal/mol. For both model hemes the best agreement with crystallographic structural data was achieved with small 6-31G and 6-31G* basis sets. Deviation of the computed frequency of the Fe-Im stretching mode from the experimental value with the basis set decreased in the order: nonaugmented basis sets, basis sets with polarization functions, and basis sets with polarization and diffuse functions. Contraction of Pople-style basis sets (double-zeta or triple-zeta) affected the results

  16. Elastic Scattering of Ultracold 133Cs and 85Rb Atoms in Triplet State

    Institute of Scientific and Technical Information of China (English)

    SUN Jin-Feng; HU Qiu-Bo; ZHU Zun-Lue; WANG Xiao-Fei; ZHANG Ji-Cai

    2007-01-01

    Elastic scattering properties of the ultracold interaction for the triplet state of 133Cs and 85Rb atoms are studied using two kinds of potentials by the same phase Φ. One is the interpolation potential, and another is Lennard-Jones potential (L J12,6). The radial Schr(o)dinger equation is also solved using two computational methods, the semiclassical method (WKB), and the Numerov method. Our results are found to be in an excellent agreement with the more recent theoretical values. It shows that the two potentials and methods are applicable for studying ultracold collisions between the mixing alkali atoms.

  17. Higher-order recoil corrections for triplet states of the helium atom

    CERN Document Server

    Patkos, V; Pachucki, K

    2016-01-01

    Nuclear recoil corrections of order $\\alpha^6\\,m^2/M$ are calculated for the lowest-lying triplet states of the helium atom. It improves the theoretical prediction for the isotope shift of the $2^3S-2^3P$ transition energy and influences the determination of the ${}^3\\textrm{He}-{}^4\\textrm{He}$ nuclear charge radii difference. This calculation is a step forward on the way towards the direct determination of the charge radius of the helium nucleus from spectroscopic measurements.

  18. Quantum confinement-tunable intersystem crossing and the triplet state lifetime of cationic porphyrin-CdTe quantum dot nano-assemblies

    KAUST Repository

    Ahmed, Ghada H.

    2015-01-01

    Here, we report a ground-state interaction between the positively charged cationic porphyrin and the negatively charged carboxylate groups of the thiol ligands on the surface of CdTe quantum dots (QDs), leading to the formation of a stable nanoassembly between the two components. Our time-resolved data clearly demonstrate that we can dramatically tune the intersystem crossing (ISC) and the triplet state lifetime of porphyrin by changing the size of the QDs in the nanoassembly. © 2015 The Royal Society of Chemistry.

  19. Ultrafast Charge and Triplet State Formation in Diketopyrrolopyrrole Low Band Gap Polymer/Fullerene Blends: Influence of Nanoscale Morphology of Organic Photovoltaic Materials on Charge Recombination to the Triplet State

    Directory of Open Access Journals (Sweden)

    René M. Williams

    2017-01-01

    Full Text Available Femtosecond transient absorption spectroscopy of thin films of two types of morphologies of diketopyrrolopyrrole low band gap polymer/fullerene-adduct blends is presented and indicates triplet state formation by charge recombination, an important loss channel in organic photovoltaic materials. At low laser fluence (approaching solar intensity charge formation characterized by a 1350 nm band (in ~250 fs dominates in the two PDPP-PCBM blends with different nanoscale morphologies and these charges recombine to form a local polymer-based triplet state on the sub-ns timescale (in ~300 and ~900 ps indicated by an 1100 nm absorption band. The rate of triplet state formation is influenced by the morphology. The slower rate of charge recombination to the triplet state (in ~900 ps belongs to a morphology that results in a higher power conversion efficiency in the corresponding device. Nanoscale morphology not only influences interfacial area and conduction of holes and electrons but also influences the mechanism of intersystem crossing (ISC. We present a model that correlates morphology to the exchange integral and fast and slow mechanisms for ISC (SOCT-ISC and H-HFI-ISC. For the pristine polymer, a flat and unstructured singlet-singlet absorption spectrum (between 900 and 1400 nm and a very minor triplet state formation (5% are observed at low laser fluence.

  20. Optimal values of rovibronic energy levels for triplet electronic states of molecular deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Lavrov, B P; Umrikhin, I S [Faculty of Physics, St Petersburg State University, St Petersburg 198504 (Russian Federation)], E-mail: lavrov@pobox.spbu.ru

    2008-05-28

    An optimal set of 1050 rovibronic energy levels for 35 triplet electronic states of D{sub 2} has been obtained by means of a statistical analysis of all available wavenumbers of triplet-triplet rovibronic transitions studied in emission, absorption, laser and anticrossing spectroscopic experiments of various authors. We used a new method of analysis (Lavrov and Ryazanov 2005 JETP Lett. 81 371-4), which does not need any a priori assumptions concerning the molecular structure, being based on only two fundamental principles: Rydberg-Ritz and maximum likelihood. The method provides the opportunity to obtain the root-mean-square estimates for uncertainties of the experimental wavenumbers independent from those presented in the original papers. A total of 234 from 3822 published wavenumber values were found to be spurious, while the remaining set of the data may be divided into 20 subsets (samples) of uniformly precise data having close to normal distributions of random errors within the samples. New experimental wavenumber values of 125 questionable lines were obtained in the present work. Optimal values of the rovibronic levels were obtained from the experimental data set consisting of 3713 wavenumber values (3588 old and 125 new). The unknown shift between levels of ortho- and para-deuterium was found by least-squares analysis of the a{sup 3}{sigma}{sup +}{sub g}, v = 0, N = 0 to 18 rovibronic levels with odd and even values of N. All the energy levels were obtained relative to the lowest vibro-rotational level (v = 0, N = 0) of the a{sup 3}{sigma}{sup +}{sub g} electronic state, and presented in tabular form together with the standard deviations of the empirical determination. New energy-level values differ significantly from those available in the literature.

  1. Charge Carrier Generation Followed by Triplet State Formation, Annihilation, and Carrier Recreation in PBDTTT-C:PC 60 BM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.

    2015-05-22

    Triplet state formation after photoexcitation of low-bandgap polymer:fullerene blends has recently been demonstrated, however, the precise mechanism and its impact on solar cell performance is still under debate. Here, we study exciton dissociation, charge carrier generation and triplet state formation in low-bandgap polymer PBDTTT-C:PC60BM bulk heterojunction photovoltaic blends by a combination of fs-µs broadband Vis-NIR transient absorption (TA) pump-probe spectroscopy and multivariate curve resolution (MCR) data analysis. We found sub-ps exciton dissociation and charge generation followed by sub-ns triplet state creation. The carrier dynamics and triplet state dynamics exhibited a very pronounced intensity dependence indicating non-geminate recombination of free carriers is the origin of triplet formation in these blends. Triplets were found to be the dominant state present on the nanosecond timescale. Surprisingly, the carrier population increased again on the ns-µs timescale. We attribute this to triplet-triplet annihilation and the formation of higher energy excited states that subsequently underwent charge transfer. This unique dip and recovery of the charge population is a clear indication that triplets are formed by non-geminate recombination, as such a kinetic is incompatible with a monomolecular triplet state formation process.

  2. Theoretical radiative properties between states of the triplet manifold of NH radical.

    Science.gov (United States)

    Owono Owono, L C; Ben Abdallah, D; Jaidane, N; Lakhdar, Z Ben

    2008-02-28

    Ab initio transition dipole moments between states of the triplet manifold of NH radical are determined at the complete active space self-consistent field, followed by the internally contracted multireference singles plus doubles configuration interaction level of theory with a modified aug-cc-pVTZ basis set that accounts for valence-Rydberg interactions. This enables the computation of various radiative characteristics such as Einstein coefficients, radiative lifetimes, and oscillator strengths. These properties concern as well valence and Rydberg states. For the valence states, only the (0, 0) band of the A 3 Pi-X 3 Sigma(-) transition has received some important amount of attention. Data for the other transitions are rather scarce and sometimes inexistent. The results obtained in this work show good agreement with the available experimental data in comparison to other theoretical numbers reported in the literature.

  3. J-state interference signatures in the Second Solar Spectrum: Modeling the Cr I triplet at 5204-5208 A

    CERN Document Server

    Smitha, H N; Stenflo, J O; Bianda, M; Sampoorna, M; Ramelli, R; Anusha, L S

    2012-01-01

    The scattering polarization in the solar spectrum is traditionally modeled with each spectral line treated separately, but this is generally inadequate for multiplets where J-state interference plays a significant role. Through simultaneous observations of all the 3 lines of a Cr I triplet, combined with realistic radiative transfer modeling of the data, we show that it is necessary to include J-state interference consistently when modeling lines with partially interacting fine structure components. Polarized line formation theory that includes J-state interference effects together with partial frequency redistribution for a two-term atom is used to model the observations. Collisional frequency redistribution is also accounted for. We show that the resonance polarization in the Cr I triplet is strongly affected by the partial frequency redistribution effects in the line core and near wing peaks. The Cr I triplet is quite sensitive to the temperature structure of the photospheric layers. Our complete frequency...

  4. Spectroscopy of {sup 39}K{sup 85}Rb triplet excited states using ultracold a {sup 3}{sigma}{sup +} state molecules formed by photoassociation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J T; Wang, D; Eyler, E E; Gould, P L; Stwalley, W C [Physics Department, University of Connecticut, Storrs, CT 06269 (United States)], E-mail: w.stwalley@uconn.edu, E-mail: kimjt@chosun.ac.kr

    2009-05-15

    Convenient state-selective detection methods are proposed for exploring triplet Rydberg states from the metastable a {sup 3}{sigma}{sup +} state of ultracold KRb molecules by resonance-enhanced two-photon ionization and time-of-flight (TOF) mass spectroscopy. This would allow the first accurate determination of the ionization potential. Particularly suitable resonant intermediate states include the 2 {sup 3}{pi} {sub {omega}}, 3 {sup 3}{sigma}{sup +} and 4 {sup 3}{sigma}{sup +} states, and we report spectroscopic studies of these states. For the 2 {sup 3}{pi} {sub {omega}} state, the spin-orbit components ({omega} = 0{sup +}, 0{sup -}, 1 and 2) have been investigated and a shallow long-range state (5(0{sup +})) at {approx} 9.3 A has been observed. We compare our observations of these three states with predictions based on ab initio potential energy curves. Such studies may also permit the direct observation of autoionizing resonances leading to efficient formation of low-lying rovibrational levels of the {sup 2}{sigma}{sup +} ground state of KRb{sup +}, ideally in the v{sup +}= 0, N{sup +}= 0 level.

  5. Ground state of 16O

    Science.gov (United States)

    Pieper, Steven C.; Wiringa, R. B.; Pandharipande, V. R.

    1990-01-01

    A variational method is used to study the ground state of 16O. Expectation values are computed with a cluster expansion for the noncentral correlations in the wave function; the central correlations and exchanges are treated to all orders by Monte Carlo integration. The expansion has good convergence. Results are reported for the Argonne v14 two-nucleon and Urbana VII three-nucleon potentials.

  6. Triangle Type Trinuclear Copper Complexes with Triplet -excitation Luminescent Property, an Ab Initio Study

    Institute of Scientific and Technical Information of China (English)

    MANG Chao-Yong; ZHANG Ming-Xin; WU Ke-Chen

    2006-01-01

    The luminescent mechanism and properties of a triangular Cu(I) complex, (CuPz)3, have been studied by CIS method. The ground and lowest triplet excitation state geometries were optimized at MP2/SBKJC and CIS/SBKJC levels, respectively. A remarkable geometry distortion of the lowest triplet state was found and believed to cause the emission spectra to red shift.

  7. On the nature of the oligoacene ground state

    Science.gov (United States)

    Hachmann, Johannes; Dorando, Jonathan; Aviles, Michael; Kin-Lic Chan, Garnet

    2007-03-01

    The nature of the oligoacene ground state - its spin, singlet-triplet gap, and diradical character as a function of chain-length - is a question of ongoing theoretical and experimental interest with notable technological implications. Previous computational studies have given inconclusive answers to this challenging electronic structure problem (see e.g. [1]). In the present study we exploit the capabilities of the local ab initio Density Matrix Renormalization Group (DMRG) [2], which allows the numerically exact (FCI) solution of the Schr"odinger equation in a chosen 1-particle basis and active space for quasi-one-dimensional systems. We compute the singlet-triplet gap from first principles as a function of system length ranging from naphthalene to tetradecacene, correlating the full π-space (i.e. up to 58 electrons in 58 orbitals) and converging the results to a few μEh accuracy [3]. In order to study the diradical nature of the oligoacene ground state we calculate expectation values over different diradical occupation and pair-correlation operators. Furthermore we study the natural orbitals and their occupation. [1] Bendikov, Duong, Starkey, Houk, Carter, Wudl, JACS 126 (2004), 7416. [2] Hachmann, Cardoen, Chan, JCP 125 (2006), 144101. [3] Hachmann, Dorando, Avil'es, Chan, in preparation.

  8. Symmetry analysis of the vibronic States in the upper conical potential (2(3)A') of triplet.

    Science.gov (United States)

    Viegas, Luis P; Alijah, Alexander; Varandas, António J C

    2005-04-21

    The symmetry properties of the rovibronic resonance states (Slonczewski resonances) supported by an upright conical potential are investigated. These symmetry properties lead to a useful correlation between states calculated with and without consideration of the geometrical phase, which can assist in the assignment of those states. The vibronic resonance states of triplet H3(+) (2(3)A'), which had been studied by us before, have now been assigned to spectroscopic quantum numbers.

  9. Induced spin-triplet pairing in the coexistence state of antiferromagnetism and singlet superconductivity: Collective modes and microscopic properties

    Science.gov (United States)

    Almeida, D. E.; Fernandes, R. M.; Miranda, E.

    2017-07-01

    The close interplay between superconductivity and antiferromagnetism in several quantum materials can lead to the appearance of an unusual thermodynamic state in which both orders coexist microscopically, despite their competing nature. A hallmark of this coexistence state is the emergence of a spin-triplet superconducting gap component, called a π triplet, which is spatially modulated by the antiferromagnetic wave vector, reminiscent of a pair density wave. In this paper, we investigate the impact of these π -triplet degrees of freedom on the phase diagram of a system with competing antiferromagnetic and superconducting orders. Although we focus on a microscopic two-band model that has been widely employed in studies of iron pnictides, most of our results follow from a Ginzburg-Landau analysis, and as such should be applicable to other systems of interest, such as cuprates and heavy fermion materials. The Ginzburg-Landau functional reveals not only that the π -triplet gap amplitude couples trilinearly with the singlet gap amplitude and the staggered magnetization magnitude but also that the π -triplet d -vector couples linearly with the magnetization direction. While in the mean-field level this coupling forces the d -vector to align parallel or antiparallel to the magnetization, in the fluctuation regime it promotes two additional collective modes—a Goldstone mode related to the precession of the d -vector around the magnetization and a massive mode, related to the relative angle between the two vectors, which is nearly degenerate with a Leggett-like mode associated with the phase difference between the singlet and triplet gaps. We also investigate the impact of magnetic fluctuations on the superconducting-antiferromagnetic phase diagram, showing that due to their coupling with the π -triplet order parameter the coexistence region is enhanced. This effect stems from the fact that the π -triplet degrees of freedom promote an effective attraction between

  10. π-Conjugated Organometallic Isoindigo Oligomer and Polymer Chromophores: Singlet and Triplet Excited State Dynamics and Application in Polymer Solar Cells.

    Science.gov (United States)

    Goswami, Subhadip; Gish, Melissa K; Wang, Jiliang; Winkel, Russell W; Papanikolas, John M; Schanze, Kirk S

    2015-12-01

    An isoindigo based π-conjugated oligomer and polymer that contain cyclometalated platinum(II) "auxochrome" units were subjected to photophysical characterization, and application of the polymer in bulk heterojunction polymer solar cells with PCBM acceptor was examined. The objective of the study was to explore the effect of the heavy metal centers on the excited state properties, in particular, intersystem crossing to a triplet (exciton) state, and further how this would influence the performance of the organometallic polymer in solar cells. The materials were characterized by electrochemistry, ground state absorption, emission, and picosecond-nanosecond transient absorption spectroscopy. Electrochemical measurements indicate that the cyclometalated units have a significant impact on the HOMO energy level of the chromophores, but little effect on the LUMO, which is consistent with localization of the LUMO on the isoindigo acceptor unit. Picosecond-nanosecond transient absorption spectroscopy reveals a transient with ∼100 ns lifetime that is assigned to a triplet excited state that is produced by intersystem crossing from a singlet state on a time scale of ∼130 ps. This is the first time that a triplet state has been observed for isoindigo π-conjugated chromophores. The performance of the polymer in bulk heterojunction solar cells was explored with PC61BM as an acceptor. The performance of the cells was optimum at a relatively high PCBM loading (1:6, polymer:PCBM), but the overall efficiency was relatively low with power conversion efficiency (PCE) of 0.22%. Atomic force microscopy of blend films reveals that the length scale of the phase separation decreases with increasing PCBM content, suggesting a reason for the increase in PCE with acceptor loading. Energetic considerations show that the triplet state in the polymer is too low in energy to undergo charge separation with PCBM. Further, due to the relatively low LUMO energy of the polymer, charge transfer

  11. Infrared vibrational spectroscopy of [Ru(bpy)2(bpm)]2+ and [Ru(bpy)3]2+ in the excited triplet state.

    Science.gov (United States)

    Mukuta, Tatsuhiko; Fukazawa, Naoto; Murata, Kei; Inagaki, Akiko; Akita, Munetaka; Tanaka, Sei'ichi; Koshihara, Shin-ya; Onda, Ken

    2014-03-03

    This work involved a detailed investigation into the infrared vibrational spectra of ruthenium polypyridyl complexes, specifically heteroleptic [Ru(bpy)2(bpm)](2+) (bpy = 2,2'-bipyridine and bpm = 2,2'-bipyrimidine) and homoleptic [Ru(bpy)3](2+), in the excited triplet state. Transient spectra were acquired 500 ps after photoexcitation, corresponding to the vibrational ground state of the excited triplet state, using time-resolved infrared spectroscopy. We assigned the observed bands to specific ligands in [Ru(bpy)2(bpm)](2+) based on the results of deuterium substitution and identified the corresponding normal vibrational modes using quantum-chemical calculations. Through this process, the more complex vibrational bands of [Ru(bpy)3](2+) were assigned to normal vibrational modes. The results are in good agreement with the model in which excited electrons are localized on a single ligand. We also found that the vibrational bands of both complexes associated with the ligands on which electrons are little localized appear at approximately 1317 and 1608 cm(-1). These assignments should allow the study of the reaction dynamics of various photofunctional systems including ruthenium polypyridyl complexes.

  12. Effect of Temperature and Pressure on Correlation Energy in a Triplet State of a Two Electron Spherical Quantum Dot

    Directory of Open Access Journals (Sweden)

    A. Rejo Jeice

    2013-09-01

    Full Text Available The combined effect of hydrostatic pressure and temperature on correlation energy in a triplet state of two electron spherical quantum dot with square well potential is computed. The result is presented taking GaAs dot as an example. Our result shows the correlation energies are inegative in the triplet state contrast to the singlet state ii it increases with increase in pressure  iiifurther decreases due to the application  of temperature iv it approaches zero as dot size approaches infinity and v it contribute 10% decrement in total confined energy to the narrow dots. All the calculations have been carried out with finite models and the results are compared with existing literature.

  13. High-Yield Excited Triplet States in Pentacene Self-Assembled Monolayers on Gold Nanoparticles through Singlet Exciton Fission.

    Science.gov (United States)

    Kato, Daiki; Sakai, Hayato; Tkachenko, Nikolai V; Hasobe, Taku

    2016-04-18

    One of the major drawbacks of organic-dye-modified self-assembled monolayers on metal nanoparticles when employed for efficient use of light energy is the fact that singlet excited states on dye molecules can be easily deactivated by means of energy transfer to the metal surface. In this study, a series of 6,13-bis(triisopropylsilylethynyl)pentacene-alkanethiolate monolayer protected gold nanoparticles with different particle sizes and alkane chain lengths were successfully synthesized and were employed for the efficient generation of excited triplet states of the pentacene derivatives by singlet fission. Time-resolved transient absorption measurements revealed the formation of excited triplet states in high yield (172±26 %) by suppressing energy transfer to the gold surface.

  14. DMRG-SCF study of the singlet, triplet, and quintet states of oxo-Mn(Salen)

    CERN Document Server

    Wouters, Sebastian; Van Der Voort, Pascal; Van Speybroeck, Veronique; Van Neck, Dimitri

    2014-01-01

    We use CheMPS2, our free open-source spin-adapted implementation of the density matrix renormalization group (DMRG) [Wouters et al., Comput. Phys. Commun. 185, 1501 (2014)], to study the lowest singlet, triplet, and quintet states of the oxo-Mn(Salen) complex. We describe how an initial approximate DMRG calculation in a large active space around the Fermi level can be used to obtain a good set of starting orbitals for subsequent complete-active-space or DMRG self-consistent field (CASSCF or DMRG-SCF) calculations. This procedure mitigates the need for a localization procedure, followed by a manual selection of the active space. Per multiplicity, the same active space of 28 electrons in 22 orbitals (28e, 22o) is obtained with the 6-31G*, cc-pVDZ, and ANO-RCC-VDZP basis sets (the latter with DKH2 scalar relativistic corrections). Our calculations provide new insight into the electronic structure of the quintet.

  15. Search for double charmonium decays of the P-wave spin-triplet bottomonium states

    CERN Document Server

    Shen, C P; Iijima, T

    2012-01-01

    Using a sample of 158 million $\\Upsilon(2S)$ events collected with the Belle detector, we search for the first time for double charmonium decays of the $P$-wave spin-triplet bottomonium states ($\\Upsilon(2S) \\to \\gamma \\chi_{bJ}$, $\\chi_{bJ} \\to \\jpsi \\jpsi$, $\\jpsi \\psp$, $\\psp \\psp$ for J=0, 1, and 2). No significant $\\chi_{bJ}$ signal is observed in the double charmonium mass spectra, and we obtain the following upper limits, $\\BR(\\chi_{bJ} \\to \\jpsi \\jpsi)<7.1\\times 10^{-5}$, $2.7\\times 10^{-5}$, $4.5\\times 10^{-5}$, $\\BR(\\chi_{bJ} \\to \\jpsi \\psp)<1.2\\times 10^{-4}$, $1.7\\times 10^{-5}$, $4.9\\times 10^{-5}$, $\\BR(\\chi_{bJ} \\to \\psp \\psp)<3.1\\times 10^{-5}$, $6.2\\times 10^{-5}$, $1.6\\times 10^{-5}$ for J=0, 1, and 2, respectively, at the 90% confidence level. These limits are significantly lower than the central values (with uncertainties of 50% to 70%) predicted using the light cone formalism but are consistent with calculations using the NRQCD factorization approach.

  16. Photosensitized degradation of acetaminophen in natural organic matter solutions: The role of triplet states and oxygen.

    Science.gov (United States)

    Li, Yanyun; Pan, Yanheng; Lian, Lushi; Yan, Shuwen; Song, Weihua; Yang, Xin

    2017-02-01

    The photolysis of acetaminophen, a widely used pharmaceutical, in simulated natural organic matter solutions was investigated. The triplet states of natural organic matter ((3)NOM*) were found to play the dominant role in its photodegradation, while the contributions from hydroxyl radicals and singlet oxygen were negligible. Dissolved oxygen (DO) plays a dual role. From anaerobic to microaerobic (0.5 mg/L DO) conditions, the degradation rate of acetaminophen increased by 4-fold. That suggests the involvement of DO in reactions with the degradation intermediates. With increasing oxygen levels to saturated conditions (26 mg/L DO), the degradation rate became slower, mainly due to DO's quenching effect on (3)NOM*. Superoxide radical (O2(-)) did not react with acetaminophen directly, but possibly quenched the intermediates to reverse the degradation process. The main photochemical pathways were shown to involve phenoxyl radical and N-radical cations, finally yielding hydroxylated derivatives, dimers and nitrosophenol. A reaction mechanism involving (3)NOM*, oxygen and O2(-) is proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Initial singlet and triplet spin state contributions to -> ppπ0

    Science.gov (United States)

    Thörngren Engblom, P.; Meyer, H. O.; Balewski, J. T.; Daehnick, W. W.; Doskow, J.; Haeberli, W.; Lorentz, B.; Pancella, P. V.; Pollock, R. E.; von Przewoski, B.; Rathmann, F.; Rinckel, T.; Saha, Swapan K.; Schwartz, B.; Wellinghausen, A.; Wise, T.

    2000-01-01

    The PINTEX2http://www.iucf.indiana.edu/~pintex/refid="fn2">2 facility at the IUCF Cooler ring, dedicated to the study of spin dependence in nucleon-nucleon interactions, has been used to measure polarization observables of the reaction -> ppπ0 at beam energies between 325 and 400 MeV. The stored, polarized proton beam had spin projections both in the longitudinal and the transverse directions with respect to the beam momentum. We report here on the measurements of the relative transverse and longitudinal spin-dependent cross sections3Defined as ΔσT(L) = [σ(⇕) + σ(⇕)] - [σ(⇈ + σ(⇊)] where the arrows denote parallel and antiparallel beam/target spin combinations, either transversely (T) or longitudinally (L) polarized.refid="fn3">3, ΔσT/σtot and ΔσL/σtot, and how from these observables the initial spin singlet and triplet cross sections are obtained. Considering angular momentum states less than or equal to one, the contribution of the Ps partial waves to the cross section can be extracted.

  18. Photoexcited triplet state provides a quantitative measure of intercalating drug-DNA binding energies

    Science.gov (United States)

    Maki, August H.; Alfredson, T. V.; Waring, M. J.

    1992-04-01

    A linear correlation between spectroscopic and thermodynamic properties of systems is rarely encountered. In triplet state ODMR studies of various DNA complexes of echinomycin, a quinoxaline-containing cyclic depsipeptide bis-intercalating antibiotic, and its biosynthesized quinoline analogs, such correlations are observed. The zero field splitting D-parameter of the intercalated quinoxaline or quinoline residue varies linearly with the free energy of drug-DNA complexing. From previous work, the DNA sequence specificity of echinomycin analogs is known to be influenced by the identity of the intercalating residue (e.g., quinoxaline vs. quinoline). The present results strongly suggest that the DNA sequence-specificity of these drugs is controlled largely by the intercalated residue, and that the energetics of the peptide- DNA interaction, although considerable, are relatively sequence independent. These conclusions run counter to the generally accepted idea that DNA recognition by sequence- seeking proteins is controlled by specific hydrogen bonding interactions. The high degree of N-methylation of the echinomycin peptide portion severely restricts these interactions, however. A simple theoretical model is presented to support the experimentally observed linear correlation between (Delta) D and (Delta) G.

  19. The Kinetics of Joined Action of Triplet-Triplet Annihilation and First-Order Decay of Molecules in T1 State in the Case of Nondominant First-Order Process: The Kinetic Model in the Case of Spatially Periodic Excitation

    Directory of Open Access Journals (Sweden)

    Paweł Borowicz

    2013-01-01

    Full Text Available In this paper the model developed for estimation of the diffusion coefficient of the molecules in the triplet state is presented. The model is based on the intuitive modification of the Smoluchowski equation for the time-dependent rate parameter. Since the sample is irradiated with the spatially periodic pattern nonexponential effects can be expected in the areas of the constructive interference of the exciting laser beams. This nonexponential effects introduce changes in the observed kinetics of the diffusion-controlled triplet-triplet annihilation. Due to irradiation with so-called long excitation pulse these non-exponential effects are very weak, so they can be described with introducing very simple correction to the kinetic model described in the first paper of this series. The values of diffusion coefficient of anthracene are used to calculate the annihilation radius from the data for spatially homogeneous excitation.

  20. Triplet state dynamics of chlorophylls in photosynthetic reaction centers and model systems.

    NARCIS (Netherlands)

    Wijk, van F.G.H.

    1987-01-01

    In this work the temperature dependence of the lineshape, and more specifically, the electron spin polarization pattern of the Δm = ±1 triplet EPR (Electron Paramagnetic Resonance) spectra from several photosynthetic purple bacteria has been investigated.In Chapter I a general introduction is presen

  1. A fluorescence detected magnetic resonance investigation of the carotenoid triplet states associated with Photosystem II of isolated spinach thylakoid membranes

    CERN Document Server

    Santabarbara, S; Carbonera, D; Heathcote, P

    2005-01-01

    The carotenoid triplet populations associated with the fluorescence emission chlorophyll forms of Photosystem II have been investigated in isolated spinach thylakoid membranes by means of fluorescence detected magnetic resonance in zero field (FDMR). The spectra collected in the 680-690 nm emission range, have been fitted by a global analysis procedure. At least five different carotenoid triplet states coupled to the terminal emitting chlorophyll forms of PS II, peaking at 682 nm, 687 nm and 692 nm, have been characterised. The triplets associated with the outer antenna emission forms, at 682 nm, have zero field splitting parameters D = 0.0385 cm/sup -1/, E = 0.00367 cm/sup -1/; D = 0.0404 cm/sup -1/, E = 0.00379 cm/sup -1/ and D = 0.0386 cm/sup -1/, E = 0.00406 cm/sup -1/ which are very similar to those previously reported for the xanthophylls of the isolated LHC II complex. Therefore the FDMR spectra recorded in this work provide insights into the organisation of the LHC II complex in the unperturbed enviro...

  2. Disjoint nonclassical hydrocarbons have very unstable lowest-lying singlet states: a PM3 study

    Directory of Open Access Journals (Sweden)

    Richard Francis Langler

    2001-12-01

    Full Text Available Earlier workers have suggested that disjoint hydrocarbons have nearly-degenerate lowest-lying singlet and triplet states while non-disjoint (or joint hydrocarbons should be ground-state triplets. PM3 results for an appropriate selection of alternant hydrocarbons are inconsistent with that generalization: disjoint, nonclassical, alternant hydrocarbons show the strongest predilection for triplet ground states.

  3. The excited triplet (T{sub 1}) state structure and vibrational properties of 2,2'-bipyridine

    Energy Technology Data Exchange (ETDEWEB)

    Lapouge, C.; Buntinx, G. [Laboratoire de Spectrochimie Infrarouge et Raman, UMR 8516 de l' Universite et du CNRS, Centre d' Etudes et de Recherches Lasers et Applications (FR 2416 du CNRS), Bat. C5, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq (France); Poizat, O. [Laboratoire de Spectrochimie Infrarouge et Raman, UMR 8516 de l' Universite et du CNRS, Centre d' Etudes et de Recherches Lasers et Applications (FR 2416 du CNRS), Bat. C5, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq (France)], E-mail: olivier.poizat@univ-lille1.fr

    2008-06-02

    The geometry of the lowest lying excited triplet state (T{sub 1}) of 2,2'-bipyridine (22BPY) was optimized by using the time-dependent density functional theory (TD-DFT) with the B3LYP functional and the SVP basis set. The T{sub 1} state is of {sup 3}B{sub u} symmetry and results from a nearly one-electron {pi}{pi}* transition from the 3b{sub g} HOMO to the 4a{sub u} LUMO. Its geometry is trans-planar and essentially characterized by a reinforcement of the interring CC bond and a quinoidal distortion of the rings. This calculated triplet structure is firmly validated by an unequivocal agreement, for four 22BPY isotopomers, between the derived theoretical vibrational frequencies and previously reported experimental time-resolved resonance Raman (TR3) spectra. Moreover, vertical transitions to the 10 lowest energy triplet states T{sub n} were calculated and the corresponding T{sub 1} state resonance Raman intensities estimated, in the short-time dynamics approximation of the Franck-Condon scattering mechanism, from the gradient of the T{sub n} potential surfaces at the T{sub 1} geometry along the totally symmetric modes. Excellent agreement with the experimental resonance Raman intensities was observed for a 4a{sub u} (LUMO) {yields} 5b{sub g} (LUMO + 3) T{sub 1} {yields} T{sub n} transition. This analysis provides a further support of the TD-DFT optimized T{sub 1} state structure of 22BPY.

  4. Quench Limit Calculation for Steady State Heat Deposits in LHC Inner Triplet Magnets

    CERN Document Server

    Cerutti, F; Esposito, L S; Siemko, A; Bocian, D

    2012-01-01

    In hadron colliders such as the LHC, the energy deposited in the superconductors by the particles lost from the beams or coming from the collision debris may provoke quenches detrimental to the accelerator operation. A Network Model is used to simulate the thermodynamic behavior of the superconducting magnets. In previous papers the validations of network model with measurements performed in the CERN and Fermilab magnet test facilities were presented. This model was subsequently used for thermal analysis of the current LHC inner triplet quadrupole magnets for beam energy of 3.5 TeV and 7.0 TeV. The detailed study of helium cooling channels efficiency for energy deposits simulated with FLUKA was performed. The expected LHC inner triplet magnets quench limit is presented.

  5. Triplet losses in dye lasers

    Energy Technology Data Exchange (ETDEWEB)

    Baczynski, A.; Kossakowski, A.; Marszalek, T. (Uniwersytet Mikolaja Kopernika, Torun (Poland). Instytut Fizyki)

    1977-01-01

    The expression for losses due to triplet states in dye laser considered as a six-level system is given. It is shown that triplet losses depend on pumping parameters and photon number. Depending on molecular and cavity parameters two differe types of behavior of dye lasers are expected. Physical conditions are discussed in which triplet losses as well as photon number undergo a jump at the threshold.

  6. Bond Shortening (1.4 Å) in the Singlet and Triplet Excited States of [Ir2(dimen)4]2+ in Solution Determined by Time-Resolved X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Martin Kristoffer; Harlang, Tobias; Christensen, Morten;

    2011-01-01

    Ground- and excited-state structures of the bimetallic, ligand-bridged compound Ir2(dimen)42+ are investigated in acetonitrile by means of time-resolved X-ray scattering. Following excitation by 2 ps laser pulses at 390 nm, analysis of difference scattering patterns obtained at eight different ti...... the ∼100 ps probe width down to the 10 ps regime by positioning the laser pump pulse at selected points in the X-ray probe pulse. This approach is used to investigate the structures of both the singlet and the triplet excited states of Ir2(dimen)42+....

  7. Langevin equation path integral ground state.

    Science.gov (United States)

    Constable, Steve; Schmidt, Matthew; Ing, Christopher; Zeng, Tao; Roy, Pierre-Nicholas

    2013-08-15

    We propose a Langevin equation path integral ground state (LePIGS) approach for the calculation of ground state (zero temperature) properties of molecular systems. The approach is based on a modification of the finite temperature path integral Langevin equation (PILE) method (J. Chem. Phys. 2010, 133, 124104) to the case of open Feynman paths. Such open paths are necessary for a ground state formulation. We illustrate the applicability of the method using model systems and the weakly bound water-parahydrogen dimer. We show that the method can lead to converged zero point energies and structural properties.

  8. On the ground state of metallic hydrogen

    Science.gov (United States)

    Chakravarty, S.; Ashcroft, N. W.

    1978-01-01

    A proposed liquid ground state of metallic hydrogen at zero temperature is explored and a variational upper bound to the ground state energy is calculated. The possibility that the metallic hydrogen is a liquid around the metastable point (rs = 1.64) cannot be ruled out. This conclusion crucially hinges on the contribution to the energy arising from the third order in the electron-proton interaction which is shown here to be more significant in the liquid phase than in crystals.

  9. A global approach to ground state solutions

    Directory of Open Access Journals (Sweden)

    Philip Korman

    2008-08-01

    Full Text Available We study radial solutions of semilinear Laplace equations. We try to understand all solutions of the problem, regardless of the boundary behavior. It turns out that one can study uniqueness or multiplicity properties of ground state solutions by considering curves of solutions of the corresponding Dirichlet and Neumann problems. We show that uniqueness of ground state solutions can sometimes be approached by a numerical computation.

  10. A global approach to ground state solutions

    OpenAIRE

    2008-01-01

    We study radial solutions of semilinear Laplace equations. We try to understand all solutions of the problem, regardless of the boundary behavior. It turns out that one can study uniqueness or multiplicity properties of ground state solutions by considering curves of solutions of the corresponding Dirichlet and Neumann problems. We show that uniqueness of ground state solutions can sometimes be approached by a numerical computation.

  11. A study of the low-lying singlet and triplet electronic states of chlorophyll A and B

    Directory of Open Access Journals (Sweden)

    Etinski Mihajlo

    2013-01-01

    Full Text Available Chlorophylls have been extensively investigated both experimentally and theoretically owing to the fact that they are essential for photosynthesis. We have studied two forms of chlorophyll, chlorophyll a and chlorophyll b, by means of density functional theory. Optimization of S0, S1 and T1 states was performed with the B3-LYP functional. The computed fluorescence lifetimes show good agreement with the available experimental data. The electronic adiabatic energies of S1 and T1 states are 2.09/2.12 and 1.19/1.29 eV for chlorophyll a and chlorophyll b respectively. We discussed the implications of this results on the triplet formation. Also, the calculated vertical ionization potentials shows good agreement with the experimental results. [Projekat Ministarstva nauke Reoublike Srbije, br. 172040

  12. Spin-triplet paired state induced by Hund's rule coupling and correlations: a fully statistically consistent Gutzwiller approach.

    Science.gov (United States)

    Spałek, J; Zegrodnik, M

    2013-10-30

    The intrasite and intersite spin-triplet pairing gaps induced by interband Hund's rule coupling and their correlations are analyzed in the doubly degenerate Hubbard Hamiltonian. To include the effect of correlations, the statistically consistent Gutzwiller approximation is used. In this approach the consistency means that the averages calculated from the self-consistent equations and those determined variationally coincide with each other. Emphasis is put on the solution for which the average particle number is conserved when carrying out the Gutzwiller projection. This method leads to a stable equal-spin paired state in the so-called repulsive interactions limit (U > 3J) in the regime of moderate correlations. The interband hybridization introduces an inequivalence of the bands which, above a critical magnitude, suppresses the paired state due to both the Fermi-wavevector mismatch for the Cooper pair and the interband hopping allowed by the Pauli principle.

  13. Ground states for nonuniform periodic Ising chains

    Science.gov (United States)

    Martínez-Garcilazo, J. P.; Ramírez, C.

    2015-04-01

    We generalize Morita's works [J. Phys. A 7, 289 (1974), 10.1088/0305-4470/7/2/014; J. Phys. A 7, 1613 (1974), 10.1088/0305-4470/7/13/015] on ground states of Ising chains, for chains with a periodic structure and different spins, to any interaction order. The main assumption is translational invariance. The length of the irreducible blocks is a multiple of the period of the chain. If there is parity invariance, it restricts the length in general only in the diatomic case. There are degenerated states and under certain circumstances there could be nonregular ground states. We illustrate the results and give the ground state diagrams in several cases.

  14. Investigation of the lowest triplet state of the pyrochlorophyllide a-apomyoglobin complex by zero-field optically detected magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, R.H. (Boston Univ., MA); Hanlon, E.B.; Boxer, S.G.

    1982-06-04

    The zero-field fluorescence-detected triplet state magnetic resonance spectra have been obtained for the pyrochlorophyllide a-apomyoglobin complex at 2 K. The triplet state zero-field splittings and spin sublevel dynamics were detected on the resolved features of the structured low-temperature fluorescence. Structured fluorescence is not observed for pyrochlorophyllide a in an organic matrix under identical conditions. These data are interpreted in terms of the local binding site of the pyrochlorophyllide a chromophore in the protein and the low-temperature conformation of the protein matrix. 15 references, 1 figure, 1 table.

  15. Unravelling the quantum-entanglement effect of noble gas coordination on the spin ground state of CUO

    CERN Document Server

    Tecmer, Pawel; Legeza, Ors; Reiher, Markus

    2013-01-01

    The accurate description of the complexation of the CUO molecule by Ne and Ar noble gas matrices represents a challenging task for present-day quantum chemistry. Especially, the accurate prediction of the spin ground state of different CUO--noble-gas complexes remains elusive. In this work, the interaction of the CUO unit with the surrounding noble gas matrices is investigated in terms of complexation energies and dissected into its molecular orbital quantum entanglement patterns. Our analysis elucidates the anticipated singlet--triplet ground-state reversal of the CUO molecule diluted in different noble gas matrices and demonstrates that the strongest uranium-noble gas interaction is found for CUOAr4 in its triplet configuration.

  16. Non-adiabatic and intersystem crossing dynamics in SO2. II. The role of triplet states in the bound state dynamics studied by surface-hopping simulations.

    Science.gov (United States)

    Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2014-05-28

    The importance of triplet states in the photorelaxation dynamics of SO2 is studied by mixed quantum-classical dynamics simulations. Using the SHARC method, standing for Surface Hopping including ARbitrary Couplings, intersystem crossing (ISC) processes caused by spin-orbit coupling are found occurring on an ultrafast time scale (few 100 fs) and thus competing with internal conversion. While in the singlet-only dynamics only oscillatory population transfer between the (1)B1 and (1)A2 states is observed, in the dynamics including singlet and triplet states we find additionally continuous ISC to the (3)B2 state and to a smaller extent to the (3)B1/(3)A2 coupled states. The populations obtained from the dynamics are discussed with respect to the overall nuclear motion and in the light of recent TRPEPICO studies [I. Wilkinson, A. E. Boguslavskiy, J. Mikosch, D. M. Villeneuve, H.-J. Wörner, M. Spanner, S. Patchkovskii, and A. Stolow, "Excited state dynamics in SO2. I. Bound state relaxation studied by time-resolved photoelectron-photoion coincidence spectroscopy," J. Chem. Phys. 140, 204301 (2014)].

  17. Ground states of linearly coupled Schrodinger systems

    Directory of Open Access Journals (Sweden)

    Haidong Liu

    2017-01-01

    Full Text Available This article concerns the standing waves of a linearly coupled Schrodinger system which arises from nonlinear optics and condensed matter physics. The coefficients of the system are spatially dependent and have a mixed behavior: they are periodic in some directions and tend to positive constants in other directions. Under suitable assumptions, we prove that the system has a positive ground state. In addition, when the L-infinity-norm of the coupling coefficient tends to zero, the asymptotic behavior of the ground states is also obtained.

  18. Trapped Antihydrogen in Its Ground State

    CERN Document Server

    Gabrielse, G; Kolthammer, W S; McConnell, R; Richerme, P; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D W; George, M C; Hessels, E A; Storry, C H; Weel, M; Mullers, A; Walz, J

    2012-01-01

    Antihydrogen atoms are confined in an Ioffe trap for 15 to 1000 seconds -- long enough to ensure that they reach their ground state. Though reproducibility challenges remain in making large numbers of cold antiprotons and positrons interact, 5 +/- 1 simultaneously-confined ground state atoms are produced and observed on average, substantially more than previously reported. Increases in the number of simultaneously trapped antithydrogen atoms H are critical if laser-cooling of trapped antihydrogen is to be demonstrated, and spectroscopic studies at interesting levels of precision are to be carried out.

  19. Observations and theoretical analysis of highly excited singlet and triplet states of cadmium

    Science.gov (United States)

    Vidolova-Angelova, E.; Baharis, C.; Roupakas, G.; Kompitsas, M.

    1996-06-01

    We have recorded the 0953-4075/29/12/010/img7 - 50) bound Rydberg spectrum of cadmium. We have fully resolved the multiplet up to n = 19 and partially up to n = 24. Furthermore, we have observed the odd singlet and triplet 5sn f Rydberg series for n = 10 - 22 and n = 4 - 21, respectively. We have applied two- and three-step laser schemes to excite Cd vapour in a heat pipe-like oven which was operated as a thermionic diode for detection. Theoretical calculations were performed for the energies of the 5sn p and 5sn f series using perturbation theory with a zero-order model approximation. There is a good agreement between theoretical and experimental results for the 5sn p series, the deviation decreasing with n and being 1 - 2 0953-4075/29/12/010/img8 for n = 50. The agreement for the 5sn f is satisfactory. From the quantum defect of the 5sn f series we approximate a value of the effective dipole polarizability of the 0953-4075/29/12/010/img9 ion of 0953-4075/29/12/010/img10 in units of the Bohr radius.

  20. Characterization of the low-temperature triplet state of chlorophyll in photosystem II core complexes: Application of phosphorescence measurements and Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Zabelin, Alexey A; Neverov, Konstantin V; Krasnovsky, Alexander A; Shkuropatova, Valentina A; Shuvalov, Vladimir A; Shkuropatov, Anatoly Ya

    2016-06-01

    Phosphorescence measurements at 77 K and light-induced FTIR difference spectroscopy at 95 K were applied to study of the triplet state of chlorophyll a ((3)Chl) in photosystem II (PSII) core complexes isolated from spinach. Using both methods, (3)Chl was observed in the core preparations with doubly reduced primary quinone acceptor QA. The spectral parameters of Chl phosphorescence resemble those in the isolated PSII reaction centers (RCs). The main spectral maximum and the lifetime of the phosphorescence corresponded to 955±1 nm and of 1.65±0.05 ms respectively; in the excitation spectrum, the absorption maxima of all core complex pigments (Chl, pheophytin a (Pheo), and β-carotene) were observed. The differential signal at 1667(-)/1628(+)cm(-1) reflecting a downshift of the stretching frequency of the 13(1)-keto C=O group of Chl was found to dominate in the triplet-minus-singlet FTIR difference spectrum of core complexes. Based on FTIR results and literature data, it is proposed that (3)Chl is mostly localized on the accessory chlorophyll that is in triplet equilibrium with P680. Analysis of the data suggests that the Chl triplet state responsible for the phosphorescence and the FTIR difference spectrum is mainly generated due to charge recombination in the reaction center radical pair P680(+)PheoD1(-), and the energy and temporal parameters of this triplet state as well as the molecular environment and interactions of the triplet-bearing Chl molecule are similar in the PSII core complexes and isolated PSII RCs.

  1. Highly twisted 1,2:8,9-dibenzozethrenes: Synthesis, ground state, and physical properties

    KAUST Repository

    Sun, Zhe

    2014-08-08

    Two soluble and stable 1,2:8,9-dibenzozethrene derivatives (3a,b) are synthesized through a palladium-catalyzed cyclodimerization reaction. X-ray crystallographic analysis shows that these molecules are highly twisted owing to congestion at the cove region. Broken-symmetry DFT calculations predict that they have a singlet biradical ground state with a smaller biradical character and a large singlet-triplet energy gap; these predictions are supported by NMR and electronic absorption measurements. They have small energy gaps and exhibit farred/near-infrared absorption/emission and amphoteric redox behaviors.

  2. Ground state of a confined Yukawa plasma

    CERN Document Server

    Henning, C; Block, D; Bonitz, M; Golubnichiy, V; Ludwig, P; Piel, A

    2006-01-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically. In particular, the radial density profile is computed. The results agree very well with computer simulations on three-dimensional spherical Coulomb crystals. We conclude in presenting an exact equation for the density distribution for a confinement potential of arbitrary geometry.

  3. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 3 presents essays on the chemical generation of excited states; the cis-trans isomerization of olefins; and the photochemical rearrangements in trienes. The book also includes essays on the zimmerman rearrangements; the photochemical rearrangements of enones; the photochemical rearrangements of conjugated cyclic dienones; and the rearrangements of the benzene ring. Essays on the photo rearrangements via biradicals of simple carbonyl compounds; the photochemical rearrangements involving three-membered rings or five-membered ring heterocycles;

  4. Photodegradation mechanism of sulfonamides with excited triplet state dissolved organic matter: A case of sulfadiazine with 4-carboxybenzophenone as a proxy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingjie; Wei, Xiaoxuan; Chen, Jingwen, E-mail: jwchen@dlut.edu.cn; Xie, Hongbin; Zhang, Ya-nan

    2015-06-15

    Highlights: • Excited triplet state of dissolved organic matter ({sup 3}DOM{sup *}) is largely responsible for the enhanced photodegradation of sulfadiazine. • Electron followed by proton transfer is a major mechanism for the reactions of sulfadiazine with {sup 3}DOM{sup *} proxies. • Two reaction sites (amino- or sulfonyl-N) and sulfadiazine radicals were identified in the reactions of sulfadiazine with {sup 3}DOM{sup *} proxies. - Abstract: Excited triplet states of dissolved organic matter ({sup 3}DOM*) are important players for photodegradation sulfonamide antibiotics (SAs) in sunlit natural waters. However, the triplet-mediated reaction mechanism was poorly understood. In this study, we investigated the reaction adopting sulfadiazine as a representative SA and 4-carboxybenzophenone (CBBP)as a proxy of DOM. Results showed that the excited triplet state of CBBP ({sup 3}CBBP*) is responsible for the photodegradation of sulfadiazine. The reaction of {sup 3}CBBP* with substructure model compounds verified there are two reaction sites (amino-or sulfonyl-N atoms) of sulfadiazine. Density functional theory calculations were performed, which unveiled that electrons transfer from the N reaction sites to the carbonyl oxygen atom of {sup 3}CBBP* moiety, followed by proton transfers, leading to the formation of sulfadiazine radicals. Laser flash photolysis experiments were performed to confirm the mechanism. Thus, this study identified that the photodegradation mechanism of SAs initiated by {sup 3}DOM*, which is important for understanding the photochemical fate, predicting the photoproducts, and assessing the ecological risks of SAs in the aquatic environment.

  5. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  6. Vibronic exciton theory of singlet fission. I. Linear absorption and the anatomy of the correlated triplet pair state

    Science.gov (United States)

    Tempelaar, Roel; Reichman, David R.

    2017-05-01

    Recent time-resolved spectroscopic experiments have indicated that vibronic coupling plays a vital role in facilitating the process of singlet fission. In this work, which forms the first article of a series, we set out to unravel the mechanisms underlying singlet fission through a vibronic exciton theory. We formulate a model in which both electronic and vibrational degrees of freedom are treated microscopically and non-perturbatively. Using pentacene as a prototypical material for singlet fission, we subject our theory to comparison with measurements on polarization-resolved absorption of single crystals, and employ our model to characterize the excited states underlying the absorption band. Special attention is given to the convergence of photophysical observables with respect to the basis size employed, through which we determine the optimal basis for more expensive calculations to be presented in subsequent work. We furthermore evaluate the energetic separation between the optically prepared singlet excited state and the correlated triplet pair state, as well as provide a real-space characterization of the latter, both of which are of key importance in the discussion of fission dynamics. We discuss our results in the context of recent experimental studies.

  7. Electronic Ground State of Higher Acenes

    CERN Document Server

    Jiang, De-en

    2007-01-01

    We examine the electronic ground state of acenes with different number of fused benzene rings (up to 40) by using first principles density functional theory. Their properties are compared with those of infinite polyacene. We find that the ground state of acenes that consist of more than seven fused benzene rings is an antiferromagnetic (in other words, open-shell singlet) state, and we show that this singlet is not necessarily a diradical, because the spatially separated magnetizations for the spin-up and spin-down electrons increase with the size of the acene. For example, our results indicate that there are about four spin-up electrons localized at one zigzag edge of 20-acene. The reason that both acenes and polyacene have the antiferromagnetic ground state is due to the zigzag-shaped boundaries, which cause pi-electrons to localize and form spin orders at the edges. Both wider graphene ribbons and large rectangular-shaped polycyclic aromatic hydrocarbons have been shown to share this antiferromagnetic grou...

  8. Magnetic properties of ground-state mesons

    Energy Technology Data Exchange (ETDEWEB)

    Simonis, V. [Vilnius University Institute of Theoretical Physics and Astronomy, Vilnius (Lithuania)

    2016-04-15

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties (i.e., usual magnetic moments) to be of sufficiently high quality, too. (orig.)

  9. First observation of $^{13}$Li ground state

    CERN Document Server

    Kohley, Z; DeYoung, P A; Volya, A; Baumann, T; Bazin, D; Christian, G; Cooper, N L; Frank, N; Gade, A; Hall, C; Hinnefeld, J; Luther, B; Mosby, S; Peters, W A; Smith, J K; Snyder, J; Spyrou, A; Thoennessen, M

    2013-01-01

    The ground state of neutron-rich unbound $^{13}$Li was observed for the first time in a one-proton removal reaction from $^{14}$Be at a beam energy of 53.6 MeV/u. The $^{13}$Li ground state was reconstructed from $^{11}$Li and two neutrons giving a resonance energy of 120$^{+60}_{-80}$ keV. All events involving single and double neutron interactions in the Modular Neutron Array (MoNA) were analyzed, simulated, and fitted self-consistently. The three-body ($^{11}$Li+$n+n$) correlations within Jacobi coordinates showed strong dineutron characteristics. The decay energy spectrum of the intermediate $^{12}$Li system ($^{11}$Li+$n$) was described with an s-wave scattering length of greater than -4 fm, which is a smaller absolute value than reported in a previous measurement.

  10. Magnetic properties of ground-state mesons

    CERN Document Server

    Simonis, Vytautas

    2016-01-01

    Starting with the bag model a method for the study of the magnetic properties (magnetic moments, magnetic dipole transition widths) of ground-state mesons is developed. We calculate the M1 transition moments and use them subsequently to estimate the corresponding decay widths. These are compared with experimental data, where available, and with the results obtained in other approaches. Finally, we give the predictions for the static magnetic moments of all ground-state vector mesons including those containing heavy quarks. We have a good agreement with experimental data for the M1 decay rates of light as well as heavy mesons. Therefore, we expect our predictions for the static magnetic properties (usual magnetic moments) to be of sufficiently high quality, too.

  11. Thermal ground state and nonthermal probes

    CERN Document Server

    Grandou, Thierry

    2015-01-01

    The Euclidean formulation of SU(2) Yang-Mills thermodynamics admits periodic, (anti)selfdual solutions to the fundamental, classical equation of motion which possess one unit of topological charge: (anti)calorons. A spatial coarse graining over the central region in a pair of such localised field configurations with trivial holonomy generates an inert adjoint scalar field $\\phi$, effectively describing the pure quantum part of the thermal ground state in the induced quantum field theory. The latter's local vertices are mediated by just-not-resolved (anti)caloron centers of action $\\hbar$. This is the basic reason for a rapid convergence of the loop expansion of thermodynamical quantities, polarization tensors, etc., their effective loop momenta being severely constrained in entirely fixed and physical unitary-Coulomb gauge. Here we show for the limit of zero holonomy how (anti)calorons associate a temperature independent electric permittivity and magnetic permeability to the thermal ground state of SU(2)$_{\\t...

  12. Electronic ground state of Ni$_2^+$

    CERN Document Server

    Zamudio-Bayer, V; Bülow, C; Leistner, G; Terasaki, A; Issendorff, B v; Lau, J T

    2016-01-01

    The $^{4}\\Phi_{9/2}$ ground state of the Ni$_2^+$ diatomic molecular cation is determined experimentally from temperature and magnetic-field-dependent x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap, where an electronic and rotational temperature of $7.4 \\pm 0.2$ K was achieved by buffer gas cooling of the molecular ion. The contribution of the magnetic dipole term to the x-ray magnetic circular dichroism spin sum rule amounts to $7\\, T_z = 0.17 \\pm 0.06$ $\\mu_B$ per atom, approximately 11 \\% of the spin magnetic moment. We find that, in general, homonuclear diatomic molecular cations of $3d$ transition metals seem to adopt maximum spin magnetic moments in their electronic ground states.

  13. Strangeness in the baryon ground states

    CERN Document Server

    Semke, A

    2012-01-01

    We compute the strangeness content of the baryon ground states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.

  14. R-matrix calculations of triplet gerade states of molecular hydrogen and their use for high-resolution spectroscopy

    Science.gov (United States)

    Oueslati, H.; Argoubi, F.; Bezzaouia, S.; Telmini, M.; Jungen, Ch.

    2014-03-01

    A variational R-matrix approach combined with multichannel quantum defect theory is used for a computational study of triplet gerade states of H2. Electron-ion reaction (quantum defect) matrices are calculated as functions of internuclear distance and energy for the bound and continuum ranges including singly and doubly excited configurations built on the 1σg (X+2Σg+) and 1σu (A+2Σu+) core states of the H2+ ion. It is shown how these matrices can be reduced to effective quantum defect functions adapted to the analysis of high-resolution spectra in the bound range. These R-matrix effective quantum defects are finally adjusted to the available experimental data [Sprecher et al., J. Phys. Chem. A 117, 9462 (2013), 10.1021/jp311793t], producing agreement with experiment to within 0.5 cm-1, nearly as good as obtained by Sprecher et al. In addition, the R-matrix calculations predict the evolution of the quantum defects for higher energies, in a range extending far into the electronic continuum.

  15. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.

  16. Ground states for the fractional Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Binhua Feng

    2013-05-01

    Full Text Available In this article, we show the existence of ground state solutions for the nonlinear Schrodinger equation with fractional Laplacian $$ (-Delta ^alpha u+ V(xu =lambda |u|^{p}uquadhbox{in $mathbb{R}^N$ for $alpha in (0,1$}. $$ We use the concentration compactness principle in fractional Sobolev spaces $H^alpha$ for $alpha in (0,1$. Our results generalize the corresponding results in the case $alpha =1$.

  17. The ground electronic state of KCs studied by Fourier transform spectroscopy

    Science.gov (United States)

    Ferber, R.; Klincare, I.; Nikolayeva, O.; Tamanis, M.; Knöckel, H.; Tiemann, E.; Pashov, A.

    2008-06-01

    We present here the first analysis of laser induced fluorescence (LIF) of the KCs molecule obtaining highly accurate data and perform a direct potential construction for the X 1Σ+ ground state in a wide range of internuclear distances. KCs molecules were produced by heating a mixture of K and Cs metals in a heat pipe at a temperature of about 270 °C. KCs fluorescence was induced by different laser sources: the 454.5, 457.9, 465.8, and 472.7 nm lines of an Ar+ laser, a dye laser with Rhodamine 6G dye (excitation at around 16 870 cm-1), and 850 and 980 nm diode lasers (11 500-11 900 and 10 200-10 450 cm-1 tuning ranges, respectively). The LIF to the ground state was recorded by a Bruker IFS-125HR Fourier transform spectrometer with a spectral resolution of 0.03 cm-1. Particularly, by applying the 850 nm laser diode we were able to observe LIF progressions to very high vibrational levels of the ground state close to the dissociation limit. The present data field contains 7226 term values for the ground state X 1Σ+ and covers a range from v''=0 to 97 with J'' varying from 12 to 209. More than 10 000 fluorescence lines were used to fit the ground state potential energy curve via the inverted perturbation approach procedure. The present empirical potential extends up to approximately 12.6 A˚ and covers more than 99% of the potential well depth, it describes most of the spectral lines with an accuracy of about 0.003 cm-1 and yields a dissociation energy of 4069.3+/-1.5 cm-1 for the ground state X 1Σ+. First observations of the triplet ground state a 3Σ+ of KCs are presented, and preliminary values of few main molecular constants could be derived.

  18. Generation of Triplet Excited States via Photoinduced Electron Transfer in meso-anthra-BODIPY: Fluorogenic Response toward Singlet Oxygen in Solution and in Vitro

    KAUST Repository

    Filatov, Mikhail A.

    2017-04-14

    Heavy atom-free BODIPY-anthracene dyads (BADs) generate locally excited triplet states by way of photoinduced electron transfer (PeT), followed by recombination of the resulting charge-separated states (CSS). Subsequent quenching of the triplet states by molecular oxygen produces singlet oxygen (1O2), which reacts with the anthracene moiety yielding highly fluorescent species. The steric demand of the alkyl substituents in the BODIPY subunit defines the site of 1O2 addition. Novel bis- and tetraepoxides and bicyclic acetal products, arising from rearrangements of anthracene endoperoxides were isolated and characterized. 1O2 generation by BADs in living cells enables visualization of the dyads distribution, promising new imaging applications.

  19. Neutron interferometric measurement of the scattering length difference between the triplet and singlet states of n-$^3$He

    CERN Document Server

    Huber, M G; Chen, W C; Gentile, T R; Hussey, D S; Black, T C; Pushin, D A; Shahi, C B; Wietfeldt, F E; Yang, L

    2014-01-01

    We report a determination of the n-$^3$He scattering length difference $\\Delta b^{\\prime} = b_{1}^{\\prime}-b_{0}^{\\prime} = $ ($-5.411$ $\\pm$ $0.031$ (statistical) $\\pm$ $0.039$ (systematic)) fm between the triplet and singlet states using a neutron interferometer. This revises our previous result $\\Delta b^{\\prime} = $ (-5.610 $\\pm$ $0.027$ (statistical) $\\pm$ $0.032$ (systematic) fm obtained using the same technique in 2008. This revision is due to a re-analysis of the 2008 experiment that includes a more robust treatment of the phase shift caused by magnetic field gradients near the $^3$He cell. Furthermore, we more than doubled our original data set from 2008 by acquiring six months of additional data in 2013. Both the new data set and a re-analysis of the older data are in good agreement. Scattering lengths of low Z isotopes are valued for use in few-body nuclear effective field theories, provide important tests of modern nuclear potential models and in the case of $^3$He aid in the interpretation of neu...

  20. Cryptanalysis and Improvement for the Quantum Private Comparison Protocol Based on Triplet Entangled State and Single-Particle Measurement

    Science.gov (United States)

    Ting, Xu; Tian-Yu, Ye

    2017-03-01

    Quantum private comparison (QPC) aims to accomplish the equality comparison of secret inputs from two users on the basis of not leaking their contents out. Recently, Chen et al. proposed the QPC protocol based on triplet GHZ state and single-particle measurement (Optics Communications 283, 1561-1565 (2010)). In this paper, they suggested the standard model of a semi-honest third party (TP) for the first time, and declared that their protocol is secure. Subsequently, Lin et al. pointed out that in Chen et al.'s protocol, one user can extract the other user's secret without being discovered by performing the intercept-resend attack, and suggested two corresponding improvements (Optics Communications 284, 2412-2414 (2011)). However, Yang et al. first pointed out that the model of TP adopted by both Chen et al.'s protocol and Lin et al.'s improved protocols is unreasonable, and thought that a practical TP may also try any possible means to steal the users' secrets except being corrupted by the adversary including the dishonest user (Quantum Inf Process 12, 877-885 (2013). In this paper, after taking the possible attacks from TP into account, we propose the eavesdropping strategy of TP toward Lin et al.'s improved protocols and suggest two feasible solutions accordingly.

  1. Communication: DMRG-SCF study of the singlet, triplet, and quintet states of oxo-Mn(Salen)

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, Sebastian, E-mail: sebastianwouters@gmail.com; Van Speybroeck, Veronique; Van Neck, Dimitri [Center for Molecular Modelling, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); Bogaerts, Thomas [Center for Molecular Modelling, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium); Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Krijgslaan 281 (S3), 9000 Gent (Belgium); Van Der Voort, Pascal [Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Krijgslaan 281 (S3), 9000 Gent (Belgium)

    2014-06-28

    We use CHEMPS2, our free open-source spin-adapted implementation of the density matrix renormalization group (DMRG) [S. Wouters, W. Poelmans, P. W. Ayers, and D. Van Neck, Comput. Phys. Commun. 185, 1501 (2014)], to study the lowest singlet, triplet, and quintet states of the oxo-Mn(Salen) complex. We describe how an initial approximate DMRG calculation in a large active space around the Fermi level can be used to obtain a good set of starting orbitals for subsequent complete-active-space or DMRG self-consistent field calculations. This procedure mitigates the need for a localization procedure, followed by a manual selection of the active space. Per multiplicity, the same active space of 28 electrons in 22 orbitals (28e, 22o) is obtained with the 6-31G{sup *}, cc-pVDZ, and ANO-RCC-VDZP basis sets (the latter with DKH2 scalar relativistic corrections). Our calculations provide new insight into the electronic structure of the quintet.

  2. Ground and excited electronic state analysis of PrF²⁺ and PmF²⁺.

    Science.gov (United States)

    Schoendorff, George; Chi, Benjamin; Ajieren, Hans; Wilson, Angela K

    2015-03-05

    The ground state and excited state manifolds are computed for PrF(2+) and PmF(2+) at the CASSCF (n,8) level of theory where the active space spans the Ln 4f orbitals as well as the F 2pz orbital. Dynamical correlation is included using second-order multireference quasidegenerate perturbation theory (MCQDPT2). The spin-orbit multiplets for each of the excited states are resolved, and spin-orbit coupling constants are computed using the Breit-Pauli spin-orbit operator. Equilibrium geometries for each of the ground and excited states are computed, and the nature of the Ln-F bond is examined. Potential energy curves for the lowest four triplet states and lowest two quintet states are computed for PrF(2+), which split into 14 levels upon application of the spin-orbit Hamiltonian. Likewise, the lowest six quintet states are computed for PmF(2+) as well as the lowest triplet state and the lowest two septet states. These nine states split into 43 terms upon application of the spin-orbit Hamiltonian.

  3. Ground-state and excited-state structures of tungsten-benzylidyne complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lovaasen, B. M.; Lockard, J. V.; Cohen, B. W.; Yang, S.; Zhang, X.; Simpson, C. K.; Chen, L. X.; Hopkins, M. D. (Chemical Sciences and Engineering Division); ( XSD); (The Univ. of Chicago)

    2012-01-01

    The molecular structure of the tungsten-benzylidyne complex trans-W({triple_bond}CPh)(dppe){sub 2}Cl (1; dppe = 1,2-bis(diphenylphosphino)ethane) in the singlet (d{sub xy}){sup 2} ground state and luminescent triplet (d{sub xy}){sup 1}({pi}*(WCPh)){sup 1} excited state (1*) has been studied using X-ray transient absorption spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations. Molecular-orbital considerations suggest that the W-C and W-P bond lengths should increase in the excited state because of the reduction of the formal W-C bond order and decrease in W {yields} P {pi}-backbonding, respectively, between 1 and 1*. This latter conclusion is supported by comparisons among the W-P bond lengths obtained from the X-ray crystal structures of 1, (d{sub xy}){sup 1}-configured 1{sup +}, and (d{sub xy}){sup 2} [W(CPh)(dppe){sub 2}(NCMe)]{sup +} (2{sup +}). X-ray transient absorption spectroscopic measurements of the excited-state structure of 1* reveal that the W-C bond length is the same (within experimental error) as that determined by X-ray crystallography for the ground state 1, while the average W-P/W-Cl distance increases by 0.04 {angstrom} in the excited state. The small excited-state elongation of the W-C bond relative to the M-E distortions found for M({triple_bond}E)L{sub n} (E = O, N) compounds with analogous (d{sub xy}){sup 1}({pi}*(ME)){sup 1} excited states is due to the {pi} conjugation within the WCPh unit, which lessens the local W-C {pi}-antibonding character of the {pi}*(WCPh) lowest unoccupied molecular orbital (LUMO). These conclusions are supported by DFT calculations on 1 and 1*. The similar core bond distances of 1, 1{sup +}, and 1* indicates that the inner-sphere reorganization energy associated with ground- and excited-state electron-transfer reactions is small.

  4. Properties of the triplet metastable states of the alkaline-earth atoms

    CERN Document Server

    Mitroy, J

    2004-01-01

    The static and dynamic properties of the alkaline-earth atoms in their metastable state are computed in a configuration interaction approach with a semi-empirical model potential for the core. Among the properties determined are the scalar and tensor polarizabilities, the quadrupole moment, some of the oscillator strengths and the dispersion coefficients of the van der Waals interaction. A simple method for including the effect of the core on the dispersion parameters is described.

  5. The polaron: Ground state, excited states, and far from equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Trugman, S.A. [Los Alamos National Lab., NM (United States). Theory Div.; Bonca, J. [Univ. of Ljubljana (Slovenia)]|[Jozef Stefan Inst., Ljubljana (Slovenia)

    1998-12-01

    The authors describe a variational approach for solving the Holstein polaron model with dynamical quantum phonons on an infinite lattice. The method is simple, fast, extremely accurate, and gives ground and excited state energies and wavefunctions at any momentum k. The method can also be used to calculate coherent quantum dynamics for inelastic tunneling and for strongly driven polarons far from equilibrium.

  6. Thermodynamic Ground States of Complex Oxide Heterointerfaces

    DEFF Research Database (Denmark)

    Gunkel, F.; Hoffmann-Eifert, S.; Heinen, R. A.

    2017-01-01

    The formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature...... equilibrium conductivity measurements. We unambiguously identify two distinct classes of oxide heterostructures: For epitaxial perovskite/perovskite heterointerfaces (LaAlO3/SrTiO3, NdGaO3/SrTiO3, and (La,Sr)(Al,Ta)O3/SrTiO3), we find the 2DEG formation being based on charge transfer into the interface...

  7. Superimposed particles in 1D ground states

    Energy Technology Data Exchange (ETDEWEB)

    Sueto, Andras, E-mail: suto@szfki.hu [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, PO Box 49, H-1525 Budapest (Hungary)

    2011-01-21

    For a class of nonnegative, range-1 pair potentials in one-dimensional continuous space we prove that any classical ground state of lower density {>=}1 is a tower-lattice, i.e. a lattice formed by towers of particles the heights of which can differ only by 1, and the lattice constant is 1. The potential may be flat or may have a cusp at the origin; it can be continuous, but its derivative has a jump at 1. The result is valid on finite intervals or rings of integer length and on the whole line.

  8. Toward enabling large-scale open-shell equation-of-motion coupled cluster calculations: triplet states of β-carotene

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hanshi; Bhaskaran-Nair, Kiran; Apra, Edoardo; Govind, Niranjan; Kowalski, Karol

    2014-10-02

    In this paper we discuss the application of novel parallel implementation of the coupled cluster (CC) and equation-of-motion coupled cluster methods (EOMCC) in calculations of excitation energies of triplet states in beta-carotene. Calculated excitation energies are compared with experimental data, where available. We also provide a detailed description of the new parallel algorithms for iterative CC and EOMCC models involving single and doubles excitations.

  9. Electron spin resonance of the phosphorescent triplet states of p-phenylphenol and p-phenylphenolate ion in stretched polyvinyl alcohol films

    Science.gov (United States)

    Yagi, Mikio; Higuchi, Jiro

    1980-05-01

    Using a stretched polyvinyl alcohol film as a host, electron spin resonance (ESR) of the phosphorescent triplet states of p-phenylphenol and p-phenylphenolate ion has been studied by changing the pH of the medium as an example of the application of ESR to an acid-base equilibrium. In assigning ESR spectra of aromatic acid and conjugated base, the present method is demonstrated to be most convenient and useful.

  10. Photobehavior of copper(I) compounds. 4. Role of the triplet state of (arylphosphine)copper(I) complexes in the photosensitized isomerization dienes

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, B.; Orchard, S.W.; Kutal, C.

    1988-04-20

    Photoisomerization of cis- and trans-piperylene can be sensitized with high quantum efficiency by Cu(diphos)BH/sub 4/ (diphos is 1,2-bis(diphenylphosphino)ethane) and Cu(prophos)BH/sub 4/ (prophos is 1,3-bis(diphenylphosphino)propane). Sensitization is accompanied by quenching of the emissive /sup 3/(/sigma/-a/sub /pi//) excited state in each copper(I) complex, and the two processes occur with identical Stern-Volmer kinetics. Measurements of the trans/cis diene ratio at the photostationary state can be used to estimate the triplet-state energy as 60-61 kcal for Cu(diphos)BH/sub 4/ and > 61 kcal for Cu(prophos)BH/sub 4/; additional evidence suggests that 66-67 kcal is a reasonable value for the latter complex. Collectively, the results support the assignment of triplet-triplet energy transfer as the primary mechanism for sensitization and quenching in these systems. This mechanism also can accommodate earlier reports that Cu(diphos)BH/sub 4/ and Cu(prophos)BH/sub 4/ sensitize the valence isomerization of norbornadiene to quadricyclene with markedly different quantum efficiencies. 17 refs., 6 figs., 2 tabs.

  11. Ground-state structures of Hafnium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Wei Chun; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technoloty, Multimedia University, Melaca Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  12. Dynamics of He2∗ triplet state excimer bubbles in superfluid 4He

    Science.gov (United States)

    Eloranta, J.

    2007-02-01

    Time-dependent density functional theory calculations for bulk superfluid 4He were carried out to model dynamics around He2∗ excimers after optical excitation from the 3a to 3d state. The liquid dynamics occurring after a sudden change in the helium-liquid interaction results in interfacial dynamics, which can be divided into three different modes: (1) non-linear processes yielding shock and solitonic progressions, (2) fast interfacial dynamics related to thinning of the liquid-gas interface that occurs within few picoseonds and (3) slow spherical breathing motion of the liquid-gas interface with recursion times up to 110 ps. The long-range repulsive tail ( R > 12 Å) in the He-He2∗ interaction is found to play an important role in determining the recursion time of the solvent cavity breathing mode. As energy differences of just few wavenumbers in this region are sufficient to produce large changes in the recursion time, none of the pair potentials derived from the first principles could reproduce the experimental data [V.A. Benderskii, J. Eloranta, R. Zadoyan, V.A. Apkarian, J. Chem. Phys. 117 (2002) 1201]. Therefore it is concluded that the pump-probe experiments measure energy differences that are not possible to calculate using the current electronic structure methods. The results obtained from the density functional theory calculations are consistent with the proposed experimental scheme.

  13. Lowest triplet (n, π*) electronic state of acrolein: Determination of structural parameters by cavity ringdown spectroscopy and quantum-chemical methods

    Science.gov (United States)

    Hlavacek, Nikolaus C.; McAnally, Michael O.; Drucker, Stephen

    2013-02-01

    The cavity ringdown absorption spectrum of acrolein (propenal, CH2=CH—CH=O) was recorded near 412 nm, under bulk-gas conditions at room temperature and in a free-jet expansion. The measured spectral region includes the 0^0_0 band of the T1(n, π*) ← S0 system. We analyzed the 0^0_0 rotational contour by using the STROTA computer program [R. H. Judge et al., J. Chem. Phys. 103, 5343 (1995)], 10.1063/1.470569, which incorporates an asymmetric rotor Hamiltonian for simulating and fitting singlet-triplet spectra. We used the program to fit T1(n, π*) inertial constants to the room-temperature contour. The determined values (cm-1), with 2σ confidence intervals, are A = 1.662 ± 0.003, B = 0.1485 ± 0.0006, C = 0.1363 ± 0.0004. Linewidth analysis of the jet-cooled spectrum yielded a value of 14 ± 2 ps for the lifetime of isolated acrolein molecules in the T1(n, π*), v = 0 state. We discuss the observed lifetime in the context of previous computational work on acrolein photochemistry. The spectroscopically derived inertial constants for the T1(n, π*) state were used to benchmark a variety of computational methods. One focus was on complete active space methods, such as complete active space self-consistent field (CASSCF) and second-order perturbation theory with a CASSCF reference function (CASPT2), which are applicable to excited states. We also examined the equation-of-motion coupled-cluster and time-dependent density function theory excited-state methods, and finally unrestricted ground-state techniques, including unrestricted density functional theory and unrestricted coupled-cluster theory with single and double and perturbative triple excitations. For each of the above methods, we or others [O. S. Bokareva et al., Int. J. Quantum Chem. 108, 2719 (2008)], 10.1002/qua.21803 used a triple zeta-quality basis set to optimize the T1(n, π*) geometry of acrolein. We find that the multiconfigurational methods provide the best agreement with fitted inertial

  14. New ground state for quantum gravity

    CERN Document Server

    Magueijo, Joao

    2012-01-01

    In this paper we conjecture the existence of a new "ground" state in quantum gravity, supplying a wave function for the inflationary Universe. We present its explicit perturbative expression in the connection representation, exhibiting the associated inner product. The state is chiral, dependent on the Immirzi parameter, and is the vacuum of a second quantized theory of graviton particles. We identify the physical and unphysical Hilbert sub-spaces. We then contrast this state with the perturbed Kodama state and explain why the latter can never describe gravitons in a de Sitter background. Instead, it describes self-dual excitations, which are composites of the positive frequencies of the right-handed graviton and the negative frequencies of the left-handed graviton. These excitations are shown to be unphysical under the inner product we have identified. Our rejection of the Kodama state has a moral tale to it: the semi-classical limit of quantum gravity can be the wrong path for making contact with reality (w...

  15. Singlet-Triplet Transitions of a P(o)schl-Teller Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2006-01-01

    We study the energy spectra of a two-dimensional two-electron quantum dot (QD) with P(o)schl-Teller confining potential under the influence of perpendicular homogeneous magnetic field. Calculations are made by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. A ground-state behavior (spin singlet-triplet transitions) as a function of the strength of a magnetic field is found. We find that the dot radius R of a P(o)schl-Teller potential is important for the ground-state transition and the feature of ground-state for a P(o)schl-Teller QD and a parabolic QD is similar when R is larger. The larger the well depth, the higher the magnetic field for the singlet-triplet transition of the ground-state of two interacting electrons in a P(o)schl-Teller QD.

  16. Quinoidal Oligo(9,10-anthryl)s with Chain-Length-Dependent Ground States: A Balance between Aromatic Stabilization and Steric Strain Release

    KAUST Repository

    Lim, Zhenglong

    2015-11-12

    Quinoidal π-conjugated polycyclic hydrocarbons have attracted intensive research interest due to their unique optical/electronic properties and possible magnetic activity, which arises from a thermally excited triplet state. However, there is still lack of fundamental understanding on the factors that determine the electronic ground states. Herein, by using quinoidal oligo(9,10-anthryl)s, it is demonstrated that both aromatic stabilisation and steric strain release play balanced roles in determining the ground states. Oligomers with up to four anthryl units were synthesised and their ground states were investigated by electronic absorption and electron spin resonance (ESR) spectroscopy, assisted by density functional theory (DFT) calculations. The quinoidal 9,10-anthryl dimer 1 has a closed-shell ground state, whereas the tri- (2) and tetramers (3) both have an open-shell diradical ground state with a small singlet-triplet gap. Such a difference results from competition between two driving forces: the large steric repulsion between the anthryl/phenyl units in the closed-shell quinoidal form that drives the molecule to a flexible open-shell diradical structure, and aromatic stabilisation due to the gain of more aromatic sextet rings in the closed-shell form, which drives the molecule towards a contorted quinoidal structure. The ground states of these oligomers thus depend on the overall balance between these two driving forces and show chain-length dependence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. On large amplitude motions of simplest amides in the ground and excited electronic states

    Science.gov (United States)

    Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.

    2016-12-01

    For the formamide, acetamide, N-methylformamide and N-methylacetamide molecules in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states equilibrium geometry parameters, harmonic vibrational frequencies, barriers to conformational transitions and conformer energy differences were estimated by means of MP2, CCSD(T), CASSCF, CASPT2 and MRCI ab initio methods. One-, two- and three-dimensional potential energy surface (PES) sections corresponding to different large amplitude motions (LAM) were calculated by means of MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1,T1). For these molecules, in each excited electronic state six minima were found on 2D PES sections. Using PES sections, different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were determined.

  18. Sub-ns triplet state formation by non-geminate recombination in PSBTBT:PC 70 BM and PCPDTBT:PC 60 BM organic solar cells

    KAUST Repository

    Etzold, Fabian

    2015-03-02

    The solid-state morphology and photo-generated charge carrier dynamics in low-bandgap polymer:fullerene bulk heterojunction photovoltaic blends using the donor–acceptor type copolymers PCPDTBT or its silicon-substituted analogue PSBTBT as donors are compared by two-dimensional (2D) solid-state nuclear magnetic resonance (NMR) and femto-to microsecond broadband Vis-NIR transient absorption (TA) pump–probe spectroscopy. The 2D solid-state NMR experiments demonstrate that the film morphology of PCPDTBT:PC60BM blends processed with additives such as octanedithiol (ODT) are similar to those of PSBTBT:PC60BM blends in terms of crystallinity, phase segregation, and interfacial contacts. The TA experiments and analysis of the TA data by multivariate curve resolution (MCR) reveal that after exciton dissociation and free charge formation, fast sub-nanosecond non-geminate recombination occurs which leads to a substantial population of the polymer\\'s triplet state. The extent to which triplet states are formed depends on the initial concentration of free charges, which itself is controlled by the microstructure of the blend, especially in case of PCPDTBT:PC60BM. Interestingly, PSBTBT:PC70BM blends show a higher charge generation efficiency, but less triplet state formation at similar free charge carrier concentrations. This indicates that the solid-state morphology and interfacial structures of PSBTBT:PC70BM blends reduces non-geminate recombination, leading to superior device performance compared to optimized PCPDTBT:PC60BM blends.

  19. Ground state of high-density matter

    Science.gov (United States)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  20. Ground State Properties of Neutron Magic Nuclei

    CERN Document Server

    Saxena, G

    2016-01-01

    A systematic study of the ground state properties of the entire chains of even even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82 and 126 has been carried out using relativistic mean field (rmf) plus Bardeen Cooper Schrieffer (BCS) approach. Our present investigation includes deformation, binding energy, two proton separation energy, single particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using non relativistic approach (Skyrme Hartree Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip lines, the (Z,N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.

  1. Thermodynamic ground states of platinum metal nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Aberg, D; Sadigh, B; Crowhurst, J; Goncharov, A

    2007-10-09

    We have systematically studied the thermodynamic stabilities of various phases of the nitrides of the platinum metal elements using density functional theory. We show that for the nitrides of Rh, Pd, Ir and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability can extend up to 17 GPa for PtN{sub 2}. Furthermore, we show that according to calculations using the local density approximation, these new compounds are also thermodynamically stable at ambient pressure and thus may be the ground state phases for these materials. We further discuss the fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures.

  2. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion

    Science.gov (United States)

    Winghart, Marc-Oliver; Yang, Ji-Ping; Vonderach, Matthias; Unterreiner, Andreas-Neil; Huang, Dao-Ling; Wang, Lai-Sheng; Kruppa, Sebastian; Riehn, Christoph; Kappes, Manfred M.

    2016-02-01

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt2(μ-P2O5H2)4 + 2H]2- after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet 1A2u state and concomitant rise in population of the triplet 3A2u state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet 1A2u state takes only a few picoseconds, ESETD from the triplet 3A2u state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt2(μ-P2O5H2)4 + 2H]2- is the first example of a photoexcited multianion for which ESETD has been observed following ISC.

  3. Optical Nuclear Polarization in the Excited State Through Cross-Relaxation and Its Use in the Study of the Carbon-13 Hyperfine Coupling in the Lowest Triplet State of 1-13C-p-Benzoquinone

    NARCIS (Netherlands)

    Lichtenbelt, Jan H.; Fremeijer, Jan G.F.M.; Wiersma, Douwe A.

    1976-01-01

    In this paper the phenomenon of optical nuclear polarization in the excited state through cross-relaxation is described. It is shown that when the populating and depopulating rates of the triplet spin sublevels are known the absolute nuclear polarizations can be calculated and that optical detection

  4. Resonance Raman and absorption spectroscopy of the lowest triplet state of 1,3,5-hexatriene and deuteriated derivatives at 183 K : molecular structure in the T1 state

    NARCIS (Netherlands)

    Langkilde, F.W.; Wilbrandt, R.; M?ller, S.; Brouwer, A.M.; Negri, F.; Orlandi, G.

    1991-01-01

    Time-resolved resonance Raman (RR) spectra of the lowest excited triplet state T1 of (E)-1,3,5-hexatriene, (E)-3-deuterio-1,3,5-hexatriene, and (E)-1,1-dideuterio-1,3,5-hexatriene are obtained at 183 K. The T1 potential energy surface (PES), determining energy minima, equilibrium geometries, frequen

  5. Diphotons from an Electroweak Triplet-Singlet

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Kiel [Fermilab; Knapen, Simon [UC, Berkeley; Robinson, Dean J. [UC, Berkeley

    2016-03-29

    The neutral component of a real pseudoscalar electroweak (EW) triplet can produce a diphoton excess at 750 GeV, if it is somewhat mixed with an EW singlet pseudoscalar. This triplet-singlet mixing allows for greater freedom in the diboson branching ratios than the singlet-only case, but it is still possible to probe the parameter space extensively with 300 fb$^{-1}$. The charged component of the triplet is pair-produced at the LHC, which results in a striking signal in the form of a pair of $W\\gamma$ resonances with an irreducible rate of 0.27 fb. Other signatures include multiboson final states from cascade decays of the triplet-singlet neutral states. A large class of composite models feature both EW singlet and triplet pseudo-Nambu Goldstone bosons in their spectrum, with the diboson couplings generated by axial anomalies.

  6. Symmetry phase diagrams of the superconducting ground states induced by correlated hoppings interactions

    Energy Technology Data Exchange (ETDEWEB)

    Samuel Millan, J. [Facultad de Ingenieria, Universidad Autonoma del Carmen, Cd. del Carmen, C.P. 24180, Campeche (Mexico); Perez, Luis A. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (UNAM), A.P. 20-364, C.P. 01000, Mexico D.F. (Mexico)], E-mail: lperez@fisica.unam.mx; Shelomov, Evgen [Facultad de Ingenieria, Universidad Autonoma del Carmen, Cd. del Carmen, C.P. 24180, Campeche (Mexico); Wang, Chumin [Instituto de Investigaciones en Materiales, UNAM, A.P. 70-360, C.P. 04510, Mexico D.F. (Mexico)

    2007-09-01

    The formation of p- and d-wave superconducting ground states on a square lattice is studied within the BCS formalism and a generalized Hubbard model, in which a second-neighbor correlated hopping ({delta}t{sub 3}) is included in addition to the on site and nearest neighbor repulsions. The triplet superconductivity is obtained when a small distortion of the right angles in the square lattice is introduced. This distortion can be characterized by the difference between the values of {delta}t{sub 3}{sup {+-}} in the x {+-} y directions, i.e., {delta}{sub 3}=({delta}t{sub 3}{sup +}-{delta}t{sub 3}{sup -})/2. The phase diagram is analyzed in the space of the electron density (n) and {delta}{sub 3}. The results show that the p- and d-channel superconductivities are respectively enhanced in the low and high electron density regions.

  7. Phasic Triplet Markov Chains.

    Science.gov (United States)

    El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar

    2014-11-01

    Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data.

  8. Kinetic Monte Carlo study of triplet-triplet annihilation in organic phosphorescent emitters

    Science.gov (United States)

    van Eersel, H.; Bobbert, P. A.; Coehoorn, R.

    2015-03-01

    The triplet-triplet annihilation (TTA) rate in organic phosphorescent materials such as used in organic light-emitting diodes is determined predominantly either by the rate of single-step Förster-type triplet-triplet interactions, or by multi-step triplet diffusion. We show how kinetic Monte Carlo simulations may be used to analyze the role of both processes. Under steady state conditions, the effective triplet-triplet interaction rate coefficient, kTT, which is often regarded as a constant, is found to depend actually on the number of excitons lost upon a triplet-triplet interaction process and to show a significant higher-order dependence on the triplet volume density. Under the conditions encountered in transient photoluminescence (PL) studies, kTT is found to be effectively constant in the case of diffusion-dominated TTA. However, for the case of single-step TTA, a strongly different decay of the emission intensity is found, which also deviates from an analytic expression proposed in the literature. We discuss how the transient PL response may be used to make a distinction between both mechanisms. The simulations are applied to recently published work on the dye concentration dependence of the TTA rate in materials based on the archetypal green emitter tris[2-phenylpyridine]iridium (Ir(ppy)3).

  9. Triplet excitons in natural photosynthetic and artificial light harvesting systems: Measurement and modeling

    Science.gov (United States)

    Hartzler, Daniel Allen

    Under full sunlight, unprotected (Bacterio)Chlorophyll ((B)Chl) molecules photodegrade in a matter of minutes. This is the result of the generation of highly reactive singlet oxygen (1O2) by energy transfer from the (B)Chl triplet state (3(B)Chl) to the oxygen ground state. Natural photosynthetic systems must protect themselves from 1O2, typically done by positioning carotenoids within a few angstroms of each (B)Chl molecule to quench 3(B)Chl states. Using phosphorescence spectroscopy and computational modeling, we investigated alternative, carotenoid independent, mechanisms which nature may employ to prevent 1O2 sensitization by lowering the energy of 3(B)Chl below that of 1O2. The two proposed triplet lowering mechanisms investigated were: triplet state lowering by strong pigment-pigment interactions (i.e. triplet exciton formation) and triplet state lowering by pigment-protein interactions. Possible natural examples employing these mechanisms are two structures found in green sulfur bacteria: the chlorosome (an antenna containing ~100000 coupled BChl c, d, or e molecules with unexpectedly high photostability) and the Fenna-Matthews-Olson (FMO) complex (an auxiliary antenna containing eight seemingly unprotected BChl a molecules). Measurements performed on linear aggregates of the dye perylene diimide (PDI) show that triplet exciton formation does reduce the triplet state energy. However, direct measurement of triplet state energies for the chlorosome and FMO complex proved experimentally difficult, thus an alternative approach was used to calculate these energies using empirical and excitonic models. Since the use of excitonic modeling requires knowledge of both the pigment site energies and the pigment-pigment interactions (i.e. couplings), work was performed to catalog the monomeric singlet and triplet state energies of all known natural (B)Chl pigments by direct measurement or computational modeling and to characterize the triplet-triplet (T-T) coupling in

  10. Magnetic Field Effects on Triplet-Triplet Annihilation in Solutions: Modulation of Visible/NIR Luminescence.

    Science.gov (United States)

    Mani, Tomoyasu; Vinogradov, Sergei A

    2013-08-01

    Photon upconversion based on sensitized triplet-triplet annihilation (TTA) presents interest for such areas as photovoltaics and imaging. Usually energy upconversion is observed as p-type delayed fluorescence from molecules whose triplet states are populated via energy transfer from a suitable triplet donor, followed by TTA. Magnetic field effects (MFE) on delayed fluorescence in molecular crystals are well known; however, there exist only a few examples of MFE on TTA in solutions, and all of them are limited to UV-emitting materials. Here we present MFE on TTA-mediated visible and near infrared (NIR) emission, sensitized by far-red absorbing metalloporphyrins in solutions at room temperature. In addition to visible delayed fluorescence from annihilator, we also observed NIR emission from the sensitizer, occurring as a result of triplet-triplet energy transfer back from annihilator, termed "delayed phosphorescence". This emission also exhibits MFE, but opposite in sign to the annihilator fluorescence.

  11. Up-Conversion Intersystem Crossing Rates in Organic Emitters for Thermally Activated Delayed Fluorescence: Impact of the Nature of Singlet vs Triplet Excited States

    KAUST Repository

    Samanta, Pralok Kumar

    2017-02-28

    The rates for up-conversion intersystem crossing (UISC) from the T1 state to the S1 state are calculated for a series of organic emitters with an emphasis on thermally activated delayed fluorescence (TADF) materials. Both the spin-orbit coupling and the energy difference between the S1 and T1 states (ΔEST) are evaluated, at the density functional theory (DFT) and time-dependent DFT levels. The calculated UISC rates and ΔEST values are found to be in good agreement with available experimental data. Our results underline that small ΔEST values and sizable spin-orbit coupling matrix elements have to be simultaneously realized in order to facilitate UISC and ultimately TADF. Importantly, the spatial separation of the highest occupied and lowest unoccupied molecular orbitals of the emitter, a widely accepted strategy for the design of TADF molecules, does not necessarily lead to a sufficient reduction in ΔEST; in fact, either a significant charge-transfer (CT) contribution to the T1 state or a minimal energy difference between the local-excitation and charge-transfer triplet states is required to achieve a small ΔEST. Also, having S1 and T1 states of a different nature is found to strongly enhance spin-orbit coupling, which is consistent with the El-Sayed rule for ISC rates. Overall, our results indicate that having either similar energies for the local-excitation and charge-transfer triplet states or the right balance between a substantial CT contribution to T1 and somewhat different natures of the S1 and T1 states, paves the way toward UISC enhancement and thus TADF efficiency improvement.

  12. Crossing behavior of the singlet and triplet State of the negatively charged magneto-exciton in a GaAs/AlGaAs quantum well

    Energy Technology Data Exchange (ETDEWEB)

    MUNTEANU,F.M.; KIM,YONGMIN; PERRY,C.H.; RICKEL,D.G.; SIMMONS,JERRY A.; RENO,JOHN L.

    2000-01-27

    Polarized magneto-photoluminescence (MPL) measurements on a high mobility {delta}-doped GaAs/AlGaAs single quantum well from 0--60 T at temperatures between 0.37--2.1 K are reported. In addition to the neutral heavy hole magneto-exciton (X{sup 0}), the singlet (X {sub s}{sup {minus}}) and triplet (X {sub t}{sup {minus}}) states of the negatively charged magneto-exciton are observed in both polarizations. The energy dispersive and time-resolved MPL data suggest that their development is fundamentally related to the formation of the neutral magneto-exciton. At a magnetic field of 40 T the singlet and the triplet states cross as a result of the role played by the higher Landau levels and higher energy subbands in their energetic evolution, confirming theoretical predictions. The authors also observed the formation of two higher energy peaks. One of them is completely right circularly polarized and its appearance can be considered a result of the electron-hole exchange interaction enhancement with an associated electron g-factor of 3.7 times the bulk value. The other peak completely dominates the MPL spectrum at fields around 30 T. Its behavior with magnetic field and temperature indicates that it may be related to previous anomalies observed in the integer and fractional quantum Hall regimes.

  13. Crossing behavior of the singlet and triplet State of the negatively charged magneto-exciton in a GaAs/AlGaAs quantum well

    Energy Technology Data Exchange (ETDEWEB)

    MUNTEANU,F.M.; KIM,YONGMIN; PERRY,C.H.; RICKEL,D.G.; SIMMONS,JERRY A.; RENO,JOHN L.

    2000-01-27

    Polarized magneto-photoluminescence (MPL) measurements on a high mobility {delta}-doped GaAs/AlGaAs single quantum well from 0--60 T at temperatures between 0.37--2.1 K are reported. In addition to the neutral heavy hole magneto-exciton (X{sup 0}), the singlet (X {sub s}{sup {minus}}) and triplet (X {sub t}{sup {minus}}) states of the negatively charged magneto-exciton are observed in both polarizations. The energy dispersive and time-resolved MPL data suggest that their development is fundamentally related to the formation of the neutral magneto-exciton. At a magnetic field of 40 T the singlet and the triplet states cross as a result of the role played by the higher Landau levels and higher energy subbands in their energetic evolution, confirming theoretical predictions. The authors also observed the formation of two higher energy peaks. One of them is completely right circularly polarized and its appearance can be considered a result of the electron-hole exchange interaction enhancement with an associated electron g-factor of 3.7 times the bulk value. The other peak completely dominates the MPL spectrum at fields around 30 T. Its behavior with magnetic field and temperature indicates that it may be related to previous anomalies observed in the integer and fractional quantum Hall regimes.

  14. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion

    Energy Technology Data Exchange (ETDEWEB)

    Winghart, Marc-Oliver, E-mail: marc-oliver.winghart@kit.edu; Unterreiner, Andreas-Neil [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); Yang, Ji-Ping [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); School of Sciences, Hefei University of Technology, Hefei 230009 (China); Vonderach, Matthias [Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB (United Kingdom); Huang, Dao-Ling; Wang, Lai-Sheng [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States); Kruppa, Sebastian; Riehn, Christoph [Fachbereich Chemie und Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52–54, 67663 Kaiserslautern (Germany); Kappes, Manfred M., E-mail: manfred.kappes@kit.edu [Institute of Physical Chemistry, Karlsruhe Institute of Technology, P.O. Box 6980, 76049 Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2016-02-07

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet {sup 1}A{sub 2u} state and concomitant rise in population of the triplet {sup 3}A{sub 2u} state, via sub-picosecond intersystem crossing (ISC). We find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet {sup 1}A{sub 2u} state takes only a few picoseconds, ESETD from the triplet {sup 3}A{sub 2u} state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} is the first example of a photoexcited multianion for which ESETD has been observed following ISC.

  15. Ground and Excited States Of OH(-)(H2O)n Clusters.

    Science.gov (United States)

    Zanuttini, David; Gervais, Benoit

    2015-07-23

    We present an ab initio study of OH(-)(H2O)n (n = 1-7) clusters in their lowest three singlet and two triplet electronic states, calculated with the RASPT2 method. Minimum energy structures were obtained by geometry optimization for both (a) the 1(1)Σ(+) ground state and (b) the 1(3)Π excited state. From these structures, vertical detachment energies (VDEs), transition energies, and atomic charges were calculated. (a) We found that ground-state geometries present the hydroxide at the surface, accepting three and four H bonds from water. The excess charge is strongly stabilized by water up to a VDE of 6.7 eV for n = 7. Bound singlet excited states for ground-state geometries exist for n ≥ 3, and their VDE increases up to 1 eV for n = 7. (b) The 1(3)Π state equilibrium geometries completely differ from the ground-state geometries. They are characterized by the hydroxide acting as a single H bond donor to a water molecule, which then donates a H-bond to two others, forming a "tree" pattern. All minimum energy structures present this "tree" pattern and a constant total number of 2n - 2 H bonds, or equivalently 3 dangling hydrogens. The excess charge stabilizes from n = 2 and goes mainly at the surface, on the dangling hydrogens of water. An almost neutral OH radical is then formed. Resulting structural resemblances with the neutral system make the VDEs of the first excited states weakly geometry dependent but size sensitive because of additive polarization effects. In contrast, the 1(1)Σ(+) state at the 1(3)Π geometries is strongly sensitive to structural patterns. We bring out existing correlations between these patterns and the corresponding 1(1)Σ(+) state energy increase, which leads to couplings with excited states and possibly to an inversion of the state energy order. From these assessments, we propose a scenario for recombination of aqueous hydroxide following excitation in a charge-transfer-to-solvent state.

  16. Multiconfigurational electronic wavefunctions in the full optimized reaction space: the isomerization of nitrosyl hydride to nitrogen hydroxide in the lowest singlet and triplet states

    Energy Technology Data Exchange (ETDEWEB)

    Dombek, M. G.

    1977-12-01

    Energy curves are determined for the lowest singlet and triplet states of the HNO molecule. The geometry is varied in that the hydrogen moves through 13 positions around the NO core to describe the isomerization reaction HNO yields HON. Quantitatively determined are the stable and metastable equilibrium positions in both states, the energy differences between these two equilibrium positions and between the two states, and the barriers with respect to isomerization. The calculations are carried out using a novel configuration interaction approach called the Full Optimized Reaction Space method, which involves multiconfigurational self-consistent field calculations as an integral part. In order to interpret the bonding changes occurring during the reaction, a novel type of orbital is developed and calculated. These are called Directed Localized Reaction Orbitals. With their help it proves possible to give an interpretation of the isomerization in terms of concepts which fit chemical intuition.

  17. Formation of charge separated state P+OA- and triplet state 3P at low temperature in Rhodobacter sphaeroides (R-26) reaction centers in which bacteriopheophytin a is replaced by plant pheophytin a.

    Science.gov (United States)

    Shkuropatov Aya; Proskuryakov, I I; Shkuropatova, V A; Zvereva, M G; Shuvalov, V A

    1994-09-05

    Low temperature optical and photochemical properties of Rhodobacter sphaeroides (R-26) reaction centers, in which bacteriopheophytin a has been replaced by plant pheophytin a, are reported. Modified reaction centers preserve the ability for photoinduced electron transfer from the primary electron donor P to the primary quinone acceptor QA at 80K. The triplet state ESR signal of modified reaction centers with prereduced QA at 10K shows an electron spin polarization pattern and ZFS parameters analogous to those for the triplet state 3P in non-treated reaction centers. It was found that at low temperature both P+QA- and 3P states are formed via a precursor radical pair P+I- in which I is the introduced plant pheophytin molecule. This shows that acceptor systems of bacterial and plant (photosystem II) reaction centers are mutually replacable in structural and functional aspects.

  18. Long-lived two-dimensional triplet magnetoexcitons in a Hall insulator

    Science.gov (United States)

    Kulik, L. V.; Gorbunov, A. V.; Zhuravlev, A. S.; Timofeev, V. B.; Kukushkin, I. V.

    2016-03-01

    An experimental technique is developed to perform photoexcitation of an ensemble of translationinvariant triplet excitons, to manipulate this ensemble, and to detect the properties of its components. In particular, the influence of temperature on the radiationless decay during the relaxation of an exciton spin into the ground state of a Hall insulator at a filling factor ν = 2 is studied. The generation of photoexcited electrons and holes is controlled using photoinduced resonance reflection spectra, which makes it possible to estimate the density of light-generated electron-hole pairs and to independently control the self-consistent generation of electrons at the first Landau level and holes (vacancies) at the ground (zero) cyclotron electronic level. The existence of triplet excitons is established from inelastic light scattering spectra, which are used to determine the singlet-triplet exciton splitting. The lifetimes of triplet excitons, which are closely related to the relaxation time of an electron spin, are extremely long: they reach 100 μs in perfect GaAs/AlGaAs heterostructures with a high mobility of two-dimensional electrons at low temperatures. These long spin relaxation times are qualitatively explained, and the expected collective behavior of high-density triplet magnetoexcitons at sufficiently low temperatures, which is related to their Bose nature, is discussed.

  19. The effect of solvent polarity on the balance between charge transfer and non-charge transfer pathways in the sensitization of singlet oxygen by pipi triplet states.

    Science.gov (United States)

    Schmidt, Reinhard

    2006-05-11

    A large set of literature kinetic data on triplet (T(1)) sensitization of singlet oxygen by two series of biphenyl and naphthalene sensitizers in solvents of strongly different polarity has been analyzed. The rate constants and the efficiencies of singlet oxygen formation are quantitatively reproduced by a model that assumes the competition of a non-charge transfer (nCT) and a CT deactivation channel. nCT deactivation occurs from a fully established spin-statistical equilibrium of (1)(T(1)(3)Sigma) and (3)(T(1)(3)Sigma) encounter complexes by internal conversion (IC) to lower excited complexes that dissociate to yield O(2)((1)Sigma(g)(+)), O(2)((1)Delta(g)), and O(2)((3)Sigma(g)(-)). IC of (1,3)(T(1)(3)Sigma) encounter complexes is controlled by an energy gap law that is generally valid for the transfer of electronic energy to and from O(2). (1,3)(T(1)(3)Sigma) nCT complexes form in competition to IC (1)(T(1)(3)Sigma) and (3)(T(1)(3)Sigma) exciplexes if CT interactions between T(1) and O(2) are important. The rate constants of exciplex formation depend via a Marcus type parabolic model on the corresponding free energy change DeltaG(CT), which varies with sensitizer triplet energy, oxidation potential, and solvent polarity. O(2)((1)Sigma(g)(+)), O(2)((1)Delta(g)), and O(2)((3)Sigma(g)(-)) are formed in the product ratio (1/6):(1/12):(3/4) in the CT deactivation channel. The balance between nCT and CT deactivation is described by the relative contribution p(CT) of CT induced deactivation calculated for a sensitizer of known triplet energy from its quenching rate constant. It is shown how the change of p(CT) influences the quenching rate constant and the efficiency of singlet oxygen formation in both series of sensitizers. p(CT) is sensitive to differences of solvent polarity and varies for the biphenyls and the naphthalenes as sigmoidal with DeltaG(CT). This quantitative model represents a realistic and general mechanism for the quenching of pipi triplet states by O

  20. Adapting algebraic diagrammatic construction schemes for the polarization propagator to problems with multi-reference electronic ground states exploiting the spin-flip ansatz

    Science.gov (United States)

    Lefrancois, Daniel; Wormit, Michael; Dreuw, Andreas

    2015-09-01

    For the investigation of molecular systems with electronic ground states exhibiting multi-reference character, a spin-flip (SF) version of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator up to third order perturbation theory (SF-ADC(3)) is derived via the intermediate state representation and implemented into our existing ADC computer program adcman. The accuracy of these new SF-ADC(n) approaches is tested on typical situations, in which the ground state acquires multi-reference character, like bond breaking of H2 and HF, the torsional motion of ethylene, and the excited states of rectangular and square-planar cyclobutadiene. Overall, the results of SF-ADC(n) reveal an accurate description of these systems in comparison with standard multi-reference methods. Thus, the spin-flip versions of ADC are easy-to-use methods for the calculation of "few-reference" systems, which possess a stable single-reference triplet ground state.

  1. Alpha Decay Half-Lives of Some Nuclei from Ground State to Ground State with Yukawa Proximity Potential

    Institute of Scientific and Technical Information of China (English)

    E.Javadimanesh; H.Hassanabadi; A.A.Rajabi; H.Rahimov; S.Zarrinkamar

    2012-01-01

    We study the half-lives of some nuclei via the alpha-decay process from ground state to ground state. To go through the problem, we have considered a potential model with Yukawa proximity potential and have thereby calculated the half-lives. The comparison with the existing data is motivating.

  2. Precision spectroscopy with ultracold {sup 87}Rb{sub 2} triplet molecules

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Christoph

    2011-10-19

    In this thesis I report precision spectroscopy with ultracold {sup 87}Rb{sub 2} triplet molecules where we use lasers to couple the states in different molecular potentials. We study in detail states of the a {sup 3} sum {sup +}{sub u} and (1) {sup 3} sum {sup +}{sub g} potentials. These states are of great importance for transferring weakly bound molecules to the ro-vibrational triplet ground state via states of the excited potential. As most experiments start from molecules in their X {sup 1} sum {sup +}{sub g} ground state, the triplet states were hard to access via dipole transitions and remained largely unexplored. The measurements presented in this thesis are the first detailed study of diatomic {sup 87}Rb{sub 2} molecules in these states. Our experiments start with an ultracold cloud of {sup 87}Rb atoms. We then load this cloud into an optical lattice where we use a magnetic Feshbach resonance at 1007.4 G to perform a Feshbach association. After we have removed all unbound atoms, we end up with a pure sample of weakly bound Feshbach molecules inside the optical lattice. The optical lattice prevents these molecules from colliding with each other which results in molecular lifetimes on the order of a few hundred milliseconds. In the first set of experiments, we use a laser coupling the Feshbach state to the excited (1) {sup 3} sum {sup +}{sub g} triplet state to map out its low-lying vibrational (v = 0.. 15), rotational, hyperfine, and Zeeman structure. The experimental results are in good agreement with calculations done by Marius Lysebo and Prof. Leif Veseth. We then map out in detail the vibrational, rotational, hyperfine, and Zeeman structure of the a {sup 3} sum {sup +}{sub u} triplet ground state using dark state spectroscopy with levels in the (1) {sup 3} sum {sup +}{sub g} potential as an intermediate state. In this scheme we are able to access molecules in triplet states because our Feshbach state has strong triplet character. Interestingly, it

  3. Transport-related triplet states and hyperfine couplings in organic tandem solar cells probed by pulsed electrically detected magnetic resonance spectroscopy.

    Science.gov (United States)

    Kraffert, Felix; Bahro, Daniel; Meier, Christoph; Denne, Maximilian; Colsmann, Alexander; Behrends, Jan

    2017-09-01

    Tandem solar cells constitute the most successful organic photovoltaic devices with power conversion efficiencies comparable to thin-film silicon solar cells. Especially their high open-circuit voltage - only achievable by a well-adjusted layer stacking - leads to their high efficiencies. Nevertheless, the microscopic processes causing the lossless recombination of charge carriers within the recombination zone are not well understood yet. We show that advanced pulsed electrically detected magnetic resonance techniques such as electrically detected (ED)-Rabi nutation measurements and electrically detected hyperfine sublevel correlation (ED-HYSCORE) spectroscopy help to understand the role of triplet excitons in these microscopic processes. We investigate fully working miniaturised organic tandem solar cells and detect current-influencing doublet states in different layers as well as triplet excitons located on the fullerene-based acceptor. We apply ED-HYSCORE in order to study the nuclear spin environment of the relevant electron/hole spins and detect a significant amount of the low abundant (13)C nuclei coupled to the observer spins. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Transport-related triplet states and hyperfine couplings in organic tandem solar cells probed by pulsed electrically detected magnetic resonance spectroscopy

    Science.gov (United States)

    Kraffert, Felix; Bahro, Daniel; Meier, Christoph; Denne, Maximilian; Colsmann, Alexander; Behrends, Jan

    2017-09-01

    Tandem solar cells constitute the most successful organic photovoltaic devices with power conversion efficiencies comparable to thin-film silicon solar cells. Especially their high open-circuit voltage - only achievable by a well-adjusted layer stacking - leads to their high efficiencies. Nevertheless, the microscopic processes causing the lossless recombination of charge carriers within the recombination zone are not well understood yet. We show that advanced pulsed electrically detected magnetic resonance techniques such as electrically detected (ED)-Rabi nutation measurements and electrically detected hyperfine sublevel correlation (ED-HYSCORE) spectroscopy help to understand the role of triplet excitons in these microscopic processes. We investigate fully working miniaturised organic tandem solar cells and detect current-influencing doublet states in different layers as well as triplet excitons located on the fullerene-based acceptor. We apply ED-HYSCORE in order to study the nuclear spin environment of the relevant electron/hole spins and detect a significant amount of the low abundant 13C nuclei coupled to the observer spins.

  5. Triplet absorption spectroscopy and electromagnetically induced transparency

    Science.gov (United States)

    Ghafoor, F.; Nazmitdinov, R. G.

    2016-09-01

    Coherence phenomena in a four-level atomic system, cyclically driven by three coherent fields, are investigated thoroughly at zero and weak magnetic fields. Each strongly interacting atomic state is converted to a triplet due to a dynamical Stark effect. Two dark lines with a Fano-like profile arise in the triplet absorption spectrum with anomalous dispersions. We provide conditions to control the widths of the transparency windows by means of the relative phase of the driving fields and the intensity of the microwave field, which closes the optical system loop. The effect of Doppler broadening on the results of the triplet absorption spectroscopy is analysed in detail.

  6. Investigating the intersystem crossing rate and triplet quantum yield of Protoporphyrin IX by means of pulse train fluorescence technique

    Science.gov (United States)

    Gotardo, Fernando; Cocca, Leandro H. Z.; Acunha, Thiago V.; Longoni, Ana; Toldo, Josene; Gonçalves, Paulo F. B.; Iglesias, Bernardo A.; De Boni, Leonardo

    2017-04-01

    Photophysical investigations of PPIX were described in order to determine the triplet conversion efficiency. Time resolved fluorescence and pulse train fluorescence were employed to characterize the main mechanism responsible for deactivation of the first singlet excited state (excited singlet and triplet states). Single pulse and Z-Scan analysis were employed to measure the singlet excited state absorption cross-sections. Theoretical calculations were performed in order to get some properties of PPIX in ground state, first singlet and triplet excited state. A TD-DFT result shows a great possibility of ISC associated to out-of-plane distortions in porphyrinic ring. Furthermore, the B and Q bands in the calculated spectrum are assigned to the four frontier molecular orbitals as proposed by Gouterman for free-based porphyrins.

  7. Ground state correlations and mean field in 16O

    Science.gov (United States)

    Heisenberg, Jochen H.; Mihaila, Bogdan

    1999-03-01

    We use the coupled cluster expansion [exp(S) method] to generate the complete ground state correlations due to the NN interaction. Part of this procedure is the calculation of the two-body G matrix inside the nucleus in which it is being used. This formalism is being applied to 16O in a configuration space of 50ħω. The resulting ground state wave function is used to calculate the binding energy and one- and two-body densities for the ground state of 16O.

  8. Ground state correlations and mean-field in $^{16}$O

    CERN Document Server

    Heisenberg, J H; Heisenberg, Jochen H.; Mihaila, Bogdan.

    1999-01-01

    We use the coupled cluster expansion ($\\exp(S)$ method) to generate the complete ground state correlations due to the $NN$ interaction. Part of this procedure is the calculation of the two-body ${\\mathbf G}$ matrix inside the nucleus in which it is being used. This formalism is being applied to $^{16}$O in a configuration space of 35 $\\hbar\\omega$. The resulting ground state wave function is used to calculate the binding energy and one- and two-body densities for the ground state of~$^{16}$O.

  9. Classical ground states of symmetric Heisenberg spin systems

    CERN Document Server

    Schmidt, H J

    2003-01-01

    We investigate the ground states of classical Heisenberg spin systems which have point group symmetry. Examples are the regular polygons (spin rings) and the seven quasi-regular polyhedra including the five Platonic solids. For these examples, ground states with special properties, e.g. coplanarity or symmetry, can be completely enumerated using group-theoretical methods. For systems having coplanar (anti-) ground states with vanishing total spin we also calculate the smallest and largest energies of all states having a given total spin S. We find that these extremal energies depend quadratically on S and prove that, under certain assumptions, this happens only for systems with coplanar S = 0 ground states. For general systems the corresponding parabolas represent lower and upper bounds for the energy values. This provides strong support and clarifies the conditions for the so-called rotational band structure hypothesis which has been numerically established for many quantum spin systems.

  10. Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers

    KAUST Repository

    Andernach, Rolf

    2015-07-22

    We report the synthesis of a novel polythiophene-based host-guest copolymer incorporating a Pt-porphyrin complex (TTP-Pt) into the backbone for efficient singlet to triplet polymer exciton sensitization. We elucidated the exciton dynamics in thin films of the material by means of Transient Absorption Spectrosopcy (TAS) on multiple timescales and investigated the mechanism of triplet exciton formation. During sensitization, single exciton diffusion is followed by exciton transfer from the polymer backbone to the complex where it undergoes intersystem crossing to the triplet state of the complex. We directly monitored the triplet exciton back transfer from the Pt-porphyrin to the polymer and find that 60% of the complex triplet excitons are transferred with a time constant of 1087 ps. We propose an equilibrium between polymer and porphyrin triplet states as a result of the low triplet diffusion length in the polymer backbone and hence an increased local triplet population resulting in increased triplet-triplet annihilation. This novel system has significant implications for the design of novel materials for triplet sensitized solar cells and up-conversion layers.

  11. All-electrical measurement of the triplet-singlet spin relaxation time in self-assembled quantum dots

    Science.gov (United States)

    Eltrudis, K.; Al-Ashouri, A.; Beckel, A.; Ludwig, A.; Wieck, A. D.; Geller, M.; Lorke, A.

    2017-08-01

    We have measured the spin relaxation time of an excited two-electron spin-triplet state into its singlet ground state in self-assembled InAs/GaAs quantum dots. We use a time-resolved measurement scheme that combines transconductance spectroscopy with spin-to-charge conversion to address the |s ↑,p ↑ 〉 triplet state, where one electron is in the quantum dot s-shell and a second one in the p-shell. The evaluation of the state-selective tunneling times from the dots into a nearby two-dimensional electron gas allows us to determine the s- and p-shell occupation and extract the relaxation time from a rate equation model. A comparably long triplet-to-singlet spin relaxation time of 25 μs is found.

  12. Ground state energy of the modified Nambu-Goto string

    CERN Document Server

    Hadasz, L

    1998-01-01

    We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.

  13. Arsenic in Ground Water of the United States - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image shows national-scale patterns of naturally occurring arsenic in potable ground-water resources of the continental United States. The image was generated...

  14. ON GROUND STATE SOLUTIONS FOR SUPERLINEAR DIRAC EQUATION

    Institute of Scientific and Technical Information of China (English)

    张建; 唐先华; 张文

    2014-01-01

    This article is concerned with the nonlinear Dirac equations Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.

  15. Entanglement of two ground state neutral atoms using Rydberg blockade

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Browaeys, Antoine; Evellin, Charles

    2011-01-01

    We report on our recent progress in trapping and manipulation of internal states of single neutral rubidium atoms in optical tweezers. We demonstrate the creation of an entangled state between two ground state atoms trapped in separate tweezers using the effect of Rydberg blockade. The quality of...

  16. Borromean ground state of fermions in two dimensions

    DEFF Research Database (Denmark)

    G. Volosniev, A.; V. Fedorov, D.; S. Jensen, A.;

    2014-01-01

    -body threshold. They are the lowest in a possible sequence of so-called super-Efimov states. While the observation of the super-Efimov scaling could be very difficult, the borromean ground state should be observable in cold atomic gases and could be the basis for producing a quantum gas of three-body states...

  17. Theory of ground state factorization in quantum cooperative systems.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2008-05-16

    We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.

  18. Quasiparticle Random Phase Approximation with an optimal Ground State

    CERN Document Server

    Simkovic, F; Raduta, A A

    2001-01-01

    A new Quasiparticle Random Phase Approximation approach is presented. The corresponding ground state is variationally determined and exhibits a minimum energy. New solutions for the ground state, some with spontaneously broken symmetry, of a solvable Hamiltonian are found. A non-iterative procedure to solve the non-linear QRPA equations is used and thus all possible solutions are found. These are compared with the exact results as well as with the solutions provided by other approaches.

  19. Frenkel defect formation and intersystem crossing at highly-excited states of the triplet self-trapped exciton in NaCl. [Photon excitation

    Energy Technology Data Exchange (ETDEWEB)

    Soda, Kazuo; Itoh, Noriaki (Nagoya Univ. (Japan). Faculty of Engineering)

    1981-12-01

    Measurements were made of the absorption change at the F band and of the singlet luminescence in NaCl, induced by photoexcitation of the lowest state of the triplet self-trapped excitons into excited states higher than the lowest state by 1.7 eV -- 2.8 eV. It is found that excitation with photons below 2.5 eV causes both the F-center creation and the sigma-luminescence, while excitation with photons above 2.5 eV causes only the sigma-luminescence. These results indicate that non-radiative transition from the higher excited states to the lowest state of the self-trapped exciton is selective. The cause of the selectiveness is discussed. The yield of the F center creation at the higher excited state of the self-trapped exciton was found to be about 10/sup -2/. The stability of the created F centers in NaCl is found to be lower than in other alkali chlorides.

  20. Triplet-triplet energy transfer from chlorophylls to carotenoids in two antenna complexes from dinoflagellate Amphidinium carterae.

    Science.gov (United States)

    Kvíčalová, Zuzana; Alster, Jan; Hofmann, Eckhard; Khoroshyy, Petro; Litvín, Radek; Bína, David; Polívka, Tomáš; Pšenčík, Jakub

    2016-04-01

    Room temperature transient absorption spectroscopy with nanosecond resolution was used to study quenching of the chlorophyll triplet states by carotenoids in two light-harvesting complexes of the dinoflagellate Amphidinium carterae: the water soluble peridinin-chlorophyll protein complex and intrinsic, membrane chlorophyll a-chlorophyll c2-peridinin protein complex. The combined study of the two complexes facilitated interpretation of a rather complicated relaxation observed in the intrinsic complex. While a single carotenoid triplet state was resolved in the peridinin-chlorophyll protein complex, evidence of at least two different carotenoid triplets was obtained for the intrinsic light-harvesting complex. Most probably, each of these carotenoids protects different chlorophylls. In both complexes the quenching of the chlorophyll triplet states by carotenoids occurs with a very high efficiency (~100%), and with transfer times estimated to be in the order of 0.1ns or even faster. The triplet-triplet energy transfer is thus much faster than formation of the chlorophyll triplet states by intersystem crossing. Since the triplet states of chlorophylls are formed during the whole lifetime of their singlet states, the apparent lifetimes of both states are the same, and observed to be equal to the carotenoid triplet state rise time (~5ns).

  1. Heats of Formation of Triplet Ethylene, Ethylidene, and Acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, M.T.; Matus, M.H.; Lester Jr, W.A.; Dixon, David A.

    2007-06-28

    Heats of formation of the lowest triplet state of ethylene and the ground triplet state of ethylidene have been predicted by high level electronic structure calculations. Total atomization energies obtained from coupled-cluster CCSD(T) energies extrapolated to the complete basis set limit using correlation consistent basis sets (CBS), plus additional corrections predict the following heats of formation in kcal/mol: Delta H0f(C2H4,3A1) = 80.1 at 0 K and 78.5 at 298 K, and Delta H0f(CH3CH,3A") = 86.8 at 0 K and 85.1 at 298 K, with an error of less than +-1.0 kcal/mol. The vertical and adiabatic singlet-triplet separation energies of ethylene were calculated as Delta ES-T,vert = 104.1 and Delta ES-T,adia = 65.8 kcal/mol. These results are in excellent agreement with recent quantum Monte Carlo (DMC) values of 103.5 +- 0.3 and 66.4 +- 0.3 kcal/mol. Both sets of computational values differ from the experimental estimate of 58 +- 3 kcal/mol for the adiabatic splitting. The computed singlet-triplet gap at 0 K for acetylene is Delta ES-T,adia(C2H2) = 90.5 kcal/mol, which is in notable disagreement with the experimental value of 82.6 kcal/mol. The heat of formation of the triplet is Delta H0f(C2H2,3B2) = 145.3 kcal/mol. There is a systematic underestimation of the singlet-triplet gaps in recent photodecomposition experiments by ~;;7 to 8 kcal/mol. For vinylidene, we predict Delta H0f(H2CC,1A1) = 98.8 kcal/mol at 298 K (exptl. 100.3 +- 4.0), Delta H0f(H2CC,3B2) = 146.2 at 298 K, and an energy gap Delta ES-T-adia(H2CC) = 47.7 kcal/mol.

  2. Triplet p-wave pairing correlation in low-doped zigzag graphene nanoribbons

    Science.gov (United States)

    Ma, Tianxing; Yang, Fan; Huang, Zhongbing; Lin, Hai-Qing

    2017-02-01

    We reveal an edge spin triplet p–wave superconducting pairing correlation in slightly doped zigzag graphene nanoribbons. By employing a method that combines random-phase approximation, the finite-temperature determinant quantum Monte Carlo approach, and the ground-state constrained-path quantum Monte Carlo method, it is shown that such a spin-triplet pairing is mediated by the ferromagnetic fluctuations caused by the flat band at the edge. The spin susceptibility and effective pairing interactions at the edge strongly increase as the on-site Coulomb interaction increases, indicating the importance of electron-electron correlations. It is also found that the doping-dependent ground-state p-wave pairing correlation bears some similarity to the famous superconducting dome in the phase diagram of a high-temperature superconductor, while the spin correlation at the edge is weakened as the system is doped away from half filling.

  3. Triplet p-wave pairing correlation in low-doped zigzag graphene nanoribbons

    Science.gov (United States)

    Ma, Tianxing; Yang, Fan; Huang, Zhongbing; Lin, Hai-Qing

    2017-01-01

    We reveal an edge spin triplet p–wave superconducting pairing correlation in slightly doped zigzag graphene nanoribbons. By employing a method that combines random-phase approximation, the finite-temperature determinant quantum Monte Carlo approach, and the ground-state constrained-path quantum Monte Carlo method, it is shown that such a spin-triplet pairing is mediated by the ferromagnetic fluctuations caused by the flat band at the edge. The spin susceptibility and effective pairing interactions at the edge strongly increase as the on-site Coulomb interaction increases, indicating the importance of electron-electron correlations. It is also found that the doping-dependent ground-state p-wave pairing correlation bears some similarity to the famous superconducting dome in the phase diagram of a high-temperature superconductor, while the spin correlation at the edge is weakened as the system is doped away from half filling. PMID:28186185

  4. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    Directory of Open Access Journals (Sweden)

    S. Torquato

    2015-05-01

    Full Text Available It has been shown numerically that systems of particles interacting with isotropic “stealthy” bounded long-ranged pair potentials (similar to Friedel oscillations have classical ground states that are (counterintuitively disordered, hyperuniform, and highly degenerate. Disordered hyperuniform systems have received attention recently because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d-dimensional Euclidean space R^{d} is highly nontrivial because the dimensionality of the configuration space depends on the number density ρ and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. The purpose of this paper is to take some initial steps in this direction. Specifically, we derive general exact relations for thermodynamic properties (energy, pressure, and isothermal compressibility that apply to any ground-state ensemble as a function of ρ in any d, and we show how disordered degenerate ground states arise as part of the ground-state manifold. We also derive exact integral conditions that both the pair correlation function g_{2}(r and structure factor S(k must obey for any d. We then specialize our results to the canonical ensemble (in the zero-temperature limit by exploiting an ansatz that stealthy states behave remarkably like “pseudo”-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for g_{2}(r and S(k are in excellent agreement with computer simulations across the first three space dimensions. These results are used to obtain order metrics, local number variance, and nearest-neighbor functions across dimensions. We also derive

  5. Ensemble Theory for Stealthy Hyperuniform Disordered Ground States

    Science.gov (United States)

    Torquato, S.; Zhang, G.; Stillinger, F. H.

    2015-04-01

    It has been shown numerically that systems of particles interacting with isotropic "stealthy" bounded long-ranged pair potentials (similar to Friedel oscillations) have classical ground states that are (counterintuitively) disordered, hyperuniform, and highly degenerate. Disordered hyperuniform systems have received attention recently because they are distinguishable exotic states of matter poised between a crystal and liquid that are endowed with novel thermodynamic and physical properties. The task of formulating an ensemble theory that yields analytical predictions for the structural characteristics and other properties of stealthy degenerate ground states in d -dimensional Euclidean space Rd is highly nontrivial because the dimensionality of the configuration space depends on the number density ρ and there is a multitude of ways of sampling the ground-state manifold, each with its own probability measure for finding a particular ground-state configuration. The purpose of this paper is to take some initial steps in this direction. Specifically, we derive general exact relations for thermodynamic properties (energy, pressure, and isothermal compressibility) that apply to any ground-state ensemble as a function of ρ in any d , and we show how disordered degenerate ground states arise as part of the ground-state manifold. We also derive exact integral conditions that both the pair correlation function g2(r ) and structure factor S (k ) must obey for any d . We then specialize our results to the canonical ensemble (in the zero-temperature limit) by exploiting an ansatz that stealthy states behave remarkably like "pseudo"-equilibrium hard-sphere systems in Fourier space. Our theoretical predictions for g2(r ) and S (k ) are in excellent agreement with computer simulations across the first three space dimensions. These results are used to obtain order metrics, local number variance, and nearest-neighbor functions across dimensions. We also derive accurate analytical

  6. Simultaneous analysis of the Ballik-Ramsay and Phillips systems of C2 and observation of forbidden transitions between singlet and triplet states.

    Science.gov (United States)

    Chen, Wang; Kawaguchi, Kentarou; Bernath, Peter F; Tang, Jian

    2015-02-14

    6229 lines of the Ballik-Ramsay system (b(3)Σg (-)-a(3)Πu) and the Phillips system (A(1)Πu-X(1)Σg (+)) of C2 up to v = 8 and J = 76, which were taken from the literature or assigned in the present work, were analyzed simultaneously by least-squares fitting with 82 Dunham-like molecular parameters and spin-orbit interaction constants between the b(3)Σg (-) and X(1)Σg (+) states with a standard deviation of 0.0037 cm(-1) for the whole data set. As a result of the deperturbation analysis, the spin-orbit interaction constant AbX was determined as 6.333(7) cm(-1) and the energy difference between the X(1)Σg (+) and a(3)Πu states was determined as 720.008(2) cm(-1) for the potential minima or 613.650(3) cm(-1) for the v = 0 levels with Merer and Brown's N(2) Hamiltonian for (3)Π states, which is about 3.3 cm(-1) larger than the previously determined value. Due to this sizable change, a new energy-level crossing was found at J = 2 for v = 3 (F1) of b(3)Σg (-) state and v = 6 of X(1)Σg (+) state, where the strong interaction causes a nearly complete mixing of the wave functions of the b(3)Σg (-) and X(1)Σg (+) states and the forbidden transitions become observable. Using the predictions of our deperturbation analysis, we were able to identify 16 forbidden transitions between the singlet and triplet states at the predicted frequencies with the expected intensities, which verifies our value for the energy difference between the X(1)Σg (+) and a(3)Πu states.

  7. Mutual Co-Assignment of the Calculated Vibrational Frequencies in the Ground and Lowest Excited Electronic States

    Science.gov (United States)

    Panchenko, Yurii N.

    2013-06-01

    The shifts of the molecular vibrational frequencies when going from the ground electronic state to the lowest excited electronic states pose some problems for the mutual co-assignment of the calculated vibrational frequencies in the different excited states. The trans-{C_2 O_2 F_2} shift of the frequency of the symmetrical ν(C=O) stretching vibration between the S_0 and T_1 is 373 wn. The feasibility of mutual co-assignments of the vibrational frequencies in these electronic states has been demonstrated for trans-{C_2 O_2 F_2}. Matrices analogous to the Duschinsky matrix were used to juxtapose the a_g vibrational frequencies of this molecule calculated at the CASPT2/cc-pVTZ level in the ground S_0 and excited triplet T_1 and singlet S_1 electronic states. The analog of the Duschinsky matrix D was obtained for this molecule using the equation D = (L_{I})^{-1} L_{II} where L_{I} and L_{II} are the matrices of the vibrational modes (normalized atomic displacements) obtained by solving the vibrational problems for the S_0 and T_1 electronic states, respectively. Choosing the dominant elements in columns of the D matrix and permuting these columns to arrange these elements along the diagonal of the transformed matrix D^* makes it possible to establish the correct mutual co-assignments of the calculated a_g vibrational frequencies of the trans-{C_2 O_2 F_2} molecule in the S_0 and T_1 electronic states. The analogous procedure was performed for the trans-{C_2 O_2 F_2} molecule in the T_1 and S_1 excited electronic states. The recent reassignments of the νb{2} and νb{3} calculated vibrational frequencies in the trans-{C_2 O_2 F_2} molecule in the ground state were also obtained for the triplet T_1 and singlet S_1 excited electronic states. The approach set forth in this text makes it possible to juxtapose the calculated vibrational frequencies of the same molecule in the different electronic states and to refine the assignments of these frequencies. This is essential

  8. Quench of a symmetry-broken ground state

    Science.gov (United States)

    Giampaolo, S. M.; Zonzo, G.

    2017-01-01

    We analyze the problem of how different ground states associated with the same set of Hamiltonian parameters evolve after a sudden quench. To realize our analysis we define a quantitative approach to the local distinguishability between different ground states of a magnetically ordered phase in terms of the trace distance between the reduced density matrices obtained by projecting two ground states in the same subset. Before the quench, regardless of the particular choice of subset, any system in a magnetically ordered phase is characterized by ground states that are locally distinguishable. On the other hand, after the quench, the maximum distinguishability shows an exponential decay in time. Hence, in the limit of very long times, all the information about the particular initial ground state is lost even if the systems are integrable. We prove our claims in the framework of the magnetically ordered phases that characterize both the X Y and the N -cluster Ising models. The fact that we find similar behavior in models within different classes of symmetry makes us confident about the generality of our results.

  9. Borromean ground state of fermions in two dimensions

    Science.gov (United States)

    Volosniev, A. G.; Fedorov, D. V.; Jensen, A. S.; Zinner, N. T.

    2014-09-01

    The study of quantum mechanical bound states is as old as quantum theory itself. Yet, it took many years to realize that three-body Borromean systems that are bound when any two-body subsystem is unbound are abundant in nature. Here we demonstrate the existence of Borromean systems of spin-polarized (spinless) identical fermions in two spatial dimensions. The ground state with zero orbital (planar) angular momentum exists in a Borromean window between critical two- and three-body strengths. The doubly degenerate first excited states of angular momentum one appears only very close to the two-body threshold. They are the lowest in a possible sequence of so-called super-Efimov states. While the observation of the super-Efimov scaling could be very difficult, the Borromean ground state should be observable in cold atomic gases and could be the basis for producing a quantum gas of three-body states in two dimensions.

  10. Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters

    Science.gov (United States)

    Souza, T. X. R.; Macedo, C. A.

    2016-01-01

    In this study, the ground state energies of face-centered cubic Hubbard clusters are analyzed using the Lanczos method. Examination of the ground state energy as a function of the number of particle per site n showed an energy minimum for face-centered cubic structures. This energy minimum decreased in n with increasing coulombic interaction parameter U. We found that the ground state energy had a minimum at n = 0.6, when U = 3W, where W denotes the non-interacting energy bandwidth and the face-centered cubic structure was ferromagnetic. These results, when compared with the properties of nickel, shows strong similarity with other finite temperature analyses in the literature and supports the Hirsh’s conjecture that the interatomic direct exchange interaction dominates in driving the system into a ferromagnetic phase. PMID:27583653

  11. Estimation of beryllium ground state energy by Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, K. M. Ariful [Department of Physical Sciences, School of Engineering and Computer Science, Independent University, Bangladesh (IUB) Dhaka (Bangladesh); Halder, Amal [Department of Mathematics, University of Dhaka Dhaka (Bangladesh)

    2015-05-15

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  12. Probing quantum frustrated systems via factorization of the ground state.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  13. Analysis of ground state in random bipartite matching

    CERN Document Server

    Shi, Gui-Yuan; Liao, Hao; Zhang, Yi-Cheng

    2015-01-01

    In human society, a lot of social phenomena can be concluded into a mathematical problem called the bipartite matching, one of the most well known model is the marriage problem proposed by Gale and Shapley. In this article, we try to find out some intrinsic properties of the ground state of this model and thus gain more insights and ideas about the matching problem. We apply Kuhn-Munkres Algorithm to find out the numerical ground state solution of the system. The simulation result proves the previous theoretical analysis using replica method. In the result, we also find out the amount of blocking pairs which can be regarded as a representative of the system stability. Furthermore, we discover that the connectivity in the bipartite matching problem has a great impact on the stability of the ground state, and the system will become more unstable if there were more connections between men and women.

  14. Ground states of the SU(N) Heisenberg model.

    Science.gov (United States)

    Kawashima, Naoki; Tanabe, Yuta

    2007-02-02

    The SU(N) Heisenberg model with various single-row representations is investigated by quantum Monte Carlo simulations. While the zero-temperature phase boundary agrees qualitatively with the theoretical predictions based on the 1/N expansion, some unexpected features are also observed. For N> or =5 with the fundamental representation, for example, it is suggested that the ground states possess exact or approximate U(1) degeneracy. In addition, for the representation of Young tableau with more than one column, the ground state shows no valence-bond-solid order even at N greater than the threshold value.

  15. Ground state properties of graphene in Hartree-Fock theory

    CERN Document Server

    Hainzl, Christian; Sparber, Christof

    2012-01-01

    We study the Hartree-Fock approximation of graphene in infinite volume, with instantaneous Coulomb interactions. First we construct its translation-invariant ground state and we recover the well-known fact that, due to the exchange term, the effective Fermi velocity is logarithmically divergent at zero momentum. In a second step we prove the existence of a ground state in the presence of local defects and we discuss some properties of the linear response to an external electric field. All our results are non perturbative.

  16. Coherent Control of Ground State NaK Molecules

    Science.gov (United States)

    Yan, Zoe; Park, Jee Woo; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin

    2016-05-01

    Ultracold dipolar molecules exhibit anisotropic, tunable, long-range interactions, making them attractive for the study of novel states of matter and quantum information processing. We demonstrate the creation and control of 23 Na40 K molecules in their rovibronic and hyperfine ground state. By applying microwaves, we drive coherent Rabi oscillations of spin-polarized molecules between the rotational ground state (J=0) and J=1. The control afforded by microwave manipulation allows us to pursue engineered dipolar interactions via microwave dressing. By driving a two-photon transition, we are also able to observe Ramsey fringes between different J=0 hyperfine states, with coherence times as long as 0.5s. The realization of long coherence times between different molecular states is crucial for applications in quantum information processing. NSF, AFOSR- MURI, Alfred P. Sloan Foundation, DARPA-OLE

  17. Probing ground and low-lying excited states for HIO{sub 2} isomers

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Gabriel L. C. de [Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900 (Brazil); Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, Amazonas 69100-000 (Brazil); Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada); Brown, Alex, E-mail: alex.brown@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada)

    2014-12-21

    We present a computational study on HIO{sub 2} molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10{sup −3})

  18. Probing ground and low-lying excited states for HIO2 isomers

    Science.gov (United States)

    de Souza, Gabriel L. C.; Brown, Alex

    2014-12-01

    We present a computational study on HIO2 molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10-3).

  19. Striped spin liquid crystal ground state instability of kagome antiferromagnets.

    Science.gov (United States)

    Clark, Bryan K; Kinder, Jesse M; Neuscamman, Eric; Chan, Garnet Kin-Lic; Lawler, Michael J

    2013-11-01

    The Dirac spin liquid ground state of the spin 1/2 Heisenberg kagome antiferromagnet has potential instabilities. This has been suggested as the reason why it does not emerge as the ground state in large-scale numerical calculations. However, previous attempts to observe these instabilities have failed. We report on the discovery of a projected BCS state with lower energy than the projected Dirac spin liquid state which provides new insight into the stability of the ground state of the kagome antiferromagnet. The new state has three remarkable features. First, it breaks spatial symmetry in an unusual way that may leave spinons deconfined along one direction. Second, it breaks the U(1) gauge symmetry down to Z(2). Third, it has the spatial symmetry of a previously proposed "monopole" suggesting that it is an instability of the Dirac spin liquid. The state described herein also shares a remarkable similarity to the distortion of the kagome lattice observed at low Zn concentrations in Zn-paratacamite and in recently grown single crystals of volborthite suggesting it may already be realized in these materials.

  20. Asymptotics of Ground State Degeneracies in Quiver Quantum Mechanics

    CERN Document Server

    Cordova, Clay

    2015-01-01

    We study the growth of the ground state degeneracy in the Kronecker model of quiver quantum mechanics. This is the simplest quiver with two gauge groups and bifundamental matter fields, and appears universally in the context of BPS state counting in four-dimensional N=2 systems. For large ranks, the ground state degeneracy is exponential with slope a modular function that we are able to compute at integral values of its argument. We also observe that the exponential of the slope is an algebraic number and determine its associated algebraic equation explicitly in several examples. The speed of growth of the degeneracies, together with various physical features of the bound states, suggests a dual string interpretation.

  1. Observation of Hyperfine Transitions in Trapped Ground-State Antihydrogen

    CERN Document Server

    Olin, Arthur

    2015-01-01

    This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4~parts~in~$10^3$. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.

  2. Advantages of Unfair Quantum Ground-State Sampling.

    Science.gov (United States)

    Zhang, Brian Hu; Wagenbreth, Gene; Martin-Mayor, Victor; Hen, Itay

    2017-04-21

    The debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field. Recent technological breakthroughs, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime, have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. We examine the power of quantum annealers to provide a different type of quantum enhancement of practical relevance, namely, their ability to serve as useful samplers from the ground-state manifolds of combinatorial optimization problems. We study, both numerically by simulating stoquastic and non-stoquastic quantum annealing processes, and experimentally, using a prototypical quantum annealing processor, the ability of quantum annealers to sample the ground-states of spin glasses differently than thermal samplers. We demonstrate that (i) quantum annealers sample the ground-state manifolds of spin glasses very differently than thermal optimizers (ii) the nature of the quantum fluctuations driving the annealing process has a decisive effect on the final distribution, and (iii) the experimental quantum annealer samples ground-state manifolds significantly differently than thermal and ideal quantum annealers. We illustrate how quantum annealers may serve as powerful tools when complementing standard sampling algorithms.

  3. On the Ground State Wave Function of Matrix Theory

    CERN Document Server

    Lin, Ying-Hsuan

    2014-01-01

    We propose an explicit construction of the leading terms in the asymptotic expansion of the ground state wave function of BFSS SU(N) matrix quantum mechanics. Our proposal is consistent with the expected factorization property in various limits of the Coulomb branch, and involves a different scaling behavior from previous suggestions. We comment on some possible physical implications.

  4. On the ground state wave function of matrix theory

    Science.gov (United States)

    Lin, Ying-Hsuan; Yin, Xi

    2015-11-01

    We propose an explicit construction of the leading terms in the asymptotic expansion of the ground state wave function of BFSS SU( N ) matrix quantum mechanics. Our proposal is consistent with the expected factorization property in various limits of the Coulomb branch, and involves a different scaling behavior from previous suggestions. We comment on some possible physical implications.

  5. 66Ga ground state β spectrum

    DEFF Research Database (Denmark)

    Severin, Gregory; Knutson, L. D.; Voytas, P. A.;

    2014-01-01

    The ground state branch of the β decay of 66Ga is an allowed Fermi (0+ → 0+) transition with a relatively high f t value. The large f t and the isospin-forbidden nature of the transition indicates that the shape of the β spectrum of this branch may be sensitive to higher order contributions...

  6. Electron Transfer from Triplet State of TIPS-Pentacene Generated by Singlet Fission Processes to CH3NH3PbI3 Perovskite.

    Science.gov (United States)

    Lee, Sangsu; Hwang, Daesub; Jung, Seok Il; Kim, Dongho

    2017-02-16

    To reveal the applicability of singlet fission processes in perovskite solar cell, we investigated electron transfer from TIPS-pentacene to CH3NH3PbI3 (MAPbI3) perovskite in film phase. Through the observation of the shorter fluorescence lifetime in TIPS-pentacene/MAPbI3 perovskite bilayer film (5 ns) compared with pristine MAPbI3 perovskite film (20 ns), we verified electron-transfer processes between TIPS-pentacene and MAPbI3 perovskite. Furthermore, the observation of singlet fission processes, a faster decay rate, TIPS-pentacene cations, and the analysis of kinetic profiles of the intensity ratio between 500 and 525 nm in the TA spectra of the TIPS-pentacene/MAPbI3 perovskite bilayer film indicate that electron transfer occurs from triplet state of TIPS-pentacene generated by singlet fission processes to MAPbI3 perovskite conduction band. We believe that our results can provide useful information on the design of solar cells sensitized by singlet fission processes and pave the way for new types of perovskite solar cells.

  7. Roles of singlet oxygen and triplet excited state of dissolved organic matter formed by different organic matters in bacteriophage MS2 inactivation

    KAUST Repository

    Rosado-Lausell, Sahid L.

    2013-09-01

    Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3\\'-methoxyacetophenone (3\\'-MAP), and nitrite (NO2-), suggest that 1O2, 3DOM*, and hydroxyl radicals (•OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples. © 2013 Elsevier Ltd.

  8. Electron spin polarization transfer to the charge-separated state from locally excited triplet configuration: theory and its application to characterization of geometry and electronic coupling in the electron donor-acceptor system.

    Science.gov (United States)

    Kobori, Yasuhiro; Fuki, Masaaki; Murai, Hisao

    2010-11-18

    We present a theoretical model of analysis of the time-resolved electron paramagnetic resonance (TREPR) spectrum of the charge-separated (CS) state generated by the photoinduced electron transfer (ET) reaction via the locally excited triplet state in an electron donor-acceptor (D-A) system with a fixed molecular orientation. We show, by the stochastic-Liouville equation, that chemically induced dynamic electron polarization (CIDEP) of the triplet mechanism is explained by lack of transfer of quantum coherence terms in the primary triplet spin state, resulting in net emissive or absorptive electron spin polarization (ESP) which is dependent on anisotropy of the singlet-triplet intersystem crossing in the precursor excited state. This disappearance of the coherence is clearly shown to occur when the photoinduced ET rate is smaller than the angular frequency of the Zeeman splitting: the transferred coherence terms are averaged to be zero due to effective quantum oscillations during the time that the chemical reaction proceeds. The above theory has been applied to elucidate the molecular geometries and spin-spin exchange interactions (2J) of the CS states for both folded and extended conformers by computer simulations of TREPR spectra of the zinc porphyrin-fullerene dyad (ZnP-C(60)) bridged by diphenyldisilane. On the extended conformation, the electronic coupling is estimated from the 2J value. It has been revealed that the coupling term is smaller than the reported electronic interactions of the porphyrin-C(60) systems bridged by diphenylamide spacers. The difference in the electronic couplings has been explained by the difference in the LUMO levels of the bridge moieties that mediate the superexchange coupling for the long-range ET reaction.

  9. Collective excitations, instabilities, and ground state in dense quark matter

    CERN Document Server

    Gorbar, E V; Miransky, V A; Shovkovy, I A; Hashimoto, Michio

    2006-01-01

    We study the spectrum of light plasmons in the (gapped and gapless) two-flavor color superconducting phases and its connection with the chromomagnetic instabilities and the structure of the ground state. It is revealed that the chromomagnetic instabilities in the 4-7th and 8th gluonic channels correspond to two very different plasmon spectra. These spectra lead us to the unequivocal conclusion about the existence of gluonic condensates (some of which can be spatially inhomogeneous) in the ground state. We also argue that spatially inhomogeneous gluonic condensates should exist in the three-flavor quark matter with the values of the mass of strange quark corresponding to the gapless color-flavor locked state.

  10. Ab initio characterization of low-lying triplet state potential-energy surfaces and vibrational frequencies in the Wulf band of ozone

    Science.gov (United States)

    Xie, Daiqian; Guo, Hua; Peterson, Kirk A.

    2001-12-01

    Accurate ab initio potential-energy surfaces of the 3A2 and 3B1 states of ozone and their nonadiabatic coupling are reported near the ground-state equilibrium geometry using an internally contracted multireference configuration interaction method. These coupled three-dimensional potential-energy surfaces enable the first theoretical characterization of all three vibrational modes in the Wulf band. Reasonably good agreement with recent experimental observations is obtained.

  11. Fate of the Superconducting Ground State on the Moyal Plane

    CERN Document Server

    Basu, Prasad; Vaidya, Sachindeo

    2009-01-01

    It is known that Berry curvature of the band structure of certain crystals can lead to effective noncommutativity between spatial coordinates. Using the techniques of twisted quantum field theory, we investigate the question of the formation of a paired state of twisted fermions in such a system. We find that to leading order in the noncommutativity parameter, the gap between the non-interacting ground state and the paired state is {\\it smaller} compared to its commutative counterpart. This suggests that BCS type superconductivity, if present in such systems, is more fragile and easier to disrupt.

  12. Highly efficient visible-light driven photochromism: developments towards a solid-state molecular switch operating through a triplet-sensitised pathway.

    Science.gov (United States)

    Brayshaw, Simon K; Schiffers, Stephanie; Stevenson, Anna J; Teat, Simon J; Warren, Mark R; Bennett, Robert D; Sazanovich, Igor V; Buckley, Alastair R; Weinstein, Julia A; Raithby, Paul R

    2011-04-11

    We introduce a new highly efficient photochromic organometallic dithienylethene (DTE) complex, the first instance of a DTE core symmetrically modified by two Pt(II) chromophores [Pt(PEt(3))(2)(C≡C)(DTE)(C≡C)Pt(PEt(3))(2)Ph] (1), which undergoes ring-closure when activated by visible light in solvents of different polarity, in thin films and even in the solid state. Complex 1 has been synthesised and fully photophysically characterised by (resonance) Raman and transient absorption spectroscopy complemented by calculations. The ring-closing photoconversion in a single crystal of 1 has been followed by X-ray crystallography. This process occurs with the extremely high yield of 80%--considerably outperforming the other DTE derivatives. Remarkably, the photocyclisation of 1 occurs even under visible light (>400 nm), which is not absorbed by the non-metallated DTE core HC≡C(DTE)C≡CH (2) itself. This unusual behaviour and the high photocyclisation yields in solution are attributed to the presence of a heavy atom in 1 that enables a triplet-sensitised photocyclisation pathway, elucidated by transient absorption spectroscopy and DFT calculations. The results of resonance Raman investigation confirm the involvement of the alkynyl unit in the frontier orbitals of both closed and open forms of 1 in the photocyclisation process. The changes in the Raman spectra upon cyclisation have permitted the identification of Raman marker bands, which include the acetylide stretching vibration. Importantly, these bands occur in the spectral region unobstructed by other vibrations and can be used for non-destructive monitoring of photocyclisation/photoreversion processes and for optical readout in this type of efficiently photochromic thermally stable systems. This study indicates a strategy for generating efficient solid-state photoswitches in which modification of the Pt(II) units has the potential to tune absorption properties and hence operational wavelength across the visible

  13. A new phosphine oxide host based on ortho-disubstituted dibenzofuran for efficient electrophosphorescence: towards high triplet state excited levels and excellent thermal, morphological and efficiency stability.

    Science.gov (United States)

    Han, Chunmiao; Xie, Guohua; Li, Jing; Zhang, Zhensong; Xu, Hui; Deng, Zhaopeng; Zhao, Yi; Yan, Pengfei; Liu, Shiyong

    2011-08-01

    An efficient host for blue and green electrophosphorescence, 4,6-bis(diphenylphosphoryl)dibenzofuran (o-DBFDPO), with the structure of a short-axis-substituted dibenzofuran was designed and synthesised. It appears that the greater density of the diphenylphosphine oxide (DPPO) moieties in the short-axis substitution configuration effectively restrains the intermolecular interactions, because only very weak π-π stacking interactions could be observed, with a centroid-to-centroid distance of 3.960 Å. The improved thermal stability of o-DBFDPO was corroborated by its very high glass transition temperature (T(g)) of 191 °C, which is the result of the symmetric disubstitution structure. Photophysical investigation showed o-DBFDPO to be superior to the monosubstituted derivative, with a longer lifetime (1.95 ns) and a higher photoluminescent quantum efficiency (61 %). The lower first singlet state excited level (3.63 eV) of o-DBFDPO demonstrates the stronger polarisation effect attributable to the greater number of DPPO moieties. Simultaneously, an extremely high first triplet state excited level (T(1)) of 3.16 eV is observed, demonstrating the tiny influence of short-axis substitution on T(1). The improved carrier injection ability, which contributed to low driving voltages of blue- and green-emitting phosphorescent organic light-emitting diodes (PHOLEDs), was further confirmed by Gaussian calculation. Furthermore, the better thermal and morphological properties of o-DBFDPO and the matched frontier molecular orbital (FMO) levels in the devices significantly reduced efficiency roll-offs. Efficient blue and green electrophosphorescence based on the o-DBFDPO host was demonstrated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mixed configuration ground state in iron(II) phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Rodriguez, Javier; Toby, Brian; van Veenendaal, Michel

    2015-06-23

    We calculate the angular dependence of the x-ray linear and circular dichroism at the L2,3 edges of α-Fe(II) Phthalocyanine (FePc) thin films using a ligand-field model with full configuration interaction. We find the best agreement with the experimental spectra for a mixed ground state of 3E (a2 e3b1 ) and 3B (a1 e4b1 ) g 1g g 2g 2g 1g g 2g with the two configurations coupled by the spin-orbit interaction. The 3Eg(b) and 3B2g states have easy-axis and easy-plane anisotropies, respectively. Our model accounts for an easy-plane magnetic anisotropy and the measured magnitudes of the in-plane orbital and spin moments. The proximity in energy of the two configurations allows a switching of the magnetic anisotropy from easy plane to easy axis with a small change in the crystal field, as recently observed for FePc adsorbed on an oxidized Cu surface. We also discuss the possibility of a quintet ground state (5A1g is 250 meV above the ground state) with planar anisotropy by manipulation of the Fe-C bond length by depositing the complex on a substrate that is subjected to a mechanical strain.

  15. Coupled cluster calculation for ground state properties of closed-shell nuclei and single hole states.

    Science.gov (United States)

    Mihaila, Bogdan; Heisenberg, Jochen

    2000-04-01

    We continue the investigations of ground state properties of closed-shell nuclei using the Argonne v18 realistic NN potential, together with the Urbana IX three-nucleon interaction. The ground state wave function is used to calculate the charge form factor and charge density. Starting with the ground state wave function of the closed-shell nucleus, we use the equation of motion technique to calculate the ground state and excited states of a neighboring nucleus. We then generate the corresponding magnetic form factor. We correct for distortions due to the interaction between the electron probe and the nuclear Coulomb field using the DWBA picture. We compare our results with the available experimental data. Even though our presentation will focus mainly on the ^16O and ^15N nuclei, results for other nuclei in the p and s-d shell will also be presented.

  16. The Ground State of (CS) 4 Is Different from That of (CO) 4 : An Experimental Test of a Computational Prediction by Negative Ion Photoelectron Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian; Hrovat, David A.; Sun, Zhenrong; Bao, Xiaoguang; Borden, Weston Thatcher; Wang, Xue-Bin

    2013-08-22

    Cyclobutane-1,2,3,4-tetrathione, (CS)4, has recently been calculated to have a singlet ground state, 1A1g, in which the highest b2g MO is doubly occupied and the lowest a2u MO is empty. Thus, (CS)4 is predicted to have a different ground state than its lighter congener, (CO)4, which has a triplet ground state, 3B1u, in which these two MOs are each singly occupied. Here we report the results of a negative ion photoelectron spectroscopy (NIPES) study of the radical anion (CS)4∙-, designed to test the prediction that (CS)4 has a singlet ground state. The NIPE spectrum reveals that (CS)4 does, indeed, have a singlet ground state with electron affinity (EA) = 3.75 eV. The lowest triplet state is found to lie 0.31 eV higher in energy than the ground state, and the open-shell singlet is 0.14 eV higher in energy than the triplet state. Calculations at the (U)CCSD(T)/aug-cc-pVTZ//(U)B3LYP/6-311+G(2df) level support the spectral assignments, giving EA = 3.71 eV, EST = 0.44 eV. These calculated values are, respectively, 0.04 eV (0.9 kcal/mol) smaller, and 0.13 eV (3.0 kcal/mol) larger than the corresponding experimental values. In addition, RASPT2 calculations with various active spaces converge on a 1B1u-3B1u energy gap of 0.137 eV, in excellent agreement with the 0.14 eV energy difference obtained from the NIPE spectrum. Finally, calculations of the Franck-Condon factors for transitions from the ground state of (CS)4∙- to the ground (1A1g) and two excited states (3B1u, 1B1u) of (CS)4 account for all of the major spectral peaks, and nicely reproduce vibrational structure observed in each electronic transition. The close correspondence between the calculated and the observed features in the NIPE spectrum of (CS)4∙- provides unequivocal proof that (CS)4, unlike (CO)4, has a singlet ground state.

  17. Simulation of the hydrogen ground state in stochastic electrodynamics

    Science.gov (United States)

    Nieuwenhuizen, Theo M.; Liska, Matthew T. P.

    2015-10-01

    Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy \\frac{1}{2}{{\\hslash }}ω in each mode, i.e., the zero-point Planck spectrum. While this classical theory explains many quantum phenomena related to harmonic oscillator problems, hard results on nonlinear systems are still lacking. In this work the hydrogen ground state is studied by numerically solving the Abraham-Lorentz equation in the dipole approximation. First the stochastic Gaussian field is represented by a sum over Gaussian frequency components, next the dynamics is solved numerically using OpenCL. The approach improves on work by Cole and Zou 2003 by treating the full 3d problem and reaching longer simulation times. The results are compared with a conjecture for the ground state phase space density. Though short time results suggest a trend towards confirmation, in all attempted modellings the atom ionises at longer times.

  18. Ground-State Phase Diagram of S = 1 Diamond Chains

    Science.gov (United States)

    Hida, Kazuo; Takano, Ken'ichi

    2017-03-01

    We investigate the ground-state phase diagram of a spin-1 diamond chain. Owing to a series of conservation laws, any eigenstate of this system can be expressed using the eigenstates of finite odd-length chains or infinite chains with spins 1 and 2. The ground state undergoes quantum phase transitions with varying λ, a parameter that controls frustration. Exact upper and lower bounds for the phase boundaries between these phases are obtained. The phase boundaries are determined numerically in the region not explored in a previous work [Takano et al., https://doi.org/10.1088/0953-8984/8/35/009" xlink:type="simple">J. Phys.: Condens. Matter 8, 6405 (1996)].

  19. Cluster expansion for ground states of local Hamiltonians

    Science.gov (United States)

    Bastianello, Alvise; Sotiriadis, Spyros

    2016-08-01

    A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  20. Ground-state structures of atomic metallic hydrogen.

    Science.gov (United States)

    McMahon, Jeffrey M; Ceperley, David M

    2011-04-22

    Ab initio random structure searching using density functional theory is used to determine the ground-state structures of atomic metallic hydrogen from 500 GPa to 5 TPa. Including proton zero-point motion within the harmonic approximation, we estimate that molecular hydrogen dissociates into a monatomic body-centered tetragonal structure near 500 GPa (r(s)=1.23) that remains stable to 1 TPa (r(s)=1.11). At higher pressures, hydrogen stabilizes in an …ABCABC… planar structure that is similar to the ground state of lithium, but with a different stacking sequence. With increasing pressure, this structure compresses to the face-centered cubic lattice near 3.5 TPa (r(s)=0.92).

  1. Ground-state rotational constants of 12CH 3D

    Science.gov (United States)

    Chackerian, C.; Guelachvili, G.

    1980-12-01

    An analysis of ground-state combination differences in the ν2( A1) fundamental band of 12CH 3D ( ν0 = 2200.03896 cm -1) has been made to yield values for the rotational constants B0, D0J, D0JK, H0JJJ, H0JJK, H0JKK, LJJJJ, L0JJJK, and order of magnitude values for L0JJKK and L0JKKK. These constants should be useful in assisting radio searches for this molecule in astrophysical sources. In addition, splittings of A1A2 levels ( J ≥ 17, K = 3) have been measured in both the ground and excited vibrational states of this band.

  2. Non-uniform ground state for the Bose gas

    OpenAIRE

    2000-01-01

    We study the ground state, sum a_X |X>, of N hard-core bosons on a finite lattice in configuration space, X={x_1,...,x_N}. All a_X being positive, the ratios a_X / sum a_Y can be interpreted as probabilities P_a (X). Let E denote the energy of the ground state and B_X the number of nearest-neighbor particle-hole pairs in the configuration X. We prove the concentration of P_a to X's with B_X in a sqrt(|E|)-neighborhood of |E|, show that the average of a_X over configurations with B_X=n increas...

  3. Cluster expansion for ground states of local Hamiltonians

    Directory of Open Access Journals (Sweden)

    Alvise Bastianello

    2016-08-01

    Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  4. The ground state in a spin-one color superconductor

    CERN Document Server

    Schmitt, A

    2004-01-01

    Color superconductors in which quarks of the same flavor form Cooper pairs are investigated. These Cooper pairs carry total spin one. A systematic group-theoretical classification of possible phases in a spin-one color superconductor is presented, revealing parallels and differences to the theory of superfluid $^3$He. General expressions for the gap parameter, the critical temperature, and the pressure are derived and evaluated for several spin-one phases, with special emphasis on the angular structure of the gap equation. It is shown that, in a spin-one color superconductor, the (transverse) A phase is expected to be the ground state. This is in contrast to $^3$He, where the ground state is in the B phase.

  5. EIT ground-state cooling of long ion strings

    CERN Document Server

    Lechner, R; Hempel, C; Jurcevic, P; Lanyon, B P; Monz, T; Brownnutt, M; Blatt, R; Roos, C F

    2016-01-01

    Electromagnetically-induced-transparency (EIT) cooling is a ground-state cooling technique for trapped particles. EIT offers a broader cooling range in frequency space compared to more established methods. In this work, we experimentally investigate EIT cooling in strings of trapped atomic ions. In strings of up to 18 ions, we demonstrate simultaneous ground state cooling of all radial modes in under 1 ms. This is a particularly important capability in view of emerging quantum simulation experiments with large numbers of trapped ions. Our analysis of the EIT cooling dynamics is based on a novel technique enabling single-shot measurements of phonon numbers, by rapid adiabatic passage on a vibrational sideband of a narrow transition.

  6. Cluster expansion for ground states of local Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Bastianello, Alvise, E-mail: abastia@sissa.it [SISSA, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Sotiriadis, Spyros [SISSA, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Institut de Mathématiques de Marseille (I2M), Aix Marseille Université, CNRS, Centrale Marseille, UMR 7373, 39, rue F. Joliot Curie, 13453, Marseille (France); University of Roma Tre, Department of Mathematics and Physics, L.go S.L. Murialdo 1, 00146 Roma (Italy)

    2016-08-15

    A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  7. Room temperature skyrmion ground state stabilized through interlayer exchange coupling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gong, E-mail: gchenncem@gmail.com; Schmid, Andreas K. [NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Mascaraque, Arantzazu [Depto. Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Unidad Asociada IQFR (CSIC) - UCM, 28040 Madrid (Spain); N' Diaye, Alpha T. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-15

    Possible magnetic skyrmion device applications motivate the search for structures that extend the stability of skyrmion spin textures to ambient temperature. Here, we demonstrate an experimental approach to stabilize a room temperature skyrmion ground state in chiral magnetic films via exchange coupling across non-magnetic spacer layers. Using spin polarized low-energy electron microscopy to measure all three Cartesian components of the magnetization vector, we image the spin textures in Fe/Ni films. We show how tuning the thickness of a copper spacer layer between chiral Fe/Ni films and perpendicularly magnetized Ni layers permits stabilization of a chiral stripe phase, a skyrmion phase, and a single domain phase. This strategy to stabilize skyrmion ground states can be extended to other magnetic thin film systems and may be useful for designing skyrmion based spintronics devices.

  8. Terahertz spectroscopy of ground state HD18O

    Science.gov (United States)

    Yu, Shanshan; Pearson, John C.; Drouin, Brian J.; Miller, Charles E.; Kobayashi, Kaori; Matsushima, Fusakazu

    2016-10-01

    Terahertz absorption spectroscopy was employed to measure the ground state pure rotational transitions of the water isotopologue HD18O . A total of 105 pure rotational transitions were observed in the 0.5-5.0 THz region with ∼ 100 kHz accuracy for the first time. The observed positions were fit to experimental accuracy using the Euler series expansion of the asymmetric-top Hamiltonian together with the literature Microwave, Far-IR and IR data in the ground state and ν2 . The new measurements and predictions reported here support the analysis of astronomical observations by high-resolution spectroscopic telescopes such as SOFIA and ALMA where laboratory rest frequencies with uncertainties of 1 MHz or less are required for proper analysis of velocity resolved astrophysical data.

  9. Ground state solutions for non-local fractional Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Yang Pu

    2015-08-01

    Full Text Available In this article, we study a time-independent fractional Schrodinger equation with non-local (regional diffusion $$ (-\\Delta^{\\alpha}_{\\rho}u + V(xu = f(x,u \\quad \\text{in }\\mathbb{R}^{N}, $$ where $\\alpha \\in (0,1$, $N > 2\\alpha$. We establish the existence of a non-negative ground state solution by variational methods.

  10. 0{sup +} ground state dominance in many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yu-Min [Southeast Univ., Dept. of Physics, Nanjing (China); Arima, Akito [The House of Councilors, Tokyo (Japan); Yoshinaga, Naotaka [Saitama Univ., Physics Dept., Saitama (Japan)

    2002-12-01

    We propose a simple approach to predict the angular momentum I ground states (Ig.s.) probabilities of many-body systems without diagonalization of the hamiltonian using random interactions. It is suggested that the 0g.s. dominance in boson systems and even valence nucleon systems is not given by the model space as previously assumed, but by specific two-body interactions. (author)

  11. Detecting topological order in a ground state wave function

    OpenAIRE

    2005-01-01

    A large class of topological orders can be understood and classified using the string-net condensation picture. These topological orders can be characterized by a set of data (N, d_i, F^{ijk}_{lmn}, \\delta_{ijk}). We describe a way to detect this kind of topological order using only the ground state wave function. The method involves computing a quantity called the ``topological entropy'' which directly measures the quantum dimension D = \\sum_i d^2_i.

  12. Reduced M(atrix) theory models: ground state solutions

    CERN Document Server

    López, J L

    2015-01-01

    We propose a method to find exact ground state solutions to reduced models of the SU($N$) invariant matrix model arising from the quantization of the 11-dimensional supermembrane action in the light-cone gauge. We illustrate the method by applying it to lower dimensional toy models and for the SU(2) group. This approach could, in principle, be used to find ground state solutions to the complete 9-dimensional model and for any SU($N$) group. The Hamiltonian, the supercharges and the constraints related to the SU($2$) symmetry are built from operators that generate a multicomponent spinorial wave function. The procedure is based on representing the fermionic degrees of freedom by means of Dirac-like gamma matrices, as was already done in the first proposal of supersymmetric (SUSY) quantum cosmology. We exhibit a relation between these finite $N$ matrix theory ground state solutions and SUSY quantum cosmology wave functions giving a possible physical significance of the theory even for finite $N$.

  13. Alternative ground states enable pathway switching in biological electron transfer

    Science.gov (United States)

    Abriata, Luciano A.; Álvarez-Paggi, Damián; Ledesma, Gabriela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-01-01

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction. PMID:23054836

  14. Nuclear ground-state masses and deformations: FRDM(2012)

    CERN Document Server

    Moller, P; Ichikawa, T; Sagawa, H

    2015-01-01

    We tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from $^{16}$O to $A=339$. The calculations are based on the finite-range droplet macroscopic model and the folded-Yukawa single-particle microscopic model. Relative to our FRDM(1992) mass table in {\\sc Atomic Data and Nuclear Data Tables} [{\\bf 59} 185 (1995)], the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensive and more accurate experimental mass data base now available allows us to determine one additional macroscopic-model parameter, the density-symmetry coefficient $L$, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some high...

  15. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lu; Smith, Jeremy; Laskin, Alexander; Anastasio, Cort N.; Laskin, Julia; Zhang, Qi

    2014-01-01

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol and two methoxy-phenols (syringol and guaiacol) with two major aqueous phase oxidants – the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (•OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), desorption electrospray ionization mass spectrometry (DESIMS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O/C) ratios of phenolic aqSOA are in the range of 0.85-1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than •OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenol had reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O/C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-vis region, suggesting that aqueous-phase reactions of phenols are likely an important source of brown carbon in the atmosphere, especially in regions influenced by biomass burning.

  16. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical

    Science.gov (United States)

    Yu, L.; Smith, J.; Laskin, A.; Anastasio, C.; Laskin, J.; Zhang, Q.

    2014-12-01

    Phenolic compounds, which are emitted in significant amounts from biomass burning, can undergo fast reactions in atmospheric aqueous phases to form secondary organic aerosol (aqSOA). In this study, we investigate the reactions of phenol (compound with formula C6H5OH)), guaiacol (2-methoxyphenol), and syringol (2,6-dimethoxyphenol) with two major aqueous-phase oxidants - the triplet excited states of an aromatic carbonyl (3C*) and hydroxyl radical (· OH). We thoroughly characterize the low-volatility species produced from these reactions and interpret their formation mechanisms using aerosol mass spectrometry (AMS), nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS), and ion chromatography (IC). A large number of oxygenated molecules are identified, including oligomers containing up to six monomer units, functionalized monomer and oligomers with carbonyl, carboxyl, and hydroxyl groups, and small organic acid anions (e.g., formate, acetate, oxalate, and malate). The average atomic oxygen-to-carbon (O / C) ratios of phenolic aqSOA are in the range of 0.85-1.23, similar to those of low-volatility oxygenated organic aerosol (LV-OOA) observed in ambient air. The aqSOA compositions are overall similar for the same precursor, but the reactions mediated by 3C* are faster than · OH-mediated reactions and produce more oligomers and hydroxylated species at the point when 50% of the phenolic compound has reacted. Profiles determined using a thermodenuder indicate that the volatility of phenolic aqSOA is influenced by both oligomer content and O / C ratio. In addition, the aqSOA shows enhanced light absorption in the UV-visible region, suggesting that aqueous-phase reactions of phenols may contribute to formation of secondary brown carbon in the atmosphere, especially in regions influenced by biomass burning.

  17. Coupled cluster calculations of ground and excited states of nuclei

    CERN Document Server

    Kowalski, K L; Hjorth-Jensen, M; Papenbrock, T; Piecuch, P

    2004-01-01

    The standard and renormalized coupled cluster methods with singles, doubles, and noniterative triples and their generalizations to excited states, based on the equation of motion coupled cluster approach, are applied to the He-4 and O-16 nuclei. A comparison of coupled cluster results with the results of the exact diagonalization of the Hamiltonian in the same model space shows that the quantum chemistry inspired coupled cluster approximations provide an excellent description of ground and excited states of nuclei. The bulk of the correlation effects is obtained at the coupled cluster singles and doubles level. Triples, treated noniteratively, provide the virtually exact description.

  18. Ground states of fermionic lattice Hamiltonians with permutation symmetry

    Science.gov (United States)

    Kraus, Christina V.; Lewenstein, Maciej; Cirac, J. Ignacio

    2013-08-01

    We study the ground states of lattice Hamiltonians that are invariant under permutations, in the limit where the number of lattice sites N→∞. For spin systems, these are product states, a fact that follows directly from the quantum de Finetti theorem. For fermionic systems, however, the problem is very different, since mode operators acting on different sites do not commute, but anticommute. We construct a family of fermionic states, F, from which such ground states can be easily computed. They are characterized by few parameters whose number only depends on M, the number of modes per lattice site. We also give an explicit construction for M=1,2. In the first case, F is contained in the set of Gaussian states, whereas in the second it is not. Inspired by that construction, we build a set of fermionic variational wave functions, and apply it to the Fermi-Hubbard model in two spatial dimensions, obtaining results that go beyond the generalized Hartree-Fock theory.

  19. Ground state energies from converging and diverging power series expansions

    Science.gov (United States)

    Lisowski, C.; Norris, S.; Pelphrey, R.; Stefanovich, E.; Su, Q.; Grobe, R.

    2016-10-01

    It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh-Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state's spatial extension is comparable to L. Once the binding strength is so strong that the ground state's extension is less than L, the power expansion becomes divergent, consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.

  20. A simple natural orbital mechanism of "pure" van der Waals interaction in the lowest excited triplet state of the hydrogen molecule.

    Science.gov (United States)

    Gritsenko, Oleg; Baerends, Evert Jan

    2006-02-07

    A treatment of van der Waals (vdW) interaction by density-matrix functional theory requires a description of this interaction in terms of natural orbitals (NOs) and their occupation numbers. From an analysis of the configuration-interaction (CI) wave function of the 3Sigmau + state of H2 and the exact NO expansion of the two-electron triplet wave function, we demonstrate that the construction of such a functional is straightforward in this case. A quantitative description of the vdW interaction is already obtained with, in addition to the standard part arising from the Hartree-Fock determinant /1sigmag(r1)1sigmau(r2)/, only two additional terms in the two-electron density, one from the first "excited" determinant /2sigmag(r1)2sigmau(r2)/ and one from the state of 3Sigmau + symmetry belonging to the (1pig)1(1piu)1 configuration. The potential-energy curve of the 3Sigmau + state calculated around the vdW minimum with the exact density-matrix functional employing only these eight NOs and NO occupations is in excellent agreement with the full CI one and reproduces well the benchmark potential curve of Kolos and Wolniewicz [J. Chem. Phys. 43, 2429 (1965)]. The corresponding terms in the two-electron density rho2(r1,r2), containing specific products of NOs combined with prefactors that depend on the occupation numbers, can be shown to produce exchange-correlation holes that correspond precisely to the well-known intuitive picture of the dispersion interaction as an instantaneous dipole-induced dipole (higher multipole) effect. Indeed, (induced) higher multipoles account for almost 50% of the total vdW bond energy. These results serve as a basis for both a density-matrix functional theory of van der Waals bonding and for the construction of orbital-dependent functionals in density-functional theory that could be used for this type of bonding.

  1. DFT study of the geometry and energy order of the low singlet and triplet states of [d4-eta5-CpMo(CO)2X] 16-electron complexes (X = halogen, CN, H, and CH3).

    Science.gov (United States)

    Hasanayn, Faraj; Markarian, Marie-Zabel; Al-Rifai, Rasha

    2004-06-14

    DFT methods have been used to investigate the dependence of the geometry and energy order of the low energy states of [d(4)-eta(5)-CpMo(CO)(2)X] 16-electron complexes on X (X = halogen, CN, H and CH(3)). The calculations use a double-zeta plus polarization valence basis set on all atoms and utilize relativistic ECPs on Mo and the heavier halogens. In every case two singlet and two triplet electronic states have been considered and minimized at the B3LYP level. For X = Cl, additional calculations were carried out at the BPW91, CCSD(T), and CASSCF levels. In the C(s) point group, the singlet states are from the (1a')(2)(1a'')(2) and (1a')(2)(2a')(2) configurations of the valence d(4) electrons of the metal, and are denoted (1)A'-a and (1)A'-b, respectively. The triplet species are for the lowest (3)A'' and (3)A' states from the (1a')(2)(2a')(1)(1a'')(1) and (1a'')(2)(1a')(1)(2a')(1) d(4) configurations. For all substituents, the geometry of both the singlet and triplet states is found to distort substantially from the uniform 3-leg piano-stool structural motif, a behavior that can be related to Jahn-Teller effects. When X is a halogen or a methyl, (1)A'-b is predicted to be lower than (1)A'-a, while the reverse order of these two singlet states is calculated for X = H and CN. For all substituents (3)A' is substantially higher than (3)A''. In turn, the energy of (3)A'' is calculated to be comparable to the lower singlet state of each complex. Attempts are made to rationalize some of these results using qualitative MO theory.

  2. Continuous Vibrational Cooling of Ground State Rb2

    Science.gov (United States)

    Tallant, Jonathan; Marcassa, Luis

    2014-05-01

    The process of photoassociation generally results in a distribution of vibrational levels in the electronic ground state that is energetically close to the dissociation limit. Several schemes have appeared that aim to transfer the population from the higher vibrational levels to lower ones, especially the ground vibrational state. We demonstrate continuous production of vibrationally cooled Rb2 using optical pumping. The vibrationally cooled molecules are produced in three steps. First, we use a dedicated photoassociation laser to produce molecules in high vibrational levels of the X1Σg+ state. Second, a broadband fiber laser at 1071 nm is used to transfer the molecules to lower vibrational levels via optical pumping through the A1Σu+ state. This process transfers the molecules from vibrational levels around ν ~= 113 to a distribution of levels where ν superluminescent diode near 685 nm that has its frequency spectrum shaped. The resulting vibrational distributions are probed using resonance-enhanced multiphoton ionization with a pulsed dye laser near 670 nm. The results are presented and compared with theoretical simulations. This work was supported by Fapesp and INCT-IQ.

  3. Intramolecular triplet energy transfer in anthracene-based platinum acetylide oligomers.

    Science.gov (United States)

    Li, Yongjun; Köse, Muhammet E; Schanze, Kirk S

    2013-08-01

    Platinum acetylide oligomers that contain an anthracene moiety have been synthesized and subjected to photophysical characterization. Spectroscopic measurement and DFT calculations reveal that both the singlet and triplet energy levels of the anthracene segment are lower than those of the platinum acetylide segment. Thus, the platinum acetylide segment acts as a sensitizer to populate the triplet state of the anthrancene segment via intramolecular triplet-triplet energy transfer. The objective of this work is to understand the mechanisms of energy-transfer dynamics in these systems. Fluorescence quenching and the dominant triplet absorption that arises from the anthracene segment in the transient absorption spectrum of Pt4An give clear evidence that energy transfer adopts an indirect mechanism, which begins with singlet-triplet energy transfer from the anthracene segment to the platinum acetylide segment followed by triplet-triplet energy transfer to the anthracene segment.

  4. X-ray transient absorption structural characterization of the 3MLCT triplet excited state of cis-[Ru(bpy)2(py)2]2+.

    Science.gov (United States)

    Borfecchia, Elisa; Garino, Claudio; Salassa, Luca; Ruiu, Tiziana; Gianolio, Diego; Zhang, Xiaoyi; Attenkofer, Klaus; Chen, Lin X; Gobetto, Roberto; Sadler, Peter J; Lamberti, Carlo

    2013-05-14

    The excited state dynamics and structure of the photochemically active complex cis-[Ru(bpy)2(py)2](2+) have been investigated using optical transient absorption (OTA) and X-ray transient absorption (XTA) spectroscopy, and density functional theory (DFT). Upon light-excitation in aqueous solution cis-[Ru(bpy)2(py)2](2+) undergoes ultrafast dissociation of one pyridine ligand to form cis-[Ru(bpy)2(py)(H2O)](2+). OTA measurements highlighted the presence of two major time components of 1700 ps and 130 ps through which the system decays to the ground-state and evolves towards the photoproduct. XTA data were acquired after 150 ps, 500 ps, and 3000 ps from laser excitation (λexc = 351 nm) and provided the transient structure of the (3)MLCT state corresponding to the longer time component in the OTA experiment. In excellent agreement with DFT, XTA shows that the (3)MLCT geometry is characterized by an elongation of the dissociating Ru-N(py) bond and a shortening of the trans Ru-N(bpy) bond with respect to the ground state. Conversely, calculations show that the (3)MC state has a highly distorted structure with Ru-N(py) bonds between 2.77-3.05 Å.

  5. Estimating the ground-state probability of a quantum simulation with product-state measurements

    Directory of Open Access Journals (Sweden)

    Bryce eYoshimura

    2015-10-01

    Full Text Available .One of the goals in quantum simulation is to adiabatically generate the ground state of a complicated Hamiltonian by starting with the ground state of a simple Hamiltonian and slowly evolving the system to the complicated one. If the evolution is adiabatic and the initial and final ground states are connected due to having the same symmetry, then the simulation will be successful. But in most experiments, adiabatic simulation is not possible because it would take too long, and the system has some level of diabatic excitation. In this work, we quantify the extent of the diabatic excitation even if we do not know {it a priori} what the complicated ground state is. Since many quantum simulator platforms, like trapped ions, can measure the probabilities to be in a product state, we describe techniques that can employ these simple measurements to estimate the probability of being in the ground state of the system after the diabatic evolution. These techniques do not require one to know any properties about the Hamiltonian itself, nor to calculate its eigenstate properties. All the information is derived by analyzing the product-state measurements as functions of time.

  6. Triplet FFLO superconductivity in the doped Kitaev-Heisenberg honeycomb model

    Science.gov (United States)

    Liu, Tianhan; Repellin, Cécile; Douçot, Benoît; Regnault, Nicolas; Le Hur, Karyn

    2016-11-01

    We provide analytical and numerical evidence of spin-triplet Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconductivity in the itinerant Kitaev-Heisenberg model (antiferromagnetic Kitaev coupling and ferromagnetic Heisenberg coupling) on the honeycomb lattice around quarter filling. The strong spin-orbit coupling in our model leads to the emergence of six inversion symmetry centers for the Fermi surface at nonzero momenta in the first Brillouin zone. We show how the Cooper pairs condense into these nontrivial momenta, causing spatial modulation of the superconducting order parameter. Applying a Ginzburg-Landau expansion analysis, we find that the superconductivity has three separated degenerate ground states with three different spin-triplet pairings. Exact diagonalizations on finite clusters support this picture while ruling out a spin (charge) density wave.

  7. Ultracold Heteronuclear Mixture of Ground and Excited State Atoms

    CERN Document Server

    Khramov, Alexander; Dowd, William; Roy, Richard; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana; Gupta, Subhadeep

    2014-01-01

    We report on the realization of an ultracold mixture of lithium atoms in the ground state and ytterbium atoms in the excited metastable 3P2 state. Such a mixture can support broad magnetic Feshbach resonances which may be utilized for the production of ultracold molecules with an electronic spin degree of freedom, as well as novel Efimov trimers. We investigate the interaction properties of the mixture in the presence of an external magnetic field and find an upper limit for the background interspecies two-body inelastic decay coefficient of K'2 < 3e-12 cm^3/s for the 3P2 m_J=-1 substate. We calculate the dynamic polarizabilities of the Yb 3P2 magnetic substates for a range of wavelengths, and find good agreement with our measurements at 1064nm. Our calculations also allow the identification of magic frequencies where Yb ground and metastable states are identically trapped and the determination of the interspecies van der Waals coefficients.

  8. Spatial competition of the ground states in 1111 iron pnictides

    Science.gov (United States)

    Lang, G.; Veyrat, L.; Gräfe, U.; Hammerath, F.; Paar, D.; Behr, G.; Wurmehl, S.; Grafe, H.-J.

    2016-07-01

    Using nuclear quadrupole resonance, the phase diagram of 1111 R FeAsO1 -xFx (R =La , Ce, Sm) iron pnictides is constructed as a function of the local charge distribution in the paramagnetic state, which features low-doping-like (LD-like) and high-doping-like (HD-like) regions. Compounds based on magnetic rare earths (Ce, Sm) display a unified behavior, and comparison with La-based compounds reveals the detrimental role of static iron 3 d magnetism on superconductivity, as well as a qualitatively different evolution of the latter at high doping. It is found that the LD-like regions fully account for the orthorhombicity of the system, and are thus the origin of any static iron magnetism. Orthorhombicity and static magnetism are not hindered by superconductivity but limited by dilution effects, in agreement with two-dimensional (2D) (respectively three-dimensional) nearest-neighbor square lattice site percolation when the rare earth is nonmagnetic (respectively magnetic). The LD-like regions are not intrinsically supportive of superconductivity, contrary to the HD-like regions, as evidenced by the well-defined Uemura relation between the superconducting transition temperature and the superfluid density when accounting for the proximity effect. This leads us to propose a complete description of the interplay of ground states in 1111 pnictides, where nanoscopic regions compete to establish the ground state through suppression of superconductivity by static magnetism, and extension of superconductivity by proximity effect.

  9. A kinetically blocked 1,14:11,12-dibenzopentacene: A persistent triplet diradical of a non-Kekulé polycyclic benzenoid hydrocarbon

    KAUST Repository

    Li, Yuan

    2014-01-01

    The synthesis of high-spin polycyclic hydrocarbons is very challenging due to their extremely high reactivity. Herein, we report the synthesis and characterization of a kinetically blocked 1,14:11,12-dibenzopentacene, DP-Mes, which represents a rare persistent triplet diradical of a non-Kekulé polycyclic benzenoid hydrocarbon. In contrast to its structural isomer 1,14:7,8-dibenzopentacene (heptazethrene) with a singlet biradical ground state, DP-Mes is a triplet diradical as confirmed by ESR and ESTN measurements and density functional theory calculations. DP-Mes also displays intermolecular antiferromagnetic spin interactions in solution at low temperature. © 2014 the Partner Organisations.

  10. Ground State Correlations and the Multiconfiguration Mixing Method

    CERN Document Server

    Pillet, N; Van Giai, N; Berger, J F; Giai, Nguyen Van

    2004-01-01

    We study the convergence properties of a truncation scheme in describing the ground state properties of a many-particle system of fermions. The model wave function is built within a multiconfiguration mixing approach where the many-body wave function is described as a superposition of multiparticle-multihole configurations constructed upon a Slater determinant. The convergence properties of physical quantities such as correlation energies and single-particle occupation probabilities in terms of the increasing number of particle-hole configurations are investigated for the case of an exactly solvable pairing hamiltonian.

  11. Ground-state spin of {sup 59}Mn

    Energy Technology Data Exchange (ETDEWEB)

    Oinonen, M.; Koester, U.; Aeystoe, J. [CERN, Geneva (Switzerland). EP Div.; Fedoseyev, V.; Mishin, V. [Rossijskaya Akademiya Nauk, Troitsk (Russian Federation). Inst. Spektroskopii; Huikari, J.; Jokinen, A.; Nieminen, A.; Peraejaervi, K. [Jyvaeskylae Univ. (Finland). Dept. of Physics; Knipper, A.; Walter, G. [Institute de Recherches Subatomiques, 67 - Strasbourg (France)

    2001-02-01

    Beta-decay of {sup 59}Mn has been studied at PSB-ISOLDE, CERN. The intense and pure Mn beam was produced using the Resonance Ionization Laser Ion Source (RILIS). Based on the measured {beta}-decay rates the ground-state spin and parity are proposed to be J{sup {pi}} = 5/2{sup -}. This result is consistent with the systematic trend of the odd-A Mn nuclei and extends the systematics one step further towards the neutron drip line. (orig.)

  12. Triaxiality near the 110Ru ground state from Coulomb excitation

    Science.gov (United States)

    Doherty, D. T.; Allmond, J. M.; Janssens, R. V. F.; Korten, W.; Zhu, S.; Zielińska, M.; Radford, D. C.; Ayangeakaa, A. D.; Bucher, B.; Batchelder, J. C.; Beausang, C. W.; Campbell, C.; Carpenter, M. P.; Cline, D.; Crawford, H. L.; David, H. M.; Delaroche, J. P.; Dickerson, C.; Fallon, P.; Galindo-Uribarri, A.; Kondev, F. G.; Harker, J. L.; Hayes, A. B.; Hendricks, M.; Humby, P.; Girod, M.; Gross, C. J.; Klintefjord, M.; Kolos, K.; Lane, G. J.; Lauritsen, T.; Libert, J.; Macchiavelli, A. O.; Napiorkowski, P. J.; Padilla-Rodal, E.; Pardo, R. C.; Reviol, W.; Sarantites, D. G.; Savard, G.; Seweryniak, D.; Srebrny, J.; Varner, R.; Vondrasek, R.; Wiens, A.; Wilson, E.; Wood, J. L.; Wu, C. Y.

    2017-03-01

    A multi-step Coulomb excitation measurement with the GRETINA and CHICO2 detector arrays was carried out with a 430-MeV beam of the neutron-rich 110Ru (t1/2 = 12 s) isotope produced at the CARIBU facility. This represents the first successful measurement following the post-acceleration of an unstable isotope of a refractory element. The reduced transition probabilities obtained for levels near the ground state provide strong evidence for a triaxial shape; a conclusion confirmed by comparisons with the results of beyond-mean-field and triaxial rotor model calculations.

  13. Evidence for the ground-state resonance of 26O

    CERN Document Server

    Lunderberg, E; Kohley, Z; Attanayake, H; Baumann, T; Bazin, D; Christian, G; Divaratne, D; Grimes, S M; Haagsma, A; Finck, J E; Frank, N; Luther, B; Mosby, S; Nagy, T; Peaslee, G F; Schiller, A; Snyder, J; Spyrou, A; Strongman, M J; Thoennessen, M

    2012-01-01

    Evidence for the ground state of the neutron-unbound nucleus 26O was observed for the first time in the single proton-knockout reaction from a 82 MeV/u 27F beam. Neutrons were measured in coincidence with 24O fragments. 26O was determined to be unbound by 150+50-150 keV from the observation of low-energy neutrons. This result agrees with recent shell model calculations based on microscopic two- and three-nucleon forces.

  14. First Observation of Ground State Dineutron Decay: Be16

    Science.gov (United States)

    Spyrou, A.; Kohley, Z.; Baumann, T.; Bazin, D.; Brown, B. A.; Christian, G.; Deyoung, P. A.; Finck, J. E.; Frank, N.; Lunderberg, E.; Mosby, S.; Peters, W. A.; Schiller, A.; Smith, J. K.; Snyder, J.; Strongman, M. J.; Thoennessen, M.; Volya, A.

    2012-03-01

    We report on the first observation of dineutron emission in the decay of Be16. A single-proton knockout reaction from a 53MeV/u B17 beam was used to populate the ground state of Be16. Be16 is bound with respect to the emission of one neutron and unbound to two-neutron emission. The dineutron character of the decay is evidenced by a small emission angle between the two neutrons. The two-neutron separation energy of Be16 was measured to be 1.35(10) MeV, in good agreement with shell model calculations, using standard interactions for this mass region.

  15. Ground state of a confined Yukawa plasma including correlation effects

    CERN Document Server

    Henning, C; Filinov, A; Piel, A; Bonitz, M

    2007-01-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile \\cite{henning.pre06}. While the MF results are more accurate for weak screening, LDA with correlations included yields the proper description for large screening. By comparison with first-principle simulations for three-dimensional spherical Yukawa crystals we demonstrate that both approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.

  16. Tetraphenylhexaazaanthracenes: 16π Weakly Antiaromatic Species with Singlet Ground States.

    Science.gov (United States)

    Constantinides, Christos P; Zissimou, Georgia A; Berezin, Andrey A; Ioannou, Theodosia A; Manoli, Maria; Tsokkou, Demetra; Theodorou, Eleni; Hayes, Sophia C; Koutentis, Panayiotis A

    2015-08-21

    Tetraphenylhexaazaanthracene, TPHA-1, is a fluorescent zwitterionic biscyanine with a closed-shell singlet ground state. TPHA-1 overcomes its weak 16π antiaromaticity by partitioning its π system into 6π positive and 10π negative cyanines. The synthesis of TPHA-1 is low yielding and accompanied by two analogous TPHA isomers: the deep red, non-charge-separated, quinoidal TPHA-2, and the deep green TPHA-3 that partitions into two equal but oppositely charged 8π cyanines. The three TPHA isomers are compared.

  17. Ground state hyperfine splitting of high Z hydrogenlike ions

    CERN Document Server

    Shabaev, V M; Kühl, T; Artemiev, A N; Yerokhin, V A

    1997-01-01

    The ground state hyperfine splitting values of high Z hydrogenlike ions are calculated. The relativistic, nuclear and QED corrections are taken into account. The nuclear magnetization distribution correction (the Bohr-Weisskopf effect) is evaluated within the single particle model with the g_{S}-factor chosen to yield the observed nuclear moment. An additional contribution caused by the nuclear spin-orbit interaction is included in the calculation of the Bohr-Weisskopf effect. It is found that the theoretical value of the wavelength of the transition between the hyperfine splitting components in ^{165}Ho^{66+} is in good agreement with experiment.

  18. Photoabsorption by ground-state alkali-metal atoms.

    Science.gov (United States)

    Weisheit, J. C.

    1972-01-01

    Principal-series oscillator strengths and ground-state photoionization cross sections are computed for sodium, potassium, rubidium, and cesium. The degree of polarization of the photoelectrons is also predicted for each atom. The core-polarization correction to the dipole transition moment is included in all of the calculations, and the spin-orbit perturbation of valence-p-electron orbitals is included in the calculations of the Rb and Cs oscillator strengths and of all the photoionization cross sections. The results are compared with recent measurements.

  19. Ground- and excited-state impurity bands in quantum wells

    Science.gov (United States)

    Ghazali, A.; Gold, A.; Serre, J.

    1989-02-01

    The density of states and the spectral density of electrons in quantum wells with charged impurities are calculated with use of a multiple-scattering method. The impurity-density-dependent broadening and the gradual merging of the ground (1s) and excited (2p+/-,2s) impurity levels into impurity bands are investigated. At low density the shapes of the 1s, 2p+/-, and 2s spectral densities are found to be in excellent agreement with the analytical results obtained for the ideal two-dimensional Coulomb problem.

  20. Universal crossover from ground-state to excited-state quantum criticality

    Science.gov (United States)

    Kang, Byungmin; Potter, Andrew C.; Vasseur, Romain

    2017-01-01

    We study the nonequilibrium properties of a nonergodic random quantum chain in which highly excited eigenstates exhibit critical properties usually associated with quantum critical ground states. The ground state and excited states of this system belong to different universality classes, characterized by infinite-randomness quantum critical behavior. Using strong-disorder renormalization group techniques, we show that the crossover between the zero and finite energy density regimes is universal. We analytically derive a flow equation describing the unitary dynamics of this isolated system at finite energy density from which we obtain universal scaling functions along the crossover.

  1. Uniqueness of ground states of some coupled nonlinear Schrodinger systems and their application

    OpenAIRE

    MA,LI; Lin ZHAO

    2007-01-01

    We establish the uniqueness of ground states of some coupled nonlinear Schrodinger systems in the whole space. We firstly use Schwartz symmetrization to obtain the existence of ground states for a more general case. To prove the uniqueness of ground states, we use the radial symmetry of the ground states to transform the systems into an ordinary differential system, and then we use the integral forms of the system. More interestingly, as an application of our uniqueness results, we derive a s...

  2. Charge transfer to ground-state ions produces free electrons

    Science.gov (United States)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K.

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.

  3. Charge transfer to ground-state ions produces free electrons

    Science.gov (United States)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne–Kr mixed clusters. PMID:28134238

  4. Eigenvectors in the superintegrable model II: ground-state sector

    Energy Technology Data Exchange (ETDEWEB)

    Au-Yang, Helen; Perk, Jacques H H [Department of Physics, Oklahoma State University, 145 Physical Sciences, Stillwater, OK 74078-3072 (United States)], E-mail: helenperk@yahoo.com, E-mail: perk@okstate.edu

    2009-09-18

    In 1993, Baxter gave 2{sup m{sub Q}} eigenvalues of the transfer matrix of the N-state superintegrable chiral Potts model with the spin-translation quantum number Q, where m{sub Q} = lfloor(NL - L - Q)/Nrfloor. In our previous paper we studied the Q = 0 ground-state sector, when the size L of the transfer matrix is chosen to be a multiple of N. It was shown that the corresponding {tau}{sub 2} matrix has a degenerate eigenspace generated by the generators of r = m{sub 0} simple sl{sub 2} algebras. These results enable us to express the transfer matrix in the subspace in terms of these generators E{sup {+-}}{sub m} and H{sub m} for m = 1, ..., r. Moreover, the corresponding 2{sup r} eigenvectors of the transfer matrix are expressed in terms of rotated eigenvectors of H{sub m}.

  5. Theoretical study on thermal decomposition of azoisobutyronitrile in ground state

    Institute of Scientific and Technical Information of China (English)

    SUN Chengke; ZHAO Hongmei; LI Zonghe

    2004-01-01

    The thermal decomposition mechanisms of azoisobutyronitrile (AIBN) in the ground state have been investigated systematically. Based on the potential energy surfaces (PES) of various possible dissociation paths obtained using the semiempirical AM1 method with partial optimization, the density function theory B3LYP/6-311G* method was employed to optimize the geometric parameters of the reactants, the intermediates, the products and the transition states,which were further confirmed by the vibrational analysis. The obtained results show that the reaction process of the two-bond (three-body) simultaneous cleavage Me2(CN)C-N=Nleading to the reaction proceeding in the former pathway. The calculation results were consistent with all the experimental facts.

  6. Ground state for CH2 and symmetry for methane decomposition

    Institute of Scientific and Technical Information of China (English)

    Zhang Li; Luo Wen-Lang; Ruan Wen; Jiang Gang; Zhu Zheng-He

    2008-01-01

    Using the different level of methods B3P86, BLYP, B3PW91, HF, QCISD, CASSCF (4,4) and MP2 with the various basis functions 6-311G**, D95, cc-pVTZ and DGDZVP, the calculations of this paper confirm that the ground state is X3B1 with C2v group for CH2. Furthermore, the three kinds of theoretical methods, I.e. B3P86, CCSD(T, MP4) and G2 with the same basis set cc-pVTZ only are used to recalculate the zero-point energy revision which are modified by scaling factor 0.989 for the high level based on the virial theorem, and also with the correction for basis set superposition error. These results are also contrary to X3Σ-g for the ground state of CH2 in reference. Based on the atomic and molecular reaction statics, this paper proves that the decomposition type (1) I.e. CH4→CH2+H2, is forbidden and the decomposition type (2) I.e. CH4→CH3+H is allowed for CH4. This is similar to the decomposition of SiH4.

  7. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually...... increasing degree of f electron localization from U to Cm, with the tendency toward localization being slightly stronger in the (more ionic) nitrides compared to the (more covalent) carbides. The itinerant band picture is found to be adequate for UC and acceptable for UN, while a more complex manifold...... of competing localized and delocalized f-electron configurations underlies the ground states of NpC, PuC, AmC, NpN, and PuN. The fully localized 5f-electron configuration is realized in CmC (f7), CmN (f7), and AmN (f6). The observed sudden increase in lattice parameter from PuN to AmN is found to be related...

  8. Au42: A possible ground-state noble metallic nanotube

    Science.gov (United States)

    Wang, Jing; Ning, Hua; Ma, Qing-Min; Liu, Ying; Li, You-Cheng

    2008-10-01

    A large hollow tubelike Au42 is predicted as a new ground-state configuration based on the scalar relativistic density functional theory. The shape of this new Au42 cluster is similar to a (5,5) single-wall gold nanotube, the two ends of which are capped by half of a fullerenelike Au32. In the same way, a series of Aun (n =37,42,47,52,57,62,67,72,…, Δn =5) tubelike structures has been constructed. The highest occupied molecular orbital-lowest unoccupied molecular orbital gaps suggested a significant semiconductor-conductor alternation in n ɛ[32,47]. Similar to the predictions and speculation of Daedalus [D. E. H. Jones, New Sci. 32, 245 (1966); E. Osawa, Superaromaticity (Kagaku, Kyoto, 1970), Vol. 25, pp. 854-863; Z. Yoshida and E. Osawa, Aromaticity Chemical Monograph (Kagaku Dojin, Kyoto, Japan, 1971), Vol. 22, pp. 174-176; D. A. Bochvar and E. G. Gal'pern, Dokl. Akad. Nauk SSSR 209, 610 (1973)], here a large hollow ground-state gold nanotube was predicted theoretically.

  9. Adapting algebraic diagrammatic construction schemes for the polarization propagator to problems with multi-reference electronic ground states exploiting the spin-flip ansatz

    Energy Technology Data Exchange (ETDEWEB)

    Lefrancois, Daniel; Wormit, Michael; Dreuw, Andreas, E-mail: dreuw@uni-heidelberg.de [Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 368, 69120 Heidelberg (Germany)

    2015-09-28

    For the investigation of molecular systems with electronic ground states exhibiting multi-reference character, a spin-flip (SF) version of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator up to third order perturbation theory (SF-ADC(3)) is derived via the intermediate state representation and implemented into our existing ADC computer program adcman. The accuracy of these new SF-ADC(n) approaches is tested on typical situations, in which the ground state acquires multi-reference character, like bond breaking of H{sub 2} and HF, the torsional motion of ethylene, and the excited states of rectangular and square-planar cyclobutadiene. Overall, the results of SF-ADC(n) reveal an accurate description of these systems in comparison with standard multi-reference methods. Thus, the spin-flip versions of ADC are easy-to-use methods for the calculation of “few-reference” systems, which possess a stable single-reference triplet ground state.

  10. Formation of ultracold 7Li85Rb molecules in the lowest triplet electronic state by photoassociation and their detection by ionization spectroscopy

    Science.gov (United States)

    Altaf, Adeel; Dutta, Sourav; Lorenz, John; Pérez-Ríos, Jesús; Chen, Yong P.; Elliott, D. S.

    2015-03-01

    We report the formation of ultracold 7Li85Rb molecules in the a3Σ+ electronic state by photoassociation (PA) and their detection via resonantly enhanced multiphoton ionization (REMPI). With our dual-species Li and Rb magneto-optical trap apparatus, we detect PA resonances with binding energies up to ˜62 cm-1 below the 7Li 2s 2S1/2 + 85Rb 5p 2P1/2 asymptote. In addition, we use REMPI spectroscopy to probe the a3Σ+ state and excited electronic 33Π and 43Σ+ states and identify a3Σ+ (v″ = 7-13), 33Π (vΠ' = 0-10), and 43Σ+ (vΣ' = 0-5) vibrational levels. Our line assignments agree well with ab initio calculations. These preliminary spectroscopic studies on previously unobserved electronic states are crucial to discovering transition pathways for transferring ultracold LiRb molecules created via PA to deeply bound rovibrational levels of the electronic ground state.

  11. Para-quinodimethane-bridged perylene dimers and pericondensed quaterrylenes: The effect of the fusion mode on the ground states and physical properties

    KAUST Repository

    Das, Soumyajit

    2014-07-23

    Polycyclic hydrocarbon compounds with a singlet biradical ground state show unique physical properties and promising material applications; therefore, it is important to understand the fundamental structure/biradical character/physical properties relationships. In this study, para-quinodimethane (p-QDM)-bridged quinoidal perylene dimers 4 and 5 with different fusion modes and their corresponding aromatic counterparts, the pericondensed quaterrylenes 6 and 7, were synthesized. Their ground-state electronic structures and physical properties were studied by using various experiments assisted with DFT calculations. The proaromatic p-QDM-bridged perylene monoimide dimer 4 has a singlet biradical ground state with a small singlet/triplet energy gap (-2.97 kcalmol-1), whereas the antiaromatic s-indacene-bridged N-annulated perylene dimer 5 exists as a closed-shell quinoid with an obvious intramolecular charge-transfer character. Both of these dimers showed shorter singlet excited-state lifetimes, larger two-photon-absorption cross sections, and smaller energy gaps than the corresponding aromatic quaterrylene derivatives 6 and 7, respectively. Our studies revealed how the fusion mode and aromaticity affect the ground state and, consequently, the photophysical properties and electronic properties of a series of extended polycyclic hydrocarbon compounds. A matter of fusion mode! Fusion of a para-quinodimethane (p-QDM) subunit at the peri and β positions of perylene dimers leads to systems with different ground states, that is, open and closed shell (see picture). These systems showed large two-photon absorption cross sections and ultrafast excited-state dynamics relative to their corresponding pericondensed aromatic quaterrylene counterparts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ground state configurations in antiferromagnetic ultrathin films with dipolar anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Leon, H., E-mail: hleon@imre.oc.uh.cu [Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana, Zapata e/ Mazon y G. Vedado, 10400 La Habana (Cuba)

    2013-02-15

    The formalism developed in a previous work to calculate the dipolar energy in quasi-two-dimensional crystals with ferromagnetic order is now extended to collinear antiferromagnetic order. Numerical calculations of the dipolar energy are carried out for systems with tetragonally distorted fcc [001] structures, the case of NiO and MnO ultrathin film grown in non-magnetic substrates, where the magnetic phase is a consequence of superexchange and dipolar interactions. The employed approximation allows to demonstrate that dipolar coupling between atomic layers is responsible for the orientation of the magnetization when it differs from the one in a single layer. The ground state energy of a given NiO or MnO film is found to depend not only on the strain, but also on how much the interlayer separation and the 2D lattice constant are changed with respect to the ideal values corresponding to the non-distorted cubic structure. Nevertheless, it is shown that the orientation of the magnetization in the magnetic phase of any of these films is determined by the strain exclusively. A striped phase with the magnetization along the [112{sup Macron }] direction appears as the ground state configuration of NiO and MnO ultrathin films. In films with equally oriented stripes along the layers this magnetic phase is twofold degenerate, while in films with multidomain layers it is eightfold degenerate. These results are not in contradiction with experimentally observed out-of-plane or in-plane magnetization of striped phases in NiO and MnO ultrathin films. - Highlights: Black-Right-Pointing-Pointer Dipolar energy in collinear antiferromagnetic ultrathin films is calculated. Black-Right-Pointing-Pointer Numerical results are presented for distorted fcc [001] structures. Black-Right-Pointing-Pointer The lowest energy of a system depends on how the tetragonal distortion is achieved. Black-Right-Pointing-Pointer A striped phase with magnetization in the [112{sup Macron }] direction is the

  13. LABS problem and ground state spin glasses system

    Science.gov (United States)

    Leukhin, A. N.; Bezrodnyi, V. I.; Kozlova, Yu. A.

    2016-12-01

    In our work we demonstrate the new results of an exhaustive search for optimal binary sequences with minimum peak sidelobe (MPS) up to length N=85. The design problem for law autocorrelation binary sequences (LABS) is a notoriously difficult computational problem which is numbered as the problem number 005 in CSPLib. In statistical physics LABS problem can be interrepted as the energy of N iteracting Ising spins. This is a Bernasconi model. Due to this connection to physics we refer a binary sequence as one-dimensional spin lattice. At this assumption optimal binary sequences by merit factor (MF) criteria are the ground-state spin system without disorder which exhibits a glassy regime.

  14. Ground state structures and properties of small hydrogenated silicon clusters

    Indian Academy of Sciences (India)

    R Prasad

    2003-01-01

    We present results for ground state structures and properties of small hydrogenated silicon clusters using the Car–Parrinello molecular dynamics with simulated annealing. We discuss the nature of bonding of hydrogen in these clusters. We find that hydrogen can form a bridge like Si–H–Si bond connecting two silicon atoms. We find that in the case of a compact and closed silicon cluster hydrogen bonds to the silicon cluster from outside. To understand the structural evolutions and properties of silicon cluster due to hydrogenation, we have studied the cohesive energy and first excited electronic level gap of clusters as a function of hydrogenation. We find that first excited electronic level gap of Si and SiH fluctuates as function of size and this may provide a first principle basis for the short-range potential fluctuations in hydrogenated amorphous silicon. The stability of hydrogenated silicon clusters is also discussed.

  15. Ground-state correlations within a nonperturbative approach

    Science.gov (United States)

    De Gregorio, G.; Herko, J.; Knapp, F.; Lo Iudice, N.; Veselý, P.

    2017-02-01

    The contribution of the two-phonon configurations to the ground state of 4He and 16O is evaluated nonperturbatively using a Hartree-Fock basis within an equation-of-motion phonon method using a nucleon-nucleon optimized chiral potential. Convergence properties of energies and root-mean-square radii versus the harmonic oscillator frequency and space dimensions are investigated. The comparison with the second-order perturbation theory calculations shows that the higher-order terms have an appreciable repulsive effect and yield too-small binding energies and nuclear radii. It is argued that four-phonon configurations, through their strong coupling to two phonons, may provide most of the attractive contribution necessary for filling the gap between theoretical and experimental quantities. Possible strategies for accomplishing such a challenging task are discussed.

  16. Potential Energy Surfaces of Nitrogen Dioxide for the Ground State

    Institute of Scientific and Technical Information of China (English)

    SHAO Ju-Xiang; ZHU Zheng-He; CHENG Xin-Lu; YANG Xiang-Dong

    2007-01-01

    The potential energy function of nitrogen dioxide with the C2v symmetry in the ground state is represented using the simplified Sorbie-Murrell many-body expansion function in terms of the symmetry of NO2. Using the potential energy function, some potential energy surfaces of NO2(C2v, X2A1), such as the bond stretching contour plot for a fixed equilibrium geometry angle θ and contour for O moving around N-O (R1), in which R1 is fixed at the equilibrium bond length, are depicted. The potential energy surfaces are analysed. Moreover, the equilibrium parameters for NO2 with the C2v, Cs and D8h symmetries, such as equilibrium geometry structures and energies, are calculated by the ab initio (CBS-Q) method.

  17. Sympathetic cooling of molecular ion motion to the ground state

    CERN Document Server

    Rugango, Rene; Dixon, Thomas H; Gray, John M; Khanyile, Ncamiso; Shu, Gang; Clark, Robert J; Brown, Kenneth R

    2014-01-01

    We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. The center of mass mode is cooled to an average quanta of harmonic motion $\\overline{n}_{\\mathrm{COM}} = 0.13 \\pm 0.03$, corresponding to a temperature of $12.47 \\pm 0.03 ~\\mu$K. The breathing mode is cooled to $\\overline{n}_{\\mathrm{BM}} = 0.05 \\pm 0.02$, corresponding to a temperature of $15.36 \\pm 0.01~\\mu$K.

  18. Ground-state properties of neutron magic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, G., E-mail: gauravphy@gmail.com [Govt. Women Engineering College, Department of Physics (India); Kaushik, M. [Shankara Institute of Technology, Department of Physics (India)

    2017-03-15

    A systematic study of the ground-state properties of the entire chains of even–even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126 has been carried out using relativistic mean-field plus Bardeen–Cooper–Schrieffer approach. Our present investigation includes deformation, binding energy, two-proton separation energy, single-particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using nonrelativistic approach (Skyrme–Hartree–Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip-lines, the (Z, N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.

  19. Ground States and Excited States in a Tunable Graphene Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    WANG Lin-Jun; CAO Gang; TU Tao; LI Hai-Ou; ZHOU Cheng; HAO Xiao-Jie; GUO Guang-Can; GUO Guo-Ping

    2011-01-01

    We prepare an etched gate tunable quantum dot in single-layer graphene and present transport measurement in this system. We extract the information of the ground states and excited states of the graphene quantum dot, as denoted by the presence of characteristic Coulomb blockade diamond diagrams. The results demonstrate that the quantum dot in single-layer graphene bodes well in future quantum transport study and quantum computing applications.%@@ We prepare an etched gate tunable quantum dot in single-layer graphene and present transport measurement in this system.We extract the information of the ground states and excited states of the graphene quantum dot, as denoted by the presence of characteristic Coulomb blockade diamond diagrams.The results demonstrate that the quantum dot in single-layer graphene bodes well in future quantum transport study and quantum computing applications.

  20. Photophysics of trioxatriangulenium ion. Electrophilic reactivity in the ground state and excited singlet state

    DEFF Research Database (Denmark)

    Reynisson, J.; Wilbrandt, R.; Brinck, V.

    2002-01-01

    of the long wavelength absorption band. A strong fluorescence is observed at 520 nm (tau(n) = 14.6 ns, phi(n) = 0.12 in deaerated acetonitrile). The fluorescence is quenched by 10 aromatic electron donors predominantly via a dynamic charge transfer mechanism, but ground state complexation is shown...

  1. Finite-bias conductance anomalies at a singlet-triplet crossing

    DEFF Research Database (Denmark)

    Stevanato, Chiara; Leijnse, Martin Christian; Flensberg, Karsten;

    2012-01-01

    Quantum dots and single-molecule transistors may exhibit level crossings induced by tuning external parameters such as magnetic eld or gate voltage. For Coulomb blockaded devices, this shows up as an inelastic cotunneling threshold in the dierential conductance, which can be tuned to zero...... at the crossing. Here we show that, in addition, level crossings can give rise to a nearly vertical step-edge, ridge or even a Fano-like ridge-valley feature in the dierential conductance inside the relevant Coulomb diamond. We study a gate-tunable quasidegeneracy between singlet and triplet ground states...

  2. Linear energy relationships in ground state proton transfer and excited state proton-coupled electron transfer.

    Science.gov (United States)

    Gamiz-Hernandez, Ana P; Magomedov, Artiom; Hummer, Gerhard; Kaila, Ville R I

    2015-02-12

    Proton-coupled electron transfer (PCET) processes are elementary chemical reactions involved in a broad range of radical and redox reactions. Elucidating fundamental PCET reaction mechanisms are thus of central importance for chemical and biochemical research. Here we use quantum chemical density functional theory (DFT), time-dependent density functional theory (TDDFT), and the algebraic diagrammatic-construction through second-order (ADC(2)) to study the mechanism, thermodynamic driving force effects, and reaction barriers of both ground state proton transfer (pT) and photoinduced proton-coupled electron transfer (PCET) between nitrosylated phenyl-phenol compounds and hydrogen-bonded t-butylamine as an external base. We show that the obtained reaction barriers for the ground state pT reactions depend linearly on the thermodynamic driving force, with a Brønsted slope of 1 or 0. Photoexcitation leads to a PCET reaction, for which we find that the excited state reaction barrier depends on the thermodynamic driving force with a Brønsted slope of 1/2. To support the mechanistic picture arising from the static potential energy surfaces, we perform additional molecular dynamics simulations on the excited state energy surface, in which we observe a spontaneous PCET between the donor and the acceptor groups. Our findings suggest that a Brønsted analysis may distinguish the ground state pT and excited state PCET processes.

  3. Identification of the sites of chlorophyll triplet quenching in relation to the structure of LHC-II from higher plants. Evidence from EPR spectroscopy.

    Science.gov (United States)

    Di Valentin, Marilena; Biasibetti, Federico; Ceola, Stefano; Carbonera, Donatella

    2009-10-01

    The Chlorophyll a (Chl a) molecules involved in the triplet-triplet energy transfer to the central luteins in trimeric LHC-II are identified by time-resolved and pulse EPR techniques. The concept of spin angular momentum conservation during triplet-triplet energy transfer is exploited for the calculation of the spin polarization of the carotenoid triplet states. The sites with the highest probability of forming triplet states, which are quenched by the central luteins, result to be Chl603 and Chl612. "Unquenched" Chl triplet states are produced by photoexcitation in the LHC-II complex. Putative sites of these triplet states are Chl614, Chl611, Chl604, and Chl613 since they do not contribute to the formation of the observed carotenoid triplet states.

  4. Indolo[2,3-b]carbazoles with tunable ground states: How Clar's aromatic sextet determines the singlet biradical character

    KAUST Repository

    Luo, Ding

    2014-01-01

    Polycyclic hydrocarbons (PHs) with a singlet biradical ground state have recently attracted extensive interest in physical organic chemistry and materials science. Replacing the carbon radical center in the open-shell PHs with a more electronegative nitrogen atom is expected to result in the more stable aminyl radical. In this work, two kinetically blocked stable/persistent derivatives (1 and 2) of indolo[2,3-b]carbazole, an isoelectronic structure of the known indeno[2,1-b]fluorene, were synthesized and showed different ground states. Based on variable-temperature NMR/ESR measurements and density functional theory calculations, it was found that the indolo[2,3-b]carbazole derivative 1 is a persistent singlet biradical in the ground state with a moderate biradical character (y0 = 0.269) and a small singlet-triplet energy gap (ΔES-T ≅ -1.78 kcal mol-1), while the more extended dibenzo-indolo[2,3-b]carbazole 2 exhibits a quinoidal closed-shell ground state. The difference can be explained by considering the number of aromatic sextet rings gained from the closed-shell to the open-shell biradical resonance form, that is to say, two for compound 1 and one for compound 2, which determines their different biradical characters. The optical and electronic properties of 2 and the corresponding aromatic precursors were investigated by one-photon absorption, transient absorption and two-photon absorption (TPA) spectroscopies and electrochemistry. Amphoteric redox behaviour, a short excited lifetime and a moderate TPA cross section were observed for 2, which can be correlated to its antiaromaticity and small biradical character. Compound 2 showed high reactivity to protic solvents due to its extremely low-lying LUMO energy level. Unusual oxidative dimerization was also observed for the unblocked dihydro-indolo[2,3-b]carbazole precursors 6 and 11. Our studies shed light on the rational design of persistent aminyl biradicals with tunable properties in the future. This journal

  5. State estimators for tracking sharply-maneuvering ground targets

    Science.gov (United States)

    Visina, Radu S.; Bar-Shalom, Yaakov; Willett, Peter

    2017-05-01

    This paper presents an algorithm, based on the Interacting Multiple Model Estimator, that can be used to track the state of kinematic point targets, moving in two dimensions, that are capable of making sharp heading maneuvers over short periods of time, such as certain ground vehicles moving in an open field. The targets are capable of up to 60 °/s turn rates, while polar measurements are received at 1 Hz. We introduce the Non-Zero Mean, White Noise Turn-Rate IMM (IMM-WNTR) that consists of 3 modes based on a White Noise Turn Rate (WNTR) kinematic model that contains additive, white, Gaussian turn rate process noises. Two of the modes are considered maneuvering modes, and they have opposite (left/right), non-zero mean turn rate input noise. The need for non-zero mean turn rate process noise is explained, and Monte Carlo simulations compare this novel design to the traditional (single-mode) White Noise Acceleration Kalman Filter (WNA KF) and the two-mode White Noise Acceleration/Nearly-Coordinated Turn Rate IMM (IMM-CT). Results show that the IMM-WNTR filter achieves better accuracy and real-time consistency between expected error and actual error as compared to the (single-mode) WNA KF and the IMM-CT in all simulated scenarios, making it a very accurate state estimator for targets with sharp coordinated turn capability in 2D.

  6. Zero-Point Fluctuations in the Nuclear Born-Oppenheimer Ground State

    Science.gov (United States)

    Zettili, Nouredine

    The small-amplitude oscillations of rigid nuclei around the equilibrium state are described by means of the nuclear Born-Oppenheimer (NBO) method. In this limit, the method is shown to give back the random phase approximation (RPA) equations of motion. The contribution of the zero-point fluctuations to the ground state are examined, and the NBO ground state energy derived is shown to be identical to the RPA ground state energy.

  7. Photophysical and photochemical parameters of octakis (benzylthio) phthalocyaninato zinc, aluminium and tin: Red shift index concept in solvent effect on the ground state absorption of zinc phthalocyanine derivatives

    Science.gov (United States)

    Akpe, Victor; Brismar, Hjalmar; Nyokong, Tebello; Osadebe, P. O.

    2010-12-01

    This paper addresses the synthesis of octa-substituted benzylthio metallophthalocyanines (OBTMPcs) that contain the central metal ions of Zn 2+, Al 3+ and Sn 4+. The ground state absorption of ZnPc(SR) 8 (OBTZnPc) along with the ZnPc derivatives, well documented in literature were used to study a new concept called the red shift index ( R sI ). The concept is based on the empirical values of R sI of the different complexes in solvent media. Unequivocally, parameters used in this paper show strong correlations that are consistent with the results obtained. For instance, R sI of the complexes tend to increase as the refractive index, n D, and solvent donor, DN, of solvent increases. Photodegradation (photobleaching) quantum yield, ϕ d measurements of these compounds show that they are highly photostable, ϕ d (0.03-0.33 × 10 -5). The triplet quantum yield, ϕ T (0.40-0.53) and the triplet lifetime, τ T (610-810 μs) are within the typical range for metallophthalocyanines in DMSO. The photosensitisation efficiency, SΔ, is relatively high for all the molecules (0.74-0.90).

  8. Triplets pass their pressure test

    CERN Multimedia

    2007-01-01

    All the LHC inner triplets have now been repaired and are in position. The first ones have passed their pressure tests with flying colours. The repaired inner triplet at LHC Point 1, right side (1R). Ranko Ostojic (on the right), who headed the team responsible for repairing the triplets, shows the magnet to Robert Zimmer, President of the University of Chicago and of Fermi Research Alliance, who visited CERN on 20th August.Three cheers for the triplets! All the LHC inner triplets have now been repaired and are in position in the tunnel. Thanks to the mobilisation of a multidisciplinary team from CERN and Fermilab, assisted by the KEK Laboratory and the Lawrence Berkeley National Laboratory (LBNL), a solution has been found, tested, validated and applied. At the end of March this year, one of the inner triplets at Point 5 failed to withstand a pressure test. A fault was identified in the supports of two out of the three quadruple magne...

  9. Singlet-Triplet Transition in Quantum Dots Confined by Triangular and Bowl-Like Potentials: the Effect of Electric Fields

    Institute of Scientific and Technical Information of China (English)

    SUN Lian-Liang; LI Shu-Shen

    2005-01-01

    @@ We theoretically investigate the energy spectra of two-electron two-dimensional (2e 2D) quantum dots (QDs)confined by triangular potentials and bowl-like potentials in a magnetic field by exact diagonalization in the framework of effective mass theory. An in-plane electric field is found to contribute to the singlet-triplet transition of the ground state of the 2e 2D QDs confined by triangular or bowl-like potentials in a perpendicular magnetic field. The stronger the in-plane electric field, the smaller the magnetic field for the total spin of the ground states in the dot systems to change from S = 0 to S = 1. However, the influence of anin-plane electric field on the singlettriplet transition of the ground state of two electrons in a triangular QD modulated by a perpendicular magnetic field is quite small because the triangular potential just deviates from the harmonic potential well slightly. We find that the strength of the perpendicular magnetic field needed for the spin singlet-triplet transition of the ground state of the QD confined by a bowl-like potential is reduced drastically by applying an in-plane electric field.

  10. NC-(CF2)4-CNSSN radical containing 1,2,3,5-dithiadiazolyl radical dimer exhibiting triplet excited states at low temperature and thermal hysteresis on melting-solidification: structural, spectroscopic, and magnetic characterization.

    Science.gov (United States)

    Shuvaev, Konstantin V; Decken, Andreas; Grein, Friedrich; Abedin, Tareque S M; Thompson, Laurence K; Passmore, Jack

    2008-08-14

    A high yield, one-pot synthesis of the 1,2,3,5-dithiadiazolyl radical NC-(CF2)4-CNSSN radical by reduction of the corresponding 1,3,2,4-dithiadiazolium salt is reported. In the solid state, the title compound is dimerized in trans-cofacial fashion with intra-dimeric Sdelta+...N(delta-) interactions of ca. 3.2 angstroms, and the dimeric units are linked by electrostatic -C triple bond N(delta-)...Sdelta+ interactions forming an infinite chain. Magnetic susceptibility measurements performed on the solid state sample indicate a magnetic moment of 1.8 microB per dimer (1.3 microB per monomer) at 300 K and a good fit to the Bleaney-Bowers model in the temperature range 2-300 K with 2J = -1500 +/- 50 cm(-1), g = 2.02(5), rho = 0.90(3)%, and TIP = 1.25(4) x 10(-3) emu mol(-1). The [NC-(CF2)4-CNSSN radical]2 dimer is the second example of a 1,2,3,5-dithiadiazolyl radical dimer with an experimentally detected triplet excited state as probed by solid-state EPR [2J = -1730 +/- 100 cm(-1), |D| = 0.0278(5) cm(-1), |E| = 0.0047(5) cm(-1)]. The value of the singlet-triplet gap has enabled us to estimate the "in situ" dimerization energy of the radical dimer as ca. -10 kJ mol(-1). The diradical character of the dimer was calculated [CASSCF(6,6)/6-31G*] as 35%. The title radical shows magnetic bistability in the temperature range of 305-335 K as probed by the solid-state EPR presumably arising from the presence of a metastable paramagnetic supercooled phase. Bistability is accompanied by thermochromic behavior with a color change from dark green (dimeric solid) to dark brown (paramagnetic liquid).

  11. Phosphorescence and zero-field optically detected magnetic resonance studies of the lowest excited triplet states of organometallic diimine complexes. 1. (Rh(bpy)/sub 3/)/sup 3 +/ and (Rh(phen)/sub 3/)/sup 3 +/

    Energy Technology Data Exchange (ETDEWEB)

    Komada, Y.; Yamauchi, S.; Hirota, N.

    1986-11-20

    The authors have made spectroscopic and optically detected magnetic resonance studies on /sup 3/..pi pi..* (Rh(bpy)/sub 3/)/sup 3 +/ and (Rh(phen)/sub 3/)/sup 3 +/ at liquid helium temperature. They have observed a well-resolved phosphorescence spectrum of (Rh(phen)/sub 3/)(BF/sub 4/)/sub 3/ that resembles that of 1,10-phenanthroline except for changes in some vibrational frequencies. The triplet lifetimes of the Rh complexes were compared with those of the Cd and Ir complexes in the light of the effect of d..pi..* states. Zero-field (zf) ODMR signals of the /sup 3/..pi pi..*Rh complexes were observed, and triplet sublevel properties, such as zf splittings (zfs) and radiative and nonradiative decay rate constants, were obtained. Very interestingly, small zfs (3-5 GHz) were observed, contrary to previous estimates. Rationalization of this observation is given. On the basis of the obtained data they discuss the structures, zf schemes, and radiative and nonradiative mechanisms in the /sup 3/..pi pi..* Rh complexes.

  12. Ground-state splitting of ultrashallow thermal donors with negative central-cell corrections in silicon

    Science.gov (United States)

    Hara, Akito; Awano, Teruyoshi

    2017-06-01

    Ultrashallow thermal donors (USTDs), which consist of light element impurities such as carbon, hydrogen, and oxygen, have been found in Czochralski silicon (CZ Si) crystals. To the best of our knowledge, these are the shallowest hydrogen-like donors with negative central-cell corrections in Si. We observed the ground-state splitting of USTDs by far-infrared optical absorption at different temperatures. The upper ground-state levels are approximately 4 meV higher than the ground-state levels. This energy level splitting is also consistent with that obtained by thermal excitation from the ground state to the upper ground state. This is direct evidence that the wave function of the USTD ground state is made up of a linear combination of conduction band minimums.

  13. Even-parity spin-triplet paired states by combined effect of Hund's rule and correlations in two-band Hubbard model: a brief overview

    Science.gov (United States)

    Zegrodnik, Michał

    2015-02-01

    Universal aspects of the Hund's rule induced spin-triplet pairing are analysed within the two-band Hubbard model on a square lattice. According to our calculations, this pairing mechanism in conjunction with the correlation effect can result in stability of the paired phase in the so-called purely repulsive interactions regime, in which there is no effectively attractive interaction. Furthermore, even though all of the interaction terms are of intrasite character, the pairing contains both intra- and inter-site components. In effect, the gap parameter has a mixture of s-wave and extended s-wave symmetries. The calculations have been carried out with the use of the Statistically Consistent Gutzwiller Approximation developed by us in recent years.

  14. Ground-state properties of neutron-rich Mg isotopes

    CERN Document Server

    Watanabe, Shin; Shimada, Mitsuhiro; Tagami, Shingo; Kimura, Masaaki; Takechi, Maya; Fukuda, Mitsunori; Nishimura, Daiki; Suzuki, Takeshi; Matsumoto, Takuma; Shimizu, Yoshifumi R; Yahiro, Masanobu

    2014-01-01

    We analyze recently-measured total reaction cross sections for 24-38Mg isotopes incident on 12C targets at 240 MeV/nucleon by using the folding model and antisymmetrized molecular dynamics(AMD). The folding model well reproduces the measured reaction cross sections, when the projectile densities are evaluated by the deformed Woods-Saxon (def-WS) model with AMD deformation. Matter radii of 24-38Mg are then deduced from the measured reaction cross sections by ?ne-tuning the parameters of the def-WS model. The deduced matter radii are largely enhanced by nuclear deformation. Fully-microscopic AMD calculations with no free parameter well reproduce the deduced matter radii for 24-36Mg, but still considerably underestimate them for 37,38Mg. The large matter radii suggest that 37,38Mg are candidates for deformed halo nucleus. AMD also reproduces other existing measured ground-state properties (spin-parity, total binding energy, and one-neutron separation energy) of Mg isotopes. Neutron-number (N) dependence of defor...

  15. Local reversibility and entanglement structure of many-body ground states

    CERN Document Server

    Kuwahara, Tomotaka; Amico, Luigi; Vedral, Vlatko

    2015-01-01

    The low-temperature physics of quantum many-body systems is largely governed by the structure of their ground states. Minimizing the energy of local interactions, ground states often reflect strong properties of locality such as the area law for entanglement entropy and the exponential decay of correlations between spatially separated observables. In this letter we present a novel characterization of locality in quantum states, which we call `local reversibility'. It characterizes the type of operations that are needed to reverse the action of a general disturbance on the state. We prove that unique ground states of gapped local Hamiltonian are locally reversible. This way, we identify new fundamental features of many-body ground states, which cannot be derived from the aforementioned properties. We use local reversibility to distinguish between states enjoying microscopic and macroscopic quantum phenomena. To demonstrate the potential of our approach, we prove specific properties of ground states, which are ...

  16. Ground state properties of a Bose-Einstein condensate confined in an anharmonic external potential

    Institute of Scientific and Technical Information of China (English)

    Wang Deng-Long; Yan Xiao-Hong; Tang Yi

    2004-01-01

    In light of the interference experiment of Bose-Einstein condensates, we present an anharmonic external potential model to study ground state properties of Bose-Einstein condensates. The ground state energy and the chemical potential have been analytically obtained, which are lower than those in harmonic trap. Additionally, it is found that the anharmonic strength of the external potential has an important effect on density and velocity distributions of the ground state for the Thomas-Fermi model.

  17. Upper Bounds on the Degeneracy of the Ground State in Quantum Field Models

    Directory of Open Access Journals (Sweden)

    Asao Arai

    2016-01-01

    Full Text Available Axiomatic abstract formulations are presented to derive upper bounds on the degeneracy of the ground state in quantum field models including massless ones. In particular, given is a sufficient condition under which the degeneracy of the ground state of the perturbed Hamiltonian is less than or equal to the degeneracy of the ground state of the unperturbed one. Applications of the abstract theory to models in quantum field theory are outlined.

  18. Exact many-electron ground states on diamond and triangle Hubbard chains

    OpenAIRE

    2008-01-01

    We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (i) a rewriting of the Hamiltonian into positive semidefinite form, (ii) the construction of a many-electron ground state of this Hamiltonian, and (iii) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the model, and only demands sufficiently many microscopic parameters in the Hamiltonian which have to fu...

  19. Stability of singlet and triplet trions in carbon nanotubes

    DEFF Research Database (Denmark)

    Rønnow, Troels Frimodt; Pedersen, Thomas Garm; Cornean, Horia

    2009-01-01

    We investigate singlet and triplet trion states in semiconducting carbon nanotubes using a one-dimensional model. It is concluded that singlet trion states in bind up to 13.5% stronger than exciton states, and that they lower the optical transition energy with up to 50% of the tight binding band ...

  20. A Simple Hubbard Model for the Excited States of Dibenzoterrylene

    CERN Document Server

    Sadeq, Z S

    2016-01-01

    We use a simple Hubbard model to characterize the electronic excited states of the dibenzoterrylene (DBT) molecule; we compute the excited state transition energies and oscillator strengths from the ground state to several singlet excited states. We consider the lowest singlet and triplet states of the molecule, examine their wavefunctions, and compute the density correlation functions that describe these states. We find that the DBT ground state is mostly a closed shell singlet with very slight radical character. We predict a relatively small singlet-triplet splitting of 0.75 eV, which is less than the mid-sized -acenes but larger than literature predictions for this state; this is because the Hubbard interaction makes a very small correction to the singlet and triplet states.

  1. Lower bounds for the ground-state degeneracies of frustrated systems on fractal lattices

    Science.gov (United States)

    Curado; Nobre

    2000-12-01

    The total number of ground states for nearest-neighbor-interaction Ising systems with frustrations, defined on hierarchical lattices, is investigated. A simple method is presented, which allows one to factorize the ground-state degeneracy, at a given hierarchy level n, in terms of contributions due to all hierarchy levels. Such a method may yield the exact ground-state degeneracy of uniformly frustrated systems, whereas it works as an approximation for randomly frustrated models. In the latter cases, it is demonstrated that such an approximation yields lower-bound estimates for the ground-state degeneracies.

  2. Ground-State Analysis for an Exactly Solvable Coupled-Spin Hamiltonian

    Directory of Open Access Journals (Sweden)

    Eduardo Mattei

    2013-11-01

    Full Text Available We introduce a Hamiltonian for two interacting su(2 spins. We use a mean-field analysis and exact Bethe ansatz results to investigate the ground-state properties of the system in the classical limit, defined as the limit of infinite spin (or highest weight. Complementary insights are provided through investigation of the energy gap, ground-state fidelity, and ground-state entanglement, which are numerically computed for particular parameter values. Despite the simplicity of the model, a rich array of ground-state features are uncovered. Finally, we discuss how this model may be seen as an analogue of the exactly solvable p+ip pairing Hamiltonian.

  3. Ground state solutions for asymptotically periodic Schrodinger equations with critical growth

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.

  4. Spontaneous fission half-lives of heavy nuclei in ground state and in isomeric state

    Science.gov (United States)

    Ren, Zhongzhou; Xu, Chang

    2005-09-01

    We generalize the formulas of spontaneous fission half-lives of even-even nuclei in their ground state to both the case of odd nuclei and the case of fission isomers [Phys. Rev. C 71 (2005) 014309]. The spontaneous fission half-lives of odd- A nuclei and of odd-odd nuclei in the ground state are calculated by Swiatecki's formula, by its generalized form, and by a new formula where the blocking effect of unpaired nucleon on the half-lives has been taken into account with different mechanisms. By introducing a blocking factor or a generalized seniority in the formulas of the half-lives of even-even nuclei, we can reasonably reproduce the experimental fission half-lives of odd- A nuclei and of odd-odd nuclei with the same parameters used in ground state of even-even nuclei. For spontaneous fission of the isomers in transuranium nuclei the new formula can be simplified into a three-parameter formula and the isomeric half-lives can be well reproduced by the formula. The new formula of the isomeric half-lives is as good as Metag's formula of fission isomers. The half-lives of isomers from these formulas are very accurate and therefore these formulas can give reliable predictions for half-lives of new isomers of neighboring nuclei.

  5. Derivation of novel human ground state naive pluripotent stem cells.

    Science.gov (United States)

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  6. E2 transitions between excited single-phonon states: Role of ground-state correlations

    Energy Technology Data Exchange (ETDEWEB)

    Kamerdzhiev, S. P. [National Research Centre Kurchatov Institute (Russian Federation); Voitenkov, D. A., E-mail: dvoytenkov@ippe.ru [Institute for Physics and Power Engineering (Russian Federation)

    2016-11-15

    The probabilities for E2 transitions between low-lying excited 3{sup −} and 5{sup −} single-phonon states in the {sup 208}Pb and {sup 132}Sn magic nuclei are estimated on the basis of the theory of finite Fermi systems. The approach used involves a new type of ground-state correlations, that which originates from integration of three (rather than two, as in the random-phase approximation) single-particle Green’s functions. These correlations are shown to make a significant contribution to the probabilities for the aforementioned transitions.

  7. Unimolecular photodissociation dynamics of ketene (CH2CO): The singlet/triplet branching ratio and experimental observation of the vibrational level thresholds of the transition-state

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Kyu [Univ. of California, Berkeley, CA (United States)

    1993-05-01

    The rotational distributions of CO products from the dissociation of ketene at photolysis energies 10 cm-1 below, 56, 110, 200, 325, 425, 1,107, 1,435, 1,720, and 2,500 cm-1 above the singlet threshold, are measured in a supersonic free jet of ketene. The CO(v'' = 0) rotational distributions at 56, 110, 200, 325, and 425 cm-1 are bimodal. The peaks at low J`s, which are due to CO from the singlet channel, show that the product rotational distribution of CO product from ketene dissociation on the singlet surface is well described by phase space theory (PST). For CO(v'' = 0) rotational distributions at higher excess energies, the singlet and triplet contributions are not clearly resolved, and the singlet/triplet branching ratios are estimated by assuming that PST accurately predicts the CO rotational distribution from the singlet channel and that the distribution from the triplet channel changes little from that at 10 cm-1 below the singlet threshold. At 2,500 cm-1 excess energy, the CO(v'' = 1) rotational distribution is obtained, and the ratio of CO(v'' = 1) to CO(v'' = 0) products for the singlet channel is close to the variational RRKM calculation, 0.038, and the separate statistical ensembles (SSE) prediction, 0.041, but much greater than the PST prediction, 0.016. Rate constants for the dissociation of ketene (CH2CO) and deuterated ketene (CD2CO) have been measured at the threshold for the production of the CH(D)2 and CO. Sharp peaks observed in photofragment excitation (PHOFEX) spectra probing CO (v = 0, J = 2) product are identified with the C-C-O bending mode of the transition state. RRKM calculations are carried out for two limiting cases for the dynamics of K-mixing in highly vibrationally excited reactant states.

  8. Topological Aspects of Triplet Superconductors

    Institute of Scientific and Technical Information of China (English)

    REN Ji-Rong; XU Dong-Hui; ZHANG Xin-Hui; LI Ran

    2007-01-01

    In this paper, using the φ-mapping theory, it is shown that two kinds of topological defects, i.e., the vortex lines and the monopoles exist in the helical configuration of magnetic field in triplet superconductors. And the inner topological structure of these defects is studied. Because the knot solitons in the triplet superconductors are characterized by the Hopf invariant, we also establish a relationship between the Hopf invariant and the linking number of knots family,and reveal the inner topological structure of the Hopf invariant.

  9. Revised Iterative Solution of Ground State of Double-Well Potential

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei-Qin

    2005-01-01

    The revised new iterative method for solving the ground state of Schrodinger equation is deduced. Based on Green functions defined by quadratures along a single trajectory this iterative method is applied to solve the ground state of the double-well potential. The result is compared to the one based on the original iterative method. The limitation of the asymptotic expansion is also discussed.

  10. Ground state solutions for nonlinear fractional Schrodinger equations involving critical growth

    Directory of Open Access Journals (Sweden)

    Hua Jin

    2017-03-01

    Full Text Available This article concerns the ground state solutions of nonlinear fractional Schrodinger equations involving critical growth. We obtain the existence of ground state solutions when the potential is not a constant and not radial. We do not use the Ambrosetti-Rabinowitz condition, or the monotonicity condition on the nonlinearity.

  11. Ground state correlations and mean field using the exp(S) method

    CERN Document Server

    Heisenberg, J H; Heisenberg, Jochen H.; Mihaila, Bogdan

    1999-01-01

    This document gives a detailed account of the terms used in the computation of the ground state mean field and the ground state correlations. While the general approach to this description is given in a separate paper (nucl-th/9802029) we give here the explicite expressions used.

  12. The study of magnetization of the spin systm in the ground state

    Institute of Scientific and Technical Information of China (English)

    Jiang Wei; Wang Xi-Kun; Zhao Qiang

    2006-01-01

    Within the framework of the effective-field theory with self-spin correlations and the differential operator technique,the ground state magnetizations of the biaxial crystal field spin system on the honeycomb lattices have been studied.The influences of the biaxial crystal field on the magnetization in the ground state have been investigated in detail.

  13. Improved lower bounds on the ground-state entropy of the antiferromagnetic Potts model.

    Science.gov (United States)

    Chang, Shu-Chiuan; Shrock, Robert

    2015-05-01

    We present generalized methods for calculating lower bounds on the ground-state entropy per site, S(0), or equivalently, the ground-state degeneracy per site, W=e(S(0)/k(B)), of the antiferromagnetic Potts model. We use these methods to derive improved lower bounds on W for several lattices.

  14. Interface between light coupled to excited-states transition and ground-state coherence of rubidium atoms

    CERN Document Server

    Parniak, Michał; Wasilewski, Wojciech

    2015-01-01

    We demonstrate an interface between light coupled to transition between excited states of rubidium and long-lived ground-state atomic coherence. In our proof-of-principle experiment a non-linear process of four-wave mixing in an open-loop configuration is used to achieve light emission proportional to independently prepared ground-state atomic coherence. We demonstrate strong correlations between Raman light heralding generation of ground-state coherence and the new four-wave mixing signal. Dependance of the efficiency of the process on laser detunings is studied.

  15. Triplet deciphers genomes

    Science.gov (United States)

    Hesketh

    2000-09-01

    particularly up to date features, Gerald Karp's book includes a section in the Cancer chapter on angiogenesis, as does Lodish et al., but in Karp the information imparted extends to a scheme showing the effect of endostatin on mouse tumours, replete with photographs of mice from such an experiment. All of this has resulted in a book that is focused but highly informative and a delight to browse through. If it appears by now that your reviewer is suggesting you should dash out and buy all three of these books, I can only admit that I am delighted to have them on my shelf. If you have to choose, for fundamental biochemical science with a fair degree of breadth thrown in it has to be Lehninger. For a comprehensive molecular biology course Lodish et al. is the equal of anything else on the market. For a broad grounding in cell and molecular biology that will appeal especially to medical students go for Karp.

  16. Direct production of ultracold rovibronic ground state LiRb molecules through photoassociation and spontaneous decay

    CERN Document Server

    Stevenson, I C; Chen, Y P; Elliott, D S

    2016-01-01

    We report a newly observed photoassociation resonance in $^7$Li-$^{85}$Rb, a mixed $2(1) - 4(1)$ excited state, that spontaneously decays to the rovibronic ground state. This resonance between ultracold Li and Rb is the strongest ground state molecule-forming photoassociation line observed in LiRb, and forms deeply bound $X \\: ^1\\Sigma^+$ molecules in large numbers. The production rate of the $v=0 \\ J=0$ rovibrational ground state is $\\sim 1.5 \\times 10^{4}$ molecules/s.

  17. The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2016-03-01

    Full Text Available To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS at Co L2,3 edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co-L2,3 XAS spectra demonstrate a robust ground state of 2A1g symmetry that is built from 73% 3d7 character and 27% 3 d 8 L ¯ ( L ¯ denotes a ligand hole components, as the first excited-state with 2Eg symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A1g symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A1g to 2Eg configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.

  18. Ground-state characterizations of systems predicted to exhibit L11 or L13 crystal structures

    Science.gov (United States)

    Nelson, Lance J.; Hart, Gus L. W.; Curtarolo, Stefano

    2012-02-01

    Despite their geometric simplicity, the crystal structures L11 (CuPt) and L13 (CdPt3) do not appear as ground states experimentally, except in Cu-Pt. We investigate the possibility that these phases are ground states in other binary intermetallic systems, but overlooked experimentally. Via the synergy between high-throughput and cluster-expansion computational methods, we conduct a thorough search for systems that may exhibit these phases and calculate order-disorder transition temperatures when they are predicted. High-throughput calculations predict L11 ground states in the systems Ag-Pd, Ag-Pt, Cu-Pt, Pd-Pt, Li-Pd, Li-Pt, and L13 ground states in the systems Cd-Pt, Cu-Pt, Pd-Pt, Li-Pd, Li-Pt. Cluster expansions confirm the appearance of these ground states in some cases. In the other cases, cluster expansion predicts unsuspected derivative superstructures as ground states. The order-disorder transition temperatures for all L11/L13 ground states were found to be sufficiently high that their physical manifestation may be possible.

  19. Exact spin-cluster ground states in a mixed diamond chain

    Science.gov (United States)

    Takano, Ken'Ichi; Suzuki, Hidenori; Hida, Kazuo

    2009-09-01

    The mixed diamond chain is a frustrated Heisenberg chain composed of successive diamond-shaped units with two kinds of spins of magnitudes S and S/2 ( S : integer). Ratio λ of two exchange parameters controls the strength of frustration. With varying λ , the Haldane state and several spin-cluster states appear as the ground state. A spin-cluster state is a tensor product of exact local eigenstates of cluster spins. We prove that a spin-cluster state is the ground state in a finite interval of λ . For S=1 , we numerically determine the total phase diagram consisting of five phases.

  20. Alpha decay of even-even nuclei in the region 78{<=}Z{<=}102 to the ground state and excited states of daughter nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P., E-mail: drkpsanthosh@gmail.co [School of Pure and Applied Physics, Kannur University, Payyanur Campus, Payyanur 670 327 (India); Sahadevan, Sabina; Joseph, Jayesh George [School of Pure and Applied Physics, Kannur University, Payyanur Campus, Payyanur 670 327 (India)

    2011-01-15

    Alpha half lives, branching ratios and hindrance factors of even-even nuclei in the range 78{<=}Z{<=}102 from ground state to ground state and ground state to excited states of daughter nuclei are computed using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The computed half life values and branching ratios are compared with experimental data and they are in good agreement. The standard deviation of half life and branching ratio are 0.79 and 0.94 respectively. It is found that the standard deviation of branching ratio for the ground state to ground state transition is only 0.25 and it increases as we move to the higher excited states which are due to the effect of nuclear structure. It is evident from the study that our ground state decay model is apt for describing not only the ground state to ground state decay but also decay to excited state.

  1. Half-metallic superconducting triplet spin valve

    Science.gov (United States)

    Halterman, Klaus; Alidoust, Mohammad

    2016-08-01

    We theoretically study a finite-size S F1N F2 spin valve, where a normal metal (N ) insert separates a thin standard ferromagnet (F1) and a thick half-metallic ferromagnet (F2). For sufficiently thin superconductor (S ) widths close to the coherence length ξ0, we find that changes to the relative magnetization orientations in the ferromagnets can result in substantial variations in the transition temperature Tc, consistent with experimental results [Singh et al., Phys. Rev. X 5, 021019 (2015), 10.1103/PhysRevX.5.021019]. Our results demonstrate that, in good agreement with the experiment, the variations are largest in the case where F2 is in a half-metallic phase and thus supports only one spin direction. To pinpoint the origins of this strong spin-valve effect, both the equal-spin f1 and opposite-spin f0 triplet correlations are calculated using a self-consistent microscopic technique. We find that when the magnetization in F1 is tilted slightly out of plane, the f1 component can be the dominant triplet component in the superconductor. The coupling between the two ferromagnets is discussed in terms of the underlying spin currents present in the system. We go further and show that the zero-energy peaks of the local density of states probed on the S side of the valve can be another signature of the presence of superconducting triplet correlations. Our findings reveal that for sufficiently thin S layers, the zero-energy peak at the S side can be larger than its counterpart in the F2 side.

  2. Rates and singlet/triplet ratios from TADF transients

    CERN Document Server

    Nelson, Mitchell C

    2016-01-01

    Thermally activated delayed fluorescence has been reported in a number of OLED emitter materials engineered to have low singlet-triplet energy gaps. Here we derive closed solutions for steady state and transient behaviors and apply these results to data provided in recent reports. Earlier work has used yields, rates and a supplied forward crossing rate to estimate the reverse crossing rate and then obtain the singlet-triplet energy gap in a log-linear fit. In this work we use only the system relaxation times and obtain all five of the system constants: the singlet and triplet relaxation rates, the forward and reverse crossing rates and the singlet-triplet energy gap. These are then used to calculate the fluorescent/phosphorescent ratio and the singlet/triplet population ratio. Good fits are obtained for data from 4CzIPN and from the excimer m-MTDATA:t-Bu-PBD and the results appear to be consistent with the reported behaviors of OLEDS using these materials.

  3. A remark on ground state of boundary Izergin-Korepin model

    CERN Document Server

    Kojima, Takeo

    2011-01-01

    We study the ground state of the boundary Izergin-Korepin model. The boundary Izergin-Korepin model is defined by so-called $R$-matrix and $K$-matrix for $U_q(A_2^{(2)})$ which satisfy Yang-Baxter equation and boundary Yang-Baxter equation respectively. The ground state associated with identity $K$-matrix $K(z)=id$ was constructed in earlier study [Yang and Zhang, Nucl.Phys.B596,495-(2001)]. We construct the free field realization of the ground state associated with nontrivial diagonal $K$-matrix.

  4. Characterization of ground state entanglement by single-qubit operations and excitation energies

    CERN Document Server

    Giampaolo, S M; Illuminati, F; Verrucchi, P; Giampaolo, Salvatore M.; Illuminati, Fabrizio; Siena, Silvio De; Verrucchi, Paola

    2006-01-01

    We consider single-qubit unitary operations and study the associated excitation energies above the ground state of interacting quantum spins. We prove that there exists a unique operation such that the vanishing of the corresponding excitation energy determines a necessary and sufficient condition for the separability of the ground state. We show that the energy difference associated to factorization exhibits a monotonic behavior with the one-tangle and the entropy of entanglement, including non analiticity at quantum critical points. The single-qubit excitation energy thus provides an independent, directly observable characterization of ground state entanglement, and a simple relation connecting two universal physical resources, energy and nonlocal quantum correlations.

  5. Efficient sympathetic motional ground-state cooling of a molecular ion

    CERN Document Server

    Wan, Yong; Wolf, Fabian; Schmidt, Piet O

    2015-01-01

    Cold molecular ions are promising candidates in various fields ranging from precision spectroscopy and test of fundamental physics to ultra-cold chemistry. Control of internal and external degrees of freedom is a prerequisite for many of these applications. Motional ground state cooling represents the starting point for quantum logic-assisted internal state preparation, detection, and spectroscopy protocols. Robust and fast cooling is crucial to maximize the fraction of time available for the actual experiment. We optimize the cooling rate of ground state cooling schemes for single $^{25}\\mathrm{Mg}^{+}$ ions and sympathetic ground state cooling of $^{24}\\mathrm{MgH}^{+}$. In particular, we show that robust cooling is achieved by combining pulsed Raman sideband cooling with continuous quench cooling. Furthermore, we experimentally demonstrate an efficient strategy for ground state cooling outside the Lamb-Dicke regime.

  6. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    Science.gov (United States)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  7. The Low-Lying Electronic States of LiB

    Science.gov (United States)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The spectroscopic constants for the triplet and singlet states of LiB below about 30 000/ cm are determined using an internally contracted multireference configuration interaction approach in conjunction with [6s 5p 3d 2f] atomic natural orbital basis sets. The ground state is (sup 3)Pi as found in previous work. No excited triplet states are found to be ideal for characterizing the ground state; the (1)(sup 3)Sigma(sup -) state has a transition energy that is too small for many experimental approaches and the (2)(sup 3)Pi and (3)(sup 3)Pi states have bond lengths that are significantly longer than the ground state, resulting in transition intensities that are spread out over many vibrational levels of the ground state.

  8. Triplet-triplet energy transfer and protection mechanisms against singlet oxygen in photosynthesis

    Science.gov (United States)

    Kihara, Shigeharu

    In photosynthesis, (bacterio)chlorophylls ((B)Chl) play a crucial role in light harvesting and electron transport. (B)Chls, however, are known to be potentially dangerous due to the formation of the triplet excited state which forms the singlet oxygen (1O2*) when exposed to the sunlight. Singlet oxygen is highly reactive and all modern organisms incorporate special protective mechanisms to minimize the oxidative damage. One of the conventional photoprotective mechanisms used by photosynthetic organisms is by the nearby carotenoids quenching the excess energy and releasing it by heat. In this dissertation, two major aspects of this process are studied. First, based on experimental data and model calculations, the oxygen content in a functioning oxygenic photosynthetic oxygen cell was determined. These organisms perform water splitting and as a result significant amount of oxygen can be formed within the organism itself. It was found, that contrary to some published estimates, the excess oxygen concentration generated within an individual cell is extremely low -- 0.025 ... 0.25 microM, i.e. about 103-104 times lower than the oxygen concentration in air saturated water. Such low concentrations imply that the first oxygenic photosynthetic cells that evolved in oxygen-free atmosphere of the Earth ~2.8 billion years ago might have invented the water splitting machinery (photosystem II) without the need for special oxygen-protective mechanisms, and the latter mechanisms could have evolved in the next 500 million years during slow rise of oxygen in the atmosphere. This result also suggests that proteins within photosynthetic membranes are not exposed to significant O2 levels and thus can be studied in vitro under the usual O2 levels. Second, the fate of triplet excited states in the Fenna Matthew Olson (FMO) pigment-protein complex is studied by means of time-resolved nanosecond spectroscopy and exciton model simulations. For the first time, the properties of several

  9. Tough Decisions for Premature Triplets.

    Science.gov (United States)

    Hurst, Ashley; Vergales, Brooke D; Paget-Brown, Alix; Mercurio, Mark; Lantos, John D

    2016-02-01

    When infants are born at the borderline of viability, doctors and parents have to make tough decisions about whether to institute intensive care or provide only palliative care. Often, these decisions are made in moments of profound emotional turmoil, and parents receive different information from different health professionals. Communication can become garbled. It may be difficult to tell when and whether the patient's clinical condition has changed enough so that certain choices that had once been permissible become impermissible. In this "Ethics Rounds," we present a case of triplets born at the borderline of viability. We sought comments from the triplets' parents, the doctors and ethicist who were caring for the infants, and a bioethicist/neonatologist from another hospital.

  10. Homo- or Hetero- Triplet-Triplet Annihilation? A Case Study with Perylene-Bodipy Dyads/Triads

    KAUST Repository

    Cui, Xiaoneng

    2017-07-06

    The photophysical processes of intramolecular ‘ping-pong’ energy transfers in the iodinated reference dyad BDP-I2-Py, as well as the uniodinated dyad BDP-Py and triad BDP-2Py, were studied. For BDP-I2-Py, a forward Förster resonance energy transfer (FRET) from the perylene (Py) unit to the diiodoBDP unit (7 ps) and a backward triplet energy transfer (TTET, 3 ns) from the diiodoBDP unit to the Py unit were observed. For the BDP-Py and BDP-2Py systems, a FRET (5 ~ 8 ps) and a photo-induced electron transfer (PET) (1-1.5 ns) were observed in acetonitrile. The uniodinated dyad and triad were used as the triplet energy acceptor and emitter for a TTA upconversion with palladium tetraphenyltetrabenzoporphyrin as the triplet photosensitizer. A maximum upconversion quantum yield of 12.6 % was measured. Given that the dyad (BDP-Py) contains one BDP unit and one Py unit, while the triad (BDP-2Py) contains two Py units and one BDP unit, and based on the results from steady-state femtosecond and nanosecond transient optical spectroscopies, it is concluded that neither intramolecular homo- triplet-triplet annihilation (TTA) nor intramolecular hetero-TTA is possible during a TTA upconversion for those upconversion systems.

  11. A Rigorous Investigation on the Ground State of the Penson-Kolb Model

    Institute of Scientific and Technical Information of China (English)

    YANG Kai-Hua; TIAN Guang-Shan; HAN Ru-Qi

    2003-01-01

    By using either numerical calculations or analytical methods, such as the bosonization technique, the ground state of the Penson-Kolb model has been previously studied by several groups. Some physicists argued that, as far as the existence of superconductivity in this model is concerned, it is canonically equivalent to the negative-U Hubbard model.However, others did not agree. In the present paper, we shall investigate this model by an independent and rigorous approach. We show that the ground state of the Penson-Kolb model is nondegenerate and has a nonvanishing overlap with the ground state of the negative-U Hubbard model. Furthermore, we also show that the ground states of both the models have the same good quantum numbers and may have superconducting long-range order at the same momentum q = 0. Our results support the equivalence between these models.

  12. Bott periodicity for Z2 symmetric ground states of gapped free-fermion systems

    CERN Document Server

    Kennedy, Ricardo

    2014-01-01

    Building on the symmetry classification of disordered fermions, we give a proof of the proposal by Kitaev, and others, for a "Bott clock" topological classification of free-fermion ground states of gapped systems with symmetries. Our approach differs from previous ones in that (i) we work in the standard framework of Hermitian quantum mechanics over the complex numbers, (ii) we directly formulate a mathematical model for ground states rather than spectrally flattened Hamiltonians, and (iii) we use homotopy-theoretic tools rather than K-theory. Key to our proof is a natural transformation that squares to the standard Bott map and relates the ground state of a d-dimensional system in symmetry class s to the ground state of a (d+1)-dimensional system in symmetry class s+1. This relation gives a new vantage point on topological insulators and superconductors.

  13. Trajectory approach to the Schrödinger–Langevin equation with linear dissipation for ground states

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2015-11-15

    The Schrödinger–Langevin equation with linear dissipation is integrated by propagating an ensemble of Bohmian trajectories for the ground state of quantum systems. Substituting the wave function expressed in terms of the complex action into the Schrödinger–Langevin equation yields the complex quantum Hamilton–Jacobi equation with linear dissipation. We transform this equation into the arbitrary Lagrangian–Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation is simultaneously integrated with the trajectory guidance equation. Then, the computational method is applied to the harmonic oscillator, the double well potential, and the ground vibrational state of methyl iodide. The excellent agreement between the computational and the exact results for the ground state energies and wave functions shows that this study provides a synthetic trajectory approach to the ground state of quantum systems.

  14. Exact ground-state phase diagrams for the spin-3/2 Blume Emery Griffiths model

    Science.gov (United States)

    Canko, Osman; Deviren, Bayram; Keskin, Mustafa

    2008-05-01

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and Jnon-uniform phases. We have also constructed the exact ground-state phase diagrams of the model on the triangular lattice and found 20 and 59 fundamental phase diagrams for J>0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found.

  15. Vacuum polarization screening corrections to the ground state energy of two-electron ions

    CERN Document Server

    Artemiev, A N; Yerokhin, V A

    1997-01-01

    Vacuum polarization screening corrections to the ground state energy of two-electron ions are calculated in the range $Z=20-100$. The calculations are carried out for a finite nucleus charge distribution.

  16. Precision study of ground state capture in the 14N(p,gamma)15O reaction

    CERN Document Server

    Marta, M; Gyurky, Gy; Bemmerer, D; Broggini, C; Caciolli, A; Corvisiero, P; Costantini, H; Elekes, Z; Fülöp, Z; Gervino, G; Guglielmetti, A; Gustavino, C; Imbriani, G; Junker, M; Kunz, R; Lemut, A; Limata, B; Mazzocchi, C; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Romano, M; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A

    2008-01-01

    The rate of the hydrogen-burning carbon-nitrogen-oxygen (CNO) cycle is controlled by the slowest process, 14N(p,gamma)15O, which proceeds by capture to the ground and several excited states in 15O. Previous extrapolations for the ground state contribution disagreed by a factor 2, corresponding to 15% uncertainty in the total astrophysical S-factor. At the Laboratory for Underground Nuclear Astrophysics (LUNA) 400 kV accelerator placed deep underground in the Gran Sasso facility in Italy, a new experiment on ground state capture has been carried out at 317.8, 334.4, and 353.3 keV center-of-mass energy. Systematic corrections have been reduced considerably with respect to previous studies by using a Clover detector and by adopting a relative analysis. The previous discrepancy has been resolved, and ground state capture no longer dominates the uncertainty of the total S-factor.

  17. Ground-state entanglement in a three-spin transverse Ising model with energy current

    Institute of Scientific and Technical Information of China (English)

    Zhang Yong; Liu Dan; Long Gui-Lu

    2007-01-01

    The ground-state entanglement associated with a three-spin transverse Ising model is studied. By introducing an energy current into the system, a quantum phase transition to energy-current phase may be presented with the variation of external magnetic field; and the ground-state entanglement varies suddenly at the critical point of quantum phase transition. In our model, the introduction of energy current makes the entanglement between any two qubits become maximally robust.

  18. Expectation values of single-particle operators in the random phase approximation ground state.

    Science.gov (United States)

    Kosov, D S

    2017-02-07

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  19. Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement

    Institute of Scientific and Technical Information of China (English)

    HAO Ya-Jiang

    2011-01-01

    We investigate the ground-state density distributions of interacting one-dimensional Bose gases with anisotropic transversal confinement.Combining the exact ground state energy density of homogeneous bose gases with local density approximation,we determine the density distribution in each interacting regime for different anisotropic parameters.It is shown that the transversal anisotropic parameter changes the density distribution obviously,and the observed density profiles on each orientation exhibit a difference of a factor.

  20. Hyperfine splitting of the dressed hydrogen atom ground state in non-relativistic QED

    CERN Document Server

    Amour, L

    2010-01-01

    We consider a spin-1/2 electron and a spin-1/2 nucleus interacting with the quantized electromagnetic field in the standard model of non-relativistic QED. For a fixed total momentum sufficiently small, we study the multiplicity of the ground state of the reduced Hamiltonian. We prove that the coupling between the spins of the charged particles and the electromagnetic field splits the degeneracy of the ground state.

  1. Hyperfine splitting in non-relativistic QED: uniqueness of the dressed hydrogen atom ground state

    CERN Document Server

    Amour, Laurent

    2011-01-01

    We consider a free hydrogen atom composed of a spin-1/2 nucleus and a spin-1/2 electron in the standard model of non-relativistic QED. We study the Pauli-Fierz Hamiltonian associated with this system at a fixed total momentum. For small enough values of the fine-structure constant, we prove that the ground state is unique. This result reflects the hyperfine structure of the hydrogen atom ground state.

  2. Universal Wave Function Overlap and Universal Topological Data from Generic Gapped Ground States

    OpenAIRE

    2014-01-01

    We propose a way -- universal wave function overlap -- to extract universal topological data from generic ground states of gapped systems in any dimensions. Those extracted topological data should fully characterize the topological orders with gapped or gapless boundary. For non-chiral topological orders in 2+1D, this universal topological data consist of two matrices, $S$ and $T$, which generate a projective representation of $SL(2,\\mathbb Z)$ on the degenerate ground state Hilbert space on ...

  3. Relationship Between the Shape of Suspension Particle and Ground State Structure of Electrorheological Solid

    Institute of Scientific and Technical Information of China (English)

    WU Feng; HE Pei; CHEN Zu-Yao; JIANG Wan-Quan

    2000-01-01

    The effect of the shape of suspension particle in electrorheological (ER) fluid on the ground state structure of ER solid is discussed. The results of computation show that the ground state structure will change with the shape of suspension particle. This phenomenon is a kind of phase transitions that takes the shape factors of suspension particle as tuning parameters. The variation-value of interaction energy of the lattice structure of ER solid with the shape factors of suspension particle is sometimes noticeable.

  4. Expectation values of single-particle operators in the random phase approximation ground state

    Science.gov (United States)

    Kosov, D. S.

    2017-02-01

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.

  5. Magnetic chains on a triplet superconductor.

    Science.gov (United States)

    Sacramento, P D

    2015-11-11

    The topological state of a two-dimensional triplet superconductor may be changed by an appropriate addition of magnetic impurities. A ferromagnetic magnetic chain at the surface of a superconductor with spin-orbit coupling may eliminate the edge states of a finite system giving rise to localized zero modes at the edges of the chain. The coexistence/competition between the two types of zero modes is considered. The reduction of the system to an effective 1d system gives partial information on the topological properties but the study of the two sets of zero modes requires a two-dimensional treatment. Increasing the impurity density from a magnetic chain to magnetic islands leads to a finite Chern number. At half-filling small concentrations are enough to induce chiral modes.

  6. Patterns of the ground states in the presence of random interactions: nucleon systems

    CERN Document Server

    Zhao, Y M; Shimizu, N; Ogawa, K; Yoshinaga, N; Scholten, O

    2004-01-01

    We present our results on properties of ground states for nucleonic systems in the presence of random two-body interactions. In particular we present probability distributions for parity, seniority, spectroscopic (i.e., in the laboratory framework) quadrupole moments and $\\alpha$ clustering in the ground states. We find that the probability distribution for the parity of the ground states obtained by a two-body random ensemble simulates that of realistic nuclei: positive parity is dominant in the ground states of even-even nuclei while for odd-odd nuclei and odd-mass nuclei we obtain with almost equal probability ground states with positive and negative parity. In addition we find that for the ground states, assuming pure random interactions, low seniority is not favored, no dominance of positive values of spectroscopic quadrupole deformation, and no sign of $\\alpha$-cluster correlations, all in sharp contrast to realistic nuclei. Considering a mixture of a random and a realistic interaction, we observe a sec...

  7. Ground-State Phases of Anisotropic Mixed Diamond Chains with Spins 1 and 1/2

    Science.gov (United States)

    Hida, Kazuo

    2014-11-01

    The ground-state phases of anisotropic mixed diamond chains with spins 1 and 1/2 are investigated. Both single-site and exchange anisotropies are considered. We find the phases consisting of an array of uncorrelated spin-1 clusters separated by singlet dimers. Except in the simplest case where the cluster consists of a single S = 1 spin, this type of ground state breaks the translational symmetry spontaneously. Although the mechanism leading to this type of ground state is the same as that in the isotropic case, it is nonmagnetic or paramagnetic depending on the competition between two types of anisotropy. We also find the Néel, period-doubled Néel, Haldane, and large-D phases, where the ground state is a single spin cluster of infinite size equivalent to the spin-1 Heisenberg chain with alternating anisotropies. The ground-state phase diagrams are determined for typical sets of parameters by numerical analysis. In various limiting cases, the ground-state phase diagrams are determined analytically. The low-temperature behaviors of magnetic susceptibility and entropy are investigated to distinguish each phase by observable quantities. The relationship of the present model with the anisotropic rung-alternating ladder with spin-1/2 is also discussed.

  8. Alpha decay of {sup 184-224}Bi isotopes from the ground state and isomeric state

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P.; Priyanka, B. [Kannur University, School of Pure and Applied Physics, Kerala (India)

    2013-12-15

    The {alpha} -decay half-lives for the favored and unfavored transitions of the isotopes of Bi (Z = 83) nuclei in the region 184 {<=}A {<=} 224, from both the ground state (g.s.) and the isomeric state (i.s.) have been studied systematically within the Coulomb and proximity potential model (CPPM). The half-lives have been evaluated using the experimental Q-values. The computed half-lives are compared with the experimental data and they are in good agreement. We have modified the assault frequency and redetermined the half-lives and they show a better agreement with the experimental value. The standard deviation of the logarithm of the half-life with the former assault frequency is found to be 1.234 and with the modified assault frequency, it is found to be 0.935. This reveals that the CPPM, with the modified deformation-dependent assault frequency is more apt for the alpha-decay studies. Using our model we could also demonstrate the influence of the N = 126, neutron shell closure in both parent and daughter nuclei on the alpha-decay half-lives. (orig.)

  9. Relativistic configuration interaction calculation on the ground and excited states of iridium monoxide

    CERN Document Server

    Suo, Bingbing; Han, Huixian

    2014-01-01

    We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest states for four spin-orbit components 1/2, 3/2, 5/2, and 7/2 are calculated intensively to clarify the ground state of IrO. Our calculation suggests that the ground state is of 1/2 spin-orbit component, which is highly mixed with $^4\\Sigma^-$ and $^2\\Pi$ states in $\\Lambda-S$ notation. The two low-lying states of the 5/2 and 7/2 spin-orbit components are nearly degenerate with the ground state and locate only 234 and 260 cm$^{-1}$ above, respectively. The equilibrium bond length 1.712 \\AA \\ and harmonic vibrational frequency 903 cm$^{-1}$ of the 5/2 spin-orbit component are close to the experimental measurement of 1.724 \\AA \\ and 909 cm$^{-1}$, which suggests the 5/2 state should be the low-lying state contributed to spectra in experimental study. Moreover, the electronic states that give rise to the observed trans...

  10. Ordered ground states of metallic hydrogen and deuterium

    Science.gov (United States)

    Ashcroft, N. W.

    1981-01-01

    The physical attributes of some of the more physically distinct ordered states of metallic hydrogen and metallic deuterium at T = 0 and nearby are discussed. The likelihood of superconductivity in both is considered with respect to the usual coupling via the density fluctuations of the ions.

  11. Ground-Water Recharge in Humid Areas of the United States--A Summary of Ground-Water Resources Program Studies, 2003-2006

    Science.gov (United States)

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  12. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    Science.gov (United States)

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  13. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    Science.gov (United States)

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  14. Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model.

    Science.gov (United States)

    Dai, Yan-Wei; Cho, Sam Young; Batchelor, Murray T; Zhou, Huan-Qiang

    2014-06-01

    We numerically investigate the two-dimensional q-state quantum Potts model on the infinite square lattice by using the infinite projected entangled-pair state (iPEPS) algorithm. We show that the quantum fidelity, defined as an overlap measurement between an arbitrary reference state and the iPEPS ground state of the system, can detect q-fold degenerate ground states for the Z_{q} broken-symmetry phase. Accordingly, a multiple bifurcation of the quantum ground-state fidelity is shown to occur as the transverse magnetic field varies from the symmetry phase to the broken-symmetry phase, which means that a multiple-bifurcation point corresponds to a critical point. A (dis)continuous behavior of quantum fidelity at phase transition points characterizes a (dis)continuous phase transition. Similar to the characteristic behavior of the quantum fidelity, the magnetizations, as order parameters, obtained from the degenerate ground states exhibit multiple bifurcation at critical points. Each order parameter is also explicitly demonstrated to transform under the Z_{q} subgroup of the symmetry group of the Hamiltonian. We find that the q-state quantum Potts model on the square lattice undergoes a discontinuous (first-order) phase transition for q=3 and q=4 and a continuous phase transition for q=2 (the two-dimensional quantum transverse Ising model).

  15. Methods and Indicators for Assessment of Regional Ground-Water Conditions in the Southwestern United States

    Science.gov (United States)

    Tillman, Fred D; Leake, Stanley A.; Flynn, Marilyn E.; Cordova, Jeffrey T.; Schonauer, Kurt T.; Dickinson, Jesse E.

    2008-01-01

    Monitoring the status and trends in the availability of the Nation's ground-water supplies is important to scientists, planners, water managers, and the general public. This is especially true in the semiarid to arid southwestern United States where rapid population growth and limited surface-water resources have led to increased use of ground-water supplies and water-level declines of several hundred feet in many aquifers. Individual well observations may only represent aquifer conditions in a limited area, and wells may be screened over single or multiple aquifers, further complicating single-well interpretations. Additionally, changes in ground-water conditions may involve time scales ranging from days to many decades, depending on the timing of recharge, soil and aquifer properties, and depth to the water table. The lack of an easily identifiable ground-water property indicative of current conditions, combined with differing time scales of water-level changes, makes the presentation of ground-water conditions a difficult task, particularly on a regional basis. One approach is to spatially present several indicators of ground-water conditions that address different time scales and attributes of the aquifer systems. This report describes several methods and indicators for presenting differing aspects of ground-water conditions using water-level observations in existing data-sets. The indicators of ground-water conditions developed in this study include areas experiencing water-level decline and water-level rise, recent trends in ground-water levels, and current depth to ground water. The computer programs written to create these indicators of ground-water conditions and display them in an interactive geographic information systems (GIS) format are explained and results illustrated through analyses of ground-water conditions for selected alluvial basins in the Lower Colorado River Basin in Arizona.

  16. Triplet Focusing for Recirculating Linear Muon Accelerators

    CERN Document Server

    Keil, Eberhard

    2001-01-01

    Focusing by symmetrical triplets is studied for the linear accelerator lattices in recirculating muon accelerators with several passes where the ratio of final to initial muon energy is about four. Triplet and FODO lattices are compared. At similar acceptance, triplet lattices have straight sections for the RF cavities that are about twice as long as in FODO lat-tices. For the same energy gain, the total lengths of the linear accelerators with triplet lattices are about the same as of those with FODO lattices.

  17. Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians

    Science.gov (United States)

    Mandrà, Salvatore; Zhu, Zheng; Katzgraber, Helmut G.

    2017-02-01

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated with a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009), 10.1088/1367-2630/11/7/073021]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  18. Ground State Transitions in Vertically Coupled Four-Layer Single Electron Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    WANGAn-Mei; XIEWen-Fang

    2005-01-01

    We study a four-electron system in a vertically coupled four-layer quantum dot under a magnetic field by the exact diagonalization of the Hamiltonian matr/x. We find that discontinuous ground-state energy transitions are induced by an external magnetic field. We find that dot-dot distance and electron-electron interaction strongly affect the low-lying states of the coupled quantum dots. The inter-dot correlation leads to some sequences of possible disappearances of ground state transitions, which are present for uncoupled dots.

  19. Ground State Transitions in Vertically Coupled Four-Layer Single Electron Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    WANG An-Mei; XIE Wen-Fang

    2005-01-01

    We study a four-electron system in a vertically coupled four-layer quantum dot under a magnetic field by the exact diagonalization of the Hamiltonian matrix. We find that discontinuous ground-state energy transitions are induced by an external magnetic field. We find that dot-dot distance and electron-electron interaction strongly affect the low-lying states of the coupled quantum dots. The inter-dot correlation leads to some sequences of possible disappearances of ground state transitions, which are present for uncoupled dots.

  20. Vacuum polarization in the ground states of bi-muonic helium atoms

    Science.gov (United States)

    Frolov, Alexei M.

    2004-11-01

    The energies and bound-state properties of the bi-muonic helium-3 and helium-4 atoms in their ground 11(S = 0)-states are determined to very high accuracy. It is shown that the lowest order QED (and relativistic) effects play a significantly larger role in the case of bi-muonic 3Heμ2 and 4Heμ2 atoms than in the two-electron He-atoms. In particular, the effect of vacuum polarization and corresponding energy shifts for the ground 11(S = 0)-states in the bi-muonic helium-3 and helium-4 atoms have been evaluated.

  1. Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers: Reducing the Singlet–Triplet Energy Gap

    KAUST Repository

    Freeman, David M. E.

    2017-06-09

    The presence of energetically low-lying triplet states is a hallmark of organic semiconductors. Even though they present a wealth of interesting photophysical properties, these optically dark states significantly limit optoelectronic device performance. Recent advances in emissive charge-transfer molecules have pioneered routes to reduce the energy gap between triplets and

  2. Spin-Orbit Coupling Controlled J =3 /2 Electronic Ground State in 5 d3 Oxides

    Science.gov (United States)

    Taylor, A. E.; Calder, S.; Morrow, R.; Feng, H. L.; Upton, M. H.; Lumsden, M. D.; Yamaura, K.; Woodward, P. M.; Christianson, A. D.

    2017-05-01

    Entanglement of spin and orbital degrees of freedom drives the formation of novel quantum and topological physical states. Here we report resonant inelastic x-ray scattering measurements of the transition metal oxides Ca3 LiOsO6 and Ba2 YOsO6 , which reveals a dramatic spitting of the t2 g manifold. We invoke an intermediate coupling approach that incorporates both spin-orbit coupling and electron-electron interactions on an even footing and reveal that the ground state of 5 d3-based compounds, which has remained elusive in previously applied models, is a novel spin-orbit entangled J =3 /2 electronic ground state. This work reveals the hidden diversity of spin-orbit controlled ground states in 5 d systems and introduces a new arena in the search for spin-orbit controlled phases of matter.

  3. Exact many-electron ground states on the diamond Hubbard chain

    Science.gov (United States)

    Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter

    2008-03-01

    Exact ground states of interacting electrons on the diamond Hubbard chain in a magnetic field are constructed which exhibit a wide range of properties such as flat-band ferromagnetism, correlation induced metallic, half-metallic, or insulating behavior [1]. The properties of these ground states can be tuned by changing the magnetic flux, local potentials, or electron density.The results show that the studied simple one-dimensional structure displays remarkably complex physical properties. The virtue of tuning different ground states through external parameters points to new possibilities for the design of electronic devices which can switch between insulating or conducting and nonmagnetic or (fully or partially spin polarized) ferromagnetic states, open new routes for the design of spin-valve devices and gate induced ferromagnetism. [1] Z. Gulacsi, A. Kampf, D. Vollhardt, Phys. Rev. Lett. 99, 026404(2007).

  4. Pyridine-2,6-diyl dinitroxides as room-temperature triplet ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hinako; Tonegawa, Asato; Ishida, Takayuki, E-mail: takayuki.ishida@uec.ac.jp [Department of Engineering Science, The University of Electro-Communications, Tokyo (Japan)

    2016-02-01

    We have proposed tert-butyl 2-pyridyl nitroxide radicals as a promising paramagnetic chelating ligand, where the direct radical-metal bond leads to strong magnetic interaction. We successfully synthesized and isolated PyBN derivatives (pyridine-2,6-diyl bis(tert-butyl nitroxides)). The molecular and crystal structures of the target biradicals, MesPyBN, AntPyBN and tBuOPyBN were determined from the X-ray crystal structure analysis, which possess mesityl, 9-anthryl and tert-butoxy groups at the 5-position of the pyridine ring, respectively. The ground triplet state was characterized by means of SQUID susceptometry for each compound. On heating, the χ{sub m}T values of all the PyBN derivatives increased and reached a plateau at ca. 1.0 cm{sup 3} K mol{sup −1} at 300 K. It implies that biradicals behaved as triplet molecules even at room temperature, or 2J/k{sub B} >> 300 K. From the decay monitored in solution electron-spin resonance spectroscopy, MesPyBN was the most persistent, while tBuOPyBN was the most reactive, of the three.

  5. Theoretical study of the triplet excited state of PtPOP and the exciplexes M-PtPOP (M = Tl, Ag) in solution and comparison with ultrafast X-ray scattering results

    DEFF Research Database (Denmark)

    Kong, Qingyu; Kjær, Kasper S.; Haldrup, Martin Kristoffer;

    2012-01-01

    The [Pt2(H2P2O5)4]4− ions in the ground and excited states and the excited-state complexes M-[Pt2(H2P2O5)4]3− and M2-[Pt2(H2P2O5)4]2− (M = Ag, Tl) were studied in solution with various density functional theory (DFT) functionals from Gaussian 09 and Amsterdam Density Functional (ADF) programs. Ca...

  6. Ground-state energy of the q-state Potts model: The minimum modularity.

    Science.gov (United States)

    Lee, J S; Hwang, S; Yeo, J; Kim, D; Kahng, B

    2014-11-01

    A wide range of interacting systems can be described by complex networks. A common feature of such networks is that they consist of several communities or modules, the degree of which may quantified as the modularity. However, even a random uncorrelated network, which has no obvious modular structure, has a finite modularity due to the quenched disorder. For this reason, the modularity of a given network is meaningful only when it is compared with that of a randomized network with the same degree distribution. In this context, it is important to calculate the modularity of a random uncorrelated network with an arbitrary degree distribution. The modularity of a random network has been calculated [Reichardt and Bornholdt, Phys. Rev. E 76, 015102 (2007)PLEEE81539-375510.1103/PhysRevE.76.015102]; however, this was limited to the case whereby the network was assumed to have only two communities, and it is evident that the modularity should be calculated in general with q(≥2) communities. Here we calculate the modularity for q communities by evaluating the ground-state energy of the q-state Potts Hamiltonian, based on replica symmetric solutions assuming that the mean degree is large. We found that the modularity is proportional to 〈sqrt[k]〉/〈k〉 regardless of q and that only the coefficient depends on q. In particular, when the degree distribution follows a power law, the modularity is proportional to 〈k〉^{-1/2}. Our analytical results are confirmed by comparison with numerical simulations. Therefore, our results can be used as reference values for real-world networks.

  7. Radiative lifetimes of spin forbidden a1Δ → X3Σ- and spin allowed A3Π → X3Σ- transitions and complete basis set extrapolated ab initio potential energy curves for the ground and excited states of CH-.

    Science.gov (United States)

    Srivastava, Saurabh; Sathyamurthy, N

    2012-12-01

    The spin forbidden transition a(1)Δ → X(3)Σ(-) in CH(-) has been studied using the Breit-Pauli Hamiltonian for a large number of geometries. This transition acquires intensity through spin-orbit coupling with singlet and triplet Π states. The transition moment matrix including more than one singlet and triplet Π states was calculated at the multi-reference configuration interaction/aug-cc-pV6Z level of theory. The computed radiative lifetime of 5.63 s is in good agreement with the experimental (5.9 s) and other theoretical (6.14 s) results. Transition moment values of the spin allowed A(3)Π → X(3)Σ(-) transition have also been calculated at the same level of theory. Calculations show that the corresponding radiative lifetime is considerably low, 2.4 × 10(-7) s. Complete basis set extrapolated potential energy curves for the ground state of CH and the ground state and six low lying excited states (a(1)Δ, b(1)Σ(+), two (3)Π, and two (1)Π) of CH(-) are reported. These curves are then used to calculate the vibrational bound states for CH and CH(-). The computed electron affinity of CH supports the electron affinity bounds reported by Okumura et al. [J. Chem. Phys. 85, 1971 (1986)].

  8. Democratic Republic of Congo A Fertile Ground for Instability in the Great Lakes Region States

    Science.gov (United States)

    2017-06-09

    DEMOCRATIC REPUBLIC OF CONGO-A FERTILE GROUND FOR INSTABILITY IN THE GREAT LAKES REGION STATES A thesis presented to the Faculty of...From - To) AUG 2016 – JUNE 2017 4. TITLE AND SUBTITLE Democratic Republic of Congo-A Fertile Ground for Instability in the Great Lakes Region ...caused instability and chaos in the eastern provinces of the Congo, known as the Great Lakes Region . The DRC holds a strategic geographical position

  9. Chiral extrapolations and strangeness in the baryon ground states

    CERN Document Server

    Lutz, Matthias F M

    2013-01-01

    We review the quark-mass dependence of the baryon octet and decuplet masses as obtained from recent lattice simulations of the BMW, PACS-CS, LHPC, HSC and QCDSF-UKQCD groups. Our discussion relies on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. In our analysis the physical masses are reproduced exactly by means of a suitable set of linear constraints. A quantitative and simultaneous description of all lattice results is achieved in terms of a six parameter fit, where the symmetry conserving counter term that are relevant at N$^3$LO are not yet being used. For pion masses larger than 300 MeV there appears to be an approximate linear pion-mass dependence of all octet and decuplet baryon masses. We discuss the pion- and strangeness sigma terms of the baryon octet states.

  10. Distinct α subunit variations of the hypothalamic GABAA receptor triplets (αβγ are linked to hibernating state in hamsters

    Directory of Open Access Journals (Sweden)

    Alò Raffaella

    2010-09-01

    Full Text Available Abstract Background The structural arrangement of the γ-aminobutyric acid type A receptor (GABAAR is known to be crucial for the maintenance of cerebral-dependent homeostatic mechanisms during the promotion of highly adaptive neurophysiological events of the permissive hibernating rodent, i.e the Syrian golden hamster. In this study, in vitro quantitative autoradiography and in situ hybridization were assessed in major hypothalamic nuclei. Reverse Transcription Reaction-Polymerase chain reaction (RT-PCR tests were performed for specific GABAAR receptor subunit gene primers synthases of non-hibernating (NHIB and hibernating (HIB hamsters. Attempts were made to identify the type of αβγ subunit combinations operating during the switching ON/OFF of neuronal activities in some hypothalamic nuclei of hibernators. Results Both autoradiography and molecular analysis supplied distinct expression patterns of all α subunits considered as shown by a strong (p 1 ratio (over total α subunits considered in the present study in the medial preoptic area (MPOA and arcuate nucleus (Arc of NHIBs with respect to HIBs. At the same time α2 subunit levels proved to be typical of periventricular nucleus (Pe and Arc of HIB, while strong α4 expression levels were detected during awakening state in the key circadian hypothalamic station, i.e. the suprachiasmatic nucleus (Sch; 60%. Regarding the other two subunits (β and γ, elevated β3 and γ3 mRNAs levels mostly characterized MPOA of HIBs, while prevalently elevated expression concentrations of the same subunits were also typical of Sch, even though this time during the awakening state. In the case of Arc, notably elevated levels were obtained for β3 and γ2 during hibernating conditions. Conclusion We conclude that different αβγ subunits are operating as major elements either at the onset of torpor or during induction of the arousal state in the Syrian golden hamster. The identification of a brain regional

  11. Solvent effects on the absorption and fluorescence spectra of quinine sulphate: Estimation of ground and excited-state dipole moments

    Science.gov (United States)

    Joshi, Sunita; Pant, Debi D.

    2012-06-01

    Ground and excited state dipole moments of probe quinine sulphate (QS) was obtained using Solvatochromic shift method. Higher dipole moment is observed for excited state as compared to the ground state which is attributed to the higher polarity of excited state.

  12. Synthesis, measurements, and theoretical analysis of carbazole derivatives with high-triplet-energy

    Energy Technology Data Exchange (ETDEWEB)

    Li Jianli; Mi Xiaoyun; Wan Yuchun [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Si Zhenjun, E-mail: szj@cust.edu.cn [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Praha 6 16610 (Czech Republic); Sun Haiying; Duan Qian [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); He Xingquan [School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Yan Dong; Wan Sha [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China)

    2012-05-15

    In order to obtain the blue light-emitting organic materials with high triplet state energy, two 3,5-diphenyl-4H-1,2,4-triazole (Tz) containing carbazole (Cz) derivatives of 9-(4-(3,5-diphenyl-4H-1,2,4-triazol-4-yl)phenyl)-9H-carbazole (TzCz1) and 3,6-di-tert-butyl-9-(4-(3,5-diphenyl-4H-1,2,4-triazol-4-yl)phenyl) -9H-carbazole (TzCz2) are synthesized using Cz acting as the starting material, as well as characterized by the {sup 1}H NMR spectra, ultraviolet-visible (UV-vis) absorption spectra, and the IR absorption spectra. The luminescence quantum yields (LQYs) of TzCz1 and TzCz2 are measured in CH{sub 2}Cl{sub 2} solution to be 32.1% and 47.5%, respectively. The electrochemical analysis and the photophysical measurements suggest that the triplet energy levels and the energy gaps of the highest-occupied orbital and the lowest-unoccupied orbital are 2.83 eV and 3.59 eV for TzCz1, and 2.80 eV and 3.43 eV for TzCz2. At last, the theoretical analyses of their ground state geometries and the simulated UV-vis absorption spectra are carried out at B3LYP1/6-31G Low-Asterisk level. The studies mentioned above indicate that both TzCz1 and TzCz2 are suitable for the host materials of blue light-emitting diodes. - Highlights: Black-Right-Pointing-Pointer Synthesis of two blue light-emitting Carbazole derivatives. Black-Right-Pointing-Pointer Photophysical and electrochemical properties are systematically studied. Black-Right-Pointing-Pointer Theoretical analysis of geometry of the ground states and the UV-vis absorption are performed with Firefly package. Black-Right-Pointing-Pointer The triplet energy levels are measured to be ca. 2.83 eV.

  13. Structural Distortion Stabilizing the Antiferromagnetic and Semiconducting Ground State of BaMn2As2

    Directory of Open Access Journals (Sweden)

    Ekkehard Krüger

    2016-09-01

    Full Text Available We report evidence that the experimentally found antiferromagnetic structure as well as the semiconducting ground state of BaMn 2 As 2 are caused by optimally-localized Wannier states of special symmetry existing at the Fermi level of BaMn 2 As 2 . In addition, we find that a (small tetragonal distortion of the crystal is required to stabilize the antiferromagnetic semiconducting state. To our knowledge, this distortion has not yet been established experimentally.

  14. Short-range photoassociation from the inner wall of the lowest triplet potential of $^{85}$Rb$_2$

    CERN Document Server

    Carollo, R A; Eyler, E E; Gould, P L; Stwalley, W C

    2016-01-01

    Ultracold photoassociation is typically performed at large internuclear separations, where the scattering wavefunction amplitude is large and Franck-Condon overlap is maximized. Recently, work by this group and others on alkali-metal diatomics has shown that photoassociation can efficiently form molecules at short internuclear distance in both homonuclear and heteronuclear dimers. We propose that this short-range photoassociation is due to excitation near the wavefunction amplitude maximum at the inner wall of the lowest triplet potential. We show that Franck-Condon factors from the highest-energy bound state can almost precisely reproduce Franck-Condon factors from a low-energy scattering state, and that both calculations match experimental data from the near-zero positive-energy scattering state with reasonable accuracy. We also show that the corresponding photoassociation from the inner wall of the ground-state singlet potential at much shorter internuclear distance is weaker and undetectable under our exp...

  15. Van der Waals potential and vibrational energy levels of the ground state radon dimer

    Science.gov (United States)

    Sheng, Xiaowei; Qian, Shifeng; Hu, Fengfei

    2017-08-01

    In the present paper, the ground state van der Waals potential of the Radon dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the two dispersion coefficients C6 and C8 are estimated from the well determined dispersion coefficients C6 and C8 of Xe2. C10 is estimated by using the approximation equation that C6C10 / C82 has an average value of 1.221 for all the rare gas dimers. With these estimated dispersion coefficients and the well determined well depth De and Re the Born-Mayer parameters A and b are derived. Then the vibrational energy levels of the ground state radon dimer are calculated. 40 vibrational energy levels are observed in the ground state of Rn2 dimer. The last vibrational energy level is bound by only 0.0012 cm-1.

  16. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet.

    Science.gov (United States)

    Fu, Mingxuan; Imai, Takashi; Han, Tian-Heng; Lee, Young S

    2015-11-06

    The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χ(kagome), deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χ(kagome) that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.

  17. Ground State Properties of the 1/2 Flux Harper Hamiltonian

    Science.gov (United States)

    Kennedy, Colin; Burton, William Cody; Chung, Woo Chang; Ketterle, Wolfgang

    2015-05-01

    The Harper Hamiltonian describes the motion of charged particles in an applied magnetic field - the spectrum of which exhibits the famed Hofstadter's butterfly. Recent advances in driven optical lattices have made great strides in simulating nontrivial Hamiltonians, such as the Harper model, in the time-averaged sense. We report on the realization of the ground state of bosons in the Harper Hamiltonian for 1/2 flux per plaquette utilizing a tilted two-dimensional lattice with laser assisted tunneling. We detail progress in studying various ground state properties of the 1/2 flux Harper Hamiltonian including ground state degeneracies, gauge-dependent observables, effects of micromotion, adiabatic loading schemes, and emergence and decay of coherence. Additionally, we describe prospects for flux rectification using a period-tripled superlattice and generalizations to three dimensions. MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology.

  18. Tree based machine learning framework for predicting ground state energies of molecules

    Science.gov (United States)

    Himmetoglu, Burak

    2016-10-01

    We present an application of the boosted regression tree algorithm for predicting ground state energies of molecules made up of C, H, N, O, P, and S (CHNOPS). The PubChem chemical compound database has been incorporated to construct a dataset of 16 242 molecules, whose electronic ground state energies have been computed using density functional theory. This dataset is used to train the boosted regression tree algorithm, which allows a computationally efficient and accurate prediction of molecular ground state energies. Predictions from boosted regression trees are compared with neural network regression, a widely used method in the literature, and shown to be more accurate with significantly reduced computational cost. The performance of the regression model trained using the CHNOPS set is also tested on a set of distinct molecules that contain additional Cl and Si atoms. It is shown that the learning algorithms lead to a rich and diverse possibility of applications in molecular discovery and materials informatics.

  19. Tree based machine learning framework for predicting ground state energies of molecules

    CERN Document Server

    Himmetoglu, Burak

    2016-01-01

    We present an application of the boosted regression tree algorithm for predicting ground state energies of molecules made up of C, H, N, O, P, and S (CHNOPS). The PubChem chemical compound database has been incorporated to construct a dataset of 16,242 molecules, whose electronic ground state energies have been computed using density functional theory. This dataset is used to train the boosted regression tree algorithm, which allows a computationally efficient and accurate prediction of molecular ground state energies. Predictions from boosted regression trees are compared with neural network regression, a widely used method in the literature, and shown to be more accurate with significantly reduced computational cost. The performance of the regression model trained using the CHNOPS set is also tested on a set of distinct molecules that contain additional Cl and Si atoms. It is shown that the learning algorithms lead to a rich and diverse possibility of applications in molecular discovery and materials inform...

  20. The near elimination of triplets in IVF.

    Science.gov (United States)

    Gerris, Jan

    2007-01-01

    In Antwerp, single embryo transfers (SET) have increased, and this change in policy has seen the incidence of singletons rise from 70 to 90%, twins drop from 25 to 10%, and triplets drop from 1-2% to none at all. At a national and regional level, changes have been much more dramatic as a result of a change in the law in 2003 mandating SET. Data show a huge increase in the number of treatment cycles and a dramatic rise in SET. Rates of twins and triplets have dropped considerably. European data indicate wide differences in the incidence of triplets between countries, varying between 0% (e.g.Slovenia, Iceland, Lithuania) and 4.4% (Hungary), but almost nothing is known about the true incidence of fetal reduction. US data indicate some decrease in triplets during recent years, but certainly nowhere near elimination. These data suggest that in some countries, IVF triplets have almost been eliminated, but the problem is masked by significant fetal reductions. Where SET is not widely used, triplets are still frequent. A correlation appears to exist between the percentage of SET cycles and the incidence of triplets. It is suggested that the solution to almost totally eliminate triplets after IVF is single embryo transfer.

  1. Distribution of Triplet Separators in Bacterial Genomes

    Institute of Scientific and Technical Information of China (English)

    HU Rui; ZHENG Wei-Mou

    2001-01-01

    Distributions of triplet separator lengths for two bacterial complete genomes are analyzed. The theoretical distributions for the independent random sequence and the first-order Markov chain are derived and compared with the distributions of the bacterial genomes. A prominent double band structure, which does not exist in the theoretical distributions, is observed in the bacterial distributions for most triplets.``

  2. Ground-state Properties of Inhomogeneous Graphene Sheets

    Science.gov (United States)

    Polini, Marco

    2009-03-01

    .S. Novoselov, and A.K. Geim, arXiv:0709.1163v2 (2007).[0pt] [2] M. Polini, A. Tomadin, R. Asgari, and A.H. MacDonald, Phys. Rev. B 78, 115426 (2008).[0pt] [3] Y. Barlas, T. Pereg-Barnea, M. Polini, R. Asgari, and A.H. MacDonald, Phys. Rev. Lett. 98, 236601 (2007); M. Polini, R. Asgari, Y. Barlas, T. Pereg-Barnea, and A.H. MacDonald, Solid State Commun. 143, 58 (2007). [0pt] [4] E.H. Hwang, B.Y.-K. Hu, and S. Das Sarma, Phys. Rev. Lett. 99, 226801 (2007).[0pt] [5] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J.H. Smet, K. von Klitzing, and A. Yacoby, Nature Phys. 4, 144 (2008).[0pt] [6] V.W. Brar, Y. Zhang, C. Girit, F. Wang, A. Zettl, and M. Crommie, Bull. Am. Phys. Soc. 53 (2), 443 (2008).

  3. Fourier-transform spectroscopy of Sr2 and revised ground-state potential

    Science.gov (United States)

    Stein, A.; Knöckel, H.; Tiemann, E.

    2008-10-01

    Precise potentials for the ground-state XΣg+1 and the minimum region of the excited state 2Σu+1 of Sr2 are derived by high-resolution Fourier-transform spectroscopy of fluorescence progressions from single-frequency laser excitation of Sr2 produced in a heat pipe at 950°C . A change of the rotational assignment by four units compared to an earlier work [G. Gerber , J. Chem. Phys. 81, 1538 (1984)] is needed for a consistent description leading to a significant shift of the potentials toward longer interatomic distances. The huge amount of ground-state data derived for the three different isotopomers Sr288 , Sr86Sr88 , and Sr87Sr88 (almost 60% of all excisting bound rovibrational ground-state levels for the isotopomer Sr288 ) fixes this assignment beyond a doubt. The presented ground-state potential is derived from the observed transitions for the radial region from 4to11Å ( 9cm-1 below the asymptote) and is extended to the long-range region by the use of theoretical dispersion coefficients together with already available photoassociation data. New estimations of the scattering lengths for the complete set of isotopic combinations are derived by mass scaling with the derived potential. The data set for the excited state 2Σu+1 was sufficient to derive a potential energy curve around the minimum.

  4. Ground-State Transition in a Two-Dimensional Frenkel-Kontorova Model

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-Ping; ZHENG Zhi-Gang

    2011-01-01

    The ground state of a generalized Frenkel-Kontorova model with a transversaJ degree of freedom is studied. When the coupling strength, K, and the frequency of & single-Atom vibration in the transversaJ direction, ωou are increased, the ground state of the model undergoes a transition from a two-dimensional configuration to a one-dimensional one. This transition can manifest in different ways. Furthermore, we find that the prerequisite of a two-dimensionai ground state is θ≠1//q.%The ground state of a generalized Frenkel-Kontorova model with a transversal degree of freedom is studied.When the coupling strength,K,and the frequency of a single-atom vibration in the transversal direction,ωoy,are increased,the ground state of the model undergoes a transition from a two-dimensional configuration to a one-dimensional one.This transition can manifest in different ways.Furthermore,we find that the prerequisite of a two-dimensional ground state is θ ≠ 1/q.In recent years,the Frenkel-Kontorova (FK) model has been applied to a variety of physical systems,such as adsorbed monolayers,[1,2] Josephsonjunction arrays,[3-5] tribology[6-8] and charge-density waves.[9,10] Experimental and large-scale simulation data at the nanoscale have become available,and more complicated FK-type models have been investigated using simulations of molecular dynamics.[11

  5. Definition and determination of the triplet-triplet energy transfer reaction coordinate

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Felipe; Marazzi, Marco; Castaño, Obis; Frutos, Luis Manuel, E-mail: luisma.frutos@uah.es [Departamento de Química Física, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Acuña, A. Ulises [Instituto de Química Física “Rocasolano”, C.S.I.C., Serrano 119, 28006 Madrid (Spain)

    2014-01-21

    A definition of the triplet-triplet energy transfer reaction coordinate within the very weak electronic coupling limit is proposed, and a novel theoretical formalism is developed for its quantitative determination in terms of internal coordinates The present formalism permits (i) the separation of donor and acceptor contributions to the reaction coordinate, (ii) the identification of the intrinsic role of donor and acceptor in the triplet energy transfer process, and (iii) the quantification of the effect of every internal coordinate on the transfer process. This formalism is general and can be applied to classical as well as to nonvertical triplet energy transfer processes. The utility of the novel formalism is demonstrated here by its application to the paradigm of nonvertical triplet-triplet energy transfer involving cis-stilbene as acceptor molecule. In this way the effect of each internal molecular coordinate in promoting the transfer rate, from triplet donors in the low and high-energy limit, could be analyzed in detail.

  6. Kinetics and dynamics of the C((3)P) + H2O reaction on a full-dimensional accurate triplet state potential energy surface.

    Science.gov (United States)

    Li, Jun; Xie, Changjian; Guo, Hua

    2017-08-30

    A full dimensional accurate potential energy surface (PES) for the C((3)P) and H2O reaction is developed based on ∼34 000 data points calculated at the level of the explicitly correlated unrestricted coupled cluster method with single, double, and perturbative triple excitations with the augmented correlation-consistent polarized triple zeta basis set (CCSD(T)-F12a/AVTZ). The PES is invariant with respect to the permutation of the two hydrogen atoms and the total root mean square error (RMSE) of the fit is only 0.31 kcal mol(-1). The PES features two barriers in the entrance channel and several potential minima, as well as multiple product channels. The rate coefficients of this reaction calculated using a transition-state theory and quasi-classical trajectory (QCT) method are small near room temperature, consistent with experiments. The reaction dynamics is also investigated with QCT on the new PES, which found that the reactivity is constrained by the entrance barriers and the final product branching is not statistical.

  7. v-representability and density functional theory. [for nonrelativistic electrons in nondegenerate ground state

    Science.gov (United States)

    Kohn, W.

    1983-01-01

    It is shown that if n(r) is the discrete density on a lattice (enclosed in a finite box) associated with a nondegenerate ground state in an external potential v(r) (i.e., is 'v-representable'), then the density n(r) + mu(r), with m(r) arbitrary (apart from trivial constraints) and mu small enough, is also associated with a nondegenerate ground state in an external potential v'(r) near v(r); i.e., n(r) + m(r) is also v-representable. Implications for the Hohenberg-Kohn variational principle and the Kohn-Sham equations are discussed.

  8. First-principles prediction of a ground state crystal structure of magnesium borohydride.

    Science.gov (United States)

    Ozolins, V; Majzoub, E H; Wolverton, C

    2008-04-04

    Mg(BH(4))(2) contains a large amount of hydrogen by weight and by volume, but its promise as a candidate for hydrogen storage is dependent on the currently unknown thermodynamics of H2 release. Using first-principles density-functional theory calculations and a newly developed prototype electrostatic ground state search strategy, we predict a new T=0 K ground state of Mg(BH(4))(2) with I4[over ]m2 symmetry, which is 5 kJ/mol lower in energy than the recently proposed P6(1) structure. The calculated thermodynamics of H(2) release are within the range required for reversible storage.

  9. Ground state atomic oxygen in high-power impulse magnetron sputtering: a quantitative study

    Science.gov (United States)

    Britun, Nikolay; Belosludtsev, Alexandr; Silva, Tiago; Snyders, Rony

    2017-02-01

    The ground state density of oxygen atoms in reactive high-power impulse magnetron sputtering discharges has been studied quantitatively. Both time-resolved and space-resolved measurements were conducted. The measurements were performed using two-photon absorption laser-induced fluorescence (TALIF), and calibrated by optical emission actinometry with multiple Ar emission lines. The results clarify the dynamics of the O ground state atoms in the discharge afterglow significantly, including their propagation and fast decay after the plasma pulse, as well as the influence of gas pressure, O2 admixture, etc.

  10. Preparing ground States of quantum many-body systems on a quantum computer.

    Science.gov (United States)

    Poulin, David; Wocjan, Pawel

    2009-04-03

    Preparing the ground state of a system of interacting classical particles is an NP-hard problem. Thus, there is in general no better algorithm to solve this problem than exhaustively going through all N configurations of the system to determine the one with lowest energy, requiring a running time proportional to N. A quantum computer, if it could be built, could solve this problem in time sqrt[N]. Here, we present a powerful extension of this result to the case of interacting quantum particles, demonstrating that a quantum computer can prepare the ground state of a quantum system as efficiently as it does for classical systems.

  11. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Science.gov (United States)

    Borges, L. H. C.; Barone, F. A.

    2016-02-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  12. Ub-library of Atomic Masses and Nuclear Ground States Deformations (CENPL.AMD)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The atomic mass is one of basic data of a nuclear. There are the atomic masses in all nuclear reaction model formulas and motion equations. For any reaction calculations atomic masses are basic data for getting binding energies or Q-values. In some applications, it is important also to have atomic masses even for exotic nuclei quite far from the valley of stability. In addition, nuclear ground state deformations and abundance values are also requisite in the nuclear data calculations. For this purpose, A data file on atomic masses and nuclear ground states deformations (AMD) were constructed, which

  13. Expectation values of single-particle operators in the random phase approximation ground state

    CERN Document Server

    Kosov, Daniel S

    2016-01-01

    We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments. It is shown that Hartree-Fock based random phase approximation provides a systematic improvement of molecular dipole moment values in comparison to M{\\o}ller-Plesset second order perturbation theory and coupled cluster method for a considered set of molecules.

  14. Stability of the electroweak ground state in the Standard Model and its extensions

    Directory of Open Access Journals (Sweden)

    Luca Di Luzio

    2016-02-01

    Full Text Available We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  15. Traces of Lorentz symmetry breaking in a Hydrogen atom at ground state

    CERN Document Server

    Borges, Luiz Henrique de Campos

    2016-01-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the Hydrogen atom are investigated. It is used standard Rayleigh-Schr\\"odinger perturbation theory in order to obtain the corrections to the the ground state energy and wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in reference Eur. Phys. J. C {\\bf 74}, 2937 (2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  16. Boundedness and convergence of perturbed corrections for helium-like ions in ground states

    Institute of Scientific and Technical Information of China (English)

    Zhao Yun-Hui; Hai Wen-Hua; Zhao Cheng-Lin; Luo Xiao-Bing

    2008-01-01

    Applying the improved Rayleigh-Schr(o)dinger perturbation theory based on an integral equation to helium-like ions in ground states and treating electron correlations as perturbations,we obtain the second-order corrections to wavefunctions consisting of a few terms and the third-order corrections to energicity.It is demonstrated that the corrected wavefunctions are bounded and quadratically integrable,and the corresponding perturbation series is convergent.The results clear off the previous distrust for the convergence in the quantum perturbation theory and show a reciprocal development on the quantum perturbation problem of the ground state helium-like systems.

  17. Singlet Ground State Magnetism: III Magnetic Excitons in Antiferromagnetic TbP

    DEFF Research Database (Denmark)

    Knorr, K.; Loidl, A.; Kjems, Jørgen

    1981-01-01

    The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined.......The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined....

  18. Ground State Properties of Superheavy Nuclei in Macroscopic-Microscopic Model

    Institute of Scientific and Technical Information of China (English)

    ZHI Qi-Jun; REN Zhong-Zhou; ZHANG Xiao-Ping; ZHENG Qiang

    2008-01-01

    The ground state properties of superheavy nuclei are systematically calculated by the macroscopic-microscopic (MM) model with the Nilsson potential The calculations well produced the ground state binding energies,a-decay energies,and half lives of superheavy nuclei.The calculated results are systematically compared with available experimental data.The calculated results are also compared with theoretical results from other MM models and from relativistic mean-field model.The calculations and comparisons show that the MM model is reliable in superheavy region and that the MM model results are not very sensitive to the choice of microscopic single-particle potential.

  19. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil)

    2016-02-15

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)

  20. Structure and analytical potential energy function for the ground state of the BCx (x=0, -1)

    Institute of Scientific and Technical Information of China (English)

    Geng Zhen-Duo; Zhang Yan-Song; Fan Xiao-Wei; Lu Zhan-Sheng; Luo Gai-Xia

    2006-01-01

    In this paper, the electronic states of the ground states and dissociation limits of BC and BC- are correctly determined based on group theory and atomic and molecular reaction statics. The equilibrium geometries, harmonic frequencies and dissociation energies of the ground state of BC and BC- are calculated by using density function theory and quadratic CI method including single and double substitutions. The analytical potential energy functions of these states have been fitted with Murrell-Sorbie potential energy function from our ab initio calculation results. The spectroscopic data (αe, ωe and ωeXe) of each state is calculated via the relation between analytical potential energy function and spectroscopic data. All the calculations are in good agreement with the experimental data.

  1. Effects of ionic liquid [bmim][PF6] on absorption spectra and reaction kinetics of the duroquinone triplet state in acetonitrile.

    Science.gov (United States)

    Zhu, Guanglai; Wu, Guozhong; Sha, Maolin; Long, Dewu; Yao, Side

    2008-04-10

    The transient absorption spectra and photoinduced electron-transfer process of duroquinone (DQ) in mixed binary solutions of ionic liquid (IL) [bmim][PF6] and acetonitrile (MeCN) have been investigated by laser photolysis at an excitation wavelength of 355 nm. A spectral blue shift of 3DQ* was observed in the IL/MeCN mixtures compared to MeCN. At lower VIL(volume fraction of IL), the interaction between DQ and the solvent is dominant, and the decay rate constant (kobs) of 3DQ* increases steadily with the increasing of VIL; to the contrary, at higher VIL, the network structures due to the hydrogen bond and viscosity are dominant, and the decay rate constant decreases obviously with increasing VIL. A critical point (turnover) was observed at VIL = approximately 0.30. The dependence of the observed growth rate (kgr) of the photoinduced electron-transfer (PET) products on VIL is complex and shows a special change; kgr first decreases with increasing VIL, then increases, and finally decreases slowly with further increasing of VIL. It is speculated that the PET process in the mixture can be affected by factors including the local structure and the reorganization energy of the solvent and salt and cage effects. The change of local structure of [bmim][PF6]/MeCN is supported by following the steady-state fluorescence behavior of the mixture, in combination with the molecular dynamics simulation of the thermodynamic property. The results revealed that the degree of self-aggregation of monomeric cations (bmim+) to associated forms increases with increasing VIL. This is in good agreement with the laser photolysis results for the same solutions.

  2. Influence of various functional groups on the relative stability of alkylperoxy triplet cations: A theoretical study

    Science.gov (United States)

    Smith, Kenneth J.; Meloni, Giovanni

    2015-07-01

    CBS-QB3 energy calculations show that the formation of a stable triplet cation for alkylperoxy radicals is dependent on factors other than the stability of the daughter cations exclusively. We have found that in cases where the daughter ions are not capable of stabilizing the cation through hyperconjugation, it is possible for the triplet cation to be bound. In many circumstances, CBS-QB3 calculations have found bound triplet cation states with 'negative dissociation energies.' These results are attributed to the effects that electron donating/withdrawing substituents have on the spin and charge densities of the resulting cations.

  3. Singlet and triplet instability theorems

    Science.gov (United States)

    Yamada, Tomonori; Hirata, So

    2015-09-01

    A useful definition of orbital degeneracy—form-degeneracy—is introduced, which is distinct from the usual energy-degeneracy: Two canonical spatial orbitals are form-degenerate when the energy expectation value in the restricted Hartree-Fock (RHF) wave function is unaltered upon a two-electron excitation from one of these orbitals to the other. Form-degenerate orbitals tend to have isomorphic electron densities and occur in the highest-occupied and lowest-unoccupied molecular orbitals (HOMOs and LUMOs) of strongly correlated systems. Here, we present a mathematical proof of the existence of a triplet instability in a real or complex RHF wave function of a finite system in the space of real or complex unrestricted Hartree-Fock wave functions when HOMO and LUMO are energy- or form-degenerate. We also show that a singlet instability always exists in a real RHF wave function of a finite system in the space of complex RHF wave functions, when HOMO and LUMO are form-degenerate, but have nonidentical electron densities, or are energy-degenerate. These theorems provide Hartree-Fock-theory-based explanations of Hund's rule, a singlet instability in Jahn-Teller systems, biradicaloid electronic structures, and a triplet instability during some covalent bond breaking. They also suggest (but not guarantee) the spontaneous formation of a spin density wave (SDW) in a metallic solid. The stability theory underlying these theorems extended to a continuous orbital-energy spectrum proves the existence of an oscillating (nonspiral) SDW instability in one- and three-dimensional homogeneous electron gases, but only at low densities or for strong interactions.

  4. Theoretical Studies on Thermal Decomposition of Benzoyl Peroxide in Ground State

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-ke; YANG Si-ya; LIN Xue-fei; MA Si-yu; LI Zong-he

    2003-01-01

    Systematic studies of the thermal decomposition mechanism of benzoyl peroxide(BPO) in ground state, leading to various intermediates, products and the potential energy surface(PES) of possible dissociation reactions were made computationally. The structures of the transition states and the activation energies for all the paths causing the formation of the reaction products mentioned above were calculated by the AM1 semi-empirical method. This method is shown to to be one predict correctly the preferred pathway for the title reaction. It has been found that in ground state, the thermal decomposition of benzoyl peroxide has two kinds of paths. The first pathway PhC(O)O-OC(O)Ph→PhC(O)O*→Ph*+CO2 produces finally phenyl radicals and carbon dioxide. And the second pathway PhC(O)OO-C(O)Ph→PhC(O)OO*+PhC(O)*→PhC(O)*+O2→Ph*+CO+O2, via which the reaction takes place only in two steps, produces oxygen and PhC(O)* radicals, and the further thermal dissociation of PhC(O)* is quite difficult because of the high activation energy in ground state. The calculated activation energies and reaction enthalpies are in good agreement with the experimental values. The research results also show that also the thermal dissociation process of the two bonds or the three bonds for the benzoyl peroxide doesn′t take place in ground state.

  5. The preformation probability inside Alpha-emitters having different ground state spin-parity than daughters

    CERN Document Server

    Seif, W M; Refaie, A I

    2015-01-01

    The ground-state spin and parity of a formed daughter in the radioactive Alpha-emitter is expected to influence the preformation probability of the Alpha and daughter clusters inside it. We investigate the Alpha and daughter preformation probability inside odd-A and doubly-odd radioactive nuclei when the daughter and parent are of different spin and/or parity. We consider only the ground-state to ground-state unfavored decays. This is to extract precise information about the effect of the difference in the ground states spin-parity of the involved nuclei far away any influences from the excitation energy if the decays are coming from isomeric states. The calculations are done for 161 Alpha-emitters, with Z=65-112 and N=84-173, in the framework of the extended cluster model, with WKB penetrability and assault frequency. We used a Hamiltonian energy density scheme based on Skyrme-SLy4 interaction to compute the interaction potential. The Alpha plus cluster preformation probability is extracted from the calculat...

  6. Polaron pair mediated triplet generation in polymer/fullerene blends

    KAUST Repository

    Dimitrov, Stoichko D.

    2015-03-04

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields.

  7. Measuring oxygen pressures using triplet quenching of Pd-porphine

    Science.gov (United States)

    Sinaasappel, Michiel; Ince, C.; Sanderse, E. A.; Bruining, Hajo A.

    1994-02-01

    A non-invasive optical method for measuring free oxygen in vivo is described. The method, introduced by Wilson and co-workers, is based on the quenching of the triplet state of Pd- porphine by oxygen and is described by the Stern-Volmer relation. The quenching of the triplet state is determined by measurement of the phosphorescence decay following excitation by a pulse of light. Measuring decay times has the advantage that they are independent of the changing optical properties of tissue and concentration of the dye. We describe a setup to measure the phosphorescence decay and present the values of Kq and (tau) o as a function of pH and temperature. Furthermore, some experiments on a rat liver and gut are presented.

  8. Systematic study of α preformation probability of nuclear isomeric and ground states

    Science.gov (United States)

    Sun, Xiao-Dong; Wu, Xi-Jun; Zheng, Bo; Xiang, Dong; Guo, Ping; Li, Xiao-Hua

    2017-01-01

    In this paper, based on the two-potential approach combining with the isospin dependent nuclear potential, we systematically compare the α preformation probabilities of odd-A nuclei between nuclear isomeric states and ground states. The results indicate that during the process of α particle preforming, the low lying nuclear isomeric states are similar to ground states. Meanwhile, in the framework of single nucleon energy level structure, we find that for nuclei with nucleon number below the magic numbers, the α preformation probabilities of high-spin states seem to be larger than low ones. For nuclei with nucleon number above the magic numbers, the α preformation probabilities of isomeric states are larger than those of ground states. Supported by National Natural Science Foundation of China (11205083), Construct Program of Key Discipline in Hunan Province, Research Foundation of Education Bureau of Hunan Province, China (15A159), Natural Science Foundation of Hunan Province, China (2015JJ3103, 2015JJ2123), Innovation Group of Nuclear and Particle Physics in USC, Hunan Provincial Innovation Foundation for Postgraduate (CX2015B398)

  9. Structure of Ground state Wave Functions for the Fractional Quantum Hall Effect: A Variational Approach

    Science.gov (United States)

    Mukherjee, Sutirtha; Mandal, Sudhansu

    The internal structure and topology of the ground states for fractional quantum Hall effect (FQHE) are determined by the relative angular momenta between all the possible pairs of electrons. Laughlin wave function is the only known microscopic wave function for which these relative angular momenta are homogeneous (same) for any pair of electrons and depend solely on the filling factor. Without invoking any microscopic theory, considering only the relationship between number of flux quanta and particles in spherical geometry, and allowing the possibility of inhomogeneous (different) relative angular momenta between any two electrons, we develop a general method for determining a closed-form ground state wave function for any incompressible FQHE state. Our procedure provides variationally obtained very accurate wave functions, yet having simpler structure compared to any other known complex microscopic wave functions for the FQHE states. This method, thus, has potential in predicting a very accurate ground state wave function for the puzzling states such as the state at filling fraction 5/2. We acknowledge support from Department of Science and Technology, India.

  10. Structures of 17F and 17O, 17Ne and 17N in the Ground State and the First Excited State

    Institute of Scientific and Technical Information of China (English)

    张虎勇; 沈文庆; 任中洲; 马余刚; 陈金根; 蔡翔舟; 卢照辉; 钟晨; 郭威; 魏义彬; 周星飞; 马国亮; 王鲲

    2003-01-01

    The structures of two couples of mirror nuclei 17 F and 17 O, 17 Ne and 17 N in the ground state and in the first excited state are investigated using the relativistic mean-field approach. Two-proton halo in 17Ne in the first excited state and in the ground state and two-neutron halo in 17N in the first excited state are suggested.Meanwhile, one-proton halo in 17 F in the first excited state and one-neutron halo in 17 O in the first excited state are also suggested. The skin structure appears in 17F and 17N in the ground state.

  11. Generalized isotropic Lipkin-Meshkov-Glick models: ground state entanglement and quantum entropies

    Science.gov (United States)

    Carrasco, José A.; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A.; Tempesta, Piergiulio

    2016-03-01

    We introduce a new class of generalized isotropic Lipkin-Meshkov-Glick models with \\text{su}(m+1) spin and long-range non-constant interactions, whose non-degenerate ground state is a Dicke state of \\text{su}(m+1) type. We evaluate in closed form the reduced density matrix of a block of L spins when the whole system is in its ground state, and study the corresponding von Neumann and Rényi entanglement entropies in the thermodynamic limit. We show that both of these entropies scale as alog L when L tends to infinity, where the coefficient a is equal to (m  -  k)/2 in the ground state phase with k vanishing \\text{su}(m+1) magnon densities. In particular, our results show that none of these generalized Lipkin-Meshkov-Glick models are critical, since when L\\to ∞ their Rényi entropy R q becomes independent of the parameter q. We have also computed the Tsallis entanglement entropy of the ground state of these generalized \\text{su}(m+1) Lipkin-Meshkov-Glick models, finding that it can be made extensive by an appropriate choice of its parameter only when m-k≥slant 3 . Finally, in the \\text{su}(3) case we construct in detail the phase diagram of the ground state in parameter space, showing that it is determined in a simple way by the weights of the fundamental representation of \\text{su}(3) . This is also true in the \\text{su}(m+1) case; for instance, we prove that the region for which all the magnon densities are non-vanishing is an (m  +  1)-simplex in {{{R}}m} whose vertices are the weights of the fundamental representation of \\text{su}(m+1) .

  12. The ground state of medium-heavy nuclei with non central forces

    CERN Document Server

    Fabrocini, A

    1997-01-01

    We study microscopically the ground state properties of 16O and 40Ca nuclei within correlated basis function theory. A truncated version of the realistic Urbana v14 (U14) potential, without momentum dependent terms, is adopted with state dependent correlations having spin, isospin and tensor components. Fermi hypernetted chain integral equations and single operator chain approximation are used to evaluate one- and two-body densities and ground state energy. The results are in good agreement with the available variational MonteCarlo data, providing a first substantial check for the accuracy of the cluster expansion method with state dependent correlations. The finite nuclei treatment of non central interactions and correlations has, at least, the same level of accuracy as in infinite nuclear matter. The binding energy for the full U14+TNI interaction is computed, addressing its small momentum dependent contributions in local density approximation. The nuclei are underbound by about 1 MeV per nucleon. Further e...

  13. Laser cooling a neutral atom to the three-dimensional vibrational ground state of an optical tweezer

    CERN Document Server

    Kaufman, Adam M; Regal, Cindy A

    2012-01-01

    We report three-dimensional ground state cooling of a single neutral atom in an optical tweezer. After employing Raman sideband cooling for 33 ms, we measure via sideband spectroscopy a three-dimensional ground state occupation of ~90%. Ground state neutral atoms in optical tweezers will be instrumental in numerous quantum logic applications and for nanophotonic interfaces that require a versatile platform for storing, moving, and manipulating ultracold single neutral atoms.

  14. Ground State and Excited State Tuning in Ferric Dipyrrin Complexes Promoted by Ancillary Ligand Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kleinlein, Claudia; Zheng, Shao-Liang; Betley, Theodore A.

    2017-04-24

    Three ferric dipyrromethene complexes featuring different ancillary ligands were synthesized by one electron oxidation of ferrous precursors. Four-coordinate iron complexes of the type (ArL)FeX2 [ArL = 1,9-(2,4,6-Ph3C6H2)2-5-mesityldipyrromethene] with X = Cl or tBuO were prepared and found to be high-spin (S = 5/2), as determined by superconducting quantum interference device magnetometry, electron paramagnetic resonance, and 57Fe Mössbauer spectroscopy. The ancillary ligand substitution was found to affect both ground state and excited properties of the ferric complexes examined. While each ferric complex displays reversible reduction and oxidation events, each alkoxide for chloride substitution results in a nearly 600 mV cathodic shift of the FeIII/II couple. The oxidation event remains largely unaffected by the ancillary ligand substitution and is likely dipyrrin-centered. While the alkoxide substituted ferric species largely retain the color of their ferrous precursors, characteristic of dipyrrin-based ligand-to-ligand charge transfer (LLCT), the dichloride ferric complex loses the prominent dipyrrin chromophore, taking on a deep green color. Time-dependent density functional theory analyses indicate the weaker-field chloride ligands allow substantial configuration mixing of ligand-to-metal charge transfer into the LLCT bands, giving rise to the color changes observed. Furthermore, the higher degree of covalency between the alkoxide ferric centers is manifest in the observed reactivity. Delocalization of spin density onto the tert-butoxide ligand in (ArL)FeCl(OtBu) is evidenced by hydrogen atom abstraction to yield (ArL)FeCl and HOtBu in the presence of substrates containing weak C–H bonds, whereas the chloride (ArL)FeCl2 analogue does not react under these conditions.

  15. Magnetostriction-driven ground-state stabilization in 2H perovskites

    Science.gov (United States)

    Porter, D. G.; Senn, M. S.; Khalyavin, D. D.; Cortese, A.; Waterfield-Price, N.; Radaelli, P. G.; Manuel, P.; zur-Loye, H.-C.; Mazzoli, C.; Bombardi, A.

    2016-10-01

    The magnetic ground state of Sr3A RuO6 , with A =(Li ,Na ) , is studied using neutron diffraction, resonant x-ray scattering, and laboratory characterization measurements of high-quality crystals. Combining these results allows us to observe the onset of long-range magnetic order and distinguish the symmetrically allowed magnetic models, identifying in-plane antiferromagnetic moments and a small ferromagnetic component along the c axis. While the existence of magnetic domains masks the particular in-plane direction of the moments, it has been possible to elucidate the ground state using symmetry considerations. We find that due to the lack of local anisotropy, antisymmetric exchange interactions control the magnetic order, first through structural distortions that couple to in-plane antiferromagnetic moments and second through a high-order magnetoelastic coupling that lifts the degeneracy of the in-plane moments. The symmetry considerations used to rationalize the magnetic ground state are very general and will apply to many systems in this family, such as Ca3A RuO6 , with A =(Li ,Na ) , and Ca3LiOsO6 whose magnetic ground states are still not completely understood.

  16. On the ground state energy of the delta-function Fermi gas

    Science.gov (United States)

    Tracy, Craig A.; Widom, Harold

    2016-10-01

    The weak coupling asymptotics to order γ of the ground state energy of the delta-function Fermi gas, derived heuristically in the literature, is here made rigorous. Further asymptotics are in principle computable. The analysis applies to the Gaudin integral equation, a method previously used by one of the authors for the asymptotics of large Toeplitz matrices.

  17. Patterns of the ground states in the presence of random interactions : Nucleon systems

    NARCIS (Netherlands)

    Zhao, YM; Arima, A; Shimizu, N; Ogawa, K; Yoshinaga, N; Scholten, O

    2004-01-01

    We present our results on properties of ground states for nucleonic systems in the presence of random two-body interactions. In particular, we calculate probability distributions for parity, seniority, spectroscopic (i.e., in the laboratory frame) quadrupole moments, and discuss a clustering in the

  18. Ground states for a modified capillary surface equation in weighted Orlicz-Sobolev space

    Directory of Open Access Journals (Sweden)

    Guoqing Zhang

    2015-03-01

    Full Text Available In this article, we prove a compact embedding theorem for the weighted Orlicz-Sobolev space of radially symmetric functions. Using the embedding theorem and critical points theory, we prove the existence of multiple radial solutions and radial ground states for the following modified capillary surface equation $$\\displaylines{ -\\operatorname{div}\\Big(\\frac{|\

  19. Surface Gap Soliton Ground States for the Nonlinear Schr\\"{o}dinger Equation

    CERN Document Server

    Dohnal, Tomáš; Reichel, Wolfgang

    2010-01-01

    We consider the nonlinear Schr\\"{o}dinger equation $(-\\Delta +V(x))u = \\Gamma(x) |u|^{p-1}u$, $x\\in \\R^n$ with $V(x) = V_1(x) \\chi_{\\{x_1>0\\}}(x)+V_2(x) \\chi_{\\{x_10\\}}(x)+\\Gamma_2(x) \\chi_{\\{x_1<0\\}}(x)$ and with $V_1, V_2, \\Gamma_1, \\Gamma_2$ periodic in each coordinate direction. This problem describes the interface of two periodic media, e.g. photonic crystals. We study the existence of ground state $H^1$ solutions (surface gap soliton ground states) for $0<\\min \\sigma(-\\Delta +V)$. Using a concentration compactness argument, we provide an abstract criterion for the existence based on ground state energies of each periodic problem (with $V\\equiv V_1, \\Gamma\\equiv \\Gamma_1$ and $V\\equiv V_2, \\Gamma\\equiv \\Gamma_2$) as well as a more practical criterion based on ground states themselves. Examples of interfaces satisfying these criteria are provided. In 1D it is shown that, surprisingly, the criteria can be reduced to conditions on the linear Bloch waves of the operators $-\\tfrac{d^2}{dx^2} +V_1(x)$ an...

  20. Density-matrix-functional calculations for matter in strong magnetic fields: Ground states of heavy atoms

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Yngvason, Jakob

    1996-01-01

    and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...

  1. Effect of spin-orbit coupling on the ground state structure of mercury

    Science.gov (United States)

    Mishra, Vinayak; Gyanchandani, Jyoti; Chaturvedi, Shashank; Sikka, S. K.

    2014-05-01

    Near zero kelvin ground state structure of mercury is the body centered tetragonal (BCT) structure (β Hg). However, in all previously reported density functional theory (DFT) calculations, either the rhombohedral or the HCP structure has been found to be the ground state structure. Based on the previous calculations it was predicted that the correct treatment of the SO effects would improve the result. We have performed FPLAPW calculations, with and without inclusion of the SO coupling, for determining the ground state structure. These calculations determine rhombohedral structure as the ground state structure instead of BCT structure. The calculations, without inclusion of SO effect, predict that the energies of rhombohedral and BCT structures are very close to each other but the energy of rhombohedral structure is lower than that of BCT structure at ambient as well as high pressure. On the contrary, the SO calculations predict that though at ambient conditions the rhombohedral structure is the stable structure but on applying a pressure of 3.2 GPa, the BCT structure becomes stable. Hence, instead of predicting the stability of BCT structure at zero pressure, the SO calculations predict its stability at 3.2 GPa. This small disagreement is expected when the energy differences between the structures are small.

  2. Complete $\\alpha^6\\,m$ corrections to the ground state of H$_2$

    CERN Document Server

    Puchalski, Mariusz; Czachorowski, Pawel; Pachucki, Krzysztof

    2016-01-01

    We perform the calculation of all relativistic and quantum electrodynamic corrections of the order of $\\alpha^6\\,m$ to the ground electronic state of a hydrogen molecule and present improved results for the dissociation and the fundamental transitions energies. These results open the window for the high-precision spectroscopy of H$_2$ and related low-energy tests of fundamental interactions.

  3. A New Method for the Atomic Ground-State Energy in the Screened Coulomb Potential

    Institute of Scientific and Technical Information of China (English)

    YU Peng-Peng; GUO Hua

    2001-01-01

    The new method proposed recently by Friedberg,Lee and Zhao is applied to the derivation of the atomic ground-state energy with the inclusion of the screening effect.The present results are compared with those obtained in the pure Coulomb potential and by the variational approach.The overall good results are obtained with this new method.``

  4. Ground-state and Pairing Properties of Pr Isotopes in RMF Theory

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The ground-state and pairing properties of Pr (Z=59) isotopes have been investigated in therelativistic mean-field (RMF). The pairing correlation is studied in Bardeen-Cooper-Schrieffer (BCS) approximation and the pairingforces are taken to be isospin dependent. The ’blocking’ method is adopted to deal with unpaired odd

  5. A Simple Volcano Potential with an Analytic, Zero-Energy, Ground State

    CERN Document Server

    Nieto, Michael Martin

    2000-01-01

    We describe a simple volcano potential, which is supersymmetric and has an analytic, zero-energy, ground state. (The KK modes are also analytic.) It is an interior harmonic oscillator potential properly matched to an exterior angular momentum-like tail. Special cases are given to elucidate the physics, which may be intuitively useful in studies of higher-dimensional gravity.

  6. Theoretical study of the ground state of (EDO-TTF)(2)PF6

    NARCIS (Netherlands)

    Linker, Gerrit-Jan; van Duijnen, Piet Th.; van Loosdrecht, Paul H.M.; Broer, Ria

    2015-01-01

    In this paper we present a theoretical study of the nature of the ground state of the (EDO-TTF)(2)PF6 charge transfer salt by using ab initio quantum chemical theory for clusters in vacuum, for embedded clusters and for the periodic system. Exemplary for other organic charge transfer systems, we sho

  7. The ground state energy of the mean field spin glass model

    CERN Document Server

    Koukiou, Flora

    2008-01-01

    From the study of a functional equation of Gibbs measures we calculate the limiting free energy of the Sherrington-Kirkpatrick spin glass model at a particular value of (low) temperature. This implies the following lower bound for the ground state energy $\\epsilon_0$ \\[\\epsilon_0\\geq -0.7833...,\\] close to the replica symmetry breaking and numerical simulations values.

  8. Soluble and stable heptazethrenebis(dicarboximide) with a singlet open-shell ground state

    KAUST Repository

    Sun, Zhe

    2011-08-10

    A soluble and stable heptazethrene derivative was synthesized and characterized for the first time. This molecule exhibits a singlet biradical character in the ground state, which is the first case among zethrene homologue series. Exceptional stability of this heptazethrenebis(dicarboximide) raises the likelihood of its practical applications in materials science. © 2011 American Chemical Society.

  9. Ab initio organic chemistry : a survey of ground- and excited states and aromaticity

    NARCIS (Netherlands)

    Havenith, R.W.A.

    2001-01-01

    This thesis describes the application of quantum mechanical methods on organic chemistry. The ground- and excited states of functionalized oligo(cyclohexylidenes) have been explored as in function of chain length, conformation and substitution. VB theory has been used to study the effect of cyc

  10. Transient state of polarization in optical ground wire caused by lightning and impulse current

    Science.gov (United States)

    Kurono, Masahiro; Isawa, K.; Kuribara, Masayuki

    1996-08-01

    This paper describes a transient state of polarization in an optical ground wire (OPGW) theoretically, experimentally and with field measurements in lightning conditions, which is considered one of the fastest phenomena of polarization fluctuations in the natural environment. These characteristics will be required for optical coherent communication for utilities in future and for application to sensing of lightning with OPGW.

  11. Positive and ground state solutions for the critical Klein-Gordon-Maxwell system with potentials

    CERN Document Server

    Carriao, Paulo C; Miyagaki, Olimpio H

    2010-01-01

    In this paper we study a class of Klein-Gordon-Maxwell system when the nonlinearity exhibits critical growth. First we prove both existence and ground state solutions for this system with a periodic potencial V, and then we show the existence in the case that a nonperiodic potencial V is introduced.

  12. The magnetic structure on the ground state of the equilateral triangular spin tube

    Science.gov (United States)

    Matsui, Kazuki; Goto, Takayuki; Manaka, Hirotaka; Miura, Yoko

    2016-12-01

    The ground state of the frustrated equilateral triangular spin tube CsCrF4 is still hidden behind a veil though NMR spectrum broaden into 2 T at low temperature. In order to investigate the spin structure in an ordered state by 19F-NMR, we have determined the anisotropic hyperfine coupling tensors for each three fluorine sites in the paramagnetic state. The measurement field was raised up to 10 T to achieve highest resolution. The preliminary analysis using the obtained hyperfine tensors has shown that the archetypal 120°-type structure in ab-plane does not accord with the NMR spectra of ordered state.

  13. Ground-State Entanglement and Mixture in an XXZ Spin Chain

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng-Zhi; LI Chun-Xian; GUO Guang-Can

    2005-01-01

    @@ We study the pairwise entanglement and mixture of a three-qubit XXZ spin chain in the ground state in thepresence of an external magnetic field B. The effects of the magnetic field, the anisotropy and the temperature on the entanglement and mixture are considered, and entanglement versus the mixture of all the two-spin states is investigated. We find that the maximal entangled mixed state can be obtained in the considered system by controlling the magnetic field. Our results provide another way to generate maximally entangled mixed states.

  14. Ground-state phase diagram of the Kondo lattice model on triangular-to-kagome lattices

    OpenAIRE

    Akagi, Yutaka; Motome, Yukitoshi

    2012-01-01

    We investigate the ground-state phase diagram of the Kondo lattice model with classical localized spins on triangular-to-kagome lattices by using a variational calculation. We identify the parameter regions where a four-sublattice noncoplanar order is stable with a finite spin scalar chirality while changing the lattice structure from triangular to kagome continuously. Although the noncoplanar spin states appear in a wide range of parameters, the spin configurations on the kagome network beco...

  15. Ground state of medium-heavy doubly-closed shell nuclei in correlated basis function theory

    CERN Document Server

    Bisconti, C; Có, G; Fabrocini, A

    2006-01-01

    The correlated basis function theory is applied to the study of medium-heavy doubly closed shell nuclei with different wave functions for protons and neutrons and in the jj coupling scheme. State dependent correlations including tensor correlations are used. Realistic two-body interactions of Argonne and Urbana type, together with three-body interactions have been used to calculate ground state energies and density distributions of the 12C, 16O, 40Ca, 48Ca and 208Pb nuclei.

  16. Generalized Klein-Gordon models: Behavior around the ground state condensate

    Science.gov (United States)

    Kuetche, Victor K.

    2014-07-01

    In this work, we investigate the balance between the nonlinear and linear interaction energy of an interparticle anharmonic system in the vicinity of the ground state condensate. As a result, we find that the nonlinear interaction energy is very significant in the vicinity of each degree of freedom. We address some potential applications of the findings to miscellaneous areas of interests such as soliton theory, hydrodynamics, solid state physics, ferromagnetic and ferroelectric domain walls, condensed matter physics, and particle physics, among others.

  17. Generalized Klein-Gordon models: behavior around the ground state condensate.

    Science.gov (United States)

    Kuetche, Victor K

    2014-07-01

    In this work, we investigate the balance between the nonlinear and linear interaction energy of an interparticle anharmonic system in the vicinity of the ground state condensate. As a result, we find that the nonlinear interaction energy is very significant in the vicinity of each degree of freedom. We address some potential applications of the findings to miscellaneous areas of interests such as soliton theory, hydrodynamics, solid state physics, ferromagnetic and ferroelectric domain walls, condensed matter physics, and particle physics, among others.

  18. Evolution of the Hox gene complex from an evolutionary ground state.

    Science.gov (United States)

    Gehring, Walter J; Kloter, Urs; Suga, Hiroshi

    2009-01-01

    In this chapter, we consider the question of how the ordered clusters of Hox genes arose during evolution. Since ordered Hox clusters are found in all major superphyla, we have to assume that the Hox clusters arose before the Cambrian "explosion" giving rise to all of these taxa. Based on his studies of the bithorax complex (BX-C) in Drosophila Lewis considered the ground state to be the mesothoracic segment (T2) since the deletion of all of the genes of the BX-C leads to a transformation of all segments from T3 to A8/9 (the last abdominal segment) into T2 segments. We define the developmental ground state genetically, by assuming that loss-of-function mutants lead to transformations toward the ground state, whereas gain-of-function mutants lead to homeotic transformations away from the ground state. By this definition, T2 also represents the developmental ground state, if one includes the anterior genes, that is, those of the Antennapedia complex. We have reconstructed the evolution of the Hox cluster on the basis of known genetic mechanisms which involve unequal crossover and lead from an urhox gene, first to an anterior and a posterior gene and subsequently to intermediate genes which are progressively inserted, between the anterior and posterior genes. These intermediate genes are recombinant due to unequal crossover, whereas the anterior and posterior genes are not affected and therefore had the longest time to diverge from the urhox gene. The molecular phylogenetic analysis strongly supports this model. We consider the ground state to be both developmental and evolutionary and to represent the prototypic body segment. It corresponds to T2 and is specified by Antennapedia or Hox6, respectively. Experiments in the mouse also suggest that the ground state is a thoracic segment. Evolution leads from the prototypic segment to segmental divergence in both the anterior and posterior direction. The most anterior head and tail segments are specified by homeobox genes

  19. Ground state destabilization by anionic nucleophiles contributes to the activity of phosphoryl transfer enzymes.

    Directory of Open Access Journals (Sweden)

    Logan D Andrews

    2013-07-01

    Full Text Available Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP and other nonspecific phosphatases are some of Nature's most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 10²²-fold while utilizing interactions with only the five atoms attached to the transferred phosphorus. We tested a model that AP achieves a portion of this preference by destabilizing ground state binding via charge repulsion between the anionic active site nucleophile, Ser102, and the negatively charged phosphate monoester substrate. Removal of the Ser102 alkoxide by mutation to glycine or alanine increases the observed Pi affinity by orders of magnitude at pH 8.0. To allow precise and quantitative comparisons, the ionic form of bound P(i was determined from pH dependencies of the binding of Pi and tungstate, a P(i analog lacking titratable protons over the pH range of 5-11, and from the ³¹P chemical shift of bound P(i. The results show that the Pi trianion binds with an exceptionally strong femtomolar affinity in the absence of Ser102, show that its binding is destabilized by ≥10⁸-fold by the Ser102 alkoxide, and provide direct evidence for ground state destabilization. Comparisons of X-ray crystal structures of AP with and without Ser102 reveal the same active site and P(i binding geometry upon removal of Ser102, suggesting that the destabilization does not result from a major structural rearrangement upon mutation of Ser102. Analogous Pi binding measurements with a protein tyrosine phosphatase suggest the generality of this ground state destabilization mechanism. Our results have uncovered an important contribution of anionic nucleophiles to phosphoryl transfer catalysis via ground state electrostatic destabilization and an enormous capacity of the AP active site for specific and strong recognition of the

  20. Cooper pairs spintronics in triplet spin valves.

    Science.gov (United States)

    Romeo, F; Citro, R

    2013-11-27

    We study a spin valve with a triplet superconductor spacer intercalated between two ferromagnets with noncollinear magnetizations. We show that the magnetoresistance of the triplet spin valve depends on the relative orientations of the d vector, characterizing the superconducting order parameter, and the magnetization directions of the ferromagnetic layers. For devices characterized by a long superconductor, the effects of a polarized current sustained by Cooper pairs only are observed. In this regime, a supermagnetoresistance effect emerges, and the chiral symmetry of the order parameter of the superconducting spacer is easily recognized. Our findings open new perspectives in designing spintronics devices based on the cooperation of ferromagnetic and triplet correlations.

  1. Potential energy surface of triplet N{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Zoltan; Meana-Pañeda, Rubén; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G., E-mail: truhlar@umn.edu [Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States)

    2016-01-14

    We present a global ground-state triplet potential energy surface for the N{sub 2}O{sub 2} system that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation. The surface is based on multi-state complete-active-space second-order perturbation theory/minimally augmented correlation-consistent polarized valence triple-zeta electronic structure calculations plus dynamically scaled external correlation. In the multireference calculations, the active space has 14 electrons in 12 orbitals. The calculations cover nine arrangements corresponding to dissociative diatom-diatom collisions of N{sub 2}, O{sub 2}, and nitric oxide (NO), the interaction of a triatomic molecule (N{sub 2}O and NO{sub 2}) with the fourth atom, and the interaction of a diatomic molecule with a single atom (i.e., the triatomic subsystems). The global ground-state potential energy surface was obtained by fitting the many-body interaction to 54 889 electronic structure data points with a fitting function that is a permutationally invariant polynomial in terms of bond-order functions of the six interatomic distances.

  2. A possible role for triplet H2CN+ isomers in the formation of HCN and HNC in interstellar clouds

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Thomas L. [Univ. of California, Davis, CA (United States); Goddard, John D. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schaefer, III, Henry F. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1980-10-01

    We determine the structures and energies of the lowest triplet states of four isomers of H2CN+ by self-consistent field and configuration interaction calculations. When both hydrogen atoms are attached to the nitrogen atom, H2CN+, the molecule has its lowest triplet state energy, which is 97.2 kcal mol-1 above the energy of the linear singlet ground state. The structure has C2v symmetry, with an HCH bond angle of 116.8°, and bond lengths of 1.009 Å (H–N) and 1.268 Å (N–C). Other isomers investigated include the H2CN+ isomer at 104.7, the c i s-HCNH+ isomer at 105.3, and the t r a n s-HCNH+ isomer at 113.6 kcal mol-1. The H2CN+ isomer has an unusual ’’carbonium nitrene’’ structure, with a C–N bond length of 1.398 Å. It is suggested that the triplet H2CN+ isomer may play a role in determining the relative yields of HCN and HNC from the reaction of C+ and NH3. Specifically, a triplet path is postulated in which C+ and NH3 yield the triplet H2NC+ isomer, which then yields the singlet H2CN+ isomer by phosphorescent emission. Furthermore, because this emission removes a large amount of energy, the singlet H2CN+ isomer may have insufficient energy to isomerize to the linear singlet ground state. Subsequent dissociative recombination would yield the HNC isomer exclusively.

  3. The dispersed fluorescence spectrum of NaAr - Ground and excited state potential curves

    Science.gov (United States)

    Tellinghuisen, J.; Ragone, A.; Kim, M. S.; Auerbach, D. J.; Smalley, R. E.; Wharton, L.; Levy, D. H.

    1979-01-01

    Potential curves for the ground state and the first excited state of NaAr were determined. The van der Waals molecule NaAr was prepared by supersonic free jet expansion of a mixture of sodium, argon, and helium. The electronic transition from the ground state to the first excited state A2pi was excited by a tunable dye laser and the resulting fluorescence was studied. The dispersed fluorescence spectra show discrete and diffuse features, corresponding to transitions from excited vibrational levels of the A state to bound and unbound levels of the x state. The characteristic reflection structure in the bound-free spectra permits an unambiguous assignment of the vibrational numbering in the A state, and this assignment together with previously measured spectroscopic constants are used to calculate the potential curve of the A state. The discrete structure in the fluorescence spectra is used to determine the potential curve of the x state in the well region, and the repulsive part of the X curve is then deduced through trial-and-error simulation of the bound-free spectra.

  4. Quantum annealing search of Ising spin glass ground state(s) with tunable transverse and longitudinal fields

    Science.gov (United States)

    Rajak, A.; Chakrabarti, B. K.

    2014-09-01

    Here we first discuss briefly the quantum annealing technique. We then study the quantum annealing of Sherrington-Kirkpatrick spin glass model with the tuning of both transverse and longitudinal fields. Both the fields are time-dependent and vanish adiabatically at the same time, starting from high values. We solve, for rather small systems, the time-dependent Schrodinger equation of the total Hamiltonian by employing a numerical technique. At the end of annealing we obtain the final state having high overlap with the exact ground state(s) of classical spin glass system (obtained independently).

  5. Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Li, Hao; Trabolsi, Ali; Coskun, Ali; Stoddart, J Fraser

    2014-02-18

    The ability to design and confer control over the kinetics of theprocesses involved in the mechanisms of artificial molecular machines is at the heart of the challenge to create ones that can carry out useful work on their environment, just as Nature is wont to do. As one of the more promising forerunners of prototypical artificial molecular machines, chemists have developed bistable redox-active donor-acceptor mechanically interlocked molecules (MIMs) over the past couple of decades. These bistable MIMs generally come in the form of [2]rotaxanes, molecular compounds that constitute a ring mechanically interlocked around a dumbbell-shaped component, or [2]catenanes, which are composed of two mechanically interlocked rings. As a result of their interlocked nature, bistable MIMs possess the inherent propensity to express controllable intramolecular, large-amplitude, and reversible motions in response to redox stimuli. In this Account, we rationalize the kinetic behavior in the ground state for a large assortment of these types of bistable MIMs, including both rotaxanes and catenanes. These structures have proven useful in a variety of applications ranging from drug delivery to molecular electronic devices. These bistable donor-acceptor MIMs can switch between two different isomeric states. The favored isomer, known as the ground-state co-conformation (GSCC) is in equilibrium with the less favored metastable state co-conformation (MSCC). The forward (kf) and backward (kb) rate constants associated with this ground-state equilibrium are intimately connected to each other through the ground-state distribution constant, KGS. Knowing the rate constants that govern the kinetics and bring about the equilibration between the MSCC and GSCC, allows researchers to understand the operation of these bistable MIMs in a device setting and apply them toward the construction of artificial molecular machines. The three biggest influences on the ground-state rate constants arise from

  6. Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico.

    Science.gov (United States)

    Villalba, L; Colmenero Sujo, L; Montero Cabrera, M E; Cano Jiménez, A; Rentería Villalobos, M; Delgado Mendoza, C J; Jurado Tenorio, L A; Dávila Rangel, I; Herrera Peraza, E F

    2005-01-01

    This paper reports (222)Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited (222)Rn concentrations exceeding 11Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of (222)Rn found may be entirely attributed to the nature of aquifer rocks.

  7. Ground-state properties of K-isotopes from laser and $\\beta$-NMR spectroscopy

    CERN Multimedia

    Lievens, P; Rajabali, M M; Krieger, A R

    By combining high-resolution laser spectroscopy with $\\beta$-NMR spectroscopy on polarized K-beams we aim to establish the ground-state spins and magnetic moments of the neutron-rich $^{48,49,50,51}$K isotopes from N=29 to N=32. Spins and magnetic moments of the odd-K isotopes up to N=28 reveal an inversion of the ground-state, from the normal $\\,{I}$=3/2 ($\\pi{d}_{3/2}^{-1}$) in $^{41-45}$K$\\to\\,{I}$=1/2 ($\\pi{s}_{1/2}^{-1}$) in $^{47}$K. This inversion of the proton single particle levels is related to the strong proton $d_{3/2}$ - neutron $f_{7/2}$ interaction which lowers the energy of the $\\pi{d}_{3/2}$ single particle state when filling the $\

  8. Study of polonium isotopes ground state properties by simultaneous atomic- and nuclear-spectroscopy

    CERN Multimedia

    Koester, U H; Kalaninova, Z; Imai, N

    2007-01-01

    We propose to systematically study the ground state properties of neutron deficient $^{192-200}$Po isotopes by means of in-source laser spectroscopy using the ISOLDE laser ion source coupled with nuclear spectroscopy at the detection setup as successfully done before by this collaboration with neutron deficient lead isotopes. The study of the change in mean square charge radii along the polonium isotope chain will give an insight into shape coexistence above the mid-shell N = 104 and above the closed shell Z = 82. The hyperfine structure of the odd isotopes will also allow determination of the nuclear spin and the magnetic moment of the ground state and of any identifiable isomer state. For this study, a standard UC$_{x}$ target with the ISOLDE RILIS is required for 38 shifts.

  9. Three-dimensional quantum calculations on the ground and excited state vibrations of ethylene

    Science.gov (United States)

    Groenenboom, Gerrit Cornelis

    Three dimensional potential energy surfaces of the ground and excited states of ethylene were calculated at the MRCEPA (Multi Reference Coupled Electronic Pair Approximation) level. The modes included are the torsion, the CC stretch, and the symmetric scissors. Full vibrational calculations were performed using the Lanczos/grid method. The avoided crossing between the V and the R state was dealt with in a diabetic model. The ground state results agree within 3 up to the highest vibrational level known experimentally. The origin and the maximum of the V back arrow N band are calculated at 5.68 and 7.82 eV, respectively, approximately 0.2 eV above the somewhat ambiguous experimental values. This work considerably diminishes the existing gap of approximately 0.5 eV between theory and experiment.

  10. Ground states of bilayered and extended t-J-U models

    Energy Technology Data Exchange (ETDEWEB)

    Voo, Khee-Kyun, E-mail: kkvoo@mail.oit.edu.tw

    2015-09-04

    The ground states of bilayered and extended t-J-U models are investigated with renormalized mean field theory. The trial wave functions are Gutzwiller projected Hartree–Fock states, and the site double occupancies are variational parameters. It is found that a spontaneous interlayer phase separation (PS) may arise in bilayers. In electron–hole doping asymmetric systems, the propensity for PS is stronger in electron doped bands. Via a PS, superconductivity can survive to lower doping densities, and antiferromagnetism in electron doped systems may survive to higher doping densities. The result is related to the superconducting cuprates. - Highlights: • Ground states in doped bilayered t-J-U models are studied. • Variational wave functions are Gutzwiller projected wave functions. • Site double occupancies are variational parameters. • Spontaneous interlayer phase separation may occur in bilayers. • Stronger tendency toward phase separation in electron doped bilayers.

  11. Ground-State Cooling of a Mechanical Oscillator by Interference in Andreev Reflection

    Science.gov (United States)

    Stadler, P.; Belzig, W.; Rastelli, G.

    2016-11-01

    We study the ground-state cooling of a mechanical oscillator linearly coupled to the charge of a quantum dot inserted between a normal metal and a superconducting contact. Such a system can be realized, e.g., by a suspended carbon nanotube quantum dot with a capacitive coupling to a gate contact. Focusing on the subgap transport regime, we analyze the inelastic Andreev reflections which drive the resonator to a nonequilibrium state. For small coupling, we obtain that vibration-assisted reflections can occur through two distinct interference paths. The interference determines the ratio between the rates of absorption and emission of vibrational energy quanta. We show that ground-state cooling of the mechanical oscillator can be achieved for many of the oscillator's modes simultaneously or for single modes selectively, depending on the experimentally tunable coupling to the superconductor.

  12. Vacuum polarization in the ground states of bi-muonic helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Alexei M [Department of Chemistry, Queen' s University, Kingston, ON K7L 3N6 (Canada)

    2004-11-28

    The energies and bound-state properties of the bi-muonic helium-3 and helium-4 atoms in their ground 1{sup 1}(S = 0)-states are determined to very high accuracy. It is shown that the lowest order QED (and relativistic) effects play a significantly larger role in the case of bi-muonic {sup 3}He{mu}{sub 2} and {sup 4}He{mu}{sub 2} atoms than in the two-electron He-atoms. In particular, the effect of vacuum polarization and corresponding energy shifts for the ground 1{sup 1}(S 0)-states in the bi-muonic helium-3 and helium-4 atoms have been evaluated.

  13. Experimental and theoretical dipole moments of purines in their ground and lowest excited singlet states

    Science.gov (United States)

    Aaron, Jean-Jacques; Diabou Gaye, Mame; Párkányi, Cyril; Cho, Nam Sook; Von Szentpály, László

    1987-01-01

    The ground-state dipole moments of seven biologically important purines (purine, 6-chloropurine, 6-mercaptopurine, hypoxanthine, theobromine, theophylline and caffeine) were determined at 25°C in acetic acid (all the above compounds with the exception of purine) and in ethyl acetate (purine, theophylline and caffeine). Because of its low solubility, it was not possible to measure the dipole moment of uric acid. The first excited singlet-state dipole moments were obtained on the basis of the Bakhshiev and Chamma—Viallet equations using the variation of the Stokes shift with the solvent dielectric constant-refractive index term. The theoretical dipole moments for all the purines listed above and including uric acid were calculated by combining the use of the PPP (π-LCI-SCF-MO) method for the π-contribution to the overall dipole moment with the σ-contribution obtained as a vector sum of the σbond moments and group moments. The experimental and theoretical values were compared with the data available in the literature for some of the purines under study. For several purines, the calculations were carried out for different tautomeric forms. Excited singlet-state dipole moments are smaller than the ground-state values by 0.8 to 2.2 Debye units for all purines under study with the exception of 6-chloropurine. The effects of the structure upon the ground- and excited-state dipole moments of the purines are discussed.

  14. Spectroscopy of ground and excited states of pseudoscalar and vector charmonium and bottomonium

    Science.gov (United States)

    Negash, Hluf; Bhatnagar, Shashank

    2016-07-01

    In this paper, we calculate the mass spectrum, weak decay constants, two photon decay widths, and two-gluon decay widths of ground (1S) and radially excited (2S, 3S,…) states of pseudoscalar charmoniuum and bottomonium such as ηc and ηb, as well as the mass spectrum and leptonic decay constants of ground state (1S), excited (2S, 1D, 3S, 2D, 4S,…, 5D) states of vector charmonium and bottomonium such as J/ψ, and Υ, using the formulation of Bethe-Salpeter equation under covariant instantaneous ansatz (CIA). Our results are in good agreement with data (where ever available) and other models. In this framework, from the beginning, we employ a 4 × 4 representation for two-body (qq¯) BS amplitude for calculating both the mass spectra as well as the transition amplitudes. However, the price we have to pay is to solve a coupled set of equations for both pseudoscalar and vector quarkonia, which we have explicitly shown get decoupled in the heavy-quark approximation, leading to mass spectral equation with analytical solutions for both masses, as well as eigenfunctions for all the above states, in an approximate harmonic oscillator basis. The analytical forms of eigenfunctions for ground and excited states so obtained are used to evaluate the decay constants and decay widths for different processes.

  15. Long-range interactions between polar bialkali ground-state molecules in arbitrary vibrational levels

    CERN Document Server

    Vexiau, R; Aymar, M; Bouloufa-Maafa, N; Dulieu, O

    2015-01-01

    We have calculated the isotropic $C\\_6$ coefficients characterizing the long-range van der Waals interaction between two identical heteronuclear alkali-metal diatomic molecules in the same arbitrary vibrational level of their ground electronic state $X^1\\Sigma^+$. We consider the ten species made up of $^7$Li, $^{23}$Na, $^{39}$K, $^{87}$Rb and $^{133}$Cs. Following our previous work [M.~Lepers \\textit{et.~al.}, Phys.~Rev.~A \\textbf{88}, 032709 (2013)] we use the sum-over-state formula inherent to the second-order perturbation theory, composed of the contributions from the transitions within the ground state levels, from the transition between ground-state and excited state levels, and from a crossed term. These calculations involve a combination of experimental and quantum-chemical data for potential energy curves and transition dipole moments. We also investigate the case where the two molecules are in different vibrational levels and we show that the Moelwyn-Hughes approximation is valid provided that it i...

  16. Photophysics of phenalenone: quantum-mechanical investigation of singlet-triplet intersystem crossing.

    Science.gov (United States)

    Daza, Martha C; Doerr, Markus; Salzmann, Susanne; Marian, Christel M; Thiel, Walter

    2009-03-21

    We have examined the electronic and molecular structure of 1H-phenalen-1-one (phenalenone) in the electronic ground state and in the lowest excited states, as well as intersystem crossing. The electronic structure was calculated using a combination of density functional theory and multi-reference configuration interaction. Intersystem crossing rates were determined using Fermi's golden rule and taking direct and vibronic spin-orbit coupling into account. The required spin-orbit matrix elements were obtained applying a non-empirical spin-orbit mean-field approximation. Our calculated electronic energies are in good agreement with experimental data. We find the lowest excited singlet states to be of the npi* (S1) and pipi* (S2) type. Energetically accessible from S1 are two triplet states of the pipi* (T1) and npi* (T2) type, the latter being nearly degenerate to S1. This ordering of states is retained when the molecular structure in the electronically excited states is relaxed. We expect very efficient intersystem crossing between S1 and T1. Our calculated intersystem crossing rate is approximately 2 x 10(10) s(-1), which is in excellent agreement with the experimental value of 3.45 x 10(10) s(-1). Our estimated phosphorescence and fluorescence rates are many orders of magnitude smaller. Our results are in agreement with the experimentally observed behavior of phenalenone, including the high efficiency of 1O2 production.

  17. Ground and Low-Lying Collective States of Rotating Three-Boson System

    Science.gov (United States)

    Imran, Mohd.; Ahsan, M. A. H.

    2016-04-01

    The ground and low-lying collective states of a rotating system of N = 3 bosons harmonically confined in quasi-two-dimension and interacting via repulsive finite-range Gaussian potential is studied in weakly to moderately interacting regime. The N-body Hamiltonian matrix is diagonalized in subspaces of quantized total angular momenta 0 ≥ L ≥ 4N to obtain the ground and low-lying eigenstates. Our numerical results show that breathing modes with N-body eigenenergy spacing of 2ħω⊥, known to exist in strictly 2D system with zero-range (δ-function) interaction potential, may as well exist in quasi-2D system with finite-range Gaussian interaction potential. To gain an insight into the many-body states, the von Neumann entropy is calculated as a measure of quantum correlation and the conditional probability distribution is analyzed for the internal structure of the eigenstates. In the rapidly rotating regime the ground state in angular momentum subspaces L = (q/2)N (N - 1) with q = 2, 4 is found to exhibit the anticorrelation structure suggesting that it may variationally be described by a Bose-Laughlin like state. We further observe that the first breathing mode exhibits features similar to the Bose-Laughlin state in having eigenenergy, von Neumann entropy and internal structure independent of interaction for the three-boson system considered here. On the contrary, for eigenstates lying between the Bose-Laughlin like ground state and the first breathing mode, values of eigenenergy, von Neumann entropy and internal structure are found to vary with interaction.

  18. Theoretical Investigation on Triplet Excitation Energy Transfer in Fluorene Dimer

    Institute of Scientific and Technical Information of China (English)

    Yu-bing Si; Xin-xin Zhong; Wei-wei Zhang; Yi Zhao

    2011-01-01

    Triplet-triplet energy transfer in fluorene dimer is investigated by combining rate theories with electronic structure calculations.The two key parameters for the control of energy transfer,electronic conpling and reorganization energy,are calculated based on the diabatic states constructed by the constrained density functional theory.The fluctuation of the electronic coupling is further revealed by molecular dynamics simulation.Succeedingly,the diagonal and off-diagonal fluctuations of thc Hamiltonian are mapped from the correlation functions of those parameters,and the rate is then estimated both from the perturbation theory and wavepacket diffusion method.The results manifest that both the static and dynamic fluctuations enhance the rate significantly,but the rate from the dynamic fluctuation is smaller than that from the static fluctuation.

  19. Role of triplet polaron pairs in conjugated polymer photophysics

    Science.gov (United States)

    Wesely, Elizabeth; Rothberg, Lewis; Marchetti, Alfred; Chen, Shaw; Geng, Yanhou; Culligan, Sean

    2007-03-01

    We measure the decay of the long-lived fluorescence of a conjugated oligofluorene at temperatures from 300 K to 20 K. We conclude that nearly all of this emission arises from geminate recombination of photogenerated polaron pairs to reform the singlet exciton, and that charge pair recombination represents a significant contribution to the overall fluorescence quantum yield. The unusual nonmonotonic decay dynamics of the delayed fluorescence can be explained if we assume interconversion between singlet and triplet polaron pairs on the submicrosecond time scale. (˜500 ns.) We are able to model the decay of the delayed fluorescence by assuming activated recombination from a Gaussian energy distribution of singlet polaron pairs centered 0.2 eV below the excited state and having a standard deviation of 0.12 eV. The model is relevant to recent work involving the measurement of singlet-triplet branching ratios and to the yields of electroluminescent devices.

  20. New Heuristics for Rooted Triplet Consistency

    Directory of Open Access Journals (Sweden)

    Soheil Jahangiri

    2013-07-01

    Full Text Available Rooted triplets are becoming one of the most important types of input for reconstructing rooted phylogenies. A rooted triplet is a phylogenetic tree on three leaves and shows the evolutionary relationship of the corresponding three species. In this paper, we investigate the problem of inferring the maximum consensus evolutionary tree from a set of rooted triplets. This problem is known to be APX-hard. We present two new heuristic algorithms. For a given set of m triplets on n species, the FastTree algorithm runs in O(m + α(nn2 time, where α(n is the functional inverse of Ackermann’s function. This is faster than any other previously known algorithms, although the outcome is less satisfactory. The Best Pair Merge with Total Reconstruction (BPMTR algorithm runs in O(mn3 time and, on average, performs better than any other previously known algorithms for this problem.

  1. Long-range magnetic fields in the ground state of the Standard Model plasma

    CERN Document Server

    Boyarsky, Alexey; Shaposhnikov, Mikhail

    2012-01-01

    In thermal equilibrium the ground state of the plasma of Standard Model particles is determined by temperature and exactly conserved combinations of baryon and lepton numbers. We show that at non-zero values of the global charges a translation invariant and homogeneous state of the plasma becomes unstable and the system transits into a new state, containing a large-scale magnetic field. The origin of this effect is the parity-breaking character of weak interactions and chiral anomaly. This situation can occur in the early Universe and may play an important role in its subsequent evolution.

  2. Long-Range Magnetic Fields in the Ground State of the Standard Model Plasma

    Science.gov (United States)

    Boyarsky, Alexey; Ruchayskiy, Oleg; Shaposhnikov, Mikhail

    2012-09-01

    In thermal equilibrium the ground state of the plasma of Standard Model particles is determined by temperature and exactly conserved combinations of baryon and lepton numbers. We show that at nonzero values of the global charges a translation invariant and homogeneous state of the plasma becomes unstable and the system transits into a new equilibrium state, containing a large-scale magnetic field. The origin of this effect is the parity-breaking character of weak interactions and chiral anomaly. This situation could occur in the early Universe and may play an important role in its subsequent evolution.

  3. Ground state of an antiferromagnetic superconductor in the presence of a homogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Suzumura, Y.; Naji, A.D.S. (Waterloo Univ., Ontario (Canada). Dept. of Physics)

    1981-11-01

    The effect of a homogeneous magnetic field, H/sub 0/. on the ground state of an antiferromagnetic superconductor has been investigated. Assuming a one-dimensional like half-filled band, a new state has been found having gapless superconductivity and H/sub 0/-dependent order parameter. This state exists for Hsub(Q)/..delta../sub 0/ > 0.22 and when ..delta.. - Hsub(Q) <= H/sub 0/ < ..delta.. + Hsub(Q) Hsub(Q) is the staggered magnetic field, ..delta.. is the superconducting order parameter and ..delta../sub 0/ is ..delta.. in the absence of Hsub(Q) and H/sub 0/.

  4. Extended Ho\\v{r}ava Gravity with Physical Ground-State Wavefunction

    CERN Document Server

    Shu, Fu-Wen

    2010-01-01

    We propose a new extended theory of Ho\\v{r}ava gravity based on the following three conditions: (i) UV completion, (ii) healthy IR behavior and (iii) a stable vacuum state in quantized version of the theory. Compared with other extended theories, we stress that any realistic theory of gravity must have physical ground states when quantization is performed. To fulfill the three conditions, we softly break the detailed balance but keep its basic structure unchanged. It turns out that the new model constructed in this way can avoid the strong coupling problem and remains power-counting renormalizable, moreover, it has a stable vacuum state by an appropriate choice of parameters.

  5. Ground-state isolation and discrete flows in a rationally extended quantum harmonic oscillator

    CERN Document Server

    Cariñena, José F

    2016-01-01

    Ladder operators for the simplest version of a rationally extended quantum harmonic oscillator (REQHO) are constructed by applying a Darboux transformation to the quantum harmonic oscillator system. It is shown that the physical spectrum of the REQHO carries a direct sum of a trivial and an infinite-dimensional irreducible representation of the polynomially deformed bosonized osp(1|2) superalgebra. In correspondence with this the ground state of the system is isolated from other physical states but can be reached by ladder operators via non-physical energy eigenstates, which belong to either an infinite chain of similar eigenstates or to the chains with generalized Jordan states. We show that the discrete chains of the states generated by ladder operators and associated with physical energy levels include six basic generalized Jordan states, in comparison with the two basic Jordan states entering in analogous discrete chains for the quantum harmonic oscillator.

  6. Structural instability and ground state of the U{sub 2}Mo compound

    Energy Technology Data Exchange (ETDEWEB)

    Losada, E.L., E-mail: losada@cab.cnea.gov.ar [SIM" 3, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (Argentina); Garcés, J.E. [Gerencia de Investigación y Aplicaciones Nucleares, Comisión Nacional de Energía Atómica (Argentina)

    2015-11-15

    This work reports on the structural instability at T = 0 °K of the U{sub 2}Mo compound in the C11{sub b} structure under the distortion related to the C{sub 66} elastic constant. The electronic properties of U{sub 2}Mo such as density of states (DOS), bands and Fermi surface (FS) are studied to understand the source of the instability. The C11{sub b} structure can be interpreted as formed by parallel linear chains along the z-directions each one composed of successive U–Mo–U blocks. Hybridization due to electronic interactions inside the U–Mo–U blocks is slightly modified under the D{sub 6} distortion. The change in distance between chains modifies the U–U interaction and produces a split of f-states. The distorted structure is stabilized by a decrease in energy of the hybridized states, mainly between d-Mo and f-U states, together with the f-band split. Consequently, an induced Peierls distortion is produced in U{sub 2}Mo due to the D{sub 6} distortion. It is important to note that the results of this work indicate that the structure of the ground state of the U{sub 2}Mo compound is not the assumed C11{sub b} structure. It is suggested for the ground state a structure with hexagonal symmetry (P6 #168), ∼0.1 mRy below the energy of the recently proposed Pmmn structure. - Highlights: • Structural instability of the C11b compound due to the D6 deformation. • Induced Peierls distortion due to the D6 deformation. • Distorted structure is stabilized by hybridization and split of f-Uranium state. • P6 (#168) suggested ground state for the U{sub 2}Mo compound.

  7. Ground-state densities from the Rayleigh-Ritz variation principle and from density-functional theory.

    Science.gov (United States)

    Kvaal, Simen; Helgaker, Trygve

    2015-11-14

    The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.

  8. BCS Ground State and XXZ Antiferromagnetic Model as SU(2), SU(1,1) Coherent States: An Algebraic Diagonalization Method

    Institute of Scientific and Technical Information of China (English)

    XIE Bing-Hao; ZHANG Hong-Biao; CHEN Jing-Ling

    2002-01-01

    An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byusing SU(2), SU(1,1) Lie algebraic method, respectively. Meanwhile, the eigenstates of the above two models are revealedto be SU(2), SU(1,1) coherent states, respectively. The relation between the usual Bogoliubov Valatin transformationand the algebraic method in a special case is also discussed.

  9. Ground-state charge transfer as a mechanism for surface-enhanced Raman scattering

    Science.gov (United States)

    Lippitsch, Max E.

    1984-03-01

    A model is presented for the contribution of ground-state charge transfer between a metal and adsorbate to surface-enhanced Raman scattering (SERS). It is shown that this contribution can be understood using the vibronic theory for calculating Raman intensities. The enhancement is due to vibronic coupling of the molecular ground state to the metal states, the coupling mechanism being a modulation of the ground-state charge-transfer energy by the molecular vibrations. An analysis of the coupling operator gives the selection rules for this process, which turn out to be dependent on the overall symmetry of the adsorbate-metal system, even if the charge transfer is small enough for the symmetry of the adsorbate to remain the same as that of the free molecule. It is shown that the model can yield predictions on the properties of SERS, e.g., specificity to adsorption geometry, appearance of forbidden bands, dependence on the applied potential, and dependence on the excitation wavelength. The predictions are in good agreement with experimental results. It is also deduced from this model that in many cases atomic-scale roughness is a prerequisite for the observation of SERS. A result on the magnitude of the enhancement can only be given in a crude approximation. Although in most cases an additional electromagnetic enhancement seems to be necessary to give an observable signal, this charge-transfer mechanism should be important in many SERS systems.

  10. Antiferromagnetic ground state with pair-checkerboard order in FeSe

    Science.gov (United States)

    Cao, Hai-Yuan; Chen, Shiyou; Xiang, Hongjun; Gong, Xin-Gao

    2015-01-01

    A monolayer FeSe thin film grown on SrTiO3(001) (STO) shows the sign of Tc>77 K , which is higher than the Tc record of 56 K for bulk FeAs-based superconductors. However, little is known about the magnetic ground state of FeSe, which should be closely related to its unusual superconductivity. Previous studies presume the collinear stripe antiferromagnetic (AFM) state as the ground state of FeSe, the same as that in FeAs superconductors. Here we find a magnetic order named the "pair-checkerboard AFM" as the magnetic ground state of tetragonal FeSe. The pair-checkerboard order results from the interplay between the nearest-, next-nearest, and unnegligible next-next-nearest neighbor magnetic exchange couplings of Fe atoms. The monolayer FeSe in pair-checkerboard order shows an unexpected insulating behavior with a Dirac-cone-like band structure related to the specific orbital order of the dx z and dy z characters of Fe atoms, which could explain the recently observed insulator-superconductor transition. The present results cast insights on the magnetic ordering in FeSe monolayer and its derived superconductors.

  11. Nationwide outbreak of multidrug-resistant Salmonella Heidelberg infections associated with ground turkey: United States, 2011.

    Science.gov (United States)

    Routh, J A; Pringle, J; Mohr, M; Bidol, S; Arends, K; Adams-Cameron, M; Hancock, W T; Kissler, B; Rickert, R; Folster, J; Tolar, B; Bosch, S; Barton Behravesh, C; Williams, I T; Gieraltowski, L

    2015-11-01

    On 23 May 2011, CDC identified a multistate cluster of Salmonella Heidelberg infections and two multidrug-resistant (MDR) isolates from ground turkey retail samples with indistinguishable pulsed-field gel electrophoresis patterns. We defined cases as isolation of outbreak strains in persons with illness onset between 27 February 2011 and 10 November 2011. Investigators collected hypothesis-generating questionnaires and shopper-card information. Food samples from homes and retail outlets were collected and cultured. We identified 136 cases of S. Heidelberg infection in 34 states. Shopper-card information, leftover ground turkey from a patient's home containing the outbreak strain and identical antimicrobial resistance profiles of clinical and retail samples pointed to plant A as the source. On 3 August, plant A recalled 36 million pounds of ground turkey. This outbreak increased consumer interest in MDR Salmonella infections acquired through United States-produced poultry and played a vital role in strengthening food safety policies related to Salmonella and raw ground poultry.

  12. Selective formation of triplet alkyl nitrenes from photolysis of beta-azido-propiophenone and their reactivity.

    Science.gov (United States)

    Singh, Pradeep N D; Mandel, Sarah M; Sankaranarayanan, Jagadis; Muthukrishnan, Sivaramakrishnan; Chang, Mingxin; Robinson, Rachel M; Lahti, Paul M; Ault, Bruce S; Gudmundsdóttir, Anna D

    2007-12-26

    Photolysis of beta-azido propiophenone derivatives, 1, with built-in sensitizer units, leads to selective formation of triplet alkyl nitrenes 2 that were detected directly with laser flash photolysis (lambdamax = 325 nm, tau = 27 ms) and ESR spectroscopy (|D/hc| = 1.64 cm-1, |E/hc| = 0.004 cm-1). Nitrenes 2 were further characterized with argon matrix isolation, isotope labeling, and molecular modeling. The triplet alkyl nitrenes are persistent intermediates that do not abstract H-atoms from the solvent but do decay by dimerizing with another triplet nitrene to form azo products, rather than reacting with an azide precursor. The azo dimer tautomerizes and rearranges to form heterocyclic compound 3. Nitrene 2a, with an n,pi* configuration as the lowest triplet excited state of the its ketone sensitizer moiety, undergoes intramolecular 1,4-H-atom abstraction to form biradical 6, which was identified by argon matrix isolation, isotope labeling, and molecular modeling. beta-Azido-p-methoxy-propiophenone, with a pi,pi* lowest excited state of its triplet sensitizer moiety, does not undergo any secondary photoreactions but selectively yields only triplet alkyl nitrene intermediates that dimerize to form 3b.

  13. Ground States for the Schrödinger Systems with Harmonic Potential and Combined Power-Type Nonlinearities

    Directory of Open Access Journals (Sweden)

    Baiyu Liu

    2014-01-01

    Full Text Available We consider a class of coupled nonlinear Schrödinger systems with potential terms and combined power-type nonlinearities. We establish the existence of ground states, by using a variational method. As an application, some symmetry results for ground states of Schrödinger systems with harmonic potential terms are obtained.

  14. Properties of the ground state in a spin-2 transverse Ising model with the presence of a crystal field

    Institute of Scientific and Technical Information of China (English)

    姜伟; 魏国柱; 杜安; 张起

    2002-01-01

    The properties of the ground state in the spin-2 transverse Ising model with the presence of a crystal field arestudied by using the effective-field theory with correlations. The longitudinal and transverse magnetizations, the phasediagram and the internal energy in the ground state are given numerically for a honeycomb lattice (z=3).

  15. Properties of the ground state in a spin—2 transverse Ising model with the presence of a srystal field

    Institute of Scientific and Technical Information of China (English)

    姜伟; 魏国柱; 等

    2002-01-01

    The properties of the ground state in the spin-2 transverse Ising model with the presence of a crystal of a crystal field are studied by using the effective-field theory with correlations,The longitudinal and transverse magnetizations,the phase diagram and the internal energy in the ground state are given numerically for a honeycomb lattice(z=3).

  16. Competing ground states of strongly correlated bosons in the Harper-Hofstadter-Mott model

    Science.gov (United States)

    Natu, Stefan S.; Mueller, Erich J.; Das Sarma, S.

    2016-06-01

    Using an efficient cluster approach, we study the physics of two-dimensional lattice bosons in a strong magnetic field in the regime where the tunneling is much weaker than the on-site interaction strength. We study both the dilute, hard-core bosons at filling factors much smaller than unity occupation per site and the physics in the vicinity of the superfluid-Mott lobes as the density is tuned away from unity. For hard-core bosons, we carry out extensive numerics for a fixed flux per plaquette ϕ =1 /5 and ϕ =1 /3 . At large flux, the lowest-energy state is a strongly correlated superfluid, analogous to He-4, in which the order parameter is dramatically suppressed, but nonzero. At filling factors ν =1 /2 ,1 , we find competing incompressible states which are metastable. These appear to be commensurate density wave states. For small flux, the situation is reversed and the ground state at ν =1 /2 is an incompressible density wave solid. Here, we find a metastable lattice supersolid phase, where superfluidity and density wave order coexist. We then perform careful numerical studies of the physics near the vicinity of the Mott lobes for ϕ =1 /2 and ϕ =1 /4 . At ϕ =1 /2 , the superfluid ground state has commensurate density wave order. At ϕ =1 /4 , incompressible phases appear outside the Mott lobes at densities n =1.125 and n =1.25 , corresponding to filling fractions ν =1 /2 and 1, respectively. These phases, which are absent in single-site mean-field theory, are metastable and have slightly higher energy than the superfluid, but the energy difference between them shrinks rapidly with increasing cluster size, suggestive of an incompressible ground state. We thus explore the interplay between Mott physics, magnetic Landau levels, and superfluidity, finding a rich phase diagram of competing compressible and incompressible states.

  17. Ground Water Atlas of the United States: Segment 1, California, Nevada

    Science.gov (United States)

    Planert, Michael; Williams, John S.

    1995-01-01

    California and Nevada compose Segment 1 of the Ground Water Atlas of the United States. Segment 1 is a region of pronounced physiographic and climatic contrasts. From the Cascade Mountains and the Sierra Nevada of northern California, where precipitation is abundant, to the Great Basin in Nevada and the deserts of southern California, which have the most arid environments in the United States, few regions exhibit such a diversity of topography or environment. Since the discovery of gold in the mid-1800's, California has experienced a population, industrial, and agricultural boom unrivaled by that of any other State. Water needs in California are very large, and the State leads the United States in agricultural and municipal water use. The demand for water exceeds the natural water supply in many agricultural and nearly all urban areas. As a result, water is impounded by reservoirs in areas of surplus and transported to areas of scarcity by an extensive network of aqueducts. Unlike California, which has a relative abundance of water, development in Nevada has been limited by a scarcity of recoverable freshwater. The Truckee, the Carson, the Walker, the Humboldt, and the Colorado Rivers are the only perennial streams of significance in the State. The individual basin-fill aquifers, which together compose the largest known ground-water reserves, receive little annual recharge and are easily depleted. Nevada is sparsely populated, except for the Las Vegas, the Reno-Sparks, and the Carson City areas, which rely heavily on imported water for public supplies. Although important to the economy of Nevada, agriculture has not been developed to the same degree as in California due, in large part, to a scarcity of water. Some additional ground-water development might be possible in Nevada through prudent management of the basin-fill aquifers and increased utilization of ground water in the little-developed carbonate-rock aquifers that underlie the eastern one-half of the State

  18. Construction of the ground state in nonrelativistic QED by continuous flows

    Science.gov (United States)

    Bach, Volker; Könenberg, Martin

    For a nonrelativistic hydrogen atom minimally coupled to the quantized radiation field we construct the ground state projection P by a continuous approximation scheme as an alternative to the iteration scheme recently used by Fröhlich, Pizzo, and the first author [V. Bach, J. Fröhlich, A. Pizzo, Infrared-finite algorithms in QED: The groundstate of an atom interacting with the quantized radiation field, Comm. Math. Phys. (2006), doi: 10.1007/s00220-005-1478-3]. That is, we construct P=limP as the limit of a continuously differentiable family ()t⩾0 of ground state projections of infrared regularized Hamiltonians H. Using the ODE solved by this family of projections, we show that the norm ‖P‖ of their derivative is integrable in t which in turn yields the convergence of P by the fundamental theorem of calculus.

  19. Ground State Properties of New Element Z = 113 and Its Alpha Decay Chain

    Institute of Scientific and Technical Information of China (English)

    TAI Fei; CHEN Ding-Han; XU Chang; REN Zhong-Zhou

    2005-01-01

    @@ We investigate the ground state properties of the new element 278113 and of the α-decay chain with different models, where the new element Z = 113 has been produced at RIKEN in Japan by cold-fusion reaction [Morita et al.J.Phys.Soc.Jpn.73 (2004) 2593].The experimental decay energies are reproduced by the deformed relativistic mean-field model, by the Skyrme-Hartree-Fock (SHF) model, and by the macroscopic-microscopic model.Theoretical half-lives also reasonably agree with the data.Calculations further show that prolate deformation is important for the ground states of the nuclei in the α-decay chain of 278113.The common points and differences among different models are compared and discussed.

  20. Electromagnetically-induced-transparency ground-state cooling of long ion strings

    Science.gov (United States)

    Lechner, Regina; Maier, Christine; Hempel, Cornelius; Jurcevic, Petar; Lanyon, Ben P.; Monz, Thomas; Brownnutt, Michael; Blatt, Rainer; Roos, Christian F.

    2016-05-01

    Electromagnetically-induced-transparency (EIT) cooling is a ground-state cooling technique for trapped particles. EIT offers a broader cooling range in frequency space compared to more established methods. In this work, we experimentally investigate EIT cooling in strings of trapped atomic ions. In strings of up to 18 ions, we demonstrate simultaneous ground-state cooling of all radial modes in under 1 ms. This is a particularly important capability in view of emerging quantum simulation experiments with large numbers of trapped ions. Our analysis of the EIT cooling dynamics is based on a technique enabling single-shot measurements of phonon numbers, by rapid adiabatic passage on a vibrational sideband of a narrow transition.