WorldWideScience

Sample records for ground state reaction

  1. Probing the 8He ground state via the 8He(p,t)6He reaction

    International Nuclear Information System (INIS)

    Keeley, N.; Skaza, F.; Lapoux, V.; Alamanos, N.; Auger, F.; Beaumel, D.; Becheva, E.; Blumenfeld, Y.; Delaunay, F.; Drouart, A.; Gillibert, A.; Giot, L.; Kemper, K.W.; Nalpas, L.; Pakou, A.; Pollacco, E.C.; Raabe, R.; Roussel-Chomaz, P.; Rusek, K.; Scarpaci, J.-A.; Sida, J.-L.; Stepantsov, S.; Wolski, R.

    2007-01-01

    The weakly-bound 8 He nucleus exhibits a neutron halo or thick neutron skin and is generally considered to have an α+4n structure in its ground state, with the four valence neutrons each occupying 1p 3/2 states outside the α core. The 8 He(p,t) 6 He reaction is a sensitive probe of the ground state structure of 8 He, and we present a consistent analysis of new and existing data for this reaction at incident energies of 15.7 and 61.3A MeV, respectively. Our results are incompatible with the usual assumption of a pure (1p 3/2 ) 4 structure and suggest that other configurations such as (1p 3/2 ) 2 (1p 1/2 ) 2 may be present with significant probability in the ground state wave function of 8 He

  2. State-to-state quantum dynamics of the F + HCl (vi = 0, ji = 0) → HF(vf, jf) + Cl reaction on the ground state potential energy surface.

    Science.gov (United States)

    Li, Anyang; Guo, Hua; Sun, Zhigang; Kłos, Jacek; Alexander, Millard H

    2013-10-07

    The state-to-state reaction dynamics of the title reaction is investigated on the ground electronic state potential energy surface using two quantum dynamical methods. The results obtained using the Chebyshev real wave packet method are in excellent agreement with those obtained using the time-independent method, except at low translational energies. It is shown that this exothermic hydrogen abstraction reaction is direct, resulting in a strong back-scattered bias in the product angular distribution. The HF product is highly excited internally. Agreement with available experimental data is only qualitative. We discuss several possible causes of disagreement with experiment.

  3. Reactions of Ground State Nitrogen Atoms N(4S) with Astrochemically-Relevant Molecules on Interstellar Dusts

    Science.gov (United States)

    Krim, Lahouari; Nourry, Sendres

    2015-06-01

    In the last few years, ambitious programs were launched to probe the interstellar medium always more accurately. One of the major challenges of these missions remains the detection of prebiotic compounds and the understanding of reaction pathways leading to their formation. These complex heterogeneous reactions mainly occur on icy dust grains, and their studies require the coupling of laboratory experiments mimicking the extreme conditions of extreme cold and dilute media. For that purpose, we have developed an original experimental approach that combine the study of heterogeneous reactions (by exposing neutral molecules adsorbed on ice to non-energetic radicals H, OH, N...) and a neon matrix isolation study at very low temperatures, which is of paramount importance to isolate and characterize highly reactive reaction intermediates. Such experimental approach has already provided answers to many questions raised about some astrochemically-relevant reactions occurring in the ground state on the surface of dust grain ices in dense molecular clouds. The aim of this new present work is to show the implication of ground state atomic nitrogen on hydrogen atom abstraction reactions from some astrochemically-relevant species, at very low temperatures (3K-20K), without providing any external energy. Under cryogenic temperatures and with high barrier heights, such reactions involving N(4S) nitrogen atoms should not occur spontaneously and require an initiating energy. However, the detection of some radicals species as byproducts, in our solid samples left in the dark for hours at 10K, proves that hydrogen abstraction reactions involving ground state N(4S) nitrogen atoms may occur in solid phase at cryogenic temperatures. Our results show the efficiency of radical species formation stemming from non-energetic N-atoms and astrochemically-relevant molecules. We will then discuss how such reactions, involving nitrogen atoms in their ground states, might be the first key step

  4. Measurement of the rates of reaction of the ground and metastable excited states of 02+, N0+ and 0+ with atmospheric gases at thermal energy

    International Nuclear Information System (INIS)

    Glosik, J.; Rakshit, A.B.; Twiddy, N.D.; Adams, N.G.; Smith, D.

    1978-01-01

    Thermal-energy reaction rate coefficients and product ion distributions have been measured for reactions of both the ground state and metastable electronic states of 0 2 + , N0 + and 0 + with several neutral species, using a selected-ion flow tube. In general the excited-ion reaction rates are fast, frequently approaching the Langevin limit. Collisional quenching occurs for the reactions of N0 + sup(star) with N 2 ,0 2 and H 2 and the quenching rates have been determined. The ion source also provided a substantial yield of doubly charged 0 2 permitting some measurements of reaction rates of 0 2 2+ . (author)

  5. Graphene ground states

    Science.gov (United States)

    Friedrich, Manuel; Stefanelli, Ulisse

    2018-06-01

    Graphene is locally two-dimensional but not flat. Nanoscale ripples appear in suspended samples and rolling up often occurs when boundaries are not fixed. We address this variety of graphene geometries by classifying all ground-state deformations of the hexagonal lattice with respect to configurational energies including two- and three-body terms. As a consequence, we prove that all ground-state deformations are either periodic in one direction, as in the case of ripples, or rolled up, as in the case of nanotubes.

  6. Ground states of molecules. XLIX. MINDO/3 study of the retro-diels-alder reaction of cyclohexene

    International Nuclear Information System (INIS)

    Dewar, M.J.S.; Olivella, S.; Rzepa, H.S.

    1978-01-01

    The retro-Diels-Alder reaction of cyclohexene to form ethylene and butadiene has been studied, using MINDO/3. The transition state is predicted to be very unsymmetric, corresponding to weakening of one of the two breaking CC bonds. The calculated entropy of activation agrees well with experiment and the calculated secondary isotope effects for 4,4-dideuteriocyclohexene and 4,4,5,5-tetradeuteriocyclohexene are similar to those measured for an analogous reaction by Taagepera and Thornton. Discrepancies between the conclusions reached here and those from recent ab-initio calculations are discussed. 4 tables, 3 figures, 53 references

  7. Nuclear ground state

    International Nuclear Information System (INIS)

    Negele, J.W.

    1975-01-01

    The nuclear ground state is surveyed theoretically, and specific suggestions are given on how to critically test the theory experimentally. Detailed results on 208 Pb are discussed, isolating several features of the charge density distributions. Analyses of 208 Pb electron scattering and muonic data are also considered. 14 figures

  8. Singlet Ground State Magnetism:

    DEFF Research Database (Denmark)

    Loidl, A.; Knorr, K.; Kjems, Jørgen

    1979-01-01

    The magneticGamma 1 –Gamma 4 exciton of the singlet ground state system TbP has been studied by inelastic neutron scattering above the antiferromagnetic ordering temperature. Considerable dispersion and a pronounced splitting was found in the [100] and [110] directions. Both the band width...

  9. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, Jie; Li, Xiao-Ping; Sessler, A.M.

    1993-01-01

    In order to employ Molecular Dynamics method, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  10. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, Jie; Li, Xiao-Ping

    1993-01-01

    In order to employ molecular dynamics (MD) methods, commonly used in condensed matter physics, we have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. We include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations using MD methods has been performed to obtain the equilibrium crystalline beam structure. The effect of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Schiffer et al. depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  11. Crystalline beam ground state

    International Nuclear Information System (INIS)

    Wei, J.; Li, X.P.

    1993-01-01

    In order to employ the Molecular Dynamics method, commonly used in condensed matter physics, the authors have derived the equations of motion for a beam of charged particles in the rotating rest frame of the reference particle. They include in the formalism that the particles are confined by the guiding and focusing magnetic fields, and that they are confined in a conducting vacuum pipe while interacting with each other via a Coulomb force. Numerical simulations has been performed to obtain the equilibrium structure. The effects of the shearing force, centrifugal force, and azimuthal variation of the focusing strength are investigated. It is found that a constant gradient storage ring can not give a crystalline beam, but that an alternating-gradient (AG) structure can. In such a machine the ground state is, except for one-dimensional (1-D) crystals, time-dependent. The ground state is a zero entropy state, despite the time-dependent, periodic variation of the focusing force. The nature of the ground state, similar to that found by Rahman and Schiffer, depends upon the density and the relative focusing strengths in the transverse directions. At low density, the crystal is 1-D. As the density increases, it transforms into various kinds of 2-D and 3-D crystals. If the energy of the beam is higher than the transition energy of the machine, the crystalline structure can not be formed for lack of radial focusing

  12. Ground-state correlations in 12C and the mechanism of the (e,e'p) reaction

    International Nuclear Information System (INIS)

    Steenhoven, G. van der.

    1987-01-01

    In this thesis the results of an investigation into two aspects of the mechanism of the quasi-elastic (e,e'p) reaction: the interaction between the incident electron and the bound proton and the residual nucleus (final-state interaction (FSI)), are presented and used in the extraction of nuclear-structure information from (e,e'p) measurements on 12 C. The experiments were carried out at NIKHEF-K with a high-resolution spectrometer. Two kinds of experiments have been performed on 12 C. The first was aimed at obtaining accurate momentum distributions for various final states in 11 B. Some special measurements were carried out in order to vary the parameters influencing the FSI. The role of coupled-channels effects in the 12 C(e,e'p) 11 Be reaction is discussed. It is discussed whether some of the weak transitions observed in this reaction, can be associated with knockout from normally unoccupied shell-model orbitals. The second experiment on 12 C was devoted to the e-p coupling. These measurements were supplemented with data taken on 6 Li. The latter measurement allowed for measuring simultaneously knockout from the relatively dense 4 He core and the relatively dilute deuteron. In this way the density dependence of the e-p coupling in the nucleus could be studied. The results of these experiments have been compared to various models that take into account the effect of the nuclear medium upon the e-p coupling. The possible role of charge-exchange and meson-exchange currents in the interpretation of these experiments is also considered. A brief survey of the formalism of the quasi-elastic (e,e'p) reaction is also presented. (author). 196 refs.; 53 figs.; 21 tabs

  13. Ambulatory Measurement of Ground Reaction Forces

    NARCIS (Netherlands)

    Veltink, Peter H.; Liedtke, Christian; Droog, Ed

    2004-01-01

    The measurement of ground reaction forces is important in the biomechanical analysis of gait and other motor activities. It is the purpose of this study to show the feasibility of ambulatory measurement of ground reaction forces using two six degrees of freedom sensors mounted under the shoe. One

  14. Experimental and theoretical studies of the reactions of ground-state sulfur atoms with hydrogen and deuterium

    Science.gov (United States)

    Thompson, Kristopher M.; Gao, Yide; Marshall, Paul; Wang, Han; Zhou, Linsen; Li, Yongle; Guo, Hua

    2017-10-01

    The gas-phase kinetics of S(3P) atoms with H2 and D2 have been studied via the laser flash photolysis—resonance fluorescence technique. S atoms were generated by pulsed photolysis of CS2 at 193 nm and monitored by time-resolved fluorescence at 181 nm. The rate coefficients for H2 (k1) and D2 (k2), respectively, are summarized as k1(600-1110 K) = 3.0 × 10-9 exp(-1.317/×105-2.703 ×107K /T 8.314 T /K ) cm3 molecule-1 s-1 and k2(770-1110 K) = 2.2 × 10-14 (T/298 K)3.55 exp(-5420 K/T) cm3 molecule-1 s-1. Error limits are discussed in the text. The rate coefficients for formation of SH(SD) + H(D) on a newly developed triplet potential energy surface were characterized via ring polymer molecular dynamics and canonical variational transition-state theory. There is excellent agreement above about 1000 K between theory and experiment. At lower temperatures, the experimental rate coefficient is substantially larger than the results computed for the adiabatic reaction, suggesting a significant role for intersystem crossing to the singlet potential energy surface at lower temperatures.

  15. Ground-state and isomeric-state cross sections for the {sup 138}Ce(n,2n){sup 137}Ce reaction from its threshold to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Junhua [Hexi Univ., Zhangye (China). Inst. of Theoretical Physics; Hexi Univ., Zhangye (China). School of Physics and Electromechanical Engineering; An, Li; Jiang, Li [Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry

    2015-07-01

    The cross sections of the {sup 138}Ce(n,2n){sup 137}Ce reactions and their isomeric cross section ratios σ{sub m}/σ{sub g} were measured at three neutron energies between 13.5 and 14.8 MeV using the activation technique. CeO{sub 2} samples and Nb monitor foils were activated together to determine the reaction cross section and the incident neutron flux. The monoenergetic neutron beams were formed via the {sup 3}H(d,n){sup 4}He reaction. The activities induced in the reaction products were measured using high-resolution γ-ray spectroscopy. The pure cross section of the ground-state was derived from the absolute cross section of the metastable state and the residual nuclear decay analysis. The cross sections were also estimated using the nuclear model code, TALYS-1.6 with different level density options at neutron energies varying from the reaction threshold to 20 MeV. Results are discussed and compared with the corresponding literature data.

  16. Equilibrium constants in aqueous lanthanide and actinide chemistry from time-resolved fluorescence spectroscopy: The role of ground and excited state reactions

    International Nuclear Information System (INIS)

    Billard, I.; Luetzenkirchen, K.

    2003-01-01

    Equilibrium constants for aqueous reactions between lanthanide or actinide ions and (in-) organic ligands contain important information for various radiochemical problems, such as nuclear reprocessing or the migration of radioelements in the geosphere. We study the conditions required to determine equilibrium constants by time-resolved fluorescence spectroscopy measurements. Based on a simulation study it is shown that the possibility to determine equilibrium constants depends upon the reaction rates in the photoexcited states of the lanthanide or actinide ions. (orig.)

  17. Ground states of quantum spin systems

    International Nuclear Information System (INIS)

    Bratteli, Ola; Kishimoto, Akitaka; Robinson, D.W.

    1978-07-01

    The authors prove that ground states of quantum spin systems are characterized by a principle of minimum local energy and that translationally invariant ground states are characterized by the principle of minimum energy per unit volume

  18. Effect of excited states on thermonuclear reaction rates

    International Nuclear Information System (INIS)

    Sargood, D.G.

    1983-01-01

    Values of the ratio of the thermonuclear reaction rate of a reaction, with target nuclei in a thermal distribution of energy states, to the reaction rate with all target nuclei in their ground states are tabulated for neutron, proton and α-particle induced reactions on the naturally occurring nuclei from 20 Ne to 70 Zn, at temperatures of 1, 2, 3.5 and 5x10 9 K. The ratios are determined from reaction rates based on statistical model cross sections

  19. Search for C+ C clustering in Mg ground state

    Indian Academy of Sciences (India)

    2017-01-04

    Jan 4, 2017 ... Finite-range knockout theory predictions were much larger for (12C,212C) reaction, indicating a very small 12C−12C clustering in 24Mg. (g.s.) . Our present results contradict most of the proposed heavy cluster (12C+12C) structure models for the ground state of 24Mg. Keywords. Direct nuclear reactions ...

  20. Search for the QCD ground state

    International Nuclear Information System (INIS)

    Reuter, M.; Wetterich, C.

    1994-05-01

    Within the Euclidean effective action approach we propose criteria for the ground state of QCD. Despite a nonvanishing field strength the ground state should be invariant with respect to modified Poincare transformations consisting of a combination of translations and rotations with suitable gauge transformations. We have found candidate states for QCD with four or more colours. The formation of gluon condensates shows similarities with the Higgs phenomenon. (orig.)

  1. Relationships between ground reaction impulse and sprint acceleration performance in team sport athletes.

    Science.gov (United States)

    Kawamori, Naoki; Nosaka, Kazunori; Newton, Robert U

    2013-03-01

    Large horizontal acceleration in short sprints is a critical performance parameter for many team sport athletes. It is often stated that producing large horizontal impulse at each ground contact is essential for high short sprint performance, but the optimal pattern of horizontal and vertical impulses is not well understood, especially when the sprints are initiated from a standing start. This study was an investigation of the relationships between ground reaction impulses and sprint acceleration performance from a standing start in team sport athletes. Thirty physically active young men with team sport background performed 10-m sprint from a standing start, whereas sprint time and ground reaction forces were recorded during the first ground contact and at 8 m from the start. Associations between sprint time and ground reaction impulses (normalized to body mass) were determined by a Pearson's correlation coefficient (r) analysis. The 10-m sprint time was significantly (p < 0.01) correlated with net horizontal impulse (r = -0.52) and propulsive impulse (r = -0.66) measured at 8 m from the start. No significant correlations were found between sprint time and impulses recorded during the first ground contact after the start. These results suggest that applying ground reaction impulse in a more horizontal direction is important for sprint acceleration from a standing start. This is consistent with the hypothesis of training to increase net horizontal impulse production using sled towing or using elastic resistance devices, which needs to be validated by future longitudinal training studies.

  2. Cavity optomechanics -- beyond the ground state

    Science.gov (United States)

    Meystre, Pierre

    2011-05-01

    The coupling of coherent optical systems to micromechanical devices, combined with breakthroughs in nanofabrication and in ultracold science, has opened up the exciting new field of cavity optomechanics. Cooling of the vibrational motion of a broad range on oscillating cantilevers and mirrors near their ground state has been demonstrated, and the ground state of at least one such system has now been reached. Cavity optomechanics offers much promise in addressing fundamental physics questions and in applications such as the detection of feeble forces and fields, or the coherent control of AMO systems and of nanoscale electromechanical devices. However, these applications require taking cavity optomechanics ``beyond the ground state.'' This includes the generation and detection of squeezed and other non-classical states, the transfer of squeezing between electromagnetic fields and motional quadratures, and the development of measurement schemes for the characterization of nanomechanical structures. The talk will present recent ``beyond ground state'' developments in cavity optomechanics. We will show how the magnetic coupling between a mechanical membrane and a BEC - or between a mechanical tuning fork and a nanoscale cantilever - permits to control and monitor the center-of-mass position of the mechanical system, and will comment on the measurement back-action on the membrane motion. We will also discuss of state transfer between optical and microwave fields and micromechanical devices. Work done in collaboration with Dan Goldbaum, Greg Phelps, Keith Schwab, Swati Singh, Steve Steinke, Mehmet Tesgin, and Mukund Vengallatore and supported by ARO, DARPA, NSF, and ONR.

  3. Thermodynamic Ground States of Complex Oxide Heterointerfaces

    DEFF Research Database (Denmark)

    Gunkel, F.; Hoffmann-Eifert, S.; Heinen, R. A.

    2017-01-01

    The formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature...

  4. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 3 presents essays on the chemical generation of excited states; the cis-trans isomerization of olefins; and the photochemical rearrangements in trienes. The book also includes essays on the zimmerman rearrangements; the photochemical rearrangements of enones; the photochemical rearrangements of conjugated cyclic dienones; and the rearrangements of the benzene ring. Essays on the photo rearrangements via biradicals of simple carbonyl compounds; the photochemical rearrangements involving three-membered rings or five-membered ring heterocycles;

  5. Magnetic properties of singlet ground state systems

    International Nuclear Information System (INIS)

    Diederix, K.M.

    1979-01-01

    Experiments are described determining the properties of a magnetic system consisting of a singlet ground state. Cu(NO 3 ) 2 .2 1/2H 2 O has been studied which is a system of S = 1/2 alternating antiferromagnetic Heisenberg chains. The static properties, spin lattice relaxation time and field-induced antiferromagnetically ordered state measurements are presented. Susceptibility and magnetic cooling measurements of other compounds are summarised. (Auth.)

  6. Trapping cold ground state argon atoms.

    Science.gov (United States)

    Edmunds, P D; Barker, P F

    2014-10-31

    We trap cold, ground state argon atoms in a deep optical dipole trap produced by a buildup cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of cotrapped metastable argon atoms and determine an elastic cross section. Using a type of parametric loss spectroscopy we also determine the polarizability of the metastable 4s[3/2](2) state to be (7.3±1.1)×10(-39)  C m(2)/V. Finally, Penning and associative losses of metastable atoms in the absence of light assisted collisions, are determined to be (3.3±0.8)×10(-10)  cm(3) s(-1).

  7. RPA ground state correlations in nuclei

    International Nuclear Information System (INIS)

    Lenske, H.

    1990-01-01

    Overcounting in the RPA theory of ground state correlations is shown to be avoided if exact rather than quasiboson commutators are used. Single particle occupation probabilities are formulated in a compact way by the RPA Green function. Calculations with large configuration spaces and realistic interactions are performed with 1p1h RPA and second RPA (SRPA) including 2p2h mixing in excited states. In 41 Ca valence hole states are found to be quenched by about 10% in RPA and up to 18% in SRPA. Contributions from low and high lying excitations and their relation to long and short range correlations in finite nuclei are investigated. (orig.)

  8. Measurement of 241Am Ground State Radiative Neutron Capture Cross Section with Cold Neutron Beam. Progress Report on Research Contract HUN14318 for the CRP on Minor Actinide Neutron Reaction Data (MANREAD)

    International Nuclear Information System (INIS)

    Belgya, T.; Szentmiklosi, L.; Kis, Z.; Nagy, N.M.; Konya, J.

    2012-01-01

    The ground state cross section of 242 Am has been measured with beams of cold neutrons at the Budapest Research Reactor using the X-ray emission of the decay product of 242 Pu. This methodology avoids the uncertainty caused by resonance neutrons in the pile activations. The target was characterized with gamma and X-ray spectrometry. The obtained ground state cross section is 540 ± 32 b, which is at the low end of the most recent literature values, but agrees with most of them within their uncertainty. (author)

  9. Rearrangements in ground and excited states

    CERN Document Server

    de Mayo, Paul

    1980-01-01

    Rearrangements in Ground and Excited States, Volume 2 covers essays on the theoretical approach of rearrangements; the rearrangements involving boron; and the molecular rearrangements of organosilicon compounds. The book also includes essays on the polytopal rearrangement at phosphorus; the rearrangement in coordination complexes; and the reversible thermal intramolecular rearrangements of metal carbonyls. Chemists and people involved in the study of rearrangements will find the book invaluable.

  10. Ground reaction forces during level ground walking with body weight unloading

    Science.gov (United States)

    Barela, Ana M. F.; de Freitas, Paulo B.; Celestino, Melissa L.; Camargo, Marcela R.; Barela, José A.

    2014-01-01

    Background: Partial body weight support (BWS) systems have been broadly used with treadmills as a strategy for gait training of individuals with gait impairments. Considering that we usually walk on level ground and that BWS is achieved by altering the load on the plantar surface of the foot, it would be important to investigate some ground reaction force (GRF) parameters in healthy individuals walking on level ground with BWS to better implement rehabilitation protocols for individuals with gait impairments. Objective: To describe the effects of body weight unloading on GRF parameters as healthy young adults walked with BWS on level ground. Method: Eighteen healthy young adults (27±4 years old) walked on a walkway, with two force plates embedded in the middle of it, wearing a harness connected to a BWS system, with 0%, 15%, and 30% BWS. Vertical and horizontal peaks and vertical valley of GRF, weight acceptance and push-off rates, and impulse were calculated and compared across the three experimental conditions. Results: Overall, participants walked more slowly with the BWS system on level ground compared to their normal walking speed. As body weight unloading increased, the magnitude of the GRF forces decreased. Conversely, weight acceptance rate was similar among conditions. Conclusions: Different amounts of body weight unloading promote different outputs of GRF parameters, even with the same mean walk speed. The only parameter that was similar among the three experimental conditions was the weight acceptance rate. PMID:25590450

  11. Ground reaction forces during level ground walking with body weight unloading

    Directory of Open Access Journals (Sweden)

    Ana M. F. Barela

    2014-12-01

    Full Text Available Background: Partial body weight support (BWS systems have been broadly used with treadmills as a strategy for gait training of individuals with gait impairments. Considering that we usually walk on level ground and that BWS is achieved by altering the load on the plantar surface of the foot, it would be important to investigate some ground reaction force (GRF parameters in healthy individuals walking on level ground with BWS to better implement rehabilitation protocols for individuals with gait impairments. Objective: To describe the effects of body weight unloading on GRF parameters as healthy young adults walked with BWS on level ground. Method: Eighteen healthy young adults (27±4 years old walked on a walkway, with two force plates embedded in the middle of it, wearing a harness connected to a BWS system, with 0%, 15%, and 30% BWS. Vertical and horizontal peaks and vertical valley of GRF, weight acceptance and push-off rates, and impulse were calculated and compared across the three experimental conditions. Results: Overall, participants walked more slowly with the BWS system on level ground compared to their normal walking speed. As body weight unloading increased, the magnitude of the GRF forces decreased. Conversely, weight acceptance rate was similar among conditions. Conclusions: Different amounts of body weight unloading promote different outputs of GRF parameters, even with the same mean walk speed. The only parameter that was similar among the three experimental conditions was the weight acceptance rate.

  12. Ground state searches in fcc intermetallics

    International Nuclear Information System (INIS)

    Wolverton, C.; de Fontaine, D.; Ceder, G.; Dreysse, H.

    1991-12-01

    A cluster expansion is used to predict the fcc ground states, i.e., the stable phases at zero Kelvin as a function of composition, for alloy systems. The intermetallic structures are not assumed, but derived regorously by minimizing the configurational energy subject to linear constraints. This ground state search includes pair and multiplet interactions which spatially extend to fourth nearest neighbor. A large number of these concentration-independent interactions are computed by the method of direct configurational averaging using a linearized-muffin-tin orbital Hamiltonian cast into tight binding form (TB-LMTO). The interactions, derived without the use of any adjustable or experimentally obtained parameters, are compared to those calculated via the generalized perturbation method extention of the coherent potential approximation within the context of a KKR Hamiltonian (KKR-CPA-GPM). Agreement with the KKR-CPA-GPM results is quite excellent, as is the comparison of the ground state results with the fcc-based portions of the experimentally-determined phase diagrams under consideration

  13. 66Ga ground state β spectrum

    DEFF Research Database (Denmark)

    Severin, Gregory; Knutson, L. D.; Voytas, P. A.

    2014-01-01

    The ground state branch of the β decay of 66Ga is an allowed Fermi (0+ → 0+) transition with a relatively high f t value. The large f t and the isospin-forbidden nature of the transition indicates that the shape of the β spectrum of this branch may be sensitive to higher order contributions...... to the decay. Two previous measurements of the shape have revealed deviations from an allowed spectrum but disagree about whether the shape factor has a positive or negative slope. As a test of a new iron-free superconducting β spectrometer, we have measured the shape of the ground state branch of the 66Ga β...... spectrum above a positron energy of 1.9 MeV. The spectrum is consistent with an allowed shape, with the slope of the shape factor being zero to within ±3 × 10−3 per MeV. We have also determined the endpoint energy for the ground state branch to be 4.1535 ± 0.0003 (stat.) ±0.0007 (syst.) MeV, in good...

  14. Ground Reaction Forces During Reduced Gravity Running in Parabolic Flight.

    Science.gov (United States)

    Cavanagh, Peter; Rice, Andrea; Glauberman, Molly; Sudduth, Amanda; Cherones, Arien; Davis, Shane; Lewis, Michael; Hanson, Andrea; Wilt, Grier

    2017-08-01

    Treadmills have been employed as both a form of exercise and a countermeasure to prevent changes in the musculoskeletal system on almost all NASA missions and many Russian missions since the early Space Shuttle flights. It is possible that treadmills may also be part of exercise programs on future Mars missions and that they may be a component of exercise facilities in lunar or Martian habitats. In order to determine if the ambient gravity on these destinations will provide osteogenic effects while performing exercise on a treadmill, ground reactions forces (GRFs) were measured on eight subjects (six women and two men) running at 6 mph during parabolic flight in Martian and lunar gravity conditions. On average, stride length increased as gravity decreased. The first and second peaks of the GRFs decreased by 0.156 and 0.196 bodyweights, respectively, per 1/10 g change in ambient gravity. Based on comparisons with previously measured GRF during loaded treadmill running on the International Space Station, we conclude that unloaded treadmill running under lunar and Martian conditions during exploration missions is not likely to be an osteo-protective exercise.Cavanagh P, Rice A, Glauberman M, Sudduth A, Cherones A, Davis S, Lewis M, Hanson A, Wilt G. Ground reaction forces during reduced gravity running in parabolic flight. Aerosp Med Hum Perform. 2017; 88(8):730-736.

  15. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running.

    Science.gov (United States)

    Jung, Yihwan; Jung, Moonki; Ryu, Jiseon; Yoon, Sukhoon; Park, Sang-Kyoon; Koo, Seungbum

    2016-03-01

    Human dynamic models have been used to estimate joint kinetics during various activities. Kinetics estimation is in demand in sports and clinical applications where data on external forces, such as the ground reaction force (GRF), are not available. The purpose of this study was to estimate the GRF during gait by utilizing distance- and velocity-dependent force models between the foot and ground in an inverse-dynamics-based optimization. Ten males were tested as they walked at four different speeds on a force plate-embedded treadmill system. The full-GRF model whose foot-ground reaction elements were dynamically adjusted according to vertical displacement and anterior-posterior speed between the foot and ground was implemented in a full-body skeletal model. The model estimated the vertical and shear forces of the GRF from body kinematics. The shear-GRF model with dynamically adjustable shear reaction elements according to the input vertical force was also implemented in the foot of a full-body skeletal model. Shear forces of the GRF were estimated from body kinematics, vertical GRF, and center of pressure. The estimated full GRF had the lowest root mean square (RMS) errors at the slow walking speed (1.0m/s) with 4.2, 1.3, and 5.7% BW for anterior-posterior, medial-lateral, and vertical forces, respectively. The estimated shear forces were not significantly different between the full-GRF and shear-GRF models, but the RMS errors of the estimated knee joint kinetics were significantly lower for the shear-GRF model. Providing COP and vertical GRF with sensors, such as an insole-type pressure mat, can help estimate shear forces of the GRF and increase accuracy for estimation of joint kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ground states of a spin-boson model

    International Nuclear Information System (INIS)

    Amann, A.

    1991-01-01

    Phase transition with respect to ground states of a spin-boson Hamiltonian are investigated. The spin-boson model under discussion consists of one spin and infinitely many bosons with a dipole-type coupling. It is shown that the order parameter of the model vanishes with respect to arbitrary ground states if it vanishes with respect to ground states obtained as (biased) temperature to zero limits of thermic equilibrium states. The ground states of the latter special type have been investigated by H. Spohn. Spohn's respective phase diagrams are therefore valid for arbitrary ground states. Furthermore, disjointness of ground states in the broken symmetry regime is examined

  17. Three-Axis Ground Reaction Force Distribution during Straight Walking.

    Science.gov (United States)

    Hori, Masataka; Nakai, Akihito; Shimoyama, Isao

    2017-10-24

    We measured the three-axis ground reaction force (GRF) distribution during straight walking. Small three-axis force sensors composed of rubber and sensor chips were fabricated and calibrated. After sensor calibration, 16 force sensors were attached to the left shoe. The three-axis force distribution during straight walking was measured, and the local features of the three-axis force under the sole of the shoe were analyzed. The heel area played a role in receiving the braking force, the base area of the fourth and fifth toes applied little vertical or shear force, the base area of the second and third toes generated a portion of the propulsive force and received a large vertical force, and the base area of the big toe helped move the body's center of mass to the other foot. The results demonstrate that measuring the three-axis GRF distribution is useful for a detailed analysis of bipedal locomotion.

  18. A Model Ground State of Polyampholytes

    International Nuclear Information System (INIS)

    Wofling, S.; Kantor, Y.

    1998-01-01

    The ground state of randomly charged polyampholytes (polymers with positive and negatively charged groups along their backbone) is conjectured to have a structure similar to a necklace, made of weakly charged parts of the chain, compacting into globules, connected by highly charged stretched 'strings' attempted to quantify the qualitative necklace model, by suggesting a zero approximation model, in which the longest neutral segment of the polyampholyte forms a globule, while the remaining part will form a tail. Expanding this approximation, we suggest a specific necklace-type structure for the ground state of randomly charged polyampholyte's, where all the neutral parts of the chain compact into globules: The longest neutral segment compacts into a globule; in the remaining part of the chain, the longest neutral segment (the second longest neutral segment) compacts into a globule, then the third, and so on. A random sequence of charges is equivalent to a random walk, and a neutral segment is equivalent to a loop inside the random walk. We use analytical and Monte Carlo methods to investigate the size distribution of loops in a one-dimensional random walk. We show that the length of the nth longest neutral segment in a sequence of N monomers (or equivalently, the nth longest loop in a random walk of N steps) is proportional to N/n 2 , while the mean number of neutral segments increases as √N. The polyampholytes in the ground state within our model is found to have an average linear size proportional to dN, and an average surface area proportional to N 2/3

  19. Spectroscopic factor of the 7He ground state

    International Nuclear Information System (INIS)

    Beck, F.; Frekers, D.; Neumann-Cosel, P. von; Richter, A.; Ryezayeva, N.; Thompson, I.J.

    2007-01-01

    The neutron spectroscopic factor S n of the 7 He ground state is extracted from an R-matrix analysis of a recent measurement of the 7 Li(d, 2 He) 7 He reaction with good energy resolution. The width extracted from a deconvolution of the spectrum is Γ=183(22) keV (full width at half maximum, FWHM). The result S n =0.64(9) is slightly larger than predictions of recent 'ab initio' Green's function Monte Carlo and fermionic molecular dynamics calculations

  20. Variational Monte Carlo calculations of nuclear ground states

    International Nuclear Information System (INIS)

    Wiringa, R.B.

    1990-01-01

    A major goal in nuclear physics is to understand how nuclear structure comes about from the underlying interactions between nucleons. This requires modelling nuclei as collections of strongly interacting nucleons. We start with realistic nucleon-nucleon potentials, supplemented with consistent three-nucleon potentials and two-body electroweak current operators, and try to predict nuclear ground properties, such as the binding energy, density and momentum distributions, and electromagnetic form factors. We also seek to predict other properties of nuclei such as excited states and low-energy reactions. 21 refs., 14 figs., 5 tabs

  1. Ground-state structures of Hafnium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Wei Chun; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technoloty, Multimedia University, Melaca Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Hafnium (Hf) is a very large tetra-valence d-block element which is able to form relatively long covalent bond. Researchers are interested to search for substitution to silicon in the semi-conductor industry. We attempt to obtain the ground-state structures of small Hf clusters at both empirical and density-functional theory (DFT) levels. For calculations at the empirical level, charge-optimized many-body functional potential (COMB) is used. The lowest-energy structures are obtained via a novel global-minimum search algorithm known as parallel tempering Monte-Carlo Basin-Hopping and Genetic Algorithm (PTMBHGA). The virtue of using COMB potential for Hf cluster calculation lies in the fact that by including the charge optimization at the valence shells, we can encourage the formation of proper bond hybridization, and thus getting the correct bond order. The obtained structures are further optimized using DFT to ensure a close proximity to the ground-state.

  2. System of gait analysis based on ground reaction force assessment

    Directory of Open Access Journals (Sweden)

    František Vaverka

    2015-12-01

    Full Text Available Background: Biomechanical analysis of gait employs various methods used in kinematic and kinetic analysis, EMG, and others. One of the most frequently used methods is kinetic analysis based on the assessment of the ground reaction forces (GRF recorded on two force plates. Objective: The aim of the study was to present a method of gait analysis based on the assessment of the GRF recorded during the stance phase of two steps. Methods: The GRF recorded with a force plate on one leg during stance phase has three components acting in directions: Fx - mediolateral, Fy - anteroposterior, and Fz - vertical. A custom-written MATLAB script was used for gait analysis in this study. This software displays instantaneous force data for both legs as Fx(t, Fy(t and Fz(t curves, automatically determines the extremes of functions and sets the visual markers defining the individual points of interest. Positions of these markers can be easily adjusted by the rater, which may be necessary if the GRF has an atypical pattern. The analysis is fully automated and analyzing one trial takes only 1-2 minutes. Results: The method allows quantification of temporal variables of the extremes of the Fx(t, Fy(t, Fz(t functions, durations of the braking and propulsive phase, duration of the double support phase, the magnitudes of reaction forces in extremes of measured functions, impulses of force, and indices of symmetry. The analysis results in a standardized set of 78 variables (temporal, force, indices of symmetry which can serve as a basis for further research and diagnostics. Conclusions: The resulting set of variable offers a wide choice for selecting a specific group of variables with consideration to a particular research topic. The advantage of this method is the standardization of the GRF analysis, low time requirements allowing rapid analysis of a large number of trials in a short time, and comparability of the variables obtained during different research measurements.

  3. Ground state of high-density matter

    Science.gov (United States)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  4. Search for 12 C+ 12 C clustering in 24 Mg ground state

    Indian Academy of Sciences (India)

    In the backdrop of many models, the heavy cluster structure of the ground state of 24 Mg has been probed experimentally for the first time using the heavy cluster knockout reaction 24 Mg( 12 C, 212 C) 12 C in thequasifree scattering kinematic domain. In the ( 12 C, 212 C) reaction, the direct 12 C-knockout cross-section was ...

  5. Is the ground state of Yang-Mills theory Coulombic?

    OpenAIRE

    Heinzl, Thomas; Ilderton, Anton; Langfeld, Kurt; Lavelle, Martin; Lutz, Wolfgang; McMullan, David

    2008-01-01

    We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-abelian Coulomb fields is found to have a good overlap with the ground state for all ch...

  6. Ground reaction force characteristics of Tai Chi push hand.

    Science.gov (United States)

    Chang, Yao-Ting; Chang, Jia-Hao; Huang, Chen-Fu

    2014-01-01

    Push Hand is an advanced training technique for the Yang-style old frame 108 forms Tai Chi Chuan. It is performed by two practitioners. To clarify how people use forces during Push Hand training, it is important to review the ground reaction force (GRF). Here, we quantify the characteristics of the GRF during Push Hand training. Kinematic data and GRF data from 10 Tai Chi Chuan practitioners (29.9 ± 7.87 years) were synchronously recorded using a three-dimensional motion analysis system (200 frames · s(-1)) and three-dimensional force plates (1000 Hz). The resultant GRF for both feet for the 0%, 50% and 100% phases of attack and defence were compared to body weight using a paired-samples t-test. The differences in the resultant GRF between the 0%, 50% and 100% phases of attack and defence were tested by one-way repeated-measures ANOVA. The significance level was set to 0.05. The total resultant GRF was almost equal to the participant's body weight in push hand. This result was consistent throughout the entire push hand process. Our results revealed that the GRF was comparable to the body weight, implying that practitioners do not push or resist their opponents during the push hand process.

  7. Ground reaction forces of Olympic and World Championship race walkers.

    Science.gov (United States)

    Hanley, Brian; Bissas, Athanassios

    2016-01-01

    Race walking is an Olympic event where no visible loss of contact should occur and the knee must be straightened until midstance. The purpose of this study was to analyse ground reaction forces of world-class race walkers and associate them with key spatiotemporal variables. Nineteen athletes race walked along an indoor track and made contact with two force plates (1000 Hz) while being filmed using high-speed videography (100 Hz). Race walking speed was correlated with flight time (r = .46, p = .049) and flight distance (r = .69, p = .001). The knee's movement from hyperextension to flexion during late stance meant the vertical push-off force that followed midstance was smaller than the earlier loading peak (p push-off forces (r = .60, p = .011). Lower fluctuations in speed during stance were associated with higher stride frequencies (r = .69, p = .001), and highlighted the importance of avoiding too much braking in early stance. The flattened trajectory and consequential decrease in vertical propulsion might help the race walker avoid visible loss of contact (although non-visible flight times were useful in increasing stride length), while a narrow stride width was important in reducing peak forces in all three directions and could improve movement efficiency.

  8. Vertical ground reaction force analysis during gait with unstable shoes

    Directory of Open Access Journals (Sweden)

    Giulia Pereira

    Full Text Available AbstractIntroduction Footwear is no longer just an accessory but also a protection for the musculoskeletal system, and its most important characteristic is comfort.Objectives This study aims to identify and to analyze the vertical ground reaction force in barefoot women and women with unstable shoes.Methodology Five women aged 25 ± 4 years old and mass of 50 ± 7 kg participated in this study. An AMTI force plate was used for data acquisition. The 10 trials for each situation were considered valid where the subject approached the platform with the right foot and at the speed of 4 km/h ± 5%. The instable shoe of this study is used in the practice of physical activity.Results The results showed that the first peak force was higher for the footwear situation, about 5% and significant differences between the barefoot and footwear situation. This significant difference was in the first and second peaks force and in the time of the second peak.Conclusion The values showed that the footwear absorbs approximately 45% of the impact during gait.

  9. Centrifugal stretching along the ground state band of 168Hf

    International Nuclear Information System (INIS)

    Costin, A.; Pietralla, N.; Reese, M.; Moeller, O.; Ai, H.; Casten, R. F.; Heinz, A.; McCutchan, E. A.; Meyer, D. A.; Qian, J.; Werner, V.; Dusling, K.; Fitzpatrick, C. R.; Guerdal, G.; Petkov, P.; Rainovski, G.

    2009-01-01

    The lifetimes of the J π =4 + , 6 + , 8 + , and 10 + levels along the ground state band in 168 Hf were measured by means of the recoil distance Doppler shift (RDDS) method using the New Yale Plunger Device (NYPD) and the SPEEDY detection array at Wright Nuclear Structure Laboratory of Yale University. Excited states in 168 Hf were populated using the 124 Sn( 48 Ti,4n) fusion evaporation reaction. The new lifetime values are sufficiently precise to clearly prove the increase of quadrupole deformation as a function of angular momentum in the deformed nucleus 168 Hf. The data agree with the predictions from the geometrical confined β-soft (CBS) rotor model that involves centrifugal stretching in a soft potential

  10. Kinematic and ground reaction force accommodation during weighted walking.

    Science.gov (United States)

    James, C Roger; Atkins, Lee T; Yang, Hyung Suk; Dufek, Janet S; Bates, Barry T

    2015-12-01

    Weighted walking is a functional activity common in daily life and can influence risks for musculoskeletal loading, injury and falling. Much information exists about weighted walking during military, occupational and recreational tasks, but less is known about strategies used to accommodate to weight carriage typical in daily life. The purposes of the study were to examine the effects of weight carriage on kinematics and peak ground reaction force (GRF) during walking, and explore relationships between these variables. Twenty subjects walked on a treadmill while carrying 0, 44.5 and 89 N weights in front of the body. Peak GRF, sagittal plane joint/segment angular kinematics, stride length and center of mass (COM) vertical displacement were measured. Changes in peak GRF and displacement variables between weight conditions represented accommodation. Effects of weight carriage were tested using analysis of variance. Relationships between peak GRF and kinematic accommodation variables were examined using correlation and regression. Subjects were classified into sub-groups based on peak GRF responses and the correlation analysis was repeated. Weight carriage increased peak GRF by an amount greater than the weight carried, decreased stride length, increased vertical COM displacement, and resulted in a more extended and upright posture, with less hip and trunk displacement during weight acceptance. A GRF increase was associated with decreases in hip extension (|r|=.53, p=.020) and thigh anterior rotation (|r|=.57, p=.009) displacements, and an increase in foot anterior rotation displacement (|r|=.58, p=.008). Sub-group analysis revealed that greater GRF increases were associated with changes at multiple sites, while lesser GRF increases were associated with changes in foot and trunk displacement. Weight carriage affected walking kinematics and revealed different accommodation strategies that could have implications for loading and stability. Copyright © 2015 Elsevier B

  11. Vertical ground reaction forces in patients after calcaneal trauma surgery.

    Science.gov (United States)

    van Hoeve, S; Verbruggen, J; Willems, P; Meijer, K; Poeze, M

    2017-10-01

    Vertical ground reaction forces (VGRFs) are altered in patients after foot trauma. It is not known if this correlates with ankle kinematics. The aim of this study was to analyze VGRFs in patients after calcaneal trauma and correlate them to patient-reported outcome measures (PROMs), radiographic findings and kinematic analysis, using a multi-segment foot model. In addition, we determined the predictive value of VGRFs to identify patients with altered foot kinematics. Thirteen patients (13 feet) with displaced intra-articular calcaneal fractures, were included an average of two years after trauma surgery. PROMs, radiographic findings on postoperative computed tomography scans, gait analysis using the Oxford foot model and VGRFs were analysed during gait. Results were compared with those of 11 healthy subjects (20 feet). Speed was equal in both groups, with healthy subjects walking at self-selected slow speed (0.94±0.18m/s) and patients after surgery walking at self-selected normal speed (0.94±0.29m/s). ROC curves were used to determine the predictive value. Patients after calcaneal surgery showed a lower minimum force during midstance (p=0.004) and a lower maximum force during toe-off (p=0.011). This parameter correlated significantly with the range of motion in the sagittal plane during the push-off phase (r 0.523, p=0.002), as well as with PROMs and with postoperative residual step-off (r 0.423, p=0.016). Combining these two parameters yielded a cut-off value of 193% (ppush-off correlated significantly with PROMs, range of motion in the sagittal plane during push-off and radiographic postoperative residual step-off in the posterior facet of the calcaneal bone. VGRFs are a valuable screening tool for identifying patients with altered gait patterns. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Is the ground state of Yang-Mills theory Coulombic?

    Science.gov (United States)

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; Lutz, W.; McMullan, D.

    2008-08-01

    We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.

  13. Neutrino ground state in a dense star

    International Nuclear Information System (INIS)

    Kiers, K.; Tytgat, M.H.

    1998-01-01

    It has recently been argued that long range forces due to the exchange of massless neutrinos give rise to a very large self-energy in a dense, finite-ranged, weakly charged medium. Such an effect, if real, would destabilize a neutron star. To address this issue we have studied the related problem of a massless neutrino field in the presence of an external, static electroweak potential of finite range. To be precise, we have computed to one loop the exact vacuum energy for the case of a spherical square well potential of depth α and radius R. For small wells, the vacuum energy is reliably determined by a perturbative expansion in the external potential. For large wells, however, the perturbative expansion breaks down. A manifestation of this breakdown is that the vacuum carries a non-zero neutrino charge. The energy and neutrino charge of the ground state are, to a good approximation for large wells, those of a neutrino condensate with chemical potential μ=α. Our results demonstrate explicitly that long-range forces due to the exchange of massless neutrinos do not threaten the stability of neutron stars. copyright 1998 The American Physical Society

  14. Comparison of vertical ground reaction forces during overground and treadmill running. A validation study

    NARCIS (Netherlands)

    Kluitenberg, Bas; Bredeweg, Steef W.; Zijlstra, Sjouke; Zijlstra, Wiebren; Buist, Ida

    2012-01-01

    Background: One major drawback in measuring ground-reaction forces during running is that it is time consuming to get representative ground-reaction force (GRF) values with a traditional force platform. An instrumented force measuring treadmill can overcome the shortcomings inherent to overground

  15. On the ground state of Yang-Mills theory

    OpenAIRE

    Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.

    2011-01-01

    We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state ...

  16. Brazilian ground beef authentication by multiplex polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Andrey Carlos do Sacramento de Oliveira

    2018-02-01

    Full Text Available ABSTRACT: The aim of the present study was to assess the efficacy ofmultiplex PCR in detecting the adulterationof commercially available ground beefvia addition and/orsubstitution ofground buffalo meat. Experimentally adulterated ground beefsamples were prepared in triplicate, and dilutions of DNA from Bos taurus and Bubalusbubalis were prepared to determine the detection limit of the method. Concurrently, 91 ground meatsamples sold as “ground beef” were collected from differentstores in northern Brazil andanalyzed bymultiplex PCR. Buffalo DNA was detected in 17.5% of the collected ground meat samples.Our results showed that multiplex PCR is an efficient method for detectingthe incorporation of groundbuffalo meatatpercentages ranging from 10 to 100% and the incorporation of beef at percentages ranging from0.1 to 100% intoground meat samples.

  17. On the ground state of Yang-Mills theory

    International Nuclear Information System (INIS)

    Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.

    2011-01-01

    Highlights: → The ground state overlap for sets of meson potential trial states is measured. → Non-uniform gluonic distributions are probed via Wilson loop operator. → The locally UV-regulated flux-tube operators can optimize the ground state overlap. - Abstract: We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state overlap.

  18. On the ground state for fractional quantum hall effect

    International Nuclear Information System (INIS)

    Jellal, A.

    1998-09-01

    In the present letter, we investigate the ground state wave function for an explicit model of electrons in an external magnetic field with specific inter-particle interactions. The excitation states of this model are also given. (author)

  19. Solving satisfiability problems by the ground-state quantum computer

    International Nuclear Information System (INIS)

    Mao Wenjin

    2005-01-01

    A quantum algorithm is proposed to solve the satisfiability (SAT) problems by the ground-state quantum computer. The scale of the energy gap of the ground-state quantum computer is analyzed for the 3-bit exact cover problem. The time cost of this algorithm on the general SAT problems is discussed

  20. Ground state phase diagram of extended attractive Hubbard model

    International Nuclear Information System (INIS)

    Robaszkiewicz, S.; Chao, K.A.; Micnas, R.

    1980-08-01

    The ground state phase diagram of the extended Hubbard model with intraatomic attraction has been derived in the Hartree-Fock approximation formulated in terms of the Bogoliubov variational approach. For a given value of electron density, the nature of the ordered ground state depends essentially on the sign and the strength of the nearest neighbor coupling. (author)

  1. Classical many-particle systems with unique disordered ground states

    Science.gov (United States)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2017-10-01

    Classical ground states (global energy-minimizing configurations) of many-particle systems are typically unique crystalline structures, implying zero enumeration entropy of distinct patterns (aside from trivial symmetry operations). By contrast, the few previously known disordered classical ground states of many-particle systems are all high-entropy (highly degenerate) states. Here we show computationally that our recently proposed "perfect-glass" many-particle model [Sci. Rep. 6, 36963 (2016), 10.1038/srep36963] possesses disordered classical ground states with a zero entropy: a highly counterintuitive situation . For all of the system sizes, parameters, and space dimensions that we have numerically investigated, the disordered ground states are unique such that they can always be superposed onto each other or their mirror image. At low energies, the density of states obtained from simulations matches those calculated from the harmonic approximation near a single ground state, further confirming ground-state uniqueness. Our discovery provides singular examples in which entropy and disorder are at odds with one another. The zero-entropy ground states provide a unique perspective on the celebrated Kauzmann-entropy crisis in which the extrapolated entropy of a supercooled liquid drops below that of the crystal. We expect that our disordered unique patterns to be of value in fields beyond glass physics, including applications in cryptography as pseudorandom functions with tunable computational complexity.

  2. α-decay half-lives of some nuclei from ground state to ground state using different nuclear potential

    Directory of Open Access Journals (Sweden)

    Akrawy Dashty T.

    2018-01-01

    Full Text Available Theoretical α-decay half-lives of some nuclei from ground state to ground state are calculated using different nuclear potential model including Coulomb proximity potential (CPPM, Royer proximity potential and Broglia and Winther 1991. The calculated values comparing with experimental data, it is observed that the CPPM model is in good agreement with the experimental data.

  3. Reaction Hamiltonian and state-to-state description of chemical reactions

    International Nuclear Information System (INIS)

    Ruf, B.A.; Kresin, V.Z.; Lester, W.A. Jr.

    1985-08-01

    A chemical reaction is treated as a quantum transition from reactants to products. A specific reaction Hamiltonian (in second quantization formalism) is introduced. The approach leads to Franck-Condon-like factor, and adiabatic method in the framework of the nuclear motion problems. The influence of reagent vibrational state on the product energy distribution has been studied following the reaction Hamiltonian method. Two different cases (fixed available energy and fixed translational energy) are distinguished. Results for several biomolecular reactions are presented. 40 refs., 5 figs

  4. Ground state energy fluctuations in the nuclear shell model

    International Nuclear Information System (INIS)

    Velazquez, Victor; Hirsch, Jorge G.; Frank, Alejandro; Barea, Jose; Zuker, Andres P.

    2005-01-01

    Statistical fluctuations of the nuclear ground state energies are estimated using shell model calculations in which particles in the valence shells interact through well-defined forces, and are coupled to an upper shell governed by random 2-body interactions. Induced ground-state energy fluctuations are found to be one order of magnitude smaller than those previously associated with chaotic components, in close agreement with independent perturbative estimates based on the spreading widths of excited states

  5. On calculations of the ground state energy in quantum mechanics

    International Nuclear Information System (INIS)

    Efimov, G.V.

    1991-02-01

    In nonrelativistic quantum mechanics the Wick-ordering method called the oscillator representation suggested to calculate the ground-state energy for a wide class of potentials allowing the existence of a bound state. The following examples are considered: the orbital excitations of the ground-state in the Coulomb plus linear potential, the Schroedinger equation with a ''relativistic'' kinetic energy √p 2 +m 2 , the Coulomb three-body problem. (author). 22 refs, 2 tabs

  6. Entanglement of two ground state neutral atoms using Rydberg blockade

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Browaeys, Antoine; Evellin, Charles

    2011-01-01

    We report on our recent progress in trapping and manipulation of internal states of single neutral rubidium atoms in optical tweezers. We demonstrate the creation of an entangled state between two ground state atoms trapped in separate tweezers using the effect of Rydberg blockade. The quality...... of the entanglement is measured using global rotations of the internal states of both atoms....

  7. On the ground state of Yang-Mills theory

    Science.gov (United States)

    Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.

    2011-08-01

    We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state overlap.

  8. Ground State Energy of the Modified Nambu-Goto String

    Science.gov (United States)

    Hadasz, Leszek

    We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.

  9. Ground state energy of the modified Nambu-Goto string

    OpenAIRE

    Hadasz, Leszek

    1997-01-01

    We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.

  10. Approximating the ground state of gapped quantum spin systems

    Energy Technology Data Exchange (ETDEWEB)

    Michalakis, Spyridon [Los Alamos National Laboratory; Hamza, Eman [NON LANL; Nachtergaele, Bruno [NON LANL; Sims, Robert [NON LANL

    2009-01-01

    We consider quantum spin systems defined on finite sets V equipped with a metric. In typical examples, V is a large, but finite subset of Z{sup d}. For finite range Hamiltonians with uniformly bounded interaction terms and a unique, gapped ground state, we demonstrate a locality property of the corresponding ground state projector. In such systems, this ground state projector can be approximated by the product of observables with quantifiable supports. In fact, given any subset {chi} {contained_in} V the ground state projector can be approximated by the product of two projections, one supported on {chi} and one supported on {chi}{sup c}, and a bounded observable supported on a boundary region in such a way that as the boundary region increases, the approximation becomes better. Such an approximation was useful in proving an area law in one dimension, and this result corresponds to a multi-dimensional analogue.

  11. The ground state energy of a classical gas

    International Nuclear Information System (INIS)

    Conlon, J.G.

    1983-01-01

    The ground state energy of a classical gas is treated using a probability function for the position of the particles and a potential function. The lower boundary for the energy when the particle number is large is defined as ground state energy. The coulomb gas consisting of positive and negative particles is also treated (fixed and variable density case) the stability of the relativistic system is investigated as well. (H.B.)

  12. Theory of ground state factorization in quantum cooperative systems.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2008-05-16

    We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.

  13. Dynamical structure analysis of crystalline-state reaction and elucidation of chemical reactivity in crystalline environment

    International Nuclear Information System (INIS)

    Ohashi, Yuji

    2010-01-01

    It was found that a chiral alkyl group bonded to the cobalt atom in a cobalt complex crystal was racemized with retention of the single crystal form on exposure to visible light. Such reactions, which are called crystalline-state reactions, have been found in a variety of cobalt complex crystals. The concept of reaction cavity was introduced to explain the reaction rate quantitatively and the chirality of the photo-product. The new diffractometers and detectors were made for rapid data collection. The reaction mechanism was also elucidated using neutron diffraction analysis. The unstable reaction intermediates were analyzed using cryo-trapping method. The excited-state structures were obtained at the equilibrium state between ground and excited states. (author)

  14. Ground-Water Availability in the United States

    Science.gov (United States)

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  15. Comparison of vertical ground reaction forces during overground and treadmill running. A validation study

    Directory of Open Access Journals (Sweden)

    Kluitenberg Bas

    2012-11-01

    Full Text Available Abstract Background One major drawback in measuring ground-reaction forces during running is that it is time consuming to get representative ground-reaction force (GRF values with a traditional force platform. An instrumented force measuring treadmill can overcome the shortcomings inherent to overground testing. The purpose of the current study was to determine the validity of an instrumented force measuring treadmill for measuring vertical ground-reaction force parameters during running. Methods Vertical ground-reaction forces of experienced runners (12 male, 12 female were obtained during overground and treadmill running at slow, preferred and fast self-selected running speeds. For each runner, 7 mean vertical ground-reaction force parameters of the right leg were calculated based on five successful overground steps and 30 seconds of treadmill running data. Intraclass correlations (ICC(3,1 and ratio limits of agreement (RLOA were used for further analysis. Results Qualitatively, the overground and treadmill ground-reaction force curves for heelstrike runners and non-heelstrike runners were very similar. Quantitatively, the time-related parameters and active peak showed excellent agreement (ICCs between 0.76 and 0.95, RLOA between 5.7% and 15.5%. Impact peak showed modest agreement (ICCs between 0.71 and 0.76, RLOA between 19.9% and 28.8%. The maximal and average loading-rate showed modest to excellent ICCs (between 0.70 and 0.89, but RLOA were higher (between 34.3% and 45.4%. Conclusions The results of this study demonstrated that the treadmill is a moderate to highly valid tool for the assessment of vertical ground-reaction forces during running for runners who showed a consistent landing strategy during overground and treadmill running. The high stride-to-stride variance during both overground and treadmill running demonstrates the importance of measuring sufficient steps for representative ground-reaction force values. Therefore, an

  16. Ground state correlations and structure of odd spherical nuclei

    International Nuclear Information System (INIS)

    Mishev, S.; Voronov, V. V.

    2006-01-01

    It is well known that the Pauli principle plays a substantial role at low energies because the phonon operators are not ideal boson operators. Calculating the exact commutators between the quasiparticle and phonon operators one can take into account the Pauli principle corrections. Besides the ground state correlations due to the quasiparticle interaction in the ground state influence the single particle fragmentation as well. In this paper, we generalize the basic QPM equations to account for both mentioned effects. As an illustration of our approach, calculations on the structure of the low-lying states in "1"3"1Ba have been performed.

  17. Ground state correlations and structure of odd spherical nuclei

    International Nuclear Information System (INIS)

    Mishev, S.; Voronov, V.V.

    2008-01-01

    It is well known that the Pauli principle plays a substantial role at low energies because the phonon operators are not ideal boson operators. Calculating the exact commutators between the quasiparticle and phonon operators one can take into account the Pauli principle corrections. Besides, the ground state correlations due to the quasiparticle interaction in the ground state influence the single-particle fragmentation as well. In this paper, we generalize the basic equations of the quasiparticle-phonon nuclear model to account for both effects mentioned. As an illustration of our approach, calculations on the structure of the low-lying states in 133 Ba have been performed

  18. High-speed ground transportation development outside United States

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, T.R. [Queen`s Univ., Kingston, Ontario (United Kingdom)

    1995-09-01

    This paper surveys the state of high-speed (in excess of 200 km/h) ground-transportation developments outside the United States. Both high-speed rail and Maglev systems are covered. Many vehicle systems capable of providing intercity service in the speed range 200--500 km/h are or will soon be available. The current state of various technologies, their implementation, and the near-term plans of countries that are most active in high-speed ground transportation development are reported.

  19. Rotational and neutron-hole states in 43S via the neutron knockout and fragmentation reactions

    International Nuclear Information System (INIS)

    Riley, L. A.; Hosier, K. E.; Adrich, P.; Baugher, T. R.; Bazin, D.; Diget, C. A.; Weisshaar, D.; Brown, B. A.; Cook, J. M.; Gade, A.; Garland, D. A.; Glasmacher, T.; Ratkiewicz, A.; Siwek, K. P.; Cottle, P. D.; Kemper, K. W.; Tostevin, J. A.

    2009-01-01

    The recent assertion that shape coexistence occurs in the neutron-rich isotope 43 S implies that a state observed at 940 keV in a previous study is a rotational excitation of the deformed ground state. Here we use results from two intermediate-energy reactions to demonstrate that this state--assigned an energy of 971 keV in the present work--is indeed a rotational state. This result strengthens the case for shape coexistence in 43 S.

  20. Use of ground clay brick as a pozzolanic material to reduce the alkali-silica reaction

    International Nuclear Information System (INIS)

    Turanli, L.; Bektas, F.; Monteiro, P.J.M.

    2003-01-01

    The objective of this experimental study was to use ground clay brick (GCB) as a pozzolanic material to minimize the alkali-silica reaction expansion. Two different types of clay bricks were finely ground and their activity indices were determined. ASTM accelerated mortar bar tests were performed to investigate the effect of GCB when used to replace cement mass. The microstructure of the mortar was investigated using scanning electron microscopy (SEM). The results showed that the GCBs meet the strength activity requirements of ASTM. In addition, the GCBs were found to be effective in suppressing the alkali-silica reaction expansion. The expansion decreased as the amount of GCBs in the mortar increased

  1. Probing quantum frustrated systems via factorization of the ground state.

    Science.gov (United States)

    Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio

    2010-05-21

    The existence of definite orders in frustrated quantum systems is related rigorously to the occurrence of fully factorized ground states below a threshold value of the frustration. Ground-state separability thus provides a natural measure of frustration: strongly frustrated systems are those that cannot accommodate for classical-like solutions. The exact form of the factorized ground states and the critical frustration are determined for various classes of nonexactly solvable spin models with different spatial ranges of the interactions. For weak frustration, the existence of disentangling transitions determines the range of applicability of mean-field descriptions in biological and physical problems such as stochastic gene expression and the stability of long-period modulated structures.

  2. Fast Preparation of Critical Ground States Using Superluminal Fronts

    Science.gov (United States)

    Agarwal, Kartiek; Bhatt, R. N.; Sondhi, S. L.

    2018-05-01

    We propose a spatiotemporal quench protocol that allows for the fast preparation of ground states of gapless models with Lorentz invariance. Assuming the system initially resides in the ground state of a corresponding massive model, we show that a superluminally moving "front" that locally quenches the mass, leaves behind it (in space) a state arbitrarily close to the ground state of the gapless model. Importantly, our protocol takes time O (L ) to produce the ground state of a system of size ˜Ld (d spatial dimensions), while a fully adiabatic protocol requires time ˜O (L2) to produce a state with exponential accuracy in L . The physics of the dynamical problem can be understood in terms of relativistic rarefaction of excitations generated by the mass front. We provide proof of concept by solving the proposed quench exactly for a system of free bosons in arbitrary dimensions, and for free fermions in d =1 . We discuss the role of interactions and UV effects on the free-theory idealization, before numerically illustrating the usefulness of the approach via simulations on the quantum Heisenberg spin chain.

  3. Ground-state fidelity in the BCS-BEC crossover

    International Nuclear Information System (INIS)

    Khan, Ayan; Pieri, Pierbiagio

    2009-01-01

    The ground-state fidelity has been introduced recently as a tool to investigate quantum phase transitions. Here, we apply this concept in the context of a crossover problem. Specifically, we calculate the fidelity susceptibility for the BCS ground-state wave function, when the intensity of the fermionic attraction is varied from weak to strong in an interacting Fermi system, through the BCS-Bose-Einstein Condensation crossover. Results are presented for contact and finite-range attractive potentials and for both continuum and lattice models. We conclude that the fidelity susceptibility can be useful also in the context of crossover problems.

  4. Measurement of the ground-state hyperfine splitting of antihydrogen

    CERN Document Server

    Juhász, B; Federmann, S

    2011-01-01

    The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, consisting of a cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of ~10−7. The first preliminary measurements of the hyperfine transitions will start in 2011.

  5. Coherent Control of Ground State NaK Molecules

    Science.gov (United States)

    Yan, Zoe; Park, Jee Woo; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin

    2016-05-01

    Ultracold dipolar molecules exhibit anisotropic, tunable, long-range interactions, making them attractive for the study of novel states of matter and quantum information processing. We demonstrate the creation and control of 23 Na40 K molecules in their rovibronic and hyperfine ground state. By applying microwaves, we drive coherent Rabi oscillations of spin-polarized molecules between the rotational ground state (J=0) and J=1. The control afforded by microwave manipulation allows us to pursue engineered dipolar interactions via microwave dressing. By driving a two-photon transition, we are also able to observe Ramsey fringes between different J=0 hyperfine states, with coherence times as long as 0.5s. The realization of long coherence times between different molecular states is crucial for applications in quantum information processing. NSF, AFOSR- MURI, Alfred P. Sloan Foundation, DARPA-OLE

  6. Dissociation energy of the ground state of NaH

    International Nuclear Information System (INIS)

    Huang, Hsien-Yu; Lu, Tsai-Lien; Whang, Thou-Jen; Chang, Yung-Yung; Tsai, Chin-Chun

    2010-01-01

    The dissociation energy of the ground state of NaH was determined by analyzing the observed near dissociation rovibrational levels. These levels were reached by stimulated emission pumping and fluorescence depletion spectroscopy. A total of 114 rovibrational levels in the ranges 9≤v '' ≤21 and 1≤J '' ≤14 were assigned to the X 1 Σ + state of NaH. The highest vibrational level observed was only about 40 cm -1 from the dissociation limit in the ground state. One quasibound state, above the dissociation limit and confined by the centrifugal barrier, was observed. Determining the vibrational quantum number at dissociation v D from the highest four vibrational levels yielded the dissociation energy D e =15 815±5 cm -1 . Based on new observations and available data, a set of Dunham coefficients and the rotationless Rydberg-Klein-Rees curve were constructed. The effective potential curve and the quasibound states were discussed.

  7. Three-body problem in the ground-state representation

    International Nuclear Information System (INIS)

    Gonzalez, A.

    1993-01-01

    The ground-state probability density of a three-body system is used to construct a classical potential U whose minimum coincides exactly with the ground-state energy. The spectrum of excited states may approximately be obtained by imposing quasiclassical quantization conditions over the classical motion in U. We show nontrivial one-dimensional models in which either this quantization condition is exact or considerably improves the usual semiclassical quantization. For three-dimensional problems, the small-oscillation frequencies in states with total angular momentum L = 0 are computed. These frequencies could represent an improvement over the frequencies of triatomic molecules computed with the use of ordinary quasiclassics for the motion of the nuclei in the molecular term. By providing a semiclassical description of the first excited quantum states, the sketched approach rises some interesting questions such as, for example, the relevance (once again) of classical chaos to quantum mechanics

  8. Ground state shape and crossing of near spherical and deformed bands in 182Hg

    International Nuclear Information System (INIS)

    Ma, W.C.; Ramayya, A.V.; Hamilton, J.H.; Robinson, S.J.; Barclay, M.E.; Zhao, K.; Cole, J.D.; Zganjar, E.F.; Spejewski, E.H.

    1983-01-01

    The energy levels of 182 Hg have been identified for the first time through comparison of in-beam studies of the reactions 156 154 Gd( 32 S,4n) 184 182 Hg. Levels up to 12 + in 182 Hg were established from γ-γ coincidence and singles measurement. The data establish that the ground state shape is near spherical, and that the ground band is crossed by a well deformed band at 4 + . In contrast to IBA model predictions that the deformed band will rise in energy in 182 Hg compared to 184 Hg, the energies of the deformed levels in 182 Hg continue to drop. 7 references

  9. In-Shoe Plantar Pressures and Ground Reaction Forces during Overweight Adults' Overground Walking

    Science.gov (United States)

    de Castro, Marcelo P.; Abreu, Sofia C.; Sousa, Helena; Machado, Leandro; Santos, Rubim; Vilas-Boas, João Paulo

    2014-01-01

    Purpose: Because walking is highly recommended for prevention and treatment of obesity and some of its biomechanical aspects are not clearly understood for overweight people, we compared the absolute and normalized ground reaction forces (GRF), plantar pressures, and temporal parameters of normal-weight and overweight participants during…

  10. Ambulatory measurement of ground reaction force and estimation of ankle and foot dynamics

    NARCIS (Netherlands)

    Schepers, H. Martin; Koopman, Hubertus F.J.M.; Baten, Christian T.M.; Veltink, Petrus H.

    INTRODUCTION Traditionally, human body movement analysis is done in so-called ‘gait laboratories’. In these laboratories, body movement is measured by a camera system using optical markers, the ground reaction force by a force plate fixed in the floor, and the muscle activity by EMG. From the body

  11. Do ground reaction forces during unilateral and bilateral movements exhibit compensation strategies following ACL reconstruction?

    NARCIS (Netherlands)

    Baumgart, Christian; Schubert, Markus; Hoppe, Matthias W.; Gokeler, Alli; Freiwald, Juergen

    The aims of the study were (1) to evaluate the leg asymmetry assessed with ground reaction forces (GRFs) during unilateral and bilateral movements of different knee loads in anterior cruciate ligament (ACL) reconstructed patients and (2) to investigate differences in leg asymmetry depending on the

  12. Forelimb and hindlimb ground reaction forces of walking cats: Assessment and comparison with walking dogs

    NARCIS (Netherlands)

    Corbee, R.J.; Maas, H.; Doornenbal, A; Hazewinkel, H.A.W.

    2014-01-01

    The primary aim of this study was to assess the potential of force plate analysis for describing the stride cycle of the cat. The secondary aim was to define differences in feline and canine locomotion based on force plate characteristics. Ground reaction forces of 24 healthy cats were measured and

  13. Ground reaction forces and kinematics in distance running in older-aged men

    NARCIS (Netherlands)

    Bus, Sicco A.

    2003-01-01

    Purpose: The biomechanics of distance running has not been studied before in older-aged runners but may be different than in younger-aged runners because of musculoskeletal degeneration at older age. This study aimed at determining whether the stance phase kinematics and ground reaction forces in

  14. Estimation of ground reaction forces and moments during gait using only inertial motion capture

    NARCIS (Netherlands)

    Karatsidis, Angelos; Bellusci, Giovanni; Schepers, H. Martin; de Zee, Mark; Andersen, Michael S.; Veltink, Petrus H.

    Ground reaction forces and moments (GRF&M) are important measures used as input in biomechanical analysis to estimate joint kinetics, which often are used to infer information for many musculoskeletal diseases. Their assessment is conventionally achieved using laboratory-based equipment that cannot

  15. Sit-to-stand ground reaction force characteristics in blind and sighted female children.

    Science.gov (United States)

    Faraji Aylar, Mozhgan; Jafarnezhadgero, Amir Ali; Salari Esker, Fatemeh

    2018-03-05

    The association between visual sensory and sit-to-stand ground reaction force characteristics is not clear. Impulse is the amount of force applied over a period of time. Also, free moment represents the vertical moment applied in the center of pressure (COP). How the ground reaction force components, vertical loading rate, impulses and free moment respond to long and short term restricted visual information? Fifteen female children with congenital blindness and 45 healthy girls with no visual impairments participated in this study. The girls with congenital blindness were placed in one group and the 45 girls with no visual impairments were randomly divided into three groups of 15; eyes open, permanently eyes closed, and temporary eyes closed. The participants in the permanently eyes closed group closed their eyes for 20 min before the test, whereas temporary eyes closed group did tests with their eyes closed throughout, and those in the eyes open group kept their eyes open. Congenital blindness was associated with increased vertical loading rate, range of motion of knee and hip in the medio-lateral plane. Also, medio-lateral and vertical ground reaction force impulses. Similar peak negative and positive free moments were observed in three groups. In conclusion, the results reveal that sit-to-stand ground reaction force components in blind children may have clinical importance for improvement of balance control of these individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force.

    Science.gov (United States)

    Park, Seung Kyu; Yang, Dae Jung; Kang, Yang Hun; Kim, Je Ho; Uhm, Yo Han; Lee, Yong Seon

    2015-09-01

    [Purpose] The purpose of this study was to investigate the effects of Nordic walking and walking on spatiotemporal gait parameters and ground reaction force. [Subjects] The subjects of this study were 30 young adult males, who were divided into a Nordic walking group of 15 subjects and a walking group of 15 subjects. [Methods] To analyze the spatiotemporal parameters and ground reaction force during walking in the two groups, the six-camera Vicon MX motion analysis system was used. The subjects were asked to walk 12 meters using the more comfortable walking method for them between Nordic walking and walking. After they walked 12 meters more than 10 times, their most natural walking patterns were chosen three times and analyzed. To determine the pole for Nordic walking, each subject's height was multiplied by 0.68. We then measured the spatiotemporal gait parameters and ground reaction force. [Results] Compared with the walking group, the Nordic walking group showed an increase in cadence, stride length, and step length, and a decrease in stride time, step time, and vertical ground reaction force. [Conclusion] The results of this study indicate that Nordic walking increases the stride and can be considered as helping patients with diseases affecting their gait. This demonstrates that Nordic walking is more effective in improving functional capabilities by promoting effective energy use and reducing the lower limb load, because the weight of the upper and lower limbs is dispersed during Nordic walking.

  17. Ground state of the parallel double quantum dot system.

    Science.gov (United States)

    Zitko, Rok; Mravlje, Jernej; Haule, Kristjan

    2012-02-10

    We resolve the controversy regarding the ground state of the parallel double quantum dot system near half filling. The numerical renormalization group predicts an underscreened Kondo state with residual spin-1/2 magnetic moment, ln2 residual impurity entropy, and unitary conductance, while the Bethe ansatz solution predicts a fully screened impurity, regular Fermi-liquid ground state, and zero conductance. We calculate the impurity entropy of the system as a function of the temperature using the hybridization-expansion continuous-time quantum Monte Carlo technique, which is a numerically exact stochastic method, and find excellent agreement with the numerical renormalization group results. We show that the origin of the unconventional behavior in this model is the odd-symmetry "dark state" on the dots.

  18. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually increa...

  19. A Ground State Tri-pí-Methane Rearrangement

    Czech Academy of Sciences Publication Activity Database

    Zimmerman, H. E.; Církva, Vladimír; Jiang, L.

    2000-01-01

    Roč. 41, č. 49 (2000), s. 9585-9587 ISSN 0040-4039 Institutional research plan: CEZ:AV0Z4072921 Keywords : tri-pi-methane * ground state Subject RIV: CC - Organic Chemistry Impact factor: 2.558, year: 2000

  20. Calculations of the ground state of 16O

    International Nuclear Information System (INIS)

    Pieper, S.C.

    1989-01-01

    One of the central problems in nuclear physics is the description of nuclei as systems of nucleons interacting via realistic potentials. There are two main aspects of this problem: specification of the Hamiltonian, and calculation of the ground states of nuclei with the given interaction. Realistic interactions must contain both two- and three-nucleon potentials and these potentials have a complicated non-central operator structure consisting, for example, of spin, isospin and tensor dependences. This structure results in formidable many-body problems in the computation of the ground states of nuclei. At present, reliable solutions of the Faddeev equations for the A = 3 nuclei with such interactions are routine. Recently, Carlson has made an essentially exact GFMC calculation of the He ground state using just a two-nucleon interaction, and there are reliable variational calculations for more complete potential models. Nuclear matter calculations can also be made with reasonable reliability. However, there have been very few calculations of nuclei with A > 5 using realistic interactions, and none with a modern three-nucleon interaction. In the present paper I present a new technique for variational calculations for such nuclei and apply it to the ground state of 16 O. 15 refs., 2 figs., 3 tabs

  1. Ground state energy of a polaron in a superlattice

    International Nuclear Information System (INIS)

    Mensah, S.Y.; Allotey, F.K.A.; Nkrumah, G.; Mensah, N.G.

    2000-10-01

    The ground state energy of a polaron in a superlattice was calculated using the double-time Green functions. The effective mass of the polaron along the planes perpendicular to the superlattice axis was also calculated. The dependence of the ground state energy and the effective mass along the planes perpendicular to the superlattice axis on the electron-phonon coupling constant α and on the superlattice parameters (i.e. the superlattice period d and the bandwidth Δ) were studied. It was observed that if an infinite square well potential is assumed, the ground state energy of the polaron decreases (i.e. becomes more negative) with increasing α and d, but increases with increasing Δ. For small values of α, the polaron ground state energy varies slowly with Δ, becoming approximately constant for large Δ. The effective mass along the planes perpendicular to the superlattice axis was found to be approximately equal to the mass of an electron for all typical values of α, d and Δ. (author)

  2. Observation of Hyperfine Transitions in Trapped Ground-State Antihydrogen

    CERN Document Server

    Olin, Arthur

    2015-01-01

    This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4~parts~in~$10^3$. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.

  3. α-clustering in the ground state of 40Ca

    International Nuclear Information System (INIS)

    Michel, F.

    1976-01-01

    The anomalous large angle scattering observed in 40 Ca(α, α) is studied in the frame of a semi-microscopic model taking into account the presence of α-correlations in the ground state of 40 Ca. The calculations, performed between 18 and 29 MeV, assert the potential, non resonant nature of the phenomenon. (Auth.)

  4. Ground states of the massless Derezinski-Gerard model

    International Nuclear Information System (INIS)

    Ohkubo, Atsushi

    2009-01-01

    We consider the massless Derezinski-Gerard model introduced by Derezinski and Gerard in 1999. We give a sufficient condition for the existence of a ground state of the massless Derezinski-Gerard model without the assumption that the Hamiltonian of particles has compact resolvent.

  5. Magnetic excitons in singlet-ground-state ferromagnets

    DEFF Research Database (Denmark)

    Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.

    1971-01-01

    The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...

  6. Correlation induced paramagnetic ground state in FeAl

    Czech Academy of Sciences Publication Activity Database

    Mohn, P.; Persson, C.; Blaha, P.; Schwarz, K.; Novák, Pavel; Eschrig, H.

    2001-01-01

    Roč. 87, č. 19 (2001), s. 196401-1-196401-4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z1010914 Keywords : FeAl * paramagnetic ground state Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.668, year: 2001

  7. Observation of hyperfine transitions in trapped ground-state antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: A. Olin for the ALPHA Collaboration

    2015-08-15

    This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4 parts in 10{sup 3}. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.

  8. Ground reaction forces, kinematics, and muscle activations during the windmill softball pitch.

    Science.gov (United States)

    Oliver, Gretchen D; Plummer, Hillary

    2011-07-01

    The aims of the present study were to examine quantitatively ground reaction forces, kinematics, and muscle activations during the windmill softball pitch, and to determine relationships between knee valgus and muscle activations, ball velocity and muscle activation as well as ball velocity and ground reaction forces. It was hypothesized that there would be an inverse relationship between degree of knee valgus and muscle activation, a direct relationship between ground reaction forces and ball velocity, and non-stride leg muscle activations and ball velocity. Ten female windmill softball pitchers (age 17.6 ± 3.47 years, stature 1.67 ± 0.07 m, weight 67.4 ± 12.2 kg) participated. Dependent variables were ball velocity, surface electromyographic (sEMG), kinematic, and kinetic data while the participant was the independent variable. Stride foot contact reported peak vertical forces of 179% body weight. There were positive relationships between ball velocity and ground reaction force (r = 0.758, n = 10, P = 0.029) as well as ball velocity and non-stride leg gluteus maximus (r = 0.851, n = 10, P = 0.007) and medius (r = 0.760, n = 10, P = 0.029) muscle activity, while there was no notable relationship between knee valgus and muscle activation. As the windmill softball pitcher increased ball velocity, her vertical ground reaction forces also increased. Proper conditioning of the lumbopelvic-hip complex, including the gluteals, is essential for injury prevention. From the data presented, it is evident that bilateral strength and conditioning of the gluteal muscle group is salient in the windmill softball pitch as an attempt to decrease incidence of injury.

  9. BILATERAL GROUND REACTION FORCES AND JOINT MOMENTS FOR LATERAL SIDESTEPPING AND CROSSOVER STEPPING TASKS

    Directory of Open Access Journals (Sweden)

    William I. Sellers

    2009-03-01

    Full Text Available Racquet sports have high levels of joint injuries suggesting the joint loads during play may be excessive. Sports such as badminton employ lateral sidestepping (SS and crossover stepping (XS movements which so far have not been described in terms of biomechanics. This study examined bilateral ground reaction forces and three dimensional joint kinetics for both these gaits in order to determine the demands of the movements on the leading and trailing limb and predict the contribution of these movements to the occurrence of overuse injury of the lower limbs. A force platform and motion-analysis system were used to record ground reaction forces and track marker trajectories of 9 experienced male badminton players performing lateral SS, XS and forward running tasks at a controlled speed of 3 m·s-1 using their normal technique. Ground reaction force and kinetic data for the hip, knee and ankle were analyzed, averaged across the group and the biomechanical variables compared. In all cases the ground reaction forces and joint moments were less than those experienced during moderate running suggesting that in normal play SS and XS gaits do not lead to high forces that could contribute to increased injury risk. Ground reaction forces during SS and XS do not appear to contribute to the development of overuse injury. The distinct roles of the leading and trailing limb, acting as a generator of vertical force and shock absorber respectively, during the SS and XS may however contribute to the development of muscular imbalances which may ultimately contribute to the development of overuse injury. However it is still possible that faulty use of these gaits might lead to high loads and this should be the subject of future work

  10. Antiferrodistortive phase transitions and ground state of PZT ceramics

    International Nuclear Information System (INIS)

    Pandey, Dhananjai

    2013-01-01

    The ground state of the technologically important Pb(Zr x Ti (1-x) )O 3 , commonly known as PZT, ceramics is currently under intense debate. The phase diagram of this material shows a morphotropic phase boundary (MPB) for x∼0.52 at 300K, across which a composition induced structural phase transition occurs leading to maximization of the piezoelectric properties. In search for the true ground state of the PZT in the MPB region, Beatrix Noheda and coworkers first discovered a phase transition from tetragonal (space group P4mm) to an M A type monoclinic phase (space group Cm) at low temperatures for x=0.52. Soon afterwards, we discovered yet another low temperature phase transition for the same composition in which the M A type (Cm) monoclinic phase transforms to another monoclinic phase with Cc space group. We have shown that the Cm to Cc phase transition is an antiferrodistortive (AFD) transition involving tilting of oxygen octahedra leading to unit cell doubling and causing appearance of superlattice reflections which are observable in the electron and neutron diffraction patterns only and not in the XRD patterns, as a result of which Noheda and coworkers missed the Cc phase in their synchrotron XRD studies at low temperatures. Our findings were confirmed by leading groups using neutron, TEM, Raman and high pressure diffraction studies. The first principles calculations also confirmed that the true ground state of PZT in the MPB region has Cc space group. However, in the last couple of years, the Cc space group of the ground state has become controversial with an alternative proposal of R3c as the space group of the ground state phase which is proposed to coexist with the metastable Cm phase. In order to resolve this controversy, we recently revisited the issue using pure PZT and 6% Sr 2+ substituted PZT, the latter samples show larger tilt angle on account of the reduction in the average cationic radius at the Pb 2+ site. Using high wavelength neutrons and high

  11. Coherent-state representation for the QCD ground state

    International Nuclear Information System (INIS)

    Celenza, L.S.; Ji, C.; Shakin, C.M.

    1987-01-01

    We make use of the temporal gauge to construct a coherent state which is meant to describe the gluon condensate in the QCD vacuum under the assumption that the condensate is in a zero-momentum mode. The state so constructed is a color singlet and will yield finite, nonperturbative vacuum expectation values such as . (This matrix element is found to have a value of about 0.012 GeV 4 in QCD sum-rule studies.)

  12. Structure of states in 12Be via the 11Be( d,p) reaction

    Science.gov (United States)

    Kanungo, R.; Gallant, A. T.; Uchida, M.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Ball, G. C.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Brown, B. A.; Buchmann, L.; Colosimo, S. J.; Clark, R. M.; Cline, D.; Cross, D. S.; Dare, H.; Davids, B.; Drake, T. E.; Djongolov, M.; Finlay, P.; Galinski, N.; Garrett, P. E.; Garnsworthy, A. B.; Green, K. L.; Grist, S.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Howell, D.; Hurst, A. M.; Jeppesen, H. B.; Leach, K. G.; Macchiavelli, A. O.; Oxley, D.; Pearson, C. J.; Pietras, B.; Phillips, A. A.; Rigby, S. V.; Ruiz, C.; Ruprecht, G.; Sarazin, F.; Schumaker, M. A.; Shotter, A. C.; Sumitharachchi, C. S.; Svensson, C. E.; Tanihata, I.; Triambak, S.; Unsworth, C.; Williams, S. J.; Walden, P.; Wong, J.; Wu, C. Y.

    2010-01-01

    The s-wave neutron fraction of the 0 levels in 12Be has been investigated for the first time through the 11Be(d,p) transfer reaction using a 5 A MeV11Be beam at TRIUMF, Canada. The reaction populated all the known bound states of 12Be. The ground state s-wave spectroscopic factor was determined to be 0.28-0.07+0.03 while that for the long-lived 02+ excited state was 0.73-0.40+0.27. This observation, together with the smaller effective separation energy indicates enhanced probability for an extended density tail beyond the 10Be core for the 02+ excited state compared to the ground state.

  13. Radioactive nuclide production and isomeric state branching ratios in P + W reactions to 200 mev

    International Nuclear Information System (INIS)

    Young, P.G.; Chadwick, M.B.

    1995-01-01

    Calculations of nuclide yields from spallation reactions usually assume that the products are formed in their ground states. We are performing calculations of product yields from proton reactions on tungsten isotopes that explicitly account for formation of the residual nuclei in excited states. The Hauser-Feshbach statistical/preequilibrium code GNASH, with full accounting for angular momentum conservation and electromagnetic transitions, is utilized in the calculations. We present preliminary results for isomer branching ratios for proton reactions to 200 MeV for several products including the 31-y, 16+ state in l78 Hf and the 25-d, 25/2- state in 179 Hf. Knowledge of such branching ratios, might be important for concepts such as accelerator production of tritium that utilize intermediate-energy proton reactions on tungsten

  14. Regionalization of ground motion attenuation in the conterminous United States

    International Nuclear Information System (INIS)

    Chung, D.H.; Bernreuter, D.L.

    1979-01-01

    Attenuation results from geometric spreading and from absorption. The former is almost independent of crustal geology or physiographic region. The latter depends strongly on crustal geology and the state of the earth's upper mantle. Except for very high-frequency waves, absorption does not affect ground motion at distances less than 25 to 50 km. Thus, in the near-field zone, the attenuation in the eastern United States will be similar to that in the western United States. Most of the differences in ground motion can be accounted for by differences in attenuation caused by differences in absorption. The other important factor is that for some Western earthquakes the fault breaks the earth's surface, resulting in larger ground motion. No Eastern earthquakes are known to have broken the earth's surface by faulting. The stress drop of Eastern earthquakes may be higher than for Western earthquakes of the same seismic moment, which would affect the high-frequency spectral content. This factor is believed to be of much less significance than differences in absorption in explaining the differences in ground motion between the East and the West. 6 figures

  15. Differences in pediatric vertical ground reaction force between planovalgus and neutrally aligned feet.

    Science.gov (United States)

    Pauk, Jolanta; Szymul, Joanna

    2014-01-01

    Ground reaction forces (GRF) reflect the force history of human body contact with the ground. The purpose of this study was to explore human gait abnormalities due to planovalgus by comparing vertical GRF data between individuals with planovalgus and those with neutrally aligned feet. Second we estimated associations between various measurements and vertical GRF parameters in a pediatric population. Boys and girls between the ages of 4 and 18 years (72 planovalgus feet and 74 neutrally aligned feet) took part in this study. Ground reaction forces were recorded by two Kistler platforms and normalized to body weight. Comparison of vertical GRF between planovalgus and neutrally aligned feet suggests that the first and the second peaks of vertical force (Fz1, Fz2) are most affected by planovalgus. The results also indicate that neutrally aligned feet display a different ground reaction force pattern than planovalgus, and that differences between boys and girls may be observed. The shape of the vertical GRF curve can help in clinical interpretation of abnormal gait.

  16. Bilateral ground reaction forces and joint moments for lateral sidestepping and crossover stepping tasks

    Science.gov (United States)

    Kuntze, Gregor; Sellers, William I.; Mansfield, Neil

    2009-01-01

    Racquet sports have high levels of joint injuries suggesting the joint loads during play may be excessive. Sports such as badminton employ lateral sidestepping (SS) and crossover stepping (XS) movements which so far have not been described in terms of biomechanics. This study examined bilateral ground reaction forces and three dimensional joint kinetics for both these gaits in order to determine the demands of the movements on the leading and trailing limb and predict the contribution of these movements to the occurrence of overuse injury of the lower limbs. A force platform and motion-analysis system were used to record ground reaction forces and track marker trajectories of 9 experienced male badminton players performing lateral SS, XS and forward running tasks at a controlled speed of 3 m·s-1 using their normal technique. Ground reaction force and kinetic data for the hip, knee and ankle were analyzed, averaged across the group and the biomechanical variables compared. In all cases the ground reaction forces and joint moments were less than those experienced during moderate running suggesting that in normal play SS and XS gaits do not lead to high forces that could contribute to increased injury risk. Ground reaction forces during SS and XS do not appear to contribute to the development of overuse injury. The distinct roles of the leading and trailing limb, acting as a generator of vertical force and shock absorber respectively, during the SS and XS may however contribute to the development of muscular imbalances which may ultimately contribute to the development of overuse injury. However it is still possible that faulty use of these gaits might lead to high loads and this should be the subject of future work. Key pointsGround reaction forces and joint moments during lateral stepping are smaller in magnitude than those experienced during moderate running.Force exposure in SS and XS gaits in normal play does not appear to contribute to the development of

  17. Guidelines for ground motion definition for the eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-06-01

    Guidelines for the determination of earthquake ground motion definition for the eastern United States are established here. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large- to great-sized earthquakes (M/sub s/ > 7.5) have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes has been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data have been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data, a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the safe shutdown earthquake (SSE). A new procedure for establishing the operating basis earthquake (OBE) is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., figs., tabs

  18. Cluster expansion for ground states of local Hamiltonians

    Directory of Open Access Journals (Sweden)

    Alvise Bastianello

    2016-08-01

    Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  19. Nuclear quadrupole moment of the 99Tc ground state

    International Nuclear Information System (INIS)

    Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan

    2008-01-01

    By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2 + ground state of 99 Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc 2 and ZrTc 2 . If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the 99 Tc ground state quadrupole moment could be further reduced

  20. Ground-state properties of a supersymmetric fermion chain

    International Nuclear Information System (INIS)

    Fendley, Paul; Hagendorf, Christian

    2011-01-01

    We analyze the ground state of a strongly interacting fermion chain with a supersymmetry. We conjecture a number of exact results, such as a hidden duality between weak and strong couplings. By exploiting a scale-free property of the perturbative expansions, we find exact expressions for the order parameters, yielding the critical exponents. We show that the ground state of this fermion chain and another model in the same universality class, the XYZ chain along a line of couplings, are both written in terms of the same polynomials. We demonstrate this explicitly for up to N = 24 sites and provide consistency checks for large N. These polynomials satisfy a recursion relation related to the Painlevé VI differential equation and, using a scale-free property of these polynomials, we derive a simple and exact formula for their N→∞ limit

  1. Nanocrystalline spinel ferrites by solid state reaction route

    Indian Academy of Sciences (India)

    Wintec

    Nanocrystalline spinel ferrites by solid state reaction route. T K KUNDU* and S MISHRA. Department of Physics, Visva-Bharati, Santiniketan 731 235, India. Abstract. Nanostructured NiFe2O4, MnFe2O4 and (NiZn)Fe2O4 were synthesized by aliovalent ion doping using conventional solid-state reaction route. With the ...

  2. Effects of load on ground reaction force and lower limb kinematics during concentric squats.

    Science.gov (United States)

    Kellis, Eleftherios; Arambatzi, Fotini; Papadopoulos, Christos

    2005-10-01

    The purpose of this study was to examine the effects of external load on vertical ground reaction force, and linear and angular kinematics, during squats. Eight males aged 22.1 +/- 0.8 years performed maximal concentric squats using loads ranging from 7 to 70% of one-repetition maximum on a force plate while linear barbell velocity and the angular kinematics of the hip, knee and ankle were recorded. Maximum, average and angle-specific values were recorded. The ground reaction force ranged from 1.67 +/- 0.20 to 3.21 +/- 0.29 times body weight and increased significantly as external load increased (P squat exercises is not achieved at the same position of the lower body as external load is increased. In contrast, joint velocity coordination does not change as load is increased. The force-velocity relationship was linear and independent from the set of data used for its determination.

  3. The effects of dorso-lumbar motion restriction on the ground reaction force components during running.

    Science.gov (United States)

    Morley, Joseph J; Traum, Edward

    2016-04-01

    The effects of restricting dorso-lumbar spine mobility on ground reaction forces in runners was measured and assessed. A semi-rigid cast was used to restrict spinal motion during running. Subjects ran across a force platform at 3.6 m/s, planting the right foot on the platform. Data was collected from ten running trials with the cast and ten without the cast and analysed. Casted running showed that the initial vertical heel strike maximum was increased (p running (p running results in measurable and repeatable alterations in ground reaction force components. Alterations in load transfer due to decreased spinal motion may be a factor contributing to selected injuries in runners. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Photoionization of furan from the ground and excited electronic states.

    Science.gov (United States)

    Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero

    2016-02-28

    Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.

  5. Variational calculation for the ground state of 12C

    International Nuclear Information System (INIS)

    Consoni, L.H.A.; Coelho, H.T.; Das, T.K.

    1983-01-01

    A variational calculation is done for the ground state of a 3α-particle system. Two simple trial wavefunctions are used and results are compared with an exact calculation done by the Hyperspherical Harmonic method. A modifed Ali-Bodmer potential for the α-α interaction is considered for all calculations. It is found that these simple wave functions can be very useful for phenomenological calculations. (Author) [pt

  6. Bethe ansatz study for ground state of Fateev Zamolodchikov model

    International Nuclear Information System (INIS)

    Ray, S.

    1997-01-01

    A Bethe ansatz study of a self-dual Z N spin lattice model, originally proposed by V. A. Fateev and A. B. Zamolodchikov, is undertaken. The connection of this model to the Chiral Potts model is established. Transcendental equations connecting the zeros of Fateev endash Zamolodchikov transfer matrix are derived. The free energies for the ferromagnetic and the anti-ferromagnetic ground states are found for both even and odd spins. copyright 1997 American Institute of Physics

  7. Ground-state correlations within a nonperturbative approach

    Czech Academy of Sciences Publication Activity Database

    De Gregorio, G.; Herko, J.; Knapp, F.; Lo Iudice, N.; Veselý, Petr

    2017-01-01

    Roč. 95, č. 2 (2017), č. článku 024306. ISSN 2469-9985 R&D Projects: GA ČR GA13-07117S Institutional support: RVO:61389005 Keywords : ground state * harmonic oscillator frequency * space dimensions Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 3.820, year: 2016

  8. Ground state solutions for non-local fractional Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Yang Pu

    2015-08-01

    Full Text Available In this article, we study a time-independent fractional Schrodinger equation with non-local (regional diffusion $$ (-\\Delta^{\\alpha}_{\\rho}u + V(xu = f(x,u \\quad \\text{in }\\mathbb{R}^{N}, $$ where $\\alpha \\in (0,1$, $N > 2\\alpha$. We establish the existence of a non-negative ground state solution by variational methods.

  9. Electronic and ground state properties of ThTe

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, Purvee, E-mail: purveebhardwaj@gmail.com; Singh, Sadhna, E-mail: drsadhna100@gmail.com [High Pressure Research Lab. Department of Physics Barkatullah University, Bhopal (MP) 462026 (India)

    2016-05-06

    The electronic properties of ThTe in cesium chloride (CsCl, B2) structure are investigated in the present paper. To study the ground state properties of thorium chalcogenide, the first principle calculations have been calculated. The bulk properties, including lattice constant, bulk modulus and its pressure derivative are obtained. The calculated equilibrium structural parameters are in good agreement with the available experimental and theoretical results.

  10. Ground state energy values and moments of the anharmonic oscillator

    International Nuclear Information System (INIS)

    Seetharaman, M.; Raghavan, Sekhar; Subba Rao, G.

    1981-01-01

    It is shown that a very satisfactory estimate of the energy values (for all values of the anharmonicity) and moments of the ground state of the quartic anharmonic oscillator can be obtained in the variational method, by considering trial wavefunctions which have the correct asymptotic properties. The results derived with a single variational parameter are a considerable improvement over the recent results of C.A. Ginsburg and E.W. Montroll (1978). (author)

  11. Ground states for light and heavy quark hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J T [Physics Dept., Philippines Univ., Manila (Philippines)

    1994-01-01

    According to de Rujula et al. if the degenerate multiplet masses are known then it is not necessary to parametrize the interactions. With degenerate multiplet masses calculated from the spinorial decomposition of the SU(2)xSU(2) part of the SU(6)xSU(6) symmetry, the ground states for 3, 4 and 5 quark hadrons are calculated in terms of the Cartan matrix integers n[sub [alpha

  12. Ground state solutions for diffusion system with superlinear nonlinearity

    Directory of Open Access Journals (Sweden)

    Zhiming Luo

    2015-03-01

    where $z=(u,v\\colon\\mathbb{R}\\times\\mathbb{R}^{N}\\rightarrow\\mathbb{R}^{2}$, $b\\in C^{1}(\\mathbb{R}\\times\\mathbb{R}^{N}, \\mathbb{R}^{N}$ and $V(x\\in C(\\mathbb{R}^{N},\\mathbb{R}$. Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.

  13. Loading Configurations and Ground Reaction Forces During Treadmill Running in Weightlessness

    Science.gov (United States)

    DeWitt, John; Schaffner, Grant; Blazine, Kristi; Bentley, Jason; Laughlin, Mitzi; Loehr, James; Hagan, Donald

    2003-01-01

    Studies have shown losses in bone mineral density of 1-2% per month in critical weight bearing areas such as the proximal femur during long-term space flight (Grigoriev, 1998). The astronauts currently onboard the International Space Station (ISS) use a treadmill as an exercise countermeasure to bone loss that occurs as a result of prolonged exposure to weightlessness. A crewmember exercising on the treadmill is attached by a harness and loading device. Ground reaction forces are obtained through the loading device that pulls the crewn1ember towards the treadmill surface during locomotion. McCrory et al. (2002) found that the magnitude of the peak ground reaction force (pGRF) during horizontal suspension running, or simulated weightlessness, was directly related to the load applied to the subject. It is thought that strain magnitude and strain rate affects osteogenesis, and is a function of the magnitude and rate of change of the ground reaction force. While it is not known if a minimum stimulus exists for osteogenesis, it has been hypothesized that in order to replicate the bone formation occurring in normal gravity (1 G), the exercise in weightlessness should mimic the forces that occur on earth. Specifically, the pGRF obtained in weightlessness should be comparable to that achieved in 1 G.

  14. The influence of cricket fast bowlers' front leg technique on peak ground reaction forces.

    Science.gov (United States)

    Worthington, Peter; King, Mark; Ranson, Craig

    2013-01-01

    High ground reaction forces during the front foot contact phase of the bowling action are believed to be a major contributor to the high prevalence of lumbar stress fractures in fast bowlers. This study aimed to investigate the influence of front leg technique on peak ground reaction forces during the delivery stride. Three-dimensional kinematic data and ground reaction forces during the front foot contact phase were captured for 20 elite male fast bowlers. Eight kinematic parameters were determined for each performance, describing run-up speed and front leg technique, in addition to peak force and time to peak force in the vertical and horizontal directions. There were substantial variations between bowlers in both peak forces (vertical 6.7 ± 1.4 body weights; horizontal (braking) 4.5 ± 0.8 body weights) and times to peak force (vertical 0.03 ± 0.01 s; horizontal 0.03 ± 0.01 s). These differences were found to be linked to the orientation of the front leg at the instant of front foot contact. In particular, a larger plant angle and a heel strike technique were associated with lower peak forces and longer times to peak force during the front foot contact phase, which may help reduce the likelihood of lower back injuries.

  15. Kohn-Sham Theory for Ground-State Ensembles

    International Nuclear Information System (INIS)

    Ullrich, C. A.; Kohn, W.

    2001-01-01

    An electron density distribution n(r) which can be represented by that of a single-determinant ground state of noninteracting electrons in an external potential v(r) is called pure-state v -representable (P-VR). Most physical electronic systems are P-VR. Systems which require a weighted sum of several such determinants to represent their density are called ensemble v -representable (E-VR). This paper develops formal Kohn-Sham equations for E-VR physical systems, using the appropriate coupling constant integration. It also derives local density- and generalized gradient approximations, and conditions and corrections specific to ensembles

  16. Sideband cooling of micromechanical motion to the quantum ground state.

    Science.gov (United States)

    Teufel, J D; Donner, T; Li, Dale; Harlow, J W; Allman, M S; Cicak, K; Sirois, A J; Whittaker, J D; Lehnert, K W; Simmonds, R W

    2011-07-06

    The advent of laser cooling techniques revolutionized the study of many atomic-scale systems, fuelling progress towards quantum computing with trapped ions and generating new states of matter with Bose-Einstein condensates. Analogous cooling techniques can provide a general and flexible method of preparing macroscopic objects in their motional ground state. Cavity optomechanical or electromechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime--in which a system has less than a single quantum of motion--has been difficult because sideband cooling has not sufficiently overwhelmed the coupling of low-frequency mechanical systems to their hot environments. Here we demonstrate sideband cooling of an approximately 10-MHz micromechanical oscillator to the quantum ground state. This achievement required a large electromechanical interaction, which was obtained by embedding a micromechanical membrane into a superconducting microwave resonant circuit. To verify the cooling of the membrane motion to a phonon occupation of 0.34 ± 0.05 phonons, we perform a near-Heisenberg-limited position measurement within (5.1 ± 0.4)h/2π, where h is Planck's constant. Furthermore, our device exhibits strong coupling, allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass. Because mechanical oscillators can couple to light of any frequency, they could also serve as a unique intermediary for transferring quantum information between microwave and optical domains.

  17. Estimation of Vertical Ground Reaction Forces and Sagittal Knee Kinematics During Running Using Three Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Frank J. Wouda

    2018-03-01

    Full Text Available Analysis of running mechanics has traditionally been limited to a gait laboratory using either force plates or an instrumented treadmill in combination with a full-body optical motion capture system. With the introduction of inertial motion capture systems, it becomes possible to measure kinematics in any environment. However, kinetic information could not be provided with such technology. Furthermore, numerous body-worn sensors are required for a full-body motion analysis. The aim of this study is to examine the validity of a method to estimate sagittal knee joint angles and vertical ground reaction forces during running using an ambulatory minimal body-worn sensor setup. Two concatenated artificial neural networks were trained (using data from eight healthy subjects to estimate the kinematics and kinetics of the runners. The first artificial neural network maps the information (orientation and acceleration of three inertial sensors (placed at the lower legs and pelvis to lower-body joint angles. The estimated joint angles in combination with measured vertical accelerations are input to a second artificial neural network that estimates vertical ground reaction forces. To validate our approach, estimated joint angles were compared to both inertial and optical references, while kinetic output was compared to measured vertical ground reaction forces from an instrumented treadmill. Performance was evaluated using two scenarios: training and evaluating on a single subject and training on multiple subjects and evaluating on a different subject. The estimated kinematics and kinetics of most subjects show excellent agreement (ρ>0.99 with the reference, for single subject training. Knee flexion/extension angles are estimated with a mean RMSE <5°. Ground reaction forces are estimated with a mean RMSE < 0.27 BW. Additionaly, peak vertical ground reaction force, loading rate and maximal knee flexion during stance were compared, however, no significant

  18. Ground state properties of new element Z=113 and its alpha decay chain

    International Nuclear Information System (INIS)

    Tai Fei; Chen Dinghan; Xu Chang; Ren Zhongzhou

    2005-01-01

    The authors investigate the ground state properties of the new element 278 113 and of the α-decay chain with different models, where the new element Z=113 has been produced at RIKEN in Japan by cold-fusion reaction. The experimental decay energies are reproduced by the deformed relativistic mean-field model, by the Skyrme-Hartree-Fock (SHF) model, and by the macroscopic-microscopic model. Theoretical half-lives also reasonably agree with the data. Calculations further show that prolate deformation is important for the ground states of the nuclei in the α-decay chain of 278 113. The common points and differences among different models are compared and discussed. (author)

  19. Study of ground state optical transfer for ultracold alkali dimers

    Science.gov (United States)

    Bouloufa-Maafa, Nadia; Londono, Beatriz; Borsalino, Dimitri; Vexiau, Romain; Mahecha, Jorge; Dulieu, Olivier; Luc-Koenig, Eliane

    2013-05-01

    Control of molecular states by laser pulses offer promising potential applications. The manipulation of molecules by external fields requires precise knowledge of the molecular structure. Our motivation is to perform a detailed analysis of the spectroscopic properties of alkali dimers, with the aim to determine efficient optical paths to form molecules in the absolute ground state and to determine the optimal parameters of the optical lattices where those molecules are manipulated to avoid losses by collisions. To this end, we use state of the art molecular potentials, R-dependent spin-orbit coupling and transition dipole moment to perform our calculations. R-dependent SO coupling are of crucial importance because the transitions occur at internuclear distances where they are affected by this R-dependence. Efficient schemes to transfer RbCs, KRb and KCs to the absolute ground state as well as the optimal parameters of the optical lattices will be presented. This work was supported in part by ``Triangle de la Physique'' under contract 2008-007T-QCCM (Quantum Control of Cold Molecules).

  20. Properties of the {sup 7}He ground state from {sup 8}He neutron knockout

    Energy Technology Data Exchange (ETDEWEB)

    Aksyutina, Yu. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); Johansson, H.T. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); Aumann, T.; Boretzky, K. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Borge, M.J.G. [Instituto Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Chatillon, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Chulkov, L.V. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Kurchatov Institute, RU-123182 Moscow (Russian Federation); Cortina-Gil, D. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); University of Santiago de Compostela, 15706 Santiago de Compostela (Spain); Pramanik, U. Datta [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Emling, H. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Forssen, C. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); Fynbo, H.O.U. [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Geissel, H.; Ickert, G. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Jonson, B. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden)], E-mail: bjn@fy.chalmers.se; Kulessa, R. [Instytut Fizyki, Universytet Jagiellonski, PL-30-059 Krakow (Poland); Langer, C. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Lantz, M. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); LeBleis, T. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Lindahl, A.O. [Institutionen foer Fysik, University of Gothenburg, S-412 96 Goeteborg (Sweden)] (and others)

    2009-08-24

    The unbound nucleus {sup 7}He, produced in neutron-knockout reactions with a 240 MeV/u {sup 8}He beam in a liquid-hydrogen target, has been studied in an experiment at the ALADIN-LAND setup at GSI. From an R-matrix analysis the resonance parameters for {sup 7}He as well as the spectroscopic factor for the {sup 6}He(0{sup +}) + n configuration in its ground-state have been obtained. The spectroscopic factor is 0.61 confirming that {sup 7}He is not a pure single-particle state. An analysis of {sup 5}He data from neutron-knockout reactions of {sup 6}He in a carbon target reveals the presence of an s-wave component at low energies in the {alpha}+n relative energy spectrum. A possible low-lying exited state in {sup 7}He observed in neutron knockout data from {sup 8}He in a carbon target and tentatively interpreted as a I{sup {pi}}=1/2{sup -} state, could not be observed in the present experiment. Possible explanations of the shape difference between the {sup 7}He resonance obtained in the two knockout reactions are discussed in terms of target-dependence or different reaction mechanisms at relativistic energies.

  1. Energy of ground state of laminar electron-hole liquid

    International Nuclear Information System (INIS)

    Andryushin, E.A.

    1976-01-01

    The problem of a possible existence of metal electron-hole liquid in semiconductors is considered. The calculation has been carried out for the following model: two parallel planes are separated with the distance on one of the planes electrons moving, on the other holes doing. Transitions between the planes are forbidden. The density of particles for both planes is the same. The energy of the ground state and correlation functions for such electron-and hole system are calculated. It is shown that the state of a metal liquid is more advantageous against the exciton gas. For the mass ratio of electrons and holes, msub(e)/msub(h) → 0 a smooth rearrangement of the system into a state with ordered heavy particles is observed

  2. Symmetry Breakdown in Ground State Dissociation of HD+

    International Nuclear Information System (INIS)

    Ben-Itzhak, I.; Wells, E.; Carnes, K. D.; Krishnamurthi, Vidhya; Weaver, O. L.; Esry, B. D.

    2000-01-01

    Experimental studies of the dissociation of the electronic ground state of HD + following ionization of HD by fast proton impact indicate that the H + +D 1s dissociation channel is more likely than the H1s+D + dissociation channel by about 7% . This isotopic symmetry breakdown is due to the finite nuclear mass correction to the Born-Oppenheimer approximation which makes the 1sσ state 3.7 meV lower than the 2pσ state at the dissociation limit. The measured fractions of the two dissociation channels are in agreement with coupled-channels calculations of 1sσ to 2pσ transitions. (c) 2000 The American Physical Society

  3. Delineating pMDI model reactions with loblolly pine via solution-state NMR spectroscopy. Part 1, Catalyzed reactions with wood models and wood polymers

    Science.gov (United States)

    Daniel J. Yelle; John Ralph; Charles R. Frihart

    2011-01-01

    To better understand adhesive interactions with wood, reactions between model compounds of wood and a model compound of polymeric methylene diphenyl diisocyanate (pMDI) were characterized by solution-state NMR spectroscopy. For comparison, finely ground loblolly pine sapwood, milled-wood lignin and holocellulose from the same wood were isolated and derivatized with...

  4. Ground state energies from converging and diverging power series expansions

    International Nuclear Information System (INIS)

    Lisowski, C.; Norris, S.; Pelphrey, R.; Stefanovich, E.; Su, Q.; Grobe, R.

    2016-01-01

    It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh–Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state’s spatial extension is comparable to L. Once the binding strength is so strong that the ground state’s extension is less than L, the power expansion becomes divergent, consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.

  5. Ground state energies from converging and diverging power series expansions

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, C.; Norris, S.; Pelphrey, R.; Stefanovich, E., E-mail: eugene-stefanovich@usa.net; Su, Q.; Grobe, R.

    2016-10-15

    It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh–Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state’s spatial extension is comparable to L. Once the binding strength is so strong that the ground state’s extension is less than L, the power expansion becomes divergent, consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.

  6. Ground-State Structures of Ice at High-Pressures

    OpenAIRE

    McMahon, Jeffrey M.

    2011-01-01

    \\textit{Ab initio} random structure searching based on density functional theory is used to determine the ground-state structures of ice at high pressures. Including estimates of lattice zero-point energies, ice is found to adopt three novel crystal phases. The underlying sub-lattice of O atoms remains similar among them, and the transitions can be characterized by reorganizations of the hydrogen bonds. The symmetric hydrogen bonds of ice X and $Pbcm$ are initially lost as ice transforms to s...

  7. Search for low spin superdeformed states by transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Blons, J; Goutte, D; Lepretre, A; Lucas, R; Meot, V; Paya, D; Phan, X H [DAPNIA SPhN CE Saclay 91191 Gif sur Yvette (France); Barreau, G; Doan, T P; Pedemay, G [CENBG, 33175 Gradignan (France); Becker, J A; Stoyer, M A [LLNL, Livermore, CA (United States)

    1992-08-01

    We present a specific experimental technique aiming to observe superdeformed isomeric states. Preliminary results on two proton transfer reaction on platinum targets leading to {sup 194}Hg are shown. (author). 6 refs., 5 figs.

  8. In-beam study of the rotational states in actinides after alpha-induced nuclear reactions

    International Nuclear Information System (INIS)

    Hardt, K.

    1983-01-01

    In the experiments described in this thesis the ground state rotational bands of a whole series of actinide isotopes has been studied by means of α-induced nuclear reactions. The rotational bands studied in the even isotopes could be identified up to a spin of about 16 (h/2π). With this data it was now possible to establish a broad systematic of the rotational energies up to relatively high angular momenta. Also in the odd isotopes 233 U and 239 Pu it was possible to follow the ground state rotational bands up to higher spins and to compare them with predictions of the rotational model. By means of the (α,α'2n) reaction the nuclei 230 Th and especially 228 Th could by populated. (orig./HSI) [de

  9. Electron scattering from the ground state of mercury

    International Nuclear Information System (INIS)

    Fursa, D.; Bray, I.

    2000-01-01

    Full text: Close-coupling calculations have been performed for electron scattering from the ground state of mercury. We have used non-relativistic convergent close-coupling computer code with only minor modifications in order to account for the most prominent relativistic effects. These are the relativistic shift effect and singlet-triplet mixing. Very good agreement with measurements of differential cross sections for elastic scattering and excitation of 6s6p 1 P state at all energies is obtained. It is well recognised that a consistent approach to electron scattering from heavy atoms (like mercury, with nuclear charge Z=80) must be based on a fully relativistic Dirac equations based technique. While development of such technique is under progress in our group, the complexity of the problem ensures that results will not be available in the near future. On other hand, there is considerable interest in reliable theoretical results for electron scattering from heavy atoms from both applications and the need to interpret existing experimental data. This is particularly the case for mercury, which is the major component in fluorescent lighting devices and has been the subject of intense experimental study since nineteen thirties. Similarly to our approach for alkaline-earth atoms we use a model of two valence electrons above an inert Hartree-Fock core to describe the mercury atom. Note that this model does not account for any core excited states which are present in the mercury discrete spectrum. The major effect of missing core-excited states is substantial underestimation of the static dipole polarizability of the mercury ground state (34 a.u.) and consequent underestimation of the forward scattering elastic cross sections. We correct for this by adding in the scattering calculations a phenomenological polarization potential. In order to obtain correct ground state ionization energy for mercury one has to account for the relativistic shift effect. We model this

  10. Cluster decay of Ba isotopes from ground state and as an excited ...

    Indian Academy of Sciences (India)

    otherwise, inclusion of excitation energy decreases the T1/2 values. ... penetrates the nuclear barrier and reaches scission configuration after running .... between the ground-state energy levels of the parent nuclei and the ground-state energy.

  11. Effects of Different Lifting Cadences on Ground Reaction Forces during the Squat Exercise

    Science.gov (United States)

    Bentley, Jason R.; Amonette, William E.; Hagan, R. Donald

    2008-01-01

    The purpose of this investigation was to determine the effect of different cadences on the ground reaction force (GRF(sub R)) during the squat exercise. It is known that squats performed with greater acceleration will produce greater inertial forces; however, it is not well understood how different squat cadences affect GRF(sub R). It was hypothesized that faster squat cadences will result in greater peak GRF(sub R). METHODS: Six male subjects (30.8+/-4.4 y, 179.5+/-8.9 cm, 88.8+/-13.3 kg) with previous squat experience performed three sets of three squats using three different cadences (FC = 1 sec descent/1 sec ascent; MC = 3 sec descent/1 sec ascent; SC = 4 sec descent/2 sec ascent) with barbell mass equal to body mass. Ground reaction force was used to calculate inertial force trajectories of the body plus barbell (FI(sub system)). Forces were normalized to body mass. RESULTS: Peak GRF(sub R) and peak FI(sub system) were significantly higher in FC squats compared to MC (p=0.0002) and SC (p=0.0002). Range of GRF(sub R) and FI(sub system) were also significantly higher in FC compared to MC (psquat cadences result in significantly greater peak GRF(sub R) due to the inertia of the system. GRF(sub R) was more dependent upon decent cadence than on ascent cadence. PRACTICAL APPLICATION: This study demonstrates that faster squat cadences produce greater ground reaction forces. Therefore, the use of faster squat cadences might enhance strength and power adaptations to long-term resistance exercise training. Key Words: velocity, weight training, resistive exercise

  12. Forelimb and hindlimb ground reaction forces of walking cats: assessment and comparison with walking dogs.

    Science.gov (United States)

    Corbee, R J; Maas, H; Doornenbal, A; Hazewinkel, H A W

    2014-10-01

    The primary aim of this study was to assess the potential of force plate analysis for describing the stride cycle of the cat. The secondary aim was to define differences in feline and canine locomotion based on force plate characteristics. Ground reaction forces of 24 healthy cats were measured and compared with ground reaction forces of 24 healthy dogs. Force-time waveforms in cats generated by force plate analysis were consistent, as reflected by intra-class correlation coefficients for peak vertical force, peak propulsive force and peak braking force (0.94-0.95, 0.85-0.89 and 0.89-0.90, respectively). Compared with dogs, cats had a higher peak vertical force during the propulsion phase (cat, 3.89 ± 0.19 N/kg; dog, 3.03 ± 0.16 N/kg), and a higher hindlimb propulsive force (cat, -1.08 ± 0.13 N/kg; dog, (-0.87 ± 0.13 N/kg) and hindlimb impulse (cat, -0.18 ± 0.03 N/kg; dog, -0.14 ± 0.02 N/kg). Force plate analysis is a valuable tool for the assessment of locomotion in cats, because it can be applied in the clinical setting and provides a non-invasive and objective measurement of locomotion characteristics with high repeatability in cats, as well as information about kinetic characteristics. Differences in force-time waveforms between cats and dogs can be explained by the more crouched position of cats during stance and their more compliant gait compared with dogs. Feline waveforms of the medio-lateral ground reaction forces also differ between cats and dogs and this can be explained by differences in paw supination-pronation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The role of the excited electronic states in the C++H2O reaction

    International Nuclear Information System (INIS)

    Flores, Jesus R.; Gonzalez, Adan B.

    2008-01-01

    The electronic excited states of the [COH 2 ] + system have been studied in order to establish their role in the dynamics of the C + +H 2 O→[COH] + +H reaction, which is a prototypical ion-molecule reaction. The most relevant minima and saddle points of the lowest excited state have been determined and energy profiles for the lowest excited doublet and quartet electronic states have been computed along the fragmentation and isomerization coordinates. Also, nonadiabatic coupling strengths between the ground and the first excited state have been computed where they can be large. Our analysis suggests that the first excited state could play an important role in the generation of the formyl isomer, which has been detected in crossed beam experiments [D. M. Sonnenfroh et al., J. Chem. Phys. 83, 3985 (1985)], but could not be explained in quasiclassical trajectory computations [Y. Ishikawa et al., Chem. Phys. Lett. 370, 490 (2003); J. R. Flores, J. Chem. Phys. 125, 164309 (2006)

  14. Highly twisted 1,2:8,9-dibenzozethrenes: Synthesis, ground state, and physical properties

    KAUST Repository

    Sun, Zhe; Zheng, Bin; Hu, Pan; Huang, Kuo-Wei; Wu, Jishan

    2014-01-01

    Two soluble and stable 1,2:8,9-dibenzozethrene derivatives (3a,b) are synthesized through a palladium-catalyzed cyclodimerization reaction. X-ray crystallographic analysis shows that these molecules are highly twisted owing to congestion at the cove region. Broken-symmetry DFT calculations predict that they have a singlet biradical ground state with a smaller biradical character and a large singlet-triplet energy gap; these predictions are supported by NMR and electronic absorption measurements. They have small energy gaps and exhibit farred/near-infrared absorption/emission and amphoteric redox behaviors.

  15. Highly twisted 1,2:8,9-dibenzozethrenes: Synthesis, ground state, and physical properties

    KAUST Repository

    Sun, Zhe

    2014-08-08

    Two soluble and stable 1,2:8,9-dibenzozethrene derivatives (3a,b) are synthesized through a palladium-catalyzed cyclodimerization reaction. X-ray crystallographic analysis shows that these molecules are highly twisted owing to congestion at the cove region. Broken-symmetry DFT calculations predict that they have a singlet biradical ground state with a smaller biradical character and a large singlet-triplet energy gap; these predictions are supported by NMR and electronic absorption measurements. They have small energy gaps and exhibit farred/near-infrared absorption/emission and amphoteric redox behaviors.

  16. Ground Reaction Forces Generated During Rhythmical Squats as a Dynamic Loads of the Structure

    Science.gov (United States)

    Pantak, Marek

    2017-10-01

    Dynamic forces generated by moving persons can lead to excessive vibration of the long span, slender and lightweight structure such as floors, stairs, stadium stands and footbridges. These dynamic forces are generated during walking, running, jumping and rhythmical body swaying in vertical or horizontal direction etc. In the paper the mathematical models of the Ground Reaction Forces (GRFs) generated during squats have been presented. Elaborated models was compared to the GRFs measured during laboratory tests carried out by author in wide range of frequency using force platform. Moreover, the GRFs models were evaluated during dynamic numerical analyses and dynamic field tests of the exemplary structure (steel footbridge).

  17. Line list for the ground state of CaF

    Science.gov (United States)

    Hou, Shilin; Bernath, Peter F.

    2018-05-01

    The molecular potential energy function and electronic dipole moment function for the ground state of CaF were studied with MRCI, ACPF, and RCCSD(T) ab initio calculations. The RCCSD(T) potential function reproduces the experimental vibrational intervals to within ∼2 cm-1. The RCCSD(T) dipole moment at the equilibrium internuclear separation agrees well with the experimental value. Over a wide range of internuclear separations, far beyond the range associated with the observed spectra, the ab initio dipole moment functions are similar and highly linear. An extended Morse oscillator (EMO) potential function was also obtained by fitting the observed lines of the laboratory vibration-rotation and pure rotation spectra of the 40CaF X2Σ+ ground state. The fitted potential reproduces the observed transitions (v ≤ 8, N ≤ 121, Δv = 0, 1) within their experimental uncertainties. With this EMO potential and the RCCSD(T) dipole moment function, line lists for 40CaF, 42CaF, 43CaF, 44CaF, 46CaF, and 48CaF were computed for v ≤ 10, N ≤ 121, Δv = 0-10. The calculated emission spectra are in good agreement with an observed laboratory spectrum of CaF at a sample temperature of 1873 K.

  18. A new representation for ground states and its Legendre transforms

    International Nuclear Information System (INIS)

    Cedillo, A.

    1994-01-01

    The ground-state energy of an electronic system is a functional of the number of electrons (N) and the external potential (v): E = E(N,V), this is the energy representation for ground states. In 1982, Nalewajski defined the Legendre transforms of this representation, taking advantage of the strict concavity of E with respect to their variables (concave respect v and convex respect N), and he also constructed a scheme for the reduction of derivatives of his representations. Unfortunately, N and the electronic density (p) were the independent variables of one of these representations, but p depends explicitly on N. In this work, this problem is avoided using the energy per particle (ε) as the basic variables, and the Legendre transformations can be defined. A procedure for the reduction of derivatives is generated for the new four representations and, in contrast to the Nalewajski's procedure, it only includes derivatives of the four representations. Finally, the reduction of derivatives is used to test some relationships between the hardness and softness kernels

  19. Ground reaction force comparison of controlled resistance methods to isoinertial loading of the squat exercise - biomed 2010.

    Science.gov (United States)

    Paulus, David C; Reynolds, Michael C; Schilling, Brian K

    2010-01-01

    The ground reaction force during the concentric (raising) portion of the squat exercise was compared to that of isoinertial loading (free weights) for three pneumatically controlled resistance methods: constant resistance, cam force profile, and proportional force control based on velocity. Constant force control showed lower ground reaction forces than isoinertial loading throughout the range of motion (ROM). The cam force profile exhibited slightly greater ground reaction forces than isoinertial loading at 10 and 40% ROM with fifty-percent greater loading at 70% ROM. The proportional force control consistently elicited greater ground reaction force than isoinertial loading, which progressively ranged from twenty to forty percent increase over isoinertial loading except for being approximately equal at 85% ROM. Based on these preliminary results, the proportional control shows the most promise for providing loading that is comparable in magnitude to isoinertial loading. This technology could optimize resistance exercise for sport-specific training or as a countermeasure to atrophy during spaceflight.

  20. Ground state analysis of magnetic nanographene molecules with modified edge

    International Nuclear Information System (INIS)

    Gorjizadeh, Narjes; Ota, Norio; Kawazoe, Yoshiyuki

    2013-01-01

    Highlights: ► Graphene molecules can become ferromagnetic by edge modifications. ► Dihydrogenation of one zigzag edge of rectangular flakes make them ferromagnetic. ► Triangular flakes become high-spin state by dehydrogenization of one zigzag edge. - Abstract: We study spin states of edge modified nanographene molecules with rectangular and triangular shapes by first principle calculations using density functional theory (DFT) and Hartree–Fock (HF) methods with Møller–Plesset (MP) correlation energy correction at different levels. Anthracene (C 14 H 10 ) and phenalenyl (C 13 H 9 ), which contain three benzene rings combined in two different ways, can be considered as fragments of a graphene sheet. Carbon-based ferromagnetic materials are of great interest both in fundamental science and technological potential in organic spintronics devices. We show that non-magnetic rectangular molecules such as C 14 H 10 can become ferromagnetic with high-spin state as the ground state by dihydrogenization of one of the zigzag edges, while triangular molecules such as C 13 H 9 become ferromagnetic with high-spin state by dehydrogenization of one of the zigzag edges

  1. The relation between the (N) and (N-1) electrons atomic ground state

    International Nuclear Information System (INIS)

    Briet, P.

    1984-05-01

    The relation between the ground state of an N and (N-1) electrons atomic system are studied. We show that in some directions of the configuration space, the ratio of the N electrons atomic ground state to the one particle density is asymptotically equivalent to the (N-1) electrons atomic ground state

  2. Magnetic ground states in nanocuboids of cubic magnetocrystalline anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Bonilla, F.J., E-mail: fbonilla@cicenergigune.com; Lacroix, L.-M.; Blon, T., E-mail: thomas.blon@insa-toulouse.fr

    2017-04-15

    Flower and easy-axis vortex states are well-known magnetic configurations that can be stabilized in small particles. However, <111> vortex (V<111>), i.e. a vortex state with its core axis along the hard-axis direction, has been recently evidenced as a stable configuration in Fe nanocubes of intermediate sizes in the flower/vortex transition. In this context, we present here extensive micromagnetic simulations to determine the different magnetic ground states in ferromagnetic nanocuboids exhibiting cubic magnetocrystalline anisotropy (MCA). Focusing our study in the single-domain/multidomain size range (10–50 nm), we showed that V<111> is only stable in nanocuboids exhibiting peculiar features, such as a specific size, shape and magnetic environment, contrarily to the classical flower and easy-axis vortex states. Thus, to track experimentally these V<111> states, one should focused on (i) nanocuboids exhibiting a nearly perfect cubic shape (size distorsion <12%) made of (ii) a material which combines a zero or positive MCA and a high saturation magnetization, such as Fe or FeCo; and (iii) a low magnetic field environment, V<111> being only observed in virgin or remanent states. - Highlights: • The <111> vortex is numerically determined in nanocubes of cubic anisotropy. • It constitutes an intermediate state in the single-domain limit. • Such a vortex can only be stabilized in perfect or slightly deformed nanocuboids. • It exists in nanocuboids made of materials with zero or positive cubic anisotropy. • The associated magnetization reversal is described by a rotation of the vortex axis.

  3. Grizzly bear (Ursus arctos horribilis) locomotion: gaits and ground reaction forces.

    Science.gov (United States)

    Shine, Catherine L; Penberthy, Skylar; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P

    2015-10-01

    Locomotion of plantigrade generalists has been relatively little studied compared with more specialised postures even though plantigrady is ancestral among quadrupeds. Bears (Ursidae) are a representative family for plantigrade carnivorans, they have the majority of the morphological characteristics identified for plantigrade species, and they have the full range of generalist behaviours. This study compared the locomotion of adult grizzly bears (Ursus arctos horribilis Linnaeus 1758), including stride parameters, gaits and analysis of three-dimensional ground reaction forces, with that of previously studied quadrupeds. At slow to moderate speeds, grizzly bears use walks, running walks and canters. Vertical ground reaction forces demonstrated the typical M-shaped curve for walks; however, this was significantly more pronounced in the hindlimb. The rate of force development was also significantly higher for the hindlimbs than for the forelimbs at all speeds. Mediolateral forces were significantly higher than would be expected for a large erect mammal, almost to the extent of a sprawling crocodilian. There may be morphological or energetic explanations for the use of the running walk rather than the trot. The high medial forces (produced from a lateral push by the animal) could be caused by frontal plane movement of the carpus and elbow by bears. Overall, while grizzly bears share some similarities with large cursorial species, their locomotor kinetics have unique characteristics. Additional studies are needed to determine whether these characters are a feature of all bears or plantigrade species. © 2015. Published by The Company of Biologists Ltd.

  4. Multi-segment foot kinematics and ground reaction forces during gait of individuals with plantar fasciitis.

    Science.gov (United States)

    Chang, Ryan; Rodrigues, Pedro A; Van Emmerik, Richard E A; Hamill, Joseph

    2014-08-22

    Clinically, plantar fasciitis (PF) is believed to be a result and/or prolonged by overpronation and excessive loading, but there is little biomechanical data to support this assertion. The purpose of this study was to determine the differences between healthy individuals and those with PF in (1) rearfoot motion, (2) medial forefoot motion, (3) first metatarsal phalangeal joint (FMPJ) motion, and (4) ground reaction forces (GRF). We recruited healthy (n=22) and chronic PF individuals (n=22, symptomatic over three months) of similar age, height, weight, and foot shape (p>0.05). Retro-reflective skin markers were fixed according to a multi-segment foot and shank model. Ground reaction forces and three dimensional kinematics of the shank, rearfoot, medial forefoot, and hallux segment were captured as individuals walked at 1.35 ms(-1). Despite similarities in foot anthropometrics, when compared to healthy individuals, individuals with PF exhibited significantly (pfoot kinematics and kinetics. Consistent with the theoretical injury mechanisms of PF, we found these individuals to have greater total rearfoot eversion and peak FMPJ dorsiflexion, which may put undue loads on the plantar fascia. Meanwhile, increased medial forefoot plantar flexion at initial contact and decreased propulsive GRF are suggestive of compensatory responses, perhaps to manage pain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Lower limb ice application alters ground reaction force during gait initiation

    Directory of Open Access Journals (Sweden)

    Thiago B. Muniz

    2015-04-01

    Full Text Available BACKGROUND: Cryotherapy is a widely used technique in physical therapy clinics and sports. However, the effects of cryotherapy on dynamic neuromuscular control are incompletely explained. OBJECTIVES: To evaluate the effects of cryotherapy applied to the calf, ankle and sole of the foot in healthy young adults on ground reaction forces during gait initiation. METHOD: This study evaluated the gait initiation forces, maximum propulsion, braking forces and impulses of 21 women volunteers through a force platform, which provided maximum and minimum ground reaction force values. To assess the effects of cooling, the task - gait initiation - was performed before ice application, immediately after and 30 minutes after removal of the ice pack. Ice was randomly applied on separate days to the calf, ankle and sole of the foot of the participants. RESULTS: It was demonstrated that ice application for 30 minutes to the sole of the foot and calf resulted in significant changes in the vertical force variables, which returned to their pre-application values 30 minutes after the removal of the ice pack. Ice application to the ankle only reduced propulsion impulse. CONCLUSIONS: These results suggest that although caution is necessary when performing activities that require good gait control, the application of ice to the ankle, sole of the foot or calf in 30-minute intervals may be safe even preceding such activities.

  6. Influences of Athletic Footwear on Ground Reaction Forces During A Sidestep Cutting Maneuver on Artificial Turf

    Directory of Open Access Journals (Sweden)

    Jacob R. Gdovin

    2018-04-01

    Full Text Available Background: Recreational athletes can select their desired footwear based on personal preferences of shoe properties such as comfort and weight. Commonly worn running shoes and cleated footwear with similar stud geometry and distribution are worn when performing sport-specific tasks such as a side-step cutting maneuver (SCM in soccer and American football (hereafter, referred to as football. The effects of such footwear on injury mechanics have been documented with less being known regarding their effect on performance. Objective: The purpose of this study was to examine performance differences including peak ground reaction forces (pGRF, time-to-peak ground reaction forces (tpGRF and the rate of force development (RFD between football cleats (FB, soccer cleats (SOC, and traditional running sneakers (RUN during the braking and propulsive phases of a SCM. Methodology: Eleven recreationally active males who participated in football and/or soccer-related activities at the time of testing completed the study. A 1 x 3 [1 Condition (SCM x 3 Footwear (RUN, FB, SOC] repeated measures ANOVA was utilized to analyze the aforementioned variables. Results: There were no significant differences (p > 0.05 between footwear conditions when comparing pGRF, tpGRF, or RFD in either the braking or propulsive phases. Conclusion: The results suggest that the studded and non-studded footwear allowed athletes to generate similar forces over a given time frame when performing a SCM.

  7. Ground state configurations in antiferromagnetic ultrathin films with dipolar anisotropy

    International Nuclear Information System (INIS)

    León, H.

    2013-01-01

    The formalism developed in a previous work to calculate the dipolar energy in quasi-two-dimensional crystals with ferromagnetic order is now extended to collinear antiferromagnetic order. Numerical calculations of the dipolar energy are carried out for systems with tetragonally distorted fcc [001] structures, the case of NiO and MnO ultrathin film grown in non-magnetic substrates, where the magnetic phase is a consequence of superexchange and dipolar interactions. The employed approximation allows to demonstrate that dipolar coupling between atomic layers is responsible for the orientation of the magnetization when it differs from the one in a single layer. The ground state energy of a given NiO or MnO film is found to depend not only on the strain, but also on how much the interlayer separation and the 2D lattice constant are changed with respect to the ideal values corresponding to the non-distorted cubic structure. Nevertheless, it is shown that the orientation of the magnetization in the magnetic phase of any of these films is determined by the strain exclusively. A striped phase with the magnetization along the [112 ¯ ] direction appears as the ground state configuration of NiO and MnO ultrathin films. In films with equally oriented stripes along the layers this magnetic phase is twofold degenerate, while in films with multidomain layers it is eightfold degenerate. These results are not in contradiction with experimentally observed out-of-plane or in-plane magnetization of striped phases in NiO and MnO ultrathin films. - Highlights: ► Dipolar energy in collinear antiferromagnetic ultrathin films is calculated. ► Numerical results are presented for distorted fcc [001] structures. ► The lowest energy of a system depends on how the tetragonal distortion is achieved. ► A striped phase with magnetization in the [112 ¯ ] direction is the ground state. ► In multidomain NiO and MnO films it is eightfold degenerate.

  8. Periodic-orbit formula for quantum reactions through transition states

    NARCIS (Netherlands)

    Schubert, Roman; Waalkens, Holger; Goussev, Arseni; Wiggins, Stephen

    2010-01-01

    Transition state theory forms the basis of computing reaction rates in chemical and other systems. Recently, it has been shown how transition state theory can rigorously be realized in phase space by using an explicit algorithm. The quantization has been demonstrated to lead to an efficient

  9. Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Kaptan, Y., E-mail: yuecel.kaptan@physik.tu-berlin.de; Herzog, B.; Schöps, O.; Kolarczik, M.; Woggon, U.; Owschimikow, N. [Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin (Germany); Röhm, A.; Lingnau, B.; Lüdge, K. [Institut für Theoretische Physik, Technische Universität Berlin, Berlin (Germany); Schmeckebier, H.; Arsenijević, D.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin (Germany); Mikhelashvili, V.; Eisenstein, G. [Technion Institute of Technology, Faculty of Electrical Engineering, Haifa (Israel)

    2014-11-10

    The impact of ground state amplification on the laser emission of In(Ga)As quantum dot excited state lasers is studied in time-resolved experiments. We find that a depopulation of the quantum dot ground state is followed by a drop in excited state lasing intensity. The magnitude of the drop is strongly dependent on the wavelength of the depletion pulse and the applied injection current. Numerical simulations based on laser rate equations reproduce the experimental results and explain the wavelength dependence by the different dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously broadened quantum dots. At high injection levels, the observed response even upon perturbation of the lasing sub-ensemble is small and followed by a fast recovery, thus supporting the capacity of fast modulation in dual-state devices.

  10. Liquid 4He: Modified LOCV ground-state energy calculations

    International Nuclear Information System (INIS)

    Skjetne, B.; Ostgaard, E.

    1996-01-01

    The ground-state energetics of liquid 4 He is studied in a constrained variational approach, where the significance of neglecting terms beyond second order in the cluster expansion is estimated in a crude way. An adjustment to the conditions of healing on the two-body correlation function excludes from the global average field the effects of pairwise clustering to higher orders. To this end, open-quotes virtualclose quotes particles beyond nearest neighbors are included in the average correlation volume. Results within the scope of such modifications are consistent with GFMC and QDMC calculations, falling within the range -7.25 ± 0.05 K when recent interaction models are used

  11. Ground-state properties of neutron magic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, G., E-mail: gauravphy@gmail.com [Govt. Women Engineering College, Department of Physics (India); Kaushik, M. [Shankara Institute of Technology, Department of Physics (India)

    2017-03-15

    A systematic study of the ground-state properties of the entire chains of even–even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126 has been carried out using relativistic mean-field plus Bardeen–Cooper–Schrieffer approach. Our present investigation includes deformation, binding energy, two-proton separation energy, single-particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using nonrelativistic approach (Skyrme–Hartree–Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip-lines, the (Z, N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.

  12. Excited state intramolecular charge transfer reaction in non-aqueous ...

    Indian Academy of Sciences (India)

    polar phase and thus leading to less swelling of reverse .... ues were restricted up to the limit at which no phase separation was ..... The lower panel of figure 1 also indicates that the slopes of ... probe in its ground and excited states.55.

  13. A rolling constraint reproduces ground reaction forces and moments in dynamic simulations of walking, running, and crouch gait.

    Science.gov (United States)

    Hamner, Samuel R; Seth, Ajay; Steele, Katherine M; Delp, Scott L

    2013-06-21

    Recent advances in computational technology have dramatically increased the use of muscle-driven simulation to study accelerations produced by muscles during gait. Accelerations computed from muscle-driven simulations are sensitive to the model used to represent contact between the foot and ground. A foot-ground contact model must be able to calculate ground reaction forces and moments that are consistent with experimentally measured ground reaction forces and moments. We show here that a rolling constraint can model foot-ground contact and reproduce measured ground reaction forces and moments in an induced acceleration analysis of muscle-driven simulations of walking, running, and crouch gait. We also illustrate that a point constraint and a weld constraint used to model foot-ground contact in previous studies produce inaccurate reaction moments and lead to contradictory interpretations of muscle function. To enable others to use and test these different constraint types (i.e., rolling, point, and weld constraints) we have included them as part of an induced acceleration analysis in OpenSim, a freely-available biomechanics simulation package. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  15. Populations of excited states and reaction mechanisms in the emission of complex fragments

    International Nuclear Information System (INIS)

    Gomez del Campo, J.

    1990-01-01

    Cross sections for emission of complex fragments (Z>2) in their ground and excited states are presented for several heavy-ion reactions at bombarding energies above 10 MeV/nucleon. Data presented are mostly on the cross sections extracted by γ-ray techniques. It is shown that a simple statistical approach to associate the ratio, of cross sections for excited states and ground states, to the temperature of the emitter fails to give the expected temperatures. However, it is shown that this is mostly due to the fact that the fragments that γ decay are secondary fragments, produced by the particle decay of the primary emitted complex fragments. A Hauser-Feshbach analysis accounts well for the cross sections and extracted temperatures. 22 refs., 6 figs

  16. Reaction of H2 with O2 in Excited Electronic States: Reaction Pathways and Rate Constants.

    Science.gov (United States)

    Pelevkin, Alexey V; Loukhovitski, Boris I; Sharipov, Alexander S

    2017-12-21

    Comprehensive quantum chemical analysis with the use of the multireference state-averaged complete active space self-consistent field approach was carried out to study the reactions of H 2 with O 2 in a 1 Δ g , b 1 Σ g + , c 1 Σ u - , and A' 3 Δ u electronically excited states. The energetically favorable reaction pathways and possible intersystem crossings have been revealed. The energy barriers were refined employing the extended multiconfiguration quasi-degenerate second-order perturbation theory. It has been shown that the interaction of O 2 (a 1 Δ g ) and O 2 (A' 3 Δ u ) with H 2 occurs through the H-abstraction process with relatively low activation barriers that resulted in the formation of the HO 2 molecule in A″ and A' electronic states, respectively. Meanwhile, molecular oxygen in singlet sigma states (b 1 Σ g + and c 1 Σ u - ) was proved to be nonreactive with respect to the molecular hydrogen. Appropriate rate constants for revealed reaction and quenching channels have been estimated using variational transition-state theory including corrections for the tunneling effect, possible nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. It was demonstrated that the calculated reaction rate constant for the H 2 + O 2 (a 1 Δ g ) process is in reasonable agreement with known experimental data. The Arrhenius approximations for these processes have been proposed for the temperature range T = 300-3000 K.

  17. Single-particle and collective states in transfer reactions

    International Nuclear Information System (INIS)

    Lhenry, I.; Suomijaervi, T.; Giai, N. van

    1993-01-01

    The possibility to excite collective states in transfer reactions induced by heavy ions is studied. Collective states are described within the Random Phase Approximation (RPA) and the collectivity is defined according to the number of configurations contributing to a given state. The particle transfer is described within the Distorted Wave Born Approximation (DWBA). Calculations are performed for two different stripping reactions: 207 Pb( 20 Ne, 19 Ne) 208 Pb and 59 Co( 20 Ne, 19 F) 60 Ni at 48 MeV/nucleon for which experimental data are available. The calculation shows that a sizeable fraction of collective strength can be excited in these reactions. The comparison with experiment shows that this parameter-free calculation qualitatively explains the data. (author) 19 refs.; 10 figs

  18. Assessment of changes in gait parameters and vertical ground reaction forces after total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Bhargava P

    2007-01-01

    Full Text Available The principal objectives of arthroplasty are relief of pain and enhancement of range of motion. Currently, postoperative pain and functional capacity are assessed largely on the basis of subjective evaluation scores. Because of the lack of control inherent in this method it is often difficult to interpret data presented by different observers in the critical evaluation of surgical method, new components and modes of rehabilitation. Gait analysis is a rapid, simple and reliable method to assess functional outcome. This study was undertaken in an effort to evaluate the gait characteristics of patients who underwent arthroplasty, using an Ultraflex gait analyzer. Materials and Methods: The study was based on the assessment of gait and weight-bearing pattern of both hips in patients who underwent total hip replacement and its comparison with an age and sex-matched control group. Twenty subjects of total arthroplasty group having unilateral involvement, operated by posterior approach at our institution with a minimum six-month postoperative period were selected. Control group was age and sex-matched, randomly selected from the general population. Gait analysis was done using Ultraflex gait analyzer. Gait parameters and vertical ground reaction forces assessment was done by measuring the gait cycle properties, step time parameters and VGRF variables. Data of affected limb was compared with unaffected limb as well as control group to assess the weight-bearing pattern. Statistical analysis was done by′t′ test. Results: Frequency is reduced and gait cycle duration increased in total arthroplasty group as compared with control. Step time parameters including Step time, Stance time and Single support time are significantly reduced ( P value < .05 while Double support time and Single swing time are significantly increased ( P value < .05 in the THR group. Forces over each sensor are increased more on the unaffected limb of the THR group as compared to

  19. 0+ analogue state in 118Sb from 117Sn(p,nγ) reaction

    International Nuclear Information System (INIS)

    Pal, J.; Dey, C.C.; Bose, S.; Sinha, B.K.; Chatterjee, M.B.; Mahapatra, D.P.

    1996-01-01

    The analogue of the 0 + ground state in 118 Sn has been observed in the compound nucleus 118 Sb through 117 Sn(p,nγ) 117 Sb reaction. The neutron decays of this analogue resonance have been studied from the deexciting γ-rays of the residual nucleus 117 Sb. From off resonance excitation functions, spin assignments have been made to states in 117 Sb, on the basis of Hauser-Feshbach formalism. The resonance parameters of the isobaric analogue resonance have been determined, including the total, proton and neutron decay widths. (orig.)

  20. Lifetime and g-factor measurements of excited states using Coulomb excitation and alpha transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Guevara, Z. E., E-mail: zjguevaram@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co [Physics Department, Universidad Nacional de Colombia, Bogotá D.C. (Colombia)

    2016-07-07

    In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of {sup 106}Cd to study excited states of {sup 110}Sn and the beam nuclei itself will be presented.

  1. Ground state of charged Base and Fermi fluids in strong coupling

    International Nuclear Information System (INIS)

    Mazighi, R.

    1982-03-01

    The ground state and excited states of the charged Bose gas were studied (wave function, equation of state, thermodynamics, application of Feynman theory). The ground state of the charged Fermi gas was also investigated together with the miscibility of charged Bose and Fermi gases at 0 deg K (bosons-bosons, fermions-bosons and fermions-fermions) [fr

  2. Machine learning techniques for gait biometric recognition using the ground reaction force

    CERN Document Server

    Mason, James Eric; Woungang, Isaac

    2016-01-01

    This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF. This book · introduces novel machine-learning-based temporal normalization techniques · bridges research gaps concerning the effect of ...

  3. Surface/subsurface observation and removal mechanisms of ground reaction bonded silicon carbide

    Science.gov (United States)

    Yao, Wang; Zhang, Yu-Min; Han, Jie-cai; Zhang, Yun-long; Zhang, Jian-han; Zhou, Yu-feng; Han, Yuan-yuan

    2006-01-01

    Reaction Bonded Silicon Carbide (RBSiC) has long been recognized as a promising material for optical applications because of its unique combination of favorable properties and low-cost fabrication. Grinding of silicon carbide is difficult because of its high hardness and brittleness. Grinding often induces surface and subsurface damage, residual stress and other types of damage, which have great influence on the ceramic components for optical application. In this paper, surface integrity, subsurface damage and material removal mechanisms of RBSiC ground using diamond grinding wheel on creep-feed surface grinding machine are investigated. The surface and subsurface are studied with scanning electron microscopy (SEM) and optical microscopy. The effects of grinding conditions on surface and subsurface damage are discussed. This research links the surface roughness, surface and subsurface cracks to grinding parameters and provides valuable insights into the material removal mechanism and the dependence of grind induced damage on grinding conditions.

  4. Using ground reaction force to predict knee kinetic asymmetry following anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Dai, B; Butler, R J; Garrett, W E; Queen, R M

    2014-12-01

    Asymmetries in sagittal plane knee kinetics have been identified as a risk factor for anterior cruciate ligament (ACL) re-injury. Clinical tools are needed to identify the asymmetries. This study examined the relationships between knee kinetic asymmetries and ground reaction force (GRF) asymmetries during athletic tasks in adolescent patients following ACL reconstruction (ACL-R). Kinematic and GRF data were collected during a stop-jump task and a side-cutting task for 23 patients. Asymmetry indices between the surgical and non-surgical limbs were calculated for GRF and knee kinetic variables. For the stop-jump task, knee kinetics asymmetry indices were correlated with all GRF asymmetry indices (P kinetic asymmetry indices were correlated with the peak propulsion vertical GRF and vertical GRF impulse asymmetry indices (P kinetic asymmetries and therefore may assist in optimizing rehabilitation outcomes and minimizing re-injury rates. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Ground reaction forces and frictional demands during stair descent: effects of age and illumination.

    Science.gov (United States)

    Christina, Kathryn A; Cavanagh, Peter R

    2002-04-01

    Stair descent is an inherently risky and demanding task that older adults often encounter in everyday life. It is believed that slip between the foot or shoe sole and the stair surface may play a role in stair related falls, however, there are no reports on slip resistance requirements for stair descent. The aim of this study was to determine the required coefficient of friction (RCOF) necessary for safe stair descent in 12 young and 12 older adults, under varied illuminance conditions. The RCOF during stair descent was found to be comparable in magnitude and time to that for overground walking, and thus, with adequate footwear and dry stair surfaces, friction does not appear to be a major determinant of stair safety. Illuminance level had little effect on the dependent variables quantified in this study. However, the older participants demonstrated safer strategies than the young during stair descent, as reflected by differences in the ground reaction forces and lower RCOF.

  6. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time.

    Science.gov (United States)

    Barker, Leland A; Harry, John R; Mercer, John A

    2018-01-01

    Barker, LA, Harry, JR, and Mercer, JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res 32(1): 248-254, 2018-The purpose of this study was to determine the relationship between ground reaction force (GRF) variables to jump height, jump time, and the reactive strength index (RSI). Twenty-six, Division-I, male, soccer players performed 3 maximum effort countermovement jumps (CMJs) on a dual-force platform system that measured 3-dimensional kinetic data. The trial producing peak jump height was used for analysis. Vertical GRF (Fz) variables were divided into unloading, eccentric, amortization, and concentric phases and correlated with jump height, RSI (RSI = jump height/jump time), and jump time (from start to takeoff). Significant correlations were observed between jump height and RSI, concentric kinetic energy, peak power, concentric work, and concentric displacement. Significant correlations were observed between RSI and jump time, peak power, unload Fz, eccentric work, eccentric rate of force development (RFD), amortization Fz, amortization time, second Fz peak, average concentric Fz, and concentric displacement. Significant correlations were observed between jump time and unload Fz, eccentric work, eccentric RFD, amortization Fz, amortization time, average concentric Fz, and concentric work. In conclusion, jump height correlated with variables derived from the concentric phase only (work, power, and displacement), whereas Fz variables from the unloading, eccentric, amortization, and concentric phases correlated highly with RSI and jump time. These observations demonstrate the importance of countermovement Fz characteristics for time-sensitive CMJ performance measures. Researchers and practitioners should include RSI and jump time with jump height to improve their assessment of jump performance.

  7. Effect of gender, cadence, and water immersion on ground reaction forces during stationary running.

    Science.gov (United States)

    de Brito Fontana, Heiliane; Haupenthal, Alessandro; Ruschel, Caroline; Hubert, Marcel; Ridehalgh, Colette; Roesler, Helio

    2012-05-01

    Controlled laboratory study. To analyze the vertical and anteroposterior components of the ground reaction force during stationary running performed in water and on dry land, focusing on the effect of gender, level of immersion, and cadence. Stationary running, as a fundamental component of aquatic rehabilitation and training protocols, is little explored in the literature with regard to biomechanical variables, which makes it difficult to determine and control the mechanical load acting on the individuals. Twenty-two subjects performed 1 minute of stationary running on land, immersed to the hip, and immersed to the chest at 3 different cadences: 90 steps per minute, 110 steps per minute, and 130 steps per minute. Force data were acquired with a force plate, and the variables were vertical peak (Fy), loading rate (LR), anterior peak (Fx anterior), and posterior peak (Fx posterior). Data were normalized to subjects' body weight (BW) and analyzed using repeated-measures analysis of variance. Fy ranged from 0.98 to 2.11 BW, LR ranged from 5.38 to 11.52 BW/s, Fx anterior ranged from 0.07 to 0.14 BW, and Fx posterior ranged from 0.06 to 0.09 BW. The gender factor had no effect on the variables analyzed. A significant interaction between level of immersion and cadence was observed for Fy, Fx anterior, and Fx posterior. On dry land, Fy increased with increasing cadence, whereas in water this effect was seen only between 90 steps per minute and the 2 higher cadences. The higher the level of immersion, the lower the magnitude of Fy. LR was reduced under both water conditions and increased with increasing cadence, regardless of the level of immersion. Ground reaction forces during stationary running are similar between genders. Fy and LR are lower in water, though the values are increased at higher cadences.

  8. Ground reaction forces in shallow water running are affected by immersion level, running speed and gender.

    Science.gov (United States)

    Haupenthal, Alessandro; Fontana, Heiliane de Brito; Ruschel, Caroline; dos Santos, Daniela Pacheco; Roesler, Helio

    2013-07-01

    To analyze the effect of depth of immersion, running speed and gender on ground reaction forces during water running. Controlled laboratory study. Twenty adults (ten male and ten female) participated by running at two levels of immersion (hip and chest) and two speed conditions (slow and fast). Data were collected using an underwater force platform. The following variables were analyzed: vertical force peak (Fy), loading rate (LR) and anterior force peak (Fx anterior). Three-factor mixed ANOVA was used to analyze data. Significant effects of immersion level, speed and gender on Fy were observed, without interaction between factors. Fy was greater when females ran fast at the hip level. There was a significant increase in LR with a reduction in the level of immersion regardless of the speed and gender. No effect of speed or gender on LR was observed. Regarding Fx anterior, significant interaction between speed and immersion level was found: in the slow condition, participants presented greater values at chest immersion, whereas, during the fast running condition, greater values were observed at hip level. The effect of gender was only significant during fast water running, with Fx anterior being greater in the men group. Increasing speed raised Fx anterior significantly irrespective of the level of immersion and gender. The magnitude of ground reaction forces during shallow water running are affected by immersion level, running speed and gender and, for this reason, these factors should be taken into account during exercise prescription. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Ground reaction forces and kinematics in distance running in older-aged men.

    Science.gov (United States)

    Bus, Sicco A

    2003-07-01

    The biomechanics of distance running has not been studied before in older-aged runners but may be different than in younger-aged runners because of musculoskeletal degeneration at older age. This study aimed at determining whether the stance phase kinematics and ground reaction forces in running are different between younger- and older-aged men. Lower-extremity kinematics using three-dimensional motion analysis and ground reaction forces (GRF) using a force plate were assessed in 16 older-aged (55-65 yr) and 13 younger-aged (20-35 yr) well-trained male distance runners running at a self-selected (SRS) and a controlled (CRS) speed of 3.3 m.s-1. The older subjects ran at significantly lower self-selected speeds than the younger subjects (mean 3.34 vs 3.77 m.s-1). In both speed conditions, the older runners exhibited significantly more knee flexion at heel strike and significantly less knee flexion and extension range of motion. No age group differences were present in subtalar joint motion. Impact peak force (1.91 vs 1.70 BW) and maximal initial loading rate (107.5 vs 85.5 BW.s-1) were significantly higher in the older runners at the CRS. Maximal peak vertical and anteroposterior forces and impulses were significantly lower in the older runners at the SRS. The biomechanics of running is different between older- and younger-aged runners on several relevant parameters. The larger impact peak force and initial loading rate indicate a loss of shock-absorbing capacity in the older runners. This may increase their susceptibility to lower-extremity overuse injuries. Moreover, it emphasizes the focus on optimizing cushioning properties in the design and prescription of running shoes and suggests that older-aged runners should be cautious with running under conditions of high impact.

  10. Proton capture to the ground and excited states in light nuclei

    International Nuclear Information System (INIS)

    Anghinolfi, M.; Corvisiero, P.; Guarnone, M.; Ricco, G.; Sanzone, M.; Taiuti, M.; Zucchiatti, A.

    1984-01-01

    Proton capture experiments, when performed with good resolution, generally provide two different kinds of physical information; the ground-state pγ/sub o/ cross section, which is related, through the detailed balance, to the inverse photonuclear γp/sub o/ reaction; the advantage of capture experiments is the definite kinematics, corresponding to monochromatic photons in γp reactions, and a more precise beam monitoring. The pγ/sub x/ cross section to the various excited states of the final nucleus; this information is typical of capture experiments, since excited nuclear targets are not available. Many laboratories performed extensive capture experiments at excitation energies up to the GDR region, but only recently few groups (Ohio, Triangle and Genova Universities) extended the investigation to energies above the GDR. In fact more severe experimental problems arise at higher energies: since the pγ differential cross sections range in this energy region between 0.1 and 1Γb/sr, while competitive reactions have two or three order of magnitude higher cross sections, the signal-to-background ratio is very low. The data analysis strongly depends on the detector line shape, scarsely known at photon energies above 20 MeV; a very accurate knowledge of the detector response function is therefore necessary

  11. Coupled-reaction-channel analysis of the (d,6Li) reaction on 24Mg and 26Mg to low-lying states

    International Nuclear Information System (INIS)

    Oelert, W.

    1986-01-01

    Experimental spectroscopic factors of the alpha-transfer reaction on nuclei of the sd-shell show rather strong inconsistencies and scatter much more strongly than explainable by the quoted errors. The poorer the quality of agreement between experimental and theoretical angular distribution shapes, the more inconsistent the comparison of spectroscopic factors either between different experiments or between theory and experiment. In view of the strong deformation of nuclei in the lower part of the sd-shell, higher-order reaction mechanisms are expected. A coupled-reaction-channel analysis for the transitions to the 0 + , 2 + , and 4 + states of the ground-state bands in 20 Ne and 22 Ne excited via the (d, 6 Li) reaction yields good agreement between experimental and theoretical angular distribution shapes as well as spectroscopic information. (orig.)

  12. External Load Affects Ground Reaction Force Parameters Non-uniformly during Running in Weightlessness

    Science.gov (United States)

    DeWitt, John; Schaffner, Grant; Laughlin, Mitzi; Loehr, James; Hagan, R. Donald

    2004-01-01

    Long-term exposure to microgravity induces detrimefits to the musculcskdetal system (Schneider et al., 1995; LeBlanc et al., 2000). Treadmill exercise is used onboard the International Space Station as an exercise countermeasure to musculoskeletal deconditioning due to spaceflight. During locomotive exercise in weightlessness (0G), crewmembers wear a harness attached to an external loading mechanism (EL). The EL pulls the crewmember toward the treadmill, and provides resistive load during the impact and propulsive phases of gait. The resulting forces may be important in stimulating bone maintenance (Turner, 1998). The EL can be applied via a bungee and carabineer clip configuration attached to the harness and can be manipulated to create varying amounts of load levels during exercise. Ground-based research performed using a vertically mounted treadmill found that peak ground reaction forces (GRF) during running at an EL of less than one body weight (BW) are less than those that occur during running in normal gravity (1G) (Davis et al., 1996). However, it is not known how the GRF are affected by the EL in a true OG environment. Locomotion while suspended may result in biomechanics that differ from free running. The purpose of this investigation was to determine how EL affects peak impact force, peak propulsive force, loading rate, and impulse of the GRF during running in 0G. It was hypothesized that increasing EL would result in increases in each GRF parameter.

  13. Isokinetic analysis of ankle and ground reaction forces in runners and triathletes

    Directory of Open Access Journals (Sweden)

    Natália Mariana Silva Luna

    2012-09-01

    Full Text Available OBJECTIVE: To analyze and compare the vertical component of ground reaction forces and isokinetic muscle parameters for plantar flexion and dorsiflexion of the ankle between long-distance runners, triathletes, and nonathletes. METHODS: Seventy-five males with a mean age of 30.26 (±6.5 years were divided into three groups: a triathlete group (n=26, a long-distance runner group (n = 23, and a non-athlete control group. The kinetic parameters were measured during running using a force platform, and the isokinetic parameters were measured using an isokinetic dynamometer. RESULTS: The non-athlete control group and the triathlete group exhibited smaller vertical forces, a greater ground contact time, and a greater application of force during maximum vertical acceleration than the long-distance runner group. The total work (180º/s was greater in eccentric dorsiflexion and concentric plantar flexion for the non-athlete control group and the triathlete group than the long-distance runner group. The peak torque (60º/s was greater in eccentric plantar flexion and concentric dorsiflexion for the control group than the athlete groups. CONCLUSIONS: The athlete groups exhibited less muscle strength and resistance than the control group, and the triathletes exhibited less impact and better endurance performance than the runners.

  14. Stride length: the impact on propulsion and bracing ground reaction force in overhand throwing.

    Science.gov (United States)

    Ramsey, Dan K; Crotin, Ryan L

    2018-03-26

    Propulsion and bracing ground reaction force (GRF) in overhand throwing are integral in propagating joint reaction kinetics and ball velocity, yet how stride length effects drive (hind) and stride (lead) leg GRF profiles remain unknown. Using a randomised crossover design, 19 pitchers (15 collegiate and 4 high school) were assigned to throw 2 simulated 80-pitch games at ±25% of their desired stride length. An integrated motion capture system with two force plates and radar gun tracked each throw. Vertical and anterior-posterior GRF was normalised then impulse was derived. Paired t-tests identified whether differences between conditions were significant. Late in single leg support, peak propulsion GRF was statistically greater for the drive leg with increased stride. Stride leg peak vertical GRF in braking occurred before acceleration with longer strides, but near ball release with shorter strides. Greater posterior shear GRF involving both legs demonstrated increased braking with longer strides. Conversely, decreased drive leg propulsion reduced both legs' braking effects with shorter strides. Results suggest an interconnection between normalised stride length and GRF application in propulsion and bracing. This work has shown stride length to be an important kinematic factor affecting the magnitude and timing of external forces acting upon the body.

  15. Towards 6Li-40K ground state molecules

    International Nuclear Information System (INIS)

    Brachmann, Johannes Felix Simon

    2013-01-01

    The production of a quantum gas with strong long - range dipolar interactions is a major scientific goal in the research field of ultracold gases. In their ro - vibrational ground state Li-K dimers possess a large permanent dipole moment, which could possibly be exploited for the realization of such a quantum gas. A production of these molecules can be achieved by the association of Li and K at a Feshbach resonance, followed by a coherent state transfer. In this thesis, detailed theoretical an experimental preparations to achieve state transfer by means of Stimulated Raman Adiabatic Passage (STIRAP) are described. The theoretical preparations focus on the selection of an electronically excited molecular state that is suitable for STIRAP transfer. In this context, molecular transition dipole moments for both transitions involved in STIRAP transfer are predicted for the first time. This is achieved by the calculation of Franck-Condon factors and a determination of the state in which the 6 Li- 40 K Feshbach molecules are produced. The calculations show that state transfer by use of a single STIRAP sequence is experimentally very well feasible. Further, the optical wavelengths that are needed to address the selected states are calculated. The high accuracy of the data will allow to carry out the molecular spectroscopy in a fast and efficient manner. Further, only a comparatively narrow wavelength tuneability of the spectroscopy lasers is needed. The most suitable Feshbach resonance for the production of 6 Li- 40 K molecules at experimentally manageable magnetic field strengths is occurring at 155 G. Experimentally, this resonance is investigated by means of cross-dimensional relaxation. The application of the technique at various magnetic field strengths in the vicinity of the 155 G Feshbach resonance allows a determination of the resonance position and width with so far unreached precision. This reveals the production of molecules on the atomic side of the resonance

  16. Reactions to Graphic Health Warnings in the United States

    Science.gov (United States)

    Nonnemaker, James M.; Choiniere, Conrad J.; Farrelly, Matthew C.; Kamyab, Kian; Davis, Kevin C.

    2015-01-01

    This study reports consumer reactions to the graphic health warnings selected by the Food and Drug Administration to be placed on cigarette packs in the United States. We recruited three sets of respondents for an experimental study from a national opt-in e-mail list sample: (i) current smokers aged 25 or older, (ii) young adult smokers aged 18-24…

  17. Evaluation of upper and lower bounds to energy eigenvalues in Shoenberg's perturbation-theory ground state by means of partitioning technique

    International Nuclear Information System (INIS)

    Logrado, P.G.; Vianna, J.D.M.

    Upper and lower bounds for the energy eigenvalues is Schoenberg's perturbation-theory ground state are studied. After a review of the characteristic features of the partitioning techniques the perturbative expansion proposed by Schoenberg is generated from an exact operator equation. The upper and lower bounds for the ground state eigenvalue are derived by using reaction and wave operators concepts, the bracketing function and operator inequalities. (Author) [pt

  18. Evaluation of ground water quality of Mubi town in Adamawa State ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... ... resultant of all the processes and reactions that act on the water from the ... chemical parameters and heavy metals' levels in the boreholes and .... for drinking water. Potassium concentration in the ground water varied from.

  19. Realisation and crossed molecular beams study of H2/O chemical reactions at several excited states

    International Nuclear Information System (INIS)

    Marx, Jacqueline

    1986-01-01

    This work is devoted to the study of the reactive collision O + H 2 OH + H in a crossed beam experiment. This process including several channels taken a part in the chemistry of the upper atmosphere as well as in the combustion of hydrogen. According to the electronic or vibrational state of the reactants, the OH radical is produced in its ground electronic state OH (X 2 π) or in its first excited state OH (A 2 Σ + ). When the reactants are in their ground state, the reaction is endothermic in the conditions of the experiment (center of mass kinetic energy ≅ 0.12 eV). The following reactions have been obtained: O( 1 D) +H 2 (v=O) → OH (X 2 π) +H( 2 S) and O( 1 D) +H 2 (v≥5) → OH (A 2 Σ + ) +H( 2 S). The atomic oxygen is produced in its excited state O( 1 D) in a radio-frequency discharge which dissociates the molecular oxygen seeded in a carrier gas (He or Ar) and the hydrogen molecules are excited vibrationally by electron bombardment. The first reaction is studied by time-of-flight measurements. In this way, it has been possible to observe the different vibrational levels on which the OH radical is produced. The analysis of this vibrational distribution shows the competition between the abstraction and insertion-dissociation mechanisms. In the second reaction, the analysis of the spontaneous fluorescence of OH (A 2 Σ + ) reveals a very hot and non-Boltzmann rotational excitation. (author) [fr

  20. Electromagnetic properties of the three-nucleon ground state

    International Nuclear Information System (INIS)

    Strueve, W.

    1985-01-01

    The electromagnetic form factors of the three-nucleon ground state are calculated on the base of an exact solution of the Faddeev equations. In a Hilbert space of nucleons and a possible Δ-isobar the effects of a non-perturbative description of the Δ-isobar on the magnetic form factors are studied. Pure nucleonic current operators with two- and three-particle character can be described in the extended Hilbert space by simpler one-body operators. Additionally nonrelativistic meson-exchange corrections due to π and ρ exchange are calculated consistently with the requirements of current conservation. Further relativistic corrections are estimated on selected examples. The calculations yield a total magnetic contribution of the Δ-isobar which is smaller than hitherto assumed, a static approximation of the Δ propagation is proved as inadmissible and must be rejected. Together with the meson-exchange corrections a well agreement with the experimental data at low momentum transfers results. Especially the magnetic moments and magnetization radii can be explained. For higher momentum transfers the results show the importance of further corrections. The regard of selected relativistic corrections leads to a good description of the experimental magnetic form factors. Also by this way the position of the minimum and the height of the second maximum in the 3 He charge form factor can be explained. The comparison with the latest experimental results reveals furthermore unresolved problems in the description of the 3 H charge form factor. (orig.) [de

  1. Single particle transfer reactions: what can they tell us about vibrational states

    International Nuclear Information System (INIS)

    Hering, W.R.

    1975-01-01

    The topic discussed concerns single particle transfer reactions (SPTR) which are, in general, used to study SP states. However, good SP states are rare objects in nature and people who try to look for them have often to settle with something less than ideal. Indeed the picture of a pure SP state is physically not even reasonable. It means that a nucleon is moving around a core nucleus which stays in its ground state: a process which one could call equivalent to elastic scattering of a nucleon which is not free but rather in a bound state. However it is shown that inelastic scattering is a very strong competitor to elastic scattering if the nucleus possesses states of high collectivity. Thus one would expect inelastic scattering to happen also while the nucleon is bound. This is a very intuitive picture of what is called the fragmentation of SP states. A final state psi sub(B) is populated by the transfer reaction A + a → B + b where psi sub(B) = α 1 phi 1 phi sub(A)(0) + α 2 phi 2 phi sub(A)(lambda). Hence the population of psi sub(B) automatically involves the collective state phi sub(A)(lambda). A discussion of how one can get information about phi sub(A)(lambda) out of the experimental data is given. (Auth.)

  2. Ground-state splitting of ultrashallow thermal donors with negative central-cell corrections in silicon

    Science.gov (United States)

    Hara, Akito; Awano, Teruyoshi

    2017-06-01

    Ultrashallow thermal donors (USTDs), which consist of light element impurities such as carbon, hydrogen, and oxygen, have been found in Czochralski silicon (CZ Si) crystals. To the best of our knowledge, these are the shallowest hydrogen-like donors with negative central-cell corrections in Si. We observed the ground-state splitting of USTDs by far-infrared optical absorption at different temperatures. The upper ground-state levels are approximately 4 meV higher than the ground-state levels. This energy level splitting is also consistent with that obtained by thermal excitation from the ground state to the upper ground state. This is direct evidence that the wave function of the USTD ground state is made up of a linear combination of conduction band minimums.

  3. Anomalous Ground State of the Electrons in Nano-confined Water

    Science.gov (United States)

    2016-06-13

    Anomalous ground state of the electrons in nano -confined water G. F. Reiter1*, Aniruddha Deb2*, Y. Sakurai3, M. Itou3, V. G. Krishnan4, S. J...electronic ground state of nano -confined water must be responsible for these anomalies but has so far not been investigated. We show here for the first time...using x-ray Compton scattering and a computational model, that the ground state configuration of the valence electrons in a particular nano

  4. Derivation of novel human ground state naive pluripotent stem cells.

    Science.gov (United States)

    Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2013-12-12

    Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation

  5. Ground state solutions for asymptotically periodic Schrodinger equations with critical growth

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.

  6. Correlated ground state and E2 giant resonance built on it

    International Nuclear Information System (INIS)

    Tohyama, Mitsuru

    1995-01-01

    Taking 16 O as an example of realistic nuclei, we demonstrate that a correlated ground state can be obtained as a long time solution of a time-dependent density-matrix formalism (TDDM) when the residual interaction is adiabatically treated. We also study in TDDM the E2 giant resonance of 16 O built on the correlated ground state and compare it with that built on the Hartree-Fock ground state. It is found that a spurious mixing of low frequency components seen in the latter is eliminated by using the correlated ground state. (author)

  7. Features of Speech Reactions to Mental State Concepts

    Directory of Open Access Journals (Sweden)

    Ekaterina M. Alekseeva

    2017-11-01

    Full Text Available The article is devoted to the problem of mental state associative speech representation. The study involved 31 Russian-speaking subjects (27 females and 4 males at the age of 18 - 22 years old. The experimental procedure using DMDX program allowed to measure the time of speech response to stimuli - the concepts of 25 mental states. The average reaction time to the concepts of mental states, shown on the computer monitor, made 2114.68 milliseconds. The most rapid associative speech response was the response to the following stimuli: "ecstasy" (1452.54 msec, "meditation" (1569.26 msec, "tranquility" (1685.21 msec, the slowest response is the response to "interest" (2517.5 msec and "indecision" (2454.63 msec. In total, 448 associations were given to the concepts of 25 mental states by tested subjects - speech reactions, i.e. 17.9 associations per mental state on the average. The greatest number of speech associations (24 was given to the concept of love. The smallest number was given to the concept of ecstasy (11 associations. Associative fields of mental states (meditation, ecstasy, melancholy, tiredness, loneliness have the most pronounced core. The prospects of the study consist in the performance of a similar associative experiment among the representatives of another culture, as well as in the studying of an estimated and situational associative representation of mental states.

  8. Metabolic Rate and Ground Reaction Force During Motorized and Non-Motorized Treadmill Exercise

    Science.gov (United States)

    Everett, Meghan E.; Loehr, James A.; DeWitt, John K.; Laughlin, Mitzi; Lee, Stuart M. C.

    2010-01-01

    PURPOSE: To measure vertical ground reaction force (vGRF) and oxygen consumption (VO2) at several velocities during exercise using a ground-based version of the ISS treadmill in the M and NM modes. METHODS: Subjects (n = 20) walked or ran at 0.89, 1.34, 1.79, 2.24, 2.68, and 3.12 m/s while VO2 and vGRF data were collected. VO2 was measured using open-circuit spirometry (TrueOne 2400, Parvo-Medics). Data were averaged over the last 2 min of each 5-min stage. vGRF was measured in separate 15-s bouts at 125 Hz using custom-fitted pressure-sensing insoles (F-Scan Sport Sensors, Tekscan, Inc). A repeated-measures ANOVA was used to test for differences in VO2 and vGRF between M and NM and across speeds. Significance was set at P < 0.05. RESULTS: Most subjects were unable to exercise for 5 min at treadmill speeds above 1.79 m/s in the NM mode; however, vGRF data were obtained for all subjects at each speed in both modes. VO2 was approx.40% higher during NM than M exercise across treadmill speeds. vGRF increased with treadmill speed but was not different between modes. CONCLUSION: Higher VO2 with no change in vGRF suggests that the additional metabolic cost associated with NM treadmill exercise is accounted for in the horizontal forces required to move the treadmill belt. Although this may limit the exercise duration at faster speeds, high-intensity NM exercise activates the hamstrings and plantarflexors, which are not specifically targeted or well protected by other in-flight countermeasures.

  9. Bilateral contact ground reaction forces and contact times during plyometric drop jumping.

    Science.gov (United States)

    Ball, Nick B; Stock, Christopher G; Scurr, Joanna C

    2010-10-01

    Drop jumping (DJ) is used in training programs aimed to improve lower extremity explosive power. When performing double-leg drop jumps, it is important to provide an equal stimulus to both legs to ensure balanced development of the lower legs. The aim of this study was to bilaterally analyze the ground reactions forces and temporal components of drop jumping from 3 heights. Ten recreationally active male subjects completed 3 bounce-drop jumps from 3 starting heights (0.2, 0.4, and 0.6 m). Two linked force platforms were used to record left- and right-leg peak vertical force, time to peak force, average force, ground contact time, impulse and time differential. Between-height and between-leg comparisons for each variable were made using a multivariate analysis of variance with post hoc Wilcoxon tests (p < 0.05). Results indicated that force and time variables increased as drop jump height increased (p < 0.0001). Post hoc analyses showed that at 0.2- and 0.4-m bilateral differences were present in the time to peak force, average force, and impulse. No bilateral differences for any variables were shown at 0.6-m starting height. The contact time for all jumps was <0.26 seconds. At 0.2 m, only 63% of the subjects had a starting time differential of <0.01 seconds, rising to 96.3% at 0.6 m. The results indicated that 0.6 m is the suggested drop jump height to ensure that no bilateral differences in vertical forces and temporal components occur; however, shorter contact times were found at the lower heights.

  10. Ground reaction forces produced by two different hockey skating arm swing techniques.

    Science.gov (United States)

    Hayward-Ellis, Julie; Alexander, Marion J L; Glazebrook, Cheryl M; Leiter, Jeff

    2017-10-01

    The arm swing in hockey skating can have a positive effect on the forces produced by each skate, and the resulting velocity from each push off. The main purpose of this study was to measure the differences in ground reaction forces (GRFs) produced from an anteroposterior versus a mediolateral style hockey skating arm swing. Twenty-four elite-level female hockey players performed each technique while standing on a ground-mounted force platform, and all trials were filmed using two video cameras. Force data was assessed for peak scaled GRFs in the frontal and sagittal planes, and resultant GRF magnitude and direction. Upper limb kinematics were assessed from the video using Dartfish video analysis software, confirming that the subjects successfully performed two distinct arm swing techniques. The mediolateral arm swing used a mean of 18.38° of glenohumeral flexion/extension and 183.68° of glenohumeral abduction/adduction while the anteroposterior technique used 214.17° and 28.97° respectively. The results of this study confirmed that the mediolateral arm swing produced 37% greater frontal plane and 33% less sagittal plane GRFs than the anteroposterior arm swing. The magnitudes of the resultant GRFs were not significantly different between the two techniques; however, the mediolateral technique produced a resultant GRF with a significantly larger angle from the direction of travel (44.44°) as compared to the anteroposterior technique (31.60°). The results of this study suggest that the direction of GRFs produced by the mediolateral arm swing more closely mimic the direction of lower limb propulsion during the skating stride.

  11. Ankle brace attenuates the medial-lateral ground reaction force during basketball rebound jump

    Directory of Open Access Journals (Sweden)

    Alex Castro

    Full Text Available ABSTRACT Introduction: The jump landing is the leading cause for ankle injuries in basketball. It has been shown that the use of ankle brace is effective to prevent these injuries by increasing the mechanical stability of the ankle at the initial contact of the foot with the ground. Objective: To investigate the effects of ankle brace on the ground reaction force (GRF during the simulation of a basketball rebound jump. Method: Eleven young male basketball players randomly carried out a simulated basketball rebound jump under two conditions, with and without ankle brace (lace-up. Dynamic parameters of vertical GRF (take-off and landing vertical peaks, time to take-off and landing vertical peaks, take-off impulse peak, impulse at 50 milliseconds of landing, and jump height and medial-lateral (take-off and landing medial-lateral peaks, and time to reach medial-lateral peaks at take-off and landing were recorded by force platform during rebound jumps in each tested condition. The comparisons between the tested conditions were performed by paired t test (P0.05. Conclusion: The use of ankle brace during basketball rebound jumps attenuates the magnitude of medial-lateral GRF on the landing phase, without changing the vertical GRF. This finding indicates that the use of brace increases the medial-lateral mechanical protection by decreasing the shear force exerted on the athlete’s body without change the application of propulsive forces in the take-off and the impact absorption quality in the landing during the basketball rebound jump.

  12. Optimized RVB states of the 2-d antiferromagnet: ground state and excitation spectrum

    Science.gov (United States)

    Chen, Yong-Cong; Xiu, Kai

    1993-10-01

    The Gutzwiller projection of the Schwinger-boson mean-field solution of the 2-d spin- {1}/{2} antiferromagnet in a square lattice is shown to produce the optimized, parameter-free RVB ground state. We get -0.6688 J/site and 0.311 for the energy and the staggered magnetization. The spectrum of the excited states is found to be linear and gapless near k≅0. Our calculation suggests, upon breaking of the rotational symmetry, ɛ k≅2JZ r1-γ 2k with Zr≅1.23.

  13. Mathematical aspects of ground state tunneling models in luminescence materials

    International Nuclear Information System (INIS)

    Pagonis, Vasilis; Kitis, George

    2015-01-01

    Luminescence signals from a variety of natural materials have been known to decrease with storage time at room temperature due to quantum tunneling, a phenomenon known as anomalous fading. This paper is a study of several mathematical aspects of two previously published luminescence models which describe tunneling phenomena from the ground state of a donor–acceptor system. It is shown that both models are described by the same type of integral equation, and two new analytical equations are presented. The first new analytical equation describes the effect of anomalous fading on the dose response curves (DRCs) of naturally irradiated samples. The DRCs in the model were previously expressed in the form of integral equations requiring numerical integration, while the new analytical equation can be used immediately as a tool for analyzing experimental data. The second analytical equation presented in this paper describes the anomalous fading rate (g-Value per decade) as a function of the charge density in the model. This new analytical expression for the g-Value is tested using experimental anomalous fading data for several apatite crystals which exhibit high rate of anomalous fading. The two new analytical results can be useful tools for analyzing anomalous fading data from luminescence materials. In addition to the two new analytical equations, an explanation is provided for the numerical value of a constant previously introduced in the models. - Highlights: • Comparative study of two luminescence models for feldspars. • Two new analytical equations for dose response curves and anomalous fading rate. • The numerical value z=1.8 of previously introduced constant in models explained.

  14. Tricriticality for dimeric Coulomb molecular crystals in ground state

    Science.gov (United States)

    Travěnec, Igor; Šamaj, Ladislav

    2017-12-01

    We study the ground-state properties of a system of dimers. Each dimer consists in a pair of equivalent charges at a fixed distance, immersed in a neutralizing homogeneous background. All charges interact pairwisely by Coulomb potential. The dimer centers form a two-dimensional rectangular lattice with the aspect ratio α\\in [0, 1] and each dimer is allowed to rotate around its center. The previous numerical simulations, made for the more general Yukawa interaction, indicate that only two basic dimer configurations can appear: either all dimers are parallel or they have two different angle orientations within alternating (checkerboard) sublattices. As the dimer size increases, two second-order phase transitions, related to two kinds of the symmetry breaking in dimer’s orientations, were reported. In this paper, we use a recent analytic method based on an expansion of the interaction energy in Misra functions which converges quickly and provides an analytic derivation of the critical behaviour. Our main result is that there exists a specific aspect ratio of the rectangular lattice α^*=0.714 106 840 000 71\\ldots which divides the space of model’s phases onto two distinct regions. If the lattice aspect ratio α>α* , we recover both types of the second-order phase transitions and find that they are of mean-field type with the critical exponent β = 1/2 . If 0.711 535≤slantα<α* , the phase transition associated with the discontinuity of dimer’s angles on alternating sublattices becomes of first order. For α=α* , the first- and second-order phase transitions meet at the tricritical point, characterized by the different critical index β = 1/4 . Such phenomenon is known from literature about the Landau theory of one-component fields, but in our two-component version the scenario is more complicated: the component which is already in the symmetry-broken state at the tricritical point also interferes and exhibits unexpectedly the mean-field singular

  15. Excitation of isomeric states 1h11/2 in (γ, n) reactions

    International Nuclear Information System (INIS)

    Tonchev, A.P.; Gangrskij, Yu.P.; Belov, A.G.

    1995-01-01

    The cross sections of (γ, n) reactions were measured for ground and isomeric states 1h 11/2 in 16 isotopes of Pd, Cd, Sn, Te, Ba, Ce, Nd and Sm. The energy of γ-rays was placed in the region of Giant Dipole Resonance. An activation method of measurements has been used. IR dependence of neutron and proton number in nucleus was detected and of excitation energy of residual nucleus as well. Different factors influencing the values of the isomeric ratios are discussed. 20 refs., 5 figs., 2 tabs

  16. Photophysics of trioxatriangulenium ion. Electrophilic reactivity in the ground state and excited singlet state

    DEFF Research Database (Denmark)

    Reynisson, J.; Wilbrandt, R.; Brinck, V.

    2002-01-01

    . The physical and chemical properties of the excited singlet state of the trioxatriangulenium (TOTA(+)) carbenium ion are investigated by experimental and Computational means. The degeneracy of the lowest excited states is counteracted by Jahn-Teller-type distortion, which leads to vibronic broadening...... of the long wavelength absorption band. A strong fluorescence is observed at 520 nm (tau(n) = 14.6 ns, phi(n) = 0.12 in deaerated acetonitrile). The fluorescence is quenched by 10 aromatic electron donors predominantly via a dynamic charge transfer mechanism, but ground state complexation is shown...... triphenylenes is studied separately. Phosphorescence spectra, triplet lifetimes, and triplet-triplet absorption spectra are provided. In the discussion, TOTA(+) is compared to the unsubstituted xanthenium ion and its 9-phenyl derivative with respect to the excited state properties....

  17. Peak Vertical Ground Reaction Force during Two-Leg Landing: A Systematic Review and Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Wenxin Niu

    2014-01-01

    Full Text Available Objectives. (1 To systematically review peak vertical ground reaction force (PvGRF during two-leg drop landing from specific drop height (DH, (2 to construct a mathematical model describing correlations between PvGRF and DH, and (3 to analyze the effects of some factors on the pooled PvGRF regardless of DH. Methods. A computerized bibliographical search was conducted to extract PvGRF data on a single foot when participants landed with both feet from various DHs. An innovative mathematical model was constructed to analyze effects of gender, landing type, shoes, ankle stabilizers, surface stiffness and sample frequency on PvGRF based on the pooled data. Results. Pooled PvGRF and DH data of 26 articles showed that the square root function fits their relationship well. An experimental validation was also done on the regression equation for the medicum frequency. The PvGRF was not significantly affected by surface stiffness, but was significantly higher in men than women, the platform than suspended landing, the barefoot than shod condition, and ankle stabilizer than control condition, and higher than lower frequencies. Conclusions. The PvGRF and root DH showed a linear relationship. The mathematical modeling method with systematic review is helpful to analyze the influence factors during landing movement without considering DH.

  18. Running quietly reduces ground reaction force and vertical loading rate and alters foot strike technique.

    Science.gov (United States)

    Phan, Xuan; Grisbrook, Tiffany L; Wernli, Kevin; Stearne, Sarah M; Davey, Paul; Ng, Leo

    2017-08-01

    This study aimed to determine if a quantifiable relationship exists between the peak sound amplitude and peak vertical ground reaction force (vGRF) and vertical loading rate during running. It also investigated whether differences in peak sound amplitude, contact time, lower limb kinematics, kinetics and foot strike technique existed when participants were verbally instructed to run quietly compared to their normal running. A total of 26 males completed running trials for two sound conditions: normal running and quiet running. Simple linear regressions revealed no significant relationships between impact sound and peak vGRF in the normal and quiet conditions and vertical loading rate in the normal condition. t-Tests revealed significant within-subject decreases in peak sound, peak vGRF and vertical loading rate during the quiet compared to the normal running condition. During the normal running condition, 15.4% of participants utilised a non-rearfoot strike technique compared to 76.9% in the quiet condition, which was corroborated by an increased ankle plantarflexion angle at initial contact. This study demonstrated that quieter impact sound is not directly associated with a lower peak vGRF or vertical loading rate. However, given the instructions to run quietly, participants effectively reduced peak impact sound, peak vGRF and vertical loading rate.

  19. Ground Reaction Force and Cadence during Stationary Running Sprint in Water and on Land.

    Science.gov (United States)

    Fontana, H de Brito; Ruschel, C; Haupenthal, A; Hubert, M; Roesler, H

    2015-06-01

    This study was aimed at analyzing the cadence (Cadmax) and the peak vertical ground reaction force (Fymax) during stationary running sprint on dry land and at hip and chest level of water immersion. We hypothesized that both Fymax and Cadmax depend on the level of immersion and that differences in Cadmax between immersions do not affect Fymax during stationary sprint. 32 subjects performed the exercise at maximum cadence at each immersion level and data were collected with force plates. The results show that Cadmax and Fymax decrease 17 and 58% from dry land to chest immersion respectively, with no effect of cadence on Fymax. While previous studies have shown similar neuromuscular responses between aquatic and on land stationary sprint, our results emphasize the differences in Fymax between environments and levels of immersion. Additionally, the characteristics of this exercise permit maximum movement speed in water to be close to the maximum speed on dry land. The valuable combination of reduced risk of orthopedic trauma with similar neuromuscular responses is provided by the stationary sprint exercise in water. The results of this study support the rationale behind the prescription of stationary sprinting in sports training sessions as well as rehabilitation programs. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Functional data analysis on ground reaction force of military load carriage increment

    Science.gov (United States)

    Din, Wan Rozita Wan; Rambely, Azmin Sham

    2014-06-01

    Analysis of ground reaction force on military load carriage is done through functional data analysis (FDA) statistical technique. The main objective of the research is to investigate the effect of 10% load increment and to find the maximum suitable load for the Malaysian military. Ten military soldiers age 31 ± 6.2 years, weigh 71.6 ± 10.4 kg and height of 166.3 ± 5.9 cm carrying different military load range from 0% body weight (BW) up to 40% BW participated in an experiment to gather the GRF and kinematic data using Vicon Motion Analysis System, Kirstler force plates and thirty nine body markers. The analysis is conducted in sagittal, medial lateral and anterior posterior planes. The results show that 10% BW load increment has an effect when heel strike and toe-off for all the three planes analyzed with P-value less than 0.001 at 0.05 significant levels. FDA proves to be one of the best statistical techniques in analyzing the functional data. It has the ability to handle filtering, smoothing and curve aligning according to curve features and points of interest.

  1. Factors that influence ground reaction force profiles during counter movement jumping.

    Science.gov (United States)

    Eagles, Alexander N; Sayers, Mark G; Lovell, Dale I

    2017-05-01

    The purpose of this study was to examine how hip, knee and ankle kinetics and kinematics influence effective impulse production during countermovement jumps. Eighteen semi-professional soccer players (22.8±2.2 years) volunteered to participate in the study. Participants completed three maximal countermovement jumps on two force platforms (1000 Hz) that were linked to a nine camera infrared motion capture system (500 Hz). Kinetic and kinematic data revealed jumpers who fail to achieve uniform ground reaction force curves that result in optimal impulse production during their jump always display hip adduction and or hip internal rotation during the concentric phase of the countermovement jump. The variation of hip adduction and or internal rotation likely represents failed joint transition during the concentric phase of the countermovement jump and appears to account for a non-uniform force trace seen in these jumpers. The findings suggest rehabilitation and conditioning exercises for injury prevention and performance may benefit from targeting frontal and transverse plane movement.

  2. Effects of velocity and weight support on ground reaction forces and metabolic power during running.

    Science.gov (United States)

    Grabowski, Alena M; Kram, Rodger

    2008-08-01

    The biomechanical and metabolic demands of human running are distinctly affected by velocity and body weight. As runners increase velocity, ground reaction forces (GRF) increase, which may increase the risk of an overuse injury, and more metabolic power is required to produce greater rates of muscular force generation. Running with weight support attenuates GRFs, but demands less metabolic power than normal weight running. We used a recently developed device (G-trainer) that uses positive air pressure around the lower body to support body weight during treadmill running. Our scientific goal was to quantify the separate and combined effects of running velocity and weight support on GRFs and metabolic power. After obtaining this basic data set, we identified velocity and weight support combinations that resulted in different peak GRFs, yet demanded the same metabolic power. Ideal combinations of velocity and weight could potentially reduce biomechanical risks by attenuating peak GRFs while maintaining aerobic and neuromuscular benefits. Indeed, we found many combinations that decreased peak vertical GRFs yet demanded the same metabolic power as running slower at normal weight. This approach of manipulating velocity and weight during running may prove effective as a training and/or rehabilitation strategy.

  3. The effects of baseball bat mass properties on swing mechanics, ground reaction forces, and swing timing.

    Science.gov (United States)

    Laughlin, Walter A; Fleisig, Glenn S; Aune, Kyle T; Diffendaffer, Alek Z

    2016-01-01

    Swing trajectory and ground reaction forces (GRF) of 30 collegiate baseball batters hitting a pitched ball were compared between a standard bat, a bat with extra weight about its barrel, and a bat with extra weight in its handle. It was hypothesised that when compared to a standard bat, only a handle-weighted bat would produce equivalent bat kinematics. It was also hypothesised that hitters would not produce equivalent GRFs for each weighted bat, but would maintain equivalent timing when compared to a standard bat. Data were collected utilising a 500 Hz motion capture system and 1,000 Hz force plate system. Data between bats were considered equivalent when the 95% confidence interval of the difference was contained entirely within ±5% of the standard bat mean value. The handle-weighted bat had equivalent kinematics, whereas the barrel-weighted bat did not. Both weighted bats had equivalent peak GRF variables. Neither weighted bat maintained equivalence in the timing of bat kinematics and some peak GRFs. The ability to maintain swing kinematics with a handle-weighted bat may have implications for swing training and warm-up. However, altered timings of kinematics and kinetics require further research to understand the implications on returning to a conventionally weighted bat.

  4. Ground reaction force analysed with correlation coefficient matrix in group of stroke patients.

    Science.gov (United States)

    Szczerbik, Ewa; Krawczyk, Maciej; Syczewska, Małgorzata

    2014-01-01

    Stroke is the third cause of death in contemporary society and causes many disorders. Clinical scales, ground reaction force (GRF) and objective gait analysis are used for assessment of patient's rehabilitation progress during treatment. The goal of this paper is to assess whether signal correlation coefficient matrix applied to GRF can be used for evaluation of the status of post-stroke patients. A group of patients underwent clinical assessment and instrumented gait analysis simultaneously three times. The difference between components of patient's GRF (vertical, fore/aft, med/lat) and normal ones (reference GRF of healthy subjects) was calculated as correlation coefficient. Patients were divided into two groups ("worse" and "better") based on the clinical functional scale tests done at the beginning of rehabilitation process. The results obtained by these two groups were compared using statistical analysis. An increase of median value of correlation coefficient is observed in all components of GRF, but only in non-paretic leg. Analysis of GRF signal can be helpful in assessment of post-stroke patients during rehabilitation. Improvement in stroke patients was observed in non-paretic leg of the "worse" group. GRF analysis should not be the only tool for objective validation of patient's improvement, but could be used as additional source of information.

  5. Ground reaction forces and knee kinetics during single and repeated badminton lunges.

    Science.gov (United States)

    Lam, Wing Kai; Ding, Rui; Qu, Yi

    2017-03-01

    Repeated movement (RM) lunge that frequently executed in badminton might be used for footwear evaluation. This study examined the influence of single movement (SM) and RM lunges on the ground reaction forces (GRFs) and knee kinetics during the braking phase of a badminton lunge step. Thirteen male university badminton players performed left-forward lunges in both SM and RM sessions. Force platform and motion capturing system were used to measure GRFs and knee kinetics variables. Paired t-test was performed to determine any significant differences between SM and RM lunges regarding mean and coefficient of variation (CV) in each variable. The kinetics results indicated that compared to SM lunges, the RM lunges had shorter contact time and generated smaller maximum loading rate of impact force, peak knee anterior-posterior force, and peak knee sagittal moment but generated larger peak horizontal resultant forces (Ps < 0.05). Additionally, the RM lunges had lower CV for peak knee medial-lateral and vertical forces (Ps < 0.05). These results suggested that the RM testing protocols had a distinct loading response and adaptation pattern during lunge and that the RM protocol showed higher within-trial reliability, which may be beneficial for the knee joint loading evaluation under different interventions.

  6. The Effects of Opposition and Gender on Knee Kinematics and Ground Reaction Force during Landing from Volleyball Block Jumps

    Science.gov (United States)

    Hughes, Gerwyn; Watkins, James; Owen, Nick

    2010-01-01

    The aim of this study was to examine the effect of opposition and gender on knee kinematics and ground reaction force during landing from a volleyball block jump. Six female and six male university volleyball players performed two landing tasks: (a) an unopposed and (b) an opposed volleyball block jump and landing. A 12-camera motion analysis…

  7. Ground reaction forces and knee mechanics in the weight acceptance phase of a dance leap take-off and landing.

    Science.gov (United States)

    Kulig, Kornelia; Fietzer, Abbigail L; Popovich, John M

    2011-01-01

    Aesthetic constraints allow dancers fewer technique modifications than other athletes to negotiate the demands of leaping. We examined vertical ground reaction force and knee mechanics during a saut de chat performed by healthy dancers. It was hypothesized that vertical ground reaction force during landing would exceed that of take-off, resulting in greater knee extensor moments and greater knee angular stiffness. Twelve dancers (six males, six females; age 18.9 ± 1.2 years, mass 59.2 ± 9.5 kg, height 1.68 ± 0.08 m, dance training 8.9 ± 5.1 years) with no history of low back pain or lower extremity pathology participated in the study. Saut de chat data were captured using an eight-camera Vicon system and AMTI force platforms. Peak ground reaction force was 26% greater during the landing phase, but did not result in increased peak knee extensor moments. Taking into account the 67% greater knee angular displacement during landing, this resulted in less knee angular stiffness during landing. In conclusion, landing was accomplished with less knee angular stiffness despite the greater peak ground reaction force. A link between decreased joint angular stiffness and increased soft tissue injury risk has been proposed elsewhere; therefore, landing from a saut de chat may be more injurious to the knee soft tissue than take-off.

  8. Derivation of the RPA (Random Phase Approximation) Equation of ATDDFT (Adiabatic Time Dependent Density Functional Ground State Response Theory) from an Excited State Variational Approach Based on the Ground State Functional.

    Science.gov (United States)

    Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen

    2014-09-09

    The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation.

  9. Exact ground and excited states of an antiferromagnetic quantum spin model

    International Nuclear Information System (INIS)

    Bose, I.

    1989-08-01

    A quasi-one-dimensional spin model which consists of a chain of octahedra of spins has been suggested for which a certain parameter regime of the Hamiltonian, the ground state, can be written down exactly. The ground state is highly degenerate and can be other than a singlet. Also, several excited states can be constructed exactly. The ground state is a local RVB state for which resonance is confined to rings of spins. Some exact numerical results for an octahedron of spins have also been reported. (author). 16 refs, 2 figs, 1 tab

  10. Construction and study of exact ground states for a class of quantum antiferromagnets

    International Nuclear Information System (INIS)

    Fannes, M.

    1989-01-01

    Techniques of quantum probability are used to construct the exact ground states for a class of quantum spin systems in one dimension. This class in particular contains the antiferromagnetic models introduced by various authors under the name of VBS-models. The construction permits a detailed study of these ground states. (A.C.A.S.) [pt

  11. Long range order in the ground state of two-dimensional antiferromagnets

    International Nuclear Information System (INIS)

    Neves, E.J.; Perez, J.F.

    1985-01-01

    The existence of long range order is shown in the ground state of the two-dimensional isotropic Heisenberg antiferromagnet for S >= 3/2. The method yields also long range order for the ground state of a larger class of anisotropic quantum antiferromagnetic spin systems with or without transverse magnetic fields. (Author) [pt

  12. Ab initio calculation atomics ground state wave function for interactions Ion- Atom

    International Nuclear Information System (INIS)

    Shojaee, F.; Bolori zadeh, M. A.

    2007-01-01

    Ab initio calculation atomics ground state wave function for interactions Ion- Atom Atomic wave function expressed in a Slater - type basis obtained within Roothaan- Hartree - Fock for the ground state of the atoms He through B. The total energy is given for each atom.

  13. Ground State Structure of a Coupled 2-Fermion System in Supersymmetric Quantum Mechanics

    Science.gov (United States)

    Finster, Felix

    1997-05-01

    We prove the uniqueness of the ground state for a supersymmetric quantum mechanical system of two fermions and two bosons, which is closely related to theN=1 WZ-model. The proof is constructive and gives detailed information on what the ground state looks like

  14. Ground state structure of a coupled 2-fermion system in supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Finster, F.

    1997-01-01

    We prove the uniqueness of the ground state for a supersymmetric quantum mechanical system of two fermions and two bosons, which is closely related to the N=1 WZ-model. The proof is constructive and gives detailed information on what the ground state looks like. copyright 1997 Academic Press, Inc

  15. Measurement of Walking Ground Reactions in Real-Life Environments: A Systematic Review of Techniques and Technologies.

    Science.gov (United States)

    Shahabpoor, Erfan; Pavic, Aleksandar

    2017-09-12

    Monitoring natural human gait in real-life environments is essential in many applications, including quantification of disease progression, monitoring the effects of treatment, and monitoring alteration of performance biomarkers in professional sports. Nevertheless, developing reliable and practical techniques and technologies necessary for continuous real-life monitoring of gait is still an open challenge. A systematic review of English-language articles from scientific databases including Scopus, ScienceDirect, Pubmed, IEEE Xplore, EBSCO and MEDLINE were carried out to analyse the 'accuracy' and 'practicality' of the current techniques and technologies for quantitative measurement of the tri-axial walking ground reactions outside the laboratory environment, and to highlight their strengths and shortcomings. In total, 679 relevant abstracts were identified, 54 full-text papers were included in the paper and the quantitative results of 17 papers were used for meta-analysis and comparison. Three classes of methods were reviewed: (1) methods based on measured kinematic data; (2) methods based on measured plantar pressure; and (3) methods based on direct measurement of ground reactions. It was found that all three classes of methods have competitive accuracy levels with methods based on direct measurement of the ground reactions showing highest accuracy while being least practical for long-term real-life measurement. On the other hand, methods that estimate ground reactions using measured body kinematics show highest practicality of the three classes of methods reviewed. Among the most prominent technical and technological challenges are: (1) reducing the size and price of tri-axial load-cells; (2) improving the accuracy of orientation measurement using IMUs; (3) minimizing the number and optimizing the location of required IMUs for kinematic measurement; (4) increasing the durability of pressure insole sensors, and (5) enhancing the robustness and versatility of the

  16. Measurement of Walking Ground Reactions in Real-Life Environments: A Systematic Review of Techniques and Technologies

    Directory of Open Access Journals (Sweden)

    Erfan Shahabpoor

    2017-09-01

    Full Text Available Monitoring natural human gait in real-life environments is essential in many applications, including quantification of disease progression, monitoring the effects of treatment, and monitoring alteration of performance biomarkers in professional sports. Nevertheless, developing reliable and practical techniques and technologies necessary for continuous real-life monitoring of gait is still an open challenge. A systematic review of English-language articles from scientific databases including Scopus, ScienceDirect, Pubmed, IEEE Xplore, EBSCO and MEDLINE were carried out to analyse the ‘accuracy’ and ‘practicality’ of the current techniques and technologies for quantitative measurement of the tri-axial walking ground reactions outside the laboratory environment, and to highlight their strengths and shortcomings. In total, 679 relevant abstracts were identified, 54 full-text papers were included in the paper and the quantitative results of 17 papers were used for meta-analysis and comparison. Three classes of methods were reviewed: (1 methods based on measured kinematic data; (2 methods based on measured plantar pressure; and (3 methods based on direct measurement of ground reactions. It was found that all three classes of methods have competitive accuracy levels with methods based on direct measurement of the ground reactions showing highest accuracy while being least practical for long-term real-life measurement. On the other hand, methods that estimate ground reactions using measured body kinematics show highest practicality of the three classes of methods reviewed. Among the most prominent technical and technological challenges are: (1 reducing the size and price of tri-axial load-cells; (2 improving the accuracy of orientation measurement using IMUs; (3 minimizing the number and optimizing the location of required IMUs for kinematic measurement; (4 increasing the durability of pressure insole sensors, and (5 enhancing the robustness and

  17. Strength of figure-ground activity in monkey primary visual cortex predicts saccadic reaction time in a delayed detection task.

    Science.gov (United States)

    Supèr, Hans; Lamme, Victor A F

    2007-06-01

    When and where are decisions made? In the visual system a saccade, which is a fast shift of gaze toward a target in the visual scene, is the behavioral outcome of a decision. Current neurophysiological data and reaction time models show that saccadic reaction times are determined by a build-up of activity in motor-related structures, such as the frontal eye fields. These structures depend on the sensory evidence of the stimulus. Here we use a delayed figure-ground detection task to show that late modulated activity in the visual cortex (V1) predicts saccadic reaction time. This predictive activity is part of the process of figure-ground segregation and is specific for the saccade target location. These observations indicate that sensory signals are directly involved in the decision of when and where to look.

  18. Bone strength estimates relative to vertical ground reaction force discriminates women runners with stress fracture history.

    Science.gov (United States)

    Popp, Kristin L; McDermott, William; Hughes, Julie M; Baxter, Stephanie A; Stovitz, Steven D; Petit, Moira A

    2017-01-01

    To determine differences in bone geometry, estimates of bone strength, muscle size and bone strength relative to load, in women runners with and without a history of stress fracture. We recruited 32 competitive distance runners aged 18-35, with (SFX, n=16) or without (NSFX, n=16) a history of stress fracture for this case-control study. Peripheral quantitative computed tomography (pQCT) was used to assess volumetric bone mineral density (vBMD, mg/mm 3 ), total (ToA) and cortical (CtA) bone areas (mm 2 ), and estimated compressive bone strength (bone strength index; BSI, mg/mm 4 ) at the distal tibia. ToA, CtA, cortical vBMD, and estimated strength (section modulus; Zp, mm 3 and strength strain index; SSIp, mm 3 ) were measured at six cortical sites along the tibia. Mean active peak vertical (pkZ) ground reaction forces (GRFs), assessed from a fatigue run on an instrumented treadmill, were used in conjunction with pQCT measurements to estimate bone strength relative to load (mm 2 /N∗kg -1 ) at all cortical sites. SSIp and Zp were 9-11% lower in the SFX group at mid-shaft of the tibia, while ToA and vBMD did not differ between groups at any measurement site. The SFX group had 11-17% lower bone strength relative to mean pkZ GRFs (phistory of stress fracture. Bone strength relative to load is also lower in this same region suggesting that strength deficits in the middle 1/3 of the tibia and altered gait biomechanics may predispose an individual to stress fracture. Copyright © 2016. Published by Elsevier Inc.

  19. Ground reaction forces and bone parameters in females with tibial stress fracture.

    Science.gov (United States)

    Bennell, Kim; Crossley, Kay; Jayarajan, Jyotsna; Walton, Elizabeth; Warden, Stuart; Kiss, Z Stephen; Wrigley, Tim

    2004-03-01

    Tibial stress fracture is a common overuse running injury that results from the interplay of repetitive mechanical loading and bone strength. This research project aimed to determine whether female runners with a history of tibial stress fracture (TSF) differ in ground reaction force (GRF) parameters during running, regional bone density, and tibial bone geometry from those who have never sustained a stress fracture (NSF). Thirty-six female running athletes (13 TSF; 23 NSF) ranging in age from 18 to 44 yr were recruited for this cross-sectional study. The groups were well matched for demographic, training, and menstrual parameters. A force platform measured selected GRF parameters (peak and time to peak for vertical impact and active forces, and horizontal braking and propulsive forces) during overground running at 4.0 m.s.(-1). Lumbar spine, proximal femur, and distal tibial bone mineral density were assessed by dual energy x-ray absorptiometry. Tibial bone geometry (cross-sectional dimensions and areas, and second moments of area) was calculated from a computerized tomography scan at the junction of the middle and distal thirds. There were no significant differences between the groups for any of the GRF, bone density, or tibial bone geometric parameters (P > 0.05). Both TSF and NSF subjects had bone density levels that were average or above average compared with a young adult reference range. Factor analysis followed by discriminant function analysis did not find any combinations of variables that differentiated between TSF and NSF groups. These findings do not support a role for GRF, bone density, or tibial bone geometry in the development of tibial stress fractures, suggesting that other risk factors were more important in this cohort of female runners.

  20. Ground reaction force estimates from ActiGraph GT3X+ hip accelerations.

    Directory of Open Access Journals (Sweden)

    Jennifer M Neugebauer

    Full Text Available Simple methods to quantify ground reaction forces (GRFs outside a laboratory setting are needed to understand daily loading sustained by the body. Here, we present methods to estimate peak vertical GRF (pGRFvert and peak braking GRF (pGRFbrake in adults using raw hip activity monitor (AM acceleration data. The purpose of this study was to develop a statistically based model to estimate pGRFvert and pGRFbrake during walking and running from ActiGraph GT3X+ AM acceleration data. 19 males and 20 females (age 21.2 ± 1.3 years, height 1.73 ± 0.12 m, mass 67.6 ± 11.5 kg wore an ActiGraph GT3X+ AM over their right hip. Six walking and six running trials (0.95-2.19 and 2.20-4.10 m/s, respectively were completed. Average of the peak vertical and anterior/posterior AM acceleration (ACCvert and ACCbrake, respectively and pGRFvert and pGRFbrake during the stance phase of gait were determined. Thirty randomly selected subjects served as the training dataset to develop generalized equations to predict pGRFvert and pGRFbrake. Using a holdout approach, the remaining 9 subjects were used to test the accuracy of the models. Generalized equations to predict pGRFvert and pGRFbrake included ACCvert and ACCbrake, respectively, mass, type of locomotion (walk or run, and type of locomotion acceleration interaction. The average absolute percent differences between actual and predicted pGRFvert and pGRFbrake were 8.3% and 17.8%, respectively, when the models were applied to the test dataset. Repeated measures generalized regression equations were developed to predict pGRFvert and pGRFbrake from ActiGraph GT3X+ AM acceleration for young adults walking and running. These equations provide a means to estimate GRFs without a force plate.

  1. Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture

    Directory of Open Access Journals (Sweden)

    Angelos Karatsidis

    2016-12-01

    Full Text Available Ground reaction forces and moments (GRF&M are important measures used as input in biomechanical analysis to estimate joint kinetics, which often are used to infer information for many musculoskeletal diseases. Their assessment is conventionally achieved using laboratory-based equipment that cannot be applied in daily life monitoring. In this study, we propose a method to predict GRF&M during walking, using exclusively kinematic information from fully-ambulatory inertial motion capture (IMC. From the equations of motion, we derive the total external forces and moments. Then, we solve the indeterminacy problem during double stance using a distribution algorithm based on a smooth transition assumption. The agreement between the IMC-predicted and reference GRF&M was categorized over normal walking speed as excellent for the vertical (ρ = 0.992, rRMSE = 5.3%, anterior (ρ = 0.965, rRMSE = 9.4% and sagittal (ρ = 0.933, rRMSE = 12.4% GRF&M components and as strong for the lateral (ρ = 0.862, rRMSE = 13.1%, frontal (ρ = 0.710, rRMSE = 29.6%, and transverse GRF&M (ρ = 0.826, rRMSE = 18.2%. Sensitivity analysis was performed on the effect of the cut-off frequency used in the filtering of the input kinematics, as well as the threshold velocities for the gait event detection algorithm. This study was the first to use only inertial motion capture to estimate 3D GRF&M during gait, providing comparable accuracy with optical motion capture prediction. This approach enables applications that require estimation of the kinetics during walking outside the gait laboratory.

  2. Squat Ground Reaction Force on a Horizontal Squat Device, Free Weights, and Smith Machine

    Science.gov (United States)

    Scott-Pandorf, Melissa M.; Newby, Nathaniel J.; Caldwell, Erin; DeWitt, John K.; Peters, Brian T.

    2010-01-01

    Bed rest is an analog to spaceflight and advancement of exercise countermeasures is dependent on the development of exercise equipment that closely mimic actual upright exercise. The Horizontal Squat Device (HSD) was developed to allow a supine exerciser to perform squats that mimic upright squat exercise. PURPOSE: To compare vertical ground reaction force (GRFv) on the HSD with Free Weight (FW) or Smith Machine (SM) during squat exercise. METHODS: Subjects (3F, 3M) performed sets of squat exercise with increasing loads up to 1-repetition (rep) maximum. GRF data were collected and compared with previous GRF data for squat exercise performed with FW & SM. Loads on the HSD were adjusted to magnitudes comparable with FW & SM by subtracting the subject s body weight (BW). Peak GRFv for 45-, 55-, 64-, & 73-kg loads above BW were calculated. Percent (%) difference between HSD and the two upright conditions were computed. Effect size was calculated for the 45-kg load. RESULTS: Most subjects were unable to lift >45 kg on the HSD; however, 1 subject completed all loads. Anecdotal evidence suggested that most subjects shoulders or back failed before their legs. The mean % difference are shown. In the 45-kg condition, effect sizes were 0.37 & 0.83 (p>0.05) for HSD vs. FW and HSD vs. SM, respectively, indicating no differences between exercise modes. CONCLUSION: When BW was added to the target load, results indicated that vertical forces were similar to those in FW and SM exercise. The exercise prescription for the HSD should include a total external resistance equivalent to goal load plus subject BW. The HSD may be used as an analog to upright exercise in bed rest studies, but because most subjects were unable to lift >45 kg, it may be necessary to prescribe higher reps and lower loads to better target the leg musculature

  3. Ground reaction force and 3D biomechanical characteristics of walking in short-leg walkers.

    Science.gov (United States)

    Zhang, Songning; Clowers, Kurt G; Powell, Douglas

    2006-12-01

    Short-leg walking boots offer several advantages over traditional casts. However, their effects on ground reaction forces (GRF) and three-dimensional (3D) biomechanics are not fully understood. The purpose of the study was to examine 3D lower extremity kinematics and joint dynamics during walking in two different short-leg walking boots. Eleven (five females and six males) healthy subjects performed five level walking trials in each of three conditions: two testing boot conditions, Gait Walker (DeRoyal Industries, Inc.) and Equalizer (Royce Medical Co.), and one pair of laboratory shoes (Noveto, Adidas). A force platform and a 6-camera Vicon motion analysis system were used to collect GRFs and 3D kinematic data during the testing session. A one-way repeated measures analysis of variance (ANOVA) was used to evaluate selected kinematic, GRF, and joint kinetic variables (p<0.05). The results revealed that both short-leg walking boots were effective in minimizing ankle eversion and hip adduction. Neither walker increased the bimodal vertical GRF peaks typically observed in normal walking. However, they did impose a small initial peak (<1BW) earlier in the stance phase. The Gait Walker also exhibited a slightly increased vertical GRF during midstance. These characteristics may be related to the sole materials/design, the restriction of ankle movements, and/or the elevated heel heights of the tested walkers. Both walkers appeared to increase the demand on the knee extensors while they decreased the demand of the knee and hip abductors based on the joint kinetic results.

  4. Does shoe heel design influence ground reaction forces and knee moments during maximum lunges in elite and intermediate badminton players?

    Science.gov (United States)

    Lam, Wing-Kai; Ryue, Jaejin; Lee, Ki-Kwang; Park, Sang-Kyoon; Cheung, Jason Tak-Man; Ryu, Jiseon

    2017-01-01

    Lunge is one frequently executed movement in badminton and involves a unique sagittal footstrike angle of more than 40 degrees at initial ground contact compared with other manoeuvres. This study examined if the shoe heel curvature design of a badminton shoe would influence shoe-ground kinematics, ground reaction forces, and knee moments during lunge. Eleven elite and fifteen intermediate players performed five left-forward maximum lunge trials with Rounded Heel Shoe (RHS), Flattened Heel Shoe (FHS), and Standard Heel Shoes (SHS). Shoe-ground kinematics, ground reaction forces, and knee moments were measured by using synchronized force platform and motion analysis system. A 2 (Group) x 3 (Shoe) ANOVA with repeated measures was performed to determine the effects of different shoes and different playing levels, as well as the interaction of two factors on all variables. Shoe effect indicated that players demonstrated lower maximum vertical loading rate in RHS than the other two shoes (P badminton lunge. The differences in impact loads and knee moments between elite and intermediate players may be useful in optimizing footwear design and training strategy to minimize the potential risks for impact related injuries in badminton.

  5. The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2016-03-01

    Full Text Available To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS at Co L2,3 edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co-L2,3 XAS spectra demonstrate a robust ground state of 2A1g symmetry that is built from 73% 3d7 character and 27% 3 d 8 L ¯ ( L ¯ denotes a ligand hole components, as the first excited-state with 2Eg symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A1g symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A1g to 2Eg configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.

  6. Does shoe heel design influence ground reaction forces and knee moments during maximum lunges in elite and intermediate badminton players?

    Directory of Open Access Journals (Sweden)

    Wing-Kai Lam

    Full Text Available Lunge is one frequently executed movement in badminton and involves a unique sagittal footstrike angle of more than 40 degrees at initial ground contact compared with other manoeuvres. This study examined if the shoe heel curvature design of a badminton shoe would influence shoe-ground kinematics, ground reaction forces, and knee moments during lunge.Eleven elite and fifteen intermediate players performed five left-forward maximum lunge trials with Rounded Heel Shoe (RHS, Flattened Heel Shoe (FHS, and Standard Heel Shoes (SHS. Shoe-ground kinematics, ground reaction forces, and knee moments were measured by using synchronized force platform and motion analysis system. A 2 (Group x 3 (Shoe ANOVA with repeated measures was performed to determine the effects of different shoes and different playing levels, as well as the interaction of two factors on all variables.Shoe effect indicated that players demonstrated lower maximum vertical loading rate in RHS than the other two shoes (P < 0.05. Group effect revealed that elite players exhibited larger footstrike angle, faster approaching speed, lower peak horizontal force and horizontal loading rates but higher vertical loading rates and larger peak knee flexion and extension moments (P < 0.05. Analysis of Interactions of Group x Shoe for maximum and mean vertical loading rates (P < 0.05 indicated that elite players exhibited lower left maximum and mean vertical loading rates in RHS compared to FHS (P < 0.01, while the intermediate group did not show any Shoe effect on vertical loading rates.These findings indicate that shoe heel curvature would play some role in altering ground reaction force impact during badminton lunge. The differences in impact loads and knee moments between elite and intermediate players may be useful in optimizing footwear design and training strategy to minimize the potential risks for impact related injuries in badminton.

  7. Concluding remarks of international symposium on highly excited states in nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, A. M.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    This is the concluding remarks in the international symposium on highly excited states in nuclear reactions. The remarks concentrate on the giant quadrupole states. In the framework of the distorted wave Born approximation (DWB), the differential cross section can be deduced. The relevant transition matrix elements are defined, and the quantities which are measured in inelastic hadron (h, h') reactions are shown. These are used to obtain both neutron and proton transition multipole matrix elements. This is equivalent to make the isospin decomposition of the electromagnetic transition matrix elements. The ratios of the transition matrix elements of neutrons and protons of the lowest 2/sup +/ states in even-even single closed shell nuclei are evaluated and compared with experimental results. For each nucleus, the consistency between various measurements is generally good. The effect of the virtual excitation of giant 2/sup +/ states into the ground and first excited states of even-even nuclei is discussed. The accuracy of (h, h') results can be tested.

  8. Effects of slip-induced changes in ankle movement on muscle activity and ground reaction forces during running acceleration

    DEFF Research Database (Denmark)

    Ketabi, Shahin; Kersting, Uwe G.

    2013-01-01

    Ground contact in running is always linked to a minimum amount of slipping, e.g., during the early contact phase when horizontal forces are high compared to vertical forces. Studies have shown altered muscular activation when expecting slips [2-4]. It is not known what the mechanical effect of su...... of such slip episodes are on joint loading or performance. The aim of the present study was to examine the effect of changes in ankle movement on ankle joint loading, muscle activity, and ground reaction forces during linear acceleration....

  9. Effects of knee extension constraint training on knee flexion angle and peak impact ground-reaction force.

    Science.gov (United States)

    Liu, Hui; Wu, Will; Yao, Wanxiang; Spang, Jeffrey T; Creighton, R Alexander; Garrett, William E; Yu, Bing

    2014-04-01

    Low compliance with training programs is likely to be one of the major reasons for inconsistency of the data regarding the effectiveness of current anterior cruciate ligament (ACL) injury prevention programs. Training methods that reduce training time and cost could favorably influence the effectiveness of ACL injury prevention programs. A newly designed knee extension constraint training device may serve this purpose. (1) Knee extension constraint training for 4 weeks would significantly increase the knee flexion angle at the time of peak impact posterior ground-reaction force and decrease peak impact ground-reaction forces during landing of a stop-jump task and a side-cutting task, and (2) the training effects would be retained 4 weeks after completion of the training program. Controlled laboratory study. Twenty-four recreational athletes were randomly assigned to group A or B. Participants in group A played sports without wearing a knee extension constraint device for 4 weeks and then played sports while wearing the device for 4 weeks, while participants in group B underwent a reversed protocol. Both groups were tested at the beginning of week 1 and at the ends of weeks 4 and 8 without wearing the device. Knee joint angles were obtained from 3-dimensional videographic data, while ground-reaction forces were measured simultaneously using force plates. Analyses of variance were performed to determine the training effects and the retention of training effects. Participants in group A significantly increased knee flexion angles and decreased ground-reaction forces at the end of week 8 (P ≤ .012). Participants in group B significantly increased knee flexion angles and decreased ground-reaction forces at the ends of weeks 4 and 8 (P ≤ .007). However, participants in group B decreased knee flexion angles and increased ground-reaction forces at the end of week 8 in comparison with the end of week 4 (P ≤ .009). Knee extension constraint training for 4 weeks

  10. Reaction diffusion and solid state chemical kinetics handbook

    CERN Document Server

    Dybkov, V I

    2010-01-01

    This monograph deals with a physico-chemical approach to the problem of the solid-state growth of chemical compound layers and reaction-diffusion in binary heterogeneous systems formed by two solids; as well as a solid with a liquid or a gas. It is explained why the number of compound layers growing at the interface between the original phases is usually much lower than the number of chemical compounds in the phase diagram of a given binary system. For example, of the eight intermetallic compounds which exist in the aluminium-zirconium binary system, only ZrAl3 was found to grow as a separate

  11. Arsenic in Ground Water of the United States

    Science.gov (United States)

    ... Team More Information Arsenic in groundwater of the United States Arsenic in groundwater is largely the result of ... Gronberg (2011) for updated arsenic map. Featured publications United States Effects of human-induced alteration of groundwater flow ...

  12. The Comparison of Vertical Ground Reaction Force during Forward and Backward Walking among Professional Male Karatekas with Genu Varum and Normal Knees

    Directory of Open Access Journals (Sweden)

    Heydar Sadeghi

    2017-06-01

    Conclusion: Based on the results of present study, genu varum can be considered as an effective factor on vertical ground reaction force (as predictor factor of musculoskeletal injuries among the Karate professionals, and backward walking can cause a change in vertical ground reaction force more than forward walking does.

  13. A simple parameter-free wavefunction for the ground state of two-electron atoms

    International Nuclear Information System (INIS)

    Ancarani, L U; Rodriguez, K V; Gasaneo, G

    2007-01-01

    We propose a simple and pedagogical wavefunction for the ground state of two-electron atoms which (i) is parameter free (ii) satisfies all two-particle cusp conditions (iii) yields reasonable ground-state energies, including the prediction of a bound state for H - . The mean energy, and other mean physical quantities, is evaluated analytically. The simplicity of the result can be useful as an easy-to-use wavefunction when testing collision models

  14. Exact many-electron ground states on diamond and triangle Hubbard chains

    International Nuclear Information System (INIS)

    Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter

    2009-01-01

    We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (1) a rewriting of the Hamiltonian into positive semidefinite form, (2) the construction of a many-electron ground state of this Hamiltonian, and (3) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the model, and only demands sufficiently many microscopic parameters in the Hamiltonian which have to fulfill certain relations. The scheme is first employed to construct exact ground state for the diamond Hubbard chain in a magnetic field. These ground states are found to exhibit a wide range of properties such as flat-band ferromagnetism and correlation induced metallic, half-metallic or insulating behavior, which can be tuned by changing the magnetic flux, local potentials, or electron density. Detailed proofs of the uniqueness of the ground states are presented. By the same technique exact ground states are constructed for triangle Hubbard chains and a one-dimensional periodic Anderson model with nearest-neighbor hybridization. They permit direct comparison with results obtained by variational techniques for f-electron ferromagnetism due to a flat band in CeRh 3 B 2 . (author)

  15. Electromagnetically induced transparency and absorption due to optical and ground-state coherences in 6Li

    International Nuclear Information System (INIS)

    Fuchs, J; Duffy, G J; Rowlands, W J; Lezama, A; Hannaford, P; Akulshin, A M

    2007-01-01

    We present an experimental study of sub-natural width resonances in fluorescence from a collimated beam of 6 Li atoms excited on the D 1 and D 2 lines by a bichromatic laser field. We show that in addition to ground-state Zeeman coherence, coherent population oscillations between ground and excited states contribute to the sub-natural resonances. High-contrast resonances of electromagnetically induced transparency and electromagnetically induced absorption due to both effects, i.e., ground-state Zeeman coherence and coherent population oscillations, are observed

  16. Synthesisofc-lifepo4 composite by solid state reaction method

    Science.gov (United States)

    Rahayu, I.; Hidayat, S.; Noviyanti, A. R.; Rakhmawaty, D.; Ernawati, E.

    2017-02-01

    In this research, the enhancement of LiFePO4 conductivity was conducted by doping method with carbon materials. Carbon-based materials were obtained from the mixture of sucrose, and the precursor of LiH2PO4 and α-Fe2O3 was synthesized by solid state reaction. Sintering temperature was varied at 700°C, 800°C, 900°C and 1,000°C. The result showed that C-LiFePO4 could be synthesized by using solid state reaction method. Based on the XRD and FTIR spectrums, C-LiFePO4 can be identified as the type of crystal, characterized by the appearance of sharp signal on (011), (211) and typical peak of LiFePO4 materials. The result of conductivity measurement from C-LiFePO4 at sintering temperature of 900°C and 1,000°C was 2×10-4 S/cm and 4×10-4S/cm, respectively. The conductivity value at sintering temperature of 700°C and 800°C was very small (<10-6 S/cm), which cannot be measured by the existing equipment.

  17. Quantum mechanical calculations of state-to-state cross sections and rate constants for the F + DCl → Cl + DF reaction.

    Science.gov (United States)

    Bulut, Niyazi; Kłos, Jacek; Roncero, Octavio

    2015-06-07

    We present accurate state-to-state quantum wave packet calculations of integral cross sections and rate constants for the title reaction. Calculations are carried out on the best available ground 1(2)A' global adiabatic potential energy surface of Deskevich et al. [J. Chem. Phys. 124, 224303 (2006)]. Converged state-to-state reaction cross sections have been calculated for collision energies up to 0.5 eV and different initial rotational and vibrational excitations, DCl(v = 0, j = 0 - 1; v = 1, j = 0). Also, initial-state resolved rate constants of the title reaction have been calculated in a temperature range of 100-400 K. It is found that the initial rotational excitation of the DCl molecule does not enhance reactivity, in contract to the reaction with the isotopologue HCl in which initial rotational excitation produces an important enhancement. These differences between the isotopologue reactions are analyzed in detail and attributed to the presence of resonances for HCl(v = 0, j), absent in the case of DCl(v = 0, j). For vibrational excited DCl(v = 1, j), however, the reaction cross section increases noticeably, what is also explained by another resonance.

  18. Effects of fatigue on bilateral ground reaction force asymmetries during the squat exercise.

    Science.gov (United States)

    Hodges, Stephanie J; Patrick, Ryan J; Reiser, Raoul F

    2011-11-01

    Physical performance and injury risk have been related to functional asymmetries of the lower extremity. The effect of fatigue on asymmetries is not well understood. The goal of this investigation was to examine asymmetries during fatiguing repetitions and sets of the free-weight barbell back squat exercise. Seventeen healthy recreationally trained men and women (age = 22.3 ± 2.5 years; body mass = 73.4 ± 13.8 kg; squat 8 repetition maximum [8RM] = 113 ± 35% body mass [mean ± SD]) performed 5 sets of 8 repetitions with 90% 8RM while recording bilateral vertical ground reaction force (GRFv). The GRFv asymmetry during the first 2 (R1 and R2) and the last 2 (R7 and R8) repetitions of each set was calculated by subtracting the % load on the right foot from that of the left foot. Most subjects placed more load on their left foot (also their preferred non-kicking foot). Average absolute asymmetry level across all sets was 4.3 ± 2.5 and 3.6 ± 2.3% for R1 and R2 and R7 and R8, respectively. There were no effects of fatigue on GRFv asymmetries in whole-group analysis (n = 17). However, when initially highly symmetric subjects (±1.7% Left-Right) were removed, average absolute GRFv asymmetry dropped from the beginning to the end of a set (n = 12, p = 0.044) as did peak instantaneous GRFv asymmetry when exploring general shifts toward the left or right leg (n = 12, p = 0.042). The GRFv asymmetries were highly repeatable for 8 subjects that repeated the protocol (Cronbach's α ≥ 0.733, p ≤ 0.056). These results suggest that functional asymmetries, though low, are present in healthy people during the squat exercise and remain consistent. Asymmetries do not increase with fatigue, potentially even decreasing, suggesting that healthy subjects load limbs similarly as fatigue increases, exposing each to similar training stimuli.

  19. Effects of Prophylactic Ankle Supports on Vertical Ground Reaction Force During Landing: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Wenxin Niu, Tienan Feng, Lejun Wang, Chenghua Jiang, Ming Zhang

    2016-03-01

    Full Text Available There has been much debate on how prophylactic ankle supports (PASs may influence the vertical ground reaction force (vGRF during landing. Therefore, the primary aims of this meta-analysis were to systematically review and synthesize the effect of PASs on vGRF, and to understand how PASs affect vGRF peaks (F1, F2 and the time from initial contact to peak loading (T1, T2 during landing. Several key databases, including Scopus, Cochrane, Embase, PubMed, ProQuest, Medline, Ovid, Web of Science, and the Physical Activity Index, were used for identifying relevant studies published in English since inception to April 1, 2015. The computerized literature search and cross-referencing the citation list of the articles yielded 3,993 articles. Criteria for inclusion required that 1 the study was conducted on healthy adults; 2 the subject number and trial number were known; 3 the subjects performed landing with and without PAS; 4 the landing movement was in the sagittal plane; 5 the comparable vGRF parameters were reported; and 6 the F1 and F2 must be normalized to the subject’s body weight. After the removal of duplicates and irrelevant articles, 6, 6, 15 and 11 studies were respectively pooled for outcomes of F1, T1, F2 and T2. This study found a significantly increased F2 (.03 BW, 95% CI: .001, .05 and decreased T1 (-1.24 ms, 95% CI: -1.77, -.71 and T2 (-3.74 ms, 95% CI: -4.83, -2.65 with the use of a PAS. F1 was not significantly influenced by the PAS. Heterogeneity was present in some results, but there was no evidence of publication bias for any outcome. These changes represented deterioration in the buffering characteristics of the joint. An ideal PAS design should limit the excessive joint motion of ankle inversion, while allowing a normal range of motion, especially in the sagittal plane.

  20. Effect of fatigue and gender on kinematics and ground reaction forces variables in recreational runners.

    Science.gov (United States)

    Bazuelo-Ruiz, Bruno; Durá-Gil, Juan V; Palomares, Nicolás; Medina, Enrique; Llana-Belloch, Salvador

    2018-01-01

    The presence of fatigue has been shown to modify running biomechanics. Overall in terms of gender, women are at lower risk than men for sustaining running-related injuries, although it depends on the factors taken into account. One possible reason for these differences in the injury rate and location might be the dissimilar running patterns between men and women. The purpose of this study was to determine the effect of fatigue and gender on the kinematic and ground reaction forces (GRF) parameters in recreational runners. Fifty-seven participants (28 males and 29 females) had kinematic and GRF variables measured while running at speed of 3.3 m s -1 before and after a fatigue test protocol. The fatigue protocol included (1) a running Course-Navette test, (2) running up and down a flight of stairs for 5 min, and (3) performance of alternating jumps on a step (five sets of 1 minute each with 30 resting seconds between the sets). Fatigue decreased dorsiflexion (14.24 ± 4.98° in pre-fatigue and 12.65 ± 6.21° in fatigue condition, p  < 0.05) at foot strike phase in females, and plantar flexion (-19.23 ± 4.12° in pre-fatigue and -18.26 ± 5.31° in fatigue condition, p  < 0.05) at toe-off phase in males. These changes led to a decreased loading rate (88.14 ± 25.82 BW/s in pre-fatigue and 83.97 ± 18.83 BW/s in fatigue condition, p  < 0.05) and the impact peak in females (1.95 ± 0.31 BW in pre-fatigue and 1.90 ± 0.31 BW in fatigue condition, p  < 0.05), and higher peak propulsive forces in males (-0.26 ± 0.04 BW in pre-fatigue and -0.27 ± 0.05 BW in fatigue condition, p  < 0.05) in the fatigue condition. It seems that better responses to impact under a fatigue condition are observed among women. Further studies should confirm whether these changes represent a strategy to optimize shock attenuation, prevent running injuries and improve running economy.

  1. Effect of fatigue and gender on kinematics and ground reaction forces variables in recreational runners

    Directory of Open Access Journals (Sweden)

    Bruno Bazuelo-Ruiz

    2018-03-01

    Full Text Available The presence of fatigue has been shown to modify running biomechanics. Overall in terms of gender, women are at lower risk than men for sustaining running-related injuries, although it depends on the factors taken into account. One possible reason for these differences in the injury rate and location might be the dissimilar running patterns between men and women. The purpose of this study was to determine the effect of fatigue and gender on the kinematic and ground reaction forces (GRF parameters in recreational runners. Fifty-seven participants (28 males and 29 females had kinematic and GRF variables measured while running at speed of 3.3 m s−1 before and after a fatigue test protocol. The fatigue protocol included (1 a running Course-Navette test, (2 running up and down a flight of stairs for 5 min, and (3 performance of alternating jumps on a step (five sets of 1 minute each with 30 resting seconds between the sets. Fatigue decreased dorsiflexion (14.24 ± 4.98° in pre-fatigue and 12.65 ± 6.21° in fatigue condition, p < 0.05 at foot strike phase in females, and plantar flexion (−19.23 ± 4.12° in pre-fatigue and −18.26 ± 5.31° in fatigue condition, p < 0.05 at toe-off phase in males. These changes led to a decreased loading rate (88.14 ± 25.82 BW/s in pre-fatigue and 83.97 ± 18.83 BW/s in fatigue condition, p < 0.05 and the impact peak in females (1.95 ± 0.31 BW in pre-fatigue and 1.90 ± 0.31 BW in fatigue condition, p < 0.05, and higher peak propulsive forces in males (−0.26 ± 0.04 BW in pre-fatigue and −0.27 ± 0.05 BW in fatigue condition, p < 0.05 in the fatigue condition. It seems that better responses to impact under a fatigue condition are observed among women. Further studies should confirm whether these changes represent a strategy to optimize shock attenuation, prevent running injuries and improve running economy.

  2. Functional knee brace use effect on peak vertical ground reaction forces during drop jump landing.

    Science.gov (United States)

    Rishiraj, Neetu; Taunton, Jack E; Lloyd-Smith, Robert; Regan, William; Niven, Brian; Woollard, Robert

    2012-12-01

    The aim of the study was to investigate the landing strategies used by non-injured athletes while wearing functional knee braces (FKB, BR condition) during a drop jump task compared with non-injured, non-braced (NBR condition) subjects and also to ascertain whether accommodation to a FKB was possible by non-injured BR subjects. Twenty-three healthy male provincial and national basketball and field hockey athletes (age, 19.4 ± 3.0 years) were tested. Each subject was provided with a custom-fitted FKB. Five NBR testing sessions were performed over 3 days followed by five BR testing sessions also over 3 days, for a total of 17.5 h of testing per condition. Each subject performed eight trials of the drop jump task during each testing session per condition. Single-leg peak vertical ground reaction forces (PVGRF) and the time to PVGRF were recorded for each NBR and BR trail. The BR group mean PVGRF at landing was significantly lower (1,628 ± 405 N, 2.1 ± 0.5 BW versus 1,715 ± 403 N, 2.2 ± 0.5 BW, F (1,22) = 6.83, P = 0.01) compared with NBR subjects, respectively. The group mean time to PVGRF was not statistically longer during the BR condition (F (1,22) = 0.967, P = 0.3). Further, an accommodation trend was noted as percent performance difference decreased with continued FKB use. The significantly lower group mean PVGRF while using a FKB could keep traumatic forces from reaching the ACL until the active neuromuscular restraints are activated to provide protection to the knee joint ligaments. Also, accommodation to FKB is possible after approximately 14.0 h of brace use. The results of this paper will assist clinicians in providing information to their patients regarding a FKB ability to offer protection to an ACL-deficient knee or to address concerns about early muscle fatigue, energy expenditure, heart rate, and decrease in performance level. Prospective study, Level I.

  3. Alterations to the orientation of the ground reaction force vector affect sprint acceleration performance in team sports athletes.

    Science.gov (United States)

    Bezodis, Neil E; North, Jamie S; Razavet, Jane L

    2017-09-01

    A more horizontally oriented ground reaction force vector is related to higher levels of sprint acceleration performance across a range of athletes. However, the effects of acute experimental alterations to the force vector orientation within athletes are unknown. Fifteen male team sports athletes completed maximal effort 10-m accelerations in three conditions following different verbal instructions intended to manipulate the force vector orientation. Ground reaction forces (GRFs) were collected from the step nearest 5-m and stance leg kinematics at touchdown were also analysed to understand specific kinematic features of touchdown technique which may influence the consequent force vector orientation. Magnitude-based inferences were used to compare findings between conditions. There was a likely more horizontally oriented ground reaction force vector and a likely lower peak vertical force in the control condition compared with the experimental conditions. 10-m sprint time was very likely quickest in the control condition which confirmed the importance of force vector orientation for acceleration performance on a within-athlete basis. The stance leg kinematics revealed that a more horizontally oriented force vector during stance was preceded at touchdown by a likely more dorsiflexed ankle, a likely more flexed knee, and a possibly or likely greater hip extension velocity.

  4. Exact ground-state correlation functions of one-dimenisonal strongly correlated electron models with resonating-valence-bond ground state

    International Nuclear Information System (INIS)

    Yamanaka, Masanori; Honjo, Shinsuke; Kohmoto, Mahito

    1996-01-01

    We investigate one-dimensional strongly correlated electron models which have the resonating-valence-bond state as the exact ground state. The correlation functions are evaluated exactly using the transfer matrix method for the geometric representations of the valence-bond states. In this method, we only treat matrices with small dimensions. This enables us to give analytical results. It is shown that the correlation functions decay exponentially with distance. The result suggests that there is a finite excitation gap, and that the ground state is insulating. Since the corresponding noninteracting systems may be insulating or metallic, we can say that the gap originates from strong correlation. The persistent currents of the present models are also investigated and found to be exactly vanishing

  5. Nonspherical atomic ground-state densities and chemical deformation densities from x-ray scattering

    International Nuclear Information System (INIS)

    Ruedenberg, K.; Schwarz, W.H.E.

    1990-01-01

    Presuming that chemical insight can be gained from the difference between the molecular electron density and the superposition of the ground-state densities of the atoms in a molecule, it is pointed out that, for atoms with degenerate ground states, an unpromoted ''atom in a molecule'' is represented by a specific ensemble of the degenerate atomic ground-state wave functions and that this ensemble is determined by the anisotropic local surroundings. The resulting atomic density contributions are termed oriented ground state densities, and the corresponding density difference is called the chemical deformation density. The constraints implied by this conceptual approach for the atomic density contributions are formulated and a method is developed for determining them from x-ray scattering data. The electron density of the appropriate promolecule and its x-ray scattering are derived, the determination of the parameters of the promolecule is outlined, and the chemical deformation density is formulated

  6. Theoretical Grounds of Formation of the Efficient State Economic Policy

    Directory of Open Access Journals (Sweden)

    Semyrak Oksana S.

    2013-12-01

    Full Text Available The article conducts historical and analytical analysis of views on the role of state administration in the sphere of economic relations by various economic directions in order to allocate traditional and newest essential reference points of the modern theory of state regulation of economy. It identifies specific features of modern models of economic policy that envisage setting goals by the state, selection of relevant efficient tools and mathematic function, which would describe dependencies between them. It considers the concept of the basic theory of economic policy of Jan Tinbergen, its advantages and shortcomings. It studies prerequisites and conducts analysis of the modern concept of the role of state in economy as a subject of the market. It considers the modern concept of economic socio-dynamics, pursuant to which the main task of the state is maximisation of social usefulness and permanent improvement of the Pareto-optimal. It considers the “socio-dynamic multiplicator” notion, which envisages availability of three main components: social effect from activity of the state, yearning of individuals for creation of something new and availability of formal and informal institutions that united first two elements.

  7. Pade approximants for the ground-state energy of closed-shell quantum dots

    International Nuclear Information System (INIS)

    Gonzalez, A.; Partoens, B.; Peeters, F.M.

    1997-08-01

    Analytic approximations to the ground-state energy of closed-shell quantum dots (number of electrons from 2 to 210) are presented in the form of two-point Pade approximants. These Pade approximants are constructed from the small- and large-density limits of the energy. We estimated that the maximum error, reached for intermediate densities, is less than ≤ 3%. Within that present approximation the ground-state is found to be unpolarized. (author). 21 refs, 3 figs, 2 tabs

  8. Many electron variational ground state of the two dimensional Anderson lattice

    International Nuclear Information System (INIS)

    Zhou, Y.; Bowen, S.P.; Mancini, J.D.

    1991-02-01

    A variational upper bound of the ground state energy of two dimensional finite Anderson lattices is determined as a function of lattice size (up to 16 x 16). Two different sets of many-electron basis vectors are used to determine the ground state for all values of the coulomb integral U. This variational scheme has been successfully tested for one dimensional models and should give good estimates in two dimensions

  9. Ground-state energy for 1D (t,U,X)-model at low densities

    International Nuclear Information System (INIS)

    Buzatu, F.D.

    1992-09-01

    In describing the properties of quasi-1D materials with a highly-screened interelectronic potential, an attractive hopping term has to be added to the Hubbard Hamiltonian. The effective interaction and the ground-state energy in ladder approximation are analyzed. At low electronic densities, the attractive part of the interaction, initially smaller than the repulsive term, can become more effective, the ground-state energy decreasing below the unperturbed value. (author). 12 refs, 4 figs

  10. Study of structure and potential energy curve for ground state X1Σ+ of LaF

    International Nuclear Information System (INIS)

    Chen Linhong; Shang Rencheng

    2002-01-01

    The equilibrium geometry, harmonic frequency and dissociation energy of the molecule LaF have been calculated on several kinds of computation levels with energy-consistent relativistic effective core potentials and valence basis sets including polarization functions 4f2g and diffuse functions 1s1p1d. The possible electronic state and its reasonable dissociation limit for the ground state of LaF are determined based on Atomic and Molecular Reaction Statics (AMRS). The potential energy curve scan for the ground state X 1 Σ + has been carried out with B3LYP method of density functional theory. Murrell-Sorbie analytic potential energy function and its Dunham expansion around equilibrium position have been also derived with a nonlinear least-square fit. The calculated spectroscopic constants are in good agreement with the experimental results of vibrational spectra. The analytical function obtained here is of great realistic importance due to its use in calculating fine transitional structure of vibrational spectra and the reaction dynamic process between atoms and molecules

  11. Relativistic configuration interaction calculation on the ground and excited states of iridium monoxide

    International Nuclear Information System (INIS)

    Suo, Bingbing; Yu, Yan-Mei; Han, Huixian

    2015-01-01

    We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest-lying state is calculated for Ω = 1/2, 3/2, 5/2, and 7/2 in order to clarify the ground state of IrO. Our calculation suggests that the ground state is of Ω = 1/2, which is highly mixed with 4 Σ − and 2 Π states in Λ − S notation. The two low-lying states 5/2 and 7/2 are nearly degenerate with the ground state and locate only 234 and 260 cm −1 above, respectively. The equilibrium bond length 1.712 Å and the harmonic vibrational frequency 903 cm −1 of the 5/2 state are close to the experimental measurement of 1.724 Å and 909 cm −1 , which suggests that the 5/2 state should be the low-lying state that contributes to the experimental spectra. Moreover, the electronic states that give rise to the observed transition bands are assigned for Ω = 5/2 and 7/2 in terms of the obtained excited energies and oscillator strengths

  12. Pump-dump-probe and pump-repump-probe ultrafast spectroscopy resolves cross section of an early ground state intermediate and stimulated emission in the photoreactions of the Pr ground state of the cyanobacterial phytochrome Cph1.

    Science.gov (United States)

    Fitzpatrick, Ann E; Lincoln, Craig N; van Wilderen, Luuk J G W; van Thor, Jasper J

    2012-01-26

    The primary photoreactions of the red absorbing ground state (Pr) of the cyanobacterial phytochrome Cph1 from Synechocystis PCC 6803 involve C15═C16 Z-E photoisomerization of its phycocyanobilin chromophore. The first observable product intermediate in pump-probe measurements of the photocycle, "Lumi-R", is formed with picosecond kinetics and involves excited state decay reactions that have 3 and 14 ps time constants. Here, we have studied the photochemical formation of the Lumi-R intermediate using multipulse picosecond visible spectroscopy. Pump-dump-probe (PDP) and pump-repump-probe (PRP) experiments were carried out by employing two femtosecond visible pulses with 1, 14, and 160 ps delays, together with a broadband dispersive visible probe. The time delays between the two excitation pulses have been selected to allow interaction with the dominant (3 and 14 ps) kinetic phases of Lumi-R formation. The frequency dependence of the PDP and PRP amplitudes was investigated at 620, 640, 660, and 680 nm, covering excited state absorption (λ(max) = 620 nm), ground state absorption (λ(max) = 660 nm), and stimulated emission (λ(max) = 680 nm) cross sections. Experimental double difference transient absorbance signals (ΔΔOD), from the PDP and PRP measurements, required corrections to remove contributions from ground state repumping. The sensitivity of the resulting ΔΔOD signals was systematically investigated for possible connectivity schemes and photochemical parameters. When applying a homogeneous (sequentially decaying) connectivity scheme in both the 3 and 14 ps kinetic phases, evidence for repumping of an intermediate that has an electronic ground state configuration (GSI) is taken from the dump-induced S1 formation with 620, 640, and 660 nm wavelengths and 1 and 14 ps repump delays. Evidence for repumping a GSI is also seen, for the same excitation wavelengths, when imposing a target connectivity scheme proposed in the literature for the 1 ps repump delay. In

  13. Excited-state properties from ground-state DFT descriptors: A QSPR approach for dyes.

    Science.gov (United States)

    Fayet, Guillaume; Jacquemin, Denis; Wathelet, Valérie; Perpète, Eric A; Rotureau, Patricia; Adamo, Carlo

    2010-02-26

    This work presents a quantitative structure-property relationship (QSPR)-based approach allowing an accurate prediction of the excited-state properties of organic dyes (anthraquinones and azobenzenes) from ground-state molecular descriptors, obtained within the (conceptual) density functional theory (DFT) framework. The ab initio computation of the descriptors was achieved at several levels of theory, so that the influence of the basis set size as well as of the modeling of environmental effects could be statistically quantified. It turns out that, for the entire data set, a statistically-robust four-variable multiple linear regression based on PCM-PBE0/6-31G calculations delivers a R(adj)(2) of 0.93 associated to predictive errors allowing for rapid and efficient dye design. All the selected descriptors are independent of the dye's family, an advantage over previously designed QSPR schemes. On top of that, the obtained accuracy is comparable to the one of the today's reference methods while exceeding the one of hardness-based fittings. QSPR relationships specific to both families of dyes have also been built up. This work paves the way towards reliable and computationally affordable color design for organic dyes. Copyright 2009 Elsevier Inc. All rights reserved.

  14. Equilibrium states and ground state of two-dimensional fluid foams

    International Nuclear Information System (INIS)

    Graner, F.; Jiang, Y.; Janiaud, E.; Flament, C.

    2001-01-01

    We study the equilibrium energies of two-dimensional (2D) noncoarsening fluid foams, which consist of bubbles with fixed areas. The equilibrium states correspond to local minima of the total perimeter. We present a theoretical derivation of energy minima; experiments with ferrofluid foams, which can be either highly distorted, locally relaxed, or globally annealed; and Monte Carlo simulations using the extended large-Q Potts model. For a dry foam with small size variance we develop physical insight and an electrostatic analogy, which enables us to (i) find an approximate value of the global minimum perimeter, accounting for (small) area disorder, the topological distribution, and physical boundary conditions; (ii) conjecture the corresponding pattern and topology: small bubbles sort inward and large bubbles sort outward, topological charges of the same signs ''repel'' while charges of the opposite signs ''attract;'' (iii) define local and global markers to determine directly from an image how far a foam is from its ground state; (iv) conjecture that, in a local perimeter minimum at prescribed topology, the pressure distribution and thus the edge curvature are unique. Some results also apply to 3D foams

  15. Fermionic molecular dynamics for ground states and collisions of nuclei

    International Nuclear Information System (INIS)

    Feldmeier, H.; Bieler, K.; Schnack, J.

    1994-08-01

    The antisymmetric many-body trial state which describes a system of interacting fermions is parametrized in terms of localized wave packets. The equations of motion are derived from the time-dependent quantum variational principle. The resulting Fermionic Molecular Dynamics (FMD) equations include a wide range of semi-quantal to classical physics extending from deformed Hartree-Fock theory to Newtonian molecular dynamics. Conservation laws are discussed in connection with the choice of the trial state. The model is applied to heavy-ion collisions with which its basic features are illustrated. The results show a great variety of phenomena including deeply inelastic collisions, fusion, incomplete fusion, fragmentation, neck emission, promptly emitted nucleons and evaporation. (orig.)

  16. Magnetic excitations in intermediate valence semiconductors with singlet ground state

    International Nuclear Information System (INIS)

    Kikoin, K.A.; Mishchenko, A.S.

    1994-01-01

    The explanation of the origin inelastic peaks in magnetic neutron scattering spectra of the mixed-valent semiconductor SmB 6 is proposed. It is shown that the excitonic theory of intermediate valence state not only gives the value of the peak frequency but also explains the unusual angular dependence of intensity of inelastic magnetic scattering and describes the dispersion of magnetic excitations in good agreement with experiment

  17. Ground state magnetic properties of Fe nanoislands on Cu(111)

    International Nuclear Information System (INIS)

    Kishi, Tomoya; David, Melanie; Nakanishi, Hiroshi; Kasai, Hideaki; Dino, Wilson Agerico; Komori, Fumio

    2005-01-01

    We investigate magnetic properties of Fe nanoislands on Cu(111) in the relaxed structure within the density functional theory. We observe that the nanoislands exhibit the ferromagnetic properties with large magnetic moment. We find that the change in the magnetic moment of each Fe atom is induced by deposition on Cu(111) and structure relaxation of Fe nanoislands. Moreover, we examine the stability of ferromagnetic states of Fe nanoislands by performing the total energy calculations. (author)

  18. Gapless Spin-Liquid Ground State in the S =1 /2 Kagome Antiferromagnet

    Science.gov (United States)

    Liao, H. J.; Xie, Z. Y.; Chen, J.; Liu, Z. Y.; Xie, H. D.; Huang, R. Z.; Normand, B.; Xiang, T.

    2017-03-01

    The defining problem in frustrated quantum magnetism, the ground state of the nearest-neighbor S =1 /2 antiferromagnetic Heisenberg model on the kagome lattice, has defied all theoretical and numerical methods employed to date. We apply the formalism of tensor-network states, specifically the method of projected entangled simplex states, which combines infinite system size with a correct accounting for multipartite entanglement. By studying the ground-state energy, the finite magnetic order appearing at finite tensor bond dimensions, and the effects of a next-nearest-neighbor coupling, we demonstrate that the ground state is a gapless spin liquid. We discuss the comparison with other numerical studies and the physical interpretation of this result.

  19. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions.

    Science.gov (United States)

    Tomelleri, Christopher; Waldner, Andreas; Werner, Cordula; Hesse, Stefan

    2011-01-01

    The main goal of robotic gait rehabilitation is the restoration of independent gait. To achieve this goal different and specific patterns have to be practiced intensively in order to stimulate the learning process of the central nervous system. The gait robot G-EO Systems was designed to allow the repetitive practice of floor walking, stair climbing and stair descending. A novel control strategy allows training in adaptive mode. The force interactions between the foot and the ground were analyzed on 8 healthy volunteers in three different conditions: real floor walking on a treadmill, floor walking on the gait robot in passive mode, floor walking on the gait robot in adaptive mode. The ground reaction forces were measured by a Computer Dyno Graphy (CDG) analysis system. The results show different intensities of the ground reaction force across all of the three conditions. The intensities of force interactions during the adaptive training mode are comparable to the real walking on the treadmill. Slight deviations still occur in regard to the timing pattern of the forces. The adaptive control strategy comes closer to the physiological swing phase than the passive mode and seems to be a promising option for the treatment of gait disorders. Clinical trials will validate the efficacy of this new option in locomotor therapy on the patients. © 2011 IEEE

  20. Quantitative measurements of ground state atomic oxygen in atmospheric pressure surface micro-discharge array

    Science.gov (United States)

    Li, D.; Kong, M. G.; Britun, N.; Snyders, R.; Leys, C.; Nikiforov, A.

    2017-06-01

    The generation of atomic oxygen in an array of surface micro-discharge, working in atmospheric pressure He/O2 or Ar/O2 mixtures, is investigated. The absolute atomic oxygen density and its temporal and spatial dynamics are studied by means of two-photon absorption laser-induced fluorescence. A high density of atomic oxygen is detected in the He/O2 mixture with up to 10% O2 content in the feed gas, whereas the atomic oxygen concentration in the Ar/O2 mixture stays below the detection limit of 1013 cm-3. The measured O density near the electrode under the optimal conditions in He/1.75% O2 gas is 4.26  ×  1015 cm-3. The existence of the ground state O (2p 4 3 P) species has been proven in the discharge at a distance up to 12 mm away from the electrodes. Dissociative reactions of the singlet O2 with O3 and deep vacuum ultraviolet radiation, including the radiation of excimer \\text{He}2\\ast , are proposed to be responsible for O (2p 4 3 P) production in the far afterglow. A capability of the surface micro-discharge array delivering atomic oxygen to long distances over a large area is considered very interesting for various biomedical applications.

  1. Coexisting Kondo singlet state with antiferromagnetic long-range order: A possible ground state for Kondo insulators

    International Nuclear Information System (INIS)

    Zhang Guangming; Yu Lu

    2000-04-01

    The ground-state phase diagram of a half-filled anisotropic Kondo lattice model is calculated within a mean-field theory. For small transverse exchange coupling J perpendicular perpendicular c1 , the ground state shows an antiferromagnetic long-range order with finite staggered magnetizations of both localized spins and conduction electrons. When J perpendicular > J perpendicular c2 , the long-range order is destroyed and the system is in a disordered Kondo singlet state with a hybridization gap. Both ground states can describe the low-temperature phases of Kondo insulating compounds. Between these two distinct phases, there may be a coexistent regime as a result of the balance between local Kondo screening and magnetic interactions. (author)

  2. Bridge between bound state and reaction effective nucleon–nucleon ...

    Indian Academy of Sciences (India)

    Y R WAGHMARE. Department of Physics, University of Pune, Pune 411 007, India ... Effective nucleon–nucleon interactions; heavy-ion reactions; microscopic approach; fu- sion reactions. .... [2] M K Pal, private communication. [3] S Godre and ...

  3. Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model.

    Science.gov (United States)

    Dai, Yan-Wei; Cho, Sam Young; Batchelor, Murray T; Zhou, Huan-Qiang

    2014-06-01

    We numerically investigate the two-dimensional q-state quantum Potts model on the infinite square lattice by using the infinite projected entangled-pair state (iPEPS) algorithm. We show that the quantum fidelity, defined as an overlap measurement between an arbitrary reference state and the iPEPS ground state of the system, can detect q-fold degenerate ground states for the Z_{q} broken-symmetry phase. Accordingly, a multiple bifurcation of the quantum ground-state fidelity is shown to occur as the transverse magnetic field varies from the symmetry phase to the broken-symmetry phase, which means that a multiple-bifurcation point corresponds to a critical point. A (dis)continuous behavior of quantum fidelity at phase transition points characterizes a (dis)continuous phase transition. Similar to the characteristic behavior of the quantum fidelity, the magnetizations, as order parameters, obtained from the degenerate ground states exhibit multiple bifurcation at critical points. Each order parameter is also explicitly demonstrated to transform under the Z_{q} subgroup of the symmetry group of the Hamiltonian. We find that the q-state quantum Potts model on the square lattice undergoes a discontinuous (first-order) phase transition for q=3 and q=4 and a continuous phase transition for q=2 (the two-dimensional quantum transverse Ising model).

  4. g-factor of the ground state of 73Se

    International Nuclear Information System (INIS)

    Nishimura, Katsuhiko; Ohya, Susumu; Mutsuro, Naoshi

    1987-01-01

    Nuclear magnetic resonance on oriented 73 Se in an iron host has been observed at about 7mK. From resonance-shift measurement, the magnetic hyperfine-splitting frequency μ M , g-factor and magnetic hyperfine field were derived as μ M =102.61(3)MH z , |g(9/2 + )|=0.188(16) and B HF ( 73 SeFe)=716(81)kG. The experimental values of the g-factors of the g 9/2 neutron states, in the neighborhood of the neutron number 40, are compared with the theoretical values based on the core-polarization model. (author)

  5. Engineering an all-optical route to ultracold molecules in their vibronic ground state

    OpenAIRE

    Koch, Christiane P.; Moszynski, Robert

    2008-01-01

    We propose an improved photoassociation scheme to produce ultracold molecules in their vibronic ground state for the generic case where non-adiabatic effects facilitating transfer to deeply bound levels are absent. Formation of molecules is achieved by short laser pulses in a Raman-like pump-dump process where an additional near-infrared laser field couples the excited state to an auxiliary state. The coupling due to the additional field effectively changes the shape of the excited state pote...

  6. Exponentially Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians.

    Science.gov (United States)

    Mandrà, Salvatore; Zhu, Zheng; Katzgraber, Helmut G

    2017-02-17

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated with a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)NJOPFM1367-263010.1088/1367-2630/11/7/073021]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  7. Ground state energy and width of 7He from 8Li proton knockout

    International Nuclear Information System (INIS)

    Denby, D. H.; DeYoung, P. A.; Hall, C. C.; Baumann, T.; Bazin, D.; Spyrou, A.; Breitbach, E.; Howes, R.; Brown, J.; Frank, N.; Gade, A.; Mosby, S. M.; Peters, W. A.; Thoennessen, M.; Hinnefeld, J.; Hoffman, C. R.; Jenson, R. A.; Luther, B.; Olson, C. W.; Schiller, A.

    2008-01-01

    The ground state energy and width of 7 He has been measured with the Modular Neutron Array (MoNA) and superconducting dipole Sweeper magnet experimental setup at the National Superconducting Cyclotron Laboratory. 7 He was produced by proton knockout from a secondary 8 Li beam. The measured decay energy spectrum is compared to simulations based on Breit-Wigner line shape with an energy-dependent width for the resonant state. The energy of the ground state is found to be 400(10) keV with a full-width at half-maximum of 125( -15 +40 ) keV

  8. Extended random-phase approximation with three-body ground-state correlations

    International Nuclear Information System (INIS)

    Tohyama, M.; Schuck, P.

    2008-01-01

    An extended random-phase approximation (ERPA) which contains the effects of ground-state correlations up to a three-body level is applied to an extended Lipkin model which contains an additional particle-scattering term. Three-body correlations in the ground state are necessary to preserve the hermiticity of the Hamiltonian matrix of ERPA. Two approximate forms of ERPA which neglect the three-body correlations are also applied to investigate the importance of three-body correlations. It is found that the ground-state energy is little affected by the inclusion of the three-body correlations. On the contrary, three-body correlations for the excited states can become quite important. (orig.)

  9. Quantum ground state and single-phonon control of a mechanical resonator.

    Science.gov (United States)

    O'Connell, A D; Hofheinz, M; Ansmann, M; Bialczak, Radoslaw C; Lenander, M; Lucero, Erik; Neeley, M; Sank, D; Wang, H; Weides, M; Wenner, J; Martinis, John M; Cleland, A N

    2010-04-01

    Quantum mechanics provides a highly accurate description of a wide variety of physical systems. However, a demonstration that quantum mechanics applies equally to macroscopic mechanical systems has been a long-standing challenge, hindered by the difficulty of cooling a mechanical mode to its quantum ground state. The temperatures required are typically far below those attainable with standard cryogenic methods, so significant effort has been devoted to developing alternative cooling techniques. Once in the ground state, quantum-limited measurements must then be demonstrated. Here, using conventional cryogenic refrigeration, we show that we can cool a mechanical mode to its quantum ground state by using a microwave-frequency mechanical oscillator-a 'quantum drum'-coupled to a quantum bit, which is used to measure the quantum state of the resonator. We further show that we can controllably create single quantum excitations (phonons) in the resonator, thus taking the first steps to complete quantum control of a mechanical system.

  10. Learning Approach on the Ground State Energy Calculation of Helium Atom

    International Nuclear Information System (INIS)

    Shah, Syed Naseem Hussain

    2010-01-01

    This research investigated the role of learning approach on the ground state energy calculation of Helium atom in improving the concepts of science teachers at university level. As the exact solution of several particles is not possible here we used approximation methods. Using this method one can understand easily the calculation of ground state energy of any given function. Variation Method is one of the most useful approximation methods in estimating the energy eigen values of the ground state and the first few excited states of a system, which we only have a qualitative idea about the wave function.The objective of this approach is to introduce and involve university teacher in new research, to improve their class room practices and to enable teachers to foster critical thinking in students.

  11. Multi-body simulation of a canine hind limb: model development, experimental validation and calculation of ground reaction forces

    Directory of Open Access Journals (Sweden)

    Wefstaedt Patrick

    2009-11-01

    Full Text Available Abstract Background Among other causes the long-term result of hip prostheses in dogs is determined by aseptic loosening. A prevention of prosthesis complications can be achieved by an optimization of the tribological system which finally results in improved implant duration. In this context a computerized model for the calculation of hip joint loadings during different motions would be of benefit. In a first step in the development of such an inverse dynamic multi-body simulation (MBS- model we here present the setup of a canine hind limb model applicable for the calculation of ground reaction forces. Methods The anatomical geometries of the MBS-model have been established using computer tomography- (CT- and magnetic resonance imaging- (MRI- data. The CT-data were collected from the pelvis, femora, tibiae and pads of a mixed-breed adult dog. Geometric information about 22 muscles of the pelvic extremity of 4 mixed-breed adult dogs was determined using MRI. Kinematic and kinetic data obtained by motion analysis of a clinically healthy dog during a gait cycle (1 m/s on an instrumented treadmill were used to drive the model in the multi-body simulation. Results and Discussion As a result the vertical ground reaction forces (z-direction calculated by the MBS-system show a maximum deviation of 1.75%BW for the left and 4.65%BW for the right hind limb from the treadmill measurements. The calculated peak ground reaction forces in z- and y-direction were found to be comparable to the treadmill measurements, whereas the curve characteristics of the forces in y-direction were not in complete alignment. Conclusion In conclusion, it could be demonstrated that the developed MBS-model is suitable for simulating ground reaction forces of dogs during walking. In forthcoming investigations the model will be developed further for the calculation of forces and moments acting on the hip joint during different movements, which can be of help in context with the in

  12. Ground water share in supplying domestic water in Khartoum state

    International Nuclear Information System (INIS)

    Mohammed, M. E. A.

    2010-10-01

    In this research study of the sources of groundwater from wells and stations that rely on the national authority for urban water in the state of Khartoum, this study includes three areas, namely the Khartoum area, North Khartoum and Omdurman area. This research evaluate and identify the sources of groundwater from wells and stations and find out the productivity of wells and underground stations. The study period were identified from 2004 to 2008 during this commoners were Alabaralgeoffip Knowledge Production and stations from the water. The methods used in this study was to determine the sources of groundwater from wells and stations in the three areas with the knowledge of the percentage in each year and the total amount of water produced from wells and stations in Khartoum, North Khartoum and Omdurman it is clear from this study that the percentage of productivity in the annual increase to varying degrees in floater from 2004 to 2008 and also clear that the Omdurman area depends on groundwater wells over a maritime area of stations based on stations with more and more consumption of Khartoum and the sea. Also been identified on the tank top and bottom of the tank where the chemical properties and physical properties after the identification of these qualities and characteristics have been identified the quantity and quality of water produced from wells and stations. (Author)

  13. Ground state properties of MnB{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Jan Lennart; Steinki, Nico; Schulze Grachtrup, Dirk; Menzel, Dirk; Suellow, Stefan [Institut fuer Physik der Kondensierten Materie, TU Braunschweig (Germany); Knappschneider, Arno; Albert, Barbara [Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie, TU Darmstadt (Germany)

    2016-07-01

    Recently, single crystalline MnB{sub 4} was synthesized for the first time, yielding microscale crystals with dimensions of the order of 200 μm. Based on band structure calculations, it was argued that the material is semiconducting as result of a Peierls distortion. Conversely, in a study of polycrystalline material it was concluded that the material is a weakly ferromagnetic metal. To establish if MnB{sub 4} is a semiconductor we have carried out single crystal four point resistivity measurements. For this purpose a setup for measuring microscale samples was developed and characterized. Qualitatively, we find semiconducting behavior (increasing resistivity for decreasing temperature), although a band gap could not be derived because of a non-linear Arrhenius plot. Our data are consistent with MnB{sub 4} being a pseudogap/small gap material as proposed. A pronounced sample dependence of the transport properties points to the presence of impurity states. For the single crystals no ferromagnetic signatures could be obtained, suggesting an extrinsic cause of it in polycrystalline material.

  14. Stability and related properties of vacua and ground states

    International Nuclear Information System (INIS)

    Wreszinski, Walter F.; Jaekel, Christian D.

    2008-01-01

    We consider the formal non-relativistic limit (nrl) of the :φ 4 : s+1 relativistic quantum field theory (rqft), where s is the space dimension. Following the work of R. Jackiw [R. Jackiw, in: A. Ali, P. Hoodbhoy (Eds.), Beg Memorial Volume, World Scientific, Singapore, 1991], we show that, for s = 2 and a given value of the ultraviolet cutoff κ, there are two ways to perform the nrl: (i) fixing the renormalized mass m 2 equal to the bare mass m 0 2 ; (ii) keeping the renormalized mass fixed and different from the bare mass m 0 2 . In the (infinite-volume) two-particle sector the scattering amplitude tends to zero as κ → ∞ in case (i) and, in case (ii), there is a bound state, indicating that the interaction potential is attractive. As a consequence, stability of matter fails for our boson system. We discuss why both alternatives do not reproduce the low-energy behaviour of the full rqft. The singular nature of the nrl is also nicely illustrated for s = 1 by a rigorous stability/instability result of a different nature

  15. Democratic Republic of Congo A Fertile Ground for Instability in the Great Lakes Region States

    Science.gov (United States)

    2017-06-09

    ravaged by a brutal armed conflict. In comparison to the three past presidents, Joseph Kabila has managed to restore political stability and calm to much...DEMOCRATIC REPUBLIC OF CONGO-A FERTILE GROUND FOR INSTABILITY IN THE GREAT LAKES REGION STATES A thesis presented to the Faculty of...From - To) AUG 2016 – JUNE 2017 4. TITLE AND SUBTITLE Democratic Republic of Congo-A Fertile Ground for Instability in the Great Lakes Region

  16. Construction of ground-state preserving sparse lattice models for predictive materials simulations

    Science.gov (United States)

    Huang, Wenxuan; Urban, Alexander; Rong, Ziqin; Ding, Zhiwei; Luo, Chuan; Ceder, Gerbrand

    2017-08-01

    First-principles based cluster expansion models are the dominant approach in ab initio thermodynamics of crystalline mixtures enabling the prediction of phase diagrams and novel ground states. However, despite recent advances, the construction of accurate models still requires a careful and time-consuming manual parameter tuning process for ground-state preservation, since this property is not guaranteed by default. In this paper, we present a systematic and mathematically sound method to obtain cluster expansion models that are guaranteed to preserve the ground states of their reference data. The method builds on the recently introduced compressive sensing paradigm for cluster expansion and employs quadratic programming to impose constraints on the model parameters. The robustness of our methodology is illustrated for two lithium transition metal oxides with relevance for Li-ion battery cathodes, i.e., Li2xFe2(1-x)O2 and Li2xTi2(1-x)O2, for which the construction of cluster expansion models with compressive sensing alone has proven to be challenging. We demonstrate that our method not only guarantees ground-state preservation on the set of reference structures used for the model construction, but also show that out-of-sample ground-state preservation up to relatively large supercell size is achievable through a rapidly converging iterative refinement. This method provides a general tool for building robust, compressed and constrained physical models with predictive power.

  17. On the relationship between lower extremity muscles activation and peak vertical and posterior ground reaction forces during single leg drop landing.

    Science.gov (United States)

    Mahaki, M; Mi'mar, R; Mahaki, B

    2015-10-01

    Anterior cruciate ligament (ACL) injury continues to be an important medical issue for athletes participating in sports. Vertical and posterior ground reaction forces have received considerable attention for their potential influence on ACL injuries. The purpose of this study was to examine the relationship between electromyographic activity of lower extremity muscles and the peak vertical and posterior ground reaction forces during single leg drop landing. Thirteen physical education male students participated in this correlation study. Electromyographic activities of gluteus medius, biceps femoris, medial gastrocnemius, soleus as well as anterior tibialis muscles along with ground reaction forces were measured. Participants performed single-leg landing from a 0.3 m height on to a force platform. Landing was divided into two phases: 100 ms preceding ground contact and 100 ms proceeding ground contact. Pearson correlation test was used to determine the relationships between these muscles activity and peak vertical and posterior ground reaction forces. The results of the study indicated that the activity of soleus and tibialis anterior in pre-landing phase were positively correlated with peak vertical ground reaction force ([P≤0.04], [P≤0.008], respectively). However, no significant correlation was found between the activities of other muscles in pre-landing phase and peak vertical as well as peak posterior ground reaction forces. Also, no significant correlation was found between the activities of muscles in post-landing phase and peak vertical as well as peak posterior ground reaction forces. Soleus loading shifts the proximal tibia posterior at the knee joint and tibialis anterior prevent hyperporonation of the ankle, a mechanisms of ACL injury. Hence, neuromuscular training promoting preparatory muscle activity in these muscles may reduce the incidence of ACL injuries.

  18. State selective reactions of cosmic dust analogues at cryogenic temperatures

    International Nuclear Information System (INIS)

    Perry, James Samuel Anthony

    2001-01-01

    Molecular hydrogen (H 2 ) is the most abundant molecule in interstellar space. It is crucial for initiating all of the chemistry in the Interstellar Medium (ISM) and consequently plays an important role in star formation. However, the amount of H 2 believed to exist in the ISM cannot be accounted for by formation through gas-phase reactions alone. The current, widely accepted theory, is that H 2 forms on the surface of cosmic dust grains. These grains are thought to be composed of amorphous forms of carbon or silicates with temperatures of around 10 K. This thesis describes a new experiment that has been constructed to study H 2 formation on the surface of cosmic dust analogues and presents the initial experimental results. The experiment simulates, through ultra-high vacuum and the use of cryogenics, the conditions of the ISM where cosmic dust grains and H 2 molecules exist. During the experiment, a beam of atomic hydrogen is aimed at a cosmic dust analogue target. H 2 formed on the target's surface is ionised using a laser spectroscopy technique known as Resonance Enhanced Multiphoton lonisation (REMPI) and detected using time-of-flight mass spectrometry. The sensitivity of REMPI is such that H 2 molecules can be ionised in selective internal energy states. This allows the rovibrational populations of the H 2 molecules desorbing from the cosmic dust targets to be determined, providing information on the energy budget of the H 2 formation process in the ISM. Preliminary results from the experiment show that H 2 molecules formed on a diamond-like-carbon surface have a significant non-thermal population of excited vibrational and rotational energy states. (author)

  19. The Comparison of Vertical Ground Reaction Force during Forward and Backward Walking among Professional Male Karatekas with Genu Varum and Normal Knees

    OpenAIRE

    Heydar Sadeghi; Siavash Shirvanipour; Raghad Mimar

    2017-01-01

    Objective: The purpose of this study was to compare vertical ground reaction force during forward and backward walking among the male professional Karatekas with genu varum and normal knee. Methods: 20 professional male Karates (in genu varum and normal groups) participated in this semi-experimental study. The vertical ground reaction force was measured using force plate system during forward and backward walking utilizing 250 Hz frequency. Mixed ANOVA test was run to analyze the obtained ...

  20. Modeling of the stress-strain state of the ground mass contaminated with peracetic acid

    Directory of Open Access Journals (Sweden)

    Levenko Anna

    2017-01-01

    Full Text Available None of the methods described previously provides a solution to the problem that deals with the SSS evaluation of the ground mass which is under the influence of chemically active substances and, in particular, under the influence of peracetic acid. The stress-strain state of the ground mass contaminated with peracetic acid was estimated. Stresses occurring in the ground mass in the natural state were determined after the entry of acid into it and after the chemical fixation of it with sodium silicate. All the parameters of the stress-strain state of the ground mass were obtained under a number of physical and mechanical conditions. It was determined that following the work on the silicatization of the ground mass contaminated with peracetic acid the quantity of strain decreased by 26.11 to 48.9%. The comparison of the results of stress calculations indicates the stress reduction in the ground mass in 1.8 – 2.6 times after its fixing.

  1. Crystalline state photoreactions direct observation of reaction processes and metastable intermediates

    CERN Document Server

    Ohashi, Yuji

    2014-01-01

    Offering some 300 references, this book focuses on chemical reactions in the crystalline state. The reactions span many fields in inorganic and organic chemistry, making this a useful resource for inorganic, organic and physical chemists and graduate students.

  2. Structural Distortion Stabilizing the Antiferromagnetic and Semiconducting Ground State of BaMn2As2

    Directory of Open Access Journals (Sweden)

    Ekkehard Krüger

    2016-09-01

    Full Text Available We report evidence that the experimentally found antiferromagnetic structure as well as the semiconducting ground state of BaMn 2 As 2 are caused by optimally-localized Wannier states of special symmetry existing at the Fermi level of BaMn 2 As 2 . In addition, we find that a (small tetragonal distortion of the crystal is required to stabilize the antiferromagnetic semiconducting state. To our knowledge, this distortion has not yet been established experimentally.

  3. Van der Waals potential and vibrational energy levels of the ground state radon dimer

    Science.gov (United States)

    Sheng, Xiaowei; Qian, Shifeng; Hu, Fengfei

    2017-08-01

    In the present paper, the ground state van der Waals potential of the Radon dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the two dispersion coefficients C6 and C8 are estimated from the well determined dispersion coefficients C6 and C8 of Xe2. C10 is estimated by using the approximation equation that C6C10/C82 has an average value of 1.221 for all the rare gas dimers. With these estimated dispersion coefficients and the well determined well depth De and Re the Born-Mayer parameters A and b are derived. Then the vibrational energy levels of the ground state radon dimer are calculated. 40 vibrational energy levels are observed in the ground state of Rn2 dimer. The last vibrational energy level is bound by only 0.0012 cm-1.

  4. Antibonding hole ground state in InAs quantum dot molecules

    Energy Technology Data Exchange (ETDEWEB)

    Planelles, Josep [Departament de Química Física i Analítica, Universitat Jaume I, E-12080, Castelló (Spain)

    2015-01-22

    Using four-band k⋅p Hamiltonians, we study how strain and position-dependent effective masses influence hole tunneling in vertically coupled InAs/GaAs quantum dots. Strain reduces the tunneling and hence the critical interdot distance required for the ground state to change from bonding to antibonding. Variable mass has the opposite effect and a rough compensation leaves little affected the critical bonding-to-antibonding ground state crossover. An alternative implementation of the magnetic field in the envelope function Hamiltonian is given which retrieves the experimental denial of possible after growth reversible magnetically induced bonding-to-antibonding ground state transition, predicted by the widely used Luttinger-Kohn Hamiltonian.

  5. Exact ground-state correlation functions of an atomic-molecular Bose–Einstein condensate model

    Science.gov (United States)

    Links, Jon; Shen, Yibing

    2018-05-01

    We study the ground-state properties of an atomic-molecular Bose–Einstein condensate model through an exact Bethe Ansatz solution. For a certain range of parameter choices, we prove that the ground-state Bethe roots lie on the positive real-axis. We then use a continuum limit approach to obtain a singular integral equation characterising the distribution of these Bethe roots. Solving this equation leads to an analytic expression for the ground-state energy. The form of the expression is consistent with the existence of a line of quantum phase transitions, which has been identified in earlier studies. This line demarcates a molecular phase from a mixed phase. Certain correlation functions, which characterise these phases, are then obtained through the Hellmann–Feynman theorem.

  6. EFFECTS OF FATIGUE ON FRONTAL PLANE KNEE MOTION, MUSCLE ACTIVITY, AND GROUND REACTION FORCES IN MEN AND WOMEN DURING LANDING

    Directory of Open Access Journals (Sweden)

    Michael P. Smith

    2009-09-01

    Full Text Available Women tear their Anterior Cruciate Ligament (ACL 2-8 times more frequently than men. Frontal plane knee motion can produce a pathological load in the ACL. During a state of fatigue the muscles surrounding the knee joint may lose the ability to protect the joint during sudden deceleration while landing. The purpose of this study was to investigate the effects of fatigue and gender on frontal plane knee motion, EMG amplitudes, and GRF magnitudes during drop- jump landing. Pretest-posttest comparison group design was used. Twenty-six volunteers (14 women; 12 Men; Mean ± standard deviation age = 24.5 ± 2.7 yrs; height = 1.73 ± 0.09 m; mass = 74.3 ± 11.8 kg participated in the study. Knee frontal plane ranges of motion and positions, ground reaction force peak magnitudes, and surface EMG RMS amplitudes from five lower extremity muscles (vastus medialis, vastus lateralis, medial hamstring, lateral hamstring, and lateral gastrocnemius were obtained during the landing phase of a drop-jump. MANOVA and ANOVA indicated that peak GRF significantly (p < 0.05; 2.50 ± 0.75 BW vs. 2.06 ± 0.93 BW decreased during fatigued landings. No other variables exhibited a fatigue main effect, although there was a significant (p < 0.05 fatigue by gender interaction for the frontal plane range of motion from initial contact to max knee flexion variable. Follow-up analyses failed to reveal significant gender differences at the different levels of fatigue for this variable. Additionally, no variables exhibited a significant gender main effect. Single subject analysis indicated that fatigue significantly altered frontal plane knee motion, peak GRF, and EMG in some subjects and the direction of differences varied by individual. Fatigue altered some aspects of landing performance in both men and women, but there were no gender differences. Additionally, both group and single subject analyses provided valuable but different information about factors representing

  7. A sensitivity analysis method for the body segment inertial parameters based on ground reaction and joint moment regressor matrices.

    Science.gov (United States)

    Futamure, Sumire; Bonnet, Vincent; Dumas, Raphael; Venture, Gentiane

    2017-11-07

    This paper presents a method allowing a simple and efficient sensitivity analysis of dynamics parameters of complex whole-body human model. The proposed method is based on the ground reaction and joint moment regressor matrices, developed initially in robotics system identification theory, and involved in the equations of motion of the human body. The regressor matrices are linear relatively to the segment inertial parameters allowing us to use simple sensitivity analysis methods. The sensitivity analysis method was applied over gait dynamics and kinematics data of nine subjects and with a 15 segments 3D model of the locomotor apparatus. According to the proposed sensitivity indices, 76 segments inertial parameters out the 150 of the mechanical model were considered as not influent for gait. The main findings were that the segment masses were influent and that, at the exception of the trunk, moment of inertia were not influent for the computation of the ground reaction forces and moments and the joint moments. The same method also shows numerically that at least 90% of the lower-limb joint moments during the stance phase can be estimated only from a force-plate and kinematics data without knowing any of the segment inertial parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Step-to-step spatiotemporal variables and ground reaction forces of intra-individual fastest sprinting in a single session.

    Science.gov (United States)

    Nagahara, Ryu; Mizutani, Mirai; Matsuo, Akifumi; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2018-06-01

    We aimed to investigate the step-to-step spatiotemporal variables and ground reaction forces during the acceleration phase for characterising intra-individual fastest sprinting within a single session. Step-to-step spatiotemporal variables and ground reaction forces produced by 15 male athletes were measured over a 50-m distance during repeated (three to five) 60-m sprints using a long force platform system. Differences in measured variables between the fastest and slowest trials were examined at each step until the 22nd step using a magnitude-based inferences approach. There were possibly-most likely higher running speed and step frequency (2nd to 22nd steps) and shorter support time (all steps) in the fastest trial than in the slowest trial. Moreover, for the fastest trial there were likely-very likely greater mean propulsive force during the initial four steps and possibly-very likely larger mean net anterior-posterior force until the 17th step. The current results demonstrate that better sprinting performance within a single session is probably achieved by 1) a high step frequency (except the initial step) with short support time at all steps, 2) exerting a greater mean propulsive force during initial acceleration, and 3) producing a greater mean net anterior-posterior force during initial and middle acceleration.

  9. A New Proxy Measurement Algorithm with Application to the Estimation of Vertical Ground Reaction Forces Using Wearable Sensors.

    Science.gov (United States)

    Guo, Yuzhu; Storm, Fabio; Zhao, Yifan; Billings, Stephen A; Pavic, Aleksandar; Mazzà, Claudia; Guo, Ling-Zhong

    2017-09-22

    Measurement of the ground reaction forces (GRF) during walking is typically limited to laboratory settings, and only short observations using wearable pressure insoles have been reported so far. In this study, a new proxy measurement method is proposed to estimate the vertical component of the GRF (vGRF) from wearable accelerometer signals. The accelerations are used as the proxy variable. An orthogonal forward regression algorithm (OFR) is employed to identify the dynamic relationships between the proxy variables and the measured vGRF using pressure-sensing insoles. The obtained model, which represents the connection between the proxy variable and the vGRF, is then used to predict the latter. The results have been validated using pressure insoles data collected from nine healthy individuals under two outdoor walking tasks in non-laboratory settings. The results show that the vGRFs can be reconstructed with high accuracy (with an average prediction error of less than 5.0%) using only one wearable sensor mounted at the waist (L5, fifth lumbar vertebra). Proxy measures with different sensor positions are also discussed. Results show that the waist acceleration-based proxy measurement is more stable with less inter-task and inter-subject variability than the proxy measures based on forehead level accelerations. The proposed proxy measure provides a promising low-cost method for monitoring ground reaction forces in real-life settings and introduces a novel generic approach for replacing the direct determination of difficult to measure variables in many applications.

  10. Gender difference in older adult's utilization of gravitational and ground reaction force in regulation of angular momentum during stair descent.

    Science.gov (United States)

    Singhal, Kunal; Kim, Jemin; Casebolt, Jeffrey; Lee, Sangwoo; Han, Ki-Hoon; Kwon, Young-Hoo

    2015-06-01

    Angular momentum of the body is a highly controlled quantity signifying stability, therefore, it is essential to understand its regulation during stair descent. The purpose of this study was to investigate how older adults use gravity and ground reaction force to regulate the angular momentum of the body during stair descent. A total of 28 participants (12 male and 16 female; 68.5 years and 69.0 years of mean age respectively) performed stair descent from a level walk in a step-over-step manner at a self-selected speed over a custom made three-step staircase with embedded force plates. Kinematic and force data were used to calculate angular momentum, gravitational moment, and ground reaction force moment about the stance foot center of pressure. Women show a significantly greater change in normalized angular momentum (0.92Nms/Kgm; p=.004) as compared to men (0.45Nms/Kgm). Women produce higher normalized GRF (p=.031) during the double support phase. The angular momentum changes show largest backward regulation for Step 0 and forward regulation for Step 2. This greater difference in overall change in the angular momentum in women may explain their increased risk of fall over the stairs. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Numerical simulations of oscillating soliton stars: Excited states in spherical symmetry and ground state evolutions in 3D

    International Nuclear Information System (INIS)

    Balakrishna, Jayashree; Bondarescu, Ruxandra; Daues, Gregory; Bondarescu, Mihai

    2008-01-01

    Excited state soliton stars are studied numerically for the first time. The stability of spherically symmetric S-branch excited state oscillatons under radial perturbations is investigated using a 1D code. We find that these stars are inherently unstable either migrating to the ground state or collapsing to black holes. Higher excited state configurations are observed to cascade through intermediate excited states during their migration to the ground state. This is similar to excited state boson stars [J. Balakrishna, E. Seidel, and W.-M. Suen, Phys. Rev. D 58, 104004 (1998).]. Ground state oscillatons are then studied in full 3D numerical relativity. Finding the appropriate gauge condition for the dynamic oscillatons is much more challenging than in the case of boson stars. Different slicing conditions are explored, and a customized gauge condition that approximates polar slicing in spherical symmetry is implemented. Comparisons with 1D results and convergence tests are performed. The behavior of these stars under small axisymmetric perturbations is studied and gravitational waveforms are extracted. We find that the gravitational waves damp out on a short time scale, enabling us to obtain the complete waveform. This work is a starting point for the evolution of real scalar field systems with arbitrary symmetries

  12. Non-degenerated Ground States and Low-degenerated Excited States in the Antiferromagnetic Ising Model on Triangulations

    Science.gov (United States)

    Jiménez, Andrea

    2014-02-01

    We study the unexpected asymptotic behavior of the degeneracy of the first few energy levels in the antiferromagnetic Ising model on triangulations of closed Riemann surfaces. There are strong mathematical and physical reasons to expect that the number of ground states (i.e., degeneracy) of the antiferromagnetic Ising model on the triangulations of a fixed closed Riemann surface is exponential in the number of vertices. In the set of plane triangulations, the degeneracy equals the number of perfect matchings of the geometric duals, and thus it is exponential by a recent result of Chudnovsky and Seymour. From the physics point of view, antiferromagnetic triangulations are geometrically frustrated systems, and in such systems exponential degeneracy is predicted. We present results that contradict these predictions. We prove that for each closed Riemann surface S of positive genus, there are sequences of triangulations of S with exactly one ground state. One possible explanation of this phenomenon is that exponential degeneracy would be found in the excited states with energy close to the ground state energy. However, as our second result, we show the existence of a sequence of triangulations of a closed Riemann surface of genus 10 with exactly one ground state such that the degeneracy of each of the 1st, 2nd, 3rd and 4th excited energy levels belongs to O( n), O( n 2), O( n 3) and O( n 4), respectively.

  13. Carbonyl-Olefin Exchange Reaction: Present State and Outlook

    Science.gov (United States)

    Kalinova, Radostina; Jossifov, Christo

    The carbonyl-olefin exchange reaction (COER) is a new reaction between carbonyl group and olefin double bond, which has a formal similarity with the olefin metathesis (OM) - one carbon atom in the latter is replaced with an oxygen atom. Till now the new reaction is performed successfully only when the two functional groups (carbonyl group and olefin double bond) are in one molecule and are conjugated. The α, β-unsaturated carbonyl compounds (substituted propenones) are the compounds with such a structure. They polymerize giving substituted polyacetylenes. The chain propagation step of this polymerization is in fact the COER. The question arises: is it possible the COER to take place when the two functional groups are not in one molecule and are not conjugated, and could this reaction became an alternative of the existing carbonyl olefination reactions?

  14. Stability of the electroweak ground state in the Standard Model and its extensions

    International Nuclear Information System (INIS)

    Di Luzio, Luca; Isidori, Gino; Ridolfi, Giovanni

    2016-01-01

    We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  15. Stability of the electroweak ground state in the Standard Model and its extensions

    Energy Technology Data Exchange (ETDEWEB)

    Di Luzio, Luca, E-mail: diluzio@ge.infn.it [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Isidori, Gino [Department of Physics, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy)

    2016-02-10

    We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  16. Stability of the electroweak ground state in the Standard Model and its extensions

    Directory of Open Access Journals (Sweden)

    Luca Di Luzio

    2016-02-01

    Full Text Available We review the formalism by which the tunnelling probability of an unstable ground state can be computed in quantum field theory, with special reference to the Standard Model of electroweak interactions. We describe in some detail the approximations implicitly adopted in such calculation. Particular attention is devoted to the role of scale invariance, and to the different implications of scale-invariance violations due to quantum effects and possible new degrees of freedom. We show that new interactions characterized by a new energy scale, close to the Planck mass, do not invalidate the main conclusions about the stability of the Standard Model ground state derived in absence of such terms.

  17. Ground State of Bosons in Bose-Fermi Mixture with Spin-Orbit Coupling

    Science.gov (United States)

    Sakamoto, Ryohei; Ono, Yosuke; Hatsuda, Rei; Shiina, Kenta; Arahata, Emiko; Mori, Hiroyuki

    2017-07-01

    We study an effect of spin-1/2 fermions on the ground state of a Bose system with equal Rashba and Dresselhaus spin-orbit coupling. By using mean-field and tight-binding approximations, we show the ground state phase diagram of the Bose system in the spin-orbit coupled Bose-Fermi mixture and find that the characteristic phase domain, where a spin current of fermions may be induced, can exist even in the presence of a significantly large number of fermions.

  18. Numerical study of the t-J model: Exact ground state and flux phases

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Poilblanc, D.

    1990-01-01

    Strongly correlated 2D electrons described by the t-J model are investigated numerically. Exact ground state for one and two holes in a finite cluster with periodic boundary conditions are obtained by using the Lanczos algorithm. The effects of Coulomb repulsion of the holes on the nearest neighbor sites are taken into account. Commensurate flux phases are investigated for the same size of clusters. They are shown to be a good approximation for the ground state specially in the intermediate value of J/t. (author). 21 refs, 3 figs

  19. Fission barriers and asymmetric ground states in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Rutz, K.; Reinhard, P.G.; Greiner, W.

    1995-01-01

    The symmetric and asymmetric fission path for 240 Pu, 232 Th and 226 Ra is investigated within the relativistic mean-field model. Standard parametrizations which are well fitted to nuclear ground-state properties are found to deliver reasonable qualitative and quantitative features of fission, comparable to similar nonrelativistic calculations. Furthermore, stable octupole deformations in the ground states of radium isotopes are investigated. They are found in a series of isotopes, qualitatively in agreement with nonrelativistic models. But the quantitative details differ amongst the models and between the various relativistic parametrizations. (orig.)

  20. Numerical study of ground state and low lying excitations of quantum antiferromagnets

    International Nuclear Information System (INIS)

    Trivedi, N.; Ceperley, D.M.

    1989-01-01

    The authors have studied, via Green function Monte Carlo (GFMC), the S = 1/2 Heisenberg quantum antiferromagnet in two dimensions on a square lattice. They obtain the ground state energy with only statistical errors E 0 /J = -0.6692(2), the staggered magnetization m † = 0.31(2), and from the long wave length behavior of the structure factor, the spin wave velocity c/c o = 1.14(5). They show that the ground state wave function has long range pair correlations arising from the zero point motion of spin waves

  1. The ground-state phase diagrams of the spin-3/2 Ising model

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa

    2003-01-01

    The ground-state spin configurations are obtained for the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic exchange interactions and a single-ion crystal field. The interactions are assumed to be only between nearest-neighbors. The calculated ground-state phase diagrams are presented on diatomic lattices, such as the square, honeycomb and sc lattices, and triangular lattice in the (Δ/z vertical bar J vertical bar ,K/ vertical bar J vertical bar) and (H/z vertical bar J vertical bar, K/ vertical bar J vertical bar) planes

  2. Singlet Ground State Magnetism: III Magnetic Excitons in Antiferromagnetic TbP

    DEFF Research Database (Denmark)

    Knorr, K.; Loidl, A.; Kjems, Jørgen

    1981-01-01

    The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined.......The dispersion of the lowest magnetic excitations of the singlet ground state system TbP has been studied in the antiferromagnetic phase by inelastic neutron scattering. The magnetic exchange interaction and the magnetic and the rhombohedral molecular fields have been determined....

  3. Ground-state properties of third-row elements with nonlocal density functionals

    International Nuclear Information System (INIS)

    Bagno, P.; Jepsen, O.; Gunnarsson, O.

    1989-01-01

    The cohesive energy, the lattice parameter, and the bulk modulus of third-row elements are calculated using the Langreth-Mehl-Hu (LMH), the Perdew-Wang (PW), and the gradient expansion functionals. The PW functional is found to give somewhat better results than the LMH functional and both are found to typically remove half the errors in the local-spin-density (LSD) approximation, while the gradient expansion gives worse results than the local-density approximation. For Fe both the LMH and PW functionals correctly predict a ferromagnetic bcc ground state, while the LSD approximation and the gradient expansion predict a nonmagnetic fcc ground state

  4. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Science.gov (United States)

    Borges, L. H. C.; Barone, F. A.

    2016-02-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schrödinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector.

  5. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    Energy Technology Data Exchange (ETDEWEB)

    Borges, L.H.C. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil); Barone, F.A. [IFQ-Universidade Federal de Itajuba, Itajuba, MG (Brazil)

    2016-02-15

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)

  6. Traces of Lorentz symmetry breaking in a hydrogen atom at ground state

    International Nuclear Information System (INIS)

    Borges, L.H.C.; Barone, F.A.

    2016-01-01

    Some traces of a specific Lorentz symmetry breaking scenario in the ground state of the hydrogen atom are investigated. We use standard Rayleigh-Schroedinger perturbation theory in order to obtain the corrections to the ground state energy and the wave function. It is shown that an induced four-pole moment arises, due to the Lorentz symmetry breaking. The model considered is the one studied in Borges et al. (Eur Phys J C 74:2937, 2014), where the Lorentz symmetry is broken in the electromagnetic sector. (orig.)

  7. On the ground state of the two-dimensional non-ideal Bose gas

    International Nuclear Information System (INIS)

    Lozovik, Yu.E.; Yudson, V.I.

    1978-01-01

    The theory of the ground state of the two-dimensional non-ideal Bose gas is presented. The conditions for the validity of the ladder and the Bogolubov approximations are derived. These conditions ensure the existence of a Bose condensate in the ground state of two-dimensional systems. These conditions are different from the corresponding conditions for the three-dimensional case. The connection between the effective interaction and the two-dimensional scattering amplitude at some characteristic energy kappa 2 /2m (not equal to 0) is obtained (f(kappa = 0) = infinity in the two-dimensional case). (Auth.)

  8. Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb Breakup

    Directory of Open Access Journals (Sweden)

    Chakraborty S.

    2014-03-01

    Full Text Available Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup model calculation with neutron in p3/2 orbital favours 34Al(g.s⊗νp3/2 as ground state configuration of 35Al. But ground state configuration of 34Al is complicated as evident from γ-ray spectra of 33Al after Coulomb breakup of 34Al.

  9. Trapping cold ground state argon atoms for sympathetic cooling of molecules

    OpenAIRE

    Edmunds, P. D.; Barker, P. F.

    2014-01-01

    We trap cold, ground-state, argon atoms in a deep optical dipole trap produced by a build-up cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of co-trapped metastable argon atoms using a new type of parametric loss spectroscopy. Using this technique we als...

  10. Study of ground-state configuration of neutron-rich aluminium isotopes through electromagnetic excitation

    International Nuclear Information System (INIS)

    Chakraborty, S.; Datta Pramanik, U.; Chatterjee, S.

    2013-01-01

    The region of the nuclear chart around neutron magic number, N∼20 and proton number (Z), 10≤ Z≤12 is known as the Island of Inversion. The valance neutron(s) of these nuclei, even in their ground state, are most likely occupying the upper pf orbitals which are normally lying above sd orbitals, N∼20 shell closure. Nuclei like 34,35 Al are lying at the boundary of this Island of Inversion. Little experimental information about their ground state configuration are available in literature

  11. Unambiguous assignment of the ground state of a nearly degenerate cluster

    International Nuclear Information System (INIS)

    Gutsev, G. L.; Khanna, S. N.; Jena, P.

    2000-01-01

    A synergistic approach that combines first-principles theory and electron photodetachment experiment is shown to be able to uniquely identify the ground state of a nearly degenerate cluster in the gas phase. Additionally, this approach can complement the Stern-Gerlach technique in determining the magnetic moment of small clusters unambiguously. The method, applied to a Fe 3 cluster, reveals its ground state to have a magnetic moment of 10μ B --in contrast with earlier predictions. (c) 2000 The American Physical Society

  12. Exchange reaction between hydrogen and deuterium. I. Importance of surface reactions in the steady-state mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Marteau, C; Gaillard-Cusin, F; James, H [Centre National de la Recherche Scientifique, 45 - Orleans-la-Source (France). Centre de Recherches sur la Chimie de Combustion et des Hautes Temperatures

    1978-05-01

    Investigation of heterogeneous initiation process of gas phase linear chain reactions is carried out through the study of H/sub 2/-D/sub 2/ exchange reaction. Experimental data under study concern mainly the stationary rate of HD formation and the prestationary proceeding. Steady-state method accounts for the first one of these data; it allows to clearly compare the wall process part to the part played by the homogeneous chain reaction towards HD formation. Activation energy of exchange elementary step between chemisorbed hydrogen (on silica) and gaseous deuterium has been evaluated: Esub(e1)=52+-1 Kcal/mole.

  13. A Rigorous Investigation on the Ground State of the Penson-Kolb Model

    Science.gov (United States)

    Yang, Kai-Hua; Tian, Guang-Shan; Han, Ru-Qi

    2003-05-01

    By using either numerical calculations or analytical methods, such as the bosonization technique, the ground state of the Penson-Kolb model has been previously studied by several groups. Some physicists argued that, as far as the existence of superconductivity in this model is concerned, it is canonically equivalent to the negative-U Hubbard model. However, others did not agree. In the present paper, we shall investigate this model by an independent and rigorous approach. We show that the ground state of the Penson-Kolb model is nondegenerate and has a nonvanishing overlap with the ground state of the negative-U Hubbard model. Furthermore, we also show that the ground states of both the models have the same good quantum numbers and may have superconducting long-range order at the same momentum q = 0. Our results support the equivalence between these models. The project partially supported by the Special Funds for Major State Basic Research Projects (G20000365) and National Natural Science Foundation of China under Grant No. 10174002

  14. A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hanquan, E-mail: hanquan.wang@gmail.com [School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan Province, 650221 (China); Yunnan Tongchang Scientific Computing and Data Mining Research Center, Kunming, Yunnan Province, 650221 (China)

    2014-10-01

    In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can be computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method.

  15. Reactive ground-state pathways are not ubiquitous in red/green cyanobacteriochromes.

    Science.gov (United States)

    Chang, Che-Wei; Gottlieb, Sean M; Kim, Peter W; Rockwell, Nathan C; Lagarias, J Clark; Larsen, Delmar S

    2013-09-26

    Recent characterization of the red/green cyanobacteriochrome (CBCR) NpR6012g4 revealed a high quantum yield for its forward photoreaction [J. Am. Chem. Soc. 2012, 134, 130-133] that was ascribed to the activity of hidden, productive ground-state intermediates. The dynamics of the pathways involving these ground-state intermediates was resolved with femtosecond dispersed pump-dump-probe spectroscopy, the first such study reported for any CBCR. To address the ubiquity of such second-chance initiation dynamics (SCID) in CBCRs, we examined the closely related red/green CBCR NpF2164g6 from Nostoc punctiforme. Both NpF2164g6 and NpR6012g4 use phycocyanobilin as the chromophore precursor and exhibit similar excited-state dynamics. However, NpF2164g6 exhibits a lower quantum yield of 32% for the generation of the isomerized Lumi-R primary photoproduct, compared to 40% for NpR6012g4. This difference arises from significantly different ground-state dynamics between the two proteins, with the SCID mechanism deactivated in NpF2164g6. We present an integrated inhomogeneous target model that self-consistently fits the pump-probe and pump-dump-probe signals for both forward and reverse photoreactions in both proteins. This work demonstrates that reactive ground-state intermediates are not ubiquitous phenomena in CBCRs.

  16. A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates

    International Nuclear Information System (INIS)

    Wang, Hanquan

    2014-01-01

    In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can be computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method

  17. Electron transfer reactions induced by the triplet state of thiacarbocyanine dimers

    International Nuclear Information System (INIS)

    Chibisov, Alexander K.; Slavnova, Tatyana D.; Goerner, Helmut

    2004-01-01

    The photoinduced electron transfer between either cationic 5,5 ' -dichloro-3,3 ' ,9-triethylthiacarbocyanine (1) or a structurally similar anionic dye (2) and appropriate donors, e.g. ascorbic acid, and acceptors, e.g. methyl viologen, was studied by ns-laser photolysis. In aqueous solution the dyes in the ground state are present as an equilibrated mixture of dimers and monomers, whereas the triplet state is mainly populated from dimers. The triplet states of both dimers and monomers are quenched by electron donors or acceptors and the rate constant for quenching is generally 2-4 times higher for dimers than for monomers. The kinetics of triplet decay and radical formation and decay as a result of primary and secondary electron transfer were analyzed. While the one-electron reduced dimer decays due to back reactions, the one-electron oxidized dimer rapidly dissociates into the monomer and the monomeric dye radical. For the dimeric dye/donor/acceptor systems the primary photoinduced electron transfer occurs either from the donor or to the acceptor yielding the dimeric dye radicals. The one-electron reduced dimer can be efficiently oxidized by acceptors, e.g. the rate constant for reaction of the dimeric dye radical of 1 with methyl viologen (photoreductive pathway of sensitization) is 1.6x10 9 M -1 s -1 . The photooxidative pathway of sensitization is more complicated; after dissociation of the dimeric dye radical, the monomeric dye radical is reduced in a secondary electron transfer from ascorbic acid, e.g. with a rate constant of 1x10 9 M -1 s -1 for 2, yielding the monomer. On increasing the donor concentration the photooxidative pathway of sensitization is switched to a photoreductive one

  18. Selective population of high-j states via heavy-ion-induced transfer reactions

    International Nuclear Information System (INIS)

    Bond, P.D.

    1982-01-01

    One of the early hopes of heavy-ion-induced transfer reactions was to populate states not seen easily or at all by other means. To date, however, I believe it is fair to say that spectroscopic studies of previously unknown states have had, at best, limited success. Despite the early demonstration of selectivity with cluster transfer to high-lying states in light nuclei, the study of heavy-ion-induced transfer reactions has emphasized the reaction mechanism. The value of using two of these reactions for spectroscopy of high spin states is demonstrated: 143 Nd( 16 O, 15 O) 144 Nd and 170 Er( 16 O, 15 Oγ) 171 Er

  19. Energies of the ground state and first excited 0 sup + state in an exactly solvable pairing model

    CERN Document Server

    Dinh Dang, N

    2003-01-01

    Several approximations are tested by calculating the ground-state energy and the energy of the first excited 0 sup + state using an exactly solvable model with two symmetric levels interacting via a pairing force. They are the BCS approximation (BCS), Lipkin-Nogami (LN) method, random-phase approximation (RPA), quasiparticle RPA (QRPA), the renormalized RPA (RRPA), and renormalized QRPA (RQRPA). It is shown that, in the strong-coupling regime, the QRPA which neglects the scattering term of the model Hamiltonian offers the best fit to the exact solutions. A recipe is proposed using the RRPA and RQRPA in combination with the pairing gap given by the LN method. Applying this recipe, it is shown that the superfluid-normal phase transition is avoided, and a reasonably good description for both of the ground-state energy and the energy of the first excited 0 sup + state is achieved. (orig.)

  20. A COMPARISON OF GOLF SHOE DESIGNS HIGHLIGHTS GREATER GROUND REACTION FORCES WITH SHORTER IRONS

    Directory of Open Access Journals (Sweden)

    Paul Worsfold

    2007-12-01

    Full Text Available In an effort to reduce golf turf damage the traditional metal spike golf shoe has been redesigned, but shoe-ground biomechanical evaluations have utilised artificial grass surfaces. Twenty-four golfers wore three different golf shoe traction designs (traditional metal spikes, alternative spikes, and a flat-soled shoe with no additional traction when performing shots with a driver, 3 iron and 7 iron. Ground action forces were measured beneath the feet by two natural grass covered force platforms. The maximum vertical force recorded at the back foot with the 3 iron and 7 iron was 0.82 BW (body weight and at the front foot 1.1 BW approximately in both the metal spike and alternative spike golf shoe designs. When using the driver these maximal vertical values were 0.49 BW at the back foot and 0.84 BW at the front foot. Furthermore, as performance of the backswing and then downswing necessitates a change in movement direction the range of force generated during the complete swing was calculated. In the metal spike shoe the vertical force generated at the back foot with both irons was 0.67 BW and at the front foot 0.96 BW with the 3 iron and 0.92 BW with the 7 iron. The back foot vertical force generated with the driver was 0.33 BW and at the front foot 0.83 BW wearing the metal spike shoe. Results indicated the greater force generation with the irons. When using the driver the more horizontal swing plane associated with the longer club reduced vertical forces at the back and front foot. However, the mediolateral force generated across each foot in the metal and alternative spike shoes when using the driver was greater than when the irons were used. The coefficient of friction was 0. 62 at the back and front foot whichever shoe was worn or club used

  1. Study of the stability of the ground states and K-isomeric states of 250Fm and 254102 against spontaneous fission

    International Nuclear Information System (INIS)

    Lazarev, Yu.A.; Lobanov, Yu.V.; Sagajdak, R.N.; Utenkov, V.K.; Kharitonov, Yu.P.; Shirokovskij, I.V.; Tret'yakova, S.P.; Oganessyan, Yu.Ts.

    1988-01-01

    By employing the 249 Cf( 4 He, 3n) and 208 Pb( 48 Ca,2n) reactions, experiments to study the stability against spontaneous fission of the nuclides 250 Fm and 254 102 as well as of the two-quasi-particle (2 q-p) K isomers 250 Fm (T 1/2 =1,8±0,1 s) and 254 102 (T 1/2 =0,28±0,04 s) have been performed. The groundstate spontaneous fission of the two nuclides has been discovered and the corresponding branching ratios b sf and partial half-lives T sf , respectively, have been determined to be: (6,9±1,0)x10 -5 , 0,83±0,15 yr for 250 Fm; (1,7±0,5)x10 -3 , (3,2±0,9)x10 4 s for 254 102. As a by-product of these studies, new data about cross sections of the 206,208 Pb( 48 Ca,xn) reactions have been obtained. Experiments designed to search for the spontaneous fission of the 2 q-p K-isometric states in 250 Fm and 254 102 have not revealed the effect in question. The lower limits of the ratios of the partial spontaneous fission half-lives for the 2 q-p K-isomeric states to those for the respective ground states, T * sf /T sf , have been established to be≥10 -1 for 250m Fm/ 250 Fm and ≥5x10 -3 for 254m 102/ 254 102. This means that the stability of the 2 q-p K-isomeric states in 250 Fm and 254 102 against spontaneous fission is practically not inferior to that of the ground states of these nuclei. In accord with the experimental findings, the theoretical estimates of T * sf /T sf made in the present paper show that, due to the influence of the specialization and blocking effects on the potential energy and the effective mass associated with fission, spontaneous fission from 2 q-p K-isomeric states cannot be facilitated but, on the contrary, should be essentially hindered compared with ground-state spontaneous fission

  2. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Administrator

    cal reactions to the determination of paleotempera- tures from isotopic ... ordered liquid than H2O due to stronger H-bond in- teractions in the deuterated water ... layer chromatography and monitoring the excitation wavelength dependence of ...

  3. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    Science.gov (United States)

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-01

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties. PMID:25592417

  4. Effect of foot orthoses on magnitude and timing of rearfoot and tibial motions, ground reaction force and knee moment during running.

    Science.gov (United States)

    Eslami, Mansour; Begon, Mickaël; Hinse, Sébastien; Sadeghi, Heydar; Popov, Peter; Allard, Paul

    2009-11-01

    Changes in magnitude and timing of rearfoot eversion and tibial internal rotation by foot orthoses and their contributions to vertical ground reaction force and knee joint moments are not well understood. The objectives of this study were to test if orthoses modify the magnitude and time to peak rearfoot eversion, tibial internal rotation, active ground reaction force and knee adduction moment and determine if rearfoot eversion, tibial internal rotation magnitudes are correlated to peak active ground reaction force and knee adduction moment during the first 60% stance phase of running. Eleven healthy men ran at 170 steps per minute in shod and with foot orthoses conditions. Video and force-plate data were collected simultaneously to calculate foot joint angular displacement, ground reaction forces and knee adduction moments. Results showed that wearing semi-rigid foot orthoses significantly reduced rearfoot eversion 40% (4.1 degrees ; p=0.001) and peak active ground reaction force 6% (0.96N/kg; p=0.008). No significant time differences occurred among the peak rearfoot eversion, tibial internal rotation and peak active ground reaction force in both conditions. A positive and significant correlation was observed between peak knee adduction moment and the magnitude of rearfoot eversion during shod (r=0.59; p=0.04) and shod/orthoses running (r=0.65; p=0.02). In conclusion, foot orthoses could reduce rearfoot eversion so that this can be associated with a reduction of knee adduction moment during the first 60% stance phase of running. Finding implies that modifying rearfoot and tibial motions during running could not be related to a reduction of the ground reaction force.

  5. Vibrational-state-selected ion--molecule reaction cross sections at thermal energies

    NARCIS (Netherlands)

    Pijkeren, D. van; Boltjes, E.; Eck, J. van; Niehaus, A.

    1984-01-01

    A method designed to measure relative ion—molecule reaction rates at thermal collision energies for selected reactant ion vibrational states is described. Relative reaction rates are determined for the three endothermic reactions: H2+ (υ)(He,H)HeH+, H2+ (υ)(Ne,H)NeH+, D2+(υ)(Ne, D)NeD+, and for the

  6. The factor that determines photo-induced crystalline-state reaction

    International Nuclear Information System (INIS)

    Takenaka, Y.

    1995-01-01

    The photo-induced crystalline-state reaction of cobaloxime complexes were investigated by X-ray diffraction method. The reactivity or the reaction rate is dependent only on the volume of the reaction cavity. The hydrogen bond formation of the reactive group and the difference of the base ligand have no effect. (author)

  7. Electron-impact excitation and ionization cross sections for ground state and excited helium atoms

    International Nuclear Information System (INIS)

    Ralchenko, Yu.; Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de

    2008-01-01

    Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n≤4 are treated individually, while the states with n≥5 are considered degenerate. For the processes involving transitions to and from n≥5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form

  8. Determination of many-electron basis functions for a quantum Hall ground state using Schur polynomials

    Science.gov (United States)

    Mandal, Sudhansu S.; Mukherjee, Sutirtha; Ray, Koushik

    2018-03-01

    A method for determining the ground state of a planar interacting many-electron system in a magnetic field perpendicular to the plane is described. The ground state wave-function is expressed as a linear combination of a set of basis functions. Given only the flux and the number of electrons describing an incompressible state, we use the combinatorics of partitioning the flux among the electrons to derive the basis wave-functions as linear combinations of Schur polynomials. The procedure ensures that the basis wave-functions form representations of the angular momentum algebra. We exemplify the method by deriving the basis functions for the 5/2 quantum Hall state with a few particles. We find that one of the basis functions is precisely the Moore-Read Pfaffian wave function.

  9. Cluster expansion of the wavefunction. Calculation of electron correlations in ground and excited states by SAC and SAC CI theories

    International Nuclear Information System (INIS)

    Nakatsuji, H.

    1979-01-01

    The SAC and SAC CI theories are formulated for actual calculations of singlet ground states and their excited states of arbitrary spin multiplicity. Approximations are considered for the variational methods since time-consuming terms are involved. The results of test calculations for singlet states have shown, with much smaller numbers of variables (sizes of the matrices involved), excellent agreement with the full CI and close-to-full CI results. This shows the utility of the SAC theory for ground states and especially of the SAC CI theory for excited states, since the slow convergence of the CI theory is much more critical for excited states than for ground states. (Auth.)

  10. Ground state properties of exotic nuclei in deformed medium mass region

    International Nuclear Information System (INIS)

    Manju; Chatterjee, R.; Singh, Jagjit; Shubhchintak

    2017-01-01

    The dipole moment, size of the nucleus and other ground state properties of deformed nuclei 37 Mg and 31 Ne are presented. Furthermore with this deformed wave function the electric dipole strength distribution for deformed nuclei 37 Mg and 31 Ne is calculated. This will allow us to investigate the two dimensional scaling phenomenon with two parameters: quadrupole deformation and separation energy

  11. Some fundamental properties of the ground state of atoms and molecules

    International Nuclear Information System (INIS)

    Lieb, E.H.

    1986-01-01

    This paper studies the ground states of atoms and molecules in quantum mechanics and reports on some mathematically rigourous results pertaining to the matter. The non-relativistic Hamiltonian for a molecule in the static nucleus approximation is presented along with notations

  12. Search for 12 C+ 12 C clustering in 24 Mg ground state

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 88; Issue 2. Search for 12C+12C clustering in 24Mg ground state. B N JOSHI ARUN K JAIN D C BISWAS B V JOHN Y K GUPTA L S DANU R P VIND G K PRAJAPATI S MUKHOPADHYAY A SAXENA. Regular Volume 88 Issue 2 February 2017 Article ID 29 ...

  13. Lower bounds for the ground states of He-isoelectronic series

    International Nuclear Information System (INIS)

    Fraga, Serafin

    1981-01-01

    A formulation, based on the concept of null local kinetic energy regions, has been developed for the determination of lower bounds for the ground state of a two-electron atom. Numerical results, obtained from Hartree-Fock functions, are presented for the elements He through Kr of the two-electron series

  14. Ground states and formal duality relations in the Gaussian core model

    NARCIS (Netherlands)

    Cohn, H.; Kumar, A.; Schürmann, A.

    2009-01-01

    We study dimensional trends in ground states for soft-matter systems. Specifically, using a high-dimensional version of Parrinello-Rahman dynamics, we investigate the behavior of the Gaussian core model in up to eight dimensions. The results include unexpected geometric structures, with surprising

  15. Experimental Insights into Ground-State Selection of Quantum XY Pyrochlores

    Science.gov (United States)

    Hallas, Alannah M.; Gaudet, Jonathan; Gaulin, Bruce D.

    2018-03-01

    Extensive experimental investigations of the magnetic structures and excitations in the XY pyrochlores have been carried out over the past decade. Three families of XY pyrochlores have emerged: Yb2B2O7, Er2B2O7, and, most recently, [Formula: see text]Co2F7. In each case, the magnetic cation (either Yb, Er, or Co) exhibits XY anisotropy within the local pyrochlore coordinates, a consequence of crystal field effects. Materials in these families display rich phase behavior and are candidates for exotic ground states, such as quantum spin ice, and exotic ground-state selection via order-by-disorder mechanisms. In this review, we present an experimental summary of the ground-state properties of the XY pyrochlores, including evidence that they are strongly influenced by phase competition. We empirically demonstrate the signatures for phase competition in a frustrated magnet: multiple heat capacity anomalies, suppressed TN or TC, sample- and pressure-dependent ground states, and unconventional spin dynamics.

  16. On the topological ground state of E-infinity spacetime and the super string connection

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2007-01-01

    There are at present a huge number of valid super string ground states, making the one corresponding to our own universe extremely hard to determine. Therefore it may come as quite a surprise that it is a rather simple undertaking to determine the exact topological ground state of E-infinity Cantorian spacetime theory. Similar to the ground state of the Higgs for E-infinity, the expectation value of the topological ground state is non-zero and negative. Its value is given exactly by -bar o -∼ n(1/φ) n =-(4+φ 3 ) where φ=(5-1)/2 and n represents an integer Menger-Uhryson dimension running from n=0 to n=-∼. Recalling that the average dimension of ε (∼) is given by ∼ =4+φ 3 , one could interpret this result as saying that our E-infinity spacetime may be viewed as an in itself closed manifold given by the remarkable equation: + =zeroThus in a manner of speaking, the universe could have spontaneously tunnelled into existence from virtual nothingness

  17. Ground state properties of the bond alternating spin-1/2 anisotropic Heisenberg chain

    Directory of Open Access Journals (Sweden)

    S. Paul

    2017-06-01

    Full Text Available Ground state properties, dispersion relations and scaling behaviour of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain have been studied where the exchange interactions on alternate bonds are ferromagnetic (FM and antiferromagnetic (AFM in two separate cases. The resulting models separately represent nearest neighbour (NN AFM-AFM and AFM-FM bond alternating chains. Ground state energy has been estimated analytically by using both bond operator and Jordan-Wigner representations and numerically by using exact diagonalization. Dispersion relations, spin gap and several ground state orders have been obtained. Dimer order and string orders are found to coexist in the ground state. Spin gap is found to develop as soon as the non-uniformity in alternating bond strength is introduced in the AFM-AFM chain which further remains non-zero for the AFM-FM chain. This spin gap along with the string orders attribute to the Haldane phase. The Haldane phase is found to exist in most of the anisotropic region similar to the isotropic point.

  18. Relativistic analysis of nuclear ground state densities at 135 to 200 ...

    Indian Academy of Sciences (India)

    fitting of differential cross-section and analyzing power, and the appearance of wine-bottle- ... So, the effect of different nuclear density distributions is quite conspicuous in the relativistic ap- proach. Hence, we have analyzed five different nuclear ground state .... The NEG and FNEG densities have been used to see the effect.

  19. Magnetostriction-driven ground-state stabilization in 2H perovskites

    International Nuclear Information System (INIS)

    Porter, D. G.; Senn, M. S.; University of Oxford; Khalyavin, D. D.; Cortese, A.

    2016-01-01

    In this paper, the magnetic ground state of Sr_3ARuO_6, with A =(Li,Na), is studied using neutron diffraction, resonant x-ray scattering, and laboratory characterization measurements of high-quality crystals. Combining these results allows us to observe the onset of long-range magnetic order and distinguish the symmetrically allowed magnetic models, identifying in-plane antiferromagnetic moments and a small ferromagnetic component along the c axis. While the existence of magnetic domains masks the particular in-plane direction of the moments, it has been possible to elucidate the ground state using symmetry considerations. We find that due to the lack of local anisotropy, antisymmetric exchange interactions control the magnetic order, first through structural distortions that couple to in-plane antiferromagnetic moments and second through a high-order magnetoelastic coupling that lifts the degeneracy of the in-plane moments. Finally, the symmetry considerations used to rationalize the magnetic ground state are very general and will apply to many systems in this family, such as Ca_3ARuO_6, with A = (Li,Na), and Ca_3LiOsO_6 whose magnetic ground states are still not completely understood.

  20. Patterns of the ground states in the presence of random interactions : Nucleon systems

    NARCIS (Netherlands)

    Zhao, YM; Arima, A; Shimizu, N; Ogawa, K; Yoshinaga, N; Scholten, O

    We present our results on properties of ground states for nucleonic systems in the presence of random two-body interactions. In particular, we calculate probability distributions for parity, seniority, spectroscopic (i.e., in the laboratory frame) quadrupole moments, and discuss a clustering in the

  1. Quantum double-well chain: Ground-state phases and applications to hydrogen-bonded materials

    International Nuclear Information System (INIS)

    Wang, X.; Campbell, D.K.; Gubernatis, J.E.

    1994-01-01

    Extrapolating the results of hybrid quantum Monte Carlo simulations to the zero temperature and infinite-chain-length limits, we calculate the ground-state phase diagram of a system of quantum particles on a chain of harmonically coupled, symmetric, quartic double-well potentials. We show that the ground state of this quantum chain depends on two parameters, formed from the ratios of the three natural energy scales in the problem. As a function of these two parameters, the quantum ground state can exhibit either broken symmetry, in which the expectation values of the particle's coordinate are all nonzero (as would be the case for a classical chain), or restored symmetry, in which the expectation values of the particle's coordinate are all zero (as would be the case for a single quantum particle). In addition to the phase diagram as a function of these two parameters, we calculate the ground-state energy, an order parameter related to the average position of the particle, and the susceptibility associated with this order parameter. Further, we present an approximate analytic estimate of the phase diagram and discuss possible physical applications of our results, emphasizing the behavior of hydrogen halides under pressure

  2. Ground state structures and properties of Si3Hn (n= 1–6) clusters

    Indian Academy of Sciences (India)

    The ground state structures and properties of Si3H (1 ≤ ≤ 6) clusters have been calculated using Car–Parrinello molecular dynamics with simulated annealing and steepest descent optimization methods. We have studied cohesive energy per particle and first excited electronic level gap of the clusters as a function of ...

  3. Soluble and stable heptazethrenebis(dicarboximide) with a singlet open-shell ground state

    KAUST Repository

    Sun, Zhe; Huang, Kuo-Wei; Wu, Jishan

    2011-01-01

    A soluble and stable heptazethrene derivative was synthesized and characterized for the first time. This molecule exhibits a singlet biradical character in the ground state, which is the first case among zethrene homologue series. Exceptional stability of this heptazethrenebis(dicarboximide) raises the likelihood of its practical applications in materials science. © 2011 American Chemical Society.

  4. Long-range interactions of excited He atoms with ground-state noble-gas atoms

    KAUST Repository

    Zhang, J.-Y.; Qian, Ying; Schwingenschlö gl, Udo; Yan, Z.-C.

    2013-01-01

    The dispersion coefficients C6, C8, and C10 for long-range interactions of He(n1,3S) and He(n1,3P), 2≤n≤10, with the ground-state noble-gas atoms Ne, Ar, Kr, and Xe are calculated by summing over the reduced matrix elements of multipole transition

  5. A nonlinear programming approach to lower bounds for the ground-state energy of helium

    International Nuclear Information System (INIS)

    Porras, I.; Feldmann, D.M.; King, F.W.

    1999-01-01

    Lower-bound estimates for the ground-state energy of the helium atom are determined using nonlinear programming techniques. Optimized lower bounds are determined for single-particle, radially correlated, and general correlated wave functions. The local nature of the method employed makes it a very severe test of the accuracy of the wave function

  6. Soluble and stable heptazethrenebis(dicarboximide) with a singlet open-shell ground state

    KAUST Repository

    Sun, Zhe

    2011-08-10

    A soluble and stable heptazethrene derivative was synthesized and characterized for the first time. This molecule exhibits a singlet biradical character in the ground state, which is the first case among zethrene homologue series. Exceptional stability of this heptazethrenebis(dicarboximide) raises the likelihood of its practical applications in materials science. © 2011 American Chemical Society.

  7. Rabi Oscillations between Ground and Rydberg States with Dipole-Dipole Atomic Interactions

    International Nuclear Information System (INIS)

    Johnson, T. A.; Urban, E.; Henage, T.; Isenhower, L.; Yavuz, D. D.; Walker, T. G.; Saffman, M.

    2008-01-01

    We demonstrate Rabi oscillations of small numbers of 87 Rb atoms between ground and Rydberg states with n≤43. Coherent population oscillations are observed for single atoms, while the presence of two or more atoms decoheres the oscillations. We show that these observations are consistent with van der Waals interactions of Rydberg atoms

  8. Ground-state energy of an exciton-(LO) phonon system in a parabolic quantum well

    Science.gov (United States)

    Gerlach, B.; Wüsthoff, J.; Smondyrev, M. A.

    1999-12-01

    This paper presents a variational study of the ground-state energy of an exciton-(LO) phonon system, which is spatially confined to a quantum well. The exciton-phonon interaction is of Fröhlich type, the confinement potentials are assumed to be parabolic functions of the coordinates. Making use of functional integral techniques, the phonon part of the problem can be eliminated exactly, leading us to an effective two-particle system, which has the same spectral properties as the original one. Subsequently, Jensen's inequality is applied to obtain an upper bound on the ground-state energy. The main intention of this paper is to analyze the influence of the quantum-well-induced localization of the exciton on its ground-state energy (or its binding energy, respectively). To do so, we neglect any mismatch of the masses or the dielectric constants, but admit an arbitrary strength of the confinement potentials. Our approach allows for a smooth interpolation of the ultimate limits of vanishing and infinite confinement, corresponding to the cases of a free three-dimensional and a free two-dimensional exciton-phonon system. The interpolation formula for the ground-state energy bound corresponds to similar formulas for the free polaron or the free exciton-phonon system. These bounds in turn are known to compare favorably with all previous ones, which we are aware of.

  9. The magnetic structure on the ground state of the equilateral triangular spin tube

    International Nuclear Information System (INIS)

    Matsui, Kazuki; Goto, Takayuki; Manaka, Hirotaka; Miura, Yoko

    2016-01-01

    The ground state of the frustrated equilateral triangular spin tube CsCrF_4 is still hidden behind a veil though NMR spectrum broaden into 2 T at low temperature. In order to investigate the spin structure in an ordered state by "1"9F-NMR, we have determined the anisotropic hyperfine coupling tensors for each three fluorine sites in the paramagnetic state. The measurement field was raised up to 10 T to achieve highest resolution. The preliminary analysis using the obtained hyperfine tensors has shown that the archetypal 120°-type structure in ab-plane does not accord with the NMR spectra of ordered state.

  10. Global optimization of proteins using a dynamical lattice model: Ground states and energy landscapes

    OpenAIRE

    Dressel, F.; Kobe, S.

    2004-01-01

    A simple approach is proposed to investigate the protein structure. Using a low complexity model, a simple pairwise interaction and the concept of global optimization, we are able to calculate ground states of proteins, which are in agreement with experimental data. All possible model structures of small proteins are available below a certain energy threshold. The exact lowenergy landscapes for the trp cage protein (1L2Y) is presented showing the connectivity of all states and energy barriers.

  11. Relationship between atomically related core levels and ground state properties of solids: first-principles calculations

    Czech Academy of Sciences Publication Activity Database

    Vackář, Jiří; Šipr, Ondřej; Šimůnek, Antonín

    2008-01-01

    Roč. 77, č. 4 (2008), 045112/1-045112/6 ISSN 1098-0121 R&D Projects: GA AV ČR IAA100100514; GA AV ČR(CZ) IAA100100637 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : core levels * ab-initio calculations * electronic states * ground state properties Subject RIV: BE - Theoretical Physics Impact factor: 3.322, year: 2008

  12. Low-lying states and structure of the exotic 8He via direct reactions on the proton

    International Nuclear Information System (INIS)

    Skaza, F.; Lapoux, V.; Keeley, N.; Alamanos, N.; Auger, F.; Beaumel, D.; Becheva, E.; Blumenfeld, Y.; Delaunay, F.; Drouart, A.; Gillibert, A.; Giot, L.; Khan, E.; Nalpas, L.; Pakou, A.; Pollacco, E.; Raabe, R.; Roussel-Chomaz, P.; Rusek, K.; Scarpaci, J.-A.; Sida, J.-L.; Stepantsov, S.; Wolski, R.

    2007-01-01

    The structure of the light exotic nucleus 8 He was investigated using direct reactions of the 8 He SPIRAL beam on a proton-rich target. The (p,p') scattering to the 2 1 + state, the (p,d) 7 He and (p,t) 6 He transfer reactions, were measured at the energy E lab =15.7 A.MeV. The light charged particles (p,d,t) were detected in the MUST Si-strip telescope array. The excitation spectrum of 8 He was extracted from the (p,p') reaction. Above the known 2 1 + excited state at 3.6 MeV, a second resonance was found around 5.4 MeV. The cross sections were analyzed within the coupled-reaction channels framework, using microscopic potentials. It is inferred that the 8 He ground state has a more complex neutron-skin structure than suggested by previous α+4n models assuming a pure (1p 3/2 ) 4 configuration

  13. Mid-infrared picosecond pump-dump-probe and pump-repump-probe experiments to resolve a ground-state intermediate in cyanobacterial phytochrome Cph1.

    Science.gov (United States)

    van Wilderen, Luuk J G W; Clark, Ian P; Towrie, Michael; van Thor, Jasper J

    2009-12-24

    Multipulse picosecond mid-infrared spectroscopy has been used to study photochemical reactions of the cyanobacterial phytochrome photoreceptor Cph1. Different photophysical schemes have been discussed in the literature to describe the pathways after photoexcitation, particularly, to identify reaction phases that are linked to photoisomerisation and electronic decay in the 1566-1772 cm(-1) region that probes C=C and C=O stretching modes of the tetrapyrrole chromophore. Here, multipulse spectroscopy is employed, where, compared to conventional visible pump-mid-infrared probe spectroscopy, an additional visible pulse is incorporated that interacts with populations that are evolving on the excited- and ground-state potential energy surfaces. The time delays between the pump and the dump pulse are chosen such that the dump pulse interacts with different phases in the reaction process. The pump and dump pulses are at the same wavelength, 640 nm, and are resonant with the Pr ground state as well as with the excited state and intermediates. Because the dump pulse additionally pumps the remaining, partially recovered, and partially oriented ground-state population, theory is developed for estimating the fraction of excited-state molecules. The calculations take into account the model-dependent ground-state recovery fraction, the angular dependence of the population transfer resulting from the finite bleach that occurs with linearly polarized intense femtosecond optical excitation, and the partially oriented population for the dump field. Distinct differences between the results from the experiments that use a 1 or a 14 ps dump time favor a branching evolution from S1 to an excited state or reconfigured chromophore and to a newly identified ground-state intermediate (GSI). Optical dumping at 1 ps shows the instantaneous induced absorption of a delocalized C=C stretching mode at 1608 cm(-1), where the increased cross section is associated with the electronic ground-state

  14. A New Proxy Measurement Algorithm with Application to the Estimation of Vertical Ground Reaction Forces Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Yuzhu Guo

    2017-09-01

    Full Text Available Measurement of the ground reaction forces (GRF during walking is typically limited to laboratory settings, and only short observations using wearable pressure insoles have been reported so far. In this study, a new proxy measurement method is proposed to estimate the vertical component of the GRF (vGRF from wearable accelerometer signals. The accelerations are used as the proxy variable. An orthogonal forward regression algorithm (OFR is employed to identify the dynamic relationships between the proxy variables and the measured vGRF using pressure-sensing insoles. The obtained model, which represents the connection between the proxy variable and the vGRF, is then used to predict the latter. The results have been validated using pressure insoles data collected from nine healthy individuals under two outdoor walking tasks in non-laboratory settings. The results show that the vGRFs can be reconstructed with high accuracy (with an average prediction error of less than 5.0% using only one wearable sensor mounted at the waist (L5, fifth lumbar vertebra. Proxy measures with different sensor positions are also discussed. Results show that the waist acceleration-based proxy measurement is more stable with less inter-task and inter-subject variability than the proxy measures based on forehead level accelerations. The proposed proxy measure provides a promising low-cost method for monitoring ground reaction forces in real-life settings and introduces a novel generic approach for replacing the direct determination of difficult to measure variables in many applications.

  15. A COMPARISON OF GROUND REACTION FORCES DETERMINED BY PORTABLE FORCE-PLATE AND PRESSURE-INSOLE SYSTEMS IN ALPINE SKIING

    Directory of Open Access Journals (Sweden)

    Kosuke Nakazato

    2011-12-01

    Full Text Available For the determination of ground reaction forces in alpine skiing, pressure insole (PI systems and portable force plate (FP systems are well known and widely used in previous studies. The purposes of this study were 1 to provide reference data for the vertical component of the ground reaction forces (vGRF during alpine skiing measured by the PI and FP systems, and 2 to analyze whether the differences in the vGRF measured by the PI and the FP depend on a skier's level, skiing mode and pitch. Ten expert and ten intermediate level skiers performed 10 double turns with the skiing technique "Carving in Short Radii" as High Dynamic Skiing mode and "Parallel Ski Steering in Long Radii" as Low Dynamic Skiing mode on both the steep (23 ° and the flat (15 ° slope twice. All subjects skied with both the PI and the FP system simultaneously. During the outside phase, the mean vGRF and the maximum vGRF determined by the FP are greater than the PI (p < 0.01. Additionally during the inside phase, the mean vGRF determined by the FP were greater than the PI (p < 0.01. During the edge changing phases, the mean vGRF determined by the FP were greater than the PI (p < 0.01. However, the minimum vGRF during the edge changing phases determined by the FP were smaller than the PI (p < 0.01 in the High-Steep skiing modes of Experts and Intermediates (p < 0.001. We have found that generally, the PI system underestimates the total vGRF compared to the FP system. However, this difference depends not only the phase in the turn (inside, outside, edge changing, but also is affected by the skier's level, the skiing mode performed and pitch.

  16. Self-Described Differences Between Legs in Ballet Dancers: Do They Relate to Postural Stability and Ground Reaction Force Measures?

    Science.gov (United States)

    Mertz, Laura; Docherty, Carrie

    2012-12-01

    Ballet technique classes are designed to train dancers symmetrically, but they may actually create a lateral bias. It is unknown whether dancers in general are functionally asymmetrical, or how an individual dancer's perceived imbalance between legs might manifest itself. The purpose of this study was to examine ballet dancers' lateral preference by analyzing their postural stability and ground reaction forces in fifth position when landing from dance-specific jumps. Thirty university ballet majors volunteered to participate in this study. The subjects wore their own ballet technique shoes and performed fundamental ballet jumps out of fifth position on a force plate. The force plate recorded center of pressure (COP) and ground reaction force (GRF) data. Each subject completed a laterality questionnaire that determined his or her preferred landing leg for ballet jumps, self-identified stronger leg, and self-identified leg with better balance. All statistical comparisons were made between the leg indicated on the laterality questionnaire and the other leg (i.e., if the dancer's response to a question was "left," the comparison was made with the left leg as the "preferred" leg and the right leg as the "non-preferred leg"). No significant differences were identified between the limbs in any of the analyses conducted (all statistical comparisons produced p values > 0.05). The results of this study indicate that a dancer's preferential use of one limb over the other has no bearing on GRFs or balance ability after landing jumps in ballet. Similarly, dancers' opinions of their leg characteristics (such as one leg being stronger than the other) seem not to correlate with the dancers' actual ability to absorb GRFs or to balance when landing from ballet jumps.

  17. Use of a tibial accelerometer to measure ground reaction force in running: A reliability and validity comparison with force plates.

    Science.gov (United States)

    Raper, Damian P; Witchalls, Jeremy; Philips, Elissa J; Knight, Emma; Drew, Michael K; Waddington, Gordon

    2018-01-01

    The use of microsensor technologies to conduct research and implement interventions in sports and exercise medicine has increased recently. The objective of this paper was to determine the validity and reliability of the ViPerform as a measure of load compared to vertical ground reaction force (GRF) as measured by force plates. Absolute reliability assessment, with concurrent validity. 10 professional triathletes ran 10 trials over force plates with the ViPerform mounted on the mid portion of the medial tibia. Calculated vertical ground reaction force data from the ViPerform was matched to the same stride on the force plate. Bland-Altman (BA) plot of comparative measure of agreement was used to assess the relationship between the calculated load from the accelerometer and the force plates. Reliability was calculated by intra-class correlation coefficients (ICC) with 95% confidence intervals. BA plot indicates minimal agreement between the measures derived from the force plate and ViPerform, with variation at an individual participant plot level. Reliability was excellent (ICC=0.877; 95% CI=0.825-0.917) in calculating the same vertical GRF in a repeated trial. Standard error of measure (SEM) equalled 99.83 units (95% CI=82.10-119.09), which, in turn, gave a minimum detectable change (MDC) value of 276.72 units (95% CI=227.32-330.07). The ViPerform does not calculate absolute values of vertical GRF similar to those measured by a force plate. It does provide a valid and reliable calculation of an athlete's lower limb load at constant velocity. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Li, Hao; Trabolsi, Ali; Coskun, Ali; Stoddart, J Fraser

    2014-02-18

    The ability to design and confer control over the kinetics of theprocesses involved in the mechanisms of artificial molecular machines is at the heart of the challenge to create ones that can carry out useful work on their environment, just as Nature is wont to do. As one of the more promising forerunners of prototypical artificial molecular machines, chemists have developed bistable redox-active donor-acceptor mechanically interlocked molecules (MIMs) over the past couple of decades. These bistable MIMs generally come in the form of [2]rotaxanes, molecular compounds that constitute a ring mechanically interlocked around a dumbbell-shaped component, or [2]catenanes, which are composed of two mechanically interlocked rings. As a result of their interlocked nature, bistable MIMs possess the inherent propensity to express controllable intramolecular, large-amplitude, and reversible motions in response to redox stimuli. In this Account, we rationalize the kinetic behavior in the ground state for a large assortment of these types of bistable MIMs, including both rotaxanes and catenanes. These structures have proven useful in a variety of applications ranging from drug delivery to molecular electronic devices. These bistable donor-acceptor MIMs can switch between two different isomeric states. The favored isomer, known as the ground-state co-conformation (GSCC) is in equilibrium with the less favored metastable state co-conformation (MSCC). The forward (kf) and backward (kb) rate constants associated with this ground-state equilibrium are intimately connected to each other through the ground-state distribution constant, KGS. Knowing the rate constants that govern the kinetics and bring about the equilibration between the MSCC and GSCC, allows researchers to understand the operation of these bistable MIMs in a device setting and apply them toward the construction of artificial molecular machines. The three biggest influences on the ground-state rate constants arise from

  19. Changes in ground reaction force during a rebound-jump task after hip strength training for single-sided ankle dorsiflexion restriction.

    Science.gov (United States)

    Kondo, Hitoshi; Someya, Fujiko

    2016-01-01

    [Purpose] Lateral ankle sprains are common injuries suffered while playing sports, and abnormal forward- and inward-directed ground reaction force occurs during a jumping task. However, the influence of hip muscle strength training on jumping performance after ankle injuries has not been fully examined. This study thus examined changes in ground reaction force during a rebound-jump task after training to strengthen hip muscles. [Subjects and Methods] Ten of 30 female high school basketball players were assigned as subjects who showed a difference of 7 or more degrees in dorsiflexion ranges between the bilateral ankles. The subjects underwent 12 weeks of training to strengthen hip abductors and external rotators. Comparisons between before and after training were made regarding ground reaction force components, hip and knee joint angles, percentage of maximum voluntary contraction in leg muscles, and muscle strength of hip muscles during the rebound-jump task. [Results] After training, the subjects showed increased strength of external rotator muscles, increased percentage of maximum voluntary contraction in the gluteus medius muscle, decreased inward ground reaction force, and increased flexion angles of the hip and knee joints. [Conclusion] This study suggests that training to strengthen hip muscles may ameliorate the inward ground reaction force in athletes with ankle dorsiflexion restriction.

  20. Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Villalba, L.; Colmenero Sujo, L.; Montero Cabrera, M.E.; Cano Jimenez, A.; Renteria Villalobos, M.; Delgado Mendoza, C.J.; Jurado Tenorio, L.A.; Davila Rangel, I.; Herrera Peraza, E.F.

    2005-01-01

    This paper reports 222 Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited 222 Rn concentrations exceeding 11 Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of 222 Rn found may be entirely attributed to the nature of aquifer rocks

  1. Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, L. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Colmenero Sujo, L. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Instituto Tecnologico de Chihuahua II, Ave. de las Industrias 11101, Chihuahua, Chih. (Mexico); Montero Cabrera, M.E. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico)]. E-mail: elena.montero@cimav.edu.mx; Cano Jimenez, A. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Renteria Villalobos, M. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico); Delgado Mendoza, C.J. [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, Ciudad Universitaria S/N, Chihuahua, Chih. (Mexico); Jurado Tenorio, L.A. [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, Ciudad Universitaria S/N, Chihuahua, Chih. (Mexico); Davila Rangel, I. [Centro Regional de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 20, Zacatecas, Zac. (Mexico); Herrera Peraza, E.F. [Centro de Investigacion en Materiales Avanzados, S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih. (Mexico)

    2005-07-01

    This paper reports {sup 222}Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited {sup 222}Rn concentrations exceeding 11 Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of {sup 222}Rn found may be entirely attributed to the nature of aquifer rocks.

  2. Radon concentrations in ground and drinking water in the state of Chihuahua, Mexico.

    Science.gov (United States)

    Villalba, L; Colmenero Sujo, L; Montero Cabrera, M E; Cano Jiménez, A; Rentería Villalobos, M; Delgado Mendoza, C J; Jurado Tenorio, L A; Dávila Rangel, I; Herrera Peraza, E F

    2005-01-01

    This paper reports (222)Rn concentrations in ground and drinking water of nine cities of Chihuahua State, Mexico. Fifty percent of the 114 sampled wells exhibited (222)Rn concentrations exceeding 11Bq/L, the maximum contaminant level (MCL) recommended by the USEPA. Furthermore, around 48% (123 samples) of the tap-water samples taken from 255 dwellings showed radon concentrations over the MCL. There is an apparent correlation between total dissolved solids and radon concentration in ground-water. The high levels of (222)Rn found may be entirely attributed to the nature of aquifer rocks.

  3. Theory of Nonlinear Dispersive Waves and Selection of the Ground State

    International Nuclear Information System (INIS)

    Soffer, A.; Weinstein, M.I.

    2005-01-01

    A theory of time-dependent nonlinear dispersive equations of the Schroedinger or Gross-Pitaevskii and Hartree type is developed. The short, intermediate and large time behavior is found, by deriving nonlinear master equations (NLME), governing the evolution of the mode powers, and by a novel multitime scale analysis of these equations. The scattering theory is developed and coherent resonance phenomena and associated lifetimes are derived. Applications include Bose-Einstein condensate large time dynamics and nonlinear optical systems. The theory reveals a nonlinear transition phenomenon, 'selection of the ground state', and NLME predicts the decay of excited state, with half its energy transferred to the ground state and half to radiation modes. Our results predict the recent experimental observations of Mandelik et al. in nonlinear optical waveguides

  4. Magnetic ground and remanent states of synthetic metamagnets with perpendicular anisotropy

    International Nuclear Information System (INIS)

    Kiselev, N S; Roessler, U K; Bogdanov, A N; Hellwig, O

    2011-01-01

    In this work, we summarize our theoretical results within a phenomenological micromagnetic approach for magnetic ground state and nonequilibrium states as topological magnetic defects in multilayers with strong perpendicular anisotropy and antiferromagnetic (AF) interlayer exchange coupling (IEC), e.g. [Co/Pt(Pd)]/Ru(Ir, NiO). We give detailed analysis of our model together with the most representative results which elucidate common features of such systems. We discuss phase diagrams of the magnetic ground state, and compare solutions of our model with experimental data. A model to assess the stability of so-called tiger tail patterns is presented. It is found that these modulated topological defect cannot be stabilized by an interplay between magnetostatic and IEC energies only. It is argued that tiger tail patterns arise as nuclei of ferro-stripe structure in AF domain walls and that they are stabilized by domain wall pinning.

  5. The ground state energy of 3He droplet in the LOCV framework

    International Nuclear Information System (INIS)

    Modarres, M.; Motahari, S.; Rajabi, A.

    2012-01-01

    The (extended) lowest order constrained variational method was used to calculate the ground state energy of liquid helium 3 ( 3 He) droplets at zero temperature. Different types of density distribution profiles, such as the Gaussian, the Quasi-Gaussian and the Woods-Saxon were used. It was shown that at least, on average, near 20 3 He atoms are needed to get the bound state for 3 He liquid droplet. Depending on the choice of the density profiles and the atomic radius of 3 He, the above estimate can increase to 300. Our calculated ground state energy and the number of atoms in liquid 3 He droplet were compared with those of Variational Monte Carlo method, Diffusion Monte Carlo method and Density Functional Theory, for which a reasonable agreement was found.

  6. Non-Gaussian ground-state deformations near a black-hole singularity

    Science.gov (United States)

    Hofmann, Stefan; Schneider, Marc

    2017-03-01

    The singularity theorem by Hawking and Penrose qualifies Schwarzschild black holes as geodesic incomplete space-times. Albeit this is a mathematically rigorous statement, it requires an operational framework that allows us to probe the spacelike singularity via a measurement process. Any such framework necessarily has to be based on quantum theory. As a consequence, the notion of classical completeness needs to be adapted to situations where the only adequate description is in terms of quantum fields in dynamical space-times. It is shown that Schwarzschild black holes turn out to be complete when probed by self-interacting quantum fields in the ground state and in excited states. The measure for populating quantum fields on hypersurfaces in the vicinity of the black-hole singularity goes to zero towards the singularity. This statement is robust under non-Gaussian deformations of and excitations relative to the ground state. The physical relevance of different completeness concepts for black holes is discussed.

  7. 2D XXZ model ground state properties using an analytic Lanczos expansion

    International Nuclear Information System (INIS)

    Witte, N.S.; Hollenberg, L.C.L.; Weihong Zheng

    1997-01-01

    A formalism was developed for calculating arbitrary expectation values for any extensive lattice Hamiltonian system using a new analytic Lanczos expansion, or plaquette expansion, and a recently proved exact theorem for ground state energies. The ground state energy, staggered magnetisation and the excited state gap of the 2D anisotropic antiferromagnetic Heisenberg Model are then calculated using this expansion for a range of anisotropy parameters and compared to other moment based techniques, such as the t-expansion, and spin-wave theory and series expansion methods. It was found that far from the isotropic point all moment methods give essentially very similar results, but near the isotopic point the plaquette expansion is generally better than the others. 20 refs., 6 tabs

  8. Hylleraas-Configuration Interaction study of the 1S ground state of the negative Li ion.

    Science.gov (United States)

    Sims, James S

    2017-12-28

    In a previous work Sims and Hagstrom [J. Chem. Phys. 140, 224312 (2014)] reported Hylleraas-Configuration Interaction (Hy-CI) method variational calculations for the neutral atom and positive ion 1 S ground states of the beryllium isoelectronic sequence. The Li - ion, nominally the first member of this series, has a decidedly different electronic structure. This paper reports the results of a large, comparable calculation for the Li - ground state to explore how well the Hy-CI method can represent the more diffuse L shell of Li - which is representative of the Be(2sns) excited states as well. The best non-relativistic energy obtained was -7.500 776 596 hartree, indicating that 10 - 20 nh accuracy is attainable in Hy-CI and that convergence of the r 12 r 34 double cusp is fast and that this correlation type can be accurately represented within the Hy-CI model.

  9. Influence of mass-asymmetry and ground state spin on fission fragment angular distributions

    International Nuclear Information System (INIS)

    Thomas, R.G.; Biswas, D.C.; Saxena, A.; Pant, L.M.; Nayak, B.K.; Vind, R.P.; Sahu, P.K.; Sinha, Shrabani; Choudhury, R.K.

    2001-01-01

    The strong influence of the target or/and projectile ground state spin on the anomalously large anisotropies of fission fragments produced in the heavy-ion induced fission of actinide targets were reported earlier. Interestingly, all those systems studied were having a mass asymmetry greater than the Businaro-Gallone critical asymmetry and hence the presence of pre-equilibrium fission was unambiguously ruled out. The observed anisotropies were successfully explained using the ECD-K-States model. It is of interest to know the influence of the target/projectile ground state spin on systems having an entrance channel mass asymmetry less than the critical value where pre-equilibrium fission cannot be ignored. With this motivation we performed measurements of fission fragment angular distributions of the 16 O+ 235 U (spin=7/2) system

  10. Ground-state properties of K-isotopes from laser and $\\beta$-NMR spectroscopy

    CERN Multimedia

    Lievens, P; Rajabali, M M; Krieger, A R

    By combining high-resolution laser spectroscopy with $\\beta$-NMR spectroscopy on polarized K-beams we aim to establish the ground-state spins and magnetic moments of the neutron-rich $^{48,49,50,51}$K isotopes from N=29 to N=32. Spins and magnetic moments of the odd-K isotopes up to N=28 reveal an inversion of the ground-state, from the normal $\\,{I}$=3/2 ($\\pi{d}_{3/2}^{-1}$) in $^{41-45}$K$\\to\\,{I}$=1/2 ($\\pi{s}_{1/2}^{-1}$) in $^{47}$K. This inversion of the proton single particle levels is related to the strong proton $d_{3/2}$ - neutron $f_{7/2}$ interaction which lowers the energy of the $\\pi{d}_{3/2}$ single particle state when filling the $\

  11. Study of polonium isotopes ground state properties by simultaneous atomic- and nuclear-spectroscopy

    CERN Multimedia

    Koester, U H; Kalaninova, Z; Imai, N

    2007-01-01

    We propose to systematically study the ground state properties of neutron deficient $^{192-200}$Po isotopes by means of in-source laser spectroscopy using the ISOLDE laser ion source coupled with nuclear spectroscopy at the detection setup as successfully done before by this collaboration with neutron deficient lead isotopes. The study of the change in mean square charge radii along the polonium isotope chain will give an insight into shape coexistence above the mid-shell N = 104 and above the closed shell Z = 82. The hyperfine structure of the odd isotopes will also allow determination of the nuclear spin and the magnetic moment of the ground state and of any identifiable isomer state. For this study, a standard UC$_{x}$ target with the ISOLDE RILIS is required for 38 shifts.

  12. Classification of matrix-product ground states corresponding to one-dimensional chains of two-state sites of nearest neighbor interactions

    International Nuclear Information System (INIS)

    Fatollahi, Amir H.; Khorrami, Mohammad; Shariati, Ahmad; Aghamohammadi, Amir

    2011-01-01

    A complete classification is given for one-dimensional chains with nearest-neighbor interactions having two states in each site, for which a matrix product ground state exists. The Hamiltonians and their corresponding matrix product ground states are explicitly obtained.

  13. Normal ground state of dense relativistic matter in a magnetic field

    International Nuclear Information System (INIS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.

    2011-01-01

    The properties of the ground state of relativistic matter in a magnetic field are examined within the framework of a Nambu-Jona-Lasinio model. The main emphasis of this study is the normal ground state, which is realized at sufficiently high temperatures and/or sufficiently large chemical potentials. In contrast to the vacuum state, which is characterized by the magnetic catalysis of chiral symmetry breaking, the normal state is accompanied by the dynamical generation of the chiral shift parameter Δ. In the chiral limit, the value of Δ determines a relative shift of the longitudinal momenta (along the direction of the magnetic field) in the dispersion relations of opposite chirality fermions. We argue that the chirality remains a good approximate quantum number even for massive fermions in the vicinity of the Fermi surface and, therefore, the chiral shift is expected to play an important role in many types of cold dense relativistic matter, relevant for applications in compact stars. The qualitative implications of the revealed structure of the normal ground state on the physics of protoneutron stars are discussed. A noticeable feature of the Δ parameter is that it is insensitive to temperature when T 0 , where μ 0 is the chemical potential, and increases with temperature for T>μ 0 . The latter implies that the chiral shift parameter is also generated in the regime relevant for heavy ion collisions.

  14. Experimental and theoretical dipole moments of purines in their ground and lowest excited singlet states

    Science.gov (United States)

    Aaron, Jean-Jacques; Diabou Gaye, Mame; Párkányi, Cyril; Cho, Nam Sook; Von Szentpály, László

    1987-01-01

    The ground-state dipole moments of seven biologically important purines (purine, 6-chloropurine, 6-mercaptopurine, hypoxanthine, theobromine, theophylline and caffeine) were determined at 25°C in acetic acid (all the above compounds with the exception of purine) and in ethyl acetate (purine, theophylline and caffeine). Because of its low solubility, it was not possible to measure the dipole moment of uric acid. The first excited singlet-state dipole moments were obtained on the basis of the Bakhshiev and Chamma—Viallet equations using the variation of the Stokes shift with the solvent dielectric constant-refractive index term. The theoretical dipole moments for all the purines listed above and including uric acid were calculated by combining the use of the PPP (π-LCI-SCF-MO) method for the π-contribution to the overall dipole moment with the σ-contribution obtained as a vector sum of the σbond moments and group moments. The experimental and theoretical values were compared with the data available in the literature for some of the purines under study. For several purines, the calculations were carried out for different tautomeric forms. Excited singlet-state dipole moments are smaller than the ground-state values by 0.8 to 2.2 Debye units for all purines under study with the exception of 6-chloropurine. The effects of the structure upon the ground- and excited-state dipole moments of the purines are discussed.

  15. Ground state properties of a spin chain within Heisenberg model with a single lacking spin site

    International Nuclear Information System (INIS)

    Mebrouki, M.

    2011-01-01

    The ground state and first excited state energies of an antiferromagnetic spin-1/2 chain with and without a single lacking spin site are computed using exact diagonalization method, within the Heisenberg model. In order to keep both parts of a spin chain with a lacking site connected, next nearest neighbors interactions are then introduced. Also, the Density Matrix Renormalization Group (DMRG) method is used, to investigate ground state energies of large system sizes; which permits us to inquire about the effect of large system sizes on energies. Other quantum quantities such as fidelity and correlation functions are also studied and compared in both cases. - Research highlights: → In this paper we compute ground state and first excited state energies of a spin chain with and without a lacking spin site. The next nearest neighbors are introduced with the antiferromagnetic Heisenberg spin-half. → Exact diagonalization is used for small systems, where DMRG method is used to compute energies for large systems. Other quantities like quantum fidelity and correlation are also computed. → Results are presented in figures with comments. → E 0 /N is computed in a function of N for several values of J 2 and for both systems. First excited energies are also investigated.

  16. Management of ground water and evolving hydrogeologic studies in New Jersey : a heavily urbanized and industrialized state in the northeastern United States

    Science.gov (United States)

    Leahy, P. Patrick

    1985-01-01

    New Jersey is the most densely populated and one of the most industrialized states in the United States. An abundance of freshwater and proximity to major northeastern metropolitan centers has facilitated this development. Pumpage of freshwater from all aquifers in the State in 1980 was 730 million gallons per day (2.76 million cubic meters per day).Management and efficient development of the ground-water resources of the State are the responsibility of the New Jersey Department of Environmental Protection. Laws have been enacted and updated by the State legislature to manage water allocation and to control the disposal of hazardous wastes. Present resource management is guided by the New Jersey Water-Supply Master Plan of 1981. Funding for management activities is partially derived from the sale of state-approved bonds.Effective planning and regional management require accurate and up-to-date hydrologic information and analyses. The U.S. Geological Survey, in cooperation with the New Jersey Geological Survey, is conducting three intensive ground-water studies involving the collection and interpretation of hydrologic data to meet the urgent water-management needs of New Jersey. These studies are part of a long-term cooperative program and are funded through the Water-Supply Bond Act of 1981. They began in 1983 and are scheduled to be completed in 1988.The project areas are situated in the New Jersey part of the Atlantic Coastal Plain in and near Atlantic City, Camden, and South River. They range in size from 400 to 1,200 mil (1,040 to 3,120 km2). The studies are designed to define the geology, hydrology, and geochemistry of the local ground-water systems. The results of these studies will enable the State to address more effectively major problems in these areas such as declining water levels, overpumping, saltwater intrusion, and ground-water contamination resulting from the improper disposal of hazardous wastes.Specific objectives of these studies by the U

  17. Ground-state candidate for the classical dipolar kagome Ising antiferromagnet

    Science.gov (United States)

    Chioar, I. A.; Rougemaille, N.; Canals, B.

    2016-06-01

    We have investigated the low-temperature thermodynamic properties of the classical dipolar kagome Ising antiferromagnet using Monte Carlo simulations, in the quest for the ground-state manifold. In spite of the limitations of a single-spin-flip approach, we managed to identify certain ordering patterns in the low-temperature regime and we propose a candidate for this unknown state. This configuration presents some intriguing features and is fully compatible with the extrapolations of the at-equilibrium thermodynamic behavior sampled so far, making it a very likely choice for the dipolar long-range ordered state of the classical kagome Ising antiferromagnet.

  18. Structure of the excited states of 11Be reached through the reaction d(10Be,p)11Be

    International Nuclear Information System (INIS)

    Delaunay, F.

    2003-10-01

    The one-neutron transfer reaction d( 10 Be,p) 11 Be has been studied at 32 A.MeV at GANIL with a 10 Be secondary beam. Protons were detected by the silicon strip array MUST. The ground state and excited states of 11 Be at 0.32, 1.78 and 3.41 MeV were populated, demonstrating the feasibility of transfer reactions induced by radioactive beams leading to bound and unbound states. A DWBA (distorted wave born approximation) analysis indicates for the 3.41 MeV state spin and parity 3/2 + or 5/2 + and a spectroscopic factor of 0.18 or 0.11, respectively. A broad structure centered at 10 MeV is also observed and corresponds to transfer to the 1d sub-shells. If one assumes that only the 1d3/2 orbital contributes to this structure, the splitting of the 1d neutron states in 11 Be is estimated to be 6.3 MeV. Using a 2-particle-RPA (random phase approximation) model, we have shown that neutron-neutron correlations play an important role in the inversion between the 2s1/2 and 1p1/2 neutron states in 11 Be. (author)

  19. REACTIONAL STATES IN MULTIBACILLARY HANSEN DISEASE PATIENTS DURING MULTIDRUG THERAPY

    Directory of Open Access Journals (Sweden)

    José A.C. NERY

    1998-11-01

    Full Text Available It is well known that reactions are commonplace occurrences during the course of leprosy disease. Stigmatization may even be attributable to reactions which are also responsible for the worsening of neural lesions. A cohort of 162 newly-diagnosed baciloscopically positive patients from the Leprosy Care Outpatient Clinic of the Oswaldo Cruz Foundation (FIOCRUZ was selected for this study. While 46% of the multibacillary (MB patients submitted to the 24 fixed-dose multidrug therapy (MDT regimen suffered reactions during treatment, it was found that all MBs were susceptible and that constant attention and care were required at all times. Fourteen per cent were classified as BB, 52% as BL, and 33% as LL. None of the variables under study, such as, sex, age, clinical form, length of illness, length of dermatological lesions, baciloscopic index (BI, or degree of disability proved to be associate with reaction among the patients studied. Reversal Reaction (RR occurred in 45%, and Erythema Nodosum Leprosum (ENL occurred in 55%. Among BB patients who developed reactions (15 patients, 93% presented RR; while among the LL patients who developed reactions (34 patients, 91% presented ENL. Likewise, ENL was very frequent among those with disseminate lesions, while RR was most often observed in patients with segmentary lesions. RR was also most likely to occur during the initial months of treatment. It was demonstrated that the recurrence rate of ENL was significantly higher than that of RR. Neither grade of disability nor BI was shown to be associated with RR and ENL reaction. However, the RR rate was significantly higher among patients showing BI 3.Reações são ocorrências comuns no curso da hanseníase e são responsáveis pelo agravamento das lesões neurais. Uma coorte de 162 pacientes recém-diagnosticados, baciloscopicamente positivos, em acompanhamento no Ambulatório de Hanseníase da Fundação Oswaldo Cruz (FIOCRUZ foi selecionada para estudo

  20. Structural instability and ground state of the U{sub 2}Mo compound

    Energy Technology Data Exchange (ETDEWEB)

    Losada, E.L., E-mail: losada@cab.cnea.gov.ar [SIM" 3, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (Argentina); Garcés, J.E. [Gerencia de Investigación y Aplicaciones Nucleares, Comisión Nacional de Energía Atómica (Argentina)

    2015-11-15

    This work reports on the structural instability at T = 0 °K of the U{sub 2}Mo compound in the C11{sub b} structure under the distortion related to the C{sub 66} elastic constant. The electronic properties of U{sub 2}Mo such as density of states (DOS), bands and Fermi surface (FS) are studied to understand the source of the instability. The C11{sub b} structure can be interpreted as formed by parallel linear chains along the z-directions each one composed of successive U–Mo–U blocks. Hybridization due to electronic interactions inside the U–Mo–U blocks is slightly modified under the D{sub 6} distortion. The change in distance between chains modifies the U–U interaction and produces a split of f-states. The distorted structure is stabilized by a decrease in energy of the hybridized states, mainly between d-Mo and f-U states, together with the f-band split. Consequently, an induced Peierls distortion is produced in U{sub 2}Mo due to the D{sub 6} distortion. It is important to note that the results of this work indicate that the structure of the ground state of the U{sub 2}Mo compound is not the assumed C11{sub b} structure. It is suggested for the ground state a structure with hexagonal symmetry (P6 #168), ∼0.1 mRy below the energy of the recently proposed Pmmn structure. - Highlights: • Structural instability of the C11b compound due to the D6 deformation. • Induced Peierls distortion due to the D6 deformation. • Distorted structure is stabilized by hybridization and split of f-Uranium state. • P6 (#168) suggested ground state for the U{sub 2}Mo compound.

  1. Structural instability and ground state of the U_2Mo compound

    International Nuclear Information System (INIS)

    Losada, E.L.; Garcés, J.E.

    2015-01-01

    This work reports on the structural instability at T = 0 °K of the U_2Mo compound in the C11_b structure under the distortion related to the C_6_6 elastic constant. The electronic properties of U_2Mo such as density of states (DOS), bands and Fermi surface (FS) are studied to understand the source of the instability. The C11_b structure can be interpreted as formed by parallel linear chains along the z-directions each one composed of successive U–Mo–U blocks. Hybridization due to electronic interactions inside the U–Mo–U blocks is slightly modified under the D_6 distortion. The change in distance between chains modifies the U–U interaction and produces a split of f-states. The distorted structure is stabilized by a decrease in energy of the hybridized states, mainly between d-Mo and f-U states, together with the f-band split. Consequently, an induced Peierls distortion is produced in U_2Mo due to the D_6 distortion. It is important to note that the results of this work indicate that the structure of the ground state of the U_2Mo compound is not the assumed C11_b structure. It is suggested for the ground state a structure with hexagonal symmetry (P6 #168), ∼0.1 mRy below the energy of the recently proposed Pmmn structure. - Highlights: • Structural instability of the C11b compound due to the D6 deformation. • Induced Peierls distortion due to the D6 deformation. • Distorted structure is stabilized by hybridization and split of f-Uranium state. • P6 (#168) suggested ground state for the U_2Mo compound.

  2. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    International Nuclear Information System (INIS)

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-01-01

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N 2 flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure

  3. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    Energy Technology Data Exchange (ETDEWEB)

    Kustova, Elena V., E-mail: e.kustova@spbu.ru [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr. 28, Saint Petersburg (Russian Federation); Kremer, Gilberto M., E-mail: kremer@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba (Brazil)

    2014-12-05

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N{sub 2} flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure.

  4. Ground state structure of U2Mo: static and lattice dynamics study

    International Nuclear Information System (INIS)

    Mukherjee, D.; Sahoo, B.D.; Joshi, K.D.; Kaushik, T.C.

    2016-01-01

    According to experimental reports, the ground state stable structure of U 2 Mo is tetragonal. However, various theoretical studies performed in past do not get tetragonal phase as the stable structure at ambient conditions. Therefore, the ground state structure of U 2 Mo is still unresolved. In an attempt to understand the ground state properties of this system, we have carried out first principle electronic band structure calculations. The structural stability analysis carried out using evolutionary structure search algorithm in conjunction with ab-inito method shows that a hexagonal structure (space group P6/mmm) is the lowest enthalpy structure at ambient condition and remains stable upto 200 GPa. The elastic and lattice dynamical stability further supports the stability of this phase at ambient condition. Further, using the 0 K calculations in conjunction with finite temperature corrections, we have derived the isotherm and shock adiabat (Hugoniot) of this material. Various equilibrium properties such as ambient pressure volume, bulk modulus, pressure derivative of bulk modulus etc. are derived from equation of state. (author)

  5. Guidelines for earthquake ground motion definition for the eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-01-01

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors. 17 refs., 2 figs., 1 tab

  6. Effect of the ground state correlations in the density distribution and zero point fluctuations

    International Nuclear Information System (INIS)

    Barranco, F.; Broglia, R.A.

    1985-01-01

    The existence of collective vibrations in the spectrum implies that the description of the ground state in an independent particle model must be corrected. This is because of the zero point fluctuations induced by the collective vibrations, so that ground state correlations have to be included. These are taken into account via the diagrammatic expansion of the Nuclear Field Theory, giving place to a renormalization in the different properties of the ground state. As far as the density distribution is concerned, in a NFT consistent calculation, the largest contributions arise from diagrams that cannot be expressed in terms of backward going amplitudes of the phonon RPA wave function. For a given multipolarity the main correction comes from the low lying state. The giant resonance is of smaller relevance since it lies at larger energies in the response function. The octupole modes give the dominant contribution, and the effect in average becomes smaller as the multipolarity increases. These results agree quite well with those obtained taking into account the zero point fluctuations of the nuclear surface in the collective model with the Esbensen and Bertsch prescription, which the authors use to explain the anomalous behaviour of the mean square radii of the Calcium isotopes

  7. Determination of ground and excited state dipole moments of dipolar laser dyes by solvatochromic shift method.

    Science.gov (United States)

    Patil, S K; Wari, M N; Panicker, C Yohannan; Inamdar, S R

    2014-04-05

    The absorption and fluorescence spectra of three medium sized dipolar laser dyes: coumarin 478 (C478), coumarin 519 (C519) and coumarin 523 (C523) have been recorded and studied comprehensively in various solvents at room temperature. The absorption and fluorescence spectra of C478, C519 and C523 show a bathochromic and hypsochromic shifts with increasing solvent polarity indicate that the transitions involved are π→π(∗) and n→π(∗). Onsager radii determined from ab initio calculations were used in the determination of dipole moments. The ground and excited state dipole moments were evaluated by using solvatochromic correlations. It is observed that the dipole moment values of excited states (μe) are higher than corresponding ground state values (μg) for the solvents studied. The ground and excited state dipole moments of these probes computed from ab initio calculations and those determined experimentally are compared and the results are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Random interactions, isospin, and the ground states of odd-A and odd-odd nuclei

    International Nuclear Information System (INIS)

    Horoi, Mihai; Volya, Alexander; Zelevinsky, Vladimir

    2002-01-01

    It was recently shown that the ground state quantum numbers of even-even nuclei have a high probability to be reproduced by an ensemble of random but rotationally invariant two-body interactions. In the present work we extend these investigations to odd-A and odd-odd nuclei, considering in particular the isospin effects. Studying the realistic shell model as well as the single-j model, we show that random interactions have a tendency to assign the lowest possible total angular momentum and isospin to the ground state. In the sd shell model this reproduces correctly the isospin but not the spin quantum numbers of actual odd-odd nuclei. An odd-even staggering effect in probability of various ground state quantum numbers is present for even-even and odd-odd nuclei, while it is smeared out for odd-A nuclei. The observed regularities suggest the underlying mechanism of bosonlike pairing of fermionic pairs in T=0 and T=1 states generated by the off-diagonal matrix elements of random interactions. The relation to the models of random spin interactions is briefly discussed

  9. Accurate adiabatic energy surfaces for the ground and first excited states of He2+

    International Nuclear Information System (INIS)

    Lee, E.P.F.

    1993-01-01

    Different factors affecting the accuracy of the computed energy surfaces of the ground and first excited state of He 2 + have been examined, including the choice of the one-and many-particle bases, the configurational space in the MRCI (multi-reference configuration interaction) calculations and other corrections such as the Davidson and the full counterpoise (CP) correction. From basis-variation studies, it was concluded that multi-reference direct-CI calculations (MRDCI) using CASSCF MOs and/or natural orbitals (NOs) from a smaller CISD calculation, gave results close to full CI. The computed dissociation energies, D e , for the ground and first excited state of He 2 + were 2.4670 (2.4659) eV and 17.2 (17.1) cm -1 , respectively, at the highest level [without and with CP correction for basis-set superposition errors (BSSE)] of calculation with an [11s8p3d1f] GTO contraction, in reasonably good agreement with previous calculations, and estimated correct values, where available. It is believed that the computed D e , and the energy surface for the first excited state should be reasonably accurate. However, for the ground state, the effects of multiple f functions and/or functions of higher angular momentum have not been investigated owing to limitation of the available computing resources. This is probably the only weakness is the present study. (Author)

  10. Guidelines for earthquake ground motion definition for the Eastern United States

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; Aramayo, G.A.; Williams, R.T.

    1985-01-01

    Guidelines for the determination of earthquake ground-motion definition for the eastern United States are established in this paper. Both far-field and near-field guidelines are given. The guidelines were based on an extensive review of the current procedures for specifying ground motion in the United States. Both empirical and theoretical procedures were used in establishing the guidelines because of the low seismicity in the eastern United States. Only a few large to great (M > 7.5) sized earthquakes have occurred in this region, no evidence of tectonic surface ruptures related to historic or Holocene earthquakes have been found, and no currently active plate boundaries of any kind are known in this region. Very little instrumented data has been gathered in the East. Theoretical procedures are proposed so that in regions of almost no data a reasonable level of seismic ground motion activity can be assumed. The guidelines are to be used to develop the Safe Shutdown Earthquake, SSE. A new procedure for establishing the Operating Basis Earthquake, OBE, is proposed, in particular for the eastern United States. The OBE would be developed using a probabilistic assessment of the geological conditions and the recurrence of seismic events at a site. These guidelines should be useful in development of seismic design requirements for future reactors

  11. Induced quadrupolar singlet ground state of praseodymium in a modulated pyrochlore

    Science.gov (United States)

    van Duijn, J.; Kim, K. H.; Hur, N.; Ruiz-Bustos, R.; Adroja, D. T.; Bridges, F.; Daoud-Aladine, A.; Fernandez-Alonso, F.; Wen, J. J.; Kearney, V.; Huang, Q. Z.; Cheong, S.-W.; Perring, T. G.; Broholm, C.

    2017-09-01

    The complex structure and magnetism of Pr2 -xBixRu2O7 was investigated by neutron scattering and extended x-ray absorption fine structure. Pr has an approximate doublet ground state and the first excited state is a singlet. While the B -site (Ru) is well ordered throughout, this is not the case for the A -site (Pr/Bi). A broadened distribution for the Pr-O2 bond length at low temperature indicates the Pr environment varies from site to site even for x =0 . The environment about the Bi site is highly disordered ostensibly due to the 6 s lone pairs on Bi3 +. Correspondingly, we find that the non-Kramers doublet ground-state degeneracy, otherwise anticipated for Pr in the pyrochlore structure, is lifted so as to produce a quadrupolar singlet ground state with a spatially varying energy gap. For x =0 , below TN, the Ru sublattice orders antiferromagnetically, with propagation vector k =(0 ,0 ,0 ) as for Y2Ru2O7 . No ordering associated with the Pr sublattice is observed down to 100 mK. The low-energy magnetic response of Pr2 -xBixRu2O7 features a broad spectrum of magnetic excitations associated with inhomogeneous splitting of the Pr quasidoublet ground state. For x =0 (x =0.97 ), the spectrum is temperature dependent (independent). It appears disorder associated with Bi alloying enhances the inhomogeneous Pr crystal-field level splitting so that intersite interactions become irrelevant for x =0.97 . The structural complexity for the A -site may be reflected in the hysteretic uniform magnetization of B -site ruthenium in the Néel phase.

  12. Influence of ground state correlations on the properties of the first 2+ and 3- states in some Sm isotopes

    International Nuclear Information System (INIS)

    Navrotskaya-Rybarska, V.; Stoyanova, O.; Stoyanov, Ch.

    1980-01-01

    The influence of ground state correlations and of their coupling with the phonon amplitudes on the properties of the first collective states is investigated in some Sm isotopes. Equations for the eXcited state energies are derived using the variational principle. Formulae for the gap and quasiparticle energies are given. The numerical calculations are performed for sup(144-150)Sm. The energies of the 2 + - and 3 - - states and the B(E2) and B(E3) electric transition probability values are presented. The effects studied are shown to be small for sup(144-146)Sm but the collectivity of the 2sub(1)sup(+) and 3sub(1)sup(-) states decreases strongly for 150 Sm [ru

  13. Ground-state densities from the Rayleigh-Ritz variation principle and from density-functional theory.

    Science.gov (United States)

    Kvaal, Simen; Helgaker, Trygve

    2015-11-14

    The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.

  14. Selective excitation of a vibrational level within the electronic ground state of a polyatomic molecule with ultra pulses

    CSIR Research Space (South Africa)

    de Clercq, L

    2010-09-01

    Full Text Available Coherent control of the upper vibrational level populations in the electronic ground state of a polyatomic molecule was simulated. Results indicate that selective excitation of a specific upper state level is possible...

  15. Study of highly excited high spin states via the (HI, α) reaction

    International Nuclear Information System (INIS)

    Kubono, S.

    1982-01-01

    Three subjects are discussed in this paper. 1) The mechanism of (HI, α) reactions is briefly studied. 2) Possible excitation of molecular resonance states of 12 C- 12 C in 24 Mg through the 12 C( 16 O, α) 24 Mg reaction were investigated. A precise measurement of the level widths in 24 Mg did not support the previous report that the molecular states seen in 12 C + 12 C scattering had been excited in the transfer reaction 12 C( 16 O, α) 24 Mg. 3) Highly excited states in 28 Si, which have a large parentage of 12 C- 16 O, were also studied via the 12 C( 20 Ne, α) 28 Si reaction. An angular correlation measurement revealed the lowest 8 + and 10 + states at 14.00 and 15.97 MeV, respectively, which were selectively excited in the 12 C( 20 Ne, α) reaction. These results suggest a possible new band in 28 Si. (author)

  16. Ground state energy of an hydrogen atom confined in carbon nano-structures: a diffusion quantum Monte Carlo study

    International Nuclear Information System (INIS)

    Molayem, M.; Tayebi-Rad, Gh.; Esmaeli, L.; Namiranian, A.; Fouladvand, M. E.; Neek-Amal, M.

    2006-01-01

    Using the diffusion quantum monte Carlo method, the ground state energy of an Hydrogen atom confined in a carbon nano tube and a C60 molecule is calculated. For Hydrogen atom confined in small diameter tubes, the ground state energy shows significant deviation from a free Hydrogen atom, while with increasing the diameter this deviation tends to zero.

  17. Indolo[2,3-b]carbazoles with tunable ground states: How Clar's aromatic sextet determines the singlet biradical character

    KAUST Repository

    Luo, Ding; Lee, Sangsu; Zheng, Bin; Sun, Zhe; Zeng, Wangdong; Huang, Kuo-Wei; Furukawa, Ko; Kim, Dongho; Webster, Richard D.; Wu, Jishan

    2014-01-01

    and showed different ground states. Based on variable-temperature NMR/ESR measurements and density functional theory calculations, it was found that the indolo[2,3-b]carbazole derivative 1 is a persistent singlet biradical in the ground state with a moderate

  18. Spin-polarized ground state and exact quantization at ν=5/2

    Science.gov (United States)

    Pan, Wei

    2002-03-01

    The nature of the even-denominator fractional quantum Hall effect at ν=5/2 remains elusive, in particular, its ground state spin-polarization. An earlier, so-called "hollow core" model arrived at a spin-unpolarized wave function. The more recent calculations based on a model of BCS-like pairing of composite fermions, however, suggest that its ground state is spin-polarized. In this talk, I will first review the earlier experiments and then present our recent experimental results showing evidence for a spin-polarized state at ν=5/2. Our ultra-low temperature experiments on a high quality sample established the fully developed FQHE state at ν=5/2 as well as at ν=7/3 and 8/3, manifested by a vanishing R_xx and exact quantization of the Hall plateau. The tilted field experiments showed that the added in-plane magnetic fields not only destroyed the FQHE at ν=5/2, as seen before, but also induced an electrical anisotropy, which is now interpreted as a phase transition from a paired, spin-polarized ν=5/2 state to a stripe phase, not unlike the ones at ν=9/2, 11/2, etc in the N > 1 higher Landau levels. Furthermore, in the experiments on the heterojunction insulated-gate field-effect transistors (HIGFET) at dilution refrigerator temperatures, a strong R_xx minimum and a concomitant developing Hall plateau were observed at ν=5/2 in a magnetic field as high as 12.6 Tesla. This and the subsequent density dependent studies of its energy gap largely rule out a spin-singlet state and point quite convincingly towards a spin-polarized ground state at ν=5/2.

  19. The influence of nonlocal hybridization on ground-state properties of the Falicov-Kimball model

    International Nuclear Information System (INIS)

    Farkasovsky, Pavol

    2005-01-01

    The density matrix renormalization group is used to examine effects of nonlocal hybridization on ground-state properties of the Falicov-Kimball model (FKM) in one dimension. Special attention is devoted to the problem of hybridization-induced insulator-metal transition. It is shown that the picture of insulator-metal transitions found for the FKM with nonlocal hybridization strongly differs from one found for the FKM without hybridization (as well as with local hybridization). The effect of nonlocal hybridization is so strong that it can induce the insulator-metal transition, even in the half-filled band case where the ground states of the FKM without hybridization are insulating for all finite Coulomb interactions. Outside the half-filled band case the metal-insulator transition driven by pressure is found for finite values of nonlocal hybridization

  20. The Ground State Energy of a Dilute Bose Gas in Dimension $n\\geq 3$

    DEFF Research Database (Denmark)

    Aaen, Anders Gottfred

    We consider a Bose gas in spatial dimension n≥3 with a repulsive, radially symmetric two-body potential V. In the limit of low density ρ, the ground state energy per particle in the thermodynamic limit is shown to be (n−2)|Sn−1|an−2ρ, where |Sn−1| denotes the surface measure of the unit sphere...... in Rn, and a is the scattering length of V. Furthermore, for smooth and compactly supported two-body potentials, we derive an upper bound to the ground state energy with a correction term (1+γ)8π4a6ρ2|ln(a4ρ)| in 4 dimensions, where 0... dimensions. Finally, we use a grand canonical construction to give a simplified proof of the second order upper bound to the Lee-Huang-Yang formula, a result first obtained by Yau and Yin. We also test this method in 4 dimensions, but with a negative outcome....

  1. The resonating group method three cluster approach to the ground state 9 Li nucleus structure

    International Nuclear Information System (INIS)

    Filippov, G.F.; Pozdnyakov, Yu.A.; Terenetsky, K.O.; Verbitsky, V.P.

    1994-01-01

    The three-cluster approach for light atomic nuclei is formulated in frame of the algebraic version of resonating group method. Overlap integral and Hamiltonian matrix elements on generating functions are obtained for 9 Li nucleus. All permissible by Pauli principle 9 Li different cluster nucleon permutations were taken into account in the calculations. The results obtained can be easily generalised on any three-cluster system up to 12 C. Matrix elements obtained in the work were used in the variational calculations of the ground state energetic and geometric 9 Li characteristics. It is shown that 9 Li ground state is not adequate to the shell model limit and has pronounced three-cluster structure. (author). 16 refs., 4 tab., 2 figs

  2. Towards the measurement of the ground-state hyperfine splitting of antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, Bertalan, E-mail: bertalan.juhasz@oeaw.ac.at [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)

    2012-12-15

    The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, which will consist of a superconducting cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of better than {approx} 10{sup - 6}. The first preliminary measurements of the hyperfine transitions will start in 2011.

  3. Ground state of a hydrogen ion molecule immersed in an inhomogeneous electron gas

    International Nuclear Information System (INIS)

    Diaz-Valdes, J.; Gutierrez, F.A.; Matamala, A.R.; Denton, C.D.; Vargas, P.; Valdes, J.E.

    2007-01-01

    In this work we have calculated the ground state energy of the hydrogen molecule, H 2 + , immersed in the highly inhomogeneous electron gas around a metallic surface within the local density approximation. The molecule is perturbed by the electron density of a crystalline surface of Au with the internuclear axis parallel to the surface. The surface spatial electron density is calculated through a linearized band structure method (LMTO-DFT). The ground state of the molecule-ion was calculated using the Born-Oppenheimer approximation for a fixed-ion while the screening effects of the inhomogeneous electron gas are depicted by a Thomas-Fermi like electrostatic potential. We found that within our model the molecular ion dissociates at the critical distance of 2.35a.u. from the first atomic layer of the solid

  4. Green function iterative solution of ground state wave function for Yukawa potential

    International Nuclear Information System (INIS)

    Zhang Zhao

    2003-01-01

    The newly developed single trajectory quadrature method is applied to solve central potentials. First, based on the series expansion method an exact analytic solution of the ground state for Hulthen potential and an approximate solution for Yukawa potential are obtained respectively. Second, the newly developed iterative method based on Green function defined by quadratures along the single trajectory is applied to solve Yukawa potential using the Coulomb solution and Hulthen solution as the trial functions respectively. The results show that a more proper choice of the trial function will give a better convergence. To further improve the convergence the iterative method is combined with the variational method to solve the ground state wave function for Yukawa potential, using variational solutions of the Coulomb and Hulthen potentials as the trial functions. The results give much better convergence. Finally, the obtained critical screen coefficient is applied to discuss the dissociate temperature of J/ψ in high temperature QGP

  5. Electron momentum spectroscopy of aniline taking account of nuclear dynamics in the initial electronic ground state

    International Nuclear Information System (INIS)

    Farasat, M; Golzan, M M; Shojaei, S H R; Morini, F; Deleuze, M S

    2016-01-01

    The electronic structure, electron binding energy spectrum and (e, 2e) momentum distributions of aniline have been theoretically predicted at an electron impact energy of 1.500 keV on the basis of Born–Oppenheimer molecular dynamical simulations, in order to account for thermally induced nuclear motions in the initial electronic ground state. Most computed momentum profiles are rather insensitive to thermally induced alterations of the molecular structure, with the exception of the profiles corresponding to two ionization bands at electron binding energies comprised between ∼10.0 and ∼12.0 eV (band C) and between ∼16.5 and ∼20.0 eV (band G). These profiles are found to be strongly influenced by nuclear dynamics in the electronic ground state, especially in the low momentum region. The obtained results show that thermal averaging smears out most generally the spectral fingerprints that are induced by nitrogen inversion. (paper)

  6. Is it also possible to describe a system of correlated nucleons in its ground state by an independent particle state

    International Nuclear Information System (INIS)

    Desplanques, B.

    1989-12-01

    The concept of nucleon in nuclei has often been referred to in recent literature. What it is used for is rarely precised however. In this paper, it is shown (or reminded) that the nucleon in nuclei is a model dependent object. As an illustration, it is shown that nuclear matter in its ground state may be described to a good approximation, if not exactly, by an independent particle state and that the on-shell G-matrix used in calculating its binding energy gets its effective character from that of those particles. The expression of these particles in terms of free nucleon operators is given

  7. Study of astrophysically important resonant states in 26Si by the 28Si(4He,6He)26Si reaction

    Science.gov (United States)

    Kwon, Young Kwan; Lee, C. S.; Moon, J. Y.; Lee, J. H.; Kim, J. Y.; Kubono, S.; Iwasa, N.; Inafiki, K.; Yamaguchi, H.; He, J. J.; Saito, A.; Wakabayashi, Y.; Fukijawa, H.; Amadio, G.; Khiem, L. H.; Tanaka, M.; Chen, A.; Kato, S.

    PoS(NIC-IX)024 , b, H. Yamaguchia, J. J. Hea , A. Saitoa , Y. Wakabayashia, H. Fujikawaa, G. The emission of 1.809 MeV gamma-ray from the first excited state of 26 Mg followed by beta- decay of 26 Al in its ground state (denoted as 26 Alg.s. ) has been identified by gamma-ray telescopes such the Compton Gamma-Ray Observatory (CGRO) [1]. To resolve controversy over the pos- sible sources of the observational 1.809 MeV gamma-rays, one needs accurate knowledge of the production rate of 26 Al. The 25 Al(p,γ)26Si reaction which is the competition reaction for produc- tion of 26 Alg.s. is one of the important subjects to be investigated. In this work, the astrophysically important 26 Si states above the proton threshold were studied via the 28 Si(4 He,6 He)26 Si reaction. We have preformed an angular distribution measurement using the high resolution QDD spectro- graph (PA) at Center for Nuclear Study (CNS), University of Tokyo. The experimental results and data analysis will be presented.

  8. Application of Stochastic variational method with correlated Ground States to coulombic systems

    Energy Technology Data Exchange (ETDEWEB)

    Usukura, Junko; Suzuki, Yasuyuki [Niigata Univ. (Japan); Varga, K.

    1998-07-01

    Positronium molecule, Ps{sub 2} has not been found experimentally yet, and it has been believed theoretically that Ps{sub 2} has only one bound state with L = 0. We predicted the existence of new bound state of Ps{sub 2}, which is the excited state with L = 1 and comes from Pauli principle, by Stochastic variational method. There are two decay mode with respect to Ps{sub 2}(P); one is pair annihilation and another is electric dipole (E1) transition to the ground state. While it is difficult to tell {gamma}-ray caused by annihilation of Ps{sub 2} from that of Ps since both of them have same energy, Energy (4.94 eV) of the photon emitted in E1 transition is specific enough to distinguish from other spectra. Then the excited state is one of clues to observe Ps{sub 2}. (author)

  9. The properties of 4'-N,N-dimethylaminoflavonol in the ground and excited states

    Science.gov (United States)

    Moroz, V. V.; Chalyi, A. G.; Roshal, A. D.

    2008-09-01

    The mechanism of protonation of 4-N,N-dimethylaminoflavonol and the structure of its protolytic forms in the ground and excited states were studied by electron absorption and fluorescence (steady-state and time-resolved) spectroscopy and with the use of the RM1 quantum-chemical method. A comparison of equilibrium constants and the theoretical enthalpies of formation showed that excitation should be accompanied by the inversion of the basicity of the electron acceptor groups of this compound and, as a consequence, changes in the structure of its monocationic form. An analysis of the spectral parameters of the protolytic 4-N,N-dimethylaminoflavonol forms, however, showed that their structure and the sequence of protonation in the excited state were the same as in the ground state. Changes in the structure of the monocation in the excited state were not observed because of the fast radiationless deactivation of this form and the occurrence of excited state intramolecular proton transfer in aprotic solvents.

  10. Prospects for studies of ground-state proton decays with the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Toth, K.S.

    1994-01-01

    By using radioactive ions from the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory it should be possible to identify many new ground-state proton emitters in the mass region from Sn to Pb. During this production and search process the limits of stability on the proton-rich side of the nuclidic chart will be delineated for a significant fraction of medium-weight elements and our understanding of the proton-emission process will be expanded and improved

  11. Ground-state triply and doubly heavy baryons in a relativistic three-quark model

    International Nuclear Information System (INIS)

    Martynenko, A.P.

    2008-01-01

    Mass spectra of the ground-state baryons consisting of three or two heavy (b or c) and one light (u,d,s) quarks are calculated in the framework of the relativistic quark model and the hyperspherical expansion. The predictions of masses of the triply and doubly heavy baryons are obtained by employing the perturbation theory for the spin-independent and spin-dependent parts of the three-quark Hamiltonian

  12. On the ground state and infrared divergences of Goldstone bosons in two dimensions

    International Nuclear Information System (INIS)

    Jevicki, A.

    1977-01-01

    The O(N) invariant Goldstone field theory is studied in two dimensions where rigorous theorems forbid the occurrence of spontaneous symmetry breaking. It is agreed that for computation of the ground state energy at weak coupling it is still the standard Goldstone perturbation expansion that is applicable. This happens due to cancellation of infrared divergences and this fact is demonstrated explicitly at the two-loop level. (Auth.)

  13. Ground state representation of the infinite one-dimensional Heisenberg ferromagnet. Pt. 2

    International Nuclear Information System (INIS)

    Babbitt, D.; Thomas, L.

    1977-01-01

    In its ground state representation, the infinite, spin 1/2 Heisenberg chain provides a model for spin wave scattering, which entails many features of the quantum mechanical N-body problem. Here, we give a complete eigenfunction expansion for the Hamiltonian of the chain in this representation, for all numbers of spin waves. Our results resolve the questions of completeness and orthogonality of the eigenfunctions given by Bethe for finite chains, in the infinite volume limit. (orig.) [de

  14. Potential energy curve of Be2 in its ground electronic state

    Czech Academy of Sciences Publication Activity Database

    Špirko, Vladimír

    2006-01-01

    Roč. 235, č. 2 (2006), s. 268-270 ISSN 0022-2852 R&D Projects: GA AV ČR(CZ) IAA400550511 Institutional research plan: CEZ:AV0Z40550506 Keywords : ground electronic state of Be2 * MR-CI ab initio potentials * reduced potential curves Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.260, year: 2006

  15. Hydrogen-like atom in laser field: Invariant atomic parameters in the ground state

    International Nuclear Information System (INIS)

    Bondarev, I.V.; Kuten, S.A.

    1994-07-01

    The invariant atomic parameters (dynamical vector and tensor polarizabilities) of hydrogen-like atom in the ground 1S 1/2 state are calculated analytically by means of the Laplace transform of the radial Schroedinger equation. The obtained analytical expressions have been written in the compact form as a sum of linear and squared combinations of Gauss hypergeometric functions 2 F 1 . The frequency dependence of the invariant atomic parameters is analyzed. (author). 24 refs, 1 fig

  16. The electromagnetic virtual cloud of the ground-state hydrogen atom - a quantum field theory approach

    International Nuclear Information System (INIS)

    Radozycki, T.

    1990-01-01

    The properties of the virtual cloud around the hydrogen atom in the ground state are studied with the use of quantum field theory methods. The relativistic expression for the electromagnetic energy density around the atom, with the electron spin taken into account, is obtained. The distribution of the angular momentum contained in the cloud and the self-interaction kernel for the electrons bound in atom are also investigated. (author)

  17. Ground-state projection multigrid for propagators in 4-dimensional SU(2) gauge fields

    International Nuclear Information System (INIS)

    Kalkreuter, T.

    1991-09-01

    The ground-state projection multigrid method is studied for computations of slowly decaying bosonic propagators in 4-dimensional SU(2) lattice gauge theory. The defining eigenvalue equation for the restriction operator is solved exactly. Although the critical exponent z is not reduced in nontrivial gauge fields, multigrid still yields considerable speedup compared with conventional relaxation. Multigrid is also able to outperform the conjugate gradient algorithm. (orig.)

  18. Penn State University ground software support for X-ray missions.

    Science.gov (United States)

    Townsley, L. K.; Nousek, J. A.; Corbet, R. H. D.

    1995-03-01

    The X-ray group at Penn State is charged with two software development efforts in support of X-ray satellite missions. As part of the ACIS instrument team for AXAF, the authors are developing part of the ground software to support the instrument's calibration. They are also designing a translation program for Ginga data, to change it from the non-standard FRF format, which closely parallels the original telemetry format, to FITS.

  19. Ground State of the Universe and the Cosmological Constant. A Nonperturbative Analysis.

    Science.gov (United States)

    Husain, Viqar; Qureshi, Babar

    2016-02-12

    The physical Hamiltonian of a gravity-matter system depends on the choice of time, with the vacuum naturally identified as its ground state. We study the expanding Universe with scalar field in the volume time gauge. We show that the vacuum energy density computed from the resulting Hamiltonian is a nonlinear function of the cosmological constant and time. This result provides a new perspective on the relation between time, the cosmological constant, and vacuum energy.

  20. Stable π-Extended p -Quinodimethanes: Synthesis and Tunable Ground States

    KAUST Repository

    Zeng, Zebing

    2014-12-18

    © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. p-Quinodimethane (p-QDM) is a highly reactive hydrocarbon showing large biradical character in the ground state. It has been demonstrated that incorporation of the p-QDM moiety into an aromatic hydrocarbon framework could lead to new π-conjugated systems with significant biradical character and unique optical, electronic and magnetic properties. On the other hand, the extension of p-QDM is expected to result in molecules with even larger biradical character and higher reactivity. Therefore, the synthesis of stable π-extended p-QDMs is very challenging. In this Personal Account we will briefly discuss different stabilizing strategies and synthetic methods towards stable π-extended p-QDMs with tunable ground states and physical properties, including two types of polycyclic hydrocarbons: (1) tetrabenzo-Tschitschibabin\\'s hydrocarbons, and (2) tetracyano-rylenequinodimethanes. We will discuss how the aromaticity, substituents and steric hindrance play important roles in determining their ground states and properties. Incorporation of the p-quinodimethane moiety into aromatic hydrocarbon frameworks can lead to new π-conjugated systems with significant biradical character and unique optical, electronic and magnetic properties. Furthermore, the extension of p-QDM is expected to result in molecules with even larger biradical character and higher reactivity. In this Personal Account, different stabilizing strategies and synthetic methods towards stable π-extended p-QDMs with tunable ground states and physical properties are briefly discussed, including the roles of aromaticity, substituents and steric hindrance.

  1. Ambient Mechanochemical Solid-State Reactions of Carbon Nanotubes and Their Reactions via Covalent Coordinate Bond in Solution

    Science.gov (United States)

    Kabbani, Mohamad A.

    In its first part, this thesis deals with ambient mechanochemical solid-state reactions of differently functionalized multiple walled carbon nanotubes (MWCNTs) while in its second part it investigates the cross-linking reactions of CNTs in solution via covalent coordinate bonds with transitions metals and carboxylate groups decorating their surfaces. In the first part a series of mechanochemical reactions involving different reactive functionalities on the CNTs such as COOH/OH, COOH/NH2 and COCl/OH were performed. The solid-state unzipping of CNTs leading to graphene formation was confirmed using spectroscopic, thermal and electron microscopy techniques. The non-grapheme products were established using in-situ quadruple mass spectroscopy. The experimental results were confirmed by theoretical simulation calculations using the 'hot spots' protocol. The kinetics of the reaction between MWCNT-COOH and MWCNT-OH was monitored using variable temperature Raman spectroscopy. The low activation energy was discussed in terms of hydrogen bond mediated proton transfer mechanism. The second part involves the reaction of MWCNTII COOH with Zn (II) and Cu (II) to form CNT metal-organic frame (MOFs) products that were tested for their effective use as counter-electrodes in dyes sensitized solar cells (DSSC). The thesis concludes by the study of the room temperature reaction between the functionalized graphenes, GOH and G'-COOH followed by the application of compressive loads. The 3D solid graphene pellet product ( 0.6gm/cc) is conductive and reflective with a 35MPa ultimate strength as compared to 10MPa strength of graphite electrode ( 2.2gm/cc).

  2. Search for possible 6-q states via inclusive reactions

    International Nuclear Information System (INIS)

    Bhatia, T.S.

    1984-01-01

    A satisfactory understanding of the 6-q system is necessary for a complete understanding of the short-range part of the NN interaction. Bag models and quark potential models predict 6-q states in the 2 to 3 GeV mass range. NNπ and NNππ are examples of 6-q states involving the same quark flavors as the NN system, search for which could be undertaken through inclusive spin-dependent measurements

  3. Exact ground state of finite Bose-Einstein condensates on a ring

    International Nuclear Information System (INIS)

    Sakmann, Kaspar; Streltsov, Alexej I.; Alon, Ofir E.; Cederbaum, Lorenz S.

    2005-01-01

    The exact ground state of the many-body Schroedinger equation for N bosons on a one-dimensional ring interacting via a pairwise δ-function interaction is presented for up to 50 particles. The solutions are obtained by solving Lieb and Liniger's system of coupled transcendental equations numerically for finite N. The ground-state energies for repulsive and attractive interactions are shown to be smoothly connected at the point of zero interaction strength, implying that the Bethe ansatz can be used also for attractive interactions for all cases studied. For repulsive interactions the exact energies are compared to (i) Lieb and Liniger's thermodynamic limit solution and (ii) the Tonks-Girardeau gas limit. It is found that the energy of the thermodynamic limit solution can differ substantially from that of the exact solution for finite N when the interaction is weak or when N is small. A simple relation between the Tonks-Girardeau gas limit and the solution for finite interaction strength is revealed. For attractive interactions we find that the true ground-state energy is given to a good approximation by the energy of the system of N attractive bosons on an infinite line, provided the interaction is stronger than the critical interaction strength of mean-field theory

  4. Density-matrix-functional calculations for matter in strong magnetic fields: Ground states of heavy atoms

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Yngvason, Jakob

    1996-01-01

    We report on a numerical study of the density matrix functional introduced by Lieb, Solovej, and Yngvason for the investigation of heavy atoms in high magnetic fields. This functional describes exactly the quantum mechanical ground state of atoms and ions in the limit when the nuclear charge Z...... and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...... by other methods. For iron at B=1012 G the ground-state energy differs by less than 2% from the Hartree-Fock value. We have also studied the maximal negative ionization of heavy atoms in this model at various field strengths. In contrast to Thomas-Fermi type theories atoms can bind excess negative charge...

  5. Ground beetles (Coleoptera, Carabidae of the Hanford Nuclear Site in south-central Washington State

    Directory of Open Access Journals (Sweden)

    Chris Looney

    2014-04-01

    Full Text Available In this paper we report on ground beetles (Coleoptera: Carabidae collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site, which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte, and Stenolophus lineola (Fabricius. Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  6. Emergent Ising degrees of freedom above a double-stripe magnetic ground state

    Science.gov (United States)

    Zhang, Guanghua; Flint, Rebecca

    2017-12-01

    Double-stripe magnetism [Q =(π /2 ,π /2 )] has been proposed as the magnetic ground state for both the iron-telluride and BaTi2Sb2O families of superconductors. Double-stripe order is captured within a J1-J2-J3 Heisenberg model in the regime J3≫J2≫J1 . Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π ,π ) . Because the ground state is fourfold degenerate, modulo rotations in spin space, only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.

  7. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    International Nuclear Information System (INIS)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam; Singh, Chandan K.; Kabir, Mukul; Thakur, Gohil S.; Haque, Zeba; Gupta, L. C.; Ganguli, Ashok K.

    2016-01-01

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  8. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    Energy Technology Data Exchange (ETDEWEB)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu; Gaurav, Abhishek; Jyotsna, Shubhra; Sheet, Goutam, E-mail: goutam@iisermohali.ac.in [Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S. A. S. Nagar, Manauli PO 140306 (India); Singh, Chandan K.; Kabir, Mukul [Department of Physics, Indian Institute of Science Education and Research, Pune 411008 (India); Thakur, Gohil S.; Haque, Zeba; Gupta, L. C. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Ganguli, Ashok K. [Department of Chemistry, Indian Institute of Technology, New Delhi 110016 (India); Institute of Nano Science & Technology, Mohali 160064 (India)

    2016-06-13

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number of measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.

  9. Characterization of design ground motion for the central and eastern United States: licensing implications

    International Nuclear Information System (INIS)

    Litehiser, J.; Carrato, P.

    2005-01-01

    For the first time in decades several US utilities are exploring the possibility of building new Nuclear Power Plant (NPP) generating capacity in the Central and Eastern United States (CEUS). Among the many topics that must be considered to license a nuclear plant (NPP) is appropriate design to mitigate the potential effects of vibratory ground motion from earthquakes. Agreement on seismic design ground motion was not always easy during licensing of the last generation of NPPs. Therefore, over the last few decades both industry and the United States Nuclear Regulatory Commission (USNRC) have worked to find ground motion criteria that recognize and overcome earlier licensing difficulties. Such criteria should be stable and easily implemented. Important and complementary programs under the direction of the Lawrence Livermore National Laboratory (LLNL) and the Electric Power Research Institute (EPRI) were part of this effort, and these studies resulted in probabilistic seismic hazard assessments (PSHAs) for a number of CEUS NPP sites. These results and the concepts underlying them are now incorporated into both USNRC regulation and regulatory guidance. Nevertheless, as the utilities and the NRC begin a renewed licensing dialog, issues of regulatory interpretation of earthquake ground motion design criteria have emerged. These issues are as fundamental as the shape and amplitude of ground motion design response spectra and as significant as the impact of these spectra on structural design. Successful and timely resolution of these issues will significantly impact the future of nuclear power in the US. The purpose of this paper is to briefly describe some of these issues and the approaches that have been proposed for their resolution. (authors)

  10. Application of the random phase approximation to some atoms with ns2 ground state configurations

    International Nuclear Information System (INIS)

    Wright, L.A.

    1975-01-01

    Atomic bound state properties such as excitation energies and oscillator strengths were calculated by the Random Phase Approximation (RPA), also known as the Time Dependent Hartree-Fock Approximation (TDHFA). The RPA is equivalent to describing excited states as the creation of particle-hole pairs and the application to atoms is important for two reasons: the wide range of densities in an atom will cause the physical interpretation and mathematical approximations to be much different than with a uniform density system, such as an electron gas; this method could detect the existence of collective states in atoms similar to those responsible for the giant dipole resonances in nuclei. The method is shown to be superior to the H-F method in three basic ways: (1) The RPA contains explicit correlations between the excited and ground states. These are not included in the H-F theory. One can apply this method to large atoms since only these correlations are explicitly included. (2) The RPA calculates excitation energies directly without recourse to highly correlated ground state wavefunctions. This is in contrast to the method of configuration mixing which is known to have slow convergence properties. (3) Oscillator strengths and photoionization cross sections can be calculated by finding the eigenvectors corresponding excitation energy eigenvalues. The strength of the RPA is that the excitation energies and oscillator strengths, which are relative quantities, are calculated directly. The results for the oscillator strengths show an improvement of up to 45 percent over the H-F values and an improvement over the RPA done with Hartree wavefunctions by as much as 65 percent. The work was limited to atoms with an ns 2 ground state configuration. These atoms were He, Be, Mg and Ca

  11. Frequency dependent polarizabilities for the ground state of H2, HD, and D2

    International Nuclear Information System (INIS)

    Rychlewski, J.

    1983-01-01

    A variation-perturbation method has been employed to calculate the dynamic dipole polarizability for the ground state of the hydrogen molecule. The explicit correlated electronic wave functions were used. The averaged values of α(#betta#) and #betta#(#betta#) for several vibration-rotation states of HD and D 2 are presented. Similar values for H 2 have also been calculated and were used to test the efficiency of the method and the validity of the assumption applied in the present calculation. The agreement of the present theoretical results with the existing experimental data is found to be satisfactory

  12. Alteration of the ground state by external magnetic fields. [External field, coupling constant ratio, static tree level approximation

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, B J; Shepard, H K [New Hampshire Univ., Durham (USA). Dept. of Physics

    1976-03-22

    By fully exploiting the mathematical and physical analogy to the Ginzburg-Landau theory of superconductivity, a complete discussion of the ground state behavior of the four-dimensional Abelian Higgs model in the static tree level approximation is presented. It is shown that a sufficiently strong external magnetic field can alter the ground state of the theory by restoring a spontaneously broken symmetry, or by creating a qualitatively different 'vortex' state. The energetically favored ground state is explicitly determined as a function of the external field and the ratio between coupling constants of the theory.

  13. Action-reaction based parameters identification and states estimation of flexible systems

    OpenAIRE

    Khalil, Islam; Kunt, Emrah Deniz; Şabanoviç, Asif; Sabanovic, Asif

    2012-01-01

    This work attempts to identify and estimate flexible system's parameters and states by a simple utilization of the Action-Reaction law of dynamical systems. Attached actuator to a dynamical system or environmental interaction imposes an action that is instantaneously followed by a dynamical system reaction. The dynamical system's reaction carries full information about the dynamical system including system parameters, dynamics and externally applied forces that arise due to system interaction...

  14. Action-reaction based parameters identification and states estimation of flexible systems

    OpenAIRE

    Khalil, Islam Shoukry Mohammed; Şabanoviç, Asif; Sabanovic, Asif

    2010-01-01

    This work attempts to identify and estimate flexible system’s parameters and states by a simple utilization of the Action-Reaction law of dynamical systems. Attached actuator to a dynamical system or environmental interaction imposes an action that is instantaneously followed by a dynamical system reaction. The dynamical system’s reaction carries full information about the dynamical system including system parameters, dynamics and externally applied forces that arise due to system interaction...

  15. Usefulness of bound-state approximations in reaction theory

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1981-01-01

    A bound-state approximation when applied to certain operators, such as the many-body resolvent operator for a two-body fragmentation channel, in many-body scattering equations, reduces such equations to equivalent two-body scattering equations which are supposed to provide a good description of the underlying physical process. In this paper we test several variants of bound-state approximations in the soluble three-boson Amado model and find that such approximations lead to weak and unacceptable kernels for the equivalent two-body scattering equations and hence to a poor description of the underlying many-body process

  16. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal

    International Nuclear Information System (INIS)

    Zhao, Bin; Guo, Hua; Sun, Zhigang

    2015-01-01

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H 2 O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H 2 O → H 2 + OH reaction. The strong enhancement of reactivity by the H 2 O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal

  17. Communication: State-to-state dynamics of the Cl + H2O → HCl + OH reaction: Energy flow into reaction coordinate and transition-state control of product energy disposal.

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2015-06-28

    Quantum state-to-state dynamics of a prototypical four-atom reaction, namely, Cl + H2O → HCl + OH, is investigated for the first time in full dimensionality using a transition-state wave packet method. The state-to-state reactivity and its dependence on the reactant internal excitations are analyzed and found to share many similarities both energetically and dynamically with the H + H2O → H2 + OH reaction. The strong enhancement of reactivity by the H2O stretching vibrational excitations in both reactions is attributed to the favorable energy flow into the reaction coordinate near the transition state. On the other hand, the insensitivity of the product state distributions with regard to reactant internal excitation stems apparently from the transition-state control of product energy disposal.

  18. Studies of photoionization processes from ground-state and excited-state atoms and molecules

    International Nuclear Information System (INIS)

    Ederer, D.L.; Parr, A.C.; West, J.B.

    1982-01-01

    Recent triply-differential photoelectron spectroscopy experiments designed for the study of correlation effects in atoms and molecules are described. Final-state symmetry of the n=2 state of helium has been determined. The non-Franck-Condon behavior of vibrational branching ratios and large variations of the angular asymmetry parameter has been observed for shape resonances and autoionizing resonances in CO and other molecules. Recent observations of the photoionization of excited sodium atoms are also described

  19. Quantifying confidence in density functional theory predictions of magnetic ground states

    Science.gov (United States)

    Houchins, Gregory; Viswanathan, Venkatasubramanian

    2017-10-01

    Density functional theory (DFT) simulations, at the generalized gradient approximation (GGA) level, are being routinely used for material discovery based on high-throughput descriptor-based searches. The success of descriptor-based material design relies on eliminating bad candidates and keeping good candidates for further investigation. While DFT has been widely successfully for the former, oftentimes good candidates are lost due to the uncertainty associated with the DFT-predicted material properties. Uncertainty associated with DFT predictions has gained prominence and has led to the development of exchange correlation functionals that have built-in error estimation capability. In this work, we demonstrate the use of built-in error estimation capabilities within the BEEF-vdW exchange correlation functional for quantifying the uncertainty associated with the magnetic ground state of solids. We demonstrate this approach by calculating the uncertainty estimate for the energy difference between the different magnetic states of solids and compare them against a range of GGA exchange correlation functionals as is done in many first-principles calculations of materials. We show that this estimate reasonably bounds the range of values obtained with the different GGA functionals. The estimate is determined as a postprocessing step and thus provides a computationally robust and systematic approach to estimating uncertainty associated with predictions of magnetic ground states. We define a confidence value (c-value) that incorporates all calculated magnetic states in order to quantify the concurrence of the prediction at the GGA level and argue that predictions of magnetic ground states from GGA level DFT is incomplete without an accompanying c-value. We demonstrate the utility of this method using a case study of Li-ion and Na-ion cathode materials and the c-value metric correctly identifies that GGA-level DFT will have low predictability for NaFePO4F . Further, there

  20. Ground-state thermodynamics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Cao, Dennis; Stoddart, J Fraser

    2012-09-18

    Fashioned through billions of years of evolution, biological molecular machines, such as ATP synthase, myosin, and kinesin, use the intricate relative motions of their components to drive some of life's most essential processes. Having control over the motions in molecules is imperative for life to function, and many chemists have designed, synthesized, and investigated artificial molecular systems that also express controllable motions within molecules. Using bistable mechanically interlocked molecules (MIMs), based on donor-acceptor recognition motifs, we have sought to imitate the sophisticated nanoscale machines present in living systems. In this Account, we analyze the thermodynamic characteristics of a series of redox-switchable [2]rotaxanes and [2]catenanes. Control and understanding of the relative intramolecular movements of components in MIMs have been vital in the development of a variety of applications of these compounds ranging from molecular electronic devices to drug delivery systems. These bistable donor-acceptor MIMs undergo redox-activated switching between two isomeric states. Under ambient conditions, the dominant translational isomer, the ground-state coconformation (GSCC), is in equilibrium with the less favored translational isomer, the metastable-state coconformation (MSCC). By manipulating the redox state of the recognition site associated with the GSCC, we can stimulate the relative movements of the components in these bistable MIMs. The thermodynamic parameters of model host-guest complexes provide a good starting point to rationalize the ratio of GSCC to MSCC at equilibrium. The bistable [2]rotaxanes show a strong correlation between the relative free energies of model complexes and the ground-state distribution constants (K(GS)). This relationship does not always hold for bistable [2]catenanes, most likely because of the additional steric and electronic constraints present when the two rings are mechanically interlocked with each other

  1. Ground reaction force comparison of bilateral symmetry with pneumatic resistance squat device and free weights - biomed 2009.

    Science.gov (United States)

    Paulus, David C; Schilling, Brian K

    2009-01-01

    The unloading of spaceflight leads to bone and muscle atrophy, and a pneumatic resistance squat exercise countermeasure has the potential to provide optimized controllable resistance in a lightweight and compact configuration. However each end of the barbell in the proposed device is connected to a separate resistance cylinder which could lead to bilaterally asymmetric loading. Therefore, the purpose of the study is to compare the unilateral ground reaction forces (GRF) of the new squat device compared to free weights. Four previously trained men (mean +/- SD; age = 20+/-2 years, body mass = 99+/-18 kg) performed three sets of three repetitions of maximal exertion squat exercises with pneumatically controlled constant resistance and free weights each with a resistance level set to half of the body weight of each subject. Unilateral GRF data for each lifting modality at the negative to positive transition of the squat exercise was measured with a force plate under each foot. The pneumatic resistance GRF (N; mean +/- SD) was 749+/-114 on the left leg and 786+/-123 on the right leg and the free weight GRF was 786+/-114 left and 861+/-111 right resulting in a 5% difference between left and right GRF with pneumatics and 9% difference with free weights. The correlation coefficient between left and right GRF was 0.92 with pneumatics and 0.80 with free weights. Because the pneumatic device elicited more bilaterally symmetric GRF than traditional free weights, the separate resistance cylinders are an acceptable design configuration.

  2. Vertical ground reaction force in stationary running in water and on land: A study with a wide range of cadences.

    Science.gov (United States)

    de Brito Fontana, Heiliane; Ruschel, Caroline; Dell'Antonio, Elisa; Haupenthal, Alessandro; Pereira, Gustavo Soares; Roesler, Helio

    2018-04-01

    The aim of this study was to analyze the effect of cadence, immersion level as well as body density on the vertical component (Fy max ) of ground reaction force (GRF) during stationary running (SR). In a controlled, laboratory study, thirty-two subjects ran at a wide range of cadences (85-210 steps/min) in water, immersed to the hip and to the chest, and on dry land. Fy max. was verified by a waterproof force measurement system and predicted based on a statistical model including cadence, immersion ratio and body density. The effect of cadence was shown to depend on the environment: while Fy max increases linearly with increasing cadence on land; in water, Fy max reaches a plateau at both hip and chest immersions. All factors analyzed, cadence, immersion level and body density affected Fy max significantly, with immersion (aquatic × land environment) showing the greatest effect. In water, different cadences may lead to bigger changes in Fy max than the changes obtained by moving subjects from hip to chest immersion. A regression model able to predict 69% of Fy max variability in water was proposed and validated. Cadence, Immersion and body density affect Fy max in a significant and non-independent way. Besides a model of potential use in the prescription of stationary running in water, our analysis provides insights into the different responses of GRF to changes in exercise parameters between land and aquatic environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The influence of heel height on vertical ground reaction force during landing tasks in recreationally active and athletic collegiate females.

    Science.gov (United States)

    Lindenberg, Kelly M; Carcia, Christopher R

    2013-02-01

    To determine if heel height alters vertical ground reaction forces (vGRF) when landing from a forward hop or drop landing. Increased vGRF during landing are theorized to increase ACL injury risk in female athletes. Fifty collegiate females performed two single-limb landing tasks while wearing heel lifts of three different sizes (0, 12 & 24 mm) attached to the bottom of a athletic shoe. Using a force plate, peak vGRF at landing was examined. Repeated measures ANOVAs were used to determine the influence of heel height on the dependent measures. Forward hop task- Peak vGRF (normalized for body mass) with 0 mm, 12 mm, and 24 mm lifts were 2.613±0.498, 2.616±0.497 and 2.495±0.518% BW, respectively. Significant differences were noted between 0 and 24 mm lift (psneaker significantly alters peak vGRF upon landing from a unilateral forward hop but not from a jumping maneuver.

  4. The role of military footwear and workload on ground reaction forces during a simulated lateral ankle sprain mechanism.

    Science.gov (United States)

    Simpson, Jeffrey D; DeBusk, Hunter; Hill, Christopher; Knight, Adam; Chander, Harish

    2018-03-01

    Ankle sprains are a common orthopedic injury in military populations, which may be attributed to occupational demands and footwear. Minimalist military boots have become popular, but their influence on ground reaction force (GRF) attenuation capabilities during an ankle inversion perturbation are unknown. Therefore, the purpose of this study was to examine potential differences in GRFs during an ankle inversion perturbation in a standard issue (STN) and minimalist military boot (MIN) before and after a simulated military workload. Twenty-one healthy adult males completed an ankle inversion perturbation protocol in each footwear condition before and after an incremental treadmill exercise protocol to volitional exhaustion while wearing a 16kg rucksack. The ankle inversion perturbation protocol consisted of stepping down from a 27cm box onto a force platform with a fulcrum (FUL), which created 25° of inversion upon landing, or flat (FLT) outer sole attached to the plantar aspect of the participants' footwear in random order. Peak vertical, anterior/posterior, and medial/lateral components of the GRF during FUL and FLT conditions were assessed, normalized to multiples of body weight in each footwear. Dependent variables were then analyzed using separate 2 (footwear)×2 (time) repeated measures ANOVA (pfootwear demonstrated significantly greater vertical GRF and significantly less medial GRF during the FUL condition. These results indicate that various mechanical and design characteristics of military footwear may influence GRF attenuation capabilities and ankle joint loading when the foot/ankle complex is forced into inversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Hoof accelerations and ground reaction forces of Thoroughbred racehorses measured on dirt, synthetic, and turf track surfaces.

    Science.gov (United States)

    Setterbo, Jacob J; Garcia, Tanya C; Campbell, Ian P; Reese, Jennifer L; Morgan, Jessica M; Kim, Sun Y; Hubbard, Mont; Stover, Susan M

    2009-10-01

    To compare hoof acceleration and ground reaction force (GRF) data among dirt, synthetic, and turf surfaces in Thoroughbred racehorses. 3 healthy Thoroughbred racehorses. Forelimb hoof accelerations and GRFs were measured with an accelerometer and a dynamometric horseshoe during trot and canter on dirt, synthetic, and turf track surfaces at a racecourse. Maxima, minima, temporal components, and a measure of vibration were extracted from the data. Acceleration and GRF variables were compared statistically among surfaces. The synthetic surface often had the lowest peak accelerations, mean vibration, and peak GRFs. Peak acceleration during hoof landing was significantly smaller for the synthetic surface (mean + or - SE, 28.5g + or - 2.9g) than for the turf surface (42.9g + or - 3.8g). Hoof vibrations during hoof landing for the synthetic surface were dirt and turf surfaces. Peak GRF for the synthetic surface (11.5 + or - 0.4 N/kg) was 83% and 71% of those for the dirt (13.8 + or - 0.3 N/kg) and turf surfaces (16.1 + or - 0.7 N/kg), respectively. The relatively low hoof accelerations, vibrations, and peak GRFs associated with the synthetic surface evaluated in the present study indicated that synthetic surfaces have potential for injury reduction in Thoroughbred racehorses. However, because of the unique material properties and different nature of individual dirt, synthetic, and turf racetrack surfaces, extending the results of this study to encompass all track surfaces should be done with caution.

  6. Final state interactions in electron induced trinucleon breakup reactions

    International Nuclear Information System (INIS)

    Meijgaard, E. van.

    1989-01-01

    This thesis presents an exact analysis of the electromagnetic breakup process of a trinucleon system. The one-photon exchange mechanism is reviewed. The relevant components of the nuclear current are discussed and the off-shell one-body current matrix elements are derived to accommodate the evaluation of the trinucleon nuclear structure functions. The Faddeev equations are introduced. To facilitate the numerical evaluations the unitary pole expansion (UPE) is employed to describe a local S-wave spin-dependent interaction in a series of separable potential terms. The UPE convergence properties for the trinucleon bound state as well as for the N-N and N-d scattering observables are investigated. In view of the electromagnetic two-body and three-body breakup analysis the half off-shell wave functions for 3N→Nd and 3N→3N scattering are calculated. The nuclear structure functions of the electromagnetic two-body breakup structure functions of the electromagnetic two-body breakup processes are derived and exactly calculated. Results are presented and discussed for several kinetamic configurations. The nuclear response functions of the trinucleon breakup processes are calculated for a momentum transfer Q = 400 MeV/c. The results are compared with recent experimental data for the longitudinal and transverse response of both trinucleon systems. The three-body contributions to the response functions result from an essentially fourfold numerical integration of the invariant electromagnetic three-body breakup amplitude. A detailed derivation of this amplitude is presented and the treatment of the subsequent integration is discussed. An extension is formulated to include D-state components in the trinucleon bound state as well as in the disconnected final state components for the two-body breakup process. One kinematic situation is studied with the D-state extension. For the three-body breakup processes only the PWIA response is determined with the D-state component in the

  7. Do runners who suffer injuries have higher vertical ground reaction forces than those who remain injury-free? A systematic review and meta-analysis

    NARCIS (Netherlands)

    van der Worp, Henk; Vrielink, Jelte W.; Bredeweg, Steef W.

    2016-01-01

    Background Vertical ground reaction force (VGRF) parameters have been implicated as a cause of several running-related injuries. However, no systematic review has examined this relationship. Aim We systematically reviewed evidence for a relation between VGRF parameters and specific running-related

  8. The vertical ground reaction force and the pressure distribution on the claws of dairy cows while walking on a flat substrate

    NARCIS (Netherlands)

    Tol, van der P.P.J.; Metz, J.H.M.; Noordhuizen-Stassen, E.N.; Back, W.; Braam, C.R.; Weijs, W.A.

    2003-01-01

    The pressure distribution under the bovine claw while walking was measured to test the hypotheses that the vertical ground reaction force is unevenly distributed and makes some (regions of the) claws more prone to injuries due to overloading than others. Each limb of nine recently trimmed Holstein

  9. Steady state statistical correlations predict bistability in reaction motifs.

    Science.gov (United States)

    Chakravarty, Suchana; Barik, Debashis

    2017-03-28

    Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.

  10. Ab initio optimization principle for the ground states of translationally invariant strongly correlated quantum lattice models.

    Science.gov (United States)

    Ran, Shi-Ju

    2016-05-01

    In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a single optimization problem of a local function with finite number of physical and ancillary degrees of freedom. This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas of different well-established methods, including the density matrix renormalization group (DMRG), infinite time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc., providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D) AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a transverse Ising

  11. Reaction

    African Journals Online (AJOL)

    abp

    19 oct. 2017 ... Reaction to Mohamed Said Nakhli et al. concerning the article: "When the axillary block remains the only alternative in a 5 year old child". .... Bertini L1, Savoia G, De Nicola A, Ivani G, Gravino E, Albani A et al ... 2010;7(2):101-.

  12. Hydrochemical and isotopic study of the Botucatu aquifer ground waters in Sao Paulo State

    International Nuclear Information System (INIS)

    Silva, R.B.G. da.

    1983-01-01

    The process controlling chemical composition of ground water,its origin and apparent age as well as, the natural flow rate of the water in Botucatu aquifer in state of Sao Paulo, Brazil, have been investigated using hydrochemical and environmental isotopic ( 18 O, 2 H, 13 C, 14 C) Technics. The main recharge process is assumed to be the infiltration of rain water in the aquifer outcrop area. The progressive confining conditions with the increasing depth of the top of the aquifer layer makes the ground water temperature slowly greater. The recent magnesium and sodium bicarbonated waters changes first to sodium bicarbonated and then to sodium chloride-sulfated waters which are oldest found out in the research area(around 30.000 years ago). The mean Darcy permeability estimated on basis of 14 C and hydraulic gradient data is 2.6x10 -5 m/s. 9 maps (author) [pt

  13. Conditions for extinction events in chemical reaction networks with discrete state spaces.

    Science.gov (United States)

    Johnston, Matthew D; Anderson, David F; Craciun, Gheorghe; Brijder, Robert

    2018-05-01

    We study chemical reaction networks with discrete state spaces and present sufficient conditions on the structure of the network that guarantee the system exhibits an extinction event. The conditions we derive involve creating a modified chemical reaction network called a domination-expanded reaction network and then checking properties of this network. Unlike previous results, our analysis allows algorithmic implementation via systems of equalities and inequalities and suggests sequences of reactions which may lead to extinction events. We apply the results to several networks including an EnvZ-OmpR signaling pathway in Escherichia coli.

  14. Using narrowband excitation to confirm that the S∗ state in carotenoids is not a vibrationally-excited ground state species

    Science.gov (United States)

    Jailaubekov, Askat E.; Song, Sang-Hun; Vengris, Mikas; Cogdell, Richard J.; Larsen, Delmar S.

    2010-02-01

    The hypothesis that S∗ is a vibrationally-excited ground-state population is tested and discarded for two carotenoid samples: β-carotene in solution and rhodopin glucoside embedded in the light harvesting 2 protein from Rhodopseudomonas acidophila. By demonstrating that the transient absorption signals measured in both systems that are induced by broadband (1000 cm -1) and narrowband (50 cm -1) excitation pulses are near identical and hence bandwidth independent, the impulsive stimulated Raman scattering mechanism proposed as the primary source for S∗ generation is discarded. To support this conclusion, previously published multi-pulse pump-dump-probe signals [17] are revisited to discard secondary mechanisms for S∗ formation.

  15. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen Li [Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen (Germany); Ueta, Hirokazu; Beck, Rainer D. [Laboratoire de Chimie Physique Moleculaire, Ecole Polytechnique Federale de Lausanne (Switzerland); Bisson, Regis [Aix-Marseille Universite, PIIM, CNRS, UMR 7345, 13397 Marseille (France)

    2013-05-15

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S({theta}). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  16. Symmetry Breaking Ground States of Bose-Einstein Condensates in 1D Double Square Well and Optical Lattice Well

    International Nuclear Information System (INIS)

    Yuan Qingxin; Ding Guohui

    2005-01-01

    We investigate the phenomena of symmetry breaking and phase transition in the ground state of Bose-Einstein condensates (BECs) trapped in a double square well and in an optical lattice well, respectively. By using standing-wave expansion method, we present symmetric and asymmetric ground state solutions of nonlinear Schroedinger equation (NLSE) with a symmetric double square well potential for attractive nonlinearity. In particular, we study the ground state wave function's properties by changing the depth of potential and atomic interactions (here we restrict ourselves to the attractive regime). By using the Fourier grid Hamiltonian method, we also reveal a phase transition of BECs trapped in one-dimensional optical lattice potential.

  17. Perturbative correction to the ground-state properties of one-dimensional strongly interacting bosons in a harmonic trap

    International Nuclear Information System (INIS)

    Paraan, Francis N. C.; Korepin, Vladimir E.

    2010-01-01

    We calculate the first-order perturbation correction to the ground-state energy and chemical potential of a harmonically trapped boson gas with contact interactions about the infinite repulsion Tonks-Girardeau limit. With c denoting the interaction strength, we find that, for a large number of particles N, the 1/c correction to the ground-state energy increases as N 5/2 , in contrast to the unperturbed Tonks-Girardeau value that is proportional to N 2 . We describe a thermodynamic scaling limit for the trapping frequency that yields an extensive ground-state energy and reproduces the zero temperature thermodynamics obtained by a local-density approximation.

  18. The ground-state energy of the ± J sping glass. A comparison of various biologically motivated algorithms

    Science.gov (United States)

    Gropengiesser, Uwe

    1995-06-01

    We compare various evlutionary strategies to determine the ground-state energy of the ± J spin glass. We show that the choice of different evolution laws is less important than a suitable treatment of the "free spins" of the system At least one combination of these strategies does not give the correct results, but the ground states of the other different strategies coincide. Therefore we are able to extrapolate the infinit-size ground-state energy for the square lattice to -1.401±0.0015 and for the simple cubic lattice to -1.786±0.004.

  19. The ground state hydrogen conformations and vibrational analysis of 2-, 3-, 4- and 5- dihydroxybenzaldehyde: A DFT study

    International Nuclear Information System (INIS)

    Cirak, C.; Saglam, A.; Ucun, F.

    2010-01-01

    The ground state hydrogen conformations of 2-, 3-, 4- and 5-dihydroxybenzaldehyde have been investigated using density functional theory (B3LYP) methods with 6-31G (d,p) basis set. The calculations have indicated that the compounds in the ground state exist with the carbonyl group O atom linked intra molecularly by the two hydrogen bonds of the two hydroxyl groups. The vibrational analyses of the ground state conformers of all the compounds were done and their optimized geometry parameters were given.

  20. Exact ground-state phase diagrams for the spin-3/2 Blume-Emery-Griffiths model

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa; Deviren, Bayram

    2008-01-01

    We have calculated the exact ground-state phase diagrams of the spin-3/2 Ising model using the method that was proposed and applied to the spin-1 Ising model by Dublenych (2005 Phys. Rev. B 71 012411). The calculated, exact ground-state phase diagrams on the diatomic and triangular lattices with the nearest-neighbor (NN) interaction have been presented in this paper. We have obtained seven and 15 topologically different ground-state phase diagrams for J>0 and J 0 and J<0, respectively, the conditions for the existence of uniform and intermediate phases have also been found

  1. Zero-Magnetic-Field Spin Splitting of Polaron's Ground State Energy Induced by Rashba Spin-Orbit Interaction

    International Nuclear Information System (INIS)

    Liu Jia; Xiao Jingling

    2006-01-01

    We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron areal density and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's, the spin-splitting states of the polaron are more stable than electron's.

  2. Coherence and entanglement in the ground state of a bosonic Josephson junction: From macroscopic Schroedinger cat states to separable Fock states

    International Nuclear Information System (INIS)

    Mazzarella, G.; Toigo, F.; Salasnich, L.; Parola, A.

    2011-01-01

    We consider a bosonic Josephson junction made of N ultracold and dilute atoms confined by a quasi-one-dimensional double-well potential within the two-site Bose-Hubbard model framework. The behavior of the system is investigated at zero temperature by varying the interatomic interaction from the strongly attractive regime to the repulsive one. We show that the ground state exhibits a crossover from a macroscopic Schroedinger-cat state to a separable Fock state through an atomic coherent regime. By diagonalizing the Bose-Hubbard Hamiltonian we characterize the emergence of the macroscopic cat states by calculating the Fisher information F, the coherence by means of the visibility α of the interference fringes in the momentum distribution, and the quantum correlations by using the entanglement entropy S. Both Fisher information and visibility are shown to be related to the ground-state energy by employing the Hellmann-Feynman theorem. This result, together with a perturbative calculation of the ground-state energy, allows simple analytical formulas for F and α to be obtained over a range of interactions, in excellent agreement with the exact diagonalization of the Bose-Hubbard Hamiltonian. In the attractive regime the entanglement entropy attains values very close to its upper limit for a specific interaction strength lying in the region where coherence is lost and self-trapping sets in.

  3. Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe

    Science.gov (United States)

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.

    2015-04-01

    The nuclear structure of 124Xe has been investigated via measurements of the β+/EC decay of 124Cs with the 8 π γ -ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2+→0+ in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study, B (E 2 ;23+→02+) =78 (13 ) W.u. and B (E 2 ;24+→03+) =53 (12 ) W.u. were determined. The 03+ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te (3He,n )124Xe measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.

  4. A grounded theory of young tennis players use of music to manipulate emotional state.

    Science.gov (United States)

    Bishop, Daniel T; Karageorghis, Costas I; Loizou, Georgios

    2007-10-01

    The main objectives of this study were (a) to elucidate young tennis players' use of music to manipulate emotional states, and (b) to present a model grounded in present data to illustrate this phenomenon and to stimulate further research. Anecdotal evidence suggests that music listening is used regularly by elite athletes as a preperformance strategy, but only limited empirical evidence corroborates such use. Young tennis players (N = 14) were selected purposively for interview and diary data collection. Results indicated that participants consciously selected music to elicit various emotional states; frequently reported consequences of music listening included improved mood, increased arousal, and visual and auditory imagery. The choice of music tracks and the impact of music listening were mediated by a number of factors, including extramusical associations, inspirational lyrics, music properties, and desired emotional state. Implications for the future investigation of preperformance music are discussed.

  5. Carotenoid deactivation in an artificial light-harvesting complex via a vibrationally hot ground state

    International Nuclear Information System (INIS)

    Savolainen, Janne; Buckup, Tiago; Hauer, Juergen; Jafarpour, Aliakbar; Serrat, Carles; Motzkus, Marcus; Herek, Jennifer L.

    2009-01-01

    Ultrafast relaxation of a carotenoid in an artificial light-harvesting complex has been studied by transient absorption spectroscopy. The transient signal amplitudes at several wavelengths as well as the amplitudes of the underlying species associated spectra (SAS) are analysed for several excitation energies ranging over more than two orders of magnitude (10 nJ/pulse up to 3000 nJ/pulse). Our analysis shows that the contribution from the so-called S* signal on the long-wavelength side of the first allowed S 0 → S 2 transition has a markedly different excitation energy dependence and saturation behaviour than the electronic excited state S 1 . These observations are modelled and explained in terms of a two-photon excitation of a vibrationally hot ground state via an impulsive stimulated Raman scattering (ISRS). The experimental observations of the varying pulse energy dependencies of different excited state species are supported by an analysis based on a density-matrix formalism

  6. Ground-water recharge in the arid and semiarid southwestern United States

    Science.gov (United States)

    Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Ground-water recharge in the arid and semiarid southwestern United States results from the complex interplay of climate, geology, and vegetation across widely ranging spatial and temporal scales. Present-day recharge tends to be narrowly focused in time and space. Widespread water-table declines accompanied agricultural development during the twentieth century, demonstrating that sustainable ground-water supplies are not guaranteed when part of the extracted resource represents paleorecharge. Climatic controls on ground-water recharge range from seasonal cycles of summer monsoonal and winter frontal storms to multimillennial cycles of glacial and interglacial periods. Precipitation patterns reflect global-scale interactions among the oceans, atmosphere, and continents. Large-scale climatic influences associated with El Niño and Pacific Decadal Oscillations strongly, but irregularly, control weather in the study area, so that year-to-year variations in precipitation and ground-water recharge are large and difficult to predict. Proxy data indicate geologically recent periods of naturally occurring multidecadal droughts unlike any in the modern instrumental record. Any anthropogenically induced climate change will likely reduce ground-water recharge through diminished snowpack at higher elevations. Future changes in El Niño and monsoonal patterns, both crucial to precipitation in the study area, are highly uncertain in current models. Current land-use modifications influence ground-water recharge through vegetation, irrigation, and impermeable area. High mountain ranges bounding the study area—the San Bernadino Mountains and Sierra Nevada to the west, and the Wasatch and southern Colorado Rocky Mountains to the east—provide external geologic controls on ground-water recharge. Internal geologic controls stem from tectonic processes that led to numerous, variably connected alluvial-filled basins, exposure of extensive Paleozoic aquifers in mountainous recharge

  7. High Fidelity Preparation of a Single Atom in Its 2D Center of Mass Ground State

    Science.gov (United States)

    Sompet, Pimonpan; Fung, Yin Hsien; Schwartz, Eyal; Hunter, Matthew D. J.; Phrompao, Jindaratsamee; Andersen, Mikkel F.

    2017-04-01

    Complete control over quantum states of individual atoms is important for the study of the microscopic world. Here, we present a push button method for high fidelity preparation of a single 85Rb atom in the vibrational ground state of tightly focused optical tweezers. The method combines near-deterministic preparation of a single atom with magnetically-insensitive Raman sideband cooling. We achieve 2D cooling in the radial plane with a ground state population of 0.85, which provides a fidelity of 0.7 for the entire procedure (loading and cooling). The Raman beams couple two sublevels (| F = 3 , m = 0 〉 and | F = 2 , m = 0 〉) that are indifferent to magnetic noise to first order. This leads to long atomic coherence times, and allows us to implement the cooling in an environment where magnetic field fluctuations prohibit previously demonstrated variations. Additionally, we implement the trapping and manipulation of two atoms confined in separate dynamically reconfigurable optical tweezers, to study few-body dynamics.

  8. Ground-state energy of the interacting Bose gas in two dimensions: An explicit construction

    International Nuclear Information System (INIS)

    Beane, Silas R.

    2010-01-01

    The isotropic scattering phase shift is calculated for nonrelativistic bosons interacting at low energies via an arbitrary finite-range potential in d space-time dimensions. Scattering on a (d-1)-dimensional torus is then considered, and the eigenvalue equation relating the energy levels on the torus to the scattering phase shift is derived. With this technology in hand, and focusing on the case of two spatial dimensions, a perturbative expansion is developed for the ground-state energy of N identical bosons which interact via an arbitrary finite-range potential in a finite area. The leading nonuniversal effects due to range corrections and three-body forces are included. It is then shown that the thermodynamic limit of the ground-state energy in a finite area can be taken in closed form to obtain the energy per particle in the low-density expansion by explicitly summing the parts of the finite-area energy that diverge with powers of N. The leading and subleading finite-size corrections to the thermodynamic limit equation of state are also computed. Closed-form results--some well known, others perhaps not--for two-dimensional lattice sums are included in an Appendix.

  9. Ground beetles (Coleoptera, Carabidae) of the Hanford Nuclear Site in south-central Washington State.

    Science.gov (United States)

    Looney, Chris; Zack, Richard S; Labonte, James R

    2014-01-01

    Carabidae) collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site), which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte), and Stenolophus lineola (Fabricius). Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  10. Structure and magnetic ground states of spin-orbit coupled compound alpha-RuCl3

    Science.gov (United States)

    Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Mandrus, David; Stone, Matthew; Aczel, Adam; Li, Ling; Yiu, Yuen; Lumsden, Mark; Chakoumakos, Bryan; Tennant, Alan; Nagler, Stephen

    2015-03-01

    The layered material alpha-RuCl3 is composed of stacks of weakly coupled honeycomb lattices of octahedrally coordinated Ru3 + ions. The Ru ion ground state has 5 d electrons in the low spin state, with spin-orbit coupling very strong compared to other terms in the single ion Hamiltonian. The material is therefore an excellent candidate for investigating possible Heisenberg-Kitaev physics. In addition, this compound is very amenable to investigation by neutron scattering to explore the magnetic ground state and excitations in detail. In this talk, we discuss the synthesis of phase-pure alpha-RuCl3 and the characterization of the magnetization, susceptibility, and heat-capacity. We also report neutron diffraction on both powder and single crystal alpha-RuCl3, identifying the low temperature magnetic order observed in the material. The results, when compared to theoretical calculations, shed light on the relative importance of Kitaev and Heisenberg terms in the Hamiltonian. The research is supported by the DOE BES Scientific User Facility Division.

  11. Quantum electrodynamics at strong electric fields. The ground state Lamb shift in hydrogenlike uranium

    Energy Technology Data Exchange (ETDEWEB)

    Gumberidze, A.; Stoehlker, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Frankfurt Univ. (Germany). Inst. fuer Kernphysik; Banas, D. [Pedagogical Univ., Kielce (PL). Inst. of Phys.] [and others

    2005-05-01

    X-ray spectra following radiative recombination of free electrons with bare uranium ions (U{sup 92+}) were measured at the electron cooler of the ESR storage ring. The most intense lines observed in the spectra can be attributed to the characteristic Lyman ground-state transitions and to the recombination of free electrons into the K-shell of the ions. Our experiment was carried out by utilizing the deceleration technique which leads to a considerable reduction of the uncertainties associated with Doppler corrections. This, in combination with the 0 observation geometry, allowed us to determine the ground-state Lamb shift in hydrogen-like uranium (U{sup 91+}) from the observed X-ray lines with an accuracy of 1%. The present result is about 3 times more precise than the most accurate value available up to now and provides the most stringent test of bound-state quantum electrodynamics for one-electron systems in the strong-field regime. (orig.)

  12. Isospin mixing in the ground state of sup 5 sup 2 Mn

    CERN Document Server

    Schuurmans, P; Phalet, T; Severijns, N; Vereecke, B; Versyck, S

    2000-01-01

    The presence of isospin mixing into the ground state of sup 5 sup 2 Mn was studied via anisotropic positron emission from nuclei. With this method the isospin forbidden Fermi-component in the Gamow-Teller dominated beta decay was determined. It is shown that sample purity and the control of positron scattering is of vital importance. Comparison between theory and experiment shows that shell model calculations of the isospin mixing probability deviate by a factor three to seven from experiment. For more recent Hartree-Fock-RPA based calculations the difference is over two orders of magnitude.

  13. Ground State Solutions for a Class of Fractional Differential Equations with Dirichlet Boundary Value Condition

    Directory of Open Access Journals (Sweden)

    Zhigang Hu

    2014-01-01

    Full Text Available In this paper, we apply the method of the Nehari manifold to study the fractional differential equation (d/dt((1/2 0Dt-β(u′(t+(1/2 tDT-β(u′(t=  f(t,u(t, a.e. t∈[0,T], and u0=uT=0, where  0Dt-β, tDT-β are the left and right Riemann-Liouville fractional integrals of order 0≤β<1, respectively. We prove the existence of a ground state solution of the boundary value problem.

  14. Ground-state properties of trapped Bose-Fermi mixtures: Role of exchange correlation

    International Nuclear Information System (INIS)

    Albus, Alexander P.; Wilkens, Martin; Illuminati, Fabrizio

    2003-01-01

    We introduce density-functional theory for inhomogeneous Bose-Fermi mixtures, derive the associated Kohn-Sham equations, and determine the exchange-correlation energy in local-density approximation. We solve numerically the Kohn-Sham system, and determine the boson and fermion density distributions and the ground-state energy of a trapped, dilute mixture beyond mean-field approximation. The importance of the corrections due to exchange correlation is discussed by a comparison with current experiments; in particular, we investigate the effect of the repulsive potential-energy contribution due to exchange correlation on the stability of the mixture against collapse

  15. Composite model approach to the 2He4 nucleus ground state

    International Nuclear Information System (INIS)

    Mehrotra, I.; Agarwal, B.K.

    1986-12-01

    Assuming that the nucleons are (πμ) composite systems the helium nucleus is compared to a molecule consisting of four hydrogen-like atoms where pions are like nuclei and muons are like electrons. Ground state energy of 2 He 4 nucleus has been estimated in the framework of valence-bond method. Good agreement with the experimental value can be obtained if it is assumed that μ + μ - coupling is 3% stronger than the μ ± μ ± coupling. (author). 11 refs, 1 tab

  16. Relativistic Quadrupole Polarizability for the Ground State of Hydrogen-Like Ions

    International Nuclear Information System (INIS)

    Zhang Yong-Hu; Zhang Xian-Zhou; Tang Li-Yan; Shi Ting-Yun; Mitroy Jim

    2012-01-01

    The static quadrupole polarizabilities for hydrogen-like ions from Z = 1 to Z = 100 in the 1S 1/2 ground state are calculated to high precision by solving the Dirac equation using the B-spline Galerkin method. The results are consistent with the expression of Kaneko [J. Phys. B 10 (1977) 3347] at low Z. The quadrupole oscillator strength sum Σ n f (2) gn is computed to be zero to a very high degree of precision. (atomic and molecular physics)

  17. Existence of a ground state for the confined hydrogen atom in non-relativistic QED

    International Nuclear Information System (INIS)

    Amour, Laurent; Faupin, Jeremy

    2008-01-01

    We consider a system of a hydrogen atom interacting with the quantized electromagnetic field. Instead of fixing the nucleus, we assume that the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke effect. After a brief review of the literature, we explain how to verify some properly chosen binding conditions which lead to the existence of a ground state for our model, and for all values of the fine-structure constant

  18. Ground-state properties of a dilute homogeneous Bose gas of hard disks in two dimensions

    International Nuclear Information System (INIS)

    Mazzanti, F.; Polls, A.; Fabrocini, A.

    2005-01-01

    The energy and structure of a dilute hard-disks Bose gas are studied in the framework of a variational many-body approach based on a Jastrow correlated ground-state wave function. The asymptotic behaviors of the radial distribution function and the one-body density matrix are analyzed after solving the Euler equation obtained by a free minimization of the hypernetted chain energy functional. Our results show important deviations from those of the available low density expansions, already at gas parameter values x∼0.001. The condensate fraction in 2D is also computed and found generally lower than the 3D one at the same x

  19. Topological Invariants and Ground-State Wave functions of Topological Insulators on a Torus

    Directory of Open Access Journals (Sweden)

    Zhong Wang

    2014-01-01

    Full Text Available We define topological invariants in terms of the ground-state wave functions on a torus. This approach leads to precisely defined formulas for the Hall conductance in four dimensions and the topological magnetoelectric θ term in three dimensions, and their generalizations in higher dimensions. They are valid in the presence of arbitrary many-body interactions and disorder. These topological invariants systematically generalize the two-dimensional Niu-Thouless-Wu formula and will be useful in numerical calculations of disordered topological insulators and strongly correlated topological insulators, especially fractional topological insulators.

  20. Resonant Ion Pair Formation in Electron Collisions with Ground State Molecular Ions

    International Nuclear Information System (INIS)

    Zong, W.; Dunn, G.H.; Djuric, N.; Greene, C.H.; Neau, A.; Zong, W.; Larsson, M.; Al-Khalili, A.; Neau, A.; Derkatch, A.M.; Vikor, L.; Shi, W.; Rosen, S.; Le Padellec, A.; Danared, H.; Ugglas, M. af

    1999-01-01

    Resonant ion pair formation from collisions of electrons with ground state diatomic molecular ions has been observed and absolute cross sections measured. The cross section for HD + is characterized by an abrupt threshold at 1.9thinspthinspeV and 14 resolved peaks in the range of energies 0≤E≤14 eV . The dominant mechanism responsible for the structures appears to be resonant capture and stabilization, modified by two-channel quantum interference. Data on HF + show structure correlated with photoionization of HF and with dissociative recombination of electrons with this ion. copyright 1999 The American Physical Society