WorldWideScience

Sample records for ground soil-liquefaction analysis

  1. Post-liquefaction soil-structure interaction for buried structures: Sensitivity analysis studies

    International Nuclear Information System (INIS)

    Pires, J.A.; Ang, H.S.; Katayama, I.; Satoh, M.

    1993-01-01

    The post liquefaction behavior of buried conduits is analyzed and sensitivity analysis is conducted to investigate the damage potential of the forces induced in the buried lifelines following seismically induced liquefaction of the surrounding soil. Various lifeline configurations and loading conditions are considered. The loading conditions considered are: buoyancy forces and permanent ground displacements parallel to the lifeline axis. Pertinent parameters for the soil-lifeline interaction following liquefaction are identified. (author)

  2. Effects of Long-Duration Ground Motions on Liquefaction Hazards

    Science.gov (United States)

    Greenfield, Michael W.

    Soil liquefaction during past earthquakes has caused extensive damage to buildings, bridges, dam, pipelines and other elements of infrastructure. Geotechnical engineers use empirical observations from earthquake case histories in conjunction with soil mechanics to predict the behavior of liquefiable soils. However, current empirical databases are insufficient to evaluate the behavior of soils subject to long-duration earthquakes, such as a possible Mw = 9.0 Cascadia Subduction Zone earthquake. The objective of this research is to develop insight into the triggering and effects of liquefaction due to long-duration ground motions and to provide recommendations for analysis and design. Recorded ground motions from 21 case histories with surficial evidence of liquefaction showed marked differences in soil behavior before and after liquefaction was triggered. In some cases, strong shaking continued for several minutes after the soil liquefied, and a variety of behaviors were observed including dilation pulses, continued softening due to soil fabric degradation, and soil stiffening due to pore pressure dissipation and drainage. Supplemental field and laboratory investigations were performed at three sites that liquefied during the 2011 Mw = 9.0 Tohoku earthquake. The recorded ground motions and field investigation data were used in conjunction with laboratory observations, analytical models, and numerical models to evaluate the behavior of liquefiable soils subjected to long-duration ground motions. Observations from the case histories inspired a framework to predict ground deformations based on the differences in soil behavior before and after liquefaction has triggered. This framework decouples the intensity of shaking necessary to trigger liquefaction from the intensity of shaking that drives deformation by identifying the time when liquefaction triggers. The timing-based framework promises to dramatically reduce the uncertainty in deformation estimates compared to

  3. Assessment of Soil Liquefaction Potential Based on Numerical Method

    DEFF Research Database (Denmark)

    Choobasti, A. Janalizadeh; Vahdatirad, Mohammad Javad; Torabi, M.

    2012-01-01

    Paying special attention to geotechnical hazards such as liquefaction in huge civil projects like urban railways especially in susceptible regions to liquefaction is of great importance. A number of approaches to evaluate the potential for initiation of liquefaction, such as Seed and Idriss...... simplified method have been developed over the years. Although simplified methods are available in calculating the liquefaction potential of a soil deposit and shear stresses induced at any point in the ground due to earthquake loading, these methods cannot be applied to all earthquakes with the same...... accuracy, also they lack the potential to predict the pore pressure developed in the soil. Therefore, it is necessary to carry out a ground response analysis to obtain pore pressures and shear stresses in the soil due to earthquake loading. Using soil historical, geological and compositional criteria...

  4. Liquefaction analysis of alluvial soil deposits in Bedsa south west of Cairo

    Directory of Open Access Journals (Sweden)

    Kamal Mohamed Hafez Ismail Ibrahim

    2014-09-01

    Full Text Available Bedsa is one of the districts in Dahshour that lays south west of Cairo and suffered from liquefaction during October 1992 earthquake, Egypt. The soil profile consists of alluvial river Nile deposits mainly sandy mud with low plasticity; the ground water is shallow. The earthquake hypocenter was 18 km far away with local magnitude 5.8; the fault length was 13.8 km, as recorded by the Egyptian national seismological network (ENSN at Helwan. The analysis used the empirical method introduced by the national center for earthquake engineering research (NCEER based on field standard penetration of soil. It is found that the studied area can liquefy since there are saturated loose sandy silt layers at depth ranges from 7 to 14 m. The settlement is about 26 cm. The probability of liquefaction ranges between 40% and 100%. The presence of impermeable surface from medium cohesive silty clay acts as a plug resisting and trapping the upward flow of water during liquefaction, so fountain and spouts at weak points occurs. It is wise to use point bearing piles with foundation level deeper than 14 m beyond the liquefiable depth away from ground slopes, otherwise liquefaction improving techniques have to be applied in the area.

  5. Preliminary study of soil liquefaction hazard at Terengganu shoreline, Peninsular Malaysia

    Science.gov (United States)

    Hashim, H.; Suhatril, M.; Hashim, R.

    2017-06-01

    Terengganu is a shoreline state located in Peninsular Malaysia which is a growing hub for port industries and tourism centre. The northern part offers pristine settings of a relax beach areas whereas the southern part are observed to be a growing centre for development. The serious erosion on soil deposit along the beach line presents vulnerable soil condition to soil liquefaction consists of sandy with low plasticity and shallow ground water. Moreover, local earthquake from nearby fault have present significant tremors over the past few years which need to be considered in the land usage or future development in catering the seismic loading. Liquefaction analysis based on field standard penetration of soil is applied on 546 boreholes scattered along the shoreline areas ranging 244 km of shoreline stretch. Based on simplified approach, it is found that more than 70% of the studied areas pose high liquefaction potential since there are saturated loose sand and silt deposits layer ranges at depth 3 m and up to 20 m. The presence of clay deposits and hard stratum at the remaining 30% of the studied areas shows good resistance to soil liquefaction hence making the area less significant to liquefaction hazard. Result indicates that liquefaction improving technique is advisable in future development of shoreline areas of Terengganu state.

  6. Sinking during earthquakes: Critical acceleration criteria control drained soil liquefaction

    Science.gov (United States)

    Clément, C.; Toussaint, R.; Stojanova, M.; Aharonov, E.

    2018-02-01

    This article focuses on liquefaction of saturated granular soils, triggered by earthquakes. Liquefaction is defined here as the transition from a rigid state, in which the granular soil layer supports structures placed on its surface, to a fluidlike state, in which structures placed initially on the surface sink to their isostatic depth within the granular layer. We suggest a simple theoretical model for soil liquefaction and show that buoyancy caused by the presence of water inside a granular medium has a dramatic influence on the stability of an intruder resting at the surface of the medium. We confirm this hypothesis by comparison with laboratory experiments and discrete-element numerical simulations. The external excitation representing ground motion during earthquakes is simulated via horizontal sinusoidal oscillations of controlled frequency and amplitude. In the experiments, we use particles only slightly denser than water, which as predicted theoretically increases the effect of liquefaction and allows clear depth-of-sinking measurements. In the simulations, a micromechanical model simulates grains using molecular dynamics with friction between neighbors. The effect of the fluid is captured by taking into account buoyancy effects on the grains when they are immersed. We show that the motion of an intruder inside a granular medium is mainly dependent on the peak acceleration of the ground motion and establish a phase diagram for the conditions under which liquefaction happens, depending on the soil bulk density, friction properties, presence of water, and peak acceleration of the imposed large-scale soil vibrations. We establish that in liquefaction conditions, most cases relax toward an equilibrium position following an exponential in time. We also show that the equilibrium position itself, for most liquefaction regimes, corresponds to the isostatic equilibrium of the intruder inside a medium of effective density. The characteristic time to relaxation is

  7. Y-12 site-specific earthquake response analysis and soil liquefaction assessment

    International Nuclear Information System (INIS)

    Ahmed, S.B.; Hunt, R.J.; Manrod, W.E. III.

    1995-01-01

    A site-specific earthquake response analysis and soil liquefaction assessment were performed for the Oak Ridge Y-12 Plant. The main purpose of these studies was to use the results of the analyses for evaluating the safety of the performance category -1, -2, and -3 facilities against the natural phenomena seismic hazards. Earthquake response was determined for seven (7), one dimensional soil columns (Fig. 12) using two horizontal components of the PC-3 design basis 2000-year seismic event. The computer program SHAKE 91 (Ref. 7) was used to calculate the absolute response accelerations on top of ground (soil/weathered shale) and rock outcrop. The SHAKE program has been validated for horizontal response calculations at periods less than 2.0 second at several sites and consequently is widely accepted in the geotechnical earthquake engineering area for site response analysis

  8. Liquefaction Potential for Soil Deposits in Muscat, Oman

    Science.gov (United States)

    El Hussain, I. W.; Deif, A.; Girgis, M.; Al-Rawas, G.; Mohamed, A.; Al-Jabri, K.; Al-Habsi, Z.

    2015-12-01

    Muscat is located in the northeastern part of Oman on a narrow strip between Oman coast and Oman Mountains, which is the place for at least four earthquakes of order of 5.2 magnitude in the last 1300 years. The near surface geology of Muscat varies from hard rocks in the eastern, southern and western parts to dense and lose sediments in the middle and northern parts. Liquefaction occurs in saturated cohesionless soils when its shear strength decreased to zero due to the increase of pore pressure. More than 500 boreholes in Muscat area were examined for their liquefaction susceptibility based on the soil characteristics data. Only soils susceptible to liquefaction are further considered for liquefaction hazard assessment. Liquefaction occurs if the cyclic stress ratio (CSR) caused by the earthquake is higher than the cyclic resistance ratio (CRR) of the soil. CSR values were evaluated using PGA values at the surface obtained from previously conducted seismic hazard and microzonation studies. CRR for Muscat region is conducted using N values of SPT tests from numerous borehole data and the shear wave velocity results from 99 MASW surveys over the entire region. All the required corrections are conducted to get standardized (N1) 60 values, to correct shear-wave velocity, and scale the results for Mw 6.0 instead of the proposed 7.5 (magnitude scaling factor). Liquefaction hazard maps are generated using the minimum factor of safety (FS) at each site as a representative of the FS against liquefaction at that location. Results indicate that under the current level of seismic hazard, liquefaction potential is possible at few sites along the northern coast where alluvial soils and shallow ground water table are present. The expected soft soil settlement is also evaluated at each liquefiable site.

  9. GIS-based soil liquefaction susceptibility map of Mumbai city for earthquake events

    Science.gov (United States)

    Mhaske, Sumedh Yamaji; Choudhury, Deepankar

    2010-03-01

    The problem of liquefaction of soil during seismic event is one of the important topics in the field of Geotechnical Earthquake Engineering. Liquefaction of soil is generally occurs in loose cohesionless saturated soil when pore water pressure increases suddenly due to induced ground motion and shear strength of soil decreases to zero and leading the structure situated above to undergo a large settlement, or failure. The failures took place due to liquefaction induced soil movement spread over few square km area continuously. Hence this is a problem where spatial variation involves and to represent this spatial variation Geographic Information System (GIS) is very useful in decision making about the area subjected to liquefaction. In this paper, GIS software GRAM++ is used to prepare soil liquefaction susceptibility map for entire Mumbai city in India by marking three zones viz. critically liquefiable soil, moderately liquefiable soil and non liquefiable soil. Extensive field borehole test data for groundwater depth, standard penetration test (SPT) blow counts, dry density, wet density and specific gravity, etc. have been collected from different parts of Mumbai. Simplified procedure of Youd et al. (2001) is used for calculation of factor of safety against soil liquefaction potential. Mumbai city and suburban area are formed by reclaiming lands around seven islands since 1865 till current date and still it is progressing in the area such as Navi Mumbai and beyond Borivali to Mira road suburban area. The factors of safety against soil liquefaction were determined for earthquake moment magnitude ranging from Mw = 5.0 to 7.5. It is found that the areas like Borivali, Malad, Dahisar, Bhandup may prone to liquefaction for earthquake moment magnitude ranging from Mw = 5.0 to 7.5. The liquefaction susceptibility maps were created by using GRAM++ by showing the areas where the factor of safety against the soil liquefaction is less than one. Proposed liquefaction

  10. Simplified dynamic analysis to evaluate liquefaction-induced lateral deformation of earth slopes: a computational fluid dynamics approach

    Science.gov (United States)

    Jafarian, Yaser; Ghorbani, Ali; Ahmadi, Omid

    2014-09-01

    Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied soil is considered as viscous fluid. In this manner, the liquefied soil behaves as non-Newtonian fluid, whose viscosity decreases as the shear strain rate increases. The current study incorporates computational fluid dynamics to propose a simplified dynamic analysis for the liquefaction-induced lateral deformation of earth slopes. The numerical procedure involves a quasi-linear elastic model for small to moderate strains and a Bingham fluid model for large strain states during liquefaction. An iterative procedure is considered to estimate the strain-compatible shear stiffness of soil. The post-liquefaction residual strength of soil is considered as the initial Bingham viscosity. Performance of the numerical procedure is examined by using the results of centrifuge model and shaking table tests together with some field observations of lateral ground deformation. The results demonstrate that the proposed procedure predicts the time history of lateral ground deformation with a reasonable degree of precision.

  11. Improvements on mapping soil liquefaction at a regional scale

    Science.gov (United States)

    Zhu, Jing

    Earthquake induced soil liquefaction is an important secondary hazard during earthquakes and can lead to significant damage to infrastructure. Mapping liquefaction hazard is important in both planning for earthquake events and guiding relief efforts by positioning resources once the events have occurred. This dissertation addresses two aspects of liquefaction hazard mapping at a regional scale including 1) predictive liquefaction hazard mapping and 2) post-liquefaction cataloging. First, current predictive hazard liquefaction mapping relies on detailed geologic maps and geotechnical data, which are not always available in at-risk regions. This dissertation improves the predictive liquefaction hazard mapping by the development and validation of geospatial liquefaction models (Chapter 2 and 3) that predict liquefaction extent and are appropriate for global application. The geospatial liquefaction models are developed using logistic regression from a liquefaction database consisting of the data from 27 earthquake events from six countries. The model that performs best over the entire dataset includes peak ground velocity (PGV), VS30, distance to river, distance to coast, and precipitation. The model that performs best over the noncoastal dataset includes PGV, VS30, water table depth, distance to water body, and precipitation. Second, post-earthquake liquefaction cataloging historically relies on field investigation that is often limited by time and expense, and therefore results in limited and incomplete liquefaction inventories. This dissertation improves the post-earthquake cataloging by the development and validation of a remote sensing-based method that can be quickly applied over a broad region after an earthquake and provide a detailed map of liquefaction surface effects (Chapter 4). Our method uses the optical satellite images before and after an earthquake event from the WorldView-2 satellite with 2 m spatial resolution and eight spectral bands. Our method

  12. Liquefaction susceptibility of fine-grained soils: preliminary study report. Final report, September 1985-March 1986

    Energy Technology Data Exchange (ETDEWEB)

    Chang, N.Y.

    1987-09-01

    Soil liquefaction, a hazardous ground failure induced by strong motion earthquakes, can cause catastrophic damage to structures such as dams, bridges, power plants, and water-front structures and may involve great losses of life. Examples of liquefaction and resulting damage were observed during the Alaska (1964), Niigata, Japan (1964), and Tangshan, China (1976), earthquakes. Ground failure due to earthquake-induced soil liquefaction may manifest itself as excessive settlement, loss of bearing capacity, sand boiling, and flow slides. The liquefaction potential of clean sands has been studied extensively for the last two decades. However, case histories revealed that liquefied sands were seldom clean. They may contain various percentages of silt or clay or both. In fact, the Chinese observation in the Tansghan earthquake indicated that some cohesive soils may have liquefied. If this indeed had happened, then structures underlain by fine-grained soils, with a marginal safety factor based on the liquefaction criteria normally applied to sands, may actually be unsafe. Thus there is an urgent need for establishing new criteria for the liquefaction susceptibility of soils to include those identified as fine-grained. The author, Professor N.Y. Chang of the University of Colorado at Denver, visited several Chinese agencies and and universities in and near Beijing, China, in the summer of 1985 in an attempt to investigate and verify reported data on the liquefaction of cohesive soils during the Tangshan earthquake of 1976 and to negotiate cooperative research into the problem. This report presents the result of supportive literature review and the findings of the China trip.

  13. Shear wave velocity-based evaluation and design of stone column improved ground for liquefaction mitigation

    Science.gov (United States)

    Zhou, Yanguo; Sun, Zhengbo; Chen, Jie; Chen, Yunmin; Chen, Renpeng

    2017-04-01

    The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity ( V s)-void ratio ( e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR- V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V s- e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.

  14. Potential of soil liquefaction at Perlis, northern region of Malalysia

    Science.gov (United States)

    Ghazaly, Zuhayr Md; Rahim, Mustaqqim Abdul; Nasir, Mohamad Amzar Bin Mhd; Isa, Nur Fitriah; Zaki, Mohd Faiz Mohammad; Hassan, Zulkarnain Bin; Ismail, Zul-Atfi Bin

    2017-09-01

    Soil liquefaction is earthquake's secondary effect which could cause fatal damages and structures instability. Despite Malaysia been located in stable zone of Pacific Ring of Fire, few significant surrounded quakes like Sumatra-Andaman earthquake had prompted Malaysian's public concern, especially in Perlis area, on local seismic resistant. Hence, this research presents the analysis result of liquefaction potential of the soils, as the secondary effect of earthquake, within Perlis, northern region of Malaysia; the next strong and sustainable metropolis by using semi-empirical procedures introduced by Seed and Idriss. The study consists of two stages which were determination of the local geological and geotechnical site conditions within Perlis and analysis of soil liquefaction susceptibility by using various methods and liquefaction potential by using Simplified Procedure developed by Seed and Idriss on stress approach. There were consist of four phases implemented in order to achieve the objectives targeted for the study after problem being identified. Firstly, a comprehensive review of literature on liquefaction at Perlis was carried out. Second phase was data collection process that includes collection of Site Investigation (SI) report. Thirdly, data analysis was carried out by utilizing suitable method. The final phase was to draw conclusion and recommendation for this study. It can be concluded that the overall Perlis due to earthquake moment magnitude below 7.5 has no potential to soil liquefaction. However, with the range of liquefaction potential of 1.60 to 5.64 in Kuala Perlis area, it is liquefiable. The development of liquefaction severity map of Perlis, Malaysia in this research, may be used by others as a reference for seismic design and standard safety measures as well as for further research work.

  15. Ground Characterization Studies in Canakkale Pilot Site of LIQUEFACT Project

    Science.gov (United States)

    Ozcep, F.; Oztoprak, S.; Aysal, N.; Bozbey, I.; Tezel, O.; Ozer, C.; Sargin, S.; Bekin, E.; Almasraf, M.; Cengiz Cinku, M.; Ozdemir, K.

    2017-12-01

    The our aim is to outline the ground characterisation studies in Canakkale test site. Study is based on the EU H2020 LIQUEFACT project entitled "Liquefact: Assessment and mitigation of liquefaction potential across Europe: a holistic approach to protect structures / infrastructures for improved resilience to earthquake-induced liquefaction disasters". Objectives and extent of ground characterization for Canakkale test site includes pre-existing soil investigation studies and complementary field studies. There were several SPT and geophysical tests carried out in the study area. Within the context of the complementary tests, six (6) study areas in the test site were chosen and complementary tests were carried out in these areas. In these areas, additional boreholes were opened and SPT tests were performed. It was decided that additional CPT (CPTU and SCPT) and Marchetti Dilatometer (DMT) tests should be carried out within the scope of the complementary testing. Seismic refraction, MASW and micro tremor measurements had been carried out in pre-existing studies. Shear wave velocities obtained from MASW measurements were evaluated to the most rigorous level. These tests were downhole seismic, PS-logging, seismic refraction, 2D-ReMi, MASW, micro tremor (H/V Nakamura method), 2D resistivity and resonance acoustic profiling (RAP). RAP is a new technique which will be explained briefly in the relevant section. Dynamic soil properties had not been measured in pre-existing studies, therefore these properties were investigated within the scope of the complementary tests. Selection of specific experimental tests of the complementary campaign was based on cost-benefit considerations Within the context of complementary field studies, dynamic soil properties were measured using resonant column and cyclic direct shear tests. Several sieve analyses and Atterberg Limits tests which were documented in the pre-existing studies were evaluated. In the complementary study carried out

  16. Semi-automated landform classification for hazard mapping of soil liquefaction by earthquake

    Science.gov (United States)

    Nakano, Takayuki

    2018-05-01

    Soil liquefaction damages were caused by huge earthquake in Japan, and the similar damages are concerned in near future huge earthquake. On the other hand, a preparation of soil liquefaction risk map (soil liquefaction hazard map) is impeded by the difficulty of evaluation of soil liquefaction risk. Generally, relative soil liquefaction risk should be able to be evaluated from landform classification data by using experimental rule based on the relationship between extent of soil liquefaction damage and landform classification items associated with past earthquake. Therefore, I rearranged the relationship between landform classification items and soil liquefaction risk intelligibly in order to enable the evaluation of soil liquefaction risk based on landform classification data appropriately and efficiently. And I developed a new method of generating landform classification data of 50-m grid size from existing landform classification data of 250-m grid size by using digital elevation model (DEM) data and multi-band satellite image data in order to evaluate soil liquefaction risk in detail spatially. It is expected that the products of this study contribute to efficient producing of soil liquefaction hazard map by local government.

  17. Seismic behavior of breakwaters on complex ground by numerical tests: Liquefaction and post liquefaction ground settlements

    Science.gov (United States)

    Gu, Linlin; Zhang, Feng; Bao, Xiaohua; Shi, Zhenming; Ye, Guanlin; Ling, Xianzhang

    2018-04-01

    A large number of breakwaters have been constructed along coasts to protect humans and infrastructures from tsunamis. There is a risk that foundation soils of these structures may liquefy, or partially liquefy during the earthquake preceding a tsunami, which would greatly reduce the structures' capacity to resist the tsunami. It is necessary to consider not only the soil's liquefaction behavior due to earthquake motions but also its post-liquefaction behavior because this behavior will affect the breakwater's capacity to resist an incoming tsunami. In this study, numerical tests based on a sophisticated constitutive model and a soil-water coupled finite element method are used to predict the mechanical behavior of breakwaters and the surrounding soils. Two real breakwaters subjected to two different seismic excitations are examined through numerical simulation. The simulation results show that, earthquakes affect not only the immediate behavior of breakwaters and the surrounding soils but also their long-term settlements due to post-earthquake consolidation. A soil profile with thick clayey layers beneath liquefied soil is more vulnerable to tsunami than a soil profile with only sandy layers. Therefore, quantitatively evaluating the seismic behavior of breakwaters and surrounding soils is important for the design of breakwater structures to resist tsunamis.

  18. Machine learning modelling for predicting soil liquefaction susceptibility

    Directory of Open Access Journals (Sweden)

    P. Samui

    2011-01-01

    Full Text Available This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN based on multi-layer perceptions (MLP that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT [(N160] and cyclic stress ratio (CSR. Further, an attempt has been made to simplify the models, requiring only the two parameters [(N160 and peck ground acceleration (amax/g], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.

  19. Study of Ground Treatment on Improvement of Pile Foundation Response in Liquefiable Soils

    Directory of Open Access Journals (Sweden)

    Chen Yulong

    2016-05-01

    Full Text Available In light of the disastrous the 2011 Tohoku Pacific Earthquake, the government of Japan has conducted studies to revise the seismic design code, and elevated peak ground accelerations have been adopted. Consequently, revisions on existing design to comply with the updated code are required for public projects that are still undergoing. The design safety needs to be reassessed, and implementation of strengthening measures is required if deemed necessary. For liquefaction countermeasures, ground treatment techniques that could increase the density of soils are often the preferable alternatives. The treatment usually increases the in-situ SPT-N or CPT-qc values, which in turn would increase the resistance of soil against liquefaction. For many public infrastructures in Japan supported by bored piles embedded partly or entirely in sandy soils, reevaluation of design safety against soil liquefaction would be required. In an assessment of possible retrofitting countermeasures for an infrastructure foundation, ground treatment has been considered. In this case study, effect of ground treatment on response of piles in liquefiable soils was investigated with numerical analyses using FLAC. Results provide insights into this ground treatment effect and useful information for consideration in future design or decision making.

  20. Shear-wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential

    Science.gov (United States)

    Kayen, R.; Moss, R.E.S.; Thompson, E.M.; Seed, R.B.; Cetin, K.O.; Der Kiureghian, A.; Tanaka, Y.; Tokimatsu, K.

    2013-01-01

    Shear-wave velocity (Vs) offers a means to determine the seismic resistance of soil to liquefaction by a fundamental soil property. This paper presents the results of an 11-year international project to gather new Vs site data and develop probabilistic correlations for seismic soil liquefaction occurrence. Toward that objective, shear-wave velocity test sites were identified, and measurements made for 301 new liquefaction field case histories in China, Japan, Taiwan, Greece, and the United States over a decade. The majority of these new case histories reoccupy those previously investigated by penetration testing. These new data are combined with previously published case histories to build a global catalog of 422 case histories of Vs liquefaction performance. Bayesian regression and structural reliability methods facilitate a probabilistic treatment of the Vs catalog for performance-based engineering applications. Where possible, uncertainties of the variables comprising both the seismic demand and the soil capacity were estimated and included in the analysis, resulting in greatly reduced overall model uncertainty relative to previous studies. The presented data set and probabilistic analysis also help resolve the ancillary issues of adjustment for soil fines content and magnitude scaling factors.

  1. Evaluation of site effects on ground motions based on equivalent linear site response analysis and liquefaction potential in Chennai, south India

    Science.gov (United States)

    Nampally, Subhadra; Padhy, Simanchal; Trupti, S.; Prabhakar Prasad, P.; Seshunarayana, T.

    2018-05-01

    We study local site effects with detailed geotechnical and geophysical site characterization to evaluate the site-specific seismic hazard for the seismic microzonation of the Chennai city in South India. A Maximum Credible Earthquake (MCE) of magnitude 6.0 is considered based on the available seismotectonic and geological information of the study area. We synthesized strong ground motion records for this target event using stochastic finite-fault technique, based on a dynamic corner frequency approach, at different sites in the city, with the model parameters for the source, site, and path (attenuation) most appropriately selected for this region. We tested the influence of several model parameters on the characteristics of ground motion through simulations and found that stress drop largely influences both the amplitude and frequency of ground motion. To minimize its influence, we estimated stress drop after finite bandwidth correction, as expected from an M6 earthquake in Indian peninsula shield for accurately predicting the level of ground motion. Estimates of shear wave velocity averaged over the top 30 m of soil (V S30) are obtained from multichannel analysis of surface wave (MASW) at 210 sites at depths of 30 to 60 m below the ground surface. Using these V S30 values, along with the available geotechnical information and synthetic ground motion database obtained, equivalent linear one-dimensional site response analysis that approximates the nonlinear soil behavior within the linear analysis framework was performed using the computer program SHAKE2000. Fundamental natural frequency, Peak Ground Acceleration (PGA) at surface and rock levels, response spectrum at surface level for different damping coefficients, and amplification factors are presented at different sites of the city. Liquefaction study was done based on the V S30 and PGA values obtained. The major findings suggest show that the northeast part of the city is characterized by (i) low V S30 values

  2. Energy-based numerical models for assessment of soil liquefaction

    Directory of Open Access Journals (Sweden)

    Amir Hossein Alavi

    2012-07-01

    Full Text Available This study presents promising variants of genetic programming (GP, namely linear genetic programming (LGP and multi expression programming (MEP to evaluate the liquefaction resistance of sandy soils. Generalized LGP and MEP-based relationships were developed between the strain energy density required to trigger liquefaction (capacity energy and the factors affecting the liquefaction characteristics of sands. The correlations were established based on well established and widely dispersed experimental results obtained from the literature. To verify the applicability of the derived models, they were employed to estimate the capacity energy values of parts of the test results that were not included in the analysis. The external validation of the models was verified using statistical criteria recommended by researchers. Sensitivity and parametric analyses were performed for further verification of the correlations. The results indicate that the proposed correlations are effectively capable of capturing the liquefaction resistance of a number of sandy soils. The developed correlations provide a significantly better prediction performance than the models found in the literature. Furthermore, the best LGP and MEP models perform superior than the optimal traditional GP model. The verification phases confirm the efficiency of the derived correlations for their general application to the assessment of the strain energy at the onset of liquefaction.

  3. Assessment of Soil Liquefaction Potential in Defence Housing Authority, Karachi, Pakistan

    Directory of Open Access Journals (Sweden)

    Sumaira Asif Khan

    2017-04-01

    Full Text Available The occurrence of liquefaction phenomenon may be induced in the event of a large magnitude earthquake but sometimes loose, saturated and poorly graded sand may be subjected to liquefaction due to the vibration produced by other sources. Liquefaction could cause damage to building and infrastructure due to sudden increase of pore pressure in the loose layers of saturated sand causing the loss of bearing capacity and shear strength. Defence Housing Authority (DHA is the well planned residential scheme established by Pakistan Army along the coastal belt of Karachi. The soil occurring in DHA is fine grained, poorly graded and mainly comprises of sandy silt and silty sand of Recent age, where water table is encountered at very shallow depth. Hence, it is important to assess the geotechnical behavior of the soil in DHA area, where most of the high rise buildings and mega civil structures are being constructed. In present study, seismic soil liquefaction was evaluated at 15 sites (30 bore holes in DHA by using simplified empirical method in terms of Factor of Safety (FS. The Relative Density (RD was determined with the help of Standard Penetration Test (SPT data. Grain size analysis was also carried out on each borehole samples. The results revealed that the DHA area is vulnerable to liquefaction during severe seismic event of magnitude between 6.5 and 7.5 in Karachi.

  4. Earthquake-induced liquefaction in Ferland, Quebec

    International Nuclear Information System (INIS)

    Tuttle, M.; Seeber, L.

    1991-02-01

    Detailed geological investigations are under way at a number of liquefaction sites in the Ferland-Boilleau valley, Quebec, where sand boils, ground cracks and liquefaction-related damages to homes were documented immediately following the Ms=6.0, Mblg=6.5 Saguenay earthquake of November 25, 1988. To date, results obtained from these subsurface investigations of sand boils at two sites in Ferland, located about 26 km from the epicentre, indicate that: the Saguenay earthquake induced liquefaction in late-Pleistocene and Holocene sediments which was recorded as sand dikes, sills and vents in near-surface sediments and soils; earthquake-induced liquefaction and ground failure have occurred in this area at least three times in the past 10,000 years; and, the size and morphology of liquefaction features and the liquefaction susceptibility of source layers of the features may be indicative of the intensity of ground shaking. These preliminary results are very promising and suggest that with continued research liquefaction features will become a useful tool in glaciated terrains, such as northeastern North America, for determining not only the timing and location but also the size of past earthquakes

  5. Assessment of liquefaction potential during earthquakes by arias intensity

    Science.gov (United States)

    Kayen, R.E.; Mitchell, J.K.

    1997-01-01

    An Arias intensity approach to assess the liquefaction potential of soil deposits during earthquakes is proposed, using an energy-based measure of the severity of earthquake-shaking recorded on seismograms of the two horizontal components of ground motion. Values representing the severity of strong motion at depth in the soil column are associated with the liquefaction resistance of that layer, as measured by in situ penetration testing (SPT, CPT). This association results in a magnitude-independent boundary that envelopes initial liquefaction of soil in Arias intensity-normalized penetration resistance space. The Arias intensity approach is simple to apply and has proven to be highly reliable in assessing liquefaction potential. The advantages of using Arias intensity as a measure of earthquake-shaking severity in liquefaction assessment are: Arias intensity is derived from integration of the entire seismogram wave form, incorporating both the amplitude and duration elements of ground motion; all frequencies of recorded motion are considered; and Arias intensity is an appropriate measure to use when evaluating field penetration test methodologies that are inherently energy-based. Predictor equations describing the attenuation of Arias intensity as a function of earthquake magnitude and source distance are presented for rock, deep-stiff alluvium, and soft soil sites.

  6. To the vibrational over wetting and liquefaction effects in moistured soils

    International Nuclear Information System (INIS)

    Karimov, F.H.; Oripov, G.O.; Saidov, R.M.; Tojibekov, M.

    2003-01-01

    There is a lot of evidence of the dynamical effects in soils when they become wetted or during or after the earthquakes or explosions. There are some quantitative estimates for the vibrational wetting and liquefaction of soils under consideration. For the models in the present research the moistured sands and weak soils like losses are accepted. The first model is focusing on soil fractures sliding down under the action of vibrations, tightening of a hard phase, squeezing water phase out and thus bringing to soil liquefaction. The second is based on soil fractures plunging at the action of vibrations into the aquatic background. This mechanism seems to be more effective for the high degree moistured soils. The third mechanism is based on capillary phenomena in moistured porous medium. When inertia forces are large enough the resultant force, consisting of sliding down gravity component and inertia forces, overcomes friction and fracture becomes unstable. Both vibrations amplitude and frequency are the stability controlling factors, playing an important role in the vibrational wetting and liquefaction effects through porous water phase squeezing out or capillary lifting phenomena leading to the wetting or liquefaction of the medium. (author)

  7. Numerical modeling of liquefaction-induced failure of geo-structures subjected to earthquakes

    International Nuclear Information System (INIS)

    Rapti, Ioanna

    2016-01-01

    The increasing importance of performance-based earthquake engineering analysis points out the necessity to assess quantitatively the risk of liquefaction. In this extreme scenario of soil liquefaction, devastating consequences are observed, e.g. excessive settlements, lateral spreading and slope instability. The present PhD thesis discusses the global dynamic response and interaction of an earth structure-foundation system, so as to determine quantitatively the collapse mechanism due to foundation's soil liquefaction. As shear band generation is a potential earthquake-induced failure mode in such structures, the FE mesh dependency of results of dynamic analyses is thoroughly investigated and an existing regularization method is evaluated. The open-source FE software developed by EDF R and D, called Code-Aster, is used for the numerical simulations, while soil behavior is represented by the ECP constitutive model, developed at Centrale-Supelec. Starting from a simplified model of 1D SH wave propagation in a soil column with coupled hydro-mechanical nonlinear behavior, the effect of seismic hazard and soil's permeability on liquefaction is assessed. Input ground motion is a key component for soil liquefaction apparition, as long duration of main shock can lead to important nonlinearity and extended soil liquefaction. Moreover, when a variation of permeability as function of liquefaction state is considered, changes in the dissipation phase of excess pore water pressure and material behavior are observed, which do not follow a single trend. The effect of a regularization method with enhanced kinematics approach, called first gradient of dilation model, on 1D SH wave propagation is studied through an analytical solution. Deficiencies of the use of this regularization method are observed and discussed, e.g. spurious waves apparition in the soil's seismic response. Next, a 2D embankment-type model is simulated and its dynamic response is evaluated in dry, fully drained

  8. Soil Improvement By Jet Grout Method And Geogrid Against Liquefaction: Example Of Samsun-Tekkeköy

    Science.gov (United States)

    Öztürk, Seda; Banu İkizler, S.; Şadoǧlu, Erol; Dadaşbilge, Ozan; Angın, Zekai

    2017-04-01

    Liquefaction that occurs due to cyclic and temporary loads on non-cohesive and water-logged sandy soil during earthquake causes considerable loss of lives and property in Turkey and the world. Turkey is a country of which a major part of territories is under earthquake risk due to its tectonic characteristics. Therefore, necessary precautions should be taken against possible disasters such as earthquakes that cannot be prevented in existing conditions. This study focuses on soil improvement applications for a site, located in the influence area of the North Anatolian Fault Zone that is one of the most active strike-slip fault systems of the world. The site was found to have liquefaction potential as a result of the analyses taking into account seismicity of the region and soil conditions. The investigation site is located in the industrial installations, Tekkeköy district of Samsun province and 8 new fuel tanks will be built in the area. Accordingly, as a result of the drilling works performed on the ground for site investigation, the filling layer between 0,9-1,2 m up the ground surface, the medium-tight and medium sand between 6-8 m after filling layer and then at the bottom, following this, medium tight-dense fine-medium sand layers have been encountered. In the Standard Penetration Tests made in this layer, values within N30=11-Refusal (>50) were obtained. It has been determined that the underground water level varies between 1.4-4 m according to the data obtained from the inspection well. In addition, the natural unit weight of the soil was determined as approximately 18 kN/m3 and the internal friction angle as (φ), 30o. The soil is composed of alluviums and layers of medium dense sand of the Holocene age originating from the sea. When all these conditions are evaluated, detailed risk analyses have been deemed necessary, since they indicate a risk of liquefaction. Liquefaction risk analyses were performed according to Seed and Idriss (1971) method for four

  9. Shear wave velocity investigation of soil liquefaction sites from the Tangshan, China M7.8 earthquake of 1976 using active and passive surface wave methods

    Science.gov (United States)

    Kayen, Robert E; Tao, Xiaxin; Shi, Lijing; Shi, Hailiang

    2008-01-01

    An initial investigation of soil liquefaction sites from the July, 28 1976 Tangshan M7.8 earthquake was conducted between 1976 and 1978 by the National Ministry of Railways, China. These data are the basis of the ‘Chinese Method’ for assessment of liquefaction potential of silty-sand deposits, and are an important component of the worldwide data set for modern probabilistic methods for assessment of soil liquefaction using Bayesian updating and system reliability tools. We revisited 26 sites identified in the maps and published 198 report of the Ministry of Railways in order to investigate these locations with a suite of active- and passive-array surface wave methods. These sites are clustered along the north coast of the Bo Hai Sea in three areas: Lutai, Tianjin; Tangshan City and outlying village, Hebei; and Luannan county, Hebei. First, we gathered and evaluated the Rayleigh wave dispersion characteristics of the ground by comparing dispersion curves from the active source harmonic wave-spectral analysis of surface waves (SASW) method and the passive array Spatial Auto-Correlation method (SPAC). The dispersive properties of the liquefied ground as measured by these two methods were found to be almost identical. These tests were hybridized and the data sets merged in order to invert of shear wave velocities for analysis of liquefaction potential using a probabilistic framework. The data from high-values of seismic intensity near Tangshan city to low-intensities distant of the event in Luannan County segregate out into clusters of liquefied and non liquefied points clearly separated by liquefaction boundary curves developed from a large global data set of 310 sites

  10. The Dynamic Behavior of a Network of Pipelines and Liquefaction of Soil Caused by the Earthquake Acceleration

    Directory of Open Access Journals (Sweden)

    Alireza Mirza Goltabar Roshan

    2015-09-01

    Full Text Available Risk analysis pipelines in the quake as one of the most vital arteries in the current circumstances in the world is of special importance. in our everyday activities, used to underground structures such as pipes, tunnels, wells and so on for services such as transporting water, transportation, irrigation, drainage, sewage disposal, transporting oil and gas, carrying acid waste, industrial, household and so on. With regard to the huge investments structures, especially buried underground pipes, we need to study these constructs in response to the earthquake, is clearly felt. Pipelines used for transporting gas and other fluids, are widely distributed in all areas. These lines due to passing through the densely populated areas are always buried in the earth. Seismic behavior of these pipes as a result of the interaction between the soil and the pipe is different from the above-ground structures. The manner of modelling of the effects of soil liquefaction on the pipes in this thesis is that two shear springs and a normal spring is defined between soil and the pipe that in liquefaction mode minimize the friction shear strength.

  11. Ground motions estimates for a cascadia earthquake from liquefaction evidence

    Science.gov (United States)

    Dickenson, S.E.; Obermeier, S.F.

    1998-01-01

    Paleoseismic studies conducted in the coastal regions of the Pacific Northwest in the past decade have revealed evidence of crustal downdropping and subsequent tsunami inundation, attributable to a large earthquake along the Cascadia subduction zone which occurred approximately 300 years ago, and most likely in 1700 AD. In order to characterize the severity of ground motions from this earthquake, we report on results of a field search for seismically induced liquefaction features. The search was made chiefly along the coastal portions of several river valleys in Washington, rivers along the central Oregon coast, as well as on islands in the Columbia River of Oregon and Washington. In this paper we focus only on the results of the Columbia River investigation. Numerous liquefaction features were found in some regions, but not in others. The regional distribution of liquefaction features is evaluated as a function of geologic and geotechnical factors at each site in order to estimate the intensity of ground shaking.

  12. STUDIES ON SOIL LIQUEFACTION AND SETTLEMENT IN THE URAYASU DISTRICT USING EFFECTIVE STRESS ANALYSES FOR THE 2011 EAST JAPAN GREAT EARTHQUAKE

    Science.gov (United States)

    Fukutake, Kiyoshi; Jang, Jiho

    The 2011 East Japan Great Earthquake caused soil liquefaction over a wide area. In particular, severe soil liquefaction was reported in the northern parts of the reclaimed lands around Tokyo Bay, even though the seismic intensity in this area was only about 5 on the Japan scale with low acceleration. The authors surveyed the residual settlement in the Urayasu district and then conducted effective stress analyses of areas affected and not affected by liquefaction. The analyses compared with the acceleration waves monitored with K-NET Urayasu or ground settlements surveyed. It is based on the acceleration observed on the seismic bedrocks in earthquake engineering in some other districts adjacent to Urayasu. Much of the settlement was due to the long duration of the earthquake, with further settlement resulting from the aftershock. The study shows that the affects of aftershocks need to be monitored, as well as needs for improvement of simplified liquefaction prediction methods using the factor of safety, FL.

  13. Liquefaction of ground tire rubber at low temperature.

    Science.gov (United States)

    Cheng, Xiangyun; Song, Pan; Zhao, Xinyu; Peng, Zonglin; Wang, Shifeng

    2018-01-01

    Low-temperature liquefaction has been investigated as a novel method for recycling ground tire rubber (GTR) into liquid using an environmentally benign process. The liquefaction was carried out at different temperatures (140, 160 and 180 °C) over variable time ranges (2-24 h) by blending the GTR with aromatic oil in a range from 0 to 100 parts per hundred rubber (phr). The liquefied GTR was separated into sol (the soluble fraction of rubber which can be extracted with toluene) and gel fractions (the solid fraction obtained after extraction) to evaluate the reclaiming efficiency. It was discovered that the percentage of the sol fraction increased with time, swelling ratio and temperature. Liquefied rubber was obtained with a high sol fraction (68.34 wt%) at 140 °C. Simultaneously, separation of nano-sized carbon black from the rubber networks occurred. The separation of carbon black from the network is the result of significant damage to the cross-linked-network that occurs throughout the liquefaction process. During liquefaction, a competitive reaction between main chain scission and cross-link bond breakage takes place. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Liquefaction of uranium tailings

    International Nuclear Information System (INIS)

    1992-02-01

    Numerical methods for assessing the liquefaction potential of soils are reviewed with a view to their application to uranium tailings. The method can be divided into two categories: total stress analysis, where changes in pore pressure are not considered in the soil model, and effective stress analysis, where changes in pore pressure are included in the soil model. Effective stress analysis is more realistic, but few computer programs exist for such analysis in two or three dimensions. A simple linearized, two-dimensional, finite element effective stress analysis which incorporates volumetric compaction due to shear motion is described and implemented. The new program is applied to the assessment of liquefaction potential of tailings in the Quirke Mine tailings area near Elliot Lake, Ontario. The results are compared with those of a total stress analysis. Both analyses indicate liquefaction would occur if a magnitude 6.0 earthquake were to occur near the area. However, the extent of liquefaction predicted by the effective stress analysis is much less than that predicted by the total stress analysis. The results of both methods are sensitive to assumed material properties and to the method used to determine the cyclic shear strength of the tailings. Further analysis, incorporating more in situ and/or laboratory data, is recommended before conclusions can be made concerning the dynamic stability of these tailings

  15. SHAKING TABLE TEST AND EFFECTIVE STRESS ANALYSIS ON SEISMIC PERFORMANCE WITH SEISMIC ISOLATION RUBBER TO THE INTERMEDIATE PART OF PILE FOUNDATION IN LIQUEFACTION

    Science.gov (United States)

    Uno, Kunihiko; Otsuka, Hisanori; Mitou, Masaaki

    The pile foundation is heavily damaged at the boundary division of the ground types, liquefied ground and non-liquefied ground, during an earthquake and there is a possibility of the collapse of the piles. In this study, we conduct a shaking table test and effective stress analysis of the influence of soil liquefaction and the seismic inertial force exerted on the pile foundation. When the intermediate part of the pile, there is at the boundary division, is subjected to section force, this part increases in size as compared to the pile head in certain instances. Further, we develop a seismic resistance method for a pile foundation in liquefaction using seismic isolation rubber and it is shown the middle part seismic isolation system is very effective.

  16. Survival of Legionella in earthquake-induced soil disturbance (liquefaction) in residential areas, Christchurch, New Zealand: implications for disease.

    Science.gov (United States)

    Graham, Frances F; Harte, David Jg

    2017-05-12

    To investigate a possible link between liquefaction dust exposure and the noticeable increase in legionellosis cases in response to major earthquakes in 2010 and 2011 that resulted in widespread soil disturbance (liquefaction) in parts of Christchurch, New Zealand. We culture tested liquefaction-affected soil for Legionella spp. in the six months following the first earthquake in 2010. Thirty silt samples were collected randomly from locations within Christchurch's metropolitan area that were affected by liquefaction. The samples were tested to determine the presence of Legionella using qualitative and quantitative methods. Liquefaction-affected soil samples from three sites were further subjected to particle size distribution analysis and determination of major oxides. A controlled field study was established using six silt samples and one control (commercial compost), seeded with a wild-type strain of Legionella bozemanae serogroup (sg) 1 and persistence monitored over a 60-day period by culturing for the presence of Legionella. Dry matter determinations were undertaken so that total Legionella could be calculated on a dry weight basis. Legionella bacteria were undetectable after day one in the silt samples. However, L. bozemanae sg1 was detected in the control sample for the entire study period. This study showed that the liquefaction-affected soil could not contribute directly to the observed increase in legionellosis cases after the earthquakes due to its inability to support growth and survival of the Legionella bacteria.

  17. Evaluation of soil liquefaction potential for level ground during earthquakes. A summary report

    International Nuclear Information System (INIS)

    Seed, H.B.; Arango, I.; Chan, C.K.

    1975-10-01

    The results of a three-year research program conducted to investigate the settlement and liquefaction of sands under multi-directional shaking are evaluated. The investigation indicated that the behavior of a saturated sand under cyclic loading conditions is a function of its geologic and seismic history and grain structure as well as its placement density. It is concluded that the resistance to liquefaction of a sand deposit can best be estimated by laboratory testing on undisturbed samples. It is shown that cyclic triaxial tests used in conjunction with appropriate correction factors to account for multi-directional shaking, simple shear loading conditions, and overconsolidation effects can provide valid data on cyclic loading characteristics. The concepts of ''limited strain potential'' and acceptable value of the factor of safety against initial liquefaction are introduced. Finally, the two basic methods for evaluating liquefaction potential and the effects of liquefaction are reviewed and updated with the information obtained through this research effort

  18. Liquefaction macrophenomena in the great Wenchuan earthquake

    Science.gov (United States)

    Chen, Longwei; Yuan, Xiaoming; Cao, Zhenzhong; Hou, Longqing; Sun, Rui; Dong, Lin; Wang, Weiming; Meng, Fanchao; Chen, Hongjuan

    2009-06-01

    On May 12, 2008 at 14:28, a catastrophic magnitude M s 8.0 earthquake struck the Sichuan Province of China. The epicenter was located at Wenchuan (31.00°N, 103.40°E). Liquefaction macrophenomena and corresponding destruction was observed throughout a vast area of 500 km long and 200 km wide following the earthquake. This paper illustrates the geographic distribution of the liquefaction and the relationship between liquefaction behavior and seismic intensity, and summarizes the liquefaction macrophenomena, including sandboils and waterspouts, ground subsidence, ground fissures etc., and relevant liquefaction features. A brief summary of the structural damage caused by liquefaction is presented and discussed. Based on comparisons with liquefaction phenomena observed in the 1976 Tangshan and 1975 Haicheng earthquakes, preliminary analyses were performed, which revealed some new features of liquefaction behavior and associated issues arising from this event. The site investigation indicated that the spatial non-uniformity of liquefaction distribution was obvious and most of the liquefied sites were located in regions of seismic intensity VIII. However, liquefaction phenomena at ten different sites in regions of seismic intensity VI were also observed for the first time in China mainland. Sandboils and waterspouts ranged from centimeters to tens of meters, with most between 1 m to 3 m. Dramatically high water/sand ejections, e.g., more than 10 m, were observed at four different sites. The sand ejections included silty sand, fine sand, medium sand, course sand and gravel, but the ejected sand amount was less than that in the 1976 Tangshan earthquake. Possible liquefaction of natural gravel soils was observed for the first time in China mainland.

  19. Liquefaction induced by earthquakes in Japan. Jiban no ekijoka/ekijoka saigai chosa kenkyu no seika

    Energy Technology Data Exchange (ETDEWEB)

    Tono, I [Nation Inst. for Enviromental Studies, Tsukuba (Japan)

    1992-09-01

    Disaster caused by liquefaction is an important problem for the development of water-front because most of the places suffered from liquefaction disasters recently are located on sandy grounds. The damaged cases in the past due to liquefaction induced by earthquakes are grouped into: subsidence and inclination caused by the loss of supporting force of the ground, coming to the surface of buried structures due to excess pore hydrostatic pressure, destruction of lifeline accompanying the fluidization of ground, breakdown of bulkhead, retaining wall, etc. by increased earth pressure, sinking of soil structures, ground fissure, sliding, and immersion in floods and submergence of farms due to spouting of underground water. As regards prediction of liquefaction, description is made on the prediction of the occurrence of liquefaction and liquefaction prediction for which sedimentation environment is taken into consideration. Open-cut investigation can be said as the most effective means for accurate learning of the depth, thickness and sedimentation structure of liquefied layers. Liquefaction layers found in remains are also introduced. 16 refs., 6 figs.

  20. Numerical analysis of stone columns in mitigating liquefaction effects in embankment fills

    Energy Technology Data Exchange (ETDEWEB)

    Borghei, Z.; Soroush, A. [Amirkabir University of Technology, Tehran, (Iran, Islamic Republic of); Noorzad, A. [Power and Water University of Technology, Tehran, (Iran, Islamic Republic of)

    2010-07-01

    The traditional approach to liquefaction in embankment fills is to use in-situ densification. The use of stone columns offers the possibility of preventing liquefaction and associated settlements while reducing the cost and time required for treatment. This paper investigated the behaviour of stone columns using a numerical method. The study focused on a case study, a sand layer beneath two wall tanks, butane and propane NGL, located on Siri Island, Persian Gulf, Iran. Numerical analyses were carried out to evaluate the rate of excess pore pressure build-up in the improved ground. The numerical model results were compared to the simulation results from a centrifuge test for a uniform 19m-thick liquefiable sand layer. The numerical methodology was verified. The results showed that the stone columns can significantly increase the rate of pore pressure dissipation and reduce the settlement. It was found that the installation process densifies the surrounding soil, decreasing the liquefaction potential.

  1. Finite Element Modelling of Seismic Liquefaction in Soils

    NARCIS (Netherlands)

    Galavi, V.; Petalas, A.; Brinkgreve, R.B.J.

    2013-01-01

    Numerical aspects of seismic liquefaction in soils as implemented in the finite element code, PLAXIS, is described in this paper. After description of finite element equations of dynamic problems, three practical dynamic boundary conditions, namely viscous boundary tractions, tied degrees of freedom

  2. Influence of saturation degree and role of suction in unsaturated soils behaviour: application to liquefaction

    Directory of Open Access Journals (Sweden)

    Vernay Mathilde

    2016-01-01

    Full Text Available The effect of the pore fluid compressibility on liquefaction has been studied by various authors. But few papers have been published about the role of suction in cyclic behavior of unsaturated soils. Most of these works use Skempton coefficient B as a reference in terms of saturation degree to analyze their results. The use of B in experimental conditions is convenient, but is not accurate when studying liquefaction behavior, since effects of suction are neglected. In this paper, the influence of saturation degree on mechanical behavior of a soil under dynamic loads is studied. Cyclic undrained triaxial tests were performed on sand samples, under various levels of saturation. Soil-water characteristic curve was used, in order to study influence of suction. The first results confirm that when the degree of saturation decreases, the resistance increases. Initial positive suction tends to stiffen the soil. It also appears that the presence of air delays the occurrence of liquefaction, but doesn’t prevent it. Indeed, liquefaction is observed, whether the soil is saturated or not.

  3. Dynamic behavior of potentially unstable soils and application of model for seismic risk reduction from liquefaction occurrence

    International Nuclear Information System (INIS)

    Sheshov, Vlatko

    2002-11-01

    Throughout the last decades, liquefaction phenomenon has been one of the most frequently discussed subjects in geotechnical earthquake engineering. Liquefaction has been a problem arousing considerable attention among the world scientists. The consequences from liquefaction occurrence have been present after each stronger earthquake. We have been witnesses of several strong earthquakes (Kobe - Japan, Chi Chi-Taiwan, Bhuj-India) that have occurred in the last decade. In these earthquakes, the liquefaction phenomenon caused severe damage to structures, loss of their functioning and indirect loss of human lives. Liquefaction as a phenomenon should not arouse fear but should call for serious elaboration and attention instead. The destructive nature of liquefaction could be mitigated, i.e., overcome in two ways: avoiding construction at locations characterized by high liquefaction potential which is not always possible and taking of measures for improvement of foundation soil. Finding out suitable measures for improvement of soil and thus mitigating the liquefaction potential has been the main incentive for the elaboration of this dissertation. The dissipation method involving the use of vertical drains as one of the measures for improvement of soils has been elaborated in details in this scientific work. The doctoral dissertation has been realized through experimental and analytical investigations. The experimental investigations done in the first phase represent model seismic shaking table tests of the efficiency of vertical drains (prefabricated and gravel drains). The analytical investigations in this phase have involved mathematical simulation of the effect of vertical drains upon pore pressure state during the experiments. The second phase of the experimental investigations has involved model tests of the behavior of pile foundations in soils susceptible to liquefaction with installed prefabricated drains. In this phase, the 'p - y' relationships have been

  4. Stiff Columns as Liquefaction Mitigation Measure for Retrofit of Existing Buildings

    Directory of Open Access Journals (Sweden)

    Zaheer Ahmed Almani

    2012-10-01

    Full Text Available In this paper, ground reinforcement with jet grouted columns under shallow foundations of existing buildings was analysed using numerical modelling. This study is related with ground reinforcement by installing stiff jet grouted columns around the shallow foundations of existing building when the foundation soil is liquefied during an earthquake. The isolated shallow square footing pad supporting a typical simple frame structure was constructed on the reinforced ground with stiff jet grouted column rows at the shallow depth from the ground surface. This soil-structure system was modelled and analyzed as plane-strain using the FLAC (Fast Lagrangian Analysis of Continua 2D dynamic modelling and analysis software. The results showed that liquefaction-induced large settlement of shallow foundation of existing building can be reduced to tolerable limits by applying ground reinforcement with continuous rows vertical jet grouted columns adjacent to footing pad.

  5. Probabilistic versus deterministic hazard assessment in liquefaction susceptible zones

    Science.gov (United States)

    Daminelli, Rosastella; Gerosa, Daniele; Marcellini, Alberto; Tento, Alberto

    2015-04-01

    Probabilistic seismic hazard assessment (PSHA), usually adopted in the framework of seismic codes redaction, is based on Poissonian description of the temporal occurrence, negative exponential distribution of magnitude and attenuation relationship with log-normal distribution of PGA or response spectrum. The main positive aspect of this approach stems into the fact that is presently a standard for the majority of countries, but there are weak points in particular regarding the physical description of the earthquake phenomenon. Factors like site effects, source characteristics like duration of the strong motion and directivity that could significantly influence the expected motion at the site are not taken into account by PSHA. Deterministic models can better evaluate the ground motion at a site from a physical point of view, but its prediction reliability depends on the degree of knowledge of the source, wave propagation and soil parameters. We compare these two approaches in selected sites affected by the May 2012 Emilia-Romagna and Lombardia earthquake, that caused widespread liquefaction phenomena unusually for magnitude less than 6. We focus on sites liquefiable because of their soil mechanical parameters and water table level. Our analysis shows that the choice between deterministic and probabilistic hazard analysis is strongly dependent on site conditions. The looser the soil and the higher the liquefaction potential, the more suitable is the deterministic approach. Source characteristics, in particular the duration of strong ground motion, have long since recognized as relevant to induce liquefaction; unfortunately a quantitative prediction of these parameters appears very unlikely, dramatically reducing the possibility of their adoption in hazard assessment. Last but not least, the economic factors are relevant in the choice of the approach. The case history of 2012 Emilia-Romagna and Lombardia earthquake, with an officially estimated cost of 6 billions

  6. Assessment and mitigation of liquefaction

    International Nuclear Information System (INIS)

    Czelada, J. A.; Melentijevic, S.

    2014-01-01

    The simplified empirical procedure in its original form presented in Youd et al (2001) and some further developments given in Idriss and Boulanger (2006) for evaluating liquefaction resistance of soils is presented in this paper only for the criteria based on standard penetration test (SPT). Methods for estimating the ground improvement techniques by stone columns and dynamics compaction are presented. For stone columns Priebe method (1995) and homogenized method (equivalent parameters) are present. for dynamic compaction methods proposed by Recomendacion Geotecnica para las Obras Maritimas y/o Porturaria - ROM 0.5-05 (2005) and Nashed et al. (2009) are described. These analysis methods for each ground improvement technique are compared in two different case histories showing similar results in each one. (Author)

  7. Liquefaction under drained condition, from the lab to reality ?

    Science.gov (United States)

    Clément, Cécile; Aharonov, Einat; Stojanova, Menka; Toussaint, Renaud

    2015-04-01

    Liquefaction constitutes a significant natural hazard in relation to earthquakes and landslides. This effect can cause buildings to tilt or sink into the soil, mud-volcanoes, floatation of buried objects, long-runout landslides, etc. In this work we present a new understanding regarding the mechanism by which buildings sink and tilt during liquefaction caused by earthquakes. Conventional understanding of liquefaction explains most observed cases as occurring in an undrained, under-compacted, layer of sandy soil saturated with water [1]: According to that understanding, the under compacted sandy layer has the tendency to compact when a load is applied. In our case the load comes from ground shaking during an earthquake. When the soil compacts, the fluid pore pressure rises. Because in undrained conditions the fluid cannot flow out, the pore pressure builds up. The weight of buildings is in this case transferred from the grains of the soil to the pore water. The soil loses its rigidity and it flows like a liquid. From this model scientists made theoretical and empirical laws for geotechnical use and buildings construction. Despite the success of this conventional model in many cases, liquefied soils were also observed under drained conditions, and in previously compacted soils, which doesn't agree with the assumption of the model quoted above. One of the famous liquefaction events is the Kobe port destruction during the 1995 earthquake. A simple calculation of the Deborah number following Goren et al ([2][3]) shows that the undrained constraint was not met below the Kobe port during the 1995 earthquake. We propose another model, of liquefaction in drained granular media. According to our model the mere presence of water in granular media is enough to cause liquefaction during an earthquake, provided that the water reaches close to the surface. Our computations are based on the buoyancy force, and we take into account the static fluid pressure only. For small

  8. Evaluation of liquefaction potential of soil based on standard penetration test using multi-gene genetic programming model

    Science.gov (United States)

    Muduli, Pradyut; Das, Sarat

    2014-06-01

    This paper discusses the evaluation of liquefaction potential of soil based on standard penetration test (SPT) dataset using evolutionary artificial intelligence technique, multi-gene genetic programming (MGGP). The liquefaction classification accuracy (94.19%) of the developed liquefaction index (LI) model is found to be better than that of available artificial neural network (ANN) model (88.37%) and at par with the available support vector machine (SVM) model (94.19%) on the basis of the testing data. Further, an empirical equation is presented using MGGP to approximate the unknown limit state function representing the cyclic resistance ratio (CRR) of soil based on developed LI model. Using an independent database of 227 cases, the overall rates of successful prediction of occurrence of liquefaction and non-liquefaction are found to be 87, 86, and 84% by the developed MGGP based model, available ANN and the statistical models, respectively, on the basis of calculated factor of safety (F s) against the liquefaction occurrence.

  9. Probabilistic and Scenario Seismic and Liquefaction Hazard Analysis of the Mississippi Embayment Incorporating Nonlinear Site Effects

    Science.gov (United States)

    Cramer, C. H.; Dhar, M. S.

    2017-12-01

    The influence of deep sediment deposits of the Mississippi Embayment (ME) on the propagation of seismic waves is poorly understood and remains a major source of uncertainty for site response analysis. Many researchers have studied the effects of these deposits on seismic hazard of the area using available information at the time. In this study, we have used updated and newly available resources for seismic and liquefaction hazard analyses of the ME. We have developed an improved 3D geological model. Additionally, we used surface geological maps from Cupples and Van Arsdale (2013) to prepare liquefaction hazard maps. Both equivalent linear and nonlinear site response codes were used to develop site amplification distributions for use in generating hazard maps. The site amplification distributions are created using the Monte Carlo approach of Cramer et al. (2004, 2006) on a 0.1-degree grid. The 2014 National Seismic Hazard model and attenuation relations (Petersen et al., 2014) are used to prepare seismic hazard maps. Then liquefaction hazard maps are generated using liquefaction probability curves from Holzer (2011) and Cramer et al. (2015). Equivalent linear response (w/ increased precision, restricted nonlinear behavior with depth) shows similar hazard for the ME compared to nonlinear analysis (w/o pore pressure) results. At short periods nonlinear deamplification dominates the hazard, but at long periods resonance amplification dominates. The liquefaction hazard tends to be high in Holocene and late Pleistocene lowland sediments, even with lowered ground water levels, and low in Pleistocene loess of the uplands. Considering pore pressure effects in nonlinear site response analysis at a test site on the lowlands shows amplification of ground motion at short periods. PGA estimates from ME liquefaction and MMI observations are in the 0.25 to 0.4 g range. Our estimated M7.5 PGA hazard within 10 km of the fault can exceed this. Ground motion observations from

  10. Probabilistic liquefaction hazard analysis at liquefied sites of 1956 Dunaharaszti earthquake, in Hungary

    Science.gov (United States)

    Győri, Erzsébet; Gráczer, Zoltán; Tóth, László; Bán, Zoltán; Horváth, Tibor

    2017-04-01

    Liquefaction potential evaluations are generally made to assess the hazard from specific scenario earthquakes. These evaluations may estimate the potential in a binary fashion (yes/no), define a factor of safety or predict the probability of liquefaction given a scenario event. Usually the level of ground shaking is obtained from the results of PSHA. Although it is determined probabilistically, a single level of ground shaking is selected and used within the liquefaction potential evaluation. In contrary, the fully probabilistic liquefaction potential assessment methods provide a complete picture of liquefaction hazard, namely taking into account the joint probability distribution of PGA and magnitude of earthquake scenarios; both of which are key inputs in the stress-based simplified methods. Kramer and Mayfield (2007) has developed a fully probabilistic liquefaction potential evaluation method using a performance-based earthquake engineering (PBEE) framework. The results of the procedure are the direct estimate of the return period of liquefaction and the liquefaction hazard curves in function of depth. The method combines the disaggregation matrices computed for different exceedance frequencies during probabilistic seismic hazard analysis with one of the recent models for the conditional probability of liquefaction. We have developed a software for the assessment of performance-based liquefaction triggering on the basis of Kramer and Mayfield method. Originally the SPT based probabilistic method of Cetin et al. (2004) was built-in into the procedure of Kramer and Mayfield to compute the conditional probability however there is no professional consensus about its applicability. Therefore we have included not only Cetin's method but Idriss and Boulanger (2012) SPT based moreover Boulanger and Idriss (2014) CPT based procedures into our computer program. In 1956, a damaging earthquake of magnitude 5.6 occurred in Dunaharaszti, in Hungary. Its epicenter was located

  11. Assessment of liquefaction-induced hazards using Bayesian networks based on standard penetration test data

    Science.gov (United States)

    Tang, Xiao-Wei; Bai, Xu; Hu, Ji-Lei; Qiu, Jiang-Nan

    2018-05-01

    Liquefaction-induced hazards such as sand boils, ground cracks, settlement, and lateral spreading are responsible for considerable damage to engineering structures during major earthquakes. Presently, there is no effective empirical approach that can assess different liquefaction-induced hazards in one model. This is because of the uncertainties and complexity of the factors related to seismic liquefaction and liquefaction-induced hazards. In this study, Bayesian networks (BNs) are used to integrate multiple factors related to seismic liquefaction, sand boils, ground cracks, settlement, and lateral spreading into a model based on standard penetration test data. The constructed BN model can assess four different liquefaction-induced hazards together. In a case study, the BN method outperforms an artificial neural network and Ishihara and Yoshimine's simplified method in terms of accuracy, Brier score, recall, precision, and area under the curve (AUC) of the receiver operating characteristic (ROC). This demonstrates that the BN method is a good alternative tool for the risk assessment of liquefaction-induced hazards. Furthermore, the performance of the BN model in estimating liquefaction-induced hazards in Japan's 2011 Tōhoku earthquake confirms its correctness and reliability compared with the liquefaction potential index approach. The proposed BN model can also predict whether the soil becomes liquefied after an earthquake and can deduce the chain reaction process of liquefaction-induced hazards and perform backward reasoning. The assessment results from the proposed model provide informative guidelines for decision-makers to detect the damage state of a field following liquefaction.

  12. Retesting of liquefaction and nonliquefaction case histories from the 1976 Tangshan earthquake

    Science.gov (United States)

    Moss, R.E.S.; Kayen, R.E.; Tong, L.-Y.; Liu, S.-Y.; Cai, G.-J.; Wu, J.

    2011-01-01

    A field investigation was performed to retest liquefaction and nonliquefaction sites from the 1976 Tangshan earthquake in China. These sites were carefully investigated in 1978 and 1979 by using standard penetration test (SPT) and cone penetration test (CPT) equipment; however, the CPT measurements are obsolete because of the now nonstandard cone that was used at the time. In 2007, a modern cone was mobilized to retest 18 selected sites that are particularly important because of the intense ground shaking they sustained despite their high fines content and/or because the site did not liquefy. Of the sites reinvestigated and carefully reprocessed, 13 were considered accurate representative case histories. Two of the sites that were originally investigated for liquefaction have been reinvestigated for cyclic failure of fine-grained soil and removed from consideration for liquefaction triggering. The most important outcome of these field investigations was the collection of more accurate data for three nonliquefaction sites that experienced intense ground shaking. Data for these three case histories is now included in an area of the liquefaction triggering database that was poorly populated and will help constrain the upper bound of future liquefaction triggering curves. ?? 2011 American Society of Civil Engineers.

  13. Engineering geologic and geotechnical analysis of paleoseismic shaking using liquefaction effects: Field examples

    Science.gov (United States)

    Green, R.A.; Obermeier, S.F.; Olson, S.M.

    2005-01-01

    The greatest impediments to the widespread acceptance of back-calculated ground motion characteristics from paleoliquefaction studies typically stem from three uncertainties: (1) the significance of changes in the geotechnical properties of post-liquefied sediments (e.g., "aging" and density changes), (2) the selection of appropriate geotechnical soil indices from individual paleoliquefaction sites, and (3) the methodology for integration of back-calculated results of strength of shaking from individual paleoliquefaction sites into a regional assessment of paleoseismic strength of shaking. Presented herein are two case studies that illustrate the methods outlined by Olson et al. [Engineering Geology, this issue] for addressing these uncertainties. The first case study is for a site near Memphis, Tennessee, wherein cone penetration test data from side-by-side locations, one of liquefaction and the other of no liquefaction, are used to readily discern that the influence of post-liquefaction "aging" and density changes on the measured in situ soil indices is minimal. In the second case study, 12 sites that are at scattered locations in the Wabash Valley and that exhibit paleoliquefaction features are analyzed. The features are first provisionally attributed to the Vincennes Earthquake, which occurred around 6100 years BP, and are used to illustrate our proposed approach for selecting representative soil indices of the liquefied sediments. These indices are used in back-calculating the strength of shaking at the individual sites, the results from which are then incorporated into a regional assessment of the moment magnitude, M, of the Vincennes Earthquake. The regional assessment validated the provisional assumption that the paleoliquefaction features at the scattered sites were induced by the Vincennes Earthquake, in the main, which was determined to have M ??? 7.5. The uncertainties and assumptions used in the assessment are discussed in detail. ?? 2004 Elsevier B

  14. The Loma Prieta, California, Earthquake of October 17, 1989: Strong Ground Motion and Ground Failure

    Science.gov (United States)

    Coordinated by Holzer, Thomas L.

    1992-01-01

    Professional Paper 1551 describes the effects at the land surface caused by the Loma Prieta earthquake. These effects: include the pattern and characteristics of strong ground shaking, liquefaction of both floodplain deposits along the Pajaro and Salinas Rivers in the Monterey Bay region and sandy artificial fills along the margins of San Francisco Bay, landslides in the epicentral region, and increased stream flow. Some significant findings and their impacts were: * Strong shaking that was amplified by a factor of about two by soft soils caused damage at up to 100 kilometers (60 miles) from the epicenter. * Instrumental recordings of the ground shaking have been used to improve how building codes consider site amplification effects from soft soils. * Liquefaction at 134 locations caused $99.2 million of the total earthquake loss of $5.9 billion. Liquefaction of floodplain deposits and sandy artificial fills was similar in nature to that which occurred in the 1906 San Francisco earthquake and indicated that many areas remain susceptible to liquefaction damage in the San Francisco and Monterey Bay regions. * Landslides caused $30 million in earthquake losses, damaging at least 200 residences. Many landslides showed evidence of movement in previous earthquakes. * Recognition of the similarities between liquefaction and landslides in 1906 and 1989 and research in intervening years that established methodologies to map liquefaction and landslide hazards prompted the California legislature to pass in 1990 the Seismic Hazards Mapping Act that required the California Geological Survey to delineate regulatory zones of areas potentially susceptible to these hazards. * The earthquake caused the flow of many streams in the epicentral region to increase. Effects were noted up to 88 km from the epicenter. * Post-earthquake studies of the Marina District of San Francisco provide perhaps the most comprehensive case history of earthquake effects at a specific site developed for

  15. Influence of ground water on soil-structure interaction

    International Nuclear Information System (INIS)

    Costantino, C.J.; Lung, R.H.; Graves, H.L.

    1987-01-01

    The study of structural response to seismic inputs has been extensively studied and, particularly with the advent of the growth of digital computer capability, has lead to the development of numerical methods of analysis which are used as standard tools for the design of structures. One aspect of the soil-structure interaction (SSI) process which has not been developed to the same degree of sophistication is the impact of ground water (or pure water) on the response of the soil-structure system. There are very good reasons for his state of affairs, however, not the least of which is the difficulty of incorporating the true constitutive behavior of saturated soils into the analysis. At the large strain end of the spectrum, the engineer is concerned with the potential development of failure conditions under the structure, and is typically interested in the onset of liquefaction conditions. The current state of the art in this area is to a great extent based on empirical methods of analysis which were developed from investigations of limited failure data from specific sites around the world. Since it is known that analytic solutions are available for only the simplest of configurations, a numerical finite element solution process was developed. Again, in keeping with typical SSI analyses, in order to make the finite element approach yield resonable results, a comparable transmitting boundary formulation was included in the development. The purpose of the transmitting boundary is, of course, to allow for the treatment of extended soil/water half-space problems. For the calculations presented herein, a simple one dimensional transmitting boundary model was developed and utilized

  16. Liquefaction evidence for the strength of ground motions resulting from Late Holocene Cascadia subduction earthquakes, with emphasis on the event of 1700 A.D.

    Science.gov (United States)

    Obermeier, S.F.; Dickenson, S.E.

    2000-01-01

    During the past decade, paleoseismic studies done by many researchers in the coastal regions of the Pacific Northwest have shown that regional downdropping and subsequent tsunami inundation occurred in response to a major earthquake along the Cascadia subduction zone. This earthquake occurred almost certainly in 1700 A.D., and is believed by many to have been of M 8.5-9 or perhaps larger. In order to characterize the severity of ground motions from this earthquake, we report on a field search and analysis of seismically induced liquefaction features. The search was conducted chiefly along the banks of islands in the lowermost Columbia River of Oregon and Washington and in stream banks along smaller rivers throughout southwestern Washington. To a lesser extent, the investigation included rivers in central Oregon. Numerous small- to moderate-sized liquefaction features from the earthquake of 1700 A.D. were found in some regions, but there was a notable lack of liquefaction features in others. The regional distribution of liquefaction features is evaluated as a function of geologic and geotechnical factors in different field settings near the coast. Our use of widely different field settings, each in which we independently assess the strength of shaking and arrive at the same conclusion, enhances the credibility of our interpretations. Our regional inventory of liquefaction features and preliminary geotechnical analysis of liquefaction potential provide substantial evidence for only moderate levels of ground shaking in coastal Washington and Oregon during the subduction earthquake of 1700 A.D. Additionally, it appears that a similar conclusion can be reached for an earlier subduction earthquake that occurred within the past 1100 years, which also has been characterized by others as being M 8 or greater. On the basis of more limited data for older events collected in our regional study, it appears that seismic shaking has been no stronger throughout Holocene time. Our

  17. Assessment and mitigation of liquefaction; Evaluacion y mitigacion de la licuefaccion

    Energy Technology Data Exchange (ETDEWEB)

    Czelada, J. A.; Melentijevic, S.

    2014-07-01

    The simplified empirical procedure in its original form presented in Youd et al (2001) and some further developments given in Idriss and Boulanger (2006) for evaluating liquefaction resistance of soils is presented in this paper only for the criteria based on standard penetration test (SPT). Methods for estimating the ground improvement techniques by stone columns and dynamics compaction are presented. For stone columns Priebe method (1995) and homogenized method (equivalent parameters) are present. for dynamic compaction methods proposed by Recomendacion Geotecnica para las Obras Maritimas y/o Porturaria - ROM 0.5-05 (2005) and Nashed et al. (2009) are described. These analysis methods for each ground improvement technique are compared in two different case histories showing similar results in each one. (Author)

  18. Dynamic Characteristics of Saturated Silty Soil Ground Treated by Stone Column Composite Foundation

    Directory of Open Access Journals (Sweden)

    Yongxiang Zhan

    2014-01-01

    Full Text Available A shaking table model test was carried out to develop an understanding of the performance improvement of saturated silty soil ground using stone column composite foundation as reinforcement. It is found that at less than 0.161 g loading acceleration, soil between piles has not yet been liquefied, the response acceleration scarcely enlarges, and the shear displacement almost does not appear in silty soil. At 0.252 g loading acceleration, as a result of liquefaction of soil between piles, the response acceleration increases rapidly and reaches its peak, and the shear displacement of silty soil increases significantly. At 0.325 g loading acceleration, the integral rigidity of foundation decreases greatly, which reduces its capability of vibration transmission and result in the response acceleration amplification coefficient is less than that at the former loading acceleration, but the shear displacement of silty soil further increases. The stone column composite foundation can greatly reduce both the shear displacement and the settlement of ground compared with untreated foundation. Under the condition of 7-degree seismic fortification, the design meets seismic resistance requirements.

  19. Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground

    Science.gov (United States)

    Tang, Liang; Ling, Xianzhang; Xu, Pengju; Gao, Xia; Wang, Dongsheng

    2010-03-01

    This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three El Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.

  20. Liquefaction of Saturated Soil and the Diffusion Equation

    Science.gov (United States)

    Sawicki, Andrzej; Sławińska, Justyna

    2015-06-01

    The paper deals with the diffusion equation for pore water pressures with the source term, which is widely promoted in the marine engineering literature. It is shown that such an equation cannot be derived in a consistent way from the mass balance and the Darcy law. The shortcomings of the artificial source term are pointed out, including inconsistencies with experimental data. It is concluded that liquefaction and the preceding process of pore pressure generation and the weakening of the soil skeleton should be described by constitutive equations within the well-known framework of applied mechanics. Relevant references are provided

  1. Lateral response of pile foundations in liquefiable soils

    Directory of Open Access Journals (Sweden)

    Asskar Janalizadeh

    2015-10-01

    Full Text Available Liquefaction has been a main cause of damage to civil engineering structures in seismically active areas. The effects of damage of liquefaction on deep foundations are very destructive. Seismic behavior of pile foundations is widely discussed by many researchers for safer and more economic design purposes. This paper presents a pseudo-static method for analysis of piles in liquefiable soil under seismic loads. A free-field site response analysis using three-dimensional (3D numerical modeling was performed to determine kinematic loads from lateral ground displacements and inertial loads from vibration of the superstructure. The effects of various parameters, such as soil layering, kinematic and inertial forces, boundary condition of pile head and ground slope, on pile response were studied. By comparing the numerical results with the centrifuge test results, it can be concluded that the use of the p-y curves with various degradation factors in liquefiable sand gives reasonable results.

  2. Wave liquefaction in soils with clay content

    DEFF Research Database (Denmark)

    Kirca, Özgür; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    The paper presents the results of an experimental study of the influence of clay content (in silt-clay and sand-clay mixtures) on liquefaction beneath progressive waves. The experiments showed that the influence of clay content is very significant. Susceptibility of silt to liquefaction is increa...

  3. COMPARATIVE ANALYSIS OF GROUNDING RESISTANCE VALUE IN SOIL AND SEPTICTANK

    Directory of Open Access Journals (Sweden)

    Abdul Syakur

    2012-02-01

    Full Text Available The aim of grounding system to protect of electrical equipment and instrumentation system and peopletogether. The lightning stroke near the strucutre of building can damage of equipment and instrumentationsystem. Therefore, it is very important to protect theese electrical and electronic equipment from lightningstrike uses lightning protection system and grounding system.This paper presents kind of grounding system at type of soil and place. The measurement of groundingresistance in soil and septictank have done. Types of soil for grounding resistance measuring aremarshland, clay and rockland.The measurement results of grounding resistance show that value of grounding resistance depend ondeepness of electrode and kind of soil and septictank. Grounding resistance value in septictank is morelower than soil.

  4. Advances in Seabed Liquefaction and its Implications for Marine Structures

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2013-01-01

    A review is presented of recent advances in seabed liquefaction and its implications for marine structures. The review is organized in seven sections: Residual liquefaction, including the sequence of liquefaction, mathematical modelling, centrifuge modelling and comparison with standard wave-flum......-flume results; Momentary liquefaction; Floatation of buried pipelines; Sinking of pipelines and marine objects; Liquefaction at gravity structures; Stability of rock berms in liquefied soils; and Impact of seismic-induced liquefaction....

  5. EARTHQUAKE INDUCED LIQUEFACTION ANALYSIS OF

    African Journals Online (AJOL)

    liquefaction analysis of Tendaho earth-fill dam, which is part ... sugar cane plantation in an area of 60,000 hectares. The project .... The model is prepared using the QUAKE/W program for the ..... Geo-slope International, Ltd., Canada. Dynamic ...

  6. Non-linear transient behavior during soil liquefaction based on re-evaluation of seismic records

    OpenAIRE

    Kamagata, S.; Takewaki, Izuru

    2015-01-01

    Focusing on soil liquefaction, the seismic records during the Niigata-ken earthquake in 1964, the southern Hyogo prefecture earthquake in 1995 and the 2011 off the Pacific coast of Tohoku earthquake are analyzed by the non-stationary Fourier spectra. The shift of dominant frequency in the seismic record of Kawagishi-cho during the Niigata-ken earthquake is evaluated based on the time-variant property of dominant frequencies. The reduction ratio of the soil stiffness is evaluated from the shif...

  7. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    International Nuclear Information System (INIS)

    Elkhoraibi, T.; Hashemi, A.; Ostadan, F.

    2014-01-01

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  8. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    Energy Technology Data Exchange (ETDEWEB)

    Elkhoraibi, T., E-mail: telkhora@bechtel.com; Hashemi, A.; Ostadan, F.

    2014-04-01

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  9. The making of Andersen’s liquefaction chart

    DEFF Research Database (Denmark)

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    Andersen’s chart (Andersen & Berre, 1999) is a graphical method of observing cyclic soil response. It allows observing soil response to various stress amplitudes that can lead to liquefaction, excess plastic deformation stabilizing soil response.The process of obtaining the original chart has been...

  10. St. Louis area earthquake hazards mapping project; seismic and liquefaction hazard maps

    Science.gov (United States)

    Cramer, Chris H.; Bauer, Robert A.; Chung, Jae-won; Rogers, David; Pierce, Larry; Voigt, Vicki; Mitchell, Brad; Gaunt, David; Williams, Robert; Hoffman, David; Hempen, Gregory L.; Steckel, Phyllis; Boyd, Oliver; Watkins, Connor M.; Tucker, Kathleen; McCallister, Natasha

    2016-01-01

    We present probabilistic and deterministic seismic and liquefaction hazard maps for the densely populated St. Louis metropolitan area that account for the expected effects of surficial geology on earthquake ground shaking. Hazard calculations were based on a map grid of 0.005°, or about every 500 m, and are thus higher in resolution than any earlier studies. To estimate ground motions at the surface of the model (e.g., site amplification), we used a new detailed near‐surface shear‐wave velocity model in a 1D equivalent‐linear response analysis. When compared with the 2014 U.S. Geological Survey (USGS) National Seismic Hazard Model, which uses a uniform firm‐rock‐site condition, the new probabilistic seismic‐hazard estimates document much more variability. Hazard levels for upland sites (consisting of bedrock and weathered bedrock overlain by loess‐covered till and drift deposits), show up to twice the ground‐motion values for peak ground acceleration (PGA), and similar ground‐motion values for 1.0 s spectral acceleration (SA). Probabilistic ground‐motion levels for lowland alluvial floodplain sites (generally the 20–40‐m‐thick modern Mississippi and Missouri River floodplain deposits overlying bedrock) exhibit up to twice the ground‐motion levels for PGA, and up to three times the ground‐motion levels for 1.0 s SA. Liquefaction probability curves were developed from available standard penetration test data assuming typical lowland and upland water table levels. A simplified liquefaction hazard map was created from the 5%‐in‐50‐year probabilistic ground‐shaking model. The liquefaction hazard ranges from low (60% of area expected to liquefy) in the lowlands. Because many transportation routes, power and gas transmission lines, and population centers exist in or on the highly susceptible lowland alluvium, these areas in the St. Louis region are at significant potential risk from seismically induced liquefaction and associated

  11. Effects of relative density and accumulated shear strain on post-liquefaction residual deformation

    Directory of Open Access Journals (Sweden)

    J. Kim

    2013-10-01

    Full Text Available The damage caused by liquefaction, which occurs following an earthquake, is usually because of settlement and lateral spreading. Generally, the evaluation of liquefaction has been centered on settlement, that is, residual volumetric strain. However, in actual soil, residual shear and residual volumetric deformations occur simultaneously after an earthquake. Therefore, the simultaneous evaluation of the two phenomena and the clarification of their relationship are likely to evaluate post-liquefaction soil behaviors more accurately. Hence, a quantitative evaluation of post-liquefaction damage will also be possible. In this study, the effects of relative density and accumulated shear strain on post-liquefaction residual deformations were reviewed through a series of lateral constrained-control hollow cylindrical torsion tests under undrained conditions. In order to identify the relationship between residual shear and residual volumetric strains, this study proposed a new test method that integrates monotonic loading after cyclic loading, and K0-drain after cyclic loading – in other words, the combination of cyclic loading, monotonic loading, and the K0 drain. In addition, a control that maintained the lateral constrained condition across all the processes of consolidation, cyclic loading, monotonic loading, and drainage was used to reproduce the anisotropy of in situ ground. This lateral constrain control was performed by controlling the axial strain, based on the assumption that under undrained conditions, axial and lateral strains occur simultaneously, and unless axial strain occurs, lateral strain does not occur. The test results confirmed that the recovery of effective stresses, which occur during monotonic loading and drainage after cyclic loading, respectively, result from mutually different structural restoration characteristics. In addition, in the ranges of 40–60% relative density and 50–100% accumulated shear strain, relative

  12. Prediction of strain energy-based liquefaction resistance of sand-silt mixtures: An evolutionary approach

    Science.gov (United States)

    Baziar, Mohammad H.; Jafarian, Yaser; Shahnazari, Habib; Movahed, Vahid; Amin Tutunchian, Mohammad

    2011-11-01

    Liquefaction is a catastrophic type of ground failure, which usually occurs in loose saturated soil deposits under earthquake excitations. A new predictive model is presented in this study to estimate the amount of strain energy density, which is required for the liquefaction triggering of sand-silt mixtures. A wide-ranging database containing the results of cyclic tests on sand-silt mixtures was first gathered from previously published studies. Input variables of the model were chosen from the available understandings evolved from the previous studies on the strain energy-based liquefaction potential assessment. In order to avoid overtraining, two sets of validation data were employed and a particular monitoring was made on the behavior of the evolved models. Results of a comprehensive parametric study on the proposed model are in accord with the previously published experimental observations. Accordingly, the amount of strain energy required for liquefaction onset increases with increase in initial effective overburden pressure, relative density, and mean grain size. The effect of nonplastic fines on strain energy-based liquefaction resistance shows a more complicated behavior. Accordingly, liquefaction resistance increases with increase in fines up to about 10-15% and then starts to decline for a higher increase in fines content. Further verifications of the model were carried out using the valuable results of some downhole array data as well as centrifuge model tests. These verifications confirm that the proposed model, which was derived from laboratory data, can be successfully utilized under field conditions.

  13. Exergy analysis of helium liquefaction systems based on modified Claude cycle with two-expanders

    Science.gov (United States)

    Thomas, Rijo Jacob; Ghosh, Parthasarathi; Chowdhury, Kanchan

    2011-06-01

    Large-scale helium liquefaction systems, being energy-intensive, demand judicious selection of process parameters. An effective tool for design and analysis of thermodynamic cycles for these systems is exergy analysis, which is used to study the behavior of a helium liquefaction system based on modified Claude cycle. Parametric evaluation using process simulator Aspen HYSYS® helps to identify the effects of cycle pressure ratio and expander flow fraction on the exergetic efficiency of the liquefaction cycle. The study computes the distribution of losses at different refrigeration stages of the cycle and helps in selecting optimum cycle pressures, operating temperature levels of expanders and mass flow rates through them. Results from the analysis may help evolving guidelines for designing appropriate thermodynamic cycles for practical helium liquefaction systems.

  14. Probabilistic analysis of deformed mode of engineering constructions’ soil-cement grounds

    Directory of Open Access Journals (Sweden)

    Vynnykov Yuriy

    2017-01-01

    Full Text Available The results of the analysis of probabilistic methods that are used to assess the deformed state of the foundations of engineering structures are presented. A finite element analysis of the stress-strain state of the “man made soil ground – foundation – structure” system was carried out. A method for probabilistic calculation using the finite element method is proposed. On a real example, the level of reliability of a design decision based on a deterministic calculation is estimated by probabilistic calculation. On the basis of the statistic data obtained by imitational modeling, the probability of failure and no-failure operation of the structure regarding the absolute value of settlement and regarding the value of tilt against the reinforcement ratio of soft soil grounds settlements was determined. The probability of failure regarding the value of tilt against the reinforcement ratio was taken (15 to 25%, which is 0.03 – 0.05.

  15. Liquefaction-induced lateral spreading in Oceano, California, during the 2003 San Simeon Earthquake

    Science.gov (United States)

    Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.; Di Alessandro, Carola; Boatwright, John; Tinsley, John C.; Sell, Russell W.; Rosenberg, Lewis I.

    2004-01-01

    The December 22, 2003, San Simeon, California, (M6.5) earthquake caused damage to houses, road surfaces, and underground utilities in Oceano, California. The community of Oceano is approximately 50 miles (80 km) from the earthquake epicenter. Damage at this distance from a M6.5 earthquake is unusual. To understand the causes of this damage, the U.S. Geological Survey conducted extensive subsurface exploration and monitoring of aftershocks in the months after the earthquake. The investigation included 37 seismic cone penetration tests, 5 soil borings, and aftershock monitoring from January 28 to March 7, 2004. The USGS investigation identified two earthquake hazards in Oceano that explain the San Simeon earthquake damage?site amplification and liquefaction. Site amplification is a phenomenon observed in many earthquakes where the strength of the shaking increases abnormally in areas where the seismic-wave velocity of shallow geologic layers is low. As a result, earthquake shaking is felt more strongly than in surrounding areas without similar geologic conditions. Site amplification in Oceano is indicated by the physical properties of the geologic layers beneath Oceano and was confirmed by monitoring aftershocks. Liquefaction, which is also commonly observed during earthquakes, is a phenomenon where saturated sands lose their strength during an earthquake and become fluid-like and mobile. As a result, the ground may undergo large permanent displacements that can damage underground utilities and well-built surface structures. The type of displacement of major concern associated with liquefaction is lateral spreading because it involves displacement of large blocks of ground down gentle slopes or towards stream channels. The USGS investigation indicates that the shallow geologic units beneath Oceano are very susceptible to liquefaction. They include young sand dunes and clean sandy artificial fill that was used to bury and convert marshes into developable lots. Most of

  16. Experimental validation of a mathematical model for seabed liquefaction in waves

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Kirca, Özgür; Fredsøe, Jørgen

    2011-01-01

    This paper summarizes the results of an experimental study directed towards the validation of a mathematical model for the buildup of pore water pressure and resulting liquefaction of marine soils under progressive waves. Experiments were conducted under controlled conditions with silt ( d50 = 0.......070 mm) in a wave flume with a soil pit. Waves with wave heights in the range 7.7-18 cm with the water depth 55 cm and the wave period 1.6 s enabled us to study both the liquefaction and no-liquefaction regime pore water pressure buildup. The experimental data was used to validate the model. A numerical...

  17. Influence of clay content on wave-induced liquefaction

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2014-01-01

    of measurements were carried out: (1) pore-water pressure measurements across the soil depth and (2) water-surface elevation measurements. These measurements were synchronized with video recordings of the liquefaction process from the side. The ranges of the various quantities in the experiments were wave height...... of silt and clay was not liquefied. Sand may become prone to liquefaction with the introduction of clay, contrary to the general perception that this type of sediment is normally liquefaction-resistant under waves. For instance, sand with d50 50:4 mmwas liquefied with CC510:8%, whereas sand with d50 50...

  18. Failure behavior of concrete pile and super-structure dynamic response as a result of soil liquefaction during earthquake

    Science.gov (United States)

    Kaneda, Shogo; Hayashi, Kazuhiro; Hachimori, Wataru; Tamura, Shuji; Saito, Taiki

    2017-10-01

    In past earthquake disasters, numerous building structure piles were damaged by soil liquefaction occurring during the earthquake. Damage to these piles, because they are underground, is difficult to find. The authors aim to develop a monitoring method of pile damage based on superstructure dynamic response. This paper investigated the relationship between the damage of large cross section cementitious piles and the dynamic response of the super structure using a centrifuge test apparatus. A dynamic specimen used simple cross section pile models consisting of aluminum rod and mortar, a saturated soil (Toyoura sand) of a relative density of 40% and a super structure model of a natural period of 0.63sec. In the shaking table test under a 50G field (length scale of 1/50), excitation was a total of 3 motions scaled from the Rinkai wave at different amplitudes. The maximum acceleration of each of the excitations was 602gal, 336gal and 299gal. The centrifuge test demonstrated the liquefaction of saturated soil and the failure behavior of piles. In the test result, the damage of piles affected the predominant period of acceleration response spectrum on the footing of the superstructure.

  19. Earthquake induced liquefaction hazard, probability and risk assessment in the city of Kolkata, India: its historical perspective and deterministic scenario

    Science.gov (United States)

    Nath, Sankar Kumar; Srivastava, Nishtha; Ghatak, Chitralekha; Adhikari, Manik Das; Ghosh, Ambarish; Sinha Ray, S. P.

    2018-01-01

    Liquefaction-induced ground failure is one amongst the leading causes of infrastructure damage due to the impact of large earthquakes in unconsolidated, non-cohesive, water saturated alluvial terrains. The city of Kolkata is located on the potentially liquefiable alluvial fan deposits of Ganga-Bramhaputra-Meghna Delta system with subsurface litho-stratigraphic sequence comprising of varying percentages of clay, cohesionless silt, sand, and gravel interbedded with decomposed wood and peat. Additionally, the region has moderately shallow groundwater condition especially in the post-monsoon seasons. In view of burgeoning population, there had been unplanned expansion of settlements in the hazardous geological, geomorphological, and hydrological conditions exposing the city to severe liquefaction hazard. The 1897 Shillong and 1934 Bihar-Nepal earthquakes both of M w 8.1 reportedly induced Modified Mercalli Intensity of IV-V and VI-VII respectively in the city reportedly triggering widespread to sporadic liquefaction condition with surface manifestation of sand boils, lateral spreading, ground subsidence, etc., thus posing a strong case for liquefaction potential analysis in the terrain. With the motivation of assessing seismic hazard, vulnerability, and risk of the city of Kolkata through a consorted federal funding stipulated for all the metros and upstart urban centers in India located in BIS seismic zones III, IV, and V with population more than one million, an attempt has been made here to understand the liquefaction susceptibility condition of Kolkata under the impact of earthquake loading employing modern multivariate techniques and also to predict deterministic liquefaction scenario of the city in the event of a probabilistic seismic hazard condition with 10% probability of exceedance in 50 years and a return period of 475 years. We conducted in-depth geophysical and geotechnical investigations in the city encompassing 435 km2 area. The stochastically

  20. Liquefaction Microzonation of Babol City Using Artificial Neural Network

    DEFF Research Database (Denmark)

    Farrokhzad, F.; Choobbasti, A.J.; Barari, Amin

    2012-01-01

    that will be less susceptible to damage during earthquakes. The scope of present study is to prepare the liquefaction microzonation map for the Babol city based on Seed and Idriss (1983) method using artificial neural network. Artificial neural network (ANN) is one of the artificial intelligence (AI) approaches...... microzonation map is produced for research area. Based on the obtained results, it can be stated that the trained neural network is capable in prediction of liquefaction potential with an acceptable level of confidence. At the end, zoning of the city is carried out based on the prediction of liquefaction...... that can be classified as machine learning. Simplified methods have been practiced by researchers to assess nonlinear liquefaction potential of soil. In order to address the collective knowledge built-up in conventional liquefaction engineering, an alternative general regression neural network model...

  1. Analysis of ground response data at Lotung large-scale soil- structure interaction experiment site

    International Nuclear Information System (INIS)

    Chang, C.Y.; Mok, C.M.; Power, M.S.

    1991-12-01

    The Electric Power Research Institute (EPRI), in cooperation with the Taiwan Power Company (TPC), constructed two models (1/4-scale and 1/2-scale) of a nuclear plant containment structure at a site in Lotung (Tang, 1987), a seismically active region in northeast Taiwan. The models were constructed to gather data for the evaluation and validation of soil-structure interaction (SSI) analysis methodologies. Extensive instrumentation was deployed to record both structural and ground responses at the site during earthquakes. The experiment is generally referred to as the Lotung Large-Scale Seismic Test (LSST). As part of the LSST, two downhole arrays were installed at the site to record ground motions at depths as well as at the ground surface. Structural response and ground response have been recorded for a number of earthquakes (i.e. a total of 18 earthquakes in the period of October 1985 through November 1986) at the LSST site since the completion of the installation of the downhole instruments in October 1985. These data include those from earthquakes having magnitudes ranging from M L 4.5 to M L 7.0 and epicentral distances range from 4.7 km to 77.7 km. Peak ground surface accelerations range from 0.03 g to 0.21 g for the horizontal component and from 0.01 g to 0.20 g for the vertical component. The objectives of the study were: (1) to obtain empirical data on variations of earthquake ground motion with depth; (2) to examine field evidence of nonlinear soil response due to earthquake shaking and to determine the degree of soil nonlinearity; (3) to assess the ability of ground response analysis techniques including techniques to approximate nonlinear soil response to estimate ground motions due to earthquake shaking; and (4) to analyze earth pressures recorded beneath the basemat and on the side wall of the 1/4 scale model structure during selected earthquakes

  2. Characterisation of Liquefaction Effects for Beyond-Design Basis Safety Assessment of Nuclear Power Plants

    Science.gov (United States)

    Bán, Zoltán; Győri, Erzsébet; János Katona, Tamás; Tóth, László

    2015-04-01

    Preparedness of nuclear power plants to beyond design base external effects became high importance after 11th of March 2011 Great Tohoku Earthquakes. In case of some nuclear power plants constructed at the soft soil sites, liquefaction should be considered as a beyond design basis hazard. The consequences of liquefaction have to be analysed with the aim of definition of post-event plant condition, identification of plant vulnerabilities and planning the necessary measures for accident management. In the paper, the methodology of the analysis of liquefaction effects for nuclear power plants is outlined. The case of Nuclear Power Plant at Paks, Hungary is used as an example for demonstration of practical importance of the presented results and considerations. Contrary to the design, conservatism of the methodology for the evaluation of beyond design basis liquefaction effects for an operating plant has to be limited to a reasonable level. Consequently, applicability of all existing methods has to be considered for the best estimation. The adequacy and conclusiveness of the results is mainly limited by the epistemic uncertainty of the methods used for liquefaction hazard definition and definition of engineering parameters characterizing the consequences of liquefaction. The methods have to comply with controversial requirements. They have to be consistent and widely accepted and used in the practice. They have to be based on the comprehensive database. They have to provide basis for the evaluation of dominating engineering parameters that control the post-liquefaction response of the plant structures. Experience of Kashiwazaki-Kariwa plant hit by Niigata-ken Chuetsu-oki earthquake of 16 July 2007 and analysis of site conditions and plant layout at Paks plant have shown that the differential settlement is found to be the dominating effect in case considered. They have to be based on the probabilistic seismic hazard assessment and allow the integration into logic

  3. Evaluating liquefaction potential. A case history

    International Nuclear Information System (INIS)

    Blystra, A.R.

    1991-01-01

    Several earthen hydropower embankment dams in the midwestern United States were constructed using hydraulic fill methods and are liable to liquefaction during an earthquake due to the use of very loose, saturated sand in the embankment or foundations. A case history is presented describing the methodology used in evaluating the liquefaction potential of the largest earthfill dam in Michigan. The methodology includes the use of standard penetration and cone penetration test data in the formulation of a simplified procedure. Field investigations, laboratory testing, and analyses used are described. In addition to the drilling program, field work included an extensive ground penetrating radar survey, acoustic emission testing, and an electrical resistivity survey. It was found that the lowest calculated factor of safety against liquefaction is 0.63 for a loose zone ca 140 feet below the top of the embankment, and the factor of safety against slope failure, should the zone liquefy, is 1.49. It was concluded that while liquefaction is possible, post earthquake stability is adequate. 6 refs., 3 figs., 1 tab

  4. The making of Andersen’s liquefaction chart

    OpenAIRE

    Sabaliauskas, Tomas; Ibsen, Lars Bo

    2017-01-01

    Andersen’s chart (Andersen & Berre, 1999) is a graphical method of observing cyclic soil response. It allows observing soil response to various stress amplitudes that can lead to liquefaction, excess plastic deformation stabilizing soil response.The process of obtaining the original chart has been improved. Algorithm based approximation is introduced. Pore pressure dependent ultimate bearing capacity normalization factor is introduced to normalize the chart.

  5. Generation of Earthquake Ground Motion Considering Local Site Effects and Soil-Structure Interaction Analysis of Ancient Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwan; Lee, J. S.; Yang, T. S.; Cho, J. R.; R, H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    In order to establish a correct correlation between them, mechanical characteristics of the ancient structures need to be investigated. Since sedimentary basins are preferred dwelling sites in ancient times, it is necessary to perform SSI analysis to derive correct correlation between the damage and ground motion intensity. Contents of Project are as follows: (1) Generation of stochastic earthquake ground motion considering source mechanism and site effects. (2) Analysis of seismic response of sedimentary basin. (3) Soil-structure interaction analysis of ancient structures (4) Investigation of dynamic response characteristics of ancient structure considering soil-structure interaction effects. A procedure is presented for generation of stochastic earthquake ground motion considering source mechanism and site effects. The simulation method proposed by Boore is used to generate the outcropping rock motion. The free field motion at the soil site is obtained by a convolution analysis. And for the study of wood structures, a nonlinear SDOF model is developed. The effects of soil-structure interaction on the behavior of the wood structures are found to be very minor. But the response can be significantly affected due to the intensity and frequency contents of the input motion. 13 refs., 6 tabs., 31 figs. (author)

  6. A coupled soil-pore fluid formulation for modeling soil liquefaction and cyclic mobility in seabed using the finite volume method

    DEFF Research Database (Denmark)

    Tang, Tian; Roenby, Johan; Hededal, Ole

    The stability of offshore structures, such as wind turbine foundations, breakwaters, and immersed tunnels can be strongly affected by the liquefaction and cyclic mobility phenomena in the seabed. Our goal is to develop a numerical code for analysis of these situations. For this purpose, we start ...... matrix solver, are discussed as well. Overall, investigations in this paper provide a methodology for developing a numerical code simulating liquefaction and cyclic mobility. In future work this will be implemented in practice with the aid of the open source CFD toolbox, OpenFOAM....

  7. On the risk of liquefaction of buffer and backfill

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden)

    2000-10-01

    The necessary prerequisites for liquefaction of buffers and backfills in a KBS-3 repository exist but the stress conditions and intended densities practically eliminate the risk of liquefaction for single earthquakes with magnitudes up to M=8 and normal duration. For buffers rich in expandable minerals it would be possible to reduce the density at water saturation to 1,700 - 1,800 kg/m{sup 3} or even less without any significant risk of liquefaction, while the density at saturation of backfills with 10 - 15% expandable clay should not be reduced to less than about 1,900 kg/m{sup 3}. Since the proposed densities of both buffers and backfills will significantly exceed these minimum values it is concluded that there is no risk of liquefaction of the engineered soil barriers in a KBS-3 repository even for very significant earthquakes.

  8. On the risk of liquefaction of buffer and backfill

    International Nuclear Information System (INIS)

    Pusch, R.

    2000-10-01

    The necessary prerequisites for liquefaction of buffers and backfills in a KBS-3 repository exist but the stress conditions and intended densities practically eliminate the risk of liquefaction for single earthquakes with magnitudes up to M=8 and normal duration. For buffers rich in expandable minerals it would be possible to reduce the density at water saturation to 1,700 - 1,800 kg/m 3 or even less without any significant risk of liquefaction, while the density at saturation of backfills with 10 - 15% expandable clay should not be reduced to less than about 1,900 kg/m 3 . Since the proposed densities of both buffers and backfills will significantly exceed these minimum values it is concluded that there is no risk of liquefaction of the engineered soil barriers in a KBS-3 repository even for very significant earthquakes

  9. Seismic response of nuclear reactors in layered liquefiable soil deposits including nonlinear soil-structure interaction

    International Nuclear Information System (INIS)

    Zaman, M.; Mamoon, S.M.

    1989-01-01

    Analysis of seismic response of structures located at a site with potential for soil liquefaction has drawn attention of many researchers. The topic is particularly important in the design of critical facilities like nuclear reactors and defense installations. This paper presents the results of a study involving evaluation of coupled seismic response of structures (model nuclear reactors) and characteristics of soil liquefaction at a site. The analysis procedure employed is based on the nonlinear finite element (FE) technique and accounts for the interaction effects due to a neighboring structure. Emphasis is given to the following features: prediction of spatial and temporal variation of pore water pressure; identification of the on-set of liquefaction based on the effective stress approach, and tracing the propagation of the liquefied zones with time and resulting response of the structures

  10. Predicting the liquefaction phenomena from shear velocity profiling: Empirical approach to 6.3 Mw, May 2006 Yogyakarta earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Hartantyo, Eddy, E-mail: hartantyo@ugm.ac.id [PhD student, Physics Department, FMIPA, UGM. Sekip Utara Yogyakarta 55281 Indonesia (Indonesia); Brotopuspito, Kirbani S.; Sismanto; Waluyo [Geophysics Laboratory, FMIPA, Universitas Gadjah Mada, Sekip Utara Yogyakarta 55281 (Indonesia)

    2015-04-24

    The liquefactions phenomena have been reported after a shocking 6.5Mw earthquake hit Yogyakarta province in the morning at 27 May 2006. Several researchers have reported the damage, casualties, and soil failure due to the quake, including the mapping and analyzing the liquefaction phenomena. Most of them based on SPT test. The study try to draw the liquefaction susceptibility by means the shear velocity profiling using modified Multichannel Analysis of Surface Waves (MASW). This paper is a preliminary report by using only several measured MASW points. The study built 8-channel seismic data logger with 4.5 Hz geophones for this purpose. Several different offsets used to record the high and low frequencies of surface waves. The phase-velocity diagrams were stacked in the frequency domain rather than in time domain, for a clearer and easier dispersion curve picking. All codes are implementing in Matlab. From these procedures, shear velocity profiling was collected beneath each geophone’s spread. By mapping the minimum depth of shallow water table, calculating PGA with soil classification, using empirical formula for saturated soil weight from shear velocity profile, and calculating CRR and CSR at every depth, the liquefaction characteristic can be identify in every layer. From several acquired data, a liquefiable potential at some depth below water table was obtained.

  11. A case study of liquefaction risk analysis based on the thickness and depth of the liquefaction layer using CPT and electric resistivity data in the Hinode area, Itako City, Ibaraki Prefecture, Japan

    Science.gov (United States)

    Jinguuji, Motoharu; Toprak, Selcuk

    2017-12-01

    The Hinode area of Itako City in Ibaraki Prefecture, Japan, suffered some of the most severe liquefaction damage of any areas in the Great Eastern Japan Earthquake in 2011. This liquefaction damage has been investigated by Itako City, as well as by universities and research institutes in Japan. The National Institute of Advanced Industrial Science and Technology (AIST) has carried out numerous investigations along the Tone River, and in particular, intensive surveys were done in the Hinode area. We have conducted a risk analysis based on the thickness and depth of the liquefaction layer measured using cone penetration testing (CPT) data and electric resistivity data obtained in the Hinode area. The distribution of the risk estimated from CPT at 143 points, and that obtained from analysis of the resistivity survey data, agreed with the distribution of actual damage. We also carried out conventional risk analyses method using the liquefaction resistance factor (FL) and liquefaction potential index (PL) methods with CPT data. The results show high PL values over the entire area, but their distribution did not agree well with actual damage in some parts of the study area. Because the analysis of the thickness and depth of the liquefaction layer, using geophysical prospecting methods, can cover a widespread area, this method will be very useful in investigating liquefaction risk, especially for gas and water pipelines.

  12. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  13. Quaternary Geology and Liquefaction Susceptibility, Napa, California 1:100,000 Quadrangle: A Digital Database

    Science.gov (United States)

    Sowers, Janet M.; Noller, Jay S.; Lettis, William R.

    1998-01-01

    Earthquake-induced ground failures such as liquefaction have historically brought loss of life and damage to property and infrastructure. Observations of the effects of historical large-magnitude earthquakes show that the distribution of liquefaction phenomena is not random. Liquefaction is restricted to areas underlain by loose, cohesionless sands and silts that are saturated with water. These areas can be delineated on the basis of thorough geologic, geomorphic, and hydrologic mapping and map analysis (Tinsley and Holzer, 1990; Youd and Perkins, 1987). Once potential liquefaction zones are delineated, appropriate public and private agencies can prepare for and mitigate seismic hazard in these zones. In this study, we create a liquefaction susceptibility map of the Napa 1:100,000 quadrangle using Quaternary geologic mapping, analysis of historical liquefaction information, groundwater data, and data from other studies. The study is atterned after state-of-the-art studies by Youd (1973) Dupre and Tinsley (1980) and Dupre (1990) in the Monterey-Santa Cruz area, Tinsley and others (1985) in the Los Angeles area, and Youd and Perkins (1987) in San Mateo County, California. The study area comprises the northern San Francisco Metropolitan Area, including the cities of Santa Rosa, Vallejo, Napa, Novato, Martinez, and Fairfield (Figure 1). Holocene estuarine deposits, Holocene stream deposits, eolian sands, and artificial fill are widely present in the region (Helley and Lajoie, 1979) and are the geologic materials of greatest concern. Six major faults capable of producing large earthquakes cross the study area, including the San Andreas, Rodgers Creek, Hayward, West Napa, Concord, and Green Valley faults (Figure 1).

  14. Microzonation Analysis of Cohesionless and Cohesive Soil

    Directory of Open Access Journals (Sweden)

    Tan Choy Soon

    2017-01-01

    Full Text Available Urban seismic risk is a continuous worldwide issue, numerous researchers are putting great effort in dealing with how to minimise the level of the threat. The only way to minimise the social and economic consequences caused but the seismic risk is through comprehensive earthquake scenario analysis such as ground response analysis. This paper intends to examine the characteristic of shear wave velocity and peak ground acceleration on cohesionless and cohesiveness soil. In order to examine the characteristic of shear wave velocity and peak ground acceleration on cohesionless and cohesiveness soil, ground response analysis was performed using Nonlinear Earthquake Site Response Analysis (NERA and Equivalent-linear Earthquake Site Response Analysis (EERA. The value of ground acceleration was initially high at bedrock and vanishes during the propagation process. It is thus, the measured acceleration at surface is therefore much lower as compare to at bedrock. Result shows that seismic waves can travel faster in harder soil as compared to softer soil. Cohesive soil contributes more to the shaking amplification than cohesionless soil such as sand and harder soil. This is known as local site effect. The typical example is the Mexico Earthquake that happened in 1985. As conclusion, peak ground acceleration for cohesive soil is higher than in cohesionless soil.

  15. Seismic analysis and testing of nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    The following subjects are discussed in this guide: General Recommendations for seismic classification, loading combinations and allowable limits; seismic analysis methods; implications for seismic design; seismic testing and qualification; seismic instrumentation; modelling techniques; material property characterization; seismic response of soil deposits and earth structures; liquefaction and ground failure; slope stability; sloshing effects in water pools; qualification testing by means of the transport vehicle

  16. Influence of the void ratio and the confining on the static liquefaction in slopes in shangi sand

    Directory of Open Access Journals (Sweden)

    Alfonso Mariano Ramos Cañón

    2015-01-01

    Full Text Available A numerical study on the onset of static liquefaction in slopes under undrained conditions of loading was developed based on a general liquefaction flow instability criterion for elastoplastic soils based on the concept of loss of controllability. The criterion is applied to the case of axisymmetric loading to detect the onset of static liquefaction. The criterion is used in conjunction with an elastoplastic model for sands and is tested by means of numerical simulations of element tests. The numerical results are compared with experimental evidence obtaining good agreement. A quantitative study of the influence of the mean pressure, void ratio and the anisotropy of stress on the onset of static liquefaction is presented for the Changi sand. From the analysis of the numerical results, it can be concluded that: a. the mobilized friction angle at the onset of liquefaction is not an intrinsic property of the material, but is a state variable b. Despite of the multiple variables involved in the process of generation of undrained instability, the state of stresses at the onset of static liquefaction can be conveniently represented by a linear relation between Dq/po and no . This graphical representation can be used in the practice of geotechnical engineering to quantify the margin of security against the static liquefaction of a sandy slope.

  17. Earthquake-induced ground failures in Italy from a reviewed database

    Science.gov (United States)

    Martino, S.; Prestininzi, A.; Romeo, R. W.

    2014-04-01

    A database (Italian acronym CEDIT) of earthquake-induced ground failures in Italy is presented, and the related content is analysed. The catalogue collects data regarding landslides, liquefaction, ground cracks, surface faulting and ground changes triggered by earthquakes of Mercalli epicentral intensity 8 or greater that occurred in the last millennium in Italy. As of January 2013, the CEDIT database has been available online for public use (http://www.ceri.uniroma1.it/cn/gis.jsp ) and is presently hosted by the website of the Research Centre for Geological Risks (CERI) of the Sapienza University of Rome. Summary statistics of the database content indicate that 14% of the Italian municipalities have experienced at least one earthquake-induced ground failure and that landslides are the most common ground effects (approximately 45%), followed by ground cracks (32%) and liquefaction (18%). The relationships between ground effects and earthquake parameters such as seismic source energy (earthquake magnitude and epicentral intensity), local conditions (site intensity) and source-to-site distances are also analysed. The analysis indicates that liquefaction, surface faulting and ground changes are much more dependent on the earthquake source energy (i.e. magnitude) than landslides and ground cracks. In contrast, the latter effects are triggered at lower site intensities and greater epicentral distances than the other environmental effects.

  18. Effects of Seismological and Soil Parameters on Earthquake Energy demand in Level Ground Sand Deposits

    Science.gov (United States)

    nabili, sara; shahbazi majd, nafiseh

    2013-04-01

    Liquefaction has been a source of major damages during severe earthquakes. To evaluate this phenomenon there are several stress, strain and energy based approaches. Use of the energy method has been more focused by researchers due to its advantages with respect to other approaches. The use of the energy concept to define the liquefaction potential is validated through laboratory element and centrifuge tests as well as field studies. This approach is based on the hypothesis that pore pressure buildup is directly related to the dissipated energy in sands which is the accumulated areas between the stress-strain loops. Numerous investigations were performed to find a relationship which correlates the dissipated energy to the soil parameters, but there are not sufficient studies to relate this dissipated energy, known as demand energy, concurrently, to the seismological and the soil parameters. The aim of this paper is to investigate the dependency of the demand energy in sands to seismological and the soil parameters. To perform this task, an effective stress analysis has been executed using FLAC finite difference program. Finn model, which is a built-in constitutive model implemented in FLAC program, was utilized. Since an important stage to predict the liquefaction is the prediction of excess pore water pressure at a given point, a simple numerical framework is presented to assess its generation during a cyclic loading in a given centrifuge test. According to the results, predicted excess pore water pressures did not closely match to the measured excess pore water pressure values in the centrifuge test but they can be used in the numerical assessment of excess pore water pressure with an acceptable degree of preciseness. Subsequently, the centrifuge model was reanalyzed using several real earthquake acceleration records with different seismological parameters such as earthquake magnitude and Hypocentral distance. The accumulated energies (demand energy) dissipated in

  19. [Characteristics of ground-dwelling soil macro-arthropod communities in a biodiversity monitoring plot of black soil cropland, northeastern China].

    Science.gov (United States)

    Liu, Jie; Gao, Mie Xiang; Wu, Dong Hui

    2017-12-01

    Agro-ecosystem is an important component of terrestrial ecosystems and it is one of the key areas of global ecological and environmental studies. A 16 hm 2 permanent plot in black soil cropland was built to study the community structure of soil biodiversity in typical black soil region in Northeast China. Pitfall trap was used to investigate the ground-dwelling soil macro-arthropods from August to October 2015 in accordance with the three crop growth stages: whirling stage, silking stage, and milk stage. A total of 5284 ground-dwelling soil macro-arthropods belonging to 47 species were captured sorted into 3 classes, 12 orders, 32 families. 3 dominant groups and 11 common groups were found. Phytophages and Omnivores were dominant groups. The individuals and species numbers of ground-dwelling soil macro-arthropods had significant changes with the vegetative growth period. The maximum values of the Shannon index, Margalef index, Pielou index of soil macro-arthropods all appeared in September, but the maximum dominant index appeared in August. From the variation coefficient (CV) and spatial interpolation of different species, it could be seen that there was heterogeneity in the horizontal direction of the ground-dwelling soil macro-arthropod communities. Regarding the relationships between the ground-dwelling soil macro-arthropod communities and soil environmental factors including soil pH, soil organic matter, total nitrogen and soil water content, the bivariate correlation analysis showed there was no significant correlation between them. Results of canonical correspondence analysis (CCA) further indicated that the dominant and common groups were adaptable to environmental factors and widely distributed in the study area. The results showed that the species richness of ground-dwelling soil macro-arthropods was very high in cropland, and the dynamic of soil arthropod's composition and spatial distribution pattern in diffe-rent crop growth stages were significantly

  20. Post Hoc Analysis of Passive Cavitation Imaging for Classification of Histotripsy-Induced Liquefaction in Vitro.

    Science.gov (United States)

    Bader, Kenneth B; Haworth, Kevin J; Maxwell, Adam D; Holland, Christy K

    2018-01-01

    Histotripsy utilizes focused ultrasound to generate bubble clouds for transcutaneous tissue liquefaction. Bubble activity maps are under development to provide image guidance and monitor treatment progress. The aim of this paper was to investigate the feasibility of using plane wave B-mode and passive cavitation images to be used as binary classifiers of histotripsy-induced liquefaction. Prostate tissue phantoms were exposed to histotripsy pulses over a range of pulse durations (5- ) and peak negative pressures (12-23 MPa). Acoustic emissions were recorded during the insonation and beamformed to form passive cavitation images. Plane wave B-mode images were acquired following the insonation to detect the hyperechoic bubble cloud. Phantom samples were sectioned and stained to delineate the liquefaction zone. Correlation between passive cavitation and plane wave B-mode images and the liquefaction zone was assessed using receiver operating characteristic (ROC) curve analysis. Liquefaction of the phantom was observed for all the insonation conditions. The area under the ROC (0.94 versus 0.82), accuracy (0.90 versus 0.83), and sensitivity (0.81 versus 0.49) was greater for passive cavitation images relative to B-mode images ( ) along the azimuth of the liquefaction zone. The specificity was greater than 0.9 for both imaging modalities. These results demonstrate a stronger correlation between histotripsy-induced liquefaction and passive cavitation imaging compared with the plane wave B-mode imaging, albeit with limited passive cavitation image range resolution.

  1. Hydrothermal Liquefaction of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2010-12-10

    collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the

  2. Determination of soil liquefaction characteristics by large-scale laboratory tests

    International Nuclear Information System (INIS)

    1975-05-01

    The testing program described in this report was carried out to study the liquefaction behavior of a clean, uniform, medium sand. Horizontal beds of this sand, 42 inches by 90 inches by 4 inches were prepared by pluviation with a special sand spreader, saturated, and tested in a shaking table system designed for this program, which applied a horizontal cyclic shear stress to the specimens. Specimen size was selected to reduce boundary effects as much as possible. Values of pore pressures and shear strains developed during the tests are presented for sand specimens at relative densities of 54, 68, 82, and 90 percent, and the results interpreted to determine the values of the stress ratio causing liquefaction at the various relative densities

  3. Use of liquefaction-induced features for paleoseismic analysis - An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes

    Science.gov (United States)

    Obermeier, S.F.

    1996-01-01

    Liquefaction features can be used in many field settings to estimate the recurrence interval and magnitude of strong earthquakes through much of the Holocene. These features include dikes, craters, vented sand, sills, and laterally spreading landslides. The relatively high seismic shaking level required for their formation makes them particularly valuable as records of strong paleo-earthquakes. This state-of-the-art summary for using liquefaction-induced features for paleoseismic interpretation and analysis takes into account both geological and geotechnical engineering perspectives. The driving mechanism for formation of the features is primarily the increased pore-water pressure associated with liquefaction of sand-rich sediment. The role of this mechanism is often supplemented greatly by the direct action of seismic shaking at the ground surface, which strains and breaks the clay-rich cap that lies immediately above the sediment that liquefied. Discussed in the text are the processes involved in formation of the features, as well as their morphology and characteristics in field settings. Whether liquefaction occurs is controlled mainly by sediment grain size, sediment packing, depth to the water table, and strength and duration of seismic shaking. Formation of recognizable features in the field generally requires a low-permeability cap above the sediment that liquefied. Field manifestations are controlled largely by the severity of liquefaction and the thickness and properties of the low-permeability cap. Criteria are presented for determining whether observed sediment deformation in the field originated by seismically induced liquefaction. These criteria have been developed mainly by observing historic effects of liquefaction in varied field settings. The most important criterion is that a seismic liquefaction origin requires widespread, regional development of features around a core area where the effects are most severe. In addition, the features must have a

  4. Assessment of Susceptibility to Liquefaction of Saturated Road Embankment Subjected to Dynamic Loads

    Science.gov (United States)

    Borowiec, Anna; Maciejewski, Krzysztof

    2014-03-01

    Liquefaction has always been intensely studied in parts of the world where earthquakes occur. However, the seismic activity is not the only possible cause of this phenomenon. It may in fact be triggered by some human activities, such as constructing and mining or by rail and road transport. In the paper a road embankment built across a shallow water reservoir is analyzed in terms of susceptibility to liquefaction. Two types of dynamic loadings are considered: first corresponding to an operation of a vibratory roller and second to an earthquake. In order to evaluate a susceptibility of soil to liquefaction, a factor of safety against triggering of liquefaction is used (FSTriggering). It is defined as a ratio of vertical effective stresses to the shear stresses both varying with time. For the structure considered both stresses are obtained using finite element method program, here Plaxis 2D. The plastic behavior of the cohesionless soils is modeled by means of Hardening Soil (HS) constitutive relationship, implemented in Plaxis software. As the stress tensor varies with time during dynamic excitation, the FSTriggering has to be calculated for some particular moment of time when liquefaction is most likely to occur. For the purposes of this paper it is named a critical time and established for reference point at which the pore pressures were traced in time. As a result a factor of safety distribution throughout embankment is generated. For the modeled structure, cyclic point loads (i.e., vibrating roller) present higher risk than earthquake of magnitude 5.4. Explanation why considered structure is less susceptible to earthquake than typical dam could lay in stabilizing and damping influence of water, acting here on both sides of the slope. Analogical procedure is applied to assess liquefaction susceptibility of the road embankment considered but under earthquake excitation. Only the higher water table is considered as it is the most unfavorable. Additionally the

  5. Testing the ability of a proposed geotechnical based method to evaluate the liquefaction potential analysis subjected to earthquake vibrations

    Science.gov (United States)

    Abbaszadeh Shahri, A.; Behzadafshar, K.; Esfandiyari, B.; Rajablou, R.

    2010-12-01

    During the earthquakes a number of earth dams have had severe damages or suffered major displacements as a result of liquefaction, thus modeling by computer codes can provide a reliable tool to predict the response of the dam foundation against earthquakes. These modeling can be used in the design of new dams or safety assessments of existing ones. In this paper, on base of the field and laboratory tests and by combination of several software packages a seismic geotechnical based analysis procedure is proposed and verified by comparison with computer model tests, field and laboratory experiences. Verification or validation of the analyses relies to ability of the applied computer codes. By use of Silakhor earthquake (2006, Ms 6.1) and in order to check the efficiency of the proposed framework, the procedure is applied to the Korzan earth dam of Iran which is located in Hamedan Province to analyze and estimate the liquefaction and safety factor. Design and development of a computer code by authors which named as “Abbas Converter” with graphical user interface which operates as logic connecter function that can computes and models the soil profiles is the critical point of this study and the results are confirm and proved the ability of the generated computer code on evaluation of soil behavior under the earthquake excitations. Also this code can make and render facilitate this study more than previous have done, and take over the encountered problem.

  6. A novel process for small-scale pipeline natural gas liquefaction

    International Nuclear Information System (INIS)

    He, T.B.; Ju, Y.L.

    2014-01-01

    Highlights: • A novel process was proposed to liquefy natural gas by utilizing the pressure exergy. • The process is zero energy consumption. • The maximum liquefaction rate of the process is 12.61%. • The maximum exergy utilization rate is 0.1961. • The economic analysis showed that the payback period of the process is quit short. - Abstract: A novel process for small-scale pipeline natural gas liquefaction is designed and presented. The novel process can utilize the pressure exergy of the pipeline to liquefy a part of natural gas without any energy consumption. The thermodynamic analysis including mass, energy balance and exergy analysis are adopted in this paper. The liquefaction rate and exergy utilization rate are chosen as the objective functions. Several key parameters are optimized to approach the maximum liquefaction rate and exergy utilization rate. The optimization results showed that the maximum liquefaction rate is 12.61% and the maximum exergy utilization rate is 0.1961. What is more, the economic performances of the process are also discussed and compared by using the maximum liquefaction rate and exergy utilization rate as indexes. In conclusion, the novel process is suitable for pressure exergy utilization due to its simplicity, zero energy consumption and short payback period

  7. Hydrothermal Liquefaction Treatment Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-12

    Hazard analyses were performed to evaluate the modular hydrothermal liquefaction treatment system. The hazard assessment process was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. The analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public. The following selected hazardous scenarios received increased attention: •Scenarios involving a release of hazardous material or energy, controls were identified in the What-If analysis table that prevent the occurrence or mitigate the effects of the release. •Scenarios with significant consequences that could impact personnel outside the immediate operations area, quantitative analyses were performed to determine the potential magnitude of the scenario. The set of “critical controls” were identified for these scenarios (see Section 4) which prevent the occurrence or mitigate the effects of the release of events with significant consequences.

  8. 10 CFR 72.212 - Conditions of general license issued under § 72.210.

    Science.gov (United States)

    2010-01-01

    ..., considering potential amplification of earthquakes through soil-structure interaction, and soil liquefaction potential or other soil instability due to vibratory ground motion; and (C) the requirements of § 72.104... the Safety Analysis Report (SAR) referenced in the Certificate of Compliance and the related NRC...

  9. Plasma electrolytic liquefaction of cellulosic biomass

    Science.gov (United States)

    Dingliang, TANG; Xianhui, ZHANG; Si-ze, YANG

    2018-04-01

    In this paper, the rapid liquefaction of a corncob was achieved by plasma electrolysis, providing a new method for cellulosic biomass liquefaction. The liquefaction rate of the corncob was 95% after 5 min with polyethylene glycol and glycerol as the liquefying agent. The experiments not only showed that H+ ions catalyzed the liquefaction of the corncob, but also that using accelerated H+ ions, which were accelerated by an electric field, could effectively improve the liquefaction efficiency. There was an obvious discharge phenomenon, in which the generated radicals efficiently heated the solution and liquefied the biomass, in the process of plasma electrolytic liquefaction. Finally, the optimum parameters of the corncob liquefaction were obtained by experimentation, and the liquefaction products were analyzed.

  10. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ji-Lu, E-mail: triace@163.com; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-15

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.

  11. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    International Nuclear Information System (INIS)

    Zheng, Ji-Lu; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-01-01

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels

  12. Analysis of flammability limits for the liquefaction process of oxygen-bearing coal-bed methane

    International Nuclear Information System (INIS)

    Li, Q.Y.; Wang, L.; Ju, Y.L.

    2011-01-01

    Highlights: → A novel liquefaction and distillation process is designed for oxygen bearing coal-bed methane. → Oxygen contained in coal-bed methane is removed in distillation process. → Flammability limits are analyzed for the whole operation process. → We find explosion hazard may exist in distillation tower. → Effective measures are proposed to ensure the operation safety in distillation tower. - Abstract: A novel liquefaction and distillation process has been proposed and designed for the typical oxygen-bearing coal-bed methane (CBM), in which the impurities of the oxygen and nitrogen components are removed in the distillation column. The flammability limit theory combining with HYSYS simulation results are employed to analyze and calculate the flammability limits and the results indicate that no flammability hazard exists in the stages of compression, liquefaction and throttling. However, flammability hazard exists at the top the distillation column because the methane mole fraction decreases to the value below the upper flammability limit (UFL). The safety measures of initially removing oxygen content from the feed gas combining with the control of the bottom flowrate (flowrate of the liquid product at column bottom) are proposed to ensure the operation safety of the liquefaction process. The results reveal that the operation safety of the whole process can be guaranteed, together with high methane recovery rate and high purity of the liquid product. The applicability of the liquefaction process has also been analyzed in this paper. The simulation results can offer references for the separation of oxygen from CBM, the analysis of flammability limits and the safety measures for the whole process.

  13. Soil and ground-water remediation techniques

    International Nuclear Information System (INIS)

    Beck, P.

    1996-01-01

    Urban areas typically contain numerous sites underlain by soils or ground waters which are contaminated to levels that exceed clean-up guidelines and are hazardous to public health. Contamination most commonly results from the disposal, careless use and spillage of chemicals, or the historic importation of contaminated fill onto properties undergoing redevelopment. Contaminants of concern in soil and ground water include: inorganic chemicals such as heavy metals; radioactive metals; salt and inorganic pesticides, and a range of organic chemicals included within petroleum fuels, coal tar products, PCB oils, chlorinated solvents, and pesticides. Dealing with contaminated sites is a major problem affecting all urban areas and a wide range of different remedial technologies are available. This chapter reviews the more commonly used methods for ground-water and soil remediation, paying particular regard to efficiency and applicability of specific treatments to different site conditions. (author). 43 refs., 1 tab., 27 figs

  14. Community structure of grassland ground-dwelling arthropods along increasing soil salinities.

    Science.gov (United States)

    Pan, Chengchen; Feng, Qi; Liu, Jiliang; Li, Yulin; Li, Yuqiang; Yu, Xiaoya

    2018-03-01

    Ground-dwelling arthropod communities are influenced by numerous biotic and abiotic factors. Little is known, however, about the relative importance of vegetation structure and abiotic environmental factors on the patterns of ground-dwelling arthropod community across a wide range of soil salinities. Here, a field survey was conducted to assess the driving forces controlling ground-dwelling arthropod community in the salinized grasslands in the Hexi Corridor, Gansu Province, China. The data were analyzed by variance partitioning with canonical correspondence analysis (CCA). We found that vegetation structure and edaphic factors were at least of similar importance to the pattern of the whole ground-dwelling arthropod community. However, when all collected ground-dwelling arthropods were categorized into three trophic guilds (predators, herbivores, and decomposers), as these groups use different food sources, their populations were controlled by different driving forces. Predators and decomposers were mainly determined by biotic factors such as vegetation cover and aboveground plant biomass and herbivores by plant density and vegetation cover. Abiotic factors were also major determinants for the variation occurring in these guilds, with predators strongly affected by soil electrical conductivity (EC) and the content of fine particles (silt + clay, CS), herbivores by soil N:P, EC, and CS, and decomposers by soil EC and organic matter content (SOM). Since plant cover, density, and aboveground biomass can indicate resource availability, which are mainly constrained by soil N:P, EC, CS, and SOM, we consider that the ground-dwelling arthropod community in the salinized grasslands was mainly influenced by resource availability.

  15. Basic studies on coal liquefaction reaction, reforming and utilization of liquefaction products

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, M. (National Institute for Resources and Environment, Tsukuba (Japan))

    1993-09-01

    This report describes the achievement of research and development of coal liquefaction technologies in the Sunshine Project for FY 1992, regarding the coal liquefaction reaction, reforming and utilization of liquefaction products. For the fundamental study on coal liquefaction reaction, were investigated effect of asphaltene in petroleum residue on coprocessing, pretreatment effect in coprocessing of Taiheiyo coal and tarsand bitumen using oil soluble catalyst, solubilization and liquefaction of Taiheiyo coal at mild conditions with the aid of super acid, and flash hydropyrolysis of finely pulverized swollen coal under high hydrogen pressure. On the other hand, for the study on hydrotreatment of coal derived liquid, were investigated catalytic hydroprocessing of Wandoan coal liquids, production of gasoline from coal liquids by fluid catalytic cracking, solvent extraction of phenolic compounds from coal liquids, and separation of hetero compounds in coal liquid by means of high pressure crystallization. Further progress in these studies has been confirmed. 9 figs., 6 tabs.

  16. Effects of the Length of Jet Grouted Columns and Soil Profile on the Settlement of Shallow Foundations

    Directory of Open Access Journals (Sweden)

    Zaheer Ahmed Almani

    2012-07-01

    Full Text Available In this paper, the effect of length of jet grouted columns and varying soil profile under shallow foundations of buildings constructed on the liquefiable ground was studied. The isolated shallow footing pad which supports a typical simple frame structure was constructed on the liquefiable ground. This ground was reinforced with jet grouted column rows under the shallow foundations of structure. The system was modeled as plane-strain using the FLAC 2D (Fast Lagrangian Analysis of Continua dynamic modelling and analysis code. This case focuses on the length of jet grouted columns in a soil profile and the effect of soil profiles of varying thickness on the settlements of building structure when the soil is liquefied during an earthquake. The results show that liquefaction-induced large settlements of shallow foundation of building decrease to tolerable limits with the increase in the length of columns. For soil profiles, with a relatively thinner liquefiable layer, a certain minimum length of columns (extended in base non liquefiable layer is required to meet the settlement tolerable limits. For soil profiles, with a relatively thicker liquefiable layer, this length should be equal to the thickness of the liquefiable layer from the footing base plus some extension in the base non liquefiable dense layer. In the soil profile with the base liquefiable layer underlying the non liquefiable layer, settlements could not be reduced to the tolerable limits even with columns of relatively larger length which may be critical.

  17. Final report on research project: Soil liquefaction testing and evaluation for Kozloduy nuclear power plant units 5 and 6

    Energy Technology Data Exchange (ETDEWEB)

    Simeonov, S [Energoproekt plc., Power Consulting Engineers, Hydropower Division, Sofia (Bulgaria)

    1995-07-01

    The object of this study is the region of the channels of additional technical water supply of Kozloduy NPP, Units 5 and 6. This region is chosen because there are enough data for water saturated sands, necessary for the analysis, including data from cyclic triaxial tests and standard penetration tests. Three kinds ofprocedures for estimation of liquefaction potential of water saturated sands are used in the study. The results obtained by different procedures were compared, analyzed and conclusions drawn about the liquefaction potential of water saturated sands in the area of the channels of additional technical water supply.

  18. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

    Science.gov (United States)

    Liang, Fayun; Chen, Haibing; Huang, Maosong

    2017-07-01

    To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

  19. Liquefaction assessment based on combined use of CPT and shear wave velocity measurements

    Science.gov (United States)

    Bán, Zoltán; Mahler, András; Győri, Erzsébet

    2017-04-01

    Soil liquefaction is one of the most devastating secondary effects of earthquakes and can cause significant damage in built infrastructure. For this reason liquefaction hazard shall be considered in all regions where moderate-to-high seismic activity encounters with saturated, loose, granular soil deposits. Several approaches exist to take into account this hazard, from which the in-situ test based empirical methods are the most commonly used in practice. These methods are generally based on the results of CPT, SPT or shear wave velocity measurements. In more complex or high risk projects CPT and VS measurement are often performed at the same location commonly in the form of seismic CPT. Furthermore, VS profile determined by surface wave methods can also supplement the standard CPT measurement. However, combined use of both in-situ indices in one single empirical method is limited. For this reason, the goal of this research was to develop such an empirical method within the framework of simplified empirical procedures where the results of CPT and VS measurements are used in parallel and can supplement each other. The combination of two in-situ indices, a small strain property measurement with a large strain measurement, can reduce uncertainty of empirical methods. In the first step by careful reviewing of the already existing liquefaction case history databases, sites were selected where the records of both CPT and VS measurement are available. After implementing the necessary corrections on the gathered 98 case histories with respect to fines content, overburden pressure and magnitude, a logistic regression was performed to obtain the probability contours of liquefaction occurrence. Logistic regression is often used to explore the relationship between a binary response and a set of explanatory variables. The occurrence or absence of liquefaction can be considered as binary outcome and the equivalent clean sand value of normalized overburden corrected cone tip

  20. Thermodynamic Analysis on of Skid-Mounted Coal-bed Methane Liquefaction Device using Cryogenic Turbo-Expander

    Science.gov (United States)

    Chen, Shuangtao; Niu, Lu; Zeng, Qiang; Li, Xiaojiang; Lou, Fang; Chen, Liang; Hou, Yu

    2017-12-01

    Coal-bed methane (CBM) reserves are rich in Sinkiang of China, and liquefaction is a critical step for the CBM exploration and utilization. Different from other CBM gas fields in China, CBM distribution in Sinkiang is widespread but scattered, and the pressure, flow-rate and nitrogen content of CBM feed vary significantly. The skid-mounted liquefaction device is suggested as an efficient and economical way to recover methane. Turbo-expander is one of the most important parts which generates the cooling capacity for the cryogenic liquefaction system. Using turbo-expander, more cooling capacity and higher liquefied fraction can be achieved. In this study, skid-mounted CBM liquefaction processes based on Claude cycle are established. Cryogenic turbo-expander with high expansion ratio is employed to improve the efficiency of CBM liquefaction process. The unit power consumption per liquefaction mole flow-rate for CBM feed gas is used as the object function for process optimization, compressor discharge pressure, flow ratio of feed gas to turbo-expander and nitrogen friction are analyzed, and optimum operation range of the liquefaction processes are obtained.

  1. Effect of pore-size distribution on the collapse behaviour of anthropogenic sandy soil deposits

    Directory of Open Access Journals (Sweden)

    Baille Wiebke

    2016-01-01

    Full Text Available In the former open-pit mines of the Lusatian region in Germany, several liquefaction events have occurred during the recent years in the anthropogenic deposits made of very loose sandy soils. These events are related to the rising ground water table after the stop of controlled ground water lowering. The very loose state is due to the formation of sand aggregates (pseudo-grains during the deposition process. The pseudo-grains enclose larger voids of dimension greater than the single sand grain. Wetting induced collapse of the pseudo-grains is presumed to be one of the possible mechanisms triggering liquefaction. In the present study, the effect of larger voids on the wetting induced deformation behaviour of sandy soils is experimentally investigated by laboratory box tests. The deformation field in the sample during wetting was measured using Digital Image Correlation (DIC technique. The results show that the observed deformations are affected by the pore size distribution, thus the amount of voids between the pseudo-grains (macro-void ratio and the voids inside the pseudo-grains (matrix void ratio. The global void ratio of a sandy soil is not sufficient as single state parameter, but the pore size distribution has to be taken into account, experimentally as well as in modelling.

  2. Residual Liquefaction under Standing Waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    This paper summarizes the results of an experimental study which deals with the residual liquefaction of seabed under standing waves. It is shown that the seabed liquefaction under standing waves, although qualitatively similar, exhibits features different from that caused by progressive waves....... The experimental results show that the buildup of pore-water pressure and the resulting liquefaction first starts at the nodal section and spreads towards the antinodal section. The number of waves to cause liquefaction at the nodal section appears to be equal to that experienced in progressive waves for the same...

  3. Assessment of stone columns as a mitigation technique of liquefaction-induced effects during Italian earthquakes (May 2012).

    Science.gov (United States)

    Forcellini, Davide; Tarantino, Angelo Marcello

    2014-01-01

    Soil liquefaction has been observed worldwide during recent major earthquakes with induced effects responsible for much of the damage, disruption of function, and considerable replacement expenses for structures. The phenomenon has not been documented in recent time with such damage in Italian context before the recent Emilia-Romagna Earthquake (May 2012). The main lateral spreading and vertical deformations affected the stability of many buildings and impacted social life inducing valuable lessons on liquefaction risk assessment and remediation. This paper aims first of all to reproduce soil response to liquefaction-induced lateral effects and thus to evaluate stone column mitigation technique effectiveness by gradually increasing the extension of remediation, in order to achieve a satisfactory lower level of permanent deformations. The study is based on the use of a FE computational interface able to analyse the earthquake-induced three-dimensional pore pressure generation adopting one of the most credited nonlinear theories in order to assess realistically the displacements connected to lateral spreading.

  4. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  5. Simulation and statistical analysis for the optimization of nitrogen liquefaction plant with cryogenic Claude cycle using process modeling tool: ASPEN HYSYS

    International Nuclear Information System (INIS)

    Joshi, D.M.

    2017-01-01

    Cryogenic technology is used for liquefaction of many gases and it has several applications in food process engineering. Temperatures below 123 K are considered to be in the field of cryogenics. Extreme low temperatures are a basic need for many industrial processes and have several applications, such as superconductivity of magnets, space, medicine and gas industries. Several methods can be used to obtain the low temperatures required for liquefaction of gases. The process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure, which is below the critical pressure, is the basic liquefaction process. Different cryogenic cycle configurations are designed for getting the liquefied form of gases at different temperatures. Each of the cryogenic cycles like Linde cycle, Claude cycle, Kapitza cycle or modified Claude cycle has its own advantages and disadvantages. The placement of heat exchangers, Joule-Thompson valve and turboexpander decides the configuration of a cryogenic cycle. Each configuration has its own efficiency according to the application. Here, a nitrogen liquefaction plant is used for the analysis purpose. The process modeling tool ASPEN HYSYS can provide a software simulation approach before the actual implementation of the plant in the field. This paper presents the simulation and statistical analysis of the Claude cycle with the process modeling tool ASPEN HYSYS. It covers the technique used to optimize the liquefaction of the plant. The simulation results so obtained can be used as a reference for the design and optimization of the nitrogen liquefaction plant. Efficient liquefaction will give the best performance and productivity to the plant.

  6. Simulation and statistical analysis for the optimization of nitrogen liquefaction plant with cryogenic Claude cycle using process modeling tool: ASPEN HYSYS

    Science.gov (United States)

    Joshi, D. M.

    2017-09-01

    Cryogenic technology is used for liquefaction of many gases and it has several applications in food process engineering. Temperatures below 123 K are considered to be in the field of cryogenics. Extreme low temperatures are a basic need for many industrial processes and have several applications, such as superconductivity of magnets, space, medicine and gas industries. Several methods can be used to obtain the low temperatures required for liquefaction of gases. The process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure, which is below the critical pressure, is the basic liquefaction process. Different cryogenic cycle configurations are designed for getting the liquefied form of gases at different temperatures. Each of the cryogenic cycles like Linde cycle, Claude cycle, Kapitza cycle or modified Claude cycle has its own advantages and disadvantages. The placement of heat exchangers, Joule-Thompson valve and turboexpander decides the configuration of a cryogenic cycle. Each configuration has its own efficiency according to the application. Here, a nitrogen liquefaction plant is used for the analysis purpose. The process modeling tool ASPEN HYSYS can provide a software simulation approach before the actual implementation of the plant in the field. This paper presents the simulation and statistical analysis of the Claude cycle with the process modeling tool ASPEN HYSYS. It covers the technique used to optimize the liquefaction of the plant. The simulation results so obtained can be used as a reference for the design and optimization of the nitrogen liquefaction plant. Efficient liquefaction will give the best performance and productivity to the plant.

  7. Evaluation of dynamic properties, local site effects and design ground motions: recent advances

    International Nuclear Information System (INIS)

    Sitharam, T.G.; Vipin, K.S.; James, Naveen

    2011-01-01

    Evidences from past earthquakes clearly shows that the damages due to an earthquake and its severity at a site are controlled mainly by three factors i.e., earthquake source and path characteristics, local geological and geotechnical characteristics, structural design and quality of the construction. Seismic ground response at a site is strongly influenced by local geological and soil conditions. The exact information of the geological, geomorphological and geotechnical data along with seismotectonic details are necessary to evaluate the ground response. The geometry of the subsoil structure, the soil type, the lateral discontinuities and the surface topography will also influence the site response at a particular location. In the case of a nuclear power plant, the details obtained from the site investigation will have multiple objectives: (i) for the effective design of the foundation (ii) assessment of site amplification (iii) for liquefaction potential evaluation. Since the seismic effects on the structure depend fully on the site conditions and assessment of site amplification. The first input required in evaluation of geotechnical aspect of seismic hazard is the rock level peak horizontal acceleration (PHA) values. The surface level acceleration values need to be calculated based on the site conditions and site amplification values. This paper discusses various methods for evaluating the site amplification values, dynamic soil properties, different field and laboratory tests required and various site classification schemes. In addition to these aspects, the evaluation of liquefaction potential of the site is also presented. The paper highlights on the latest testing methods to evaluate dynamic properties (shear modulus and damping ratio) of soils and techniques for estimating local site effects. (author)

  8. Design and analysis of liquefaction process for offshore associated gas resources

    International Nuclear Information System (INIS)

    Li, Q.Y.; Ju, Y.L.

    2010-01-01

    Liquefaction is the key section on floating platform. Some experts and designers selected mixed refrigerant process for floating platform, while some recommended expander cycle. However, few of them compared the two types of processes systemically before making a choice. In this paper, the liquefaction processes of propane pre-cooled mixed refrigerant cycle (C 3 /MRC), mixed refrigerant cycle (MRC) and nitrogen expander cycle (N 2 expander) for the special offshore associated gases in South China Sea have been designed and studied. These processes have been analyzed and compared systematically considering the main factors including the performance parameters, economic performance, layout, sensitivity to motion, suitability to different gas resources, safety and operability, accounting for the features of the floating production, storage and offloading unit for liquefied natural gas (LNG-FPSO) in marine environment. The results indicated that N 2 expander has higher energy consumption and poorer economic performance, while it has much more advantages than C 3 /MRC and MRC for offshore application because it is simpler and more compact and thus requiring less deck area, less sensitive to LNG-FPSO motion, has better suitability for other gas resources, has higher safety and is easier to operate. Therefore, N 2 expander is the most suitable offshore liquefaction process. In addition, the exergy analysis is conducted for N 2 expander and the results indicate that the compression equipments and after coolers, expanders and LNG heat exchangers are the main contribution to the total exergy losses. The measures to decrease the losses for these equipments are then discussed.

  9. Comparative study on liquefaction of creosote and chromated copper arsenate (CCA)-treated wood and untreated southern pine wood: effects of acid catalyst content, liquefaction time, temperature, and phenol to wood ratio

    Science.gov (United States)

    Hui Pan; Chung-Yun Hse; Todd F. Shupe

    2009-01-01

    Creosote- and chromated copper arsenate (CCA)-treated wood waste and untreated southern pine wood were liquefied with phenol and sulfuric acid. The effects of sulfuric acid content, liquefaction time, liquefaction temperature, and phenol to wood ratio on liquefaction rate (i.e., wood residue content) were investigated and analyzed by analysis of variance (...

  10. Comparison of the sand liquefaction estimated based on codes and practical earthquake damage phenomena

    Science.gov (United States)

    Fang, Yi; Huang, Yahong

    2017-12-01

    Conducting sand liquefaction estimated based on codes is the important content of the geotechnical design. However, the result, sometimes, fails to conform to the practical earthquake damages. Based on the damage of Tangshan earthquake and engineering geological conditions, three typical sites are chosen. Moreover, the sand liquefaction probability was evaluated on the three sites by using the method in the Code for Seismic Design of Buildings and the results were compared with the sand liquefaction phenomenon in the earthquake. The result shows that the difference between sand liquefaction estimated based on codes and the practical earthquake damage is mainly attributed to the following two aspects: The primary reasons include disparity between seismic fortification intensity and practical seismic oscillation, changes of groundwater level, thickness of overlying non-liquefied soil layer, local site effect and personal error. Meanwhile, although the judgment methods in the codes exhibit certain universality, they are another reason causing the above difference due to the limitation of basic data and the qualitative anomaly of the judgment formulas.

  11. Thermodynamic analysis of hydrocarbon refrigerants-based ethylene BOG re-liquefaction system

    Science.gov (United States)

    Beladjine, Boumedienne M.; Ouadha, Ahmed; Addad, Yacine

    2016-09-01

    The present study aims to make a thermodynamic analysis of an ethylene cascade re-liquefaction system that consists of the following two subsystems: a liquefaction cycle using ethylene as the working fluid and a refrigeration cycle operating with a hydrocarbon refrigerant. The hydrocarbon refrigerants considered are propane (R290), butane (R600), isobutane (R600a), and propylene (R1270). A computer program written in FORTRAN is developed to compute parameters for characteristic points of the cycles and the system's performance, which is determined and analyzed using numerical solutions for the refrigerant condensation temperature, temperature in tank, and temperature difference in the cascade condenser. Results show that R600a gives the best performance, followed by (in order) R600, R290, and R1270. Furthermore, it is found that an increase in tank temperature improves system performance but that an increase in refrigerant condensation temperature causes deterioration. In addition, it is found that running the system at a low temperature difference in the cascade condenser is advantageous.

  12. Soil Physical and Environmental Conditions Controlling Patterned-Ground Variability at a Continuous Permafrost Site, Svalbard

    DEFF Research Database (Denmark)

    Watanabe, Tatsuya; Matsuoka, Norikazu; Christiansen, Hanne Hvidtfeldt

    2017-01-01

    properties and principal component analysis indicate that the distribution of patterned ground depends primarily on soil texture, soil moisture and the winter ground thermal regime associated with snow cover. Mudboils and composite patterns (mudboils surrounded by small polygons) occupy well-drained areas...... composed of clay-rich aeolian sediments. Compared to mudboils, composite patterns show a sharper contrast in soil texture between barren centres and vegetated rims. Hummocks filled with organic materials develop on poorly drained lowlands associated with a shallow water table. Ice-wedge polygons...

  13. Preliminary maps of Quaternary deposits and liquefaction susceptibility, nine-county San Francisco Bay region, California: a digital database

    Science.gov (United States)

    Knudsen, Keith L.; Sowers, Janet M.; Witter, Robert C.; Wentworth, Carl M.; Helley, Edward J.; Nicholson, Robert S.; Wright, Heather M.; Brown, Katherine H.

    2000-01-01

    This report presents a preliminary map and database of Quaternary deposits and liquefaction susceptibility for the nine-county San Francisco Bay region, together with a digital compendium of ground effects associated with past earthquakes in the region. The report consists of (1) a spatial database of fivedata layers (Quaternary deposits, quadrangle index, and three ground effects layers) and two text layers (a labels and leaders layer for Quaternary deposits and for ground effects), (2) two small-scale colored maps (Quaternary deposits and liquefaction susceptibility), (3) a text describing the Quaternary map, liquefaction interpretation, and the ground effects compendium, and (4) the databse description pamphlet. The nine counties surrounding San Francisco Bay straddle the San Andreas fault system, which exposes the region to serious earthquake hazard (Working Group on California Earthquake Probabilities, 1999). Much of the land adjacent to the Bay and the major rivers and streams is underlain by unconsolidated deposits that are particularly vulnerable to earthquake shaking and liquefaction of water-saturated granular sediment. This new map provides a modern and regionally consistent treatment of Quaternary surficial deposits that builds on the pioneering mapping of Helley and Lajoie (Helley and others, 1979) and such intervening work as Atwater (1982), Helley and others (1994), and Helley and Graymer (1997a and b). Like these earlier studies, the current mapping uses geomorphic expression, pedogenic soils, and inferred depositional environments to define and distinguish the map units. In contrast to the twelve map units of Helley and Lajoie, however, this new map uses a complex stratigraphy of some forty units, which permits a more realistic portrayal of the Quaternary depositional system. The two colored maps provide a regional summary of the new mapping at a scale of 1:275,000, a scale that is sufficient to show the general distribution and relationships of

  14. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, T [National Institute for Materials Science, Tsukuba (Japan); Kamlya, K. [Japan Atomic Energy Agency, Naka (Japan); Utaki, T. [Osaka University, Osaka (Japan); Matsumoto, K. [Kanazawa University, Kanazawa (Japan)

    2013-06-15

    This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

  15. Predicted Liquefaction in the Greater Oakland and Northern Santa Clara Valley Areas for a Repeat of the 1868 Hayward Earthquake

    Science.gov (United States)

    Holzer, T. L.; Noce, T. E.; Bennett, M. J.

    2008-12-01

    Probabilities of surface manifestations of liquefaction due to a repeat of the 1868 (M6.7-7.0) earthquake on the southern segment of the Hayward Fault were calculated for two areas along the margin of San Francisco Bay, California: greater Oakland and the northern Santa Clara Valley. Liquefaction is predicted to be more common in the greater Oakland area than in the northern Santa Clara Valley owing to the presence of 57 km2 of susceptible sandy artificial fill. Most of the fills were placed into San Francisco Bay during the first half of the 20th century to build military bases, port facilities, and shoreline communities like Alameda and Bay Farm Island. Probabilities of liquefaction in the area underlain by this sandy artificial fill range from 0.2 to ~0.5 for a M7.0 earthquake, and decrease to 0.1 to ~0.4 for a M6.7 earthquake. In the greater Oakland area, liquefaction probabilities generally are less than 0.05 for Holocene alluvial fan deposits, which underlie most of the remaining flat-lying urban area. In the northern Santa Clara Valley for a M7.0 earthquake on the Hayward Fault and an assumed water-table depth of 1.5 m (the historically shallowest water level), liquefaction probabilities range from 0.1 to 0.2 along Coyote and Guadalupe Creeks, but are less than 0.05 elsewhere. For a M6.7 earthquake, probabilities are greater than 0.1 along Coyote Creek but decrease along Guadalupe Creek to less than 0.1. Areas with high probabilities in the Santa Clara Valley are underlain by latest Holocene alluvial fan levee deposits where liquefaction and lateral spreading occurred during large earthquakes in 1868 and 1906. The liquefaction scenario maps were created with ArcGIS ModelBuilder. Peak ground accelerations first were computed with the new Boore and Atkinson NGA attenuation relation (2008, Earthquake Spectra, 24:1, p. 99-138), using VS30 to account for local site response. Spatial liquefaction probabilities were then estimated using the predicted ground motions

  16. Soil Stress-Strain Behavior: Measurement, Modeling and Analysis

    CERN Document Server

    Ling, Hoe I; Leshchinsky, Dov; Koseki, Junichi; A Collection of Papers of the Geotechnical Symposium in Rome

    2007-01-01

    This book is an outgrowth of the proceedings for the Geotechnical Symposium in Roma, which was held on March 16 and 17, 2006 in Rome, Italy. The Symposium was organized to celebrate the 60th birthday of Prof. Tatsuoka as well as honoring his research achievement. The publications are focused on the recent developments in the stress-strain behavior of geomaterials, with an emphasis on laboratory measurements, soil constitutive modeling and behavior of soil structures (such as reinforced soils, piles and slopes). The latest advancement in the field, such as the rate effect and dynamic behavior of both clay and sand, behavior of modified soils and soil mixtures, and soil liquefaction are addressed. A special keynote paper by Prof. Tatsuoka is included with three other keynote papers (presented by Prof. Lo Presti, Prof. Di Benedetto, and Prof. Shibuya).

  17. Soil-structure interaction Vol.3. Influence of ground water

    Energy Technology Data Exchange (ETDEWEB)

    Costantino, C J

    1986-04-01

    This study has been performed for the Nuclear Regulatory Commission (NRC) by the Structural Analysis Division of Brookhaven National Laboratory (BNL). The study was conducted during the fiscal year 1965 on the program entitled 'Benchmarking of Structural Engineering Problems' sponsored by NRC. The program considered three separate but complementary problems, each associated with the soil-structure interaction (551) phase of the seismic response analysis of nuclear plant facilities. The reports, all entitled Soil-Structure Interaction, are presented in three separate volumes, namely: Vol. 1 Influence of Layering by AJ Philippacopoulos, Vol. 2 Influence of Lift-Off by C.A. Miller, Vol. 3 Influence of Ground Water by C.J. Costantino. The two problems presented in Volumes 2 and 3 were conducted at the City University of New York (CUNY) under subcontract to BNL. This report, Volume 3 of the report, presents a summary of the first year's effort on the subject of the influence of foundation ground water on the SSI phenomenon. A finite element computer program was developed for the two-phased formulation of the combined soil-water problem. This formulation is based on the Biot dynamic equations of motion for both the solid and fluid phases of a typical soil. Frequency dependent interaction coefficients were generated for the two-dimensional plane problem of a rigid surface footing moving against a saturated linear soil. The results indicate that interaction coefficients are significantly modified as compared to the comparable values for a dry soil, particularly for the rocking mode of response. Calculations were made to study the impact of the modified interaction coefficients on the response of a typical nuclear reactor building. The amplification factors for a stick model placed atop a dry and saturated soil were computed. It was found that pore water caused the rocking response to decrease and translational response to increase over the frequency range of interest, as

  18. Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster

    Science.gov (United States)

    Iverson, Richard M.; George, David L.

    2016-01-01

    Some landslides move slowly or intermittently downslope, but others liquefy during the early stages of motion, leading to runaway acceleration and high-speed runout across low-relief terrain. Mechanisms responsible for this disparate behaviour are represented in a two-phase, depth-integrated, landslide dynamics model that melds principles from soil mechanics, granular mechanics and fluid mechanics. The model assumes that gradually increasing pore-water pressure causes slope failure to nucleate at the weakest point on a basal slip surface in a statically balanced mass. Failure then spreads to adjacent regions as a result of momentum exchange. Liquefaction is contingent on pore-pressure feedback that depends on the initial soil state. The importance of this feedback is illustrated by using the model to study the dynamics of a disastrous landslide that occurred near Oso, Washington, USA, on 22 March 2014. Alternative simulations of the event reveal the pronounced effects of a landslide mobility bifurcation that occurs if the initial void ratio of water-saturated soil equals the lithostatic, critical-state void ratio. They also show that the tendency for bifurcation increases as the soil permeability decreases. The bifurcation implies that it can be difficult to discriminate conditions that favour slow landsliding from those that favour liquefaction and long runout.

  19. The Comparative Analysis of the Efficiency of Coal Liquefaction Technologies

    Directory of Open Access Journals (Sweden)

    Rudyka Viktor I.

    2017-12-01

    Full Text Available Organization of production of synthetic liquid fuels (SLF in Ukraine becomes an especially topical and at the same time complex scientific and applied task, taking into consideration criteria of the techno-ecological and economic rationality. The article presents a methodical approach to the comparative analysis of efficiency of the main methods and technologies for the synthetic liquid fuels production and a carried out testing, the results of which allowed to conclude that the most rational is the technology of indirect coal liquefaction based on coal thermal plasma gasification.

  20. Consequences of artic ground squirrels on soil carbon loss from Siberian tundra

    Science.gov (United States)

    Golden, N. A.; Natali, S.; Zimov, N.

    2014-12-01

    A large pool of organic carbon (C) has been accumulating in the Arctic for thousands of years. Much of this C has been frozen in permafrost and unavailable for microbial decomposition. As the climate warms and permafrost thaws, the fate of this large C pool will be driven not only by climatic conditions, but also by ecosystem changes brought about by arctic animal populations. In this project we studied arctic ground squirrels (Spermophilus parryii), which are widely-distributed throughout the Arctic. These social mammals create subterranean burrows that mix soil layers, increase aeration, alter soil moisture and temperature, and redistribute soil nutrients, all of which may impact microbial decomposition. We examined the effects of arctic ground squirrel activity on soil C mineralization in dry heath tundra underlain by continuous permafrost in the Kolyma River watershed in northeast Siberia, Russia. Vegetation cover was greatly reduced on the ground squirrel burrows (80% of ground un-vegetated), compared to undisturbed sites (35% of ground un-vegetated). Soils from ground squirrel burrows were also significantly dryer and warmer. To examine effects of ground squirrel activity on microbial respiration, we conducted an 8-day incubation of soil fromburrows and from adjacent undisturbed tundra. In addition, we assessed the impact of nutrient addition by including treatments with low and high levels of nitrogen addition. Microbial respiration (per gram soil) was three-fold higher in incubated soils from the undisturbed sites compared to soils collected from the burrows. The lower rates of respiration from the disturbed soils may have been a result of lower carbon quality or low soil moisture. High nitrogen addition significantly increased respiration in the undisturbed soils, but not in the disturbed burrow soils, which suggests that microbial respiration in the burrow soils was not primarily limited by nitrogen. These results demonstrate the importance of wildlife

  1. Liquefaction technology assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    A survey of coal liquefaction technology and analysis of projected relative performance of high potential candidates has been completed and the results are reported here. The key objectives of the study included preparation of a broad survey of the status of liquefaction processes under development, selection of a limited number of high potential process candidates for further study, and an analysis of the relative commercial potential of these candidates. Procedures which contributed to the achievement of the above key goals included definition of the characteristics and development status of known major liquefaction process candidates, development of standardized procedures for assessing technical, environmental, economic and product characteristics for the separate candidates, and development of procedures for selecting and comparing high potential processes. The comparisons were made for three production areas and four marketing areas of the US. In view of the broad scope of the objectives the survey was a limited effort. It used the experience gained during preparation of seven comprehensive conceptual designs/economic evaluations plus comprehensive reviews of the designs, construction and operation of several pilot plants. Results and conclusions must be viewed in the perspective of the information available, how this information was treated, and the full context of the economic comparison results. Comparative economics are presented as ratios; they are not intended to be predictors of absolute values. Because the true cost of constructing and operating large coal conversion facilities will be known only after commercialization, relative values are considered more appropriate. (LTN)

  2. A novel vortex tube-based N2-expander liquefaction process for enhancing the energy efficiency of natural gas liquefaction

    Directory of Open Access Journals (Sweden)

    Qyyum Muhammad Abdul

    2017-01-01

    Full Text Available This research work unfolds a simple, safe, and environment-friendly energy efficient novel vortex tube-based natural gas liquefaction process (LNG. A vortex tube was introduced to the popular N2-expander liquefaction process to enhance the liquefaction efficiency. The process structure and condition were modified and optimized to take a potential advantage of the vortex tube on the natural gas liquefaction cycle. Two commercial simulators ANSYS® and Aspen HYSYS® were used to investigate the application of vortex tube in the refrigeration cycle of LNG process. The Computational fluid dynamics (CFD model was used to simulate the vortex tube with nitrogen (N2 as a working fluid. Subsequently, the results of the CFD model were embedded in the Aspen HYSYS® to validate the proposed LNG liquefaction process. The proposed natural gas liquefaction process was optimized using the knowledge-based optimization (KBO approach. The overall energy consumption was chosen as an objective function for optimization. The performance of the proposed liquefaction process was compared with the conventional N2-expander liquefaction process. The vortex tube-based LNG process showed a significant improvement of energy efficiency by 20% in comparison with the conventional N2-expander liquefaction process. This high energy efficiency was mainly due to the isentropic expansion of the vortex tube. It turned out that the high energy efficiency of vortex tube-based process is totally dependent on the refrigerant cold fraction, operating conditions as well as refrigerant cycle configurations.

  3. A novel vortex tube-based N2-expander liquefaction process for enhancing the energy efficiency of natural gas liquefaction

    Science.gov (United States)

    Qyyum, Muhammad Abdul; Wei, Feng; Hussain, Arif; Ali, Wahid; Sehee, Oh; Lee, Moonyong

    2017-11-01

    This research work unfolds a simple, safe, and environment-friendly energy efficient novel vortex tube-based natural gas liquefaction process (LNG). A vortex tube was introduced to the popular N2-expander liquefaction process to enhance the liquefaction efficiency. The process structure and condition were modified and optimized to take a potential advantage of the vortex tube on the natural gas liquefaction cycle. Two commercial simulators ANSYS® and Aspen HYSYS® were used to investigate the application of vortex tube in the refrigeration cycle of LNG process. The Computational fluid dynamics (CFD) model was used to simulate the vortex tube with nitrogen (N2) as a working fluid. Subsequently, the results of the CFD model were embedded in the Aspen HYSYS® to validate the proposed LNG liquefaction process. The proposed natural gas liquefaction process was optimized using the knowledge-based optimization (KBO) approach. The overall energy consumption was chosen as an objective function for optimization. The performance of the proposed liquefaction process was compared with the conventional N2-expander liquefaction process. The vortex tube-based LNG process showed a significant improvement of energy efficiency by 20% in comparison with the conventional N2-expander liquefaction process. This high energy efficiency was mainly due to the isentropic expansion of the vortex tube. It turned out that the high energy efficiency of vortex tube-based process is totally dependent on the refrigerant cold fraction, operating conditions as well as refrigerant cycle configurations.

  4. Stability Analysis of the Embankment Model

    Directory of Open Access Journals (Sweden)

    G.S. Gopalakrishna

    2009-01-01

    Full Text Available In analysis of embankment model affected by dynamic force, employment of shaking table is a scientific way in assessment of earthquake behavior. This work focused on saturated loose sandy foundation and enbankment. The results generated through the pore pressure sensors indicated pore water pressure playing main role in creation of liquefaction and stability of the system, and also revealed deformation, settlement, liquefaction intensity and time stability of system in direct correlation with the strength and characteristics of soil. One of the economical methods in stabilization of soil foundation is improvement of some part soil foundation.

  5. A detrimental soil disturbance prediction model for ground-based timber harvesting

    Science.gov (United States)

    Derrick A. Reeves; Matthew C. Reeves; Ann M. Abbott; Deborah S. Page-Dumroese; Mark D. Coleman

    2012-01-01

    Soil properties and forest productivity can be affected during ground-based harvest operations and site preparation. The degree of impact varies widely depending on topographic features and soil properties. Forest managers who understand site-specific limits to ground-based harvesting can alter harvest method or season to limit soil disturbance. To determine the...

  6. “Wave - Particle Duality” and Soil Liquefaction in Geotechnical Engineering

    Science.gov (United States)

    Wang, Demin

    2017-10-01

    In the disaster situation of multi-earthquake, with the phenomenon of vibrating phenomenon and the occurrence of cracks in the surface soil, the collapse of the buildings on the ground are caused. The author tries to explain the phenomenon of earthquake disaster in this geotechnical engineering by using the wave-particle duality theory of sunlight. And proposed the sun in the physics of the already high frequency of the weak light superimposed into the low frequency of the low light wave volatility, once again superimposed, superimposed as a lower frequency of linear light, the energy from low to high. Sunlight from weak light into a strong sunlight, that is, the sun near the observation may be weak light or black sunspots is composed of black holes. By long distance, the convergence of light becomes into a dazzling luminous body. Light from the numerous light quantum and an energy line form a half-space infinite volatility curve, and the role of light plays under the linear form of particles. When the night is manifested of l black approaching unconnected light quantum. The author plays the earth as the sun, compared to the deep pressure of low-viscosity clay soil pore, water performance is complex. Similar to the surface of the sun’s spectrum, saturated silty sand is showed volatility, Ground surface high-energy clay showed particle properties. Particle performance is shear strength.

  7. Cooperative research in coal liquefaction infratechnology and generic technology development: Final report, October 1, 1985 to December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Sendlein, L.V.A.

    1987-06-29

    During the first year of its research program, the Consortium for Fossil Fuel Liquefaction Science has made significant progress in many areas of coal liquefaction and coal structure research. Research topics for which substantial progress has been made include integrated coal structure and liquefaction studies, investigation of differential liquefaction processes, development and application of sophisticated techniques for structural analysis, computer analysis of multivariate data, biodesulfurization of coal, catalysis studies, co-processing of coal and crude oil, coal dissolution and extraction processes, coal depolymerization, determination of the liquefaction characteristics of many US coals for use in a liquefaction database, and completion of a retrospective technology assessment for direct coal liquefaction. These and related topics are discussed in considerably more detail in the remainder of this report. Individual projects are processed separately for the data base.

  8. Hydrothermal liquefaction of microalgae's for bio oil production

    DEFF Research Database (Denmark)

    Toor, Saqib; Reddy, Harvind; Deng, Shuguang

    process water for algae cultivation. GC-MS, elemental analyzer, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-oil yield of 46% was obtained on Nannochloropsis salina at 310 °C...... and 107 bar. For Spirulina platensis algae sample, the highest bio-oil yield is 38% at 350 °C and 195 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins...

  9. Cooperative research in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Sendlein, L.V.A. (eds.)

    1991-05-28

    Significant progress was made in the May 1990--May 1991 contract period in three primary coal liquefaction research areas: catalysis, structure-reactivity studies, and novel liquefaction processes. A brief summary of the accomplishments in the past year in each of these areas is given.

  10. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2014-01-01

    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided...... into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...

  11. Response analysis of a nuclear containment structure with nonlinear soil-structure interaction under bi-directional ground motion

    Science.gov (United States)

    Kumar, Santosh; Raychowdhury, Prishati; Gundlapalli, Prabhakar

    2015-06-01

    Design of critical facilities such as nuclear power plant requires an accurate and precise evaluation of seismic demands, as any failure of these facilities poses immense threat to the community. Design complexity of these structures reinforces the necessity of a robust 3D modeling and analysis of the structure and the soil-foundation interface. Moreover, it is important to consider the multiple components of ground motion during time history analysis for a realistic simulation. Present study is focused on investigating the seismic response of a nuclear containment structure considering nonlinear Winkler-based approach to model the soil-foundation interface using a distributed array of inelastic springs, dashpots and gap elements. It is observed from this study that the natural period of the structure increases about 10 %, whereas the force demands decreases up to 24 % by considering the soil-structure interaction. Further, it is observed that foundation deformations, such as rotation and sliding are affected by the embedment ratio, indicating an increase of up to 56 % in these responses for a reduction of embedment from 0.5 to 0.05× the width of the footing.

  12. Earthquake response analysis of embedded reactor building considering soil-structure separation and nonlinearity of soil

    International Nuclear Information System (INIS)

    Ichikawa, T.; Hayashi, Y.; Nakai, S.

    1987-01-01

    In the earthquake response analysis for a rigid and massive structure as a nuclear reactor building, it is important to estimate the effect of soil-structure interaction (SSI) appropriately. In case of strong earthquakes, the nonlinearity, such as the wall-ground separation, the base mat uplift of sliding, makes the behavior of the soil-structure system complex. But, if the nuclear reactor building is embedded in a relatively soft ground with surface layer, the wall-ground separation plays the most important role in the response of soil-structure system. Because, it is expected that the base uplift and slide would be less significant due to the effect of the embedment, and the wall-ground friction is usually neglected in design. But, the nonlinearity of ground may have some effect on the wall-ground separation and the response of the structure. These problems have been studied by use of FEM. Others used joint elements between the ground and the structure which does not resist tensile force. Others studied the effect of wall-ground separation with non-tension springs. But the relationship between the ground condition and the effect of the separation has not been clarified yet. To clarify the effect the analyses by FE model and lumped mass model (sway-rocking model) are performed and compared. The key parameter is the ground profile, namely the stiffness of the side soil

  13. Determination of Liquefaction Potential using Artificial Neural Networks

    DEFF Research Database (Denmark)

    Farrokhzad, F; Choobbasti, A.J; Barari, Amin

    2011-01-01

    The authors propose an alternative general regression model based on neural networks, which enables analysis of summary data obtained by liquefaction analysis according to usual methods. For that purpose, the data from some thirty boreholes made during field investigations in Babol, in the Iranian...

  14. Cover stones on liquefiable soil bed under waves

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Hatipoglu, Figen; Fredsøe, Jørgen

    2010-01-01

    The paper describes the results of an experimental study on the behavior of cover stones on a liquefiable soil bed exposed to a progressive wave. The soil was silt with d50=0.098mm. Stones, the size of 4cm, were used as cover material. The effect of packing density of stones, and that of number...... of stone layers (including the effect of an intermediate filter layer) were investigated. Pore pressure was measured across the soil depth. The experiments show that the soil liquefaction depended mainly on two parameters: the packing density of stones, and the number of stone layers. When the liquefaction...

  15. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    Science.gov (United States)

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  16. Liquefaction resistance of calcareous sands

    International Nuclear Information System (INIS)

    Sandoval Vallejo, Eimar

    2012-01-01

    Calcareous sands are unique in terms of their origin, mineralogy, shape, fragility and intra particle porosity. This article presents results from an experimental program carried out to study the liquefaction resistance of a calcareous sand retrieved from Cabo Rojo at Puerto Rico. The experimental program included mineralogical characterization, index properties, and undrained cyclic triaxial tests on isotropically consolidated reconstituted samples. Due to the large variation in the calcareous sand properties, results are compared with previous researches carried out on other calcareous sands around the world. Results showed a wide range in the liquefaction resistance of the studied calcareous sands. Cabo Rojo sand experienced greater liquefaction resistance than most of the calcareous sands used for comparison. Important differences in the excess pore pressure generation characteristics were also found.

  17. Renewable hydrocarbon fuels from hydrothermal liquefaction: A techno-economic analysis

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Hansen, Nick Høy; Pérez, Oscar Miralles

    2018-01-01

    This study demonstrates the economic feasibility of producing renewable transportation drop-in fuels from lignocellulosic biomass through hydrothermal liquefaction and upgrading. An Aspen Plus® process model is developed based on extensive experimental data to document a techno-economic assessmen...

  18. EXPLORATORY RESEARCH ON NOVEL COAL LIQUEFACTION CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Winschel, R.A.

    1998-11-30

    The report presents a summary the work performed under DOE Contract No. DE-AC22-95PC95050. Investigations performed under Task 4--Integrated Flow Sheet Testing are detailed. In this program, a novel direct coal liquefaction technology was investigated by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Approaches to reduce costs for a conceptual commercial plant were recommended at the conclusion of Task 3. These approaches were investigated in Task 4. The economic analysis of the process as it was defined at the conclusion of Task 4, indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies.

  19. Design and analysis of a small-scale natural gas liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling

    International Nuclear Information System (INIS)

    Yuan, Zongming; Cui, Mengmeng; Xie, Ying; Li, Chunlin

    2014-01-01

    With the growth of energy consumption and environmental protection concerns, it is of enormous economic and environmental values for the development of stranded gas. As a means for exploitation and transportation of stranded gas to market, a novel small-scale liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling is put up with in this paper. Taking unit energy consumption as the target function, Aspen HYSYS is employed to simulate and optimize the process to achieve the liquefaction rate of 0.77 with unit energy consumption of 9.90 kW/kmol/h. Furthermore, the adaptability of this process under different pressure, temperature and compositions of feed gas is studied. Based on the optimization results, the exergy losses of main equipment in the process are evaluated and analyzed in details. With compact device, safety operation, simple capability, this liquefaction process proves to be suitable for the development of small gas reserves, satellite distribution fields of gas or coalbed methane fields. - Highlights: •A novel small-scale liquefaction process used in stranded gas is designed. •The adaptability of this process under different pressure, temperature and compositions of feed gas is studied. •The exergy analysis of main equipment in the process is analyzed

  20. Design and analysis of a small-scale natural gas liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Zongming; Cui, Mengmeng; Xie, Ying; Li, Chunlin

    2014-03-01

    With the growth of energy consumption and environmental protection concerns, it is of enormous economic and environmental values for the development of stranded gas. As a means for exploitation and transportation of stranded gas to market, a novel small-scale liquefaction process adopting single nitrogen expansion with carbon dioxide pre-cooling is put up with in this paper. Taking unit energy consumption as the target function, Aspen HYSYS is employed to simulate and optimize the process to achieve the liquefaction rate of 0.77 with unit energy consumption of 9.90 kW/kmol/h. Furthermore, the adaptability of this process under different pressure, temperature and compositions of feed gas is studied. Based on the optimization results, the exergy losses of main equipment in the process are evaluated and analyzed in details. With compact device, safety operation, simple capability, this liquefaction process proves to be suitable for the development of small gas reserves, satellite distribution fields of gas or coalbed methane fields. - Highlights: •A novel small-scale liquefaction process used in stranded gas is designed. •The adaptability of this process under different pressure, temperature and compositions of feed gas is studied. •The exergy analysis of main equipment in the process is analyzed.

  1. Analysis of the relationship between the coal properties and their liquefaction characteristics by using the coal data base; Tanshu data base ni yoru tanshitsu to ekika tokusei no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kanbayashi, Y.; Okada, K. [Coal Mining Research Center, Tokyo (Japan)

    1996-10-28

    The relationship between coal properties and liquefaction or gasification characteristics was analyzed by using the analysis and test results and liquefaction characteristics in the coal data base. On liquefaction reaction, the close relation between an oil yield and coal constituent composition or a coal rank is well-known. Various multivariable regression analyses were conducted by using 6 factors as variables such as calorific value, volatile component, O/C and H/C atomic ratios, exinite+vitrinite content and vitrinite reflectance, and liquefaction characteristics as variate. On liquefaction characteristics, the oil yield of dehydrated and deashed coals, asphaltene yield, hydrogen consumption, produced water and gas quantities, and oil+asphaltene yield were predicted. The theoretical gasification efficiency of each specimen was calculated to evaluate the liquefaction reaction obtained. As a result, the oil yield increased with H/C atomic ratio, while the theoretical gasification efficiency increased with O/C atomic ratio. 5 figs., 1 tab.

  2. Seismic rehabilitation and analysis of Chaohe earth dam

    Science.gov (United States)

    Fu, Lei; Zeng, Xiangwu

    2005-12-01

    Stability of earth dams during earthquakes has been a major concern for geotechnical engineers in seismic active regions. Liquefaction induced slope failure occurred at the upstream slope of a major earth dam in the suburb of Beijing, China, during the 1976 Tangshan Earthquake. The gravelly soil with loose initial condition liquefied under relatively small ground vibration. In recent years, a major seismic rehabilitation project was carried out on a similar earth dam nearby using dumped quarry stone. Seismic stability analysis was carried out using model test, finite element simulation, and pseudo-static slope stability program after taking into account the influence of excess pore pressure.

  3. Efficiency of Micro-fine Cement Grouting in Liquefiable Sand

    International Nuclear Information System (INIS)

    Mirjalili, Mojtaba; Mirdamadi, Alireza; Ahmadi, Alireza

    2008-01-01

    In the presence of strong ground motion, liquefaction hazards are likely to occur in saturated cohesion-less soils. The risk of liquefaction and subsequent deformation can be reduced by various ground improvement methods including the cement grouting technique. The grouting method was proposed for non-disruptive mitigation of liquefaction risk at developed sites susceptible to liquefaction. In this research, a large-scale experiment was developed for assessment of micro-fine cement grouting effect on strength behavior and liquefaction potential of loose sand. Loose sand samples treated with micro-fine grout in multidirectional experimental model, were tested under cyclic and monotonic triaxial loading to investigate the influence of micro-fine grout on the deformation properties and pore pressure response. The behavior of pure sand was compared with the behavior of sand grouted with a micro-fine cement grout. The test results were shown that cement grouting with low concentrations significantly decreased the liquefaction potential of loose sand and related ground deformation

  4. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  5. Secondary liquefaction in ethanol production

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase.......The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase....

  6. Development of continuous bench scale unit for direct liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Wang Lai [Korea Inst. of Energy and Resources, Daeduk (Korea, Republic of)

    1996-12-31

    Batch coal liquefaction experiments using tubing bombs and continuous experiments by cell liquefaction test facility were carried out. The main purpose was to maximize the coal liquefaction yields by improving the activity of coal dissolution catalysts which are oil soluble transition metal naphthenate and to supplement the incomplete research results. In the meantime, the study on the reaction characteristics of coal liquefaction and coal liquid upgrading catalyst upon sulfiding conditions and phosphorous addition have been conducted (author). 102 refs., 35 figs.

  7. Development of continuous bench scale unit for direct liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Wang Lai [Korea Inst. of Energy and Resources, Daeduk (Korea, Republic of)

    1995-12-31

    Batch coal liquefaction experiments using tubing bombs and continuous experiments by cell liquefaction test facility were carried out. The main purpose was to maximize the coal liquefaction yields by improving the activity of coal dissolution catalysts which are oil soluble transition metal naphthenate and to supplement the incomplete research results. In the meantime, the study on the reaction characteristics of coal liquefaction and coal liquid upgrading catalyst upon sulfiding conditions and phosphorous addition have been conducted (author). 102 refs., 35 figs.

  8. Prospect of coal liquefaction in Indonesia

    International Nuclear Information System (INIS)

    Hartiniati; Dasuki, A.S.; Artanto, Yu.; Sulaksono, D.; Gunanjar

    1997-01-01

    With the current known oil reserves of about 11 billion barrel and annual production of approximately 500 million barrel, the country's oil reserves will be depleted by 2010, and Indonesia would have become net oil importer if no major oil fields be found somewhere in the archipelago. Under such circumstances the development of new sources of liquid fuel becomes a must, and coal liquefaction can be one possible solution for the future energy problem in Indonesia, particularly in the transportation sector due to the availability of coal in huge amount. This paper present the prospect of coal liquefaction in Indonesia and look at the possibility of integrating the process with HTR as a heat supplier. Evaluation of liquidability of several low grade Indonesian coals will also be presented. Coal from South Banko-Tanjung Enim is found to be one of the most suitable coal for liquefaction. Several studies show that an advanced coal liquefaction technology recently developed has the potential to reduce not only the environmental impact but also the production cost. The price of oil produced in the year 2000 is expected to reach US $ 17.5 ∼ 19.2/barrel and this will compete with the current oil price. Not much conclusion can be drawn from the idea of integrating HTR with coal liquefaction plant due to limited information available. (author). 7 figs, 3 tabs

  9. Study on sand particles creep model and open pit mine landslide mechanism caused by sand fatigue liquefaction

    Science.gov (United States)

    Du, Dong-Ning; Wang, Lai-Gui; Zhang, Xiang-Dong; Zhang, Shu-Kun

    2017-06-01

    The sand particles in the sand - rock composite slope of the open pit mine occurs creep deformation and fatigue liquefaction under the action of vehicle load vibration and hydraulic gradient, which causes landslide geological disasters and it destroys the surface environment. To reveal the mechanism, a mechanics model based on the model considering the soil structural change with a new “plastic hinge” element is developed, to improve its constitutive and creep curve equations. Data from sand creep experiments are used to identify the parameters in the model and to validate the model. The results show that the mechanical model can describe the rotation progress between the sand particles, disclose the negative acceleration creep deformation stage during the third phase, and require fewer parameters while maintaining accuracy. It provides a new creep model considering rotation to analyze sand creep mechanism, which provides a theoretical basis for revealing the open pit mine landslide mechanism induced by creep deformation and fatigue liquefaction of sandy soil.

  10. Evaluation of ground deformations induced by the 1999 Kocaeli earthquake (Turkey) at selected sites on shorelines

    Science.gov (United States)

    Aydan, Ömer; Ulusay, Reşat; Atak, Veysel Okan

    2008-03-01

    The Kocaeli earthquake ( M w = 7.4) of 17 August 1999 occurred in the Eastern Marmara Region of Turkey along the North Anadolu Fault and resulted in a very serious loss of life and property. One of the most important geotechnical issues of this event was the permanent ground deformations because of both liquefaction and faulting. These deformations occurred particularly along the southern shores of İzmit Bay and Sapanca Lake between the cities of Yalova and Adapazarı in the west and east, respectively. In this study, three sites founded on delta fans, namely Değirmendere Nose, Yeniköy tea garden at Seymen on the coast of İzmit Bay, and Vakıf Hotel site on the coast of Sapanca Lake were selected as typical cases. The main causes of the ground deformations at these sites were then investigated. Geotechnical characterization of the ground, derivation of displacement vectors from the pre- and post-earthquake aerial photographs, liquefaction assessments based on field performance data, and analyses carried out using the sliding body method have been fundamental in this study. The displacement vectors determined from photogrammetric evaluations conducted at Değirmendere and Seymen showed a combined movement of faulting and liquefaction. But except the movements in the close vicinity of shorelines, the dominant factor in this movement was faulting. The results obtained from the analyses suggested that the ground failure at Değirmendere was a submarine landslide mainly because of earthquake shaking rather than liquefaction. On the other hand, the ground failures at the Yeniköy tea garden on the coast of Seymen and the hotel area in Sapanca town resulted from liquefaction-induced lateral spreading. It was also obtained that the ground deformations estimated from the sliding body method were quite close to those measured by aerial photogrammetry technique.

  11. Membrane-assisted CO2 liquefaction: performance modelling of CO2 capture from flue gas in cement production

    NARCIS (Netherlands)

    Bouma, R.H.B.; Vercauteren, F.F.; Os, P.J. van; Goetheer, E.L.V.; Berstad, D.; Anantharaman, R.

    2017-01-01

    CEMCAP is an international R&D project under the Horizon 2020 Programme preparing the ground for the large-scale implementation of CO2 capture in the European cement industry. This paper concerns the performance modeling of membraneassisted CO2 liquefaction as a possible retrofit application for

  12. Dispersed-phase catalysis in coal liquefaction

    International Nuclear Information System (INIS)

    Utz, B.R.; Cugini, A.V.; Frommell, E.A.

    1990-01-01

    This paper reports that the specific reaction (activation) conditions for the conversion of catalyst precursors to unsupported catalyst have a direct effect on the catalytic activity and dispersion. The importance of reaction intermediates in decomposition of ammonium heptamolybdate and ammonium tetrathiomolybdate, and the sensitivity of these intermediates to reaction conditions, were studied in coal liquefaction systems. Recent results indicate that optimization of activation conditions facilitates the formation of a highly dispersed and active form of molybdenum disulfide for coal liquefaction. The use of the catalyst precursors ammonium heptamolybdate, ammonium tetrathiomolybdate, and molybdenum trisulfide for the conversion of coal to soluble products will be discussed. The use of an unsupported dispersed-phase catalyst for direct coal liquefaction is not a novel concept and has been employed in may studies with varying success. Dispersed-phase catalysts soluble and oil-soluble salts, and as finely divided powders. While some methods of catalyst introduction give higher dispersion of the catalyst and greater activity for the liquefaction of coal, all of the techniques allow the formation of a finely dispersed inorganic phase

  13. Two-stage coal liquefaction without gas-phase hydrogen

    Science.gov (United States)

    Stephens, H.P.

    1986-06-05

    A process is provided for the production of a hydrogen-donor solvent useful in the liquefaction of coal, wherein the water-gas shift reaction is used to produce hydrogen while simultaneously hydrogenating a donor solvent. A process for the liquefaction of coal using said solvent is also provided. The process enables avoiding the use of a separate water-gas shift reactor as well as high pressure equipment for liquefaction. 3 tabs.

  14. Techno-economic Analysis of Acid Gas Removal and Liquefaction for Pressurized LNG

    Science.gov (United States)

    Lee, S. H.; Seo, Y. K.; Chang, D. J.

    2018-05-01

    This study estimated the life cycle cost (LCC) of an acid gas removal and a liquefaction processes for Pressurized LNG (PLNG) production and compared the results with the cost of normal LNG production. PLNG is pressurized LNG that is liquefied at a higher pressure and temperature than normal LNG. Due to the high temperature, the energy for liquefaction is reduced. The allowable CO2 concentration in PLNG is increased up to 3 mol% when the product pressure 25 bar. An amine process with 35 wt% of diethanolamine (DEA) aqueous solution and a nitrogen expansion cycle were selected for the acid gas removal and the liquefaction processes, respectively. Two types of CO2 concentration in the feed gas were investigated to analyze their impacts on the acid gas removal unit. When the CO2 concentration was 5 mol%, the acid gas removal unit was required for both LNG and PLNG production. However, the acid gas removal unit was not necessary in PLNG when the concentration was 0.5 mol% and the pressure was higher than 15 bar. The results showed that the LCC of PLNG was reduced by almost 35% relative to that of LNG when the PLNG pressure was higher than 15 bar.

  15. Role and development of soil parameters for seismic responses of buried lifelines

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.R.L.

    1983-01-01

    Buried lifelines, e.g. oil, gas, water and sewer pipelines have been damaged heavily in recent earthquakes such as 1971 San Fernando Earthquake, in U.S.A., 1976 Tangshan Earthquake, in China, and 1978 MiyagiKen-Oki Earthquake, in Japan, among others. Researchers on the seismic performance of these buried lifelines have been initiated in the United States and many other countries. Various analytical models have been proposed. However, only limited experimental investigations are available. The sources of earthquake damage to buried lifelines include landslide, tectonic uplift-subsidence, soil liquefaction, fault displacement and ground shaking (effects of wave propagation). This paper is concerned with the behavior of buried lifeline systems subjected to surface faulting and ground shaking. The role and development of soil parameters that significantly influence the seismic responses are discussed. The scope of this paper is to examine analytically the influence of various soil and soilstructure interaction parameters to the seismic responses of buried pipelines, to report the currently available physical data of these and related parameters for immediate applications, and to describe the experiments to obtain additional information on soil resistant characteristics to longitudinal pipe motions.

  16. Two-stage liquefaction of a Spanish subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.T.; Fernandez, I.; Benito, A.M.; Cebolla, V.; Miranda, J.L.; Oelert, H.H. (Instituto de Carboquimica, Zaragoza (Spain))

    1993-05-01

    A Spanish subbituminous coal has been processed in two-stage liquefaction in a non-integrated process. The first-stage coal liquefaction has been carried out in a continuous pilot plant in Germany at Clausthal Technical University at 400[degree]C, 20 MPa hydrogen pressure and anthracene oil as solvent. The second-stage coal liquefaction has been performed in continuous operation in a hydroprocessing unit at the Instituto de Carboquimica at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The total conversion for the first-stage coal liquefaction was 75.41 wt% (coal d.a.f.), being 3.79 wt% gases, 2.58 wt% primary condensate and 69.04 wt% heavy liquids. The heteroatoms removal for the second-stage liquefaction was 97-99 wt% of S, 85-87 wt% of N and 93-100 wt% of O. The hydroprocessed liquids have about 70% of compounds with boiling point below 350[degree]C, and meet the sulphur and nitrogen specifications for refinery feedstocks. Liquids from two-stage coal liquefaction have been distilled, and the naphtha, kerosene and diesel fractions obtained have been characterized. 39 refs., 3 figs., 8 tabs.

  17. Mongolian coal liquefaction test; Mongorutan no ekika tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Kubo, H. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Tsedevsuren, T. [National Research Center of Chemistry and Technology of Coal in Mongoria (Mongolia)

    1996-10-28

    This paper describes the results of liquefaction tests of Mongolian coals using an autoclave and a flow micro reactor. Uvdughudag coal, Hootiinhonhor coal, and Shivee-Ovoo coal were used for liquefaction tests with an autoclave. Oil yields of Uvdughudag and Hootiinhonhor coals were 55.56 wt% and 55.29 wt%, respectively, which were similar to that of Wyoming coal. Similar results were obtained, as to produced gas and water yields. These coals were found to be suitable for coal liquefaction. Lower oil yield, 42.55 wt% was obtained for Shivee-Ovoo coal, which was not suitable for liquefaction. Liquefaction tests were conducted for Uvdughudag coal with a flow micro reactor. The oil yield was 55.7 wt%, which was also similar to that of Wyoming coal, 56.1 wt%. Hydrogen consumption of Uvdughudag coal was also similar to that of Wyoming coal. From these, Uvdughudag coal can be a prospective coal for liquefaction. From the distillation distribution of oil, distillate fraction yield below 350{degree}C of Uvdughudag coal was 50.7 wt%, which was much higher than that of Wyoming coal, 35.6 wt%. Uvdughudag coal is a coal with high light oil fraction yield. 2 figs., 5 tabs.

  18. Coal liquefaction becomes viable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-11-15

    In 2003 the May/June issue of CoalTrans International speculated that coal liquefaction would become viable due to falling coal prices. This has not proved the case but the sustained high oil price is sparking new interest. A survey by Energy Intelligence and Marketing Research during November 2005 revealed a growth in the number of projects under development or at the feasibility stage. The article reports projects in China, the USA, Australia, New Zealand, the Philippines and India. China is commissioning the first wave of large liquefaction plants. The key question is whether other countries, particularly the USA, will follow.

  19. Effect of pre-swelling of coal on its liquefaction properties

    Energy Technology Data Exchange (ETDEWEB)

    Hengfu Shui; Zhicai Wang; Meixia Cao [Anhui University of Technology, Ma' anshan (China). School of Chemistry & Chemical Engineering

    2007-07-01

    The effects of pre-swelling of Shenhua coal on its liquefaction property were studied in this paper. It was found that pre-swelling treatments of Shenhua coal in three solvents, i.e toluene (TOL), N-methyl-2-pyrrolidinone (NMP) and tetralin (THN) increased its liquefaction conversion, and the liquefied product distributions were also quite different. Removal of the pre-swelling solvent from the swollen coals further increased the liquefaction conversion compared to that of the swollen coals with the swelling solvent existed in them. It was found that oil and gas yields for the liquefaction of swollen coals in NMP and TOL with swelling solvent existed dramatically decreased. Pre-swelling in THN at 120{sup o}C gave the highest liquefaction conversion, however the liquefaction conversion decreased with the increase of pre-swelling temperature in the case of NMP. TG and FTIR analyses of raw coal, the swollen coals and liquefied products were carried out and the mechanism of the effects of pre-swelling of coal on its extraction and liquefaction behaviors were probed in the paper. 12 refs., 6 figs., 3 tabs.

  20. U.S. DOE indirect coal liquefaction program: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J.; Schmetz, E.; Winslow, J.; Tischer, R. [Dept. of Energy, Germantown, MD (United States); Srivastava, R.

    1997-12-31

    Coal is the most abundant domestic energy resource in the United States. The Fossil Energy Organization within the US Department of Energy (DOE) has been supporting a coal liquefaction program to develop improved technologies to convert coal to clean and cost-effective liquid fuels to complement the dwindling supply of domestic petroleum crude. The goal of this program is to produce coal liquids that are competitive with crude at $20 to $25 per barrel. Indirect and direct liquefaction routes are the two technologies being pursued under the DOE coal liquefaction program. This paper will give an overview of the DOE indirect liquefaction program. More detailed discussions will be given to the F-T diesel and DME fuels which have shown great promises as clean burning alternative diesel fuels. The authors also will briefly discuss the economics of indirect liquefaction and the hurdles and opportunities for the early commercial deployment of these technologies. Discussions will be preceded by two brief reviews on the liquid versus gas phase reactors and the natural gas versus coal based indirect liquefaction.

  1. Thermal properties of biopolyol from oil palm fruit fibre (OPFF) using solvolysis liquefaction technique

    Science.gov (United States)

    Kormin, Shaharuddin; Rus, Anika Zafiah M.; Azahari, M. Shafiq M.

    2017-09-01

    Liquefaction is known to be an effective method for converting biomass into a biopolyol. The biomass liquefaction of oil palm fruit waste (PFW) in the presence of liquefaction solvent/polyhydric alcohol (PA): polyethylene glycol 400 (PEG400) using sulfuric acid as catalyst was studied. For all experiments, the liquefaction was conducted at 150°C and atmospheric pressure. The mass ratio of OPFW to liquefaction solvents used in all the experiments was, 1/3. Thermogravimetric analyses (TGA) were used to analyze their biopolyol and residue behaviors. It was found that thermal stability of oil palm mesocarp fibre (PM), oil palm shell (PS) and oil palm kernel (PK) fibre exhibited the first degradation of hard segment at (232, 104, 230°C) and the second degradation of soft segment at (314, 226, 412°C) as compared to PM, PS and PK residue which (229, 102, 227°C) of hard segment and (310, 219, 299°C) of segment, respectively. This behavior of thermal degradation of the hard segment and soft segment of biopolyol was changes after undergo solvolysis liquefaction process. The result analysis showed that the resulting biopolyol and its residue was suitable monomer for polyurethane (PU) synthesis for the production of PU foams.

  2. [Longjintonglin Capsules for type IIIA prostatitis accompanied by abnormal semen liquefaction: A clinical observation].

    Science.gov (United States)

    Cai, Hong-cai; Wan, Chang-chun; Geng, Qiang; Liu, Wei; Zhang, Guo-wei; Shang, Xue-jun; Huang, Yu-feng

    2016-01-01

    To evaluate the therapeutic effect of Longjintonglin Capsules on type IIIA prostatitis accompanied by abnormal semen liquefaction. We selected 140 patients with type IIIA prostatitis accompanied by abnormal semen liquefaction according to the diagnostic standards of the American Institutes of Health (NIH) and treated them with Longjintonglin Capsules orally 3 capsules once tid for 12 weeks. We obtained the NIH Chronic Prostatitis Symptom Indexes (NIH-CPSI), traditional Chinese medicine (TCM) syndrome scores, leukocyte count in the expressed prostatic secretion (EPS), semen liquefaction time, and the results of semen analysis and compared these indicators before and after the treatment. Of the 140 cases, 132 were included in this study, excluding 8 due to their incomplete case histories. Before and after 4, 8 and 12 weeks of medication, the total NIH-CPSI scores were 24.52 ± 5.43, 21.28 ± 4.85, 18.01 ± 4.28, and 14.49 ± 3.65 (P prostatitis were cured and another 72 well responded, with an overall response rate of 78.0%. Of those with abnormal semen liquefaction, 61 were cured, 39 well responded, and 32 failed to respond, with an overall effectiveness rate of 75.8%. Semen analysis showed significantly increased percentage of progressively motile sperm after 4, 8 and 12 weeks of medication as compared with the baseline (P prostatitis accompanied by abnormal semen liquefaction.

  3. Advanced direct liquefaction concepts for PETC generic units

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    In the Advance Coal Liquefaction Concept Proposal (ACLCP) carbon monoxide (CO) and water have been proposed as the primary reagents in the pretreatment process. The main objective of this project is to develop a methodology for pretreating coal under mild conditions based on a combination of existing processes which have shown great promise in liquefaction, extraction and pyrolysis studies. The aim of this pretreatment process is to partially depolymerise the coal, eliminate oxygen and diminish the propensity for retograde reactions during subsequent liquefaction. The desirable outcome of the CO pretreatment step should be: (1) enhanced liquefaction activity and/or selectivity toward products of higher quality due to chemical modification of the coal structure; (2) cleaner downstream products; (3) overall improvement in operability and process economics.

  4. Numerical Analyses of Earthquake Induced Liquefaction and Deformation Behaviour of an Upstream Tailings Dam

    Directory of Open Access Journals (Sweden)

    Muhammad Auchar Zardari

    2017-01-01

    Full Text Available Much of the seismic activity of northern Sweden consists of micro-earthquakes occurring near postglacial faults. However, larger magnitude earthquakes do occur in Sweden, and earthquake statistics indicate that a magnitude 5 event is likely to occur once every century. This paper presents dynamic analyses of the effects of larger earthquakes on an upstream tailings dam at the Aitik copper mine in northern Sweden. The analyses were performed to evaluate the potential for liquefaction and to assess stability of the dam under two specific earthquakes: a commonly occurring magnitude 3.6 event and a more extreme earthquake of magnitude 5.8. The dynamic analyses were carried out with the finite element program PLAXIS using a recently implemented constitutive model called UBCSAND. The results indicate that the magnitude 5.8 earthquake would likely induce liquefaction in a limited zone located below the ground surface near the embankment dikes. It is interpreted that stability of the dam may not be affected due to the limited extent of the liquefied zone. Both types of earthquakes are predicted to induce tolerable magnitudes of displacements. The results of the postseismic slope stability analysis, performed for a state after a seismic event, suggest that the dam is stable during both the earthquakes.

  5. Hydrogen Transfer during Liquefaction of Elbistan Lignite to Biomass; Total Reaction Transformation Approach

    Science.gov (United States)

    Koyunoglu, Cemil; Karaca, Hüseyin

    2017-12-01

    Given the high cost of the tetraline solvent commonly used in liquefaction, the use of manure with EL is an important factor when considering the high cost of using tetraline as a hydrogen transfer source. In addition, due to the another cost factor which is the catalyst prices, red mud (commonly used, produced as a byproduct in the production of aluminium) is reduced cost in the work of liquefaction of coal, biomass, even coal combined biomass, corresponding that making the EL liquefaction an agenda for our country is another important factor. Conditions for liquefaction experiments conducted for hydrogen transfer from manure to coal; Catalyst concentration of 9%, liquid/solid ratio of 3/1, reaction time of 60 min, fertilizer/lignite ratio of 1/3, and the reaction temperature of 400 °C, the stirred speed of 400 rpm and the initial nitrogen pressure of 20 bar was fixed. In order to demonstrate the hydrogen, transfer from manure to coal, coal is used solely, by using tetraline (also known as a hydrogen carrier) and distilled water which is not hydrogen donor as a solvent in the co-liquefaction of experiments, and also the liquefaction conditions are carried out under an inert (N2) gas atmosphere. According to the results of the obtained liquefaction test; using tetraline solvent the total liquid product conversion percentage of the oil + gas conversion was 38.3 %, however, the results of oil+gas conversion obtained using distilled water and EL combined with manure the total liquid product conversion percentage was 7.4 %. According to the results of calorific value and elemental analysis, only the ratio of (H/C)atomic of coal obtained by using tetraline increased with the liquefaction of manure and distilled water. The reason of the increase in the amount of hydrogen due to hydrogen transfer from the manure on the solid surface of the coal, and also on the surface of the inner pore of the coal during the liquefaction, brings about the evaluation of the coal as a

  6. Disentangling above- and below-ground facilitation drivers in arid environments: the role of soil microorganisms, soil properties and microhabitat.

    Science.gov (United States)

    Lozano, Yudi M; Armas, Cristina; Hortal, Sara; Casanoves, Fernando; Pugnaire, Francisco I

    2017-12-01

    Nurse plants promote establishment of other plant species by buffering climate extremes and improving soil properties. Soil biota plays an important role, but an analysis to disentangle the effects of soil microorganisms, soil properties and microclimate on facilitation is lacking. In three microhabitats (gaps, small and large Retama shrubs), we placed six microcosms with sterilized soil, two per soil origin (i.e. from each microhabitat). One in every pair received an alive, and the other a sterile, inoculum from its own soil. Seeds of annual plants were sown into the microcosms. Germination, survival and biomass were monitored. Soil bacterial communities were characterized by pyrosequencing. Germination in living Retama inoculum was nearly double that of germination in sterile inoculum. Germination was greater under Retama canopies than in gaps. Biomass was up to three times higher in nurse than in gap soils. Soil microorganisms, soil properties and microclimate showed a range of positive to negative effects on understory plants depending on species identity and life stage. Nurse soil microorganisms promoted germination, but the effect was smaller than the positive effects of soil properties and microclimate under nurses. Nurse below-ground environment (soil properties and microorganisms) promoted plant growth and survival more than nurse microhabitat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. Coal liquefaction and gas conversion contractors review conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This volume contains 55 papers presented at the conference. They are divided into the following topical sections: Direct liquefaction; Indirect liquefaction; Gas conversion (methane conversion); and Advanced research liquefaction. Papers in this last section deal mostly with coprocessing of coal with petroleum, plastics, and waste tires, and catalyst studies. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  8. Direct hydrothermal liquefaction of undried macroalgae Enteromorpha prolifera using acid catalysts

    International Nuclear Information System (INIS)

    Yang, Wenchao; Li, Xianguo; Liu, Shishi; Feng, Lijuan

    2014-01-01

    Highlights: • Bio-oil from liquefaction of wet E. prolifera was as feasible as dry powder. • Adding acid catalysts could improve the flow property of bio-oil. • Alkenes in the bio-oil converted to ketones in the presence of acid catalysts. • Content of 5-methyl furfural increased in the bio-oil obtained with acid catalysts. • Esters were formed in the bio-oil when adding sulfuric acid as a catalyst. - Abstract: Direct liquefaction of macroalgae Enteromorpha prolifera without predrying treatment was performed in a batch reactor. Effects of temperature, reaction time, biomass-to-water ratio and acid catalysts (sulfuric acid and acetic acid) on liquefaction products were investigated. Raw material and liquefaction products were analyzed by elemental analysis, Fourier transform infrared (FT-IR) and gas chromatography–mass spectrometry (GC–MS). Results showed that liquefaction at 290 °C for 20 min with 1:3 biomass-to-water ratio produced the highest bio-oil yield of 28.4 wt%, and high heating value (HHV) was 29.5 MJ/kg. Main components of bio-oil were fatty acids, ketones, alkenes and 5-methyl furfural, and main components of water soluble organics (WSOs) were pyridines, carboxylic acids and glycerol. In the bio-oil obtained with acid catalysts, content of ketones significantly increased while alkenes disappeared. Content of 5-methyl furfural also increased. Flow property of bio-oils was improved in the presence of acid catalysts. Moreover, esters were formed when adding sulfuric acid

  9. Coal liquefaction and gas conversion: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Volume I contains papers presented at the following sessions: AR-Coal Liquefaction; Gas to Liquids; and Direct Liquefaction. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  10. Development of advanced earthquake resistant performance verification on reinforced concrete underground structure. Pt. 2. Verification of the ground modeling methods applied to non-linear soil-structure interaction analysis

    International Nuclear Information System (INIS)

    Kawai, Tadashi; Kanatani, Mamoru; Ohtomo, Keizo; Matsui, Jun; Matsuo, Toyofumi

    2003-01-01

    In order to develop an advanced verification method for earthquake resistant performance on reinforced concrete underground structures, the applicability of two different types of soil modeling methods in numerical analysis were verified through non-linear dynamic numerical simulations of the large shaking table tests conducted using the model comprised of free-field ground or soils and a reinforced concrete two-box culvert structure system. In these simulations, the structure was modeled by a beam type element having a tri-linear curve of the relations between curvature and flexural moment. The soil was modeled by the Ramberg-Osgood model as well as an elasto-plastic constitutive model. The former model only employs non-linearity of shear modulus regarding strain and initial stress conditions, whereas the latter can express non-linearity of shear modulus caused by changes of mean effective stress during ground excitation and dilatancy of ground soil. Therefore the elasto-plastic constitutive model could precisely simulate the vertical acceleration and displacement response on ground surface, which were produced by the soil dilations during a shaking event of a horizontal base input in the model tests. In addition, the model can explain distinctive dynamic earth pressure acting on the vertical walls of the structure which was also confirmed to be related to the soil dilations. However, since both these modeling methods could express the shear force on the upper slab surface of the model structure, which plays the predominant role on structural deformation, these modeling methods were applicable equally to the evaluation of seismic performance similar to the model structure of this study. (author)

  11. Assessment of thermodynamic models for the design, analysis and optimisation of gas liquefaction systems

    International Nuclear Information System (INIS)

    Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    Highlights: • Six thermodynamic models used for evaluating gas liquefaction systems are compared. • Three gas liquefaction systems are modelled, assessed and optimised for each equation of state. • The predictions of thermophysical properties and energy flows are significantly different. • The GERG-2008 model is the only consistent one, while cubic, virial and statistical equations are unsatisfying. - Abstract: Natural gas liquefaction systems are based on refrigeration cycles – they consist of the same operations such as heat exchange, compression and expansion, but they have different layouts, components and working fluids. The design of these systems requires a preliminary simulation and evaluation of their performance. However, the thermodynamic models used for this purpose are characterised by different mathematical formulations, ranges of application and levels of accuracy. This may lead to inconsistent results when estimating hydrocarbon properties and assessing the efficiency of a given process. This paper presents a thorough comparison of six equations of state widely used in the academia and industry, including the GERG-2008 model, which has recently been adopted as an ISO standard for natural gases. These models are used to (i) estimate the thermophysical properties of a Danish natural gas, (ii) simulate, and (iii) optimise liquefaction systems. Three case studies are considered: a cascade layout with three pure refrigerants, a single mixed-refrigerant unit, and an expander-based configuration. Significant deviations are found between all property models, and in all case studies. The main discrepancies are related to the prediction of the energy flows (up to 7%) and to the heat exchanger conductances (up to 11%), and they are not systematic errors. The results illustrate the superiority of using the GERG-2008 model for designing gas processes in real applications, with the aim of reducing their energy use. They demonstrate as well that

  12. Transport fuels from two-stage coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A.; Cebolla, V.; Fernandez, I.; Martinez, M.T.; Miranda, J.L.; Oelert, H.; Prado, J.G. (Instituto de Carboquimica CSIC, Zaragoza (Spain))

    1994-03-01

    Four Spanish lignites and their vitrinite concentrates were evaluated for coal liquefaction. Correlationships between the content of vitrinite and conversion in direct liquefaction were observed for the lignites but not for the vitrinite concentrates. The most reactive of the four coals was processed in two-stage liquefaction at a higher scale. First-stage coal liquefaction was carried out in a continuous unit at Clausthal University at a temperature of 400[degree]C at 20 MPa hydrogen pressure and with anthracene oil as a solvent. The coal conversion obtained was 75.41% being 3.79% gases, 2.58% primary condensate and 69.04% heavy liquids. A hydroprocessing unit was built at the Instituto de Carboquimica for the second-stage coal liquefaction. Whole and deasphalted liquids from the first-stage liquefaction were processed at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The effects of liquid hourly space velocity (LHSV), temperature, gas/liquid ratio and catalyst on the heteroatom liquids, and levels of 5 ppm of nitrogen and 52 ppm of sulphur were reached at 450[degree]C, 10 MPa hydrogen pressure, 0.08 kg H[sub 2]/kg feedstock and with Harshaw HT-500E catalyst. The liquids obtained were hydroprocessed again at 420[degree]C, 10 MPa hydrogen pressure and 0.06 kg H[sub 2]/kg feedstock to hydrogenate the aromatic structures. In these conditions, the aromaticity was reduced considerably, and 39% of naphthas and 35% of kerosene fractions were obtained. 18 refs., 4 figs., 4 tabs.

  13. Contamination of ground water, surface water, and soil, and evaluation of selected ground-water pumping alternatives in the Canal Creek area of Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Clark, Jeffrey S.

    1996-01-01

    Chemical manufacturing, munitions filling, and other military-support activities have resulted in the contamination of ground water, surface water, and soil in the Canal Creek area of Aberdeen Proving Ground, Maryland. Chlorinated volatile organic compounds, including 1,1,2,2-tetrachloroethane and trichloroethylene, are widespread ground-water contaminants in two aquifers that are composed of unconsolidated sand and gravel. Distribution and fate of chlorinated organic compounds in the ground water has been affected by the movement and dissolution of solvents in their dense immiscible phase and by microbial degradation under anaerobic conditions. Detection of volatile organic contaminants in adjacent surface water indicates that shallow contaminated ground water discharges to surface water. Semivolatile organic compounds, especially polycyclic aromatic hydrocarbons, are the most prevalent organic contaminants in soils. Various trace elements, such as arsenic, cadmium, lead, and zinc, were found in elevated concentrations in ground water, surface water, and soil. Simulations with a ground-water-flow model and particle tracker postprocessor show that, without remedial pumpage, the contaminants will eventually migrate to Canal Creek and Gunpowder River. Simulations indicate that remedial pumpage of 2.0 million gallons per day from existing wells is needed to capture all particles originating in the contaminant plumes. Simulated pumpage from offsite wells screened in a lower confined aquifer does not affect the flow of contaminated ground water in the Canal Creek area.

  14. Soil-structure interaction analysis of ZPR6 reactor facility

    International Nuclear Information System (INIS)

    Ma, D.C.; Ahmed, H.U.

    1981-01-01

    Due to the computer storage limitation and economic concern, the current practice of soil-structure interaction analysis is limited to two dimensional analysis. The 2-D plane strain finite element program, FLUSH, is one often most used program in the analysis. Seismic response of soil and basement can be determined very well by FLUSH. The response of the structure above ground level, however, is often underestimated. This is mainly due to the three dimensional characteristics of the structures. This paper describes a detailed soil-structure interaction analysis of a rectangular embedded structure in conjunction with FLUSH program. The objective of the analysis is to derive the mean interaction motions at the structure base and the soil dynamic forces exerted on the basement lateral walls. The base motions and lateral soil dynamic forces are the specified boundary conditions for the later 3-D building response analysis. (orig./RW)

  15. Coal liquefaction technologies for producing ultra clean fuel

    International Nuclear Information System (INIS)

    Tahir, M.S.; Haq, N.U.; Nasir, H.; Islam, N.

    2011-01-01

    The expanding demand for petroleum, accompanied by the diminishing petroleum reserves and the energy security, has intensified the significance in coal liquefaction technologies (CTL) globally and specially in Pakistan. Pakistan is rich in coal resources, but short of petroleum. The Geological Survey of Pakistan based on wide spread drilling over an area of 9000 sq. km, a total of 175 billion tons of coal resource potential has been assessed. This paper overviews a general introduction on the mechanisms and processes of CLT such as direct coal liquefaction (DCL) and indirect coal liquefaction (ICL) technologies. (author)

  16. Prediction model of biocrude yield and nitrogen heterocyclic compounds analysis by hydrothermal liquefaction of microalgae with model compounds.

    Science.gov (United States)

    Sheng, Lili; Wang, Xin; Yang, Xiaoyi

    2018-01-01

    The model of biocrude yield and the nitrogen heterocyclic compounds in biocrude of microalgae hydrothermal liquefaction are two of the most concerned issues in this field at present. This study explored a hydrothermal liquefaction biocrude yield model involved in the interaction among biochemical compounds in microalgae and analysed nitrogen heterocyclic compounds in biocrude. The model compound (castor oil, soya protein and glucose) and Nanochloropsis were liquefied at 280°C for 1h. The products were analyzed by GC-MS, element analysis and FTIR. The results suggested that interactions among different components in microalgae enhanced biocrude yield. The biocrude yield prediction model involved cross-interactions performed more accurate than previous models.When the ratio of protein and carbohydrate around 3, the cross-interaction and nitrogen heterocyclic compounds in biocrude would both reach the highest extent. Copyright © 2017. Published by Elsevier Ltd.

  17. The Liquefaction of Hydrogen and Helium Using Small Coolers

    International Nuclear Information System (INIS)

    Green, Michael A.

    2006-01-01

    This report discusses the history of the liquefaction of hydrogen and helium using small coolers. This history dates form the 1960's when two stage GM coolers capable of reaching 7 K were used to liquefy helium and hydrogen by suing an added compressor and J-T circuit. Liquefaction using the added circuit failed to become mainstream because the J-T valve and heat exchanger clogged because of impurities in the gas being liquefied. Liquefaction using a GM cooler without an added J-T circuit proved to be difficult because the first stage was not used to pre-cool the gas coming to the second stage of the cooler. Once the gas being liquefied was pre-cooled using the cooler first stage, improvements in the liquefaction rates were noted. The advent of low temperature pulse tube cooler (down to 2.5 K) permitted one to achieve dramatic improvement is the liquefactions rates for helium. Similar but less dramatic improvements are expected for hydrogen as well. Using the PT-415 cooler, one can expect liquefaction rates of 15 to 20 liters per day for helium or hydrogen provided the heat leak into the cooler and the storage vessel is low. A hydrogen liquefier for MICE is presented at the end of this report

  18. FY 1994 report on the Coal Liquefaction Committee; 1994 nendo sekitan ekika iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The paper reported the FY 1994 activities of the Coal Liquefaction Committee. The Coal Liquefaction Committee in this fiscal year was held on November 29, 1994 (1st) and March 22, 1995 (2nd), and report was made on the bituminous coal liquefaction study and state of the R and D of liquefaction base technology. Report was also made on the state of construction of bituminous coal liquefaction PP, outline of the results of the PSU operation, outline of the 11th Japan-U.S. JTM, etc. In the liquefaction base study, report/discussion were made about the improvement/rationalization of liquefaction process, study of innovative technology of coal liquefaction, study of coal liquefaction conditions, study for higher liquefaction element technology, project on the internationalization of coal liquefaction technology, etc. As to the relation of the entrained bed coal gasification power plant, report/discussion were made about survey/study on the processing of coal for coal gasification use (survey of coal kind selection, development of information processing system for coal conversion technology). Besides, as a topic, report was made on the economical evaluation/calculation of a commercial plant for brown coal liquefaction. (NEDO)

  19. Evaluation of burial ground soil covers

    International Nuclear Information System (INIS)

    Fenimore, J.W.

    1976-11-01

    Solid radioactive waste burial at the Savannah River Plant between 1955 and 1972 filled a 76-acre site. Burial operations then were shifted to an adjacent site, and a program was begun to develop a land cover that would: (1) minimize soil erosion; and (2) protect the buried waste from deep-rooted plants, since radionuclides can be recycled by uptake through root systems. In anticipation of the need for a suitable soil cover, five grass species were planted on 20 plots (4 plots of each species) at the burial ground (Facility 643-G) in 1969. The grass plots were planted for evaluation of viability, root depth, and erosion protection existing under conditions of low fertility and minimum care. In addition, 16 different artificial soil covers were installed on 32 plots (each cover on two plots) to evaluate: (1) resistance of cover to deterioration from weathering; (2) resistance of cover to encroachment by deep-rooted plants; and (3) soil erosion protection provided by the cover. All test plots were observed and photographed in 1970 and in 1974. After both grass and artificial soil covers were tested five years, the following results were observed: Pensacola Bahia grass was the best of the five cover grasses tested; and fifteen of the sixteen artificial covers that were tested controlled vegetation growth and soil erosion. Photographs of the test plots will be retaken at five-year intervals for future documentation

  20. Japan's New Sunshine Project. 1994 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This paper summarizes the report for fiscal 1994 on research and development related to coal liquefaction and gasification. In the research and development of coal liquefaction technologies, reports were given on research of liquefaction characteristics of different coals and liquefaction process thereof, and on research of catalysts for the coal liquefaction. In the research and development of coal gasification technologies, reports were given on fundamental studies on gasification characteristics of different coals. In the research and development of liquefaction technologies for bituminous coal, reports were given on design, construction and operation of a bituminous coal liquefaction pilot plant with a capacity of 150 t/d, and the operation supporting studies on the pilot plant. In the fundamental research on the coal liquefaction process, reports were given on refining technologies and utilization of the refined materials, and studies on environment preservation in applying the coal liquefaction technologies. In the research on hydrogen manufacturing technologies by using the fundamental coal technology, reports were given on design, construction and operational studies of a pilot plant. In the research and development of the coal gasification technologies, reports were given on development of a jet-flow gasified coal electric power plant, selection of coals, and development of a data processing system. (NEDO)

  1. Variations in radon-222 in soil and ground water at the Nevada Test Site

    International Nuclear Information System (INIS)

    Wollenberg, H.; Straume, T.; Smith, A.; King, C.Y.

    1977-01-01

    To help evaluate the applicability of variations of radon-222 in ground water and soil gas as a possible earthquake predictor, measurements were conducted in conjunction with underground explosions at the Nevada Test Site (NTS). Radon fluctuations in ground water have been observed during a sequence of aftershocks following the Oroville, California earthquake of 1 August 1975. The NTS measurements were designed to show if these fluctuations were in response to ground shaking; if not, they could be attributed to changes in earth strain prior to the aftershocks. Well waters were periodically sampled and soil-gas 222 Rn monitored prior to and following seven underground explosions of varying strength and distance from sampling and detector locations. Soil-gas 222 Rn contents were measured by the alpha-track method; well water 222 Rn by gamma-ray spectrometry. There was no clearly identifiable correlation between well-water radon fluctuations and individual underground tests. One prominent variation in soil-gas radon corresponded to ground shaking from a pair of underground tests in alluvium; otherwise, there was no apparent correlation between radon emanation and other explosions. Markedly lower soil-gas radon contents following the tests were probably caused by consolidation of alluvium in response to ground shaking

  2. Analysis of Pumphouse RCC Frame Structure for Soil Structure Interaction

    OpenAIRE

    Mr A.S. Thombare; Prof. V.P. Kumbhar; Prof. A.H. Kumbhar

    2016-01-01

    When structure is built on ground some elements of structure are direct contact with soil. When loads are applied on structure internal forces are developed in both the structure as well as in soil. It results in deformation of both the components which are independent to each other. This are called soil structure interaction. The analysis is done by using (Bentley STAAD.Pro V8i Version 2007) software. The analysis carried out been pump house structure R.C.C. frame structure find ...

  3. RESEARCH ON THE DEGREE OF SATURATION INVESTIGATION BY THE SAMPLING OF THE SAND FOR LIQUEFACTION

    Science.gov (United States)

    Fujii, Nao; Ohuchi, Masatoshi; Sakai, Katsuo; Nishigaki, Makoto

    The liquefaction countermeasure technical method, whereby the liquefaction strength is enhanced by making sand deposit in the state of unsaturation, is currently under study. The author et al have suggested a simple method of verifying the persistence of residual air using the undisturbed sample under ordinary temperature and sampling underground water; and have actually implemented the method in the adjacent ground with the foundation of viaduct pneumatic caisson where the leaked air during the construction was considered to have been trapped. We demonstrated the method of correcting the influence of the pressure of sampling specimen as well as of the dissolved air, and studied the precision of required degree of saturation. As the result, it has been shown that the residual air entrapped in the sand deposit is sustainable for as long time as about 28 years.

  4. Optimizing the conditions for the microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production using response surface methodology

    International Nuclear Information System (INIS)

    Liu, Junhai; Zhuang, Yingbin; Li, Yan; Chen, Limei; Guo, Jingxue; Li, Demao; Ye, Naihao

    2013-01-01

    Microwave-assisted direct liquefaction (MADL) of Ulva prolifera was performed in ethylene glycol (EG) using sulfuric acid (H 2 SO 4 ) as a catalyst. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was employed to optimize the conditions of three independent variables (catalyst content, solvent-to-feedstock ratio and temperature) for the liquefaction yield. And the bio-oil was analyzed by elementary analysis, Fourier transform infrared spectroscopic analysis (FT-IR) and gas chromatography–mass spectrometry (GC–MS). The maximum liquefaction yield was 93.17%, which was obtained under a microwave power of 600 W for 30 min at 165 °C with a solvent-to-feedstock ratio of 18.87:1 and 4.93% sulfuric acid. The bio-oil was mainly composed of phthalic acid esters, alkenes and a fatty acid methyl ester with a long chain from C 16 to C 20 . - Highlights: • Ulva prolifera was converted to bio-oil through microwave-assisted direct liquefaction. • Response surface methodology was used to optimize the liquefaction technology. • A maximum liquefaction rate of 93.17 wt% bio-oil was obtained. • The bio-oil was composed of carboxylic acids and esters

  5. Spatial Variation of Magnitude Scaling Factors During the 2010 Darfield and 2011 Christchurch, New Zealand, Earthquakes

    OpenAIRE

    Carter, William Lake

    2016-01-01

    Magnitude Scaling Factors (MSF) account for the durational effects of strong ground shaking on the inducement of liquefaction within the simplified liquefaction evaluation procedure which is the most commonly used approach for assessing liquefaction potential worldwide. Within the context of the simplified procedure, the spatial variation in the seismic demand imposed on the soil traditionally has been assumed to be solely a function of the spatial variation of the peak amplitude of the groun...

  6. Techno-economic analysis of solar integrated hydrothermal liquefaction of microalgae

    International Nuclear Information System (INIS)

    Pearce, Matthew; Shemfe, Mobolaji; Sansom, Christopher

    2016-01-01

    Highlights: • Hydrothermal liquefaction and concentrated solar power provide integrated biofuel technology. • Heat kinetics and energy efficiency Aspen plus modelling of CSP and HTL. • Microalgae biofuel minimum fuel sales price of $1.23/kg. - Abstract: Integration of Hydrothermal Liquefaction (HTL) of microalgae biomass with concentrated solar power thermal processing (CSP) for bio-oil production is a potential processing pathway for energy efficient generation of renewable biofuels. Solar HTL infrastructure avoids additional bolt-on components of conventional solar parabolic trough systems used for electricity production including heat transfer fluids, counter current heat exchangers, fluid transfer interconnectivity and electrical power control systems. The absence of such capital intensive additional equipment considerably reduces the production costs of solar HTL biofuels compared to electricity generation from conventional CSP power systems. An economic and market appraisal of variance and system economic resilience is presented. It is hypothesised that the combination of nutrient recycling with HTL/CSP unification has the potential for economically sustainable microalgae bio-oil production. A microalgae biofuel minimum fuel sales price of $1.23/kg has been modelled. Further experimental work would be able to validate this integrated model.

  7. Coal liquefaction policy in China: Explaining the policy reversal since 2006

    International Nuclear Information System (INIS)

    Rong Fang; Victor, David G.

    2011-01-01

    China has emerged as a leader in coal liquefaction. While the country's abundant coal resources and acute concerns about oil security help explain China's interest in liquefaction, the driving forces for this industry are complicated and policy has been inconsistent. Since 2006 Beijing has tried to slow down the development of liquefaction; even as China has become more dependent on imported oil, the central government has been wary about the large impact of liquefaction technologies on scarce resources such as water. However, local government officials in coal rich areas have strong incentives to pour investment into the technology, which helps explain the uneven development and policy. The future of coal liquefaction will depend on how these forces unfold along with major Beijing-led reforms in the Chinese coal industry, which is closing smaller mines and favoring the emergence of larger coal producing firms. Those reforms will have mixed effects on liquefaction. They temporarily contribute to higher prices for coal while over the longer term creating coal companies that have much greater financial and technical skills needed to deploy technologies such as coal liquefaction at a scale needed if this energy pathway is to be competitive with conventional sources of liquid fuel. - Highlights: ► We explain swings in Chinese policy on coal liquefaction, a possible substitute for imported oil. ► Since 2006 Beijing's support has waned due to fears about environmental impacts and cost of liquefaction. ► Local governments in some coal rich regions remain strongly supportive. ► Volatile oil prices and rising coal prices make this industry more risky than previously thought. ► Consolidation of the coal industry will have mixed effects on viability of liquefaction projects.

  8. Coal liquefaction committee report for fiscal 1981; 1981 nendo sekitan ekika iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    For the assurance of smooth progress of coal technology development endeavors, the New Energy and Industrial Technology Development Organization (NEDO) has installed coal technology development committees (general committee on coal technologies, coal liquefaction committee, plant materials committee, coal type survey committee, total system committee, and coal gasification committee). The coal liquefaction committee deliberates and evaluates liquefaction technology and propels forward smoothly the efforts to develop the technology. Under the coal liquefaction committee, there are four subcommittees, which are the 1st subcommittee (primary liquefaction subcommittee), 2nd subcommittee (solid/liquid separation subcommittee), 3rd subcommittee (secondary hydrogenation subcommittee), and the 4th subcommittee (brown coal liquefaction subcommittee). The 2nd and 3rd subcommittees deal with common tasks as they were studied in fiscal 1980. The 1st subcommittee incorporates into itself the old subcommittees that respectively worked on the three liquefaction processes (the direct hydrogenation process, the solvent extraction process, and the Solvolysis process), and is designed to provide a site for information exchange. A brown coal liquefaction committee is incorporated into the coal liquefaction committee as the 4th subcommittee. This report is a compilation of the agendas of the respective subcommittees of the coal liquefaction committee. (NEDO)

  9. Electrical resistivity tomography for studying liquefaction induced by the May 2012 Emilia-Romagna earthquake (Mw = 6.1, northern Italy)

    Science.gov (United States)

    Giocoli, A.; Quadrio, B.; Bellanova, J.; Lapenna, V.; Piscitelli, S.

    2014-04-01

    This work shows the result of an electrical resistivity tomography (ERT) survey carried out for imaging and characterizing the shallow subsurface affected by the coseismic effects of the Mw = 6.1 Emilia-Romagna (northern Italy) earthquake that occurred on 20 May 2012. The most characteristic coseismic effects were ground failure, lateral spreading and liquefaction that occurred extensively along the paleo-Reno River in the urban areas of San Carlo and Mirabello (southwestern portion of Ferrara Province). In total, six electrical resistivity tomographies were performed and calibrated with surface geological surveys, exploratory boreholes and aerial photo interpretations. This was one of first applications of the electrical resistivity tomography method in investigating coseismic liquefaction.

  10. Electrical resistivity tomography for studying liquefaction induced by the May 2012 Emilia-Romagna earthquake (Mw = 6.1, North Italy)

    Science.gov (United States)

    Giocoli, A.; Quadrio, B.; Bellanova, J.; Lapenna, V.; Piscitelli, S.

    2013-10-01

    This work shows the result of an Electrical Resistivity Tomography survey carried out for imaging and characterizing the shallow subsurface affected by the coseismic effects of the Mw = 6.1 Emilia-Romagna (North Italy) earthquake occurred on 20 May 2012. The most characteristic coseismic effects were ground failure, lateral spreading and liquefaction that occurred extensively along the paleo-Reno river in the urban areas of San Carlo, a hamlet of Sant'Agostino municipality, and of Mirabello (south-western portion of the Ferrara Province). Totally, six Electrical Resistivity Tomography were performed and calibrated with surface geological surveys, exploratory borehole and aerial photo interpretations. This was one of the first applications of the Electrical Resistivity Tomography method in investigating coseismic liquefaction.

  11. Kinetics of coal liquefaction during heating-up and isothermal stages

    Energy Technology Data Exchange (ETDEWEB)

    Xian Li; Haoquan Hu; Shengwei Zhu; Shuxun Hu; Bo Wu; Meng Meng [Dalian University of Technology, Dalian (China). Institute of Coal Chemical Engineering

    2008-04-15

    Direct liquefaction of Shenhua bituminous coal was carried out in a 500 ml autoclave with iron catalyst and coal liquefaction cycle-oil as solvent at initial hydrogen of 8.0 MPa, residence time of 0-90 min. To investigate the liquefaction kinetics, a model for heating-up and isothermal stages was developed to estimate the rate constants of both stages. In the model, the coal was divided into three parts, easy reactive part, hard reactive part and unreactive part, and four kinetic constants were used to describe the reaction mechanism. The results showed that the model is valid for both heating-up and isothermal stages of liquefaction perfectly. The rate-controlled process for coal liquefaction is the reaction of preasphaltene plus asphaltene (PAA) to oil plus gas (O + G). The upper-limiting conversion of isothermal stage was estimated by the kinetic calculation. 21 refs., 4 figs., 4 tabs.

  12. Experimental study on the liquefaction of cellulose in supercritical ethanol

    Science.gov (United States)

    Peng, Jinxing; Liu, Xinyuan; Bao, Zhenbo

    2018-03-01

    Cellulose is the major composition of solid waste for producing biofuel; cellulose liquefaction is helpful for realizing biomass supercritical liquefaction process. This paper is taking supercritical ethanol as the medium, liquefied cellulose with the intermittence installation of high press cauldron. Experiments have studied technical condition and the technology parameter of cellulose liquefaction in supercritical ethanol, and the pyrolysis mechanism was analysed based on the pyrolysis product. Results show that cellulose can be liquefied, can get good effect through appropriate technology condition. Under not catalyst, highest liquefaction rate of cellulose can reach 73.5%. The composition of the pyrolysis product was determined by GC-MS.

  13. Distribution of ground rigidity and ground model for seismic response analysis in Hualian project of large scale seismic test

    International Nuclear Information System (INIS)

    Kokusho, T.; Nishi, K.; Okamoto, T.; Tanaka, Y.; Ueshima, T.; Kudo, K.; Kataoka, T.; Ikemi, M.; Kawai, T.; Sawada, Y.; Suzuki, K.; Yajima, K.; Higashi, S.

    1997-01-01

    An international joint research program called HLSST is proceeding. HLSST is large-scale seismic test (LSST) to investigate soil-structure interaction (SSI) during large earthquake in the field in Hualien, a high seismic region in Taiwan. A 1/4-scale model building was constructed on the gravelly soil in this site, and the backfill material of crushed stone was placed around the model plant after excavation for the construction. Also the model building and the foundation ground were extensively instrumental to monitor structure and ground response. To accurately evaluate SSI during earthquakes, geotechnical investigation and forced vibration test were performed during construction process namely before/after base excavation, after structure construction and after backfilling. And the distribution of the mechanical properties of the gravelly soil and the backfill are measured after the completion of the construction by penetration test and PS-logging etc. This paper describes the distribution and the change of the shear wave velocity (V s ) measured by the field test. Discussion is made on the effect of overburden pressure during the construction process on V s in the neighbouring soil and, further on the numerical soil model for SSI analysis. (orig.)

  14. Influence of ground water on soil-structure interaction

    International Nuclear Information System (INIS)

    Costantino, C.J.; Graves, H.L.

    1987-01-01

    The basic problem consists of a liner flexible structure situated at or near the surface of a soil half-space. In keeping with typical small strain seismic analyses, the soil skeleton is represented as a linear medium in which all potential nonlinearities are at most lumped together into an equivalent hysteretic damping modulus. In addition, the ground water level is located at some depth relatively close to the structure, and in a position to impact on the seismic response of the facility. In order to estimate the response of this oil-water system, the two-phased medium formulation of Biot was used to treat the response of the solids and water as two separate linear media, coupled together through soil permeability and volume effects. (orig./HP)

  15. Earthquake response analysis of embedded reactor building considering soil-structure separation and nonlinearity of soil

    International Nuclear Information System (INIS)

    Ichikawa, T.; Hayashi, Y.; Nakai, S.

    1987-01-01

    The effect of the wall-ground separation depends on the relation between the fundamental frequency of the SSI system and that of the surface layer. The maximum accelerations of the upper floors are increased if the side soil is soft. The building shear force is decreased below the ground level if the fundamental frequency of the SSI system is nearly equal to that of the surface layer. The floor response spectra are slightly increased in the high frequency range. Yielding of the soil occurred only in case that the side soil is soft, and the yield zone was restricted in the upper part of the surface layer. Therefore, the material nonlinearity did not affect the results so much. The results of the sway-rocking model (lumped mass model) analysis showed good agreements with those of the FEM models. (orig./HP)

  16. Incremental Dynamic Analysis of Koyna Dam under Repeated Ground Motions

    Science.gov (United States)

    Zainab Nik Azizan, Nik; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Maity, Damodar; Abdullah, Junaidah

    2018-03-01

    This paper discovers the incremental dynamic analysis (IDA) of concrete gravity dam under single and repeated earthquake loadings to identify the limit state of the dam. Seven ground motions with horizontal and vertical direction as seismic input considered in the nonlinear dynamic analysis based on the real repeated earthquake in the worldwide. All the ground motions convert to respond spectrum and scaled according to the developed elastic respond spectrum in order to match the characteristic of the ground motion to the soil type. The scaled was depends on the fundamental period, T1 of the dam. The Koyna dam has been selected as a case study for the purpose of the analysis by assuming that no sliding and rigid foundation, has been estimated. IDA curves for Koyna dam developed for single and repeated ground motions and the performance level of the dam identifies. The IDA curve of repeated ground motion shown stiffer rather than single ground motion. The ultimate state displacement for a single event is 45.59mm and decreased to 39.33mm under repeated events which are decreased about 14%. This showed that the performance level of the dam based on seismic loadings depend on ground motion pattern.

  17. Japan`s sunshine project. 17.. 1992 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report describes the achievement of coal liquefaction and gasification technology development in the Sunshine Project for FY 1992. It presents the research and development of coal liquefaction which includes studies on reaction mechanism of coal liquefaction and catalysts for coal liquefaction, the research and development of coal gasification technologies which includes studies on gasification characteristics of various coals and improvement of coal gasification efficiency, the development of bituminous coal liquefaction which includes engineering, construction and operation of a bituminous coal liquefaction pilot plant and research by a process supporting unit (PSU), the development of brown coal liquefaction which includes research on brown coal liquefaction with a pilot plant and development of techniques for upgrading coal oil from brown coal, the development of common base technologies which includes development of slurry letdown valves and study on upgrading technology of coal-derived distillates, the development of coal-based hydrogen production technology with a pilot plant, the development of technology for entrained flow coal gasification, the assessment of coal hydrogasification, and the international co-operation. 4 refs., 125 figs., 39 tabs.

  18. Cooperative research in coal liquefaction. Final report, May 1, 1990-- April 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1992-02-15

    The Consortium for Fossil Fuel Liquefaction Science (CFFLS) is currently engaged in a three year contract with the US Department of Energy investigating a range of research topics dealing with direct coal liquefaction. This report summarizes the results of this program in its second year, from May 1, 1990 to April 30, 1991. Accomplishments for this period are presented for the following tasks: Iron-based catalysts for coal liquefaction, exploratory research on coal conversion, novel coal liquefaction concepts, and novel catalysts for coal liquefaction.

  19. Report on results for fiscal 1997 on development of coal liquefaction technology . Development of liquefaction base technology (studies on development and internationalization of environmentally benign coal liquefaction technology); 1997 nendo sekitan ekika gijutsu seika hokokusho. Ekika kiban gijutsu no kaihatsu (kankyo chowagata sekitan ekika gijutsu no kaihatsu oyobi kokusaika kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The research objective is the development of environmentally benign coal liquefaction technology and the studies on internationalization of coal liquefaction technology. Implemented for the former are (1) research on improvement and rationalization of liquefaction process and (2) research on advancement of liquefaction base technology. In (1), studies were made on in-oil preprocessing technology and scale suppressing measures for the purpose of obtaining reform/high grade of coal, and on improvement of liquefied oil collecting ratio, sophistication of coal slurry and attainment of light oil/high grade from liquefied crude oil for the purpose of optimizing liquefaction reactive conditions and improving a solvent. In (2), in developing high activity/high dispersion type new catalysts, catalytic sufurization behavior and activity manifestation mechanism were explored, as were iron hydroxide based iron ore properties and liquefaction reactive characteristics. The initial reactive characteristics of liquefaction for example were investigated for the purpose of collecting basic data for expanding kinds of coal. In order to attain the latter objective of the research, a feasibility study of liquefaction location was conducted, as were the investigation including sampling of iron ore for catalytic material and the investigation of coal gasification technology. After the completion of the Australian brown coal liquefaction project, the development of the coal liquefaction technology commenced in fiscal 1994 produced a number of useful records and ended in 1997. (NEDO)

  20. Analysis of seismic waves and strong ground motion

    International Nuclear Information System (INIS)

    Simpson, I.C.; Sutton, R.

    1976-10-01

    A number of Western USA earthquake acceleration-time histories concerning events of magnitude less than 6 are considered and their Fourier spectra calculated. An analysis of some of the simpler types of seismic wave is given in order to consider the generation of a spatially dependent acceleration-time history suitable for input into a soil-structure program of analysis. Such an acceleration-time history is required by a comprehensive analysis of soil-structure interaction since the conventionally assumed model of vertically propagating seismic waves, which give rise to three spatially independent ground motions, can lead to over-conservative estimates of the building response in the high frequency range. The possible application is discussed of a given component of a recorded acceleration-time history to the base of structure under the assumption of surface Rayleigh waves or obliquely incident P and SV bulk waves. (author)

  1. Prediction and evaluation of nonlinear site response with potentially liquefiable layers in the area of Nafplion (Peloponnesus, Greece for a repeat of historical earthquakes

    Directory of Open Access Journals (Sweden)

    V. K. Karastathis

    2010-11-01

    Full Text Available We examine the possible non-linear behaviour of potentially liquefiable layers at selected sites located within the expansion area of the town of Nafplion, East Peloponnese, Greece. Input motion is computed for three scenario earthquakes, selected on the basis of historical seismicity data, using a stochastic strong ground motion simulation technique, which takes into account the finite dimensions of the earthquake sources. Site-specific ground acceleration synthetics and soil profiles are then used to evaluate the liquefaction potential at the sites of interest. The activation scenario of the Iria fault, which is the closest one to Nafplion (M=6.4, is found to be the most hazardous in terms of liquefaction initiation. In this scenario almost all the examined sites exhibit liquefaction features at depths of 6–12 m. For scenario earthquakes at two more distant seismic sources (Epidaurus fault – M6.3; Xylokastro fault – M6.7 strong ground motion amplification phenomena by the shallow soft soil layer are expected to be observed.

  2. Meteorite Impact "Earthquake" Features (Rock Liquefaction, Surface Wave Deformations, Seismites) from Ground Penetrating Radar (GPR) and Geoelectric Complex Resistivity/Induced Polarization (IP) Measurements, Chiemgau (Alpine Foreland, Southeast Germany)

    Science.gov (United States)

    Ernstson, K.; Poßekel, J.

    2017-12-01

    Densely spaced GPR and complex resistivity measurements on a 30,000 square meters site in a region of enigmatic sinkhole occurrences in unconsolidated Quaternary sediments have featured unexpected and highlighting results from both a meteorite impact research and an engineering geology point of view. The GPR measurements and a complex resistivity/IP electrical imaging revealed extended subrosion depressions related with a uniformly but in various degrees of intensity deformed loamy and gravelly ground down to at least 10 m depth. Two principle observations could be made from both the GPR high-resolution measurements and the more integrating resistivity and IP soundings with both petrophysical evidences in good complement. Subrosion can be shown to be the result of prominent sandy-gravelly intrusions and extrusions typical of rock liquefaction processes well known to occur during strong earthquakes. Funnel-shaped structures with diameters up to 25 m near the surface and reaching down to the floating ground water level at 10 m depth were measured. GPR radargrams could trace prominent gravelly-material transport bottom-up within the funnels. Seen in both GPR tomography and resistivity/IP sections more or less the whole investigated area is overprinted by wavy deformations of the unconsolidated sediments with wavelengths of the order of 5 - 10 m and amplitudes up to half a meter, likewise down to 10 m depth. Substantial earthquakes are not known in this region. Hence, the observed heavy underground disorder is considered the result of the prominent earthquake shattering that must have occurred during the Holocene (Bronze Age/Celtic era) Chiemgau meteorite impact event that produced a 60 km x 30 km sized crater strewn field directly hosting the investigated site. Depending on depth and size of floating aquifers local concentrations of rock liquefaction and seismic surface waves (probably LOVE waves) to produce the wavy deformations could develop, when the big

  3. Fiscal 1991 report. Coal liquefaction committee; 1991 nendo sekitan ekika iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    The committee in this fiscal year had the 1st meeting in July 1991, the 2nd in August 1991, and the 3rd in March 1992, when fiscal 1990 research and development results, fiscal 1991 research and development programs, fiscal 1991 research and development results, etc., were reported and deliberated. At the 2nd meeting, the meaning of coal liquefaction technology development and how to go ahead with the task were described, which topic for discussion was entitled 'How coal liquefaction technology should be for the 21st century.' After discussion, it was agreed upon that a coal liquefaction technology package be completed in fiscal 2000 based on the absorption of each other's findings and on the utilization of basic studies common to both to be realized through the exchange of technologies between the brown coal liquefaction project and the bituminous coal liquefaction project. Under the brown coal liquefaction project, a 50 ton/day pilot plant was built and operated in Victoria, Australia, and the operation was completed in October 1990. The results of research and development under the coal brown liquefaction project will be compiled by fiscal 1993. (NEDO)

  4. A bare ground evaporation revision in the ECMWF land-surface scheme: evaluation of its impact using ground soil moisture and satellite microwave data

    Directory of Open Access Journals (Sweden)

    C. Albergel

    2012-10-01

    Full Text Available In situ soil moisture data from 122 stations across the United States are used to evaluate the impact of a new bare ground evaporation formulation at ECMWF. In November 2010, the bare ground evaporation used in ECMWF's operational Integrated Forecasting System (IFS was enhanced by adopting a lower stress threshold than for the vegetation, allowing a higher evaporation. It results in more realistic soil moisture values when compared to in situ data, particularly over dry areas. Use was made of the operational IFS and offline experiments for the evaluation. The latter are based on a fixed version of the IFS and make it possible to assess the impact of a single modification, while the operational analysis is based on a continuous effort to improve the analysis and modelling systems, resulting in frequent updates (a few times a year. Considering the field sites with a fraction of bare ground greater than 0.2, the root mean square difference (RMSD of soil moisture is shown to decrease from 0.118 m3 m−3 to 0.087 m3 m−3 when using the new formulation in offline experiments, and from 0.110 m3 m−3 to 0.088 m3 m−3 in operations. It also improves correlations. Additionally, the impact of the new formulation on the terrestrial microwave emission at a global scale is investigated. Realistic and dynamically consistent fields of brightness temperature as a function of the land surface conditions are required for the assimilation of the SMOS data. Brightness temperature simulated from surface fields from two offline experiments with the Community Microwave Emission Modelling (CMEM platform present monthly mean differences up to 7 K. Offline experiments with the new formulation present drier soil moisture, hence simulated brightness temperature with its surface fields are larger. They are also closer to SMOS remotely sensed brightness temperature.

  5. Direct catalytic hydrothermal liquefaction of spirulina to biofuels with hydrogen

    Science.gov (United States)

    Zeng, Qin; Liao, Hansheng; Zhou, Shiqin; Li, Qiuping; Wang, Lu; Yu, Zhihao; Jing, Li

    2018-01-01

    We report herein on acquiring biofuels from direct catalytic hydrothermal liquefaction of spirulina. The component of bio-oil from direct catalytic hydrothermal liquefaction was similar to that from two independent processes (including liquefaction and upgrading of biocrude). However, one step process has higher carbon recovery, due to the less loss of carbons. It was demonstrated that the yield and HHV of bio-oil from direct catalytic algae with hydrothermal condition is higher than that from two independent processes.

  6. Realtime estimation of city gas pipe network damage by lateral flow of liquefied ground behind quay walls

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, E.; Isoyama, R. [Japan Engineering Consultants Co., Ltd., Tokyo (Japan). Public Management Research Center; Koganemaru, K.; Shimuzu, Y. [Tokyo Gas Co. Ltd., Tokyo (Japan). Center for Disaster Management and Supply Control; Morimoto, I. [Kiso-Jiban Consultants Co. Ltd., Tokyo (Japan); Yasuda, S. [Tokyo Denki Univ., Tokyo (Japan). Dept. of Civil and Environmental Engineering

    2004-07-01

    Estimating the degree of damage to city gas pipe networks is difficult because of the lack of damage case data. This paper proposes a method for calculating the amount of earthquake-induced ground displacement at pipe node locations by constructing ground models. Data for the models was obtained from boreholes and by using a simple ground flow formula. The analysis method will make it possible to calculate the allowable limits of damage-causing factors such as ground motion and flow for different pipe network elements. The analysis procedure was conducted using a 2-dimensional liquefaction-induced flow analysis program finite element method. A real time damage estimation system for low pressure gas pipes uses ground motions having a design seismic coefficient of 0.4 in preparing strong earthquake liquefied layer thickness distribution data. Flow calculations were presented as well as a ground revetment database to replace node location data. It was concluded that achieving consistency was desirable. 7 refs., 2 tabs., 5 figs.

  7. Liquefaction during the 1977 San Juan Province, Argentina earthquake (Ms = 7.4)

    Science.gov (United States)

    Youd, T.L.; Keefer, D.K.

    1994-01-01

    Liquefaction effects generated by the 1977 San Juan Province, Argentina, earthquake (Ms = 7.4) are described. The larger and more abundant effects were concentrated in the 60-km long band of the lowlands in the Valle del Bermejo and in an equally long band along the Rio San Juan in the Valle de Tulum. Fissures in the Valle del Bermejo were up to several hundred meters long and up to several meters wide. Sand deposits, from boils that erupted through the fissures, covered areas up to tens of square meters. Fissures generally parallelled nearby stream channels. Because the Valle del Bermejo is undeveloped, these large features caused no damage. Liquefaction in the Valle del Tulum caused important or unusual damage at several localities, including the following five sites: (1) At the Barrio Justo P. Castro, a subdivision of Caucete, liquefaction of subsurface sediments decoupled overlying, unliquefied stiff sediments, producing a form of ground failure called "ground oscillation". The associated differential ground movements pulled apart houses and pavements in extension, while shearing curbs and buckling canal linings in compression at the same locality. (2) At the Escuela Normal, in Caucete, the roof of a 30-m long single-story classroom building shifted westward relative to the foundation. That displacement fractured and tilted columns supporting the roof. The foundation was fractured at several places, leaving open cracks, as wide as 15 mm. The cumulative width of the open cracks was 48 mm, an amount roughly equivalent to the 63 mm of offset between the roof and foundation at the east end of the building. The ground and foundation beneath the building extended (or spread) laterally opening cracks and lengthening the foundation while the roof remained in place. (3) The most spectacular damage to structures at the community of San Martin was the tilting of a 6-m high water tower and the toppling of a nearby pump house into a 1-m deep crater. Similarly, a small

  8. Comparison of equivalent linear and non linear methods on ground response analysis: case study at West Bangka site

    International Nuclear Information System (INIS)

    Eko Rudi Iswanto; Eric Yee

    2016-01-01

    Within the framework of identifying NPP sites, site surveys are performed in West Bangka (WB), Bangka-Belitung Island Province. Ground response analysis of a potential site has been carried out using peak strain profiles and peak ground acceleration. The objective of this research is to compare Equivalent Linear (EQL) and Non Linear (NL) methods of ground response analysis on the selected NPP site (West Bangka) using Deep Soil software. Equivalent linear method is widely used because requires soil data in simple way and short time of computational process. On the other hand, non linear method is capable of representing the actual soil behaviour by considering non linear soil parameter. The results showed that EQL method has similar trends to NL method. At surface layer, the acceleration values for EQL and NL methods are resulted as 0.425 g and 0.375 g respectively. NL method is more reliable in capturing higher frequencies of spectral acceleration compared to EQL method. (author)

  9. FY 1992 report on the Coal Liquefaction Committee; 1992 nendo sekitan ekika iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    The paper reported activities of the Coal Liquefaction Committee in FY 1992. In the 1st committee meeting, report/discussion were made of the summary of the FY 1992 R and D plan on the bituminous coal liquefaction, brown coal liquefaction and the common/basic technology. Further, the following were reported as topics: results of the operation by bituminous coal liquefaction PSU and small equipment, state of arrangement of the results of the brown coal liquefaction project, making of the basic policy for development of the common/basic technology, construction of package of coal liquefaction technology. In the 2nd committee meeting, the summary of the results of the FY 1992 R and D was reported/discussed. As to the development of bituminous coal liquefaction technology, study using pilot plant and support study were reported. Concerning the development of brown coal liquefaction technology, study using a 50t/d pilot plant and complementary study of operation. Relating to the development of the common/basic technology, trial manufacture/development of plant equipment/materials, survey of selection of coal kind, etc. The paper also reported a scheme on the evaluation of efficiency of the brown coal liquefaction process. (NEDO)

  10. Mars Propellant Liquefaction Modeling in Thermal Desktop

    Science.gov (United States)

    Desai, Pooja; Hauser, Dan; Sutherlin, Steven

    2017-01-01

    NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.

  11. Design of generic coal conversion facilities: Process release---Direct coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    The direct liquefaction portion of the PETC generic direct coal liquefaction process development unit (PDU) is being designed to provide maximum operating flexibility. The PDU design will permit catalytic and non-catalytic liquefaction concepts to be investigated at their proof-of-the-concept stages before any larger scale operations are attempted. The principal variations from concept to concept are reactor configurations and types. These include thermal reactor, ebullating bed reactor, slurry phase reactor and fixed bed reactor, as well as different types of catalyst. All of these operating modes are necessary to define and identify the optimum process conditions and configurations for determining improved economical liquefaction technology.

  12. On the Validation of a Numerical Model for the Analysis of Soil-Structure Interaction Problems

    Directory of Open Access Journals (Sweden)

    Jorge Luis Palomino Tamayo

    Full Text Available Abstract Modeling and simulation of mechanical response of structures, relies on the use of computational models. Therefore, verification and validation procedures are the primary means of assessing accuracy, confidence and credibility in modeling. This paper is concerned with the validation of a three dimensional numerical model based on the finite element method suitable for the dynamic analysis of soil-structure interaction problems. The soil mass, structure, structure's foundation and the appropriate boundary conditions can be represented altogether in a single model by using a direct approach. The theory of porous media of Biot is used to represent the soil mass as a two-phase material which is considered to be fully saturated with water; meanwhile other parts of the system are treated as one-phase materials. Plasticity of the soil mass is the main source of non-linearity in the problem and therefore an iterative-incremental algorithm based on the Newton-Raphson procedure is used to solve the nonlinear equilibrium equations. For discretization in time, the Generalized Newmark-β method is used. The soil is represented by a plasticity-based, effective-stress constitutive model suitable for liquefaction. Validation of the present numerical model is done by comparing analytical and centrifuge test results of soil and soil-pile systems with those results obtained with the present numerical model. A soil-pile-structure interaction problem is also presented in order to shown the potentiality of the numerical tool.

  13. Method for analysis the complex grounding cables system

    International Nuclear Information System (INIS)

    Ackovski, R.; Acevski, N.

    2002-01-01

    A new iterative method for the analysis of the performances of the complex grounding systems (GS) in underground cable power networks with coated and/or uncoated metal sheathed cables is proposed in this paper. The analyzed grounding system consists of the grounding grid of a high voltage (HV) supplying transformer station (TS), middle voltage/low voltage (MV/LV) consumer TSs and arbitrary number of power cables, connecting them. The derived method takes into consideration the drops of voltage in the cable sheets and the mutual influence among all earthing electrodes, due to the resistive coupling through the soil. By means of the presented method it is possible to calculate the main grounding system performances, such as earth electrode potentials under short circuit fault to ground conditions, earth fault current distribution in the whole complex grounding system, step and touch voltages in the nearness of the earthing electrodes dissipating the fault current in the earth, impedances (resistances) to ground of all possible fault locations, apparent shield impedances to ground of all power cables, e.t.c. The proposed method is based on the admittance summation method [1] and is appropriately extended, so that it takes into account resistive coupling between the elements that the GS. (Author)

  14. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  15. Differences in Train-induced Vibration between Hard Soil and Soft Soil

    Science.gov (United States)

    Noyori, M.; Yokoyama, H.

    2017-12-01

    Vibration and noise caused by running trains sometimes raises environmental issues. Train-induced vibration is caused by moving static and dynamic axle loads. To reduce the vibration, it is important to clarify the conditions under which the train-induced vibration increases. In this study, we clarified the differences in train-induced vibration between on hard soil and on soft soil using a numerical simulation method. The numerical simulation method we used is a combination of two analysis. The one is a coupled vibration analysis model of a running train, a track and a supporting structure. In the analysis, the excitation force of the viaduct slabs generated by a running train is computed. The other analysis is a three-dimensional vibration analysis model of a supporting structure and the ground into which the excitation force computed by the former analysis is input. As a result of the numerical simulation, the ground vibration in the area not more than 25m from the center of the viaduct is larger under the soft soil condition than that under the hard soil condition in almost all frequency ranges. On the other hand, the ground vibration of 40 and 50Hz at a point 50m from the center of the viaduct under the hard soil condition is larger than that under the soft soil condition. These are consistent with the result of the two-dimensional FEM based on a ground model alone. Thus, we concluded that these results are obtained from not the effects of the running train but the vibration characteristics of the ground.

  16. Residual liquefaction of seabed under standing waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2013-01-01

    This paper presents the results of an experimental study of the seabed liquefaction beneath standing waves. Silt (with d50 =0.070mm) was used in the experiments. Two kinds of measurements were carried out: pore water pressure measurements and water surface elevation measurements. These measurements...... were synchronized with video recording of the liquefaction process from the side. The ranges of the various quantities in the experiments were wave height H= 5.9-12.0 cm, wave period T= 1.09s, and water depth h=30 cm. The experiments show that the seabed liquefaction under standing waves, although...... qualitatively similar, show features different from that caused by progressive waves. The pore water pressure builds up (or accumulated) in the areas around the node and subsequently spreads out toward the antinodes. The experimental results imply that this transport is caused by a diffusion mechanism...

  17. Measuring soil frost depth in forest ecosystems with ground penetrating radar

    Science.gov (United States)

    John R. Butnor; John L. Campbell; James B. Shanley; Stanley. Zarnoch

    2014-01-01

    Soil frost depth in forest ecosystems can be variable and depends largely on early winter air temperatures and the amount and timing of snowfall. A thorough evaluation of ecological responses to seasonally frozen ground is hampered by our inability to adequately characterize the frequency, depth, duration and intensity of soil frost events. We evaluated the use of...

  18. Heavy metal concentrations in ground beetles, leaf litter, and soil of a forest ecosystem.

    Science.gov (United States)

    Jelaska, Lucija Serić; Blanusa, Maja; Durbesić, Paula; Jelaska, Sven D

    2007-01-01

    The objective of this study was to quantify the relationships between heavy metal concentrations in soil, leaf litter, and ground beetles at four sampling sites of a forest ecosystem in Medvednica Nature Park, Croatia. Ground beetles were sampled by pitfall trapping. Specimens were dry-ashed and soil and beetle samples digested with nitric acid. Lead, cadmium, copper, zinc, manganese, and iron were analyzed using atomic absorption spectrometry. Statistically significant differences between plots were found for lead, cadmium, and iron in ground beetles. Correlations between ground beetles and soil or leaf litter were positive for lead and cadmium concentrations and negative for iron concentration. Differences in species metal concentrations were recorded. Higher concentrations of all studied metals were found in female beetles. However, a significant difference between sexes was found only for manganese. Significant differences in species metal concentrations were found for species that differ in feeding strategies and age based on breeding season and emergence of young adults.

  19. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  20. Report on the coal liquefaction committee in fiscal 1992; 1992 nendo sekitan ekika iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    This paper reports the activities of the coal liquefaction committee in fiscal 1992. The first committee meeting was held on August 21. After having confirmed the minutes of the previous meeting, an explanation was given on the research and development plans in fiscal 1992. The explanation covered the general explanation, bituminous coal liquefaction, brown coal liquefaction, and the common and fundamental aspects. The presented topics included the achievements in the operations using a bituminous coal liquefaction PSU and a small device, the status of compiling the achievements in the brown coal liquefaction project, preparation of the basic policy on developing the common basic technologies, and structuring of a coal liquefaction technology package. The second meeting was held on March 18, 1993. The meeting verified the minutes of the previous meeting, and gave the sub-committee reports for fiscal 1992. The sub-committees include those for bituminous coal liquefaction, brown coal liquefaction, environmental safety evaluation, and separation and refining technologies. As the summary of the achievements in fiscal 1992, descriptions were given on the bituminous coal liquefaction, brown coal liquefaction, and common and basic aspects. The fiscal 1993 plan presented included the budget aspect. A description was given as a topic on the economic performance evaluation and the working scheme (the execution plan) for the brown coal liquefaction process. (NEDO)

  1. Japan's New Sunshine Project. 1994 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This paper summarizes the report for fiscal 1994 on research and development related to coal liquefaction and gasification. In the research and development of coal liquefaction technologies, reports were given on research of liquefaction characteristics of different coals and liquefaction process thereof, and on research of catalysts for the coal liquefaction. In the research and development of coal gasification technologies, reports were given on fundamental studies on gasification characteristics of different coals. In the research and development of liquefaction technologies for bituminous coal, reports were given on design, construction and operation of a bituminous coal liquefaction pilot plant with a capacity of 150 t/d, and the operation supporting studies on the pilot plant. In the fundamental research on the coal liquefaction process, reports were given on refining technologies and utilization of the refined materials, and studies on environment preservation in applying the coal liquefaction technologies. In the research on hydrogen manufacturing technologies by using the fundamental coal technology, reports were given on design, construction and operational studies of a pilot plant. In the research and development of the coal gasification technologies, reports were given on development of a jet-flow gasified coal electric power plant, selection of coals, and development of a data processing system. (NEDO)

  2. Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1994-10-01

    Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterize a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.

  3. Procedures for evaluation of vibratory ground motions of soil deposits at nuclear power plant sites

    International Nuclear Information System (INIS)

    1975-06-01

    According to USNRC requirements set forth in Appendix A, 10 CFR, Part 100, vibratory ground motion criteria for a nuclear plant must be based on local soil conditions, as well as on the seismicity, geology, and tectonics of the region. This report describes how such criteria can be developed by applying the latest technology associated with analytical predictions of site-dependent ground motions and with the use of composite spectra obtained from the current library of strong motion records. Recommended procedures for defining vibratory ground motion criteria contain the following steps: (1) geologic and seismologic studies; (2) site soils investigations; (3) site response sensitivity studies; (4) evaluation of local site response characteristics; (5) selection of site-matched records; and (6) appraisal and selection of seismic input criteria. An in-depth discussion of the engineering characteristics of earthquake ground motions including parameters used to characterize earthquakes and strong motion records, geologic factors that influence ground shaking, the current strong motion data base, and case histories of the effects of past earthquake events is presented. Next, geotechnical investigations of the seismologic, geologic, and site soil conditions required to develop vibratory motion criteria are briefly summarized. The current technology for establishing vibratory ground motion criteria at nuclear plant sites, including site-independent and site-dependent procedures that use data from strong motion records and from soil response analyses is described. (auth)

  4. MAPPING SPATIAL MOISTURE CONTENT OF UNSATURATED AGRICULTURAL SOILS WITH GROUND-PENETRATING RADAR

    Directory of Open Access Journals (Sweden)

    O. Shamir

    2016-06-01

    Full Text Available Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf, common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf, common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1–5% accuracy, making our method useful for the design of irrigation plans for different interfaces.

  5. A preliminary analysis of floating production storage and offloading facilities with gas liquefaction processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Carranza-Sánchez, Yamid Alberto; Junior, Silvio de Oliveira

    2016-01-01

    Floating, production, storage and offloading (FPSO) plants are facilities used in upstream petroleum processing. They have gained interest because they are more flexible than conventional plants and can be used for producing oil and gas in deep-water fields. In general, gas export is challenging...... because of the lack of infrastructure in remote locations. The present work investigates the possibility of integrating liquefaction processes on such facilities, considering two mixed-refrigerant and two expansion-based processes suitable for offshore applications. Two FPSO configurations are considered...... in this work, and they were suggested by Brazilian operators for fields processing natural gas with moderate to high content of carbon dioxide. The performance of the combined systems is analysed by conducting energy and exergy analyses. The integration of gas liquefaction results in greater power consumption...

  6. Geological occurrence response to trace elemental migration in coal liquefaction based on SPSS: take no. 11 coalbed in Antaibao mine for example

    Science.gov (United States)

    Xia, Xiaohong; Qin, Yong; Yang, Weifeng

    2013-03-01

    Coal liquefaction is an adoptable method to transfer the solid fossil energy into liquid oil in large scale, but the dirty material in which will migrate to different step of liquefaction. The migration rule of some trace elements is response to the react activity of macerals in coal and the geological occurrence of the element nature of itself. In this paper, from the SPSS data correlation analysis and hierarchical clustering dendrogram about the trace elements with macerals respond to coal liquefaction yield, it shows the trace elements in No.11 Antaibao coal seam originated from some of lithophile and sulphophle elements. Correlation coefficient between liquefaction yield of three organic macerals and migration of the elements in liquefaction residue indicated that the lithophile are easy to transfer to residue, while sulphophle are apt to in the liquid products. The activated macerals are response to sulphophle trace elements. The conclusion is useful to the coal blending and environmental effects on coal direct liquefaction.

  7. Field investigation and analysis of buried pipelines under various seismic environments. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.R.L.

    1982-08-01

    A research project is proposed in which the behavior of oil, water, sewer, and gas pipelines under various seismic environments, including seismic shaking and large ground deformation would be investigated. It is suggested that the investigation be conducted in the Beijing and Tangshan areas. Three major hazards to underground pipelines are identified: the effect of wave propagation; ground rupture and differential movement along fault lines; and soil liquefaction induced by ground shaking. Ruptures or severe distortions of the pipe are most often associated with fault movements, landslides, or ground squeeze associated with fault zones. A model is presented to evaluate the general longitudinal responses of buried pipelines, both segmented and continuous, subjected to ground shakings and vibrations. The results of these tests will be used to develop aseismic codes for buried pipelines.

  8. ERC hazard classification matrices for above ground structures and groundwater and soil remediation activities

    International Nuclear Information System (INIS)

    Curry, L.R.

    1997-01-01

    This document provides the status of the preliminary hazard classification (PHC) process for the Environmental Restoration Contractor (ERC) above ground structures and groundwater and soil remediation activities currently underway for planned for fiscal year (FY) 1997. This classification process is based on current US Department of Energy (DOE), Richland Operations Office (RL) guidance for the classification of facilities and activities containing radionuclide and nonradiological hazardous material inventories. The above ground structures presented in the matrices were drawn from the Bechtel Hanford, Inc. (BHI) Decontamination and Decommissioning (D and D) Project Facility List (DOE 1996), which identifies the facilities in the RL-Environmental Restoration baseline contract in 1997. This document contains the following two appendices: (1) Appendix A, which consists of a matrix identifying PHC documents that have been issued for BHI's above ground structures and groundwater and soil remediation activities underway or planned for FY 1997, and (2) Appendix B, which consists of a matrix showing anticipated PHCs for above ground structures, and groundwater and soil remediation activities underway or planned for FY 1997. Appendix B also shows the schedule for finalization of PHCs for above ground structures with an anticipated classification of Nuclear

  9. High-resolution, real-time mapping of surface soil moisture at the field scale using ground penetrating radar

    Science.gov (United States)

    Lambot, S.; Minet, J.; Slob, E.; Vereecken, H.; Vanclooster, M.

    2008-12-01

    Measuring soil surface water content is essential in hydrology and agriculture as this variable controls important key processes of the hydrological cycle such as infiltration, runoff, evaporation, and energy exchanges between the earth and the atmosphere. We present a ground-penetrating radar (GPR) method for automated, high-resolution, real-time mapping of soil surface dielectric permittivity and correlated water content at the field scale. Field scale characterization and monitoring is not only necessary for field scale management applications, but also for unravelling upscaling issues in hydrology and bridging the scale gap between local measurements and remote sensing. In particular, such methods are necessary to validate and improve remote sensing data products. The radar system consists of a vector network analyzer combined with an off-ground, ultra-wideband monostatic horn antenna, thereby setting up a continuous-wave steeped-frequency GPR. Radar signal analysis is based on three-dimensional electromagnetic inverse modelling. The forward model accounts for all antenna effects, antenna-soil interactions, and wave propagation in three-dimensional multilayered media. A fast procedure was developed to evaluate the involved Green's function, resulting from a singular, complex integral. Radar data inversion is focused on the surface reflection in the time domain. The method presents considerable advantages compared to the current surface characterization methods using GPR, namely, the ground wave and common reflection methods. Theoretical analyses were performed, dealing with the effects of electric conductivity on the surface reflection when non-negligible, and on near-surface layering, which may lead to unrealistic values for the surface dielectric permittivity if not properly accounted for. Inversion strategies are proposed. In particular the combination of GPR with electromagnetic induction data appears to be promising to deal with highly conductive soils

  10. Ground Pollution Science

    International Nuclear Information System (INIS)

    Oh, Jong Min; Bae, Jae Geun

    1997-08-01

    This book deals with ground pollution science and soil science, classification of soil and fundamentals, ground pollution and human, ground pollution and organic matter, ground pollution and city environment, environmental problems of the earth and ground pollution, soil pollution and development of geological features of the ground, ground pollution and landfill of waste, case of measurement of ground pollution.

  11. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange.

    Science.gov (United States)

    Alamdar, Ambreen; Syed, Jabir Hussain; Malik, Riffat Naseem; Katsoyiannis, Athanasios; Liu, Junwen; Li, Jun; Zhang, Gan; Jones, Kevin C

    2014-02-01

    This study was conducted to examine organochlorine pesticides (OCPs) contamination levels in the surface soil and air samples together with air-soil exchange fluxes at an obsolete pesticide dumping ground and the associated areas from Hyderabad City, Pakistan. Among all the sampling sites, concentrations of OCPs in the soil and air samples were found highest in obsolete pesticide dumping ground, whereas dominant contaminants were dichlorodiphenyltrichloroethane (DDTs) (soil: 77-212,200 ng g(-1); air: 90,700 pg m(-3)) and hexachlorocyclohexane (HCHs) (soil: 43-4,090 ng g(-1); air: 97,400 pg m(-3)) followed by chlordane, heptachlor and hexachlorobenzene (HCB). OCPs diagnostic indicative ratios reflect historical use as well as fresh input in the study area. Moreover, the air and soil fugacity ratios (0.9-1.0) at the dumping ground reflecting a tendency towards net volatilization of OCPs, while at the other sampling sites, the fugacity ratios indicate in some cases deposition and in other cases volatilization. Elevated concentrations of DDTs and HCHs at pesticide dumping ground and its surroundings pose potential exposure risk to biological organisms, to the safety of agricultural products and to the human health. Our study thus emphasizes the need of spatio-temporal monitoring of OCPs at local and regional scale to assess and remediate the future adverse implications. © 2013.

  12. Road Maintenance Experience Using Polyurethane (PU) Foam Injection System and Geocrete Soil Stabilization as Ground Rehabilitation

    Science.gov (United States)

    Fakhar, A. M. M.; Asmaniza, A.

    2016-07-01

    There are many types of ground rehabilation and improvement that can be consider and implement in engineering construction works for soil improvement in order to prevent road profile deformation in later stage. However, when comes to road maintenance especially on operated expressways, not all method can be apply directly as it must comply to opreation's working window and lane closure basis. Key factors that considering ideal proposal for ground rehabilitation are time, cost, quality and most importantly practicality. It should provide long lifespan structure in order to reduce continuous cycle of maintenance. Thus, this paper will present two approaches for ground rehabilitation, namely Polyurethane (PU) Foam Injection System and Geocrete Soil Stabilization. The first approach is an injection system which consists two-parts chemical grout of Isocynate and Polyol when mixed together within soil structure through injection will polymerized with volume expansion. The strong expansion of grouting causes significant compression and compacting of the surrounding soil and subsequently improve ground properties and uplift sunken structure. The later is a cold in-place recyclying whereby mixture process that combines in-situ soil materials, cement, white powder (alkaline) additive and water to produce hard yet flexible and durable ground layer that act as solid foundation with improved bearing capacity. The improvement of the mechanical behaviour of soil through these two systems is investigated by an extensive testing programme which includes in-situ and laboratory test in determining properties such as strength, stiffness, compressibility, bearing capacity, differential settlement and etc.

  13. Biomass Indirect Liquefaction Strategy Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-07-01

    This report is based on the proceedings of the U.S. Department of Energy Bioenergy Technologies Office Biomass Indirect Liquefaction Strategy Workshop. The workshop, held March 20–21, 2014, in Golden, Colorado, discussed and detailed the research and development needs for biomass indirect liquefaction. Discussions focused on pathways that convert biomass-based syngas (or any carbon monoxide, hydrogen gaseous stream) to liquid intermediates (alcohols or acids) and further synthesize those intermediates to liquid hydrocarbons that are compatible as either a refinery feed or neat fuel.

  14. Liquefaction chemistry and kinetics: Hydrogen utilization studies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.

  15. Study on thermochemical liquefaction of biomass feedstocks; Biomass genryo no yuka hanno tokusei ni kansuru kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-10

    Liquefaction is applied to various biomass wastes and unused biomass to study characteristics of the liquefaction in each case. The paper described the system of the conversion and use of biomass into energy, conducted the positioning of the liquefaction, and outlined a history of the liquefaction chemistry and the study. To obtain basic data of characteristics of the liquefaction of various biomass raw materials, the liquefaction was conducted changing operational factors for the purpose of clarifying the product distribution of oil and by-products and oil properties. A comprehensive consideration was made of the liquefaction based on basic data and literature reports on the liquefaction of various biomass. From the above-mentioned studies, it was concluded that the energy can be recovered in a form of oil by applying the liquefaction to various biomass materials. A series of the study clarified effects of various operational factors on characteristics of the liquefaction as well as effects of classification of biomass materials and composition of the materials on characteristics of the liquefaction. 141 refs., 78 figs., 56 tabs.

  16. Analysis of engineering cycles power, refrigerating and gas liquefaction plant

    CERN Document Server

    Haywood, R W

    1991-01-01

    Extensively revised, updated and expanded, the fourth edition of this popular text provides a rigorous analytical treatment of modern energy conversion plant. Notable for both its theoretical and practical treatment of conventional and nuclear power plant, and its studies of refrigerating and gas-liquefaction plant. This fourth edition now includes material on topics of increasing concern in the fields of energy 'saving' and reduction of environmental pollution. This increased coverage deals specifically with the following areas: CHP (cogeneration) plant, studies of both gas and coal burning p

  17. Effect of Recycle Solvent Hydrotreatment on Oil Yield of Direct Coal Liquefaction

    Directory of Open Access Journals (Sweden)

    Shansong Gao

    2015-07-01

    Full Text Available Effects of the recycle solvent hydrotreatment on oil yield of direct coal liquefaction were carried out in the 0.18 t/day direct coal liquefaction bench support unit of National Engineering Laboratory for Direct Coal Liquefaction (China. Results showed that the hydrogen-donating ability of the hydrogenated recycle solvent improved and the hydrogen consumption of solvent hydrotreatment was increased by decreasing liquid hourly space velocity (LHSV from 1.5 to 1.0 h−1 and increasing reaction pressure from 13.7 to 19.0 MPa. The hydrogen-donating ability of the hydrogenated recycle solvent was enhanced, thus promoting the oil yield and coal conversion of the liquefaction reaction. The coal conversion and distillates yield of coal liquefaction were increased from 88.74% to 88.82% and from 47.41% to 49.10%, respectively, with the increase in the solvent hydrotreatment pressure from 13.7 to 19.0 MPa. The coal conversion and distillates of coal liquefaction were increased from 88.82% to 89.27% and from 49.10% to 54.49%, respectively, when the LHSV decreased from 1.5 to 1.0 h−1 under the solvent hydrotreatment pressure of 19.0 MPa.

  18. Optimization for microwave-assisted direct liquefaction of bamboo residue in glycerol/methanol mixtures

    Science.gov (United States)

    Jiulong Xie; Jinqiu Qi; Chungyun Hse; Todd F. Shupe

    2015-01-01

    Bamboo residues were liquefied in a mixture of glycerol and methanol in the presence of sulfuric acid using microwave energy. We investigated the effects of liquefaction conditions, including glycerol/methanol ratio, liquefaction temperature, and reaction time on the conversion yield. The optimal liquefaction conditions were under the temperature of 120

  19. Characteristics estimation of coal liquefaction residue; Sekitan ekika zansa seijo no suisan ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Itonaga, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Okada, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    The paper studied a possibility of estimating characteristics of coal liquefaction residue from liquefaction conditions in the case of fixing coal kind in the NEDOL process coal liquefaction PSU. Wyoming coal was used for the study, and the already proposed simplified liquefaction reaction models were used. Among material balances explained by the models, those of asphaltene, preasphaltene, THF insoluble matters are concerned with residue composition. Ash content is separately calculated from ash balance. Reaction velocity constants of simplified liquefaction reaction models which influence the residue composition were obtained by the multiple regression method from experimental results in the past. The estimation expression of residue viscosity was introduced from residue ash/composition. When the residue composition is estimated by the model from liquefaction conditions, and the residue viscosity is obtained using it, the higher the liquefaction temperature is, the higher the residue viscosity is. The result obtained well agreed the measuring result. The simplified liquefaction model of a certain coal kind has been established, and characteristics of residue can be estimated even at liquefaction conditions which have never been experienced before if there is a certain amount of the accumulated data on residue composition/characteristics. 4 refs., 4 figs., 4 tabs.

  20. Liquefaction behaviors of bamboo residues in a glycerol-based solvent using microwave energy

    Science.gov (United States)

    Jiulong Xie; Chung-Yun Hse; Todd F. Shupe; Jinqiu Qi; Hui Pan

    2014-01-01

    Liquefaction of bamboo was performed in glycerol–methanol as co-solvent using microwave energy and was evaluated by characterizing the liquefied residues. High efficiency conversion of bamboo was achieved under mild reaction conditions. Liquefaction temperature and time interacted to affect the liquefaction reaction. Fourier transform infrared analyzes of the residues...

  1. Influence of solvent type on microwave-assisted liquefaction of bamboo

    Science.gov (United States)

    Jiulong Xie; Chung Hse; Todd F. Shupe; Tingxing Hu

    2016-01-01

    Microwave-assisted liquefaction of bamboo in glycerol, polyethylene glycerol (PEG), methanol, ethanol, and water were comparatively investigated by evaluating the temperature-dependence for conversion and liquefied residue characteristics. The conversion for the liquefaction in methanol, ethanol, and water increased with an increase in reaction temperature, while that...

  2. Engineering characterization of ground motion. Task II: Soil structure interaction effects on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Luco, J E; Wong, H L [Structural and Earthquake Engineering Consultants, Inc., Sierra Madre, CA (United States); Chang, C -Y; Power, M S; Idriss, I M [Woodward-Clyde Consultants, Walnut Creek, CA (United States)

    1986-08-01

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this research program sponsored by the U.S. Nuclear Regulatory Commission (USNRC) is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study, which is presented in Vol. 1 of NUREG/CR-3805, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in Vols. 2 through of NUREG/CR-3805 as follows: Vol. 2 effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects; Vol. 3 observational data on spatial variations of earthquake ground motions; Vol. 4 soil-structure interaction effects on structural response; and Vol. 5, summary based on Tasks I and II studies. This report presents the results of the Vol. 4 studies.

  3. About condition of soil ground at locations of the former Azgir nuclear test site

    International Nuclear Information System (INIS)

    Akhmetov, E.Z.; Adymov, Zh.I.; Ermatov, A.S.

    2003-01-01

    Full text: Soil condition after underground nuclear explosions at locations of the test sites is considered. The region is situated in the zone of northern deserts and characterized by prevalence of greyish-brown soils in conditions of sharply continental climate and presence of salt in soil-formative complex including tertiary clays, loess-like loam, loam sands and sands. There are small quantity of humus in such soil. During investigation of soil characteristics and ability of soil particles to form conglomerates, possessing of different properties, it is necessary to know both element and phase composition, determining, in the most extent, such physical and mechanical macro-characteristics as: density, stickiness, air and water penetrability, solubility, chemical resistance, granulometric set and others. Phase composition of soil samples can be, to a sufficient extent, determined by the X-ray diffractometry methods using ordinary X-ray experimental facilities. Phase composition of soil includes gypsum, quartz, calcium, potash feldspar hematite, kaolin, peach and mica in different quantities. Data on element composition of soil samples were obtained from the territory of technological locations of test site using the method of X-ray-fluorescent analysis. Granulometric composition of soil ground has been investigated using the methods of dry sieving and wet sieving for determination of radionuclide distribution in different fractions of soil particles. By the method of the dry sieving of soil ground samples there are taken place a sticking the small together of fine fractions and an adhesion of stuck-together particles to more large ones. Therefore, fine fractions cannot be separate completely at dry sieving. As distinct from the dry sieving an use of water jet in the sieving allows to overcome defects of the dry method and, by a sufficiently effective separation of granulometric fractions, to obtain more precise results of investigations of granulometric

  4. Ground cover influence on evaporation and stable water isotopes in soil water

    Science.gov (United States)

    Magdalena Warter, Maria; Jiménez-Rodríguez, Cesar D.; Coenders-Gerrits, Miriam; Teuling, Adriaan J. Ryan

    2017-04-01

    Forest ecosystems are characterized by complex structures which influence hydrological processes such as evaporation. The vertical stratification of the forest modifies the effect of the evaporation process due to the composition and local distribution of species within the forest. The evaluation of it will improve the understanding of evaporation in forest ecosystems. To determine the influence of forest understory on the fractionation front, four ground cover types were selected from the Speulderbos forest in the Netherlands. The native species of Thamariskmoss (Thuidium thamariscinum), Rough Stalked Feathermoss (Brachythecium rutabulum), and Haircapmoss (Polytrichum commune) as well as one type of litter made up of Douglas-Fir needles (Pseudotsuga menziesii) were used to analyse the rate of evaporation and changes on the isotopic concentration of the soil water on an in-situ basis in a controlled environment. Over a period of 4 weeks soil water content and atmospheric conditions were continuously measured, while the rainfall simulations were performed with different amounts and timings. The reference water added to the boxes keeps a stable composition along the trial period with a δ ^2H value of -42.59±1.15 \\permil} and δ 18O of -6.01±0.21 \\permil}. The evaporation front in the four ground covers is located between 5 and 10 cm depth and deuterium excess values are bigger than 5 \\permil. The litter layer of Douglas-Fir needles is the cover with higher fractionation in respect to the added water at 10 cm depth (δ ^2H: -29.79 \\permil), while the Haircapmoss keeps the lower fractionation rate at 5 cm and 10 cm (δ ^2H: -33.62 and δ ^2H: -35.34 \\permil). The differences showed by the soil water beneath the different ground covers depict the influence of ground cover on fractionation rates of the soil water, underlining the importance of the spatial heterogeneity of the evaporation front in the first 15 cm of soil.

  5. Instrumental neutron activation analysis of soil sample

    International Nuclear Information System (INIS)

    Abdul Khalik Haji Wood.

    1983-01-01

    This paper describes the analysis of soil samples collected from 5 different location around Sungai Lui, Kajang, Selangor, Malaysia. These sample were taken at 22-24 cm from the top of the ground and were analysed using the techniques of Instrumental Neutron Activation Analysis (INAA). The analysis on soil sample taken above 22-24 cm level were done in order to determine if there is any variation in elemental contents at different sampling levels. The results indicate a wide variation in the contents of the samples. About 30 elements have been analysed. The major ones are Na, I, Cl, Mg, Al, K, Ti, Ca and Fe. Trace elements analysed were Ba, Sc, V, Cr, Mn, Ga, As, Zn, Br, Rb, Co, Hf, Zr, Th, U, Sb, Cs, Ce, Sm, Eu, Tb, Dy, Yb, Lu and La. (author)

  6. Seismic response analysis of the deep saturated soil deposits in Shanghai

    Science.gov (United States)

    Huang, Yu; Ye, Weimin; Chen, Zhuchang

    2009-01-01

    The quaternary deposits in Shanghai are horizontal soil layers of thickness up to about 280 m in the urban area with an annual groundwater table between 0.5 and 0.7 m from the surface. The characteristics of deep saturated deposits may have important influences upon seismic response of the ground in Shanghai. Based on the Biot theory for porous media, the water-saturated soil deposits are modeled as a two-phase porous system consisting of solid and fluid phases, in this paper. A nonlinear constitutive model for predicting the seismic response of the ground is developed to describe the dynamic characters of the deep-saturated soil deposits in Shanghai. Subsequently, the seismic response of a typical site with 280 m deep soil layers, which is subjected to four base excitations (El Centro, Taft, Sunan, and Tangshan earthquakes), is analyzed in terms of an effective stress-based finite element method with the proposed constitutive model. Special emphasis is given to the computed results of accelerations, excess pore-water pressures, and settlements during the seismic excitations. It has been found that the analysis can capture fundamental aspects of the ground response and produce preliminary results for seismic assessment.

  7. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects.

    Science.gov (United States)

    Cao, Leichang; Zhang, Cheng; Chen, Huihui; Tsang, Daniel C W; Luo, Gang; Zhang, Shicheng; Chen, Jianmin

    2017-12-01

    Hydrothermal liquefaction has been widely applied to obtain bioenergy and high-value chemicals from biomass in the presence of a solvent at moderate to high temperature (200-550°C) and pressure (5-25MPa). This article summarizes and discusses the conversion of agricultural and forestry wastes by hydrothermal liquefaction. The history and development of hydrothermal liquefaction technology for lignocellulosic biomass are briefly introduced. The research status in hydrothermal liquefaction of agricultural and forestry wastes is critically reviewed, particularly for the effects of liquefaction conditions on bio-oil yield and the decomposition mechanisms of main components in biomass. The limitations of hydrothermal liquefaction of agricultural and forestry wastes are discussed, and future research priorities are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Intrinsic remediation of JP-4 fuel in soil and ground water

    International Nuclear Information System (INIS)

    Schmithorst, W.L. Jr.; Vardy, J.A.

    1995-01-01

    Intrinsic remediation methods were employed to remediate soil and ground water contaminated by JP-4 fuel at the United States Coast Guard (USCG) Support Center facility in Elizabeth City, North Carolina. By the time the release was discovered, non-aqueous phase JP-4 fuel was detected in ground water over an area of approximately 8,000 square feet. In addition, concentrations of dissolved BTEX in ground water exceeded 5,000 microg/L. Tight clays present in the upper two meters of the aquifer, underlain by highly transmissive sands, prevented remediation of the JP-4 by conventional treatment methods. Therefore, a system of air injection and air extraction wells were installed that simultaneously depressed the water table and extracted hydrocarbon vapors. The conceptual idea, developed by the EPA RS Kerr Environmental Laboratory (RSKERL) in Ada, Oklahoma, is to stimulate rapid intrinsic biodegradation of the JP-4 fuel compounds. Subsequent biorespiration measurements indicated that the fuel compounds were being rapidly biodegraded. Upon removal of the non aqueous JP-4 compounds, an investigation was conducted to determine if the aquifer had an adequate assimilative capacity to support natural aerobic and anaerobic biodegradation of the contaminants. Analysis of ground water samples collected using a cone penetrometer and a direct-push sampling device indicate a sufficient concentration of electron acceptors to support natural biodegradation of the JP-4 compounds

  9. Evaluation of stability of foundation ground during earthquake, 6

    International Nuclear Information System (INIS)

    Kanatani, Mamoru; Nishi, Koichi

    1988-01-01

    The aseismatic capability of nuclear power plants located on Quaternary grounds, which consist of dense sand or sandy gravel, is heavily dependent on the stability of foundation grounds during earthquakes. In order to investigate into the stability of ground more in detail, it is necessary to develop the nonlinear earthquake response analysis method which can simulate the inelastic behavior of soil. In this report, the newly developed nonlinear response analysis method based on the effective stress, the results of simulation using the results of vibration table test and centrifuge test, and the case studies on two-dimensional soil-structure interaction problems are described. Soil was regarded as the two-phase mixture composed of soil particle skeleton and pore water. In the equation of motion taking their interaction into account, the elastoplastic constitutive equation that can simulate the inelastic deformation behavior of soil at the time of repeated shearing in two or three-dimensional field was introduced, and the analysis code which successively traces the behavior of ground at the time of earthquakes using FEM was developed. (K.I.)

  10. Survey on development of brown coal liquefaction techniques; Kattan ekika gijutsu ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-09-01

    Described herein are results of literature survey on brown coal liquefaction reactions and elementary techniques. Liquefaction of brown coal in the presence of CO and steam, or CO, H{sub 2} and steam has been investigated. It is not clear by the literature survey whether it is superior to the normal process which uses hydrogen. Brown coal contains moisture at high contents, and the drying techniques are necessary to be developed for its liquefaction. The future coal liquefaction plant will be much larger than the past one, and there are a number of problems to be solved, such as those involved in the designs of large-sized high-pressure slurry pumps, heat exchangers and preheaters. It is also necessary to develop the materials of and production techniques for large reactors which are serviceable under severe conditions. The solid-liquid separation for liquefaction products involves a number of the elementary techniques characteristic of coal liquefaction processes, and needs many technological developments. The one-stage brown coal liquefaction process is compared with the two-stage process for the secondary hydrogenation of SCR, but no clear conclusions are reached. (NEDO)

  11. Studies of initial stage in coal liquefaction. Effect of decomposition of oxygen-functional groups on coal liquefaction; Ekika hanno no shoki katei ni kansuru kenkyu. 3. Gansanso kannoki no bunkai kyodo to ekika hanno eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Komeiji, A.; Kaneko, T.; Shimazaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    Pretreatment of brown coal in oil was conducted using 1-methyl naphthalene or mixture of tetralin and 1-methyl naphthalene as solvent at temperatures ranging from 300 to 430{degree}C under nitrogen atmosphere. Effects of the solvent properties on the structural change of oxygen-functional groups (OFG) and coal liquefaction were investigated by means of quantitative analysis of OFG and solid state {sup 13}C-NMR measurement. When hydrogen transfer from solvent was insufficient, it was suggested that brown coal molecules loose their hydrogen to be aromatized. While, at lower temperatures ranging from 300 to 350{degree}C, hydrogen contained in brown coal molecules was consumed for the stabilization of pyrolytic radicals, and the deterioration of liquefaction was not observed. When hydrogen transfer from solvent was insufficient at higher temperatures above 400{degree}C in nitrogen atmosphere during pretreatment in oil, crosslinking like benzofuran type was formed by dehydration condensation of hydroxyl group in brown coal, to deteriorate the liquefaction, remarkably. The addition of donor solvent like tetralin decreased the formation of crosslinking like benzofuran type, which suppressed the deterioration of liquefaction. 8 refs., 5 figs.

  12. Production of Advanced Biofuels via Liquefaction - Hydrothermal Liquefaction Reactor Design: April 5, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Knorr, D.; Lukas, J.; Schoen, P.

    2013-11-01

    This report provides detailed reactor designs and capital costs, and operating cost estimates for the hydrothermal liquefaction reactor system, used for biomass-to-biofuels conversion, under development at Pacific Northwest National Laboratory. Five cases were developed and the costs associated with all cases ranged from $22 MM/year - $47 MM/year.

  13. [Effect of ground mulch managements on soil bacterial community structure and diversity in the non-irrigated apple orchard in Weibei Loess Plateau].

    Science.gov (United States)

    Chen, Yuexing; Wen, Xiaoxia; Sun, Yulin; Zhang, Junli; Lin, Xiaoli; Liao, Yuncheng

    2015-07-04

    We studied the changes in soil bacterial communities induced by ground mulch managements at different apple growth periods. We adopted the denaturing gradient gel electrophoresis (DGGE) with PCR-amplified 16S rRNA fragments to determine soil bacterial community structure and diversity. Soil bacterial community structure with different ground mulch managements were significantly different. Both the mulch management strategies and apple growth periods affected the predominant groups and their abundance in soil bacterial communities. Grass mulch and cornstalk mulch treatments had higher bacterial diversity and richness than the control at young fruit period and fruit expanding period, whereas film mulch treatment had no significant difference compared with the control. During mature period, bacterial diversity in the control reached its maximum, which may be ascribed to the rapid growth and reproduction of the r-selection bacteria. The clustering and detrended correspondence analysis revealed that differences in soil bacterial communities were closely correlated to apple growth periods and ground mulch managements. Soil samples from the grass mulch and cornstalk mulch treatments clustered together while those mulched with plastic film treatment were similar to the control. The most abundant phylum in soil bacterial community was Proteobacteria followed by Bacteroidetes. Some other phyla were also detected, such as Acidobacteria, Firmicutes, Actinobacteria and Chloroflexi. Mulching with plant (Grass/Cornstalk) had great effects on soil bacterial community structure and enhanced the diversity while film mulch management had no significant effects.

  14. Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator

    Science.gov (United States)

    Chang, Ho-Myung; Ryu, Ki Nam; Baik, Jong Hoon

    2018-04-01

    A thermodynamic study is carried out for the design of hydrogen liquefaction systems with helium (He) or neon (Ne) Brayton refrigerator. This effort is motivated by our immediate goal to develop a small-capacity (100 L/h) liquefier for domestic use in Korea. Eight different cycles are proposed and their thermodynamic performance is investigated in comparison with the existing liquefaction systems. The proposed cycles include the standard and modified versions of He Brayton refrigerators whose lowest temperature is below 20 K. The Brayton refrigerator is in direct thermal contact with the hydrogen flow at atmospheric pressure from ambient-temperature gas to cryogenic liquid. The Linde-Hampson system pre-cooled by a Ne Brayton refrigerator is also considered. Full cycle analysis is performed with the real properties of fluids to estimate the figure of merit (FOM) under an optimized operation condition. It is concluded that He Brayton refrigerators are feasible for this small-scale liquefaction, because a reasonably high efficiency can be achieved with simple and safe (low-pressure) operation. The complete cycles with He Brayton refrigerator are presented for the development of a prototype, including the ortho-to-para conversion.

  15. Report for fiscal 1981 of Sunshine Program coal group. Basic research on Solvolysis liquefaction technology; 1981 nendo solvolysis ekika gijutsu no kiso kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Basic research is conducted on the Solvolysis liquefaction process for the purpose of producing from coal an ashless, low-sulfur, pollution-free liquid fuel. In the research on the Solvolysis liquefaction (1st stage liquefaction) of coal using a hydrogenation solvent, the Solvolysis liquefaction of coal is studied, for which a refined Solvolysis pitch containing coal substances and a hydride of solvent refined coal are used as Solvolysis liquefaction solvents for the 1st stage. In the research on the 1st stage liquefaction reaction conditions using a high-temperature closed process, two methods are employed. One is a method that uses a mini-pump type reactor in which a small hermetic container is submerged in a high-temperature solvent for rapid heating and the other is a method that uses a pipe type reactor in which coal slurry is caused to travel through a pipe heated to a high temperature. For the analysis of the 2nd stage liquefaction (hydrogenation) reaction conditions, the properties of the 2nd coal liquid, and the constitution of the 2nd coal liquid, and the for the research on the 1st stage liquefaction capacity, the hydrogenation of anthracene oil and solvent refined coal as recyclable solvent models is studied. (NEDO)

  16. Comparison of FeS, FeS + S and solid superacid catalytic properties for coal hydro-liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhicai Wang; Hengfu Shui; Dexiang Zhang; Jinsheng Gao [East China University of Science and Technology, Shanghai (China). College of Resource and Environment Engineering

    2007-03-15

    Catalyst plays an important role in direct coal liquefaction. This paper focuses on the catalytic behavior of a novel SO{sub 4}{sup 2-}/ZrO{sub 2} superacid catalyst in coal hydro-liquefaction. A series of hydro-liquefaction experiments were conducted under mild conditions - 400{sup o}C, 30 min and H{sub 2} initial pressure 4 MPa in a batch autoclave with a volume of 100 ml. The catalytic property of SO{sub 4}{sup 2-}/ZrO{sub 2} was compared with FeS and FeS + S by Shenhua coal. The liquefaction products catalyzed by different catalysts were analyzed by FTIR spectrum, {sup 1}H NMR spectrum and element analysis. In addition, the SO{sub 4}{sup 2-}/ZrO{sub 2} solid superacid was characterized. The results indicated that the SO{sub 4}{sup 2-}/ZrO{sub 2} solid superacid shows outstanding catalytic property for direct liquefaction of coal and gives the highest coal conversion and gas + oil yield compared to other two catalysts. The THF conversion and the extraction yield of CS{sub 2}/NMP mixed solvent of liquefied coal catalyzed with SO{sub 4}{sup 2-}/ZrO{sub 2} are 76.3%, daf and 81.2%, daf respectively, and the yield of gas + oil is 62.5%, daf under the condition used in this study. The pyrolysis of coal macromolecular clusters can be promoted by catalysts such as FeS, FeS + S and SO{sub 4}{sup 2-}/ZrO{sub 2}. There may be only the pyrolysis of volatile matter and the relaxation of the structure of coal macromolecular clusters in non-catalytic liquefaction at 400{sup o}C. Added sulfur in FeS can improve the catalytic activity of hydrogenation. SO{sub 4}{sup 2-}/ZrO{sub 2} is a notable catalyst in the study of coal direct liquefaction because it shows excellent catalytic activities for the pyrolysis and the hydrogenation. In addition, it has been found that the C-O bond is the most stable group in coal liquefaction reaction except for the covalent bond between carbon and carbon. 34 refs., 6 figs., 6 tabs.

  17. A new energy analysis tool for ground source heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Michopoulos, A.; Kyriakis, N. [Process Equipment Design Laboratory, Mechanical Engineering Department, Aristotle University of Thessaloniki, POB 487, 541 24 Thessaloniki (Greece)

    2009-09-15

    A new tool, suitable for energy analysis of vertical ground source heat pump systems, is presented. The tool is based on analytical equations describing the heat exchanged with the ground, developed in Matlab {sup registered} environment. The time step of the simulation can be freely chosen by the user (e.g. 1, 2 h etc.) and the calculation time required is very short. The heating and cooling loads of the building, at the afore mentioned time step, are needed as input, along with the thermophysical properties of the soil and of the ground heat exchanger, the operation characteristic curves of the system's heat pumps and the basic ground source heat exchanger dimensions. The results include the electricity consumption of the system and the heat absorbed from or rejected to the ground. The efficiency of the tool is verified through comparison with actual electricity consumption data collected from an existing large scale ground coupled heat pump installation over a three-year period. (author)

  18. Liquefaction of solid carbonaceous material with catalyst recycle

    Science.gov (United States)

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In the two stage liquefaction of a carbonaceous solid such as coal wherein coal is liquefied in a first stage in the presence of a liquefaction solvent and the first stage effluent is hydrogenated in the presence of a supported hydrogenation catalyst in a second stage, catalyst which has been previously employed in the second stage and comminuted to a particle size distribution equivalent to 100% passing through U.S. 100 Mesh, is passed to the first stage to improve the overall operation.

  19. Co-liquefaction of micro algae with coal. 2; Bisai sorui to sekitan no kyoekika hanno. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, C.; Matsui, T.; Otsuki, M.; Ikenaga, N.; Suzuki, T. [Kansai University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    For the removal and recycle of CO2, a global warming gas, utilization of photosynthesis by micro algae is investigated. Formed micro algae are decomposed into CO2, H2O and CH4 again, which does not result in the permanent fixation. For the effective utilization of these micro algae, creation of petroleum alternate energy was tried through the co-liquefaction of micro algae with coal. Were investigated influences of the reaction temperature during the co-liquefaction and influences of catalysts, such as Fe(CO)5-S, Ru(CO)12, and Mo(CO)6-S, which are effective for the coal liquefaction. Micro algae, such as chlorella, spirulina, and littorale, and Yallourn brown coal were tested. It was found that co-liquefaction of micro algae with coal can be successfully proceeded under the same conditions as the liquefaction of coal. The oil yield obtained from the co-liquefaction in the presence of Fe(CO)5-S, an effective catalyst for coal liquefaction, agreed appropriately with the arithmetical mean value from separate liquefaction of coal and micro algae. It was suggested that pyrrhotite, an active species for coal liquefaction, was sufficiently formed by increasing the addition of sulfur. 2 refs., 7 figs., 1 tab.

  20. Soil management system in hazelnut groves (Corylus sp. versus the presence of ground beetles (Coleoptera: Carabidae

    Directory of Open Access Journals (Sweden)

    Nietupski Mariusz

    2015-01-01

    Full Text Available Sustaining biodiversity as well as taking advantage of the natural environment’s resistance are the key elements which should be considered when designing integrated plans for the protection of hazelnut groves. An effort has been made in this study to analyse the impact of different soil cultivation methods in hazelnut groves, on the species composition and number of individuals in carabid assemblages (Coleoptera: Carabidae. Another aim was to determine which method of inter-row soil management had the least negative effect on assemblages of these beetles. Because of the type of habitat, the xerothermic species characteristic for southeastern Europe, i.e. Calathus ambiguus, Poecilus lepidus, Harpalus calceatus, and H. griseus, were the most numerous. The qualitative and quantitative analysis of the captured individuals implied that the optimal soil tillage system in young hazelnut groves is when soil is kept fallow with machines or chemicals, or when soil is covered with manure. The least favourable practice for the appearance of ground beetles of the Carabidae family is the use of polypropylene fabric, bark or sawdust, to cover soil

  1. Improved Ground Hydrology Calculations for Global Climate Models (GCMs): Soil Water Movement and Evapotranspiration.

    Science.gov (United States)

    Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.

    1988-09-01

    A physically based ground hydrology model is developed to improve the land-surface sensible and latent heat calculations in global climate models (GCMs). The processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff are explicitly included in the model. The amount of detail in the hydrologic calculations is restricted to a level appropriate for use in a GCM, but each of the aforementioned processes is modeled on the basis of the underlying physical principles. Data from the Goddard Institute for Space Studies (GISS) GCM are used as inputs for off-line tests of the ground hydrology model in four 8° × 10° regions (Brazil, Sahel, Sahara, and India). Soil and vegetation input parameters are calculated as area-weighted means over the 8° × 10° gridhox. This compositing procedure is tested by comparing resulting hydrological quantities to ground hydrology model calculations performed on the 1° × 1° cells which comprise the 8° × 10° gridbox. Results show that the compositing procedure works well except in the Sahel where lower soil water levels and a heterogeneous land surface produce more variability in hydrological quantities, indicating that a resolution better than 8° × 10° is needed for that region. Modeled annual and diurnal hydrological cycles compare well with observations for Brazil, where real world data are available. The sensitivity of the ground hydrology model to several of its input parameters was tested; it was found to be most sensitive to the fraction of land covered by vegetation and least sensitive to the soil hydraulic conductivity and matric potential.

  2. Monitoring soil moisture dynamics via ground-penetrating radar survey of agriculture fields after irrigation

    Science.gov (United States)

    Muro, G.

    2015-12-01

    It is possible to examine the quality of ground-penetrating radar (GPR) as a measure of soil moisture content in the shallow vadose zone, where roots are most abundant and water conservation best management practices are critical in active agricultural fields. By analyzing temporal samplings of 100 Mhz reflection profiles and common-midpoint (CMP) soundings over a full growing season, the variability of vertical soil moisture distribution directly after irrigation events are characterized throughout the lifecycle of a production crop. Reflection profiles produce high-resolution travel time data and summed results of CMP sounding data provide sampling depth estimates for the weak, but coherent reflections amid strong point scatterers. The high ratio of clay in the soil limits the resolution of downward propagation of infiltrating moisture after irrigation; synthetic data analysis compared against soil moisture lysimeter logs throughout the profile allow identification of the discrete soil moisture content variation in the measured GPR data. The nature of short duration irrigation events, evapotranspiration, and drainage behavior in relation to root depths observed in the GPR temporal data allow further examination and comparison with the variable saturation model HYDRUS-1D. After retrieving soil hydraulic properties derived from laboratory measured soil samples and simplified assumptions about boundary conditions, the project aims to achieve good agreement between simulated and measured soil moisture profiles without the need for excessive model calibration for GPR-derived soil moisture estimates in an agricultural setting.

  3. An Overview of Soil Models for Earthquake Response Analysis

    Directory of Open Access Journals (Sweden)

    Halida Yunita

    2015-01-01

    Full Text Available Earthquakes can damage thousands of buildings and infrastructure as well as cause the loss of thousands of lives. During an earthquake, the damage to buildings is mostly caused by the effect of local soil conditions. Depending on the soil type, the earthquake waves propagating from the epicenter to the ground surface will result in various behaviors of the soil. Several studies have been conducted to accurately obtain the soil response during an earthquake. The soil model used must be able to characterize the stress-strain behavior of the soil during the earthquake. This paper compares equivalent linear and nonlinear soil model responses. Analysis was performed on two soil types, Site Class D and Site Class E. An equivalent linear soil model leads to a constant value of shear modulus, while in a nonlinear soil model, the shear modulus changes constantly,depending on the stress level, and shows inelastic behavior. The results from a comparison of both soil models are displayed in the form of maximum acceleration profiles and stress-strain curves.

  4. Use of isotopically labeled fertilizer to trace nitrogen fertilizer contributions to surface, soil, and ground water

    Science.gov (United States)

    Wilkison, D.H.; Blevins, D.W.; Silva, S.R.

    2000-01-01

    The fate and transport of a single N fertilizer application through plants, soil, runoff, and the unsaturated and saturated zones was determined for four years at a field site under continuous corn (Zea mays L.) management. Claypan soils, which underlie the site, were hypothesized to restrict the movement of agrichemicals from the soil surface to ground water. However, N fertilizer moved rapidly through preferential flow paths in the soil and into the underlying glacial till aquifer. Most N transport occurred during the fall and winter when crops were not available to use excess N. Forty months after application, 33 percent of the fertilizer had been removed by grain harvests, 30 percent had been transpired to the atmosphere, and 33 percent had migrated to ground water. Although runoff volumes were 50 percent greater than infiltration, less than 2 percent of the fertilizer was lost to runoff. Small measured denitrification rates and large measured dissolved oxygen concentrations in ground water favor the long-term stability of NO3-1 in ground water. Successive fertilizer applications, in areas that lack the ability to moderate N concentrations through consumptive N reactions, risk the potential of N-saturated ecosystems.

  5. FY 1991 report on the bituminous coal liquefaction section; 1991 nendo rekiseitan ekikabukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    The paper reported activities of the bituminous coal liquefaction section in FY 1991. In the 1st bituminous coal liquefaction section meeting, report/discussion were made on the outline of the plan on the FY 1991 research using pilot plant and the support study of pilot plant. In the 2nd section meeting, report was made on 'How the development of coal liquefaction technology should be in the 21st century,' a report made by the joint section of bituminous coal/brown coal liquefaction. In the 3rd section meeting, report/discussion were made on the state of progress of the FY 1991 R and D and results. In the study using the bituminous coal liquefaction pilot plant, report was made on the outline of construction of a 150t/d pilot plant, study on the acquisition of material balance, analytical study of the data on liquefaction tower, testing survey on properties of coal slurry, and testing survey on slurry preheating furnace. In the support study of pilot plant, report was made on the study using 1t/d PUS, study on the development of the optimum coal refining technology and improvement in the distillate distribution, study of conditions for coal liquefaction and study of solvent hydrogenation catalyst. (NEDO)

  6. Ground-based forest harvesting effects on soil physical properties and Douglas-fir growth.

    Science.gov (United States)

    Adrian Ares; Thomas A. Terry; Richard E. Miller; Harry W. Anderson; Barry L. Flaming

    2005-01-01

    Soil properties and forest productivity can be affected by heavy equipment used for harvest and site preparation but these impacts vary greatly with site conditions and operational practices. We assessed the effects of ground-based logging on soil physical properties and subsequent Douglas-fir [Pseudotsuga menziesii (Mirb) Franco] growth on a highly...

  7. Improved ground hydrology calculations for global climate models (GCMs) - Soil water movement and evapotranspiration

    Science.gov (United States)

    Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.

    1988-01-01

    A physically based ground hydrology model is presented that includes the processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff. Data from the Goddard Institute for Space Studies GCM were used as inputs for off-line tests of the model in four 8 x 10 deg regions, including Brazil, Sahel, Sahara, and India. Soil and vegetation input parameters were caculated as area-weighted means over the 8 x 10 deg gridbox; the resulting hydrological quantities were compared to ground hydrology model calculations performed on the 1 x 1 deg cells which comprise the 8 x 10 deg gridbox. Results show that the compositing procedure worked well except in the Sahel, where low soil water levels and a heterogeneous land surface produce high variability in hydrological quantities; for that region, a resolution better than 8 x 10 deg is needed.

  8. ASSESSMENT OF THE CHEMICAL POLLUTION OF THE SOIL, GROUND AND BOTTOM SEDIMENTS AT KLEN GOLD AND SILVER DEPOSIT

    Directory of Open Access Journals (Sweden)

    Bryukhan' Fedor Fedorovich

    2012-10-01

    Full Text Available Currently, prospecting and design-related works are performed prior to the upcoming launch of mining operations at Klen gold and silver deposit in Chukot Autonomous District. The anthropogenic impact of the geological exploration in this intact territory has been produced since 1984. A considerable amount of borehole drilling, prospecting, road building, and temporary housing development has been performed. The engineering research, including ecological surveys, has been completed to assess the ecological impact of upcoming exploratory and mining operations at the deposit. Assessment of the geochemical condition of the landscape constituents, including the soil, ground and bottom sediments is of special importance in terms of their engineering protection and rational management of the natural environment. The above assessments were based on the field sampling made by «Sibgeoconsulting», CJSC (Krasnoyarsk and the laboratory research made by accredited laboratories of Federal State Unitary Geological Enterprise «Urangeolograzvedka» (Irkutsk and «Krasnoyarskgeologiya» (Krasnoyarsk. The analysis of the chemical pollution of soils, ground and bottom sediments is based on the examination of 30 samples. Peculiarities of the chemical composition of samples extracted at the deposit were identified. It has been discovered that pH values of the soil vary from 5.1 to 7.3. The concentration of metal in bottom sediments exceeds its concentration in the soil by far. Almost all irregular features of the sample water in the whole territory of the deposit are caused by the anthropogenic impact. In general, the metal content in soils, ground and bottom sediments within the territory of the deposit is slightly different from the regular clarke.

  9. Bioventing - a new twist on soil vapor remediation of the vadose zone and shallow ground water

    International Nuclear Information System (INIS)

    Yancheski, T.B.; McFarland, M.A.

    1992-01-01

    Bioventing, which is a combination of soil vapor remediation and bioremediation techniques, may be an innovative, cost-effective, and efficient remedial technology for addressing petroleum contamination in the vadose zone and shallow ground water. The objective of bioventing is to mobilize petroleum compounds from the soil and ground water into soil vapor using soil vapor extraction and injection technology, and to promote the migration of the soil vapor upward to the turf root zone for degradation by active near-surface microbiological activity. Promoting and maintaining optimum microbiological activity in the turf root rhizosphere is a key component to the bioventing technique. Preliminary ongoing USEPA bioventing pilot studies (Kampbell, 1991) have indicated that this technique is a promising remediation technology, although feasibility studies are not yet complete. However, based on the preliminary data, it appears that proper bioventing design and implementation will result in substantial reductions of petroleum compounds in the capillary zone and shallow ground water, complete degradation of petroleum compounds in the turf root zone, and no surface emissions. A bioventing system was installed at a site in southern Delaware with multiple leaking underground storage tanks in early 1992 to remediate vadose zone and shallow ground-water contaminated by petroleum compounds. The system consists of a series of soil vapor extraction and soil vapor/atmospheric air injection points placed in various contamination areas and a central core remediation area (a large grassy plot). This system was chosen for this site because it was least costly to implement and operate as compared to other remedial alternatives (soil vapor extraction with carbon or catalytic oxidation of off-gas treatment, insitu bioremediation, etc.), and results in the generation of no additional wastes

  10. Report on the FY 1998 results of the New Sunshine Project (B version). Development of coal liquefaction technology (Development of base technology of liquefaction (Project on internationalization of coal liquefaction technology)); 1998 nendo sekitan ekika gijutsu kaihatsu seika hokokusho (B ban). Ekika kiban gijutsu no kaihatsu (sekitan ekika gijutsu no kokusaika jigyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    In 1994, a memorandum on the research cooperation was agreed between NEDO and BPPT (The Agency for the Assessment and Application Technology) in Indonesia, based on the request for the coal liquefaction technology cooperation from BPPT. It includes the following items: conference for professionals to be held, invitation and training of Indonesian engineers, activity for joint field survey and potential survey of location of coal liquefaction commercial plant. Further in 1997, the secondary memorandum was concluded for the potential survey for securing the hydrogen required for coal liquefaction by coal gasification. The survey was summarized as the potential survey for location of coal liquefaction. In the testing study for improving economical efficiency of liquefaction process, it was made clear that the higher the Fe content of Banko coal is, the higher the reaction of liquefaction is, and that Fe compounds in coal show catalysis. In the Soroako area in Sulawesi island, there are the nickel mine run by PT. Inco. Soroako limonite is promising as catalyst material for commercial-scale coal liquefaction. In the gasification method, the plant construction cost increases, but the production amount of coal-derived liquid can be increased. That is more profitable than the production of hydrogen from natural gas. (NEDO)

  11. A spotlight on liquefaction: evidence from clinical settings and experimental models in tuberculosis.

    Science.gov (United States)

    Cardona, Pere-Joan

    2011-01-01

    Liquefaction is one of the most intriguing aspects of human tuberculosis. It is a major cause of the transition from the infection to active disease (tuberculosis, TB) as well as the transmission of M. tuberculosis to other persons. This paper reviews the natural history of liquefaction in humans from a pathological and radiological point of view and discusses how the experimental models available can be used to address the topic of liquefaction and cavity formation. Different concepts that have been related to liquefaction, from the influence of immune response to mechanical factors, are reviewed. Synchronic necrosis or apoptosis of infected macrophages in a close area, together with an ineffective fibrosis, appears to be clue in this process, in which macrophages, the immune response, and bacillary load interact usually in a particular scenario: the upper lobes of the lung. The summary would be that even if being a stochastic effect, liquefaction would result if the organization of the intragranulomatous necrosis (by means of fibrosis) would be disturbed.

  12. Soil Thermal Balance Analysis for a Ground Source Heat Pump System in a Hot-Summer and Cold-Winter Region

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2018-05-01

    Full Text Available As a renewable and high energy efficiency technology providing air conditioning and domestic hot water, the ground source heat pump system (GSHPS has been extensively used worldwide in recent years. Compared with conventional systems, GSHPSs with heat recovery reject less heat into the soil and extract more heat from it, which can help reduce soil thermal imbalance in hot-summer and cold-winter regions. In this paper, conventional GSHPS, and GSHPS with different heat recovery ratios, in a typical city were compared based on thermal imbalance ratios, average soil temperatures and soil temperature increases. The transient system simulation software was used to simulate the operation performance of GSHPS. The thermal imbalance ratio and soil temperature decreased with increasing heat recovery ratio. After 20 years of operation, the soil thermal imbalance ratios of the GSHPS were 29.2%, 21.1%, 16%, and 5.2%, and the soil temperature rises were 8.78 °C, 5.25 °C, 3.44 °C, and 0.34 °C, while the heat recovery ratios were 0, 18%, 30% and 53%, respectively. Consequently, a GSHPS with heat recovery is a potentially efficient and economical approach for buildings in hot-summer and cold-winter regions.

  13. Site Response Analysis Using DeepSoil: Case Study of Bangka Site, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Iswanto, Eko Rudi; Yee, Eric [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    Indonesia government declared through Act No. 17 year 2007 on the National Long-Term Development Plant Year 2005-2025 and Presidential Decree No. 5 year 2006 on the National Energy Policy (Indonesia 2007; Indonesia 2006), that nuclear energy is stated as a part of the national energy system. In order to undertake the above national policy, National Nuclear Energy Agency of Indonesia, as the promotor for the utilization of nuclear energy will conduct site study, which is a part of infrastructure preparation for NPP construction. Thorough preparation and steps are needed to operate an NPP and it takes between 10 to 15 years from the preliminary study (site selection, financial study, etc.) up to project implementation (manufacturing, construction, commissioning). During project implementation, it is necessary to prepare various documents relevant for permit application such as Safety Evaluation Report for site permit, Preliminary Safety Analysis Report and Environment Impact Assessment Report for construction permit. Considering the continuously increasing electricity energy demand, it is necessary to prepare for alternative NPP sites. The safety requirements of NPP's are stringent; amongst the various requirements is the ability to safely shut down in the wake of a possible earthquake. Ground response analysis of a potential site therefore needs to be carried out, parameter that affect the resistance of an NPP to earthquakes such as peak strain profiles is analysed. The objective of this paper is to analyse the ground response of the selected site for a NPP, using The Mw 7.9 in Sikuai Island, West Sumatra on September 12, 2007 as present input motion. This analysis will be carried out using a ground response analysis program, DeepSoil. In addition to this, an attempt was made to define the site specific input motion characteristics of the selected site for use in DeepSoil (DeepSoil 5.0). A site investigation at the WB site was performed primarily on the PS

  14. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities.

    Science.gov (United States)

    Legay, N; Baxendale, C; Grigulis, K; Krainer, U; Kastl, E; Schloter, M; Bardgett, R D; Arnoldi, C; Bahn, M; Dumont, M; Poly, F; Pommier, T; Clément, J C; Lavorel, S

    2014-10-01

    Abiotic properties of soil are known to be major drivers of the microbial community within it. Our understanding of how soil microbial properties are related to the functional structure and diversity of plant communities, however, is limited and largely restricted to above-ground plant traits, with the role of below-ground traits being poorly understood. This study investigated the relative contributions of soil abiotic properties and plant traits, both above-ground and below-ground, to variations in microbial processes involved in grassland nitrogen turnover. In mountain grasslands distributed across three European sites, a correlative approach was used to examine the role of a large range of plant functional traits and soil abiotic factors on microbial variables, including gene abundance of nitrifiers and denitrifiers and their potential activities. Direct effects of soil abiotic parameters were found to have the most significant influence on the microbial groups investigated. Indirect pathways via plant functional traits contributed substantially to explaining the relative abundance of fungi and bacteria and gene abundances of the investigated microbial communities, while they explained little of the variance in microbial activities. Gene abundances of nitrifiers and denitrifiers were most strongly related to below-ground plant traits, suggesting that they were the most relevant traits for explaining variation in community structure and abundances of soil microbes involved in nitrification and denitrification. The results suggest that consideration of plant traits, and especially below-ground traits, increases our ability to describe variation in the abundances and the functional characteristics of microbial communities in grassland soils. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Effect of pre-swelling of coal on its solvent extraction and liquefaction properties

    Energy Technology Data Exchange (ETDEWEB)

    Hengfu Shui; Zhicai Wang; Meixia Cao [Anhui University of Technology, Ma' anshan (China). School of Chemistry and Chemical Engineering

    2008-10-15

    Effects of pre-swelling of coal on solvent extraction and liquefaction properties were studied with Shenhua coal. It was found that pre-swelling treatments of the coal in three solvents, i.e., toluene (TOL), N-methyl-2-pyrrolidinone (NMP) and tetralin (THN) increased its extraction yield and liquefaction conversion, and differed the liquefied product distributions. The pre-swollen coals after removing the swelling solvents showed increased conversion in liquefaction compared with that of the swollen coals in the presence of swelling solvents. It was also found that the yields of (oil + gas) in liquefaction of the pre-swollen coals with NMP and TOL dramatically decreased in the presence of swelling solvent. TG and FTIR analyses of the raw coal, the swollen coals and the liquefied products were carried out in order to investigate the mechanism governing the effects of pre-swelling treatment on coal extraction and liquefaction. The results showed that the swelling pre-treatment could disrupt some non-covalent interactions of the coal molecules, relax its network structure and loosened the coal structure. It would thus benefit diffusion of a hydrogen donor solvent into the coal structure during liquefaction, and also enhance the hydrogen donating ability of the hydrogen-rich species derived from the coal. 21 refs., 4 figs., 3 tabs.

  16. Liquefaction of Lignocellulose in Fractionated Light Bio-Oil: Proof of Concept and Techno-Economic Assessment

    NARCIS (Netherlands)

    Kumar, S.; Lange, Jean Paul; van Rossum, G.; Kersten, Sascha R.A.

    2015-01-01

    The direct thermal liquefaction of lignocellulose can provide a biocrude that could be used as a precursor for biofuels. However, earlier attempts to use the whole reactor effluent as a liquefaction medium, by recycling it to the liquefaction reactor, were hampered by the buildup of heavy products.

  17. Fiscal 1989 report. Coal liquefaction committee; 1989 nendo sekitan ekika iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    The committee in this fiscal year had its 1st meeting in June 1989 and 2nd meeting in March 1990, when fiscal 1989 research and development programs and fiscal 1989 research and development results, etc., were reported and discussed. The operating status of the 1 ton/day PSU (process supporting unit) for bituminous coal liquefaction was reported and discussed. The report included its 1st operation for the demonstration of a long-term stable run under standard conditions that continued for trouble-free 50 days, the 2nd operation for the investigation of the effect of liquefaction reaction temperature in which the liquefaction yield recorded the maximum at 450 degrees C with the collection of coal oils of 55 wt.% on the average, and the 3rd operation for the investigation of the effects of liquefaction reaction pressure and catalyst injection size whose details were being analyzed. Reported in relation with the brown coal liquefaction pilot plant was a comprehensive operation of a series of 1st hydrogenation, solvent deashing, and 2nd hydrogenation processes completed after a continuous operation of 460 hours establishing a total operating time of 1050 hours. (NEDO)

  18. Coal liquefaction: A research and development needs assessment: Final report, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, H.D.; Burke, F.P.; Chao, K.C.; Davis, B.H.; Gorbaty, M.L.; Klier, K.; Kruse, C.W.; Larsen, J.W.; Lumpkin, R.E.; McIlwain, M.E.; Wender, I.; Stewart, N.

    1989-03-01

    Volume II of this report on an assessment of research needs for coal liquefaction contains reviews of the five liquefaction technologies---direct, indirect, pyrolysis, coprocessing, and bioconversion. These reviews are not meant to be encyclopedic; several outstanding reviews of liquefaction have appeared in recent years and the reader is referred to these whenever applicable. Instead, these chapters contain reviews of selected topics that serve to support the panel's recommendations or to illustrate recent accomplishments, work in progress, or areas of major research interest. At the beginning of each of these chapters is a brief introduction and a summary of the most important research recommendations brought out during the panel discussions and supported by the material presented in the review. A review of liquefaction developments outside the US is included. 594 refs., 100 figs., 60 tabs.

  19. Regional analysis of ground and above-ground climate

    Science.gov (United States)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of Earth tempering as a practice and of specific Earth sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground are included. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 20 locations in the United States.

  20. Regional analysis of ground and above-ground climate

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  1. The sequence of sediment behaviour during wave-induced liquefaction

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Hatipoglu, Figen; Fredsøe, Jørgen

    2006-01-01

    to be in agreement with recent centrifuge wave-tank experiments. As for the final stage of the sequence of processes (formation of ripples), the ripple steepness (normalized with the angle of repose) for sediment with liquefaction history is found to be the same as that in sediment with no liquefaction history.......This paper presents the results of an experimental investigation of the complete sequence of sediment behaviour beneath progressive waves. The sediment was silty with d(50) = 0.060 mm. Two kinds of measurements were carried out: pore-water pressure measurements (across the sediment depth...... of liquefaction and compaction fronts in the sediment and (iii) the characteristics of the orbital motion of the liquefied sediment including the motion of the interface between the water body and the sediment. The ranges of the various quantities in the tests were: wave height, H = 9-17 cm, wave period, T = 1...

  2. Hydrothermal liquefaction of Spirulina and Nannochloropsis Salina under subcritical and supercritical water conditions

    DEFF Research Database (Denmark)

    Toor, Saqib; Reddy, H.; Deng, S.

    2013-01-01

    residue, and recycling process water for algae cultivation. GC-MS, elemental analyzer, FT-IR, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-crude yield of 46% was obtained...

  3. A dual phased approach for bioremediation of petroleum contaminated soil and ground water

    International Nuclear Information System (INIS)

    Kennel, N.D.; Maher, A.; Buckallew, B.

    1994-01-01

    A case study will be presented to demonstrate an effective and timely method of site remediation which yields complete contaminant destruction rather than the contaminant transfer that traditional ground water extraction and treatment techniques result in. By utilizing bioremediation at this site, the client was able to completely degrade the contamination beneath the property, and in the process avoid future liability from transfer of the contamination to another party (i.e. landfill) or phase (i.e. liquid to vapor through air stripping). The provisions of a real estate transaction involving a former service station site in Central Iowa stipulated that the site be remediated prior to title transfer. Previous Environmental Investigative activities revealed significant soil and ground water contamination resulting from over 50 years of diesel and gasoline fuel storage and dispensing operations at the site. Microbial Environmental Services, Inc. (MES) utilized a dual phased bioremediation approach to meet regulatory clean-up guidelines in order for a timely property transfer to occur. To facilitate and expedite ground water remediation, contaminated soil was excavated and remediated via Advanced Biological Surface Treatment (ABST) techniques. ABST techniques are utilized by MES to treat excavated soil in closed cell to control emissions and treatment conditions. Following contaminant source removal, ground water was extracted and treated in a submerged, fixed film, flow through 1,000 gallon fixed film bioreactor at a rate of 2.5 gallons per minute

  4. Study on hydrogen transfer in coal liquefaction by tritium and carbon-14 tracers

    International Nuclear Information System (INIS)

    Nitoh, Osamu; Kabe, Toshiaki; Kabe, Yaeko.

    1985-01-01

    For the analysis of mechanism of hydrogenation and cracking of coal, the liquefaction of Taiheiyo coal using tritium labeled gaseous hydrogen and tritium labeled tetralin with small amounts of carbon-14 labeled naphthalene has been studied. Taiheiyo coal(25g) was thermally decomposed in tetralin or naphthalene solvent(75g) at 400--440 0 C under the initial hydrogen pressure of 5.9MPa for 30min with Ni-Mo-Al 2 O 3 catalyst(0--5g). The reaction mixture in an autoclave was separated by filtration, distillation and solvent extraction. Produced gas, oils and the solvent were analyzed by gas chromatography. The tritium and carbon-14 contents of separated reaction products were measured with a liquid scintilation counter to study the hydrogen transfer mechanism. The distribution of reaction products and the amount of hydrogen transfer from gas or solvent to the products were also determined. In hydrogen donor solvent such as tetralin, the coal liquefaction yield was independent from the catalyst, but the catalyst was effective in hydrocracking of preasphaltene and asphaltene. In naphthalene solvent, the coal liquefaction reaction hardly occured in the absence of the catalyst, because hydrogen transfer from both the solvent and gaseous hydrogen was scarce. Tritium distribution in the reaction products showed that complicated hydrogen exchange reactions between gaseous hydrogen, coal liquids and solvent came out by the presence of coal liquids and catalyst. The very small amounts of carbon-14 transferred to the liquefaction products showed that carbon exchange or transfer between solvent and coal did not take place. (author)

  5. Japan`s New Sunshine Project. 20. 1995 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The paper described a summary of the 1995 study on coal liquefaction and gasification under the New Sunshine Project. As for coal liquefaction, a study was made of liquefaction characteristics and catalysts of various coals. Also studied were liquefaction conditions for quality improvement of liquefaction products, an evaluation method of quality of coal liquid, and a utilization method of coal liquid. In order to prevent carbonization and realize effective liquefaction, a study was conducted for elucidation of the reaction mechanism of high pressure hydrogenation. In a 150t/d pilot plant using hydrogen transfer hydrogenation solvents, the NEDOL method was studied using various catalysts and kinds of coals. This is a step prior to data acquisition for engineering, actual construction of equipment and operation. A 1t/d process supporting unit is a unit to support it. The unit conducts studies on slurry letdown valves and synthetic iron sulfide catalysts, screening of Chinese coals, etc. As to coal gasification, the paper added to the basic research the combined cycle power generation using entrained flow coal gasification for improvement of thermal efficiency and environmental acceptability and the HYCOL method for hydrogen production. 68 refs., 40 figs.

  6. Liquefaction Hazard Maps for Three Earthquake Scenarios for the Communities of San Jose, Campbell, Cupertino, Los Altos, Los Gatos, Milpitas, Mountain View, Palo Alto, Santa Clara, Saratoga, and Sunnyvale, Northern Santa Clara County, California

    Science.gov (United States)

    Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.

    2008-01-01

    Maps showing the probability of surface manifestations of liquefaction in the northern Santa Clara Valley were prepared with liquefaction probability curves. The area includes the communities of San Jose, Campbell, Cupertino, Los Altos, Los Gatos Milpitas, Mountain View, Palo Alto, Santa Clara, Saratoga, and Sunnyvale. The probability curves were based on complementary cumulative frequency distributions of the liquefaction potential index (LPI) for surficial geologic units in the study area. LPI values were computed with extensive cone penetration test soundings. Maps were developed for three earthquake scenarios, an M7.8 on the San Andreas Fault comparable to the 1906 event, an M6.7 on the Hayward Fault comparable to the 1868 event, and an M6.9 on the Calaveras Fault. Ground motions were estimated with the Boore and Atkinson (2008) attenuation relation. Liquefaction is predicted for all three events in young Holocene levee deposits along the major creeks. Liquefaction probabilities are highest for the M7.8 earthquake, ranging from 0.33 to 0.37 if a 1.5-m deep water table is assumed, and 0.10 to 0.14 if a 5-m deep water table is assumed. Liquefaction probabilities of the other surficial geologic units are less than 0.05. Probabilities for the scenario earthquakes are generally consistent with observations during historical earthquakes.

  7. Mineral catalysis of oil producing reactions in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Shridharani, K.G.

    1983-01-01

    This work was concerned primarily with the development of a relatively inexpensive, readily available, high activity catalyst that can be used as a disposable catalyst in coal liquefaction processes. For a fair evaluation of the developmental mineral catalyst (presulfided iron oxide), it was necessary to determine at different stages of this work, whether catalyst inhibition, deactivation or activity was the limiting factor in coal liquefaction catalysis. First, different routes were explored to prepare a high hydrogenation activity, iron-based catalyst. Naphthalene hydrogenation was used as a model reaction to rate the hydrogenation activities of different additives. Presulfiding of iron oxide with H/sub 2/S, under controlled conditions, rendered the highest hydrogenation activity mineral catalyst, which had a hydrogenation activity even greater than that of commercial CoMo/Al/sub 2/O/sub 3/ catalyst sulfided with creosote oil and hydrogen. Sulfiding of CoMo/Al/sub 2/O/sub 3/ catalyst with H/sub 2/S remarkably improved its initial hydrogenation activity. Second, the catalyst inhibition and deactivation during liquefaction were studied. Liquefaction-process solvents contain a number of compounds that can either deactivate or inhibit the hydrogenation activity of a catalyst. Finally, the hydrocracking activity of the presulfided iron oxide catalyst was compared with that of commercial catalysts, CoMo/Al/sub 2/O/sub 3/ and low alumina FCC catalyst.

  8. A Spotlight on Liquefaction: Evidence from Clinical Settings and Experimental Models in Tuberculosis

    Directory of Open Access Journals (Sweden)

    Pere-Joan Cardona

    2011-01-01

    Full Text Available Liquefaction is one of the most intriguing aspects of human tuberculosis. It is a major cause of the transition from the infection to active disease (tuberculosis, TB as well as the transmission of M. tuberculosis to other persons. This paper reviews the natural history of liquefaction in humans from a pathological and radiological point of view and discusses how the experimental models available can be used to address the topic of liquefaction and cavity formation. Different concepts that have been related to liquefaction, from the influence of immune response to mechanical factors, are reviewed. Synchronic necrosis or apoptosis of infected macrophages in a close area, together with an ineffective fibrosis, appears to be clue in this process, in which macrophages, the immune response, and bacillary load interact usually in a particular scenario: the upper lobes of the lung. The summary would be that even if being a stochastic effect, liquefaction would result if the organization of the intragranulomatous necrosis (by means of fibrosis would be disturbed.

  9. Earthquake analysis of structures including structure-soil interaction by a substructure method

    International Nuclear Information System (INIS)

    Chopra, A.K.; Guttierrez, J.A.

    1977-01-01

    A general substructure method for analysis of response of nuclear power plant structures to earthquake ground motion, including the effects of structure-soil interaction, is summarized. The method is applicable to complex structures idealized as finite element systems and the soil region treated as either a continuum, for example as a viscoelastic halfspace, or idealized as a finite element system. The halfspace idealization permits reliable analysis for sites where essentially similar soils extend to large depths and there is no rigid boundary such as soil-rock interface. For sites where layers of soft soil are underlain by rock at shallow depth, finite element idealization of the soil region is appropriate; in this case, the direct and substructure methods would lead to equivalent results but the latter provides the better alternative. Treating the free field motion directly as the earthquake input in the substructure method eliminates the deconvolution calculations and the related assumption -regarding type and direction of earthquake waves- required in the direct method. The substructure method is computationally efficient because the two substructures-the structure and the soil region- are analyzed separately; and, more important, it permits taking advantage of the important feature that response to earthquake ground motion is essentially contained in the lower few natural modes of vibration of the structure on fixed base. For sites where essentially similar soils extend to large depths and there is no obvious rigid boundary such as a soil-rock interface, numerical results for earthquake response of a nuclear reactor structure are presented to demonstrate that the commonly used finite element method may lead to unacceptable errors; but the substructure method leads to reliable results

  10. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  11. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host-parasite interactions.

    Science.gov (United States)

    Tao, Leiling; Gowler, Camden D; Ahmad, Aamina; Hunter, Mark D; de Roode, Jacobus C

    2015-10-22

    Host-parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host-parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host-parasite systems. © 2015 The Author(s).

  12. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host–parasite interactions

    Science.gov (United States)

    Tao, Leiling; Gowler, Camden D.; Ahmad, Aamina; Hunter, Mark D.; de Roode, Jacobus C.

    2015-01-01

    Host–parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host–parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host–parasite systems. PMID:26468247

  13. Respiration testing for bioventing and biosparging remediation of petroleum contaminated soil and ground water

    International Nuclear Information System (INIS)

    Gray, A.L.; Brown, A.; Moore, B.J.; Payne, R.E.

    1996-01-01

    Respiration tests were performed to measure the effect of subsurface aeration on the biodegradation rates of petroleum hydrocarbon contamination in vadose zone soils (bioventing) and ground water (biosparging). The aerobic biodegradation of petroleum contamination is typically limited by the absence of oxygen in the soil and ground water. Therefore, the goal of these bioremediation technologies is to increase the oxygen concentration in the subsurface and thereby enhance the natural aerobic biodegradation of the organic contamination. One case study for biosparging bioremediation testing is presented. At this site atmospheric air was injected into the ground water to increase the dissolved oxygen concentration in the ground water surrounding a well, and to aerate the smear zone above the ground water table. Aeration flow rates of 3 to 8 cfm (0.09 to 0.23 m 3 /min) were sufficient to increase the dissolved oxygen concentration. Petroleum hydrocarbon biodegradation rates of 32 to 47 microg/l/hour were calculated based on measurements of dissolved oxygen concentration in ground water. The results of this test have demonstrated that biosparging enhances the biodegradation of petroleum hydrocarbons, but the results as they apply to remediation are not known. Two case studies for bioventing respiration testing are presented

  14. Subtask 3.3 - Feasibility of Direct Coal Liquefaction in the Modern Economic Climate

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin Oster; Joshua Strege; Marc Kurz; Anthony Snyder; Melanie Jensen

    2009-06-15

    Coal liquefaction provides an alternative to petroleum for the production of liquid hydrocarbon-based fuels. There are two main processes to liquefy coal: direct coal liquefaction (DCL) and indirect coal liquefaction (ICL). Because ICL has been demonstrated to a greater extent than DCL, ICL may be viewed as the lower-risk option when it comes to building a coal liquefaction facility. However, a closer look, based on conversion efficiencies and economics, is necessary to determine the optimal technology. This report summarizes historical DCL efforts in the United States, describes the technical challenges facing DCL, overviews Shenhua's current DCL project in China, provides a DCL conceptual cost estimate based on a literature review, and compares the carbon dioxide emissions from a DCL facility to those from an ICL facility.

  15. Effects of surface applications of biosolids on soil, crops, ground water, and streambed sediment near Deer Trail, Colorado, 1999-2003

    Science.gov (United States)

    Yager, Tracy J.B.; Smith, David B.; Crock, James G.

    2004-01-01

    The U.S. Geological Survey, in cooperation with Metro Wastewater Reclamation District and North Kiowa Bijou Groundwater Management District, studied natural geochemical effects and the effects of biosolids applications to the Metro Wastewater Reclamation District properties near Deer Trail, Colorado, during 1999 through 2003 because of public concern about potential contamination of soil, crops, ground water, and surface water from biosolids applications. Parameters analyzed for each monitoring component included arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc (the nine trace elements regulated by Colorado for biosolids), gross alpha and gross beta radioactivity, and plutonium, as well as other parameters. Concentrations of the nine regulated trace elements in biosolids were relatively uniform and did not exceed applicable regulatory standards. All plutonium concentrations in biosolids were below the minimum detectable level and were near zero. The most soluble elements in biosolids were arsenic, molybdenum, nickel, phosphorus, and selenium. Elevated concentrations of bismuth, mercury, phosphorus, and silver would be the most likely inorganic biosolids signature to indicate that soil or streambed sediment has been affected by biosolids. Molybdenum and tungsten, and to a lesser degree antimony, cadmium, cobalt, copper, mercury, nickel, phosphorus, and selenium, would be the most likely inorganic 'biosolids signature' to indicate ground water or surface water has been affected by biosolids. Soil data indicate that biosolids have had no measurable effect on the concentration of the constituents monitored. Arsenic concentrations in soil of both Arapahoe and Elbert County monitoring sites (like soil from all parts of Colorado) exceed the Colorado soil remediation objectives and soil cleanup standards, which were determined by back-calculating a soil concentration equivalent to a one-in-a-million cumulative cancer risk. Lead concentrations

  16. In situ remediation of Jet A in soil and ground water by high vacuum, dual phase extraction

    International Nuclear Information System (INIS)

    Kirshner, M.; Pressly, N.C.; Roth, R.J.

    1996-01-01

    This report summarizes the initial results of subsurface remediation at Terminal 1, Kennedy International Airport, to remediate soil and ground water contaminated with Jet A fuel. The project was driven and constrained by the construction schedule of a major new terminal at the facility. The remediation system used a combination of ground water pumping, air injection, and soil vapor extraction. In the first five months of operation, the combined processes of dewatering, volatilization, and biodegradation removed a total of 36,689 pounds of total volatile and semivolatile organic jet fuel hydrocarbons from subsurface soil and ground water. The results of this case study have shown that 62% of the removal resulted from biodegradation, 27% occurred as a result of liquid removal, and 11% resulted from the extraction of volatile organic compounds (VOCs)

  17. Dynamics And Remediation Of Fine Textured Soils And Ground Water Contaminated With Salts And Chlorinated Organic Compounds

    Science.gov (United States)

    Murata, Alison; Naeth, M. Anne

    2017-04-01

    calcium nitrate amendment. Results show all factors and interactions were significant. Leachate electrical conductivity was measured for five soils from two depth intervals with or without calcium nitrate amendment for eight sequential pore volumes. Results show highest electrical conductivity for the initial pore volume and decreasing electrical conductivities for subsequent pore volumes. Laboratory microcosm experiments are being used to assess anaerobic biodegradation as a potential treatment for chloroform contamination in fine textured soils and ground water. The first experiment investigates the bioremediation potential for indigenous microorganisms using acetate, lactate, canola oil, nitrate, and sulfate as carbon source or terminal electron acceptor amendments. The second experiment investigates the bioremediation potential for microorganisms from a secondary contaminated site which could be used as a microbial inoculation source. The same amendments except lactate were used. Headspace chloroform analysis results do not indicate the occurrence of biodegradation in any treatment meaning that bioremediation may not be a viable option. Results from this research will be used to conduct a risk assessment for the site incorporating site and contaminant characteristics. A management and remediation plan will be developed so the land can be safely used and the university's lease can be terminated. The research will contribute to our knowledge on remediation with contaminant mixtures and fine textured soils.

  18. Research on mechanism of and catalysts for extraction liquefaction of coal using coal-based solvents; Sekitankei yozai ni yoru sekitan no chushutsu ekika kiko to shokubai no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-01

    Papers of Professor Yoshio Kamiya of Tokyo University are compiled into this report. The list of the papers includes (1) Synthesis of heavy fuel oils from coal; (2) Research and development of coal liquefaction; (3) Dissolution reaction of coal by hydrogen-donating aromatic solvents (I); (4) Effect of hydrogen-donor solvent on the liquefaction of coal; (5) Recent studies on the chemical structure of solvent refined coal; (6) Dissolution reaction of coal by hydrogen-donating aromatic solvents (II); (7) Future of coal as energy material; (8), (9), (10) same as (6) in the subject discussed; (11) Recent studies on coal liquefaction catalysts; (12) Environmental problems and drain treatment to accompany processes of converting fossil resources into fuels; (13) Chemistry of coal oxidation; (14) Fractionation and analysis of solvent refined coal by gel permeation chromatography; (15) Current state of research and development of coal liquefaction; (16) Properties and components of coal oils from coal liquefaction processes under development; (17) Solvent effect of coal derived aromatic compounds on the liquefaction of Akabira coal; (18) Chemistry of coal liquefaction; (19) Research and development of coal liquefaction in the U.S.; (20) Thermal treatment of coal-related aromatic ethers in tetralin solution; (21) Recent technology of utilizing heavy carbon resources; (22) Chemical properties and reactivity of coal; (23) Current state and future of development of coal liquefaction processes; and (24) Development of overseas coal liquefaction projects. (NEDO)

  19. Latent hazard related to a hydrogen liquefaction installation

    International Nuclear Information System (INIS)

    Spoendlin, R.

    1961-01-01

    In this note, the author reports an attempt of analysis of hazards which could be related to a hydrogen liquefaction installation in order to identify the most appropriate safety measures. In order to do so, experiments have been performed on electrostatic charges born by solid crystals in liquid hydrogen, and explosion tests have been performed on a mixture of solid oxygen and liquid hydrogen. Moreover, the author tried to analyse accidents which occurred in this field by performing a survey among scientists working in laboratories in different countries

  20. Direct liquefaction of plastics and coprocessing of coal with plastics

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Feng, Z.; Mahajan, V. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  1. Applicability of soil-structure interaction analysis methods for earthquake loadings (V)

    International Nuclear Information System (INIS)

    Chang, S. P.; Ko, H. M.; Kim, J. K.; Yoon, J. Y.; Chin, B. M.; Yang, T. S.; Park, J. Y.; Cho, J. R.; Ryu, H.

    1997-07-01

    The ultimate goals of this research are to cultivate the capability of accurate 551 analysis and to develop the effective soil-structure interaction analysis method and computer program by comparing analysis results obtained in Lotung/Hualien lS5T project. In this research, the scope of this study is to establish the method of soil-structure interaction analysis using hyperlement and to develop a computer program of 551 analysis, to do parametric study for the comprehension of the characteristics and the applicability of hyper elements and to verify the validity and the applicability of this method(or program) through the analysis of seismic response of Hualien lS5T project. In this study, we verified the validity and the efficiency of the soil-structure interaction analysis method using hyper elements and developed computer programs using hyper elements. Based on the I-dimensional wave propagation theory, we developed a computer program of free-field analysis considering the primary non-lineriry of seismic responses. And using this program, we computed the effective ground earthquake motions of soil regions. The computer programs using hyper elements can treat non-homogeneity of soil regions very easily and perform the analysis quickly by the usage of the analytical solutions in horizontal direction. 50 this method would be very efficient and practical method

  2. Analytical and finite element modeling of grounding systems

    Energy Technology Data Exchange (ETDEWEB)

    Luz, Mauricio Valencia Ferreira da [University of Santa Catarina (UFSC), Florianopolis, SC (Brazil)], E-mail: mauricio@grucad.ufsc.br; Dular, Patrick [University of Liege (Belgium). Institut Montefiore], E-mail: Patrick.Dular@ulg.ac.be

    2007-07-01

    Grounding is the art of making an electrical connection to the earth. This paper deals with the analytical and finite element modeling of grounding systems. An electrokinetic formulation using a scalar potential can benefit from floating potentials to define global quantities such as electric voltages and currents. The application concerns a single vertical grounding with one, two and three-layer soil, where the superior extremity stays in the surface of the soil. This problem has been modeled using a 2D axi-symmetric electrokinetic formulation. The grounding resistance obtained by finite element method is compared with the analytical one for one-layer soil. With the results of this paper it is possible to show that finite element method is a powerful tool in the analysis of the grounding systems in low frequencies. (author)

  3. Case studies on direct liquefaction of low rank Wyoming coal

    Energy Technology Data Exchange (ETDEWEB)

    Adler, P.; Kramer, S.J.; Poddar, S.K. [Bechtel Corp., San Francisco, CA (United States)

    1995-12-31

    Previous Studies have developed process designs, costs, and economics for the direct liquefaction of Illinois No. 6 and Wyoming Black Thunder coals at mine-mouth plants. This investigation concerns two case studies related to the liquefaction of Wyoming Black Thunder coal. The first study showed that reducing the coal liquefaction reactor design pressure from 3300 to 1000 psig could reduce the crude oil equivalent price by 2.1 $/bbl provided equivalent performing catalysts can be developed. The second one showed that incentives may exist for locating a facility that liquifies Wyoming coal on the Gulf Coast because of lower construction costs and higher labor productivity. These incentives are dependent upon the relative values of the cost of shipping the coal to the Gulf Coast and the increased product revenues that may be obtained by distributing the liquid products among several nearby refineries.

  4. Earthquake analysis of structures including structure-soil interaction by a substructure method

    International Nuclear Information System (INIS)

    Chopra, A.K.; Guttierrez, J.A.

    1977-01-01

    A general substructure method for analysis of response of nuclear power plant structures to earthquake ground motion, including the effects of structure-soil interaction, is summarized. The method is applicable to complex structures idealized as finite element systems and the soil region treated as either a continuum, for example as a viscoelastic halfspace, or idealized as a finite element system. The halfspace idealization permits reliable analysis for sites where essentially similar soils extend to large depths and there is no rigid boundary such as soil-rock interface. For sites where layers of soft soil are underlain by rock at shallow depth, finite element idealization of the soil region is appropriate; in this case, the direct and substructure methods would lead to equivalent results but the latter provides the better alternative. Treating the free field motion directly as the earthquake input in the substructure eliminates the deconvolution calculations and the related assumption-regarding type and direction of earthquake waves-required in the direct method. (Auth.)

  5. Effect of soap industry effluents on soil and ground water in Albageir area

    International Nuclear Information System (INIS)

    Awadalla, S. O.

    2004-02-01

    This study investigates the effect on soil and ground water produced by the effluent from soap industry discharged from Alsheikh Mustafa Alamin (SMA) factory, in Albageir industrial area, located 45 Km south of Khartoum. Soil samples were taken from the periphery of the effluent pond and from 25 and 50 cm depths from pits at different distances from the pond.The samples were analyzed for the following chemical and physical characteristics PH, EC, sodium, chloride ions and their grain size, in order to investigate any possible soil degradation. The results showed that there is an increase in soil salinity and sodicity resulting from the improper discharge of the liquid waste, and from lack of treatment before the discharge. Hence, there are definitive signs for soil degradation in the study area, which could reach a high magnitude in the long.This situation could be rectified by adopting updated techniques for treatment and disposal of effluent, and by regular inspection, by the authorities in order to make sure that the regulations are not violated. Chemical and physical analyses of ground water samples showed no signs of pollution. However, if the disposal practices are not revised, the possibility of pollution in the near future is likely to occur. A package of measurements is proposed in order to curb the impact of the industry on the environment. (Author)

  6. Continuous production of bio-oil by catalytic liquefaction from wet distiller’s grain with solubles (WDGS) from bio-ethanol production

    International Nuclear Information System (INIS)

    Toor, Saqib Sohail; Rosendahl, Lasse; Nielsen, Mads Pagh; Glasius, Marianne; Rudolf, Andreas; Iversen, Steen Brummerstedt

    2012-01-01

    Bio-refinery concepts are currently receiving much attention due to the drive toward flexible, highly efficient systems for utilization of biomass for food, feed, fuel and bio-chemicals. One way of achieving this is through appropriate process integration, in this particular case combining enzymatic bio-ethanol production with catalytic liquefaction of the wet distillers grains with soluble, a byproduct from the bio-ethanol process. The catalytic liquefaction process is carried out at sub-critical conditions (280–370 °C and 25 MPa) in the presence of a homogeneous alkaline and a heterogeneous Zirconia catalyst, a process known as the Catliq ® process. In the current work, catalytic conversion of WDGS was performed in a continuous pilot plant with a maximum capacity of 30 dm 3 h −1 of wet biomass. In the process, WDGS was converted to bio-oil, gases and water-soluble organic compounds. The oil obtained was characterized using several analysis methods, among them elementary analysis and GC–MS. The study shows that WDGS can be converted to bio oil with high yields. The results also indicate that through the combination of bio-ethanol production and catalytic liquefaction, it is possible to significantly increase the liquid product yield and scope, opening up for a wider end use applicability. -- Highlights: ► Hydrothermal liquefaction of wet biomass. ► Product phase analysis: oil, acqeous, gas and mineral phase. ► Energy and mass balance evaluation.

  7. Shallow soil moisture – ground thaw interactions and controls – Part 1: Spatiotemporal patterns and correlations over a subarctic landscape

    Directory of Open Access Journals (Sweden)

    X. J. Guan

    2010-07-01

    Full Text Available Soil moisture and ground thaw state are both indicative of a hillslope's ability to transfer water. In cold regions, in particular, it is widely known that the depth of the active layer and wetness of surface soils are important for runoff generation, but the diversity of interactions between ground thaw and surface soil moisture themselves has not been studied. To fill this knowledge gap, detailed shallow soil moisture and thaw depth surveys were conducted along systematic grids at the Baker Creek Basin, Northwest Territories. Multiple hillslopes were studied to determine how the interactions differed along a spectrum of topological, typological and topographic situations across the landscape. Overall results did not show a simple link between soil moisture and ground thaw as was expected. Instead, correlation was a function of wetness. The interaction between soil moisture and ground thaw was more dependent at wetter sites. This indicates that interactive soil moisture and thaw depth behaviour on hillslopes in cold regions changes with location and cannot necessarily be lumped together in hydrological models. To explore further why these differences arise, a companion paper (Guan et al., 2010 will examine how the hydrological and energy fluxes influenced the patterns of moisture and thaw among the study sites.

  8. Ground-atmosphere interactions at Gale

    Science.gov (United States)

    Renno, N. O.; Martinez, G.; Ramos, M.; Hallet, B.; Gómez, F. G.; Jun, I.; Fisk, M. R.; Gomez-Elvira, J.; Hamilton, V. E.; Mischna, M. A.; Sletten, R. S.; Martin-Torres, J.; De La Torre Juarez, M.; Vasavada, A. R.; Zorzano, M.

    2013-12-01

    We analyze variations in environmental parameters and regolith properties along Curiosity's track to determine the possible causes of an abrupt change in the thermal properties of the ground and the atmosphere observed around Sol 120, as the rover transitioned from an area of sandy soil (Rocknest) to an area of fractured bedrock terrain (Yellowknife). Curiosity is instrumented with the Rover Environmental Monitoring Station (REMS) and the Dynamic Albedo of Neutrons (DAN) sensors to measure the air temperature, the ground temperature, and the hydrogen content of the shallow subsurface along Curiosity's track. Analysis of the REMS data is used to estimate the regolith's heat budget. This analysis suggests that the abrupt decrease in the ground and atmosphere temperature and the difference between ground and air temperatures observed around Sol 120 is likely caused by an increase in the soil thermal inertia. The changes in thermal inertia have been known for some time so confirming this by the REMS package provides ground truthing. A new unexpected finding is that the regolith water content, as indicated by DAN's detection of hydrogen content, is higher in the Yellowknife soil. Another interesting finding at this site are the holes and other signs of recent geological activity in the area of fractured terrain that may reflect large volumetric variations and facilitate gas exchange between the ground and atmosphere. Near-surface volumetric changes in soil and bedrock could reflect changes in the volume of subsurface H2O, or in the partitioning of H2O among its three phases. Volume increases could also result from salt crystal growth in rock pores and soil pores associated with the adsorption of water vapor. Crystallization in pores is a significant weathering process on Earth; it could well be active on Mars. Salts also inhibits the exchange of moisture between the ground and the atmosphere, and cements the soils of arid places such as in the McMurdo Dry Valleys in

  9. Use of in-situ Dual Vacuum Extraction trademark for remediation of soil and ground water

    International Nuclear Information System (INIS)

    Dodson, M.E.; Trowbridge, B.E.; Ott, D.

    1994-01-01

    Dual Vacuum Extraction trademark provides a rapid and cost-effective method of remediating soil and ground water contaminated with volatile organic compounds. The system involves the removal of both water and vapors through the same borehole by use of entrainment. This technology provides for the remediation of the vadose zone, capillary fringe, smear zone, and existing water table. The effectiveness of this technology is shown in a case study. A release from an underground storage tank was responsible for a hydrocarbon plume spreading over approximately 50,000 ft 2 . The release produced vadose-zone contamination in the silty and sandy clays from 10 to 30 ft below ground surface (bgs) with total petroleum hydrocarbon (TPH) concentrations up to 1,400 mg/kg. In addition, a layer of free-floating liquid hydrocarbon was present on a shallow aquifer located at 25 ft bgs in thicknesses ranging from 0.5 to 3.0 ft. An in-situ dual-extraction system was installed to remediate the soils and ground water to levels as required by the Los Angeles Regional Water Quality Control Board (RWQCB). The system operated 24 hr a day, with an operating efficiency of over 99%. After 196 days (28 weeks), over 17,000 lb of hydrocarbons had been extracted from the soils. Seven confirmatory soil borings in the area of highest initial hydrocarbon concentrations indicated that TPH and benzene, toluene, ethylbenzene, xylene (BTEX) concentrations had decreased over 99% from initial soil concentrations

  10. Assessment of wood liquefaction in acidified ethylene glycol using experimental design methodology

    Energy Technology Data Exchange (ETDEWEB)

    Rezzoug, S.A. [Universite de La Rochelle, Lab. de Maitrise des Technologies Agro-Industrielles, La Rochelle, 17 (France); Capart, R. [Universite de Technologie de Compiegne, Dept. de Genie Chimique, Compiegne, 60 (France)

    2003-03-01

    The liquefaction of milled wood (Pinus pinaster) was effected in ethylene glycol acidified with small quantities of H{sub 2}SO{sub 4} as catalyst. The purpose of this paper is to evaluate the influence upon the liquefaction yield of the three operating variables, the maximal temperature (150-280 deg C), the reaction time at maximal temperature (20-60 min) and the amount of added H{sub 2}SO{sub 4} (0-1.5% on dry wood). The individual effects, as well as the interactions between operating variables, are investigated by using an experimental design methodology. From a Pareto chart, it appears that the most significant effects are clearly those of the maximum temperature and the interaction between acidity and temperature. Such effects can be graphically verified through response surfaces and contour line plots. From a regression analysis, the conversion rate of wood into liquid is simply expressed as a function of the operating variables by a polynomial containing quadratic terms. A statistical model seems particularly appropriate in the case of complex and multi-components, as wood, a kinetic model is nevertheless proposed for the liquefaction of micro-crystalline cellulose. This model accounts for the formation of a carbonaceous solid residue from the liquid product. Such an unwanted phenomenon obviously results in a lower yield in liquid product. (Author)

  11. Indirect Liquefaction of Biomass to Transportation Fuels Via Mixed Oxygenated Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C.D.

    2016-11-14

    This paper presents a comparative techno-economic analysis of four emerging conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The processing steps include: biomass-to-syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation.

  12. Sensitivity analysis on the performances of a closed-loop Ground Source Heat Pump

    Science.gov (United States)

    Casasso, Alessandro; Sethi, Rajandrea

    2014-05-01

    Ground Source Heat Pumps (GSHP) permit to achieve a significant reduction of greenhouse gas emissions, and the margins for economic saving of this technology are strongly correlated to the long-term sustainability of the exploitation of the heat stored in the soil. The operation of a GSHP over its lifetime should be therefore modelled considering realistic conditions, and a thorough characterization of the physical properties of the soil is essential to avoid large errors of prediction. In this work, a BHE modelling procedure with the finite-element code FEFLOW is presented. Starting from the governing equations of the heat transport in the soil around a GSHP and inside the BHE, the most important parameters are individuated and the adopted program settings are explained. A sensitivity analysis is then carried on both the design parameters of the heat exchanger, in order to understand the margins of improvement of a careful design and installation, and the physical properties of the soil, with the aim of quantifying the uncertainty induced by their variability. The relative importance of each parameter is therefore assessed by comparing the statistical distributions of the fluid temperatures and estimating the energy consumption of the heat pump, and practical conclusions are from these results about the site characterization, the design and the installation of a BHE. References Casasso A., Sethi R., 2014 Efficiency of closed loop geothermal heat pumps: A sensitivity analysis, Renewable Energy 62 (2014), pp. 737-746 Chiasson A.C., Rees S.J., Spitler J.D., 2000, A preliminary assessment of the effects of groundwater flow on closed-loop ground-source heat pump systems, ASHRAE Transactions 106 (2000), pp. 380-393 Delaleux F., Py X., Olives R., Dominguez A., 2012, Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity, Applied Thermal Engineering 33-34, pp. 92-99 Diao N., Li Q., Fang Z., 2004, Heat transfer in

  13. NON-DESTRUCTIVE IN SITU SOIL CARBON ANALYSIS: PRINCIPLE AND RESULTS

    International Nuclear Information System (INIS)

    WIELOPOLSKI, L.; MITRA, S.; HENDREY, G.; ROGERS, H.; TORBERT, A.; PRIOR, S.

    2003-01-01

    Global warming is promoted by anthropogenic CO 2 emissions into the atmosphere, while at the same time it is partially mitigated by carbon sequestration by terrestrial ecosystems. However, improvement in the understanding and monitoring of below ground carbon processes is essential for evaluating strategies for carbon sequestration including quantification of carbon stores for credits. A system for non-destructive in situ carbon monitoring in soil, based on inelastic neutron scattering (INS), is described. The system can be operated in stationary or scanning mode and measures soil to depth of approximately 30 cm. There is a good agreement between results obtained from INS and standard chemical analysis of soil cores collected from the same study site

  14. Soils and ground waters cleaning; Depollution des sols et des eaux souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Eberentz, P. [ANTEA, 45 - Orleans (France); Cazenove, A. de [Ecole Superieure de l' Energie et des Materiaux ESEM, 45 - Orleans (France); Darmendrail, D. [Bureau de Recherches Geologiques et Minieres, BRGM, 45 - Orleans (France)] [and others

    2000-07-01

    By seven presentations of case studies and researches, this colloquium takes stock on the natural pollution control mechanisms and technic and also on the economic and juridical stakes. Many french sites, concerning the soils and the ground waters are discussed. (A.L.B.)

  15. Achievement report for fiscal 1982 on Sunshine Program. Research and development of coal liquefaction technology (Conceptual designs for coal liquefaction pilot plants - Solvent extraction liquefaction process); 1982 nendo sekitan ekika gijutsu no kenkyu kaihatsu seika hokokusho. Sekitan ekika pilot plant no gainen sekkei (yozai chushutsu ekikaho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    This research aims to prepare conceptual designs for a 250t/d-class and 500t/d-class coal liquefaction pilot plants based on the achievement of research on solvent extraction liquefaction of coal. It also aims to define the solvent extraction process and provide decision-making material relative to the development and promotion of coal liquefaction technologies in the future. Development started in 1978 of the technology of solvent extraction liquefaction of coal, and a 1t/d PDU (process development unit) was completed in 1981. Studies through its operation have continued for more than 3000 hours already, and technical data are being accumulated steadily. Techniques acquired through operating the 1t/d PDU have been put together, and rough process conditions are established. A rough process result is achieved of the same conditions. In these two respects, the newly developed process is equal to other processes. The phenomena in this process are roughly grasped. It is deemed that, with the existing technique combined with the technique acquired here, a technological level has been reached where conceptual designs of large pilot plants may be worked out for solvent extraction liquefaction of coal. Under the circumstances, with a view to developing a commercial plant whose main products will be fuel oils, conceptual designs are prepared for large pilot plants, and are compiled into this report. (NEDO)

  16. Achievement report for fiscal 1981 on Sunshine Program-assisted project. Development of coal liquefaction plant (Research on total system); 1981 nendo sekitan ekika plant no kaihatsu (total system no kenkyu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    For a quantitative analysis of a coal liquefaction process and its constituent sub-processes from both engineering and economic viewpoints, research is conducted for the development of a coal liquefaction process simulator. In the development of a liquefaction simulator, surveys and studies are performed relative to a coal liquefaction process, which is the object of this development effort, its system, existing like simulators, computation for the estimation of the physical properties that a liquefaction simulator should be equipped with, liquefaction yield prediction model, unit operation model, etc. Based on the results of these studies, a conceptual system design is drawn, which is the first step toward the programming of a more concrete software program. Also compiled into this book are the contents of advice and guidance provided by the total system committee in the period September 1981-February 1982 on the research for the development of a liquefaction simulator, and reports by researchers who were dispatched to the U.S. etc. for the development of a coal liquefaction simulator. (NEDO)

  17. Granulometry and moisture influence for in situ soil analysis by portable EDXRF

    International Nuclear Information System (INIS)

    Melquiades, Fabio L.; Bastos, Rodrigo O.; Biase, Gabriel E.V.; Parreira, Paulo S.; Appoloni, Carlos R.

    2010-01-01

    Full text: The objective of this work was to verify the granulometry and the moisture influence in results when soils and sediment samples are measured for identification and quantification of metal, on field, employing a portable Energy Dispersive X-Ray Fluorescence (PXRF) equipment. Calibration curves, calculated using 5 reference samples, were used for sensitivity determination. A sediment Standard Reference Material from IAEA was used to certificate the sensitivity values. The PXRF-LFNA02 equipment, consisting of an Ag mini X-ray Tube and a Si-PIN detector, was employed to accomplish the measurements. Soil samples were collected and dried for 24 h at 60 deg C before granulometry tests. Three grounding procedures were analyzed for granulometry influence evaluation: samples without any grounding; grounded for one minute using a porcelain mortar and pestle set, but without sieving; and grounded for one minute using a porcelain mortar and pestle set, and sieved (smaller than 125 mum particle size). The obtained concentration values for Ti, Fe and Zr, are equivalent for the samples grounded for one minute and the samples grounded and sieved. This result indicates that, for in situ analysis of this soil, it is sufficient to ground the dried sample before to measure. Moisture tests were performed by sampling the soil in situ and leaving the samples on aluminum recipients in open air, at sun, for distinct times, from 0 up to 2h. A reference sample, dried for 24h at 60 deg C, was measured as well in order to compare the results. The concentration values obtained for the samples dried during 30 minutes or 120 minutes at sun are equivalent. On the other hand, the concentration values obtained for the samples dried during 24 h are higher than the values obtained for the same samples dried at sun. Moisture influences the concentrations values in around 20%. Some considerations are performed indicating a methodology for correction of this factor by using the background under

  18. Granulometry and moisture influence for in situ soil analysis by portable EDXRF

    Energy Technology Data Exchange (ETDEWEB)

    Melquiades, Fabio L.; Bastos, Rodrigo O.; Biase, Gabriel E.V. [Universidade Estadual do Centro Oeste (UNICENTRO), Guarapuava, PR (Brazil). Dept. de Fisica; Parreira, Paulo S.; Appoloni, Carlos R. [Universidade Estadual de Londrina (DF/UEL), PR (Brazil). Dept. de Fisica

    2010-07-01

    Full text: The objective of this work was to verify the granulometry and the moisture influence in results when soils and sediment samples are measured for identification and quantification of metal, on field, employing a portable Energy Dispersive X-Ray Fluorescence (PXRF) equipment. Calibration curves, calculated using 5 reference samples, were used for sensitivity determination. A sediment Standard Reference Material from IAEA was used to certificate the sensitivity values. The PXRF-LFNA02 equipment, consisting of an Ag mini X-ray Tube and a Si-PIN detector, was employed to accomplish the measurements. Soil samples were collected and dried for 24 h at 60 deg C before granulometry tests. Three grounding procedures were analyzed for granulometry influence evaluation: samples without any grounding; grounded for one minute using a porcelain mortar and pestle set, but without sieving; and grounded for one minute using a porcelain mortar and pestle set, and sieved (smaller than 125 mum particle size). The obtained concentration values for Ti, Fe and Zr, are equivalent for the samples grounded for one minute and the samples grounded and sieved. This result indicates that, for in situ analysis of this soil, it is sufficient to ground the dried sample before to measure. Moisture tests were performed by sampling the soil in situ and leaving the samples on aluminum recipients in open air, at sun, for distinct times, from 0 up to 2h. A reference sample, dried for 24h at 60 deg C, was measured as well in order to compare the results. The concentration values obtained for the samples dried during 30 minutes or 120 minutes at sun are equivalent. On the other hand, the concentration values obtained for the samples dried during 24 h are higher than the values obtained for the same samples dried at sun. Moisture influences the concentrations values in around 20%. Some considerations are performed indicating a methodology for correction of this factor by using the background under

  19. A cooperative NRC/CEA research project on earthquake ground motion on soil sites: overview

    International Nuclear Information System (INIS)

    Murphy, A.J.; Mohammadioun, B.

    1989-10-01

    This paper provides an overview of a multi-phase experiment being conducted jointly by the U.S. Nuclear Regulatory Commission and the French Commissariat a l'Energie Atomique. The objective of the experiment is to collect a comprehensive set of data on the propagation of earthquake ground motions vertically through a shallow soil column (on the order of several tens of meters). The data will be used to validate several of the available engineering computer codes for modeling earthquake ground motion. The data set will also be used to develop an improved understanding of the earthquake source function and the potential for non-linear effects controlling the propagation through the shallow soil column

  20. Optimal Pile Arrangement for Minimizing Excess Pore Water Pressure Build-Up

    DEFF Research Database (Denmark)

    Barari, Amin; Saadati, Meysam; Ibsen, Lars Bo

    2013-01-01

    Numerical analysis of pile group in a liquefiable soil was considered to investigate the influence of pile spacing on excess pore pressure distribution and liquefaction potential. The analysis is conducted using a two-dimensional plain strain finite difference program considering a nonlinear...... constitutive model for sandy soil, strength and stiffness reduction, and pile-soil interaction. The Mohr-Coulomb constitutive model coupled with Byrne pore pressure build-up model have been employed in the analysis. Numerical analysis results show that pile groups have significant influence on the dynamic...... response of sandy soil as they reduce the amount of excess pore pressure development during seismic shaking and may even prevent liquefaction....

  1. Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol

    Energy Technology Data Exchange (ETDEWEB)

    You, Qiao; Chen, Liang [College of Environmental Science and Engineering, Hunan University, Changsha (China); Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Changsha (China)

    2011-01-15

    Thermochemical liquefaction characteristics of Spirulina, a kind of high-protein microalgae, were investigated with the sub- and supercritical ethanol as solvent in a 1000 mL autoclave. The influences of various liquefaction parameters on the yields of products (bio-oil and residue) from the liquefaction of Spirulina were studied, such as the reaction temperature (T), the S/L ratio (R{sub 1}, solid: Spirulina, liquid: ethanol), the solvent filling ratio (R{sub 2}) and the type and dosage of catalyst. Without catalyst, the bio-oil yields were in the range of 35.4 wt.% and 45.3 wt.% depending on the changes of T, R{sub 1} and R{sub 2}. And the bio-oil yields increased generally with increasing T and R{sub 2}, while the bio-oil yields reduced with increasing R{sub 1}. The FeS catalyst was certified to be an ideal catalyst for the liquefaction of Spirulina microalgae for its advantages on promoting bio-oil production and suppressing the formation of residue. The optimal dosage of catalyst (FeS) was ranging from 5-7 wt.%. The elemental analyses and FT-IR and GC-MS measurements for the bio-oils revealed that the liquid products have much higher heating values than the crude Spirulina sample and fatty acid ethyl ester compounds were dominant in the bio-oils, irrespective of whether catalyst was used. (author)

  2. Activity and selectivity of three molybdenum catalysts for coal liquefaction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.; Pellegrino, J.L.

    The activity and selectivity of three different molybdenum catalysts for reactions occurring in coal liquefaction, specifically for hydrogenation (HYD), hydrodeoxygenation (HDO), hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrocracking (HYC), have been examined. The three molybdenum catalysts used were molybdenum napthenate, molybdenum on ..gamma..-alumina, and a precipitated, disordered MoS/sub 2/. Molybdenum naphthenate was most selective for HYD and HDN. All three catalysts exhibited approximately equal activity for HDS and HDO and little selectivity for HYC of alkyl bridge structures. The activity and selectivity of the three molybdenum catalysts for producing hydrocarbons and removing heteroatoms from coal during liquefaction were determined and compared. Molybdenum naphthenate was the most active catalyst for hydrocarbon production and removal of nitrogen- and oxygen-containing species during coal liquefaction. 31 refs., 4 figs., 7 tabs.

  3. Analysis of the soil food web structure under grass and grass clover

    NARCIS (Netherlands)

    Eekeren, van N.J.M.; Smeding, F.W.; Vries, de F.T.; Bloem, J.

    2006-01-01

    The below ground biodiversity of soil organisms plays an important role in the functioning of the the soil ecosystem, and consequently the above ground plant production. The objective of this study is to investigate the effect of grass or grass-clover in combination with fertilisation on the soil

  4. Feasibility and comparative studies of thermochemical liquefaction of Camellia oleifera cake in different supercritical organic solvents for producing bio-oil

    International Nuclear Information System (INIS)

    Chen, Hongmei; Zhai, Yunbo; Xu, Bibo; Xiang, Bobin; Zhu, Lu; Li, Ping; Liu, Xiaoting; Li, Caiting; Zeng, Guangming

    2015-01-01

    Highlights: • Thermochemical liquefaction of COC was a prominent process for producing bio-oil. • Type of solvent affected the yield and composition of bio-oil considerably. • Liquefaction of COC in SCEL at 300 °C was preferred for producing bio-oil. - Abstract: Thermochemical liquefaction of Camellia oleifera cake (COC) for producing bio-oil was conducted in supercritical methanol (SCML), ethanol (SCEL) and acetone (SCAL), respectively. GC–MS, elemental analysis and ICP-OES were used to characterize properties of bio-oil. Results showed that thermochemical liquefaction of COC was a prominent process for generating bio-oil. Increase of temperature was beneficial to the increase of bio-oil yield, and yield of bio-oil followed the sequence of SCAL > SCEL > SCML. In spite of the highest bio-oil yield, the lowest calorific value and highest contents of Zn, Pb, Cd, Ni, Fe, Mn, and Cr were found in bio-oil from SCAL. Though SCML has very similar bio-oil composition and calorific value with SCEL, higher bio-oil yield and lower contents of heavy metals could be obtained with SCEL, especially in bio-oil from SCEL at 300 °C. Moreover, the origin of ethanol could make the bio-oil product totally renewable. Therefore, liquefaction of COC in SCEL at 300 °C could have great potential in generating bio-oil

  5. A study on seismic behavior of pile foundations of bridge abutment on liquefiable ground through shaking table tests

    Science.gov (United States)

    Nakata, Mitsuhiko; Tanimoto, Shunsuke; Ishida, Shuichi; Ohsumi, Michio; Hoshikuma, Jun-ichi

    2017-10-01

    There is risk of bridge foundations to be damaged by liquefaction-induced lateral spreading of ground. Once bridge foundations have been damaged, it takes a lot of time for restoration. Therefore, it is important to assess the seismic behavior of the foundations on liquefiable ground appropriately. In this study, shaking table tests of models on a scale of 1/10 were conducted at the large scale shaking table in Public Works Research Institute, Japan, to investigate the seismic behavior of pile-supported bridge abutment on liquefiable ground. The shaking table tests were conducted for three types of model. Two are models of existing bridge which was built without design for liquefaction and the other is a model of bridge which was designed based on the current Japanese design specifications for highway bridges. As a result, the bending strains of piles of the abutment which were designed based on the current design specifications were less than those of the existing bridge.

  6. Rationale for continuing R&D in indirect coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Gray, D.; Tomlinson, G. [MITRE Corp., McLean, VA (United States)

    1995-12-31

    The objective of this analysis is to use the world energy demand/supply model developed at MITRE to examine future liquid fuels supply scenarios both for the world and for the United States. This analysis has determined the probable extent of future oil resource shortages and the likely time frame in which the shortages will occur. The role that coal liquefaction could play in helping to alleviate this liquid fuels shortfall is also examined. The importance of continuing R&D to improve process performance and reduce the costs of coal-derived transportation fuel is quantified in terms of reducing the time when coal liquids will become competitive with petroleum.

  7. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    Science.gov (United States)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  8. Report for fiscal 1995 by basic liquefaction technology subcommittee; 1995 nendo ekika kiban gijutsu bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Delivered at the 1st meeting are a report on the fiscal 1995 research plan and an interim report, involving the use of coal-derived oils, research on refining technology using a PDU (process developing unit), reforming technology and petroleum blending technology for coal-derived oils, development of new reforming catalysts, technology of heterocompound separation, and the development of applications. Reported in relation with the development of environmentally friendly coal liquefaction technology are the study of coal liquefaction conditions, study of the upgrading of basic liquefaction techniques for the improvement and rationalization of the liquefaction process, and a project of liquefaction technology internationalization. A report is also given on a liquefaction catalyst study meeting. At the 2nd meeting, reports are delivered on the development of environmentally friendly coal liquefaction technology, including a briefing on the situation in general, designing of highly active catalysts, elucidation of the mechanism of emergence of activity, achievement of the marginal yield of coal-derived oils, and the properties of catalyst attached to coal. Delivered in relation with the use of coal-derived oils and technology for their refining are a briefing on the situation in general and reports on the blockup to occur in the naphtha fraction process and measures to counter the problem, control of the metamorphosis of active metals in reaction, heterocompound separation technology, and the development of applications. (NEDO)

  9. Biomass Direct Liquefaction Options. TechnoEconomic and Life Cycle Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Iva J.; Zhu, Yunhua; Drennan, Corinne; Elliott, Douglas C.; Snowden-Swan, Lesley J.; Onarheim, Kristin; Solantausta, Yrjo; Beckman, David

    2014-07-31

    The purpose of this work was to assess the competitiveness of two biomass to transportation fuel processing routes, which were under development in Finland, the U.S. and elsewhere. Concepts included fast pyrolysis (FP), and hydrothermal liquefaction (HTL), both followed by hydrodeoxygenation, and final product refining. This work was carried out as a collaboration between VTT (Finland), and PNNL (USA). The public funding agents for the work were Tekes in Finland and the Bioenergy Technologies Office of the U.S. Department of Energy. The effort was proposed as an update of the earlier comparative technoeconomic assessment performed by the IEA Bioenergy Direct Biomass Liquefaction Task in the 1980s. New developments in HTL and the upgrading of the HTL biocrude product triggered the interest in reinvestigating this comparison of these biomass liquefaction processes. In addition, developments in FP bio-oil upgrading had provided additional definition of this process option, which could provide an interesting comparison.

  10. Motor fuels made by direct liquefaction of coal, peat and biomass. Drivmedel genom direktfoervaetskning av kol, torv och biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Granath, L; Karlsson, G; Karlsson, G; Nilsson, T

    1981-01-01

    The Department of Chemical Technology at the Royal Institute of Technology has completed a system study concerning direct liquefaction of peat and biomass to produce transportation fuel. A comprehensive survey of coal liquefaction is included. Gasoline produced in Sweden from direct liquefaction of imported coal may compete with regular gasoline at the earliest around 1985. Biomass can become a competitive alternative to black coal at the beginning of the 21st century. Methanol can be produced from wood with a higher efficiency than the transportation fuels which are produced by direct liquefaction. The peat is not good source for liquefaction as wood chips. A continuously working liquefaction plant designed also for peat among other substances is under construction at the Royal Institute of Technology, Stockholm.

  11. Coal liquefaction process streams characterization and evaluation: Application of liquid chromatographic separation methods to THF-soluble portions of integrated two-stage coal liquefaction resids

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.B.; Pearson, C.D.; Young, L.L.; Green, J.A. [National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States)

    1992-05-01

    This study demonstrated the feasibility of using non-aqueous ion exchange liquid chromatography (NIELC) for the examination of the tetrahydrofuran (THF)-soluble distillation resids and THF-soluble whole oils derived from direct coal liquefaction. The technique can be used to separate the material into a number of acid, base, and neutral fractions. Each of the fractions obtained by NIELC was analyzed and then further fractionated by high-performance liquid chromatography (HPLC). The separation and analysis schemes are given in the accompanying report. With this approach, differences can be distinguished among samples obtained from different process streams in the liquefaction plant and among samples obtained at the same sampling location, but produced from different feed coals. HPLC was directly applied to one THF-soluble whole process oil without the NIELC preparation, with limited success. The direct HPLC technique used was directed toward the elution of the acid species into defined classes. The non-retained neutral and basic components of the oil were not analyzable by the direct HPLC method because of solubility limitations. Sample solubility is a major concern in the application of these techniques.

  12. Comparison of oxygen liquefaction methods for use on the Martian surface

    Science.gov (United States)

    Johnson, W. L.; Hauser, D. M.; Plachta, D. W.; Wang, X.-Y. J.; Banker, B. F.; Desai, P. S.; Stephens, J. R.; Swanger, A. M.

    2018-03-01

    In order to use oxygen that is produced on the surface of Mars from In-Situ production processes in a chemical propulsion system, the oxygen must first be converted from vapor phase to liquid phase and then stored within the propellant tanks of the propulsions system. There are multiple ways that this can be accomplished, from simply attaching a liquefaction system onto the propellant tanks to carrying separate tanks for liquefaction and storage of the propellant and loading just prior to launch (the way that traditional rocket launches occur on Earth). A study was done into these various methods by which the oxygen (and methane) could be liquefied and stored on the Martian surface. Five different architectures or cycles were considered: Tube-on-Tank (also known as Broad Area Cooling or Distributed Refrigeration), Tube-in-Tank (also known as Integrated Refrigeration and Storage), a modified Linde open liquefaction/refrigeration cycle, the direct mounting of a pulse tube cryocooler onto the tank, and an in-line liquefier at ambient pressure. Models of each architecture were developed to give insight into the performance and losses of each of the options. The results were then compared across eight categories: Mass, Power (both input and heat rejection), Operability, Cost, Manufacturability, Reliability, Volume-ility, and Scalability. The result was that Tube-on-Tank and Tube-in-Tank architectures were the most attractive solutions, with NASA's engineering management choosing to pursue tube on tank development rather than further differentiate the two. As a result NASA is focusing its Martian surface liquefaction activities and technology development on Tube-on-Tank liquefaction cycles.

  13. Quantitative characterization of the aqueous fraction from hydrothermal liquefaction of algae

    Energy Technology Data Exchange (ETDEWEB)

    Maddi, Balakrishna; Panisko, Ellen; Wietsma, Thomas; Lemmon, Teresa; Swita, Marie; Albrecht, Karl; Howe, Daniel

    2016-10-01

    Aqueous streams generated from hydrothermal liquefaction contain approximately 30% of the total carbon present from the algal feed. Hence, this aqueous carbon must be utilized to produce liquid fuels and/or specialty chemicals for economic sustainability of hydrothermal liquefaction on industrial scale. In this study, aqueous fractions produced from the hydrothermal liquefaction of fresh water and saline water algal cultures were analyzed using a wide variety of analytical instruments to determine their compositional characteristics. This study will also inform researchers designing catalysts for down-stream processing such as high-pressure catalytic conversion of organics in aqueous phase, catalytic hydrothermal gasification, and biological conversions. Organic chemical compounds present in all eight aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compounds include organic acids, nitrogen compounds and aldehydes/ketones. Conventional gas chromatography and liquid chromatography methods were utilized to quantify the identified compounds. Inorganic species in the aqueous stream of hydrothermal liquefaction of algae were identified using ion chromatography and inductively coupled plasma optical emission spectrometer. The concentrations of organic chemical compounds and inorganic species are reported. The amount quantified carbon ranged from 45 to 72 % of total carbon in the aqueous fractions.

  14. Ground Albedo Neutron Sensing (GANS) for Measurement of Integral Soil Water Content at the Small Catchment Scale

    Science.gov (United States)

    Rivera Villarreyes, C.; Baroni, G.; Oswald, S. E.

    2012-12-01

    Soil water content at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. One largest initiative to cover the measuring gap of soil moisture between point scale and remote sensing observations is the COSMOS network (Zreda et al., 2012). Here, cosmic-ray neutron sensing, which may be more precisely named ground albedo neutron sensing (GANS), is applied. The measuring principle is based on the crucial role of hydrogen as neutron moderator compared to others landscape materials. Soil water content contained in a footprint of ca. 600 m diameter and a depth ranging down to a few decimeters is inversely correlated to the neutron flux at the air-ground interface. This approach is now implemented, e.g. in USA (Zreda et al., 2012) and Germany (Rivera Villarreyes et al., 2011), based on its simple installation and integral measurement of soil moisture at the small catchment scale. The present study performed Ground Albedo Neutron Sensing on farmland at two locations in Germany under different vegetative situations (cropped and bare field) and different seasonal conditions (summer, autumn and winter). Ground albedo neutrons were measured at (i) a farmland close to Potsdam and Berlin cropped with corn in 2010, sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. In order to test this methodology, classical soil moisture devices and meteorological data were used for comparison. Moreover, several calibration approaches, role of vegetation cover and transferability of calibration parameters to different times and locations were also evaluated. Observations suggest that GANS can overcome the lack of data for hydrological processes at the intermediate scale. Soil moisture from GANS compared quantitatively with mean values derived from a network of classical devices under vegetated and non- vegetated conditions. The GANS approach responded well

  15. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, January--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    In the Advance Coal Liquefaction Concept Proposal (ACLCP) carbon monoxide (CO) and water have been proposed as the primary reagents in the pretreatment process. The main objective of this project is to develop a methodology for pretreating coal under mild conditions based on a combination of existing processes which have shown great promise in liquefaction, extraction and pyrolysis studies. The aim of this pretreatment process is to partially depolymerise the coal, eliminate oxygen and diminish the propensity for retograde reactions during subsequent liquefaction. The desirable outcome of the CO pretreatment step should be: (1) enhanced liquefaction activity and/or selectivity toward products of higher quality due to chemical modification of the coal structure; (2) cleaner downstream products; (3) overall improvement in operability and process economics.

  16. Report for fiscal 1994 by subcommittee on coal liquefaction basic technology; 1994 nendo ekika kiban gijutsu bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This report covers the proceedings of subcommittee meetings. Using PDUs (process development unit), comparison is made between bituminous coal-derived oils (150t/d plant for the Indonesian coal) and brown coal-derived oils (50t/d plant for the Yallourn coal), product quality is improved by a 2-stage refining process, engines are tested, etc., all these demonstration and research efforts intended to win social recognition for coal liquefaction products. Among basic studies, there are the development of technologies for reforming coal-derived oils and for mixing them will petroleum, development of new catalysts for reforming, development of a technology for separating heterocompounds and the like, and the development of their applications. Furthermore, technologies are developed for environmentally friendly coal liquefaction, feasibility of coal liquefaction technology internationalization is deliberated, and technical researches and joint researches are conducted. At the second meeting of the subcommittee, achievements relative to the refining and applications of liquefaction products are presented, including the hydrorefining of naphtha, heating oil, and light oil; development of new catalysts; heterocompound separation technology; and the development of new applications. In relation with the development of environmentally friendly coal liquefaction technologies, studies are presented on liquefaction conditions and on the upgrading of basic technologies of liquefaction. Also referred to are the reports delivered at a meeting on liquefaction catalysts (January 1995). (NEDO)

  17. Ground source heat pump performance in case of high humidity soil and yearly balanced heat transfer

    International Nuclear Information System (INIS)

    Schibuola, Luigi; Tambani, Chiara; Zarrella, Angelo; Scarpa, Massimiliano

    2013-01-01

    Highlights: • GSHPs are simulated in case of humid soil and yearly balanced heat transfer. • Humid soil and yearly balanced heat transfer imply higher compactness of GSHPs. • Resulting GSHPs are compared with other traditional and innovative HVAC systems. • GSHPs score best, especially in case of inverter-driven compressors. - Abstract: Ground source heat pump (GSHP) systems are spreading also in Southern Europe, due to their high energy efficiency both in heating and in cooling mode. Moreover, they are particularly suitable in historical cities because of difficulties in the integration of heating/cooling systems into buildings subjected to historical preservation regulations. In these cases, GSHP systems, especially the ones provided with borehole heat exchangers, are a suitable solution instead of gas boilers, air-cooled chillers or cooling towers. In humid soils, GSHP systems are even more interesting because of their enhanced performance due to higher values of soil thermal conductivity and capacity. In this paper, GSHP systems operating under these boundary conditions are analyzed through a specific case study set in Venice and related to the restoration of an historical building. With this analysis the relevant influences of soil thermal conductivity and yearly balanced heat transfer in the design of the borehole field are shown. In particular, the paper shows the possibility to achieve higher compactness of the borehole field footprint area when yearly balanced heat transfer in the borehole field is expected. Then, the second set of results contained in the paper shows how GSHP systems designed for high humidity soils and yearly balanced heat loads at the ground side, even if characterized by a compact footprint area, may still ensure better performance than other available and more common technologies such as boilers, air-cooled chillers, chillers coupled with cooling towers and heat pumps and chillers coupled with lagoon water. As a consequence

  18. Development of liquefaction process of coal and biomass in supercritical water; Chorinkaisui wo mochiita sekitan biomass doji ekika process no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, H.; Matsumura, Y.; Tsutsumi, A.; Yoshida, K. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Masuno, Y.; Inaba, A. [National Institute for Resources and Environment, Tsukuba (Japan)

    1996-10-28

    Liquefaction of coal and biomass in supercritical water has been investigated, in which strong solubilization force of supercritical water against hydrocarbons is utilized. Free radicals are formed through the cleavage of covalent bonds in coal under the heating condition at around 400{degree}C during coal liquefaction. It is important to stabilize these unstable intermediate products by hydrogen transfer. On the other hand, hydrogen is not required for the liquefaction of biomass having higher H/C atomic ratio and oxygen content than those of coal. Co-liquefaction of coal and biomass was conducted using supercritical water, in which excess hydrogen from the liquefaction of biomass would be transferred to coal, resulting in the effective liquefaction of coal. Mixture of coal and cellulose was liquefied in supercritical water at 390{degree}C under the pressure of 25 MPa using a semi-continuous reactor, and the results were compared with those from the separate liquefaction of them. The co-liquefaction of coal and cellulose did not show any difference in the residue yield from the separate liquefaction of these, but led to the increased production of compounds with lower molecular weight. The liquefaction was completed in 15 minutes. 5 refs., 3 figs., 3 tabs.

  19. Development of an extruder-feeder biomass direct liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Wolf, D. (Arizona Univ., Tucson, AZ (United States). Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt% wood flour in wood oil derived vacuum bottoms at pressures up to 3000 psi. The extruder-feeder has been integrated with a unique reactor by the University to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a high pressure reactor in the biomass liquefaction process. An experimental facility was constructed and following shakedown operations, wood crude oil was produced by mid-1985. By July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3000 psi and temperatures from 350{degree}C to 430{degree}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt% residual oxygen were produced. 38 refs., 82 figs., 26 tabs.

  20. Electrical Subsurface Grounding Analysis

    International Nuclear Information System (INIS)

    J.M. Calle

    2000-01-01

    The purpose and objective of this analysis is to determine the present grounding requirements of the Exploratory Studies Facility (ESF) subsurface electrical system and to verify that the actual grounding system and devices satisfy the requirements

  1. Image Analysis to Estimate Mulch Residue in Soil

    Directory of Open Access Journals (Sweden)

    Carmen Moreno

    2014-01-01

    Full Text Available Mulching is used to improve the condition of agricultural soils by covering the soil with different materials, mainly black polyethylene (PE. However, problems derived from its use are how to remove it from the field and, in the case of it remaining in the soil, the possible effects on it. One possible solution is to use biodegradable plastic (BD or paper (PP, as mulch, which could present an alternative, reducing nonrecyclable waste and decreasing the environmental pollution associated with it. Determination of mulch residues in the ground is one of the basic requirements to estimate the potential of each material to degrade. This study has the goal of evaluating the residue of several mulch materials over a crop campaign in Central Spain through image analysis. Color images were acquired under similar lighting conditions at the experimental field. Different thresholding methods were applied to binarize the histogram values of the image saturation plane in order to show the best contrast between soil and mulch. Then the percentage of white pixels (i.e., soil area was used to calculate the mulch deterioration. A comparison of thresholding methods and the different mulch materials based on percentage of bare soil area obtained is shown.

  2. Histotripsy Liquefaction of Large Hematomas.

    Science.gov (United States)

    Khokhlova, Tatiana D; Monsky, Wayne L; Haider, Yasser A; Maxwell, Adam D; Wang, Yak-Nam; Matula, Thomas J

    2016-07-01

    Intra- and extra-muscular hematomas result from repetitive injury as well as sharp and blunt limb trauma. The clinical consequences can be serious, including debilitating pain and functional deficit. There are currently no short-term treatment options for large hematomas, only lengthy conservative treatment. The goal of this work was to evaluate the feasibility of a high intensity focused ultrasound (HIFU)-based technique, termed histotripsy, for rapid (within a clinically relevant timeframe of 15-20 min) liquefaction of large volume (up to 20 mL) extra-vascular hematomas for subsequent fine-needle aspiration. Experiments were performed using in vitro extravascular hematoma phantoms-fresh bovine blood poured into 50 mL molds and allowed to clot. The resulting phantoms were treated by boiling histotripsy (BH), cavitation histotripsy (CH) or a combination in a degassed water tank under ultrasound guidance. Two different transducers operating at 1 MHz and 1.5 MHz with f-number = 1 were used. The liquefied lysate was aspirated and analyzed by histology and sized in a Coulter Counter. The peak instantaneous power to achieve BH was lower than (at 1.5 MHz) or equal to (at 1 MHz) that which was required to initiate CH. Under the same exposure duration, BH-induced cavities were one and a half to two times larger than the CH-induced cavities, but the CH-induced cavities were more regularly shaped, facilitating easier aspiration. The lysates contained a small amount of debris larger than 70 μm, and 99% of particulates were smaller than 10 μm. A combination treatment of BH (for initial debulking) and CH (for liquefaction of small residual fragments) yielded 20 mL of lysate within 17.5 minutes of treatment and was found to be most optimal for liquefaction of large extravascular hematomas. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles

    International Nuclear Information System (INIS)

    Han, Sang Soo; Kang, Jeung Ku; Lee, Hyuck Mo; Duin, Adri C.T. van; Goddard, William A. III

    2005-01-01

    We have used molecular dynamics simulations to investigate interaction of H 2 molecules on the exterior surfaces of carbon nanotubes (CNTs): single and bundle types. At 80 K and 10 MPa, it is found that charge transfer occurs from a low curvature region to a high curvature region of the deformed CNT bundle, which develops charge polarization only on the deformed structure. The long-range electrostatic interactions of polarized charges on the deformed CNT bundle with hydrogen molecules are observed to induce a high local-ordering of H 2 gas that results in hydrogen liquefaction. Our predicted heat of hydrogen liquefaction on the CNT bundle is 97.6 kcal kg -1 . On the other hand, hydrogen liquefaction is not observed in the CNT of a single type. This is because charge polarization is not developed on the single CNT as it is symmetrically deformed under the same pressure. Consequently, the hydrogen storage capacity on the CNT bundle is much higher due to liquefaction than that on the single CNT. Additionally, our results indicate that it would also be possible to liquefy H 2 gas on a more strongly polarized CNT bundle at temperatures higher than 80 K

  4. Dynamic dielectric properties of a wood liquefaction system using polyethylene glycol and glycerol

    Science.gov (United States)

    Mengchao Zhou; Thomas L. Eberhardt; Bo Cai; Chung-Yun Hse; Hui Pan

    2017-01-01

    Microwave-assisted liquefaction has shown potential for rapid thermal processing of lignocellulosic biomass. The efficiency of microwave heating depends largely on the dielectric properties of the materials being heated. The objective of this study was to investigate the dynamic interactions between microwave energy and the reaction system during the liquefaction of a...

  5. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.

    1991-12-30

    The purpose of this work is to investigate the kinetics-assisted design, synthesis and characterization of fme-pardcle, unsupported catalysts for coal liquefaction. The goal is to develop a fundamental understanding of coal catalysis and catalysts that will, in turn, allow for the specification of a novel optimal catalyst for coal liquefaction.

  6. Thermoeconomic optimization of a cryogenic refrigeration cycle for re-liquefaction of the LNG boil-off gas

    Energy Technology Data Exchange (ETDEWEB)

    Sayyaadi, Hoseyn; Babaelahi, M. [Faculty of Mechanical Engineering-Energy Division, K.N. Toosi University of Technology, P.O. Box: 19395-1999, No. 15-19, Pardis Str., Mollasadra Ave., Vanak Sq., Tehran 1999 143344 (Iran)

    2010-09-15

    The development of the liquefaction process for the Liquefied Natural Gas (LNG) boil-off re-liquefaction plants will be addressed to provide an environmentally friendly and cost effective solution for the gas transportation. In this manner, onboard boil-off gas (BOG) re-liquefaction system as a cryogenic refrigeration cycle is utilized in order to re-liquefy the BOG and returns it to the cargo tanks instead of burning it. In this paper, a thermoeconomic optimization of the LNG-BOG liquefaction system is performed. A thermoeconomic model based on energy and exergy analyses and an economic model according to the total revenue requirement (TRR) are developed. Minimizing of the unit cost of the refrigeration effect as a product of BOG re-liquefaction plant is performed using the genetic algorithm. Results of thermoeconomic optimization are compared with corresponding features of the base case system. Finally, sensitivity of the total cost of the system product with respect to the variation of some operating parameters is studied. (author)

  7. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  8. The influence of pore-fluid in the soil on ground vibrations from a tunnel embedded in a layered half-space

    Science.gov (United States)

    Yuan, Zonghao; Cao, Zhigang; Boström, Anders; Cai, Yuanqiang

    2018-04-01

    A computationally efficient semi-analytical solution for ground-borne vibrations from underground railways is proposed and used to investigate the influence of hydraulic boundary conditions at the scattering surfaces and the moving ground water table on ground vibrations. The arrangement of a dry soil layer with varying thickness resting on a saturated poroelastic half-space, which includes a circular tunnel subject to a harmonic load at the tunnel invert, creates the scenario of a moving water table for research purposes in this paper. The tunnel is modelled as a hollow cylinder, which is made of viscoelastic material and buried in the half-space below the ground water table. The wave field in the dry soil layer consists of up-going and down-going waves while the wave field in the tunnel wall consists of outgoing and regular cylindrical waves. The complete solution for the saturated half-space with a cylindrical hole is composed of down-going plane waves and outgoing cylindrical waves. By adopting traction-free boundary conditions on the ground surface and continuity conditions at the interfaces of the two soil layers and of the tunnel and the surrounding soil, a set of algebraic equations can be obtained and solved in the transformed domain. Numerical results show that the moving ground water table can cause an uncertainty of up to 20 dB for surface vibrations.

  9. Shallow soil moisture – ground thaw interactions and controls – Part 2: Influences of water and energy fluxes

    Directory of Open Access Journals (Sweden)

    X. J. Guan

    2010-07-01

    Full Text Available The companion paper (Guan et al., 2010 demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the presence of surface water was the key control in variable soil moisture and frost table interactions among sites. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological and energy processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.

  10. Direct liquefaction of low-rank coals under mild conditions

    Energy Technology Data Exchange (ETDEWEB)

    Braun, N.; Rinaldi, R. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    2013-11-01

    Due to decreasing of petroleum reserves, direct coal liquefaction is attracting renewed interest as an alternative process to produce liquid fuels. The combination of hydrogen peroxide and coal is not a new one. In the early 1980, Vasilakos and Clinton described a procedure for desulfurization by leaching coal with solutions of sulphuric acid/H{sub 2}O{sub 2}. But so far, H{sub 2}O{sub 2} has never been ascribed a major role in coal liquefaction. Herein, we describe a novel approach for liquefying low-rank coals using a solution of H{sub 2}O{sub 2} in presence of a soluble non-transition metal catalyst. (orig.)

  11. Semianalytical Solution and Parameters Sensitivity Analysis of Shallow Shield Tunneling-Induced Ground Settlement

    Directory of Open Access Journals (Sweden)

    Jifeng Liu

    2017-01-01

    Full Text Available The influence of boundary soil properties on tunneling-induced ground settlement is generally not considered in current analytic solutions, and the hypothesis of equal initial stress in vertical and horizontal makes the application of the above solutions limited. Based on the homogeneous half-plane hypothesis, by defining the boundary condition according to the ground loss pattern in shallow tunnel, and with the use of Mohr-Coulomb plastic yielding criteria and classic Lame and Kiersch elastic equations by separating the nonuniform stress field to uniform and single-direction stress field, a semiempirical solution for ground settlement induced by single shallow circular tunnel is presented and sensitivity to the ground parameters is analyzed. The methods of settlement control are offered by influence factors analysis of semiempirical solution. A case study in Beijing Metro tunnel shows that the semiempirical solution agrees well with the in situ measured results.

  12. Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region, California

    Science.gov (United States)

    Witter, Robert C.; Knudsen, Keith L.; Sowers, Janet M.; Wentworth, Carl M.; Koehler, Richard D.; Randolph, Carolyn E.; Brooks, Suzanna K.; Gans, Kathleen D.

    2006-01-01

    This report presents a map and database of Quaternary deposits and liquefaction susceptibility for the urban core of the San Francisco Bay region. It supercedes the equivalent area of U.S. Geological Survey Open-File Report 00-444 (Knudsen and others, 2000), which covers the larger 9-county San Francisco Bay region. The report consists of (1) a spatial database, (2) two small-scale colored maps (Quaternary deposits and liquefaction susceptibility), (3) a text describing the Quaternary map and liquefaction interpretation (part 3), and (4) a text introducing the report and describing the database (part 1). All parts of the report are digital; part 1 describes the database and digital files and how to obtain them by downloading across the internet. The nine counties surrounding San Francisco Bay straddle the San Andreas fault system, which exposes the region to serious earthquake hazard (Working Group on California Earthquake Probabilities, 1999). Much of the land adjacent to the Bay and the major rivers and streams is underlain by unconsolidated deposits that are particularly vulnerable to earthquake shaking and liquefaction of water-saturated granular sediment. This new map provides a consistent detailed treatment of the central part of the 9-county region in which much of the mapping of Open-File Report 00-444 was either at smaller (less detailed) scale or represented only preliminary revision of earlier work. Like Open-File Report 00-444, the current mapping uses geomorphic expression, pedogenic soils, inferred depositional environments, and geologic age to define and distinguish the map units. Further scrutiny of the factors controlling liquefaction susceptibility has led to some changes relative to Open-File Report 00-444: particularly the reclassification of San Francisco Bay mud (Qhbm) to have only MODERATE susceptibility and the rating of artificial fills according to the Quaternary map units inferred to underlie them (other than dams - adf). The two colored

  13. Seismic response analysis of a nuclear reactor structure considering nonlinear soil-structure interaction

    International Nuclear Information System (INIS)

    Bhaumik, Lopamudra; Raychowdhury, Prishati

    2013-01-01

    Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S a (T 1 )is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure

  14. Seismic response analysis of a nuclear reactor structure considering nonlinear soil-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bhaumik, Lopamudra, E-mail: lbhaumi2@illinois.edu [University of Illinois at Urbana-Champaign (United States); Raychowdhury, Prishati, E-mail: prishati@iitk.ac.in [Indian Institute of Technology Kanpur (India)

    2013-12-15

    Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S{sub a}(T{sub 1})is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure.

  15. The use of high vacuum soil vapor extraction to improve contaminant recovery from ground water zones of low transmissivity

    International Nuclear Information System (INIS)

    Brown, A.; Farrow, J.R.C.; Burgess, W.

    1996-01-01

    This study examines the potential for enhancing hydrocarbon contaminant mass recovery from ground water using high vacuum soil vapor extraction (SVE). The effectiveness of this form of remediation is compared with the effectiveness of conventional pump-and-treat. This study focuses on the performance of a high vacuum SVE system at two ground water monitoring wells (MW-17 and MW-65b) at a site in Santa Barbara, California, US. The site is a highly characterized site with vadose zone and ground water petroleum hydrocarbon contamination (gasoline). The ground water wells are located beyond a defined area of vadose zone soil contamination. Ground water hydrocarbon contamination [light non-aqueous phase liquid (LNAPL) and dissolved phase] is present at each of the wells. the ground water wells have been part of a low-flow, pump-and-treat, ground water treatment system (GWTS) since August, 1986. The low transmissivity of the aquifer sediments prevent flow rates above approximately 0.02 gpm (0.01 l/min) per well

  16. Solvent recyclability in a multistep direct liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    Hetland, M.D.; Rindt, J.R. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-31

    Direct liquefaction research at the Energy & Environmental Research Center (EERC) has, for a number of years, concentrated on developing a direct liquefaction process specifically for low-rank coals (LRCs) through the use of hydrogen-donating solvents and solvents similar to coal-derived liquids, the water/gas shift reaction, and lower-severity reaction conditions. The underlying assumption of all of the research was that advantage could be taken of the reactivity and specific qualities of LRCs to produce a tetrahydrofuran (THF)-soluble material that might be easier to upgrade than the soluble residuum produced during direct liquefaction of high-rank coals. A multistep approach was taken to produce the THF-soluble material, consisting of (1) preconversion treatment to prepare the coal for solubilization, (2) solubilization of the coal in the solvent, and (3) polishing to complete solubilization of the remaining material. The product of these three steps can then be upgraded during a traditional hydrotreatment step. The results of the EERC`s research indicated that additional studies to develop this process more fully were justified. Two areas were targeted for further research: (1) determination of the recyclability of the solvent used during solubilization and (2) determination of the minimum severity required for hydrotreatment of the liquid product. The current project was funded to investigate these two areas.

  17. Economically viable large-scale hydrogen liquefaction

    Science.gov (United States)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  18. FY 1980 Report on results of Sunshine Project. Development of coal liquefaction techniques (Development of materials for the coal liquefaction plant); 1980 nendo sekitan ekika gijutsu no kaihatsu seika hokokusho. Sekitan ekika plant zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    A 1 T/D solvent-extraction type coal liquefaction test plant was constructed and operated to obtain the technical data for the design of, and establish the techniques for, an efficient coal liquefaction plant. The FY 1980 program includes surveys on the materials for coal liquefaction plants, covering those already developed and under development, to clarify the problematical points; drafting the test schedules; and conceptual designs of the material testing facilities. The major problems involved in the materials for coal liquefaction plants include erosion by fluidizing coal slurry, hydrogen embrittlement of the reactor materials, and corrosion by the liquefaction products (e.g., stress-corrosion cracking of austenitic steel, and corrosion by organic acids). The surveys on materials research trends suggest that USA seems to concentrate their research efforts on the reactor materials. The corrosion tests are mostly of in-plant tests, but the stress corrosion and slurry erosion tests are conducted on a laboratory scale. The conceptual designs are drawn for some testing units, e.g., the loop type material testing unit and basic testing unit for jet-spray type slurry erosion. (NEDO)

  19. Techno-economic Assessment of Integrated Hydrothermal Liquefaction and Combined Heat and Power Production from Lignocellulose Residues

    Directory of Open Access Journals (Sweden)

    Mohamed Magdeldin

    2018-03-01

    Full Text Available Waste biomass as a mean for global carbon dioxide emissions mitigation remains under-utilized. This is mainly due to the low calorific value of virgin feedstock, characterized generally with high moisture content. Aqueous processing, namely hydrothermal liquefaction in subcritical water conditions, has been demonstrated experimentally to thermally densify solid lignocellulose into liquid fuels without the pre-requisite and energy consuming drying step. This study presents a techno-economic evaluation of an integrated hydrothermal liquefaction system with downstream combined heat and power production from forest residues. The utilization of the liquefaction by-products and waste heat from the elevated processing conditions, coupled with the chemical upgrading of the feedstock enables the poly-generation of biocrude, electricity and district heat. The plant thermal efficiency increases by 3.5 to 4.6% compared to the conventional direct combustion case. The economic assessment showed that the minimum selling price of biocrude, based on present co-products market prices, hinders commercialization and ranges between 138 EUR to 178 EUR per MWh. A sensitivity analysis and detailed discussion on the techno-economic assessment results are presented for the different process integration and market case scenarios.

  20. Renewable chemical feedstocks from integrated liquefaction processing of lingocellulosic materials using microwave energy

    Science.gov (United States)

    Junming Xu; Jianchun Jiang; Chung-Yun Hse; Todd F. Shupe

    2012-01-01

    The objective of this investigation was to find a simple method for the production of phenolic rich products and sugar derivatives (biopolyols) via separation of liquefied lingocellulosic materials. Liquefaction of lignocellulosic materials was conducted in methanol at 180 °C for 15 min with the conversion of raw materials at about 75%. After liquefaction, the...

  1. The direct liquefaction proof of concept program

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Lee, L.K.; Pradhan, V.R.; Stalzer, R.H. [New York & Puritan Avenues, Lawrenceville, NJ (United States)

    1995-12-31

    The goal of the Proof of Concept (POC) Program is to develop Direct Coal Liquefaction and associated transitional technologies towards commercial readiness for economically producing premium liquid fuels from coal in an environmentally acceptable manner. The program focuses on developing the two-stage liquefaction (TSL) process by utilizing geographically strategic feedstocks, commercially feasible catalysts, new prototype equipment, and testing co-processing or alternate feedstocks and improved process configurations. Other high priority objectives include dispersed catalyst studies, demonstrating low rank coal liquefaction without solids deposition, improving distillate yields on a unit reactor volume basis, demonstrating ebullated bed operations while obtaining scale-up data, demonstrating optimum catalyst consumption using new concepts (e.g. regeneration, cascading), producing premium products through on-line hydrotreating, demonstrating improved hydrogen utilization for low rank coals using novel heteroatom removal methods, defining and demonstrating two-stage product properties for upgrading; demonstrating efficient and economic solid separation methods, examining the merits of integrated coal cleaning, demonstrating co-processing, studying interactions between the preheater and first and second-stage reactors, improving process operability by testing and incorporating advanced equipment and instrumentation, and demonstrating operation with alternate coal feedstocks. During the past two years major PDU Proof of Concept runs were completed. POC-1 with Illinois No. 6 coal and POC-2 with Black Thunder sub-bituminous coal. Results from these operations are continuing under review and the products are being further refined and upgraded. This paper will update the results from these operations and discuss future plans for the POC program.

  2. The influence of soil moisture transfer on building heat loss via the ground

    NARCIS (Netherlands)

    Janssen, H.M.; Carmeliet, J.; Hens, H.

    2004-01-01

    In this paper, the influence of soil moisture transfer on building heat loss via the ground is investigated by comparing fully coupled simulations with linear thermal simulations. The observed influences of coupling are (1) the larger amplitude of surface temperature, (2) the variation of thermal

  3. Hydrothermal Liquefaction of the Microalgae Phaeodactylum tricornutum

    DEFF Research Database (Denmark)

    Sigaard Christensen, Per; Peng, Gaël; Vogel, Frédéric

    2014-01-01

    The microalgae Phaeodactylum tricornutum was processed by hydrothermal liquefaction in order to assess the influence of reaction temperature and reaction time on the product and elemental distribution. The experiments were carried out at different reaction times (5 and 15 min) and over a wide range...

  4. A study on the hydrotreating of coal hydro liquefaction residue and its kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.; Lu, X.; Zhang, D.; Gao, J. [Department of Chemical Engineering for Energy Resources, East China University of Science and Technology, Shanghai (China)

    2010-09-15

    Hydro-conversion of coal hydro liquefaction residue obtained from a 6 t/day pilot plant of Shenhua Group in Shanghai was carried out under the hydrotreating condition. The coal hydro liquefaction residue and its product were extracted in sequence with n-hexane, toluene and tetrahydrofuran in a Soxhlet apparatus. The n-hexane soluble fractions increased with the increase of reaction temperature and time. Its amount increased from 14.14% to a maximum of 40.86% under the conditions of 470 {sup o}C and 30 min, which meant that moderate extension of coal residence time in the coal hydro liquefaction reactor is beneficial to the increase of oil yield. A 4-lumped kinetic model of coal hydro liquefaction residue hydro-conversion was performed using solubility-based lumped fractions. In the model, the tetrahydrofuran insoluble fractions were classified into two parts: easily reactive part and unreactive part. The kinetic parameters were estimated by a fourth-order Runge-Kutta method and a nonlinear least squares method, and the apparent activation energies were calculated according to the Arrhenius Equation. A large quantity of total catalyst consisting of remained liquefaction catalyst, part of the mineral from raw coal and additive Fe-based catalyst could considerably reduce the apparent activation energy of hydro-conversion for the toluene insoluble/tetrahydrofuran insoluble fractions to 36.79 kJ-mol{sup -1}. The calculated values of the model coincided well with the experimental values. (authors)

  5. Numerical simulation of liquefaction behaviour of granular materials ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    cles using Discrete Element Method (DEM) is used to study the liquefaction behaviour of ... studies have focussed on the stress-strain relation- ... experimentation still remains quite problematic. ... distorting the periodic cell and changing its vol-.

  6. Whole Algae Hydrothermal Liquefaction: 2014 State of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua; Snowden-Swan, Lesley J.; Anderson, Daniel; Hallen, Richard T.; Schmidt, Andrew J.; Albrecht, Karl O.; Elliott, Douglas C.

    2014-07-30

    This report describes the base case yields and operating conditions for converting whole microalgae via hydrothermal liquefaction and upgrading to liquid fuels. This serves as the basis against which future technical improvements will be measured.

  7. Catalytic subcritical water liquefaction of flax straw for high yield of furfural

    International Nuclear Information System (INIS)

    Harry, Inibehe; Ibrahim, Hussameldin; Thring, Ron; Idem, Raphael

    2014-01-01

    There is substantial interest in the application of biomass as a renewable fuel or for production of chemicals. Flax straw can be converted into valuable chemicals and biofuels via liquefaction in sub-critical water. In this study, the yield of furfural and the kinetics of flax straw liquefaction under sub-critical water conditions were investigated using a high-pressure autoclave reactor. The liquefaction was conducted in the temperature range of 175–325 °C, pressure of 0.1 MPa–8 MPa, retention time in the range of 0 min–120 min, and flax straw mass fraction (w F ) of 5–20 %. Also, the effect of acid catalysts on furfural yield was studied. The kinetic parameters of flax straw liquefaction were determined using nonlinear regression of the experimental data, assuming second-order kinetics. The apparent activation energy was found to be 27.97 kJ mol −1 while the reaction order was 2.0. The optimum condition for furfural yield was at 250 °C, 6.0 MPa, w F of 5% and 0 retention time after reaching set conditions. An acid catalyst was found to selectively favour furfural yield with 40% flax straw conversion. - Highlights: • Flax straw liquefaction in subcritical water. • Creation of a reaction pathway that can be used to optimized furfural production. • Acid catalyst selectively favoured furfural yield with respect to other liquid products. • At the highest process temperature of 325 °C, a carbon conversion of 40% was achieved. • Activation energy and reaction order was 28 kJ/mol and 2.0 respectively

  8. Fiscal 1991 report on the brown coal liquefaction section meeting; 1991 nendo kattan ekika bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    At the 1st through 5th brown coal liquefaction group meetings held for the fiscal year, reports are delivered and discussions are made about the progress of research and development. At the 1st meeting, a fiscal 1991 brown coal liquefaction research plan is introduced, and discussed. At the 2nd meeting, an interim report on the brown coal liquefaction technology development project is discussed. At the 3rd meeting (a joint meeting of the brown coal and bituminous coal liquefaction groups), an agendum entitled 'what the development of brown/bituminous coal liquefaction technologies for the 21st century should be' is reported, and discussed. At the 4th meeting, reports are made on the results of deliberation at the Industrial Technology Council, progress of the follow-up study, progress of the collection of achievements, and so forth. At the 5th meeting, the outline of the follow-up study, the collection of achievements in the pilot plant study (a project report preparation schedule and materials evaluation), the progress of pilot plant dismantling work, etc., are reported and discussed. (NEDO)

  9. Fiscal 1991 report on the brown coal liquefaction section meeting; 1991 nendo kattan ekika bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-03-01

    At the 1st through 5th brown coal liquefaction group meetings held for the fiscal year, reports are delivered and discussions are made about the progress of research and development. At the 1st meeting, a fiscal 1991 brown coal liquefaction research plan is introduced, and discussed. At the 2nd meeting, an interim report on the brown coal liquefaction technology development project is discussed. At the 3rd meeting (a joint meeting of the brown coal and bituminous coal liquefaction groups), an agendum entitled 'what the development of brown/bituminous coal liquefaction technologies for the 21st century should be' is reported, and discussed. At the 4th meeting, reports are made on the results of deliberation at the Industrial Technology Council, progress of the follow-up study, progress of the collection of achievements, and so forth. At the 5th meeting, the outline of the follow-up study, the collection of achievements in the pilot plant study (a project report preparation schedule and materials evaluation), the progress of pilot plant dismantling work, etc., are reported and discussed. (NEDO)

  10. Fiscal 1993 report. Coal liquefaction committee; 1993 nendo sekitan ekika iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The committee in this fiscal year had the 1st meeting in July 1993, the 2nd in December 1993, and the 3rd in March 1994, when fiscal 1993 research and development programs and results were reported and discussed. Reported and discussed at the 2nd meeting were the compilation of brown coal liquefaction technology development project results, evaluation report on the same, hydrorefining of oil from brown coal and the research and development of application technologies for the same, and an environmental safety evaluation test on the same. In selecting a standard coal for the operation of the 150 ton/day pilot plant, PSU (process supporting unit)-aided studies were made on the analytical values presented by coals, yield of the liquid, yield of the liquefaction residue, yield of the generated gas, amount of the hydrogen consumed, coal oil properties, liquefaction residue properties, operationality, etc. On-site investigations were conducted also in Indonesia, and a conclusion was reached that Tanito Harum coal would be the most suitable for the pilot plant. Concerning the liquefaction catalyst for the pilot plant, a report was given on a comparison made between the activity of a synthetic iron sulfide and that of natural pyrite. (NEDO)

  11. The contrasting responses of soil microorganisms in two rice cultivars to elevated ground-level ozone

    International Nuclear Information System (INIS)

    Feng, Youzhi; Yu, Yongjie; Tang, Haoye; Zu, Qianhui; Zhu, Jianguo; Lin, Xiangui

    2015-01-01

    Although elevated ground-level O 3 has a species–specific impact on plant growth, the differences in soil biota responses to O 3 pollution among rice cultivars are rarely reported. Using O 3 Free-Air Concentration Enrichment, the responses of the rhizospheric bacterial communities in the O 3 -tolerant (YD6) and the O 3 -sensitive (IIY084) rice cultivars to O 3 pollution and their differences were assessed by pyrosequencing at rice tillering and anthesis stages. Elevated ground-level O 3 negatively influenced the bacterial community in cultivar YD6 at both rice growth stages by decreasing the bacterial phylogenetic diversities and response ratios. In contrast, in cultivar IIY084, the bacterial community responded positively at the rice tillering stage under O 3 pollution. However, several keystone bacterial guilds were consistently negatively affected by O 3 pollution in two rice cultivars. These findings indicate that continuously O 3 pollution would negatively influence rice agroecosystem and the crop cultivar is important in determining the soil biota responses to elevated O 3 . - Highlights: • We investigated the soil biota in two rice cultivars in presence of elevated O 3 . • The contrasting responses of soil biota were found between two rice cultivars. • Some keystone bacterial guilds were consistently negatively affected by O 3 pollution. • The crop cultivar is important in determining soil biota responses to elevated O 3 . - The crop cultivar is important in determining the soil biota responses to elevated O 3

  12. Deoxy-liquefaction of three different species of macroalgae to high-quality liquid oil.

    Science.gov (United States)

    Li, Jinhua; Wang, Guoming; Chen, Ming; Li, Jiedong; Yang, Yaoyao; Zhu, Qiuyan; Jiang, Xiaohuan; Wang, Zonghua; Liu, Haichao

    2014-10-01

    Three species of macroalgae (Ulva lactuca, Laminaria japonica and Gelidium amansii) were converted into liquid oils via deoxy-liquefaction. The elemental analysis, FTIR and GC-MS results showed that the three liquid oils were all mainly composed of aromatics, phenols, alkanes and alkenes, other oxygen-containing compounds, and some nitrogen-containing compounds though there were some differences in terms of their types or contents due to the different constituents in the macroalgae feedstocks. The oxygen content was only 5.15-7.30% and the H/C molar ratio was up to 1.57-1.73. Accordingly, the HHV of the three oils were 42.50, 41.76 and 40.00 MJ/kg, respectively. The results suggested that U. lactuca, L. japonica and G. amansii have potential as biomass feedstock for fuel and chemicals and that deoxy-liquefaction technique may be an effective way to convert macroalgae into high-quality liquid oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, G.P. [ed.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  14. Liquefaction mechanism induced by dynamic excitation modeled in Plaxis AE with the use of UBC and MOHR–coulomb constitutive relationships

    Directory of Open Access Journals (Sweden)

    Borowiec Anna

    2016-03-01

    Full Text Available Computer Aided Engineering (CAE is commonly used in modern design of the various types of structures. There are two main issues/aspects that should be consider while using CAE in Geotechnics: the basic theory and material model. The paper deals with a problem of choosing the proper constitutive relationships which according to the authors are equally important in obtaining correct and reasonable results. This problem is illustrated by an example of dynamic calculations of fully saturated non-cohesive soils where liquefaction phenomenon is most likely to occur.

  15. Liquefaction of Semen Generates and Later Degrades a Conserved Semenogelin Peptide That Enhances HIV Infection

    Science.gov (United States)

    Liu, Haichuan; Usmani, Shariq M.; Neidleman, Jason; Müller, Janis A.; Avila-Herrera, Aram; Gawanbacht, Ali; Zirafi, Onofrio; Chu, Simon; Dong, Ming; Kumar, Senthil T.; Smith, James F.; Pollard, Katherine S.; Fändrich, Marcus; Kirchhoff, Frank; Münch, Jan; Witkowska, H. Ewa; Greene, Warner C.

    2014-01-01

    ABSTRACT Semen enhances HIV infection in vitro, but how long it retains this activity has not been carefully examined. Immediately postejaculation, semen exists as a semisolid coagulum, which then converts to a more liquid form in a process termed liquefaction. We demonstrate that early during liquefaction, semen exhibits maximal HIV-enhancing activity that gradually declines upon further incubation. The decline in HIV-enhancing activity parallels the degradation of peptide fragments derived from the semenogelins (SEMs), the major components of the coagulum that are cleaved in a site-specific and progressive manner upon initiation of liquefaction. Because amyloid fibrils generated from SEM fragments were recently demonstrated to enhance HIV infection, we set out to determine whether any of the liquefaction-generated SEM fragments associate with the presence of HIV-enhancing activity. We identify SEM1 from amino acids 86 to 107 [SEM1(86-107)] to be a short, cationic, amyloidogenic SEM peptide that is generated early in the process of liquefaction but that, conversely, is lost during prolonged liquefaction due to the activity of serine proteases. Synthetic SEM1(86-107) amyloids directly bind HIV-1 virions and are sufficient to enhance HIV infection of permissive cells. Furthermore, endogenous seminal levels of SEM1(86-107) correlate with donor-dependent variations in viral enhancement activity, and antibodies generated against SEM1(86-107) recognize endogenous amyloids in human semen. The amyloidogenic potential of SEM1(86-107) and its virus-enhancing properties are conserved among great apes, suggesting an evolutionarily conserved function. These studies identify SEM1(86-107) to be a key, HIV-enhancing amyloid species in human semen and underscore the dynamic nature of semen's HIV-enhancing activity. IMPORTANCE Semen, the most common vehicle for HIV transmission, enhances HIV infection in vitro, but how long it retains this activity has not been investigated. Semen

  16. Deconvolution effect of near-fault earthquake ground motions on stochastic dynamic response of tunnel-soil deposit interaction systems

    Directory of Open Access Journals (Sweden)

    K. Hacıefendioğlu

    2012-04-01

    Full Text Available The deconvolution effect of the near-fault earthquake ground motions on the stochastic dynamic response of tunnel-soil deposit interaction systems are investigated by using the finite element method. Two different earthquake input mechanisms are used to consider the deconvolution effects in the analyses: the standard rigid-base input and the deconvolved-base-rock input model. The Bolu tunnel in Turkey is chosen as a numerical example. As near-fault ground motions, 1999 Kocaeli earthquake ground motion is selected. The interface finite elements are used between tunnel and soil deposit. The mean of maximum values of quasi-static, dynamic and total responses obtained from the two input models are compared with each other.

  17. Reducing capital and operating costs in gas processing, liquefaction, and storage

    Energy Technology Data Exchange (ETDEWEB)

    Krusen, III, L C [Phillips Petroleum Co., Bartlesville, OK (United States). Research Div.

    1997-06-01

    The LNG industry is unanimous that capital costs must be reduced throughout the chain, and especially at the liquefaction facility including associated gas processing and LNG storage. The Ken ai LNG plant provides an example of how both reduced capital and operating costs were attained. This paper will cover cost production strategies that can be applied to liquefaction processes in general, and will than focus on their realization in the Phillips Optimized Cascade LNG process. The paper concludes that reduced LNG plant costs are attainable. (Author).

  18. Reducing capital and operating costs in gas processing, liquefaction, and storage

    International Nuclear Information System (INIS)

    Krusen, L.C. III

    1997-01-01

    The LNG industry is unanimous that capital costs must be reduced throughout the chain, and especially at the liquefaction facility including associated gas processing and LNG storage. The Ken ai LNG plant provides an example of how both reduced capital and operating costs were attained. This paper will cover cost production strategies that can be applied to liquefaction processes in general, and will than focus on their realization in the Phillips Optimized Cascade LNG process. The paper concludes that reduced LNG plant costs are attainable. (Author)

  19. Co-Liquefaction of Elbistan Lignite with Manure Biomass; Part 3 - Effect of Reaction Time and Temperature

    Science.gov (United States)

    Koyunoglu, Cemil; Karaca, Hüseyin

    2017-12-01

    Most of the liquefaction process were carried out in a batch reactor, in which the residence time of the liquefaction products is long enough to favour the retrogressive reactions. To minimize retrogressive reactions, the liquefaction of coal was carried out in a flowing solvent reactor in which a fixed bed of coal is continuously permeated by hot solvent. Solvent flowing through the coal bed carries the liquefaction products out of the reactor. Unlike experiments carried out under similar conditions in a batch reactor no increase in solid residue is observed during long time high temperature runs in the flowing solvent reactor. There is a greater appreciation of the importance of retrograde, or polymerization, reactions. If the free radicals formed when coal breaks down are not quickly capped with hydrogen, they react with each other to form large molecules that are much harder to break down than the original coal. Reaction time impacts both the co-liquefaction cost and the product yield. So as to study this idea, the experiments of Elbistan Lignite (EL) with manure co-liquefaction carried out by changing the reaction time from 30 to 120 minutes. As a result, the greatest oil products yields obtained at 60 minutes. Therefore, by thinking about the oil products yield values acquired, the optimal reaction time was obtained to be 60 minutes for Elbistan lignite (EL) with manure liquefied with the temperature of 350°C and 400°C. Above 425°C did not examine because solvent (tetraline) loses its function after 425 °C. The obtained optimum temperature found 400°C due to higher total conversion of liquefaction products and also oil+gas yields.

  20. Feedback of the behaviour of a silo founded on a compressible soil improved by floating stone columns

    Directory of Open Access Journals (Sweden)

    Bahar Ramdane

    2018-01-01

    Full Text Available The coastal city of Bejaia, located 250 kilometers east of the capital Algiers, Algeria, is characterized by soft soils. The residual grounds encountered on the first 40 meters usually have a low bearing capacity, high compressibility, insufficient strength, and subject to the risk of liquefaction. These unfavorable soil conditions require deep foundations or soil improvement. Since late 1990s, stone columns technique is used to improve the weak soils of the harbor area of the city. A shallow raft foundation on soft soil improved by stone columns was designed for a heavy storage steel silo and two towers. The improvement of 18m depth have not reached the substratum located at 39m depth. The stresses transmitted to the service limit state are variable 73 to 376 kPa. A rigorous and ongoing monitoring of the evolution of loads in the silo and settlements of the soil was carried out during 1400 days that is from the construction of foundations in 2008 to 2012. After the loading of the silo in 2010, settlement occurred affecting the stability of the towers due to excessive differential settlements. Consequently, the towers were inclined and damaged the transporter. This paper presents and discusses the experience feedback of the behavior of these structures. Numerical calculations by finite elements have been carried and the results are compared with the measurements.

  1. Temporal monitoring of the soil freeze-thaw cycles over snow-cover land by using off-ground GPR

    KAUST Repository

    Jadoon, Khan

    2013-07-01

    We performed off-ground ground-penetrating radar (GPR) measurements over a bare agricultural field to monitor the freeze-thaw cycles over snow-cover. The GPR system consisted of a vector network analyzer combined with an off-ground monostatic horn antenna, thereby setting up an ultra-wideband stepped-frequency continuous-wave radar. Measurements were performed during nine days and the surface of the bare soil was exposed to snow fall, evaporation and precipitation as the GPR antenna was mounted 110 cm above the ground. Soil surface dielectric permittivity was retrieved using an inversion of time-domain GPR data focused on the surface reflection. The GPR forward model used combines a full-waveform solution of Maxwell\\'s equations for three-dimensional wave propagation in planar layered media together with global reflection and transmission functions to account for the antenna and its interactions with the medium. Temperature and permittivity sensors were installed at six depths to monitor the soil dynamics in the top 8 cm depth. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and permittivity data and in particular freeze and thaw events were clearly visible. A good agreement of the trend was observed between the temperature, permittivity and GPR time-lapse data with respect to five freeze-thaw cycles. The GPR-derived permittivity was in good agreement with sensor observations. The proposed method appears to be promising for the real-time mapping and monitoring of the frozen layer at the field scale. © 2013 IEEE.

  2. Electrical resistivity tomography investigation of coseismic liquefaction and fracturing at San Carlo, Ferrara Province, Italy

    Directory of Open Access Journals (Sweden)

    Nasser Abu Zeid

    2012-10-01

    Full Text Available Massive surface fracturing and sand ejection took place during the main shock of the May 20, 2012, earthquake (Ml = 5.9 in the Emilia-Romagna region, northern Italy. These phenomena were induced by the liquefaction of water-saturated sand layers, and they damaged several buildings, as well as many roads and sidewalks. They were clustered between the villages of Sant'Agostino and Vigarano Mainarda, located along a paleo-reach of the Reno River [Papathanassiou et al. 2012, this volume]. The subsurface surrounding two major (several decameters long ground ruptures was investigated using electrical resistivity tomographies (ERT, as resistivity is strongly affected by the chemico-physical conditions of loose sediments. Italian regulations require the Municipalities within seismically active areas to develop maps of the potential liquefaction risk. Not all of the territories that are under this kind of risk have been investigated to date. A strong effort to improve this knowledge is therefore needed. Noninvasive geophysical methods can help to fill this gap, as high-resolution techniques are available with good result-to-cost ratios. Among the available methodologies, the most suitable are the methods based on electrical resistivity and permittivity, as they are highly sensitive to the presence of underground water. The ERT method has been carried out successfully across active faults, providing crucial paleoseismological information [Caputo et al. 2003, 2007]. […

  3. Monitoring of arched sched ground layer

    International Nuclear Information System (INIS)

    Listjak, M.; Slaninka, A.; Rau, L.; Pajersky, P.

    2015-01-01

    Arched Shed was a part of controlled area of NPP A1 site in Jaslovske Bohunice (Slovakia). It had been used for temporary storage of loose radioactive waste (RAW) which has been characterized within the BIDSF project C13, Characterisation of Loose Radioactive Waste'. Stored RAW has been treated and sorted within the project ',Realization of the 2 nd stage of Decommissioning Project of NPP A1'. Area of Arched Shed represents approximately 270 m 2 (45 m x 6 m). Ground layer of the AS consists mostly of soil with solid elements (stones and gravel). The aim of monitoring was to remove the contaminated soil up to 1 m below ground level. Requirement for detail monitoring of the Arched Shed ground layer resulted from conclusions of the BIDSF project C13 which has proved that massic activity 137 Cs of soil was up to few thousands Bq·kg -1 in underground layer. Dominant easy to measure radionuclide in the soil is 137 Cs which has been used as a key radionuclide for methodology of in-situ soil monitoring. Following methods has been applied during characterization: dose rate survey, sampling from defined ground layer followed by laboratory gamma spectrometry analysis by the accredited testing laboratory of radiation dosimetry VUJE (S-219) and in-situ scintillation gamma spectrometry by 1.5''x1.5'' LaBr detector. Massic activity of the remaining soil (not excavated) comply the criteria for free release into the environment (Government Regulation of Slovak Republic 345/2006 Coll.). Area was filled up by non-contaminated soil up to the ground level of surroundings. Afterward the area was covered with geotextile and concrete panels and nowadays it is ready for further usage within the NPP A1 decommissioning project as a place for treatment, conditioning and disposal of contaminated soil and concrete. (authors)

  4. Seismic fragility formulations for segmented buried pipeline systems including the impact of differential ground subsidence

    Energy Technology Data Exchange (ETDEWEB)

    Pineda Porras, Omar Andrey [Los Alamos National Laboratory; Ordaz, Mario [UNAM, MEXICO CITY

    2009-01-01

    Though Differential Ground Subsidence (DGS) impacts the seismic response of segmented buried pipelines augmenting their vulnerability, fragility formulations to estimate repair rates under such condition are not available in the literature. Physical models to estimate pipeline seismic damage considering other cases of permanent ground subsidence (e.g. faulting, tectonic uplift, liquefaction, and landslides) have been extensively reported, not being the case of DGS. The refinement of the study of two important phenomena in Mexico City - the 1985 Michoacan earthquake scenario and the sinking of the city due to ground subsidence - has contributed to the analysis of the interrelation of pipeline damage, ground motion intensity, and DGS; from the analysis of the 48-inch pipeline network of the Mexico City's Water System, fragility formulations for segmented buried pipeline systems for two DGS levels are proposed. The novel parameter PGV{sup 2}/PGA, being PGV peak ground velocity and PGA peak ground acceleration, has been used as seismic parameter in these formulations, since it has shown better correlation to pipeline damage than PGV alone according to previous studies. By comparing the proposed fragilities, it is concluded that a change in the DGS level (from Low-Medium to High) could increase the pipeline repair rates (number of repairs per kilometer) by factors ranging from 1.3 to 2.0; being the higher the seismic intensity the lower the factor.

  5. Impacts of Woody Invader Dillenia suffruticosa (Griff. Martelli on Physio-chemical Properties of Soil and, Below and Above Ground Flora

    Directory of Open Access Journals (Sweden)

    B.A.K. Wickramathilake

    2014-01-01

    Full Text Available Dillenia suffruticosa (Griffith Martelli, that spreads fast in low-lying areas in wet zone of Sri Lanka is currently listed as a nationally important Invasive Alien Species that deserves attention in ecological studies. Thus, impact of this woody invader on physical, chemical properties of soil and below and above ground flora was investigated. Five sampling sites were identified along a distance of 46km from Avissawella to Ratnapura. At each site, two adjacent plots [1m x10m each for D. suffruticosa present (D+ and absent (D-] were outlined. Physical and chemical soil parameters, microbial biomass and number of bacterial colonies in soil were determined using standard procedures and compared between D+ and D- by ANOVA using SPSS. Rate of decomposition of D. suffruticosa leaves was also determined using the litter bag technique at 35% and 50% moisture levels. Above ground plant species richness in sample stands was compared using Jaccard and Sorenson diversity indices.  Decomposition of D. suffruticosa leaves was slow, but occurred at a more or less similar rate irrespective of moisture content of soil. Particle size distribution in D+ soil showed a much higher percentage of large soil particles.  Higher % porosity in D+ sites was a clear indication that the soil was aerated.  The pH was significantly lower for D+ than D- thus developing acidic soils whereas conductivity has been significantly high making soil further stressed. The significant drop in Cation Exchange Capacity (CEC in D+ soil was a remarkable finding to be concerned with as it correlated with fertility of soil. Significantly higher values of phosphates reported in D+ soil support the idea that plant invaders are capable to increase phosphates in soil. Higher biomass values recorded for D+ sites together with higher number of bacterial colonies could be related to the unexpectedly recorded higher Organic Carbon. Both  the  Jaccard  and  Sorenson   indices indicated  that

  6. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan

    2015-09-18

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  7. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan; Weihermller, Lutz; McCabe, Matthew; Moghadas, Davood; Vereecken, Harry; Lambot, Sbastien

    2015-01-01

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  8. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Khan Zaib Jadoon

    2015-09-01

    Full Text Available We tested an off-ground ground-penetrating radar (GPR system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  9. Analysis of soils contaminated with petroleum constituents

    International Nuclear Information System (INIS)

    O'Shay, T.A.; Hoddinott, K.

    1994-01-01

    This symposium was held in Atlanta, Georgia on June 24, 1993. The purpose of the symposium was to provide a forum for exchange of information on petroleum contaminated soils. When spilled on the ground, petroleum products can cause massive problems in the environment. In this Special Technical Publication (STP), papers were selected in two categories; the analytical procedures for soil contaminated with petroleum hydrocarbons and the behavior of hydrocarbon contaminated soils. Individual papers have been processed separately for inclusion in the appropriate data bases

  10. Fiscal 1994 report. Liquefaction key technology subcommittee; 1994 nendo ekika kiban gijutsu bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The subcommittee held the 1st meeting in August 1994 and the 2nd in March 1995, when preceding fiscal year's research results, fiscal 1994 research plans, fiscal 1994 research results, etc., were introduced, and deliberated. In the study of hydrorefining of naphtha, kerosene, and light oil fractions, a nitrogen concentration level of not more than 5 ppm was achieved by refining oils from Indonesian coal. Studies were also made about the two-step hydrorefining system, the relationship between the coal oil refining level and sludge formation, etc. In the research for the development of novel catalysts for upgrading coal oil, the active life of a nickel-supporting catalyst for hydrogenation at the 1st step was somewhat prolonged with an increase in the amount of nickel. In the study of coal liquefaction conditions, an AWIP method was deliberated, wherein liquefaction process waste water was utilized as one of catalytic component adjusting materials. For upgrading liquefaction key technologies, studies were made for catalyst improvement and pretreatment method development, and about the behavior of liquefaction reaction in a high boiling solvent-aided process. (NEDO)

  11. Efficiency evaluation of ground-penetrating radar by the results of measurement of dielectric properties of soils

    Energy Technology Data Exchange (ETDEWEB)

    Khakiev, Zelimkhan; Kislitsa, Konstantin; Yavna, Victor [Rostov State Transport University, Rostov-on-Don (Russian Federation)

    2012-12-15

    The work considers the depth evaluation of ground penetrating radar (GPR) surveys using the attenuation factor of electromagnetic radiation in a medium. A method of determining the attenuation factor of low-conductive non-magnetic soils is developed based on the results of direct measurements of permittivity and conductivity of soils in the range of typical frequencies of GPR. The method relies on measuring the shift and width of the resonance line after a soil sample is being placed into a tunable cavity resonator. The advantage of this method is the preservation of soil structure during the measurement.

  12. Studies on characteristics of fluid dynamics in the coal liquefaction reactor; Sekitan ekika hanno tonai no ryudo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Sakawaki, K.; Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Mochizuki, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Tachikawa, N.; Moki, T.; Ishikawa, I. [Japan Atomic Energy Research Institute, Tokyo (Japan)

    1996-10-28

    To design the coal liquefaction reactor of large scale plant in future, it is important to understand characteristics of fluid dynamics within the coal liquefaction reactor. In this study, to measure the fluid dynamics of liquid phase within the coal liquefaction reactor operated under high temperature and high pressure coal liquefaction condition, neutron attenuating tracer (NAT) technique, one of the tracer test methods, was applied using 1 t/d coal treating PSU. The residence time of liquid phase within the reactor can be measured by utilizing property of neutron of being absorbed by materials. The tracer was injected at the inlets of first and third reactors, and the neutron was counted at each outlet. The concentration of tracer was derived from the discrete value, to determine the residence time distribution of liquid phase. The mean residence time of liquid phase in the single first reactor and in the total three reactors were prolonged under the severe operation conditions of liquefaction. The more severe the liquefaction operation condition was, the more active the mixing of liquid phase was in the first reactor. It was found that the progress of reaction was accelerated. 2 refs., 5 figs., 1 tab.

  13. Allowable residual contamination levels of radionuclides in soil from pathway analysis

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Baes, C.F. III

    1987-01-01

    The Remedial Action Program (RAP) at Oak Ridge National Laboratory will include well drilling, facility upgrades, and other waste management operations likely to involve soils contaminated with radionuclides. A preliminary protocol and generalized criteria for handling contaminated soils is needed to coordinate and plan RAP activities, but there exists only limited information on contaminate nature and distribution at ORNL RAP sites. Furthermore, projections of long-term decommissioning and closure options for these sites are preliminary. They have adapted a pathway analysis model, DECOM, to quantify risks to human health from radionuclides in soil and used it to outline preliminary criteria for determining the fate of contaminated soil produced during RAP activities. They assumed that the site could be available for unrestricted use immediately upon decontamination. The pathways considered are consumption of food grown on the contaminated soil, including direct ingestion of soil from poorly washed vegetables, direct radiation from the ground surface, inhalation of resuspended radioactive soil, and drinking water from a well drilled through or near the contaminated soil. We will discuss the assumptions and simplifications implicit in DECOM, the site-specific data required, and the results of initial calculations for the Oak Ridge Reservation

  14. Studying soil properties using visible and near infrared spectral analysis

    Science.gov (United States)

    Moretti, S.; Garfagnoli, F.; Innocenti, L.; Chiarantini, L.

    2009-04-01

    This research is carried out inside the DIGISOIL Project, whose purposes are the integration and improvement of in situ and proximal measurement technologies, for the assessment of soil properties and soil degradation indicators, going form the sensing technologies to their integration and their application in digital soil mapping. The study area is located in the Virginio river basin, about 30 km south of Firenze, in the Chianti area, where soils with agricultural suitability have a high economic value connected to the production of internationally famous wines and olive oils. The most common soil threats, such as erosion and landslide, may determine huge economic losses, which must be considered in farming management practices. This basin has a length of about 23 km for a basin area of around 60,3 Km2. Geological formations outcropping in the area are Pliocene to Pleistocene marine and lacustrine sediments in beds with almost horizontal bedding. Vineyards, olive groves and annual crops are the main types of land use. A typical Mediterranean climate prevails with a dry summer followed by intense and sometimes prolonged rainfall in autumn, decreasing in winter. In this study, three types of VNIR and SWIR techniques, operating at different scales and in different environments (laboratory spectroscopy, portable field spectroscopy) are integrated to rapidly quantify various soil characteristics, in order to acquire data for assessing the risk of occurrence for typically agricultural practice-related soil threats (swelling, compaction, erosion, landslides, organic matter decline, ect.) and to collect ground data in order to build up a spectral library to be used in image analysis from air-borne and satellite sensors. Difficulties encountered in imaging spectroscopy, such as influence of measurements conditions, atmospheric attenuation, scene dependency and sampling representation are investigated and mathematical pre-treatments, using proper algorithms, are applied and

  15. Soil structure interaction analysis for the US NRC seismic safety margins research program

    International Nuclear Information System (INIS)

    Johnson, J.J.

    1979-01-01

    The soil structure interaction project is described. The initial portion of this task concentrates on defining the state-of-the-art in the analysis of the soil structure interaction phenomenon, an assessment of those aspects of the phenomenon which significantly affect structural response, and recommendations for future development of analytical techniques and their verification. A series of benchmark analytical and test problems for which analytical techniques may be evaluated are also sought. This assessment is to be performed in the context of nuclear power plant structures; i.e., massive stiff structures arranged functionally on a particular site. The best estimate methodology will be utilized to develop transfer functions for the overall systems model. These transfer functions will operate on the free-field ground motion yielding the structural base mat response and selected in-structure response quantities for the particular site being analyzed. The transfer functions will depend on a number of parameters, e.g., soil configuration, soil material properties, frequency of the excitation, structural properties, etc. A limited comparison of alternative methods of analysis including a nonlinear analysis will be performed

  16. Outline of research achievement of fiscal 1983. Development of coal liquefaction technologies; Sekitan ekika gijutsu kaihatsu. 1983 nendo kenkyu seika no gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-07-01

    Reported are the results of (1) the development of bituminous coal liquefaction technology, (2) development of brown coal liquefaction technology, (3) experimental fabrication and development of plant equipment and materials therefor, and (4) a survey on coal type selection. The goals of the development are mentioned below. Under Item (1), an optimum liquefaction process and a solid/liquid separation process are to be defined, the effect of iron-based catalysts upon liquefaction reaction is to be elucidated, a technology for constructing a direct hydroliquefaction unit is to be established, and a plant using such a unit is to be developed. Under Item (2), an optimum liquefaction technology is to be established, high in economic efficiency and reliability, by subjecting Australia's Victoria brown coal to the direct liquefaction process. In particular, a new brown coal liquefaction technology is to be established, which will be an organic combination of a novel, raw brown coal slurry dehydration technology, a solvent deashing technology, and the secondary hydrogenation technology, all centering on the basic technology of primary hydrogenation. Under Item (3), reactor materials, accessory materials, slurry pumps, etc., are to be experimentally manufactured and developed further. Under Item (4), data are to be collected on coal resources, coal quality, liquefaction characteristics, etc., during the process of technology development for liquefaction, etc. Furthermore, methods are to be established for the effective utilization of liquefaction products and for their optimum refining. (NEDO)

  17. Evaluation of Soil-Structure Interaction on the Seismic Response of Liquid Storage Tanks under Earthquake Ground Motions

    Directory of Open Access Journals (Sweden)

    Mostafa Farajian

    2017-03-01

    Full Text Available Soil-structure interaction (SSI could affect the seismic response of structures. Since liquid storage tanks are vital structures and must continue their operation under severe earthquakes, their seismic behavior should be studied. Accordingly, the seismic response of two types of steel liquid storage tanks (namely, broad and slender, with aspect ratios of height to radius equal to 0.6 and 1.85 founded on half-space soil is scrutinized under different earthquake ground motions. For a better comparison, the six considered ground motions are classified, based on their pulse-like characteristics, into two groups, named far and near fault ground motions. To model the liquid storage tanks, the simplified mass-spring model is used and the liquid is modeled as two lumped masses known as sloshing and impulsive, and the interaction of fluid and structure is considered using two coupled springs and dashpots. The SSI effect, also, is considered using a coupled spring and dashpot. Additionally, four types of soils are used to consider a wide variety of soil properties. To this end, after deriving the equations of motion, MATLAB programming is employed to obtain the time history responses. Results show that although the SSI effect leads to a decrease in the impulsive displacement, overturning moment, and normalized base shear, the sloshing (or convective displacement is not affected by such effects due to its long period.

  18. Direct liquefaction proof-of-concept facility

    Energy Technology Data Exchange (ETDEWEB)

    Alfred G. Comolli; Peizheng Zhou; HTI Staff

    2000-01-01

    The main objective of the U.S. DOE, Office of Fossil Energy, is to ensure the US a secure energy supply at an affordable price. An integral part of this program was the demonstration of fully developed coal liquefaction processes that could be implemented if market and supply considerations so required, Demonstration of the technology, even if not commercialized, provides a security factor for the country if it is known that the coal to liquid processes are proven and readily available. Direct liquefaction breaks down and rearranges complex hydrocarbon molecules from coal, adds hydrogen, and cracks the large molecules to those in the fuel range, removes hetero-atoms and gives the liquids characteristics comparable to petroleum derived fuels. The current processes being scaled and demonstrated are based on two reactor stages that increase conversion efficiency and improve quality by providing the flexibility to adjust process conditions to accommodate favorable reactions. The first stage conditions promote hydrogenation and some oxygen, sulfur and nitrogen removal. The second stage hydrocracks and speeds the conversion to liquids while removing the remaining sulfur and nitrogen. A third hydrotreatment stage can be used to upgrade the liquids to clean specification fuels.

  19. Mapping wind erosion hazard in Australia using MODIS-derived ground cover, soil moisture and climate data

    International Nuclear Information System (INIS)

    Yang, X; Leys, J

    2014-01-01

    This paper describes spatial modeling methods to identify wind erosion hazard (WEH) areas across Australia using the recently available time-series products of satellite-derived ground cover, soil moisture and wind speed. We implemented the approach and data sets in a geographic information system to produce WEH maps for Australia at 500 m ground resolution on a monthly basis for the recent thirteen year period (2000–2012). These maps reveal the significant wind erosion hazard areas and their dynamic tendencies at paddock and regional scales. Dust measurements from the DustWatch network were used to validate the model and interpret the dust source areas. The modeled hazard areas and changes were compared with results from a rule-set approach and the Computational Environmental Management System (CEMSYS) model. The study demonstrates that the time series products of ground cover, soil moisture and wind speed can be jointly used to identify landscape erodibility and to map seasonal changes of wind erosion hazard across Australia. The time series wind erosion hazard maps provide detailed and useful information to assist in better targeting areas for investments and continuous monitoring, evaluation and reporting that will lead to reduced wind erosion and improved soil condition

  20. Probabilistic evaluation method of stability of ground and slope considering spatial randomness of soil properties

    International Nuclear Information System (INIS)

    Ohtori, Yasuki

    2004-01-01

    In the JEAG4601-1987 (Japan Electric Association Guide for earthquake resistance design), either the conventional deterministic method or probabilistic method is used for evaluating the stability of ground foundations and surrounding slopes in nuclear power plants. The deterministic method, in which the soil properties of 'mean ± coefficient x standard deviation' is adopted for the calculations, is generally used in the design stage to data. On the other hand, the probabilistic method, in which the soil properties assume to have probabilistic distributions, is stated as a future method. The deterministic method facilitates the evaluation, however, it is necessary to clarify the relation with the probabilistic method. In this paper, the relationship between the deterministic and the probabilistic methods are investigated. To do that, a simple model that can take into account the dynamic effect of structures and a simplified method for accounting the spatial randomness are proposed and used for the studies. As the results of studies, it is found that the strength of soil properties is most importation factor for the stability of ground structures and the probability below the safety factor evaluated with the soil properties of mean -1.0 x standard deviation' by the deterministic method is of much lower. (author)

  1. Post-cyclic behavior of low plasticity silt under full and limited liquefaction using triaxial compression testing.

    Science.gov (United States)

    2010-02-01

    During an earthquake, liquefaction does not happen all the time. It depends on the duration and magnitude of the earthquake and the properties (with relationship to resistance of liquefaction) of the low plasticity silt. Under low duration or magnitu...

  2. Dynamic analysis of a reactor building on alluvial soil

    International Nuclear Information System (INIS)

    Arya, A.S.; Chandrasekaran, A.R.; Paul, D.K.; Warudkar, A.S.

    1977-01-01

    The reactor building consists of reinforced concrete internal framed structure enclosed in double containment shells of prestressed and reinforced concrete all resting on a common massive raft. The external cylindrical shell is capped by a spherical dome while the internal shell carries a cellular gird slab. The building is partially buried under ground. The soil consists of alluvial going to 1000 m depth. The site lies in a moderate seismic zone. The paper presents the dynamic analysis of the building including soil-structure interaction. The mathematical model consists of four parallel, suitably interconnected struxtures, namely inner containment, outer containment, internal frame and the calandria vault. Each one of the parallel structures consists of lumped-mass beam elements. The soil below the raft and on the sides of outer containment shell is represented by elastic springs in both horizontal and vertical directions. The various assumpions required to be made in developing the mathematical model are briefly discussed in the paper. (Auth.)

  3. The influence of soil moisture in the unsaturated zone on the heat loss from buildings via the ground

    NARCIS (Netherlands)

    Janssen, H.; Carmeliet, J.; Hens, H.

    2002-01-01

    In calculations of building heat loss via the ground, the coupling with soil moisture transfer is generally ignored, an important hypothesis which will be falsified in this paper. Results from coupled simulations - coupled soil heat and moisture transfer equations and complete surface heat and

  4. Two-stage alkaline hydrothermal liquefaction of wood to biocrude in a continuous bench-scale system

    DEFF Research Database (Denmark)

    Sintamarean, Iulia-Maria; Grigoras, Ionela; Jensen, Claus Uhrenholt

    2017-01-01

    unit. In total, 100 kg of wood paste with 25% dry matter is processed at 400 °C and 30 MPa, demonstrating the usefulness of this two-stage liquefaction strategy. An additional advantage liquefaction of such pretreated wood shows increased biocrude yields with approximately 10% compared to the case...

  5. The soil classification and the subsurface carbon stock estimation with a ground-penetrating radar

    International Nuclear Information System (INIS)

    Onishi, K.; Rokugawa, S.; Kato, Y.

    2002-01-01

    One of the serious problems of the Kyoto Protocol is that we have no effective method to estimate the carbon stock of the subsurface. To solve this problem, we propose the application of ground-penetrating radar (GPR) to the subsurface soil survey. As a result, it is shown that GPR can detect the soil horizons, stones and roots. The fluctuations of the soil horizons in the forest are cleanly indicated as the reflection pattern of the microwaves. Considering the fact that the physical, chemical, and biological characteristics of each soil layer is almost unique, GPR results can be used to estimate the carbon stock in soil by combining with the vertical soil sample survey at one site. Then as a trial, we demonstrate to estimate the carbon content fixed in soil layers based on the soil samples and GPR survey data. we also compare this result with the carbon stock for the flat horizon case. The advantages of GPR usage for this object are not only the reduction of uncertainty and the cost, but also the environmental friendliness of survey manner. Finally, we summarize the adaptabilities of various antennas having different predominant frequencies for the shallow subsurface zone. (author)

  6. Liquefaction of torrefied wood using microwave irradiation

    Science.gov (United States)

    Mengchao Zhou; Thomas Eberhardt; Pingping Xin; Chung-Yun Hse; Hui Pan

    2016-01-01

    Torrefaction is an effective pretreatment method to improve the uniformity and quality of lignocellulosic biomass before further thermal processing (e.g., gasification, combustion). The objective of this study was to determine the impacts of torrefaction as a pretreatment before liquefaction. Wood chips were torrefied for 2 h at three different temperatures (230, 260,...

  7. Lateral displacement and pile instability due to soil liquefaction using numerical model

    Directory of Open Access Journals (Sweden)

    Abdel-Salam Ahmed Mokhtar

    2014-12-01

    Extensive studies were performed to investigate the effects of soil submergence, pile diameter, earthquake magnitude and duration on pile lateral deformation and developed bending moment along pile shaft. Study results show that earthquake magnitude and time duration have a particular effect on the pore water pressure generation and hence pile lateral deformation and bending moments. They also show the benefits of using relatively large piles to control the lateral displacement. Recommendations are presented for designers to perform comprehensive analysis and avoid buckling and plastic hinge failures.

  8. BUSTED BUTTE TEST FACILITY GROUND SUPPORT CONFIRMATION ANALYSIS

    International Nuclear Information System (INIS)

    Bonabian, S.

    1998-01-01

    The main purpose and objective of this analysis is to confirm the validity of the ground support design for Busted Butte Test Facility (BBTF). The highwall stability and adequacy of highwall and tunnel ground support is addressed in this analysis. The design of the BBTF including the ground support system was performed in a separate document (Reference 5.3). Both in situ and seismic loads are considered in the evaluation of the highwall and the tunnel ground support system. In this analysis only the ground support designed in Reference 5.3 is addressed. The additional ground support installed (still work in progress) by the constructor is not addressed in this analysis. This additional ground support was evaluated by the A/E during a site visit and its findings and recommendations are addressed in this analysis

  9. Coal liquefaction still a dream

    Energy Technology Data Exchange (ETDEWEB)

    Overberg, H

    1982-03-19

    Liquefaction of coal is not profitable in West Germany and will not be so far some time to coal. This is true for West German and imported coal. The result may be improved but not changed by combined conversion of coal and top residues of distilleries. These are the main statements of a study carried out by Messrs. Veba Oel AG, Gelsenkirchen, on behalf of the Federal Minister for Research and Technology. The results of the study are presented in 20 volumes.

  10. Investigation of counter-measures in the case of radioactive materials penetration in soils and ground water

    International Nuclear Information System (INIS)

    Sachse, G.; Anders, G.; Puehrer, H.; Stohn, W.

    1975-03-01

    Proceeding from the methods known from hydraulic engineering for the protection of ground waters from penetrating noxious substances, suitable measures for preventing the contamination of ground waters and soils are discussed. Since preventive measures are always of priority, a facility using concrete containers with double walls is considered to be an appropriate method for temporary storage of low and medium activity waste waters. (author)

  11. SUMMARY REPORT OF THE DOE DIRECT LIQUEFACTION PROCESS DEVELOPMENT CAMPAIGN OF THE LATE TWENTIETH CENTURY; FINAL

    International Nuclear Information System (INIS)

    F.P. Burke; S.D. Brandes; D.C. McCoy; R.A. Winschel; D. Gray; G. Tomlinson

    2001-01-01

    Following the petroleum price and supply disruptions of 1973, the U.S. government began a substantial program to fund the development of alternative fuels. Direct coal liquefaction was one of the potential routes to alternative fuels. The direct coal liquefaction program was funded at substantial levels through 1982, and at much lower levels thereafter. Those processes that were of most interest during this period were designed to produce primarily distillate fuels. By 1999, U.S. government funding for the development of direct coal liquefaction ended. Now that the end of this campaign has arrived, it is appropriate to summarize the process learnings derived from it. This report is a summary of the process learnings derived from the DOE direct coal liquefaction process development campaign of the late twentieth century. The report concentrates on those process development programs that were designed to produce primarily distillate fuels and were largely funded by DOE and its predecessors in response to the petroleum supply and price disruptions of the 1970s. The report is structured as chapters written by different authors on most of the major individual DOE-funded process development programs. The focus of the report is process learnings, as opposed to, say, fundamental coal liquefaction science or equipment design. As detailed in the overview (Chapter 2), DOE's direct coal liquefaction campaign made substantial progress in improving the process yields and the quality of the distillate product. Much of the progress was made after termination by 1983 of the major demonstration programs of the ''first generation'' (SRC-II, H-Coal, EDS) processes

  12. Hydrogeology and chemical quality of water and soil at Carroll Island, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, F.J.; Phillips, S.W.

    1996-01-01

    Carroll Island was used for open-air testing of chemical warfare agents from the late 1940's until 1971. Testing and disposal activities weresuspected of causing environmental contamination at 16 sites on the island. The hydrogeology and chemical quality of ground water, surface water, and soil at these sites were investigated with borehole logs, environmental samples, water-level measurements, and hydrologic tests. A surficial aquifer, upper confining unit, and upper confined aquifer were defined. Ground water in the surficial aquifer generally flows from the east-central part of the island toward the surface-water bodies, butgradient reversals caused by evapotranspiration can occur during dry seasons. In the confined aquifer, hydraulic gradients are low, and hydraulic head is affected by tidal loading and by seasonal pumpage from the west. Inorganic chemistry in the aquifers is affected by brackish-water intrusion from gradient reversals and by dissolution ofcarboniferous shell material in the confining unit.The concentrations of most inorganic constituents probably resulted from natural processes, but some concentrations exceeded Federal water-quality regulations and criteria. Organic compounds were detected in water and soil samples at maximum concentrations of 138 micrograms per liter (thiodiglycol in surface water) and 12 micrograms per gram (octadecanoic acid in soil).Concentrations of organic compounds in ground water exceeded Federal drinking-water regulations at two sites. The organic compounds that weredetected in environmental samples were variously attributed to natural processes, laboratory or field- sampling contamination, fallout from industrial air pollution, and historical military activities.

  13. Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe

    Science.gov (United States)

    Chen, Dima; Lan, Zhichun; Bai, Xue; Grace, James B.; Bai, Yongfei

    2013-01-01

    Anthropogenic acid deposition–induced soil acidification is one of the major threats to biodiversity, ecosystem functioning and services. Few studies, however, have explored in detail how above-ground changes in plant species richness and productivity resulting from soil acidification are mediated by effects on below-ground biota and soil properties.

  14. Assessment of materials selection and performance for direct-coal- liquefaction plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, A.R.; Judkins, R.R.; Keiser, J.R.

    1996-09-01

    Several direct coal liquefaction processes have been demonstrated at the pilot plant level in the United States. Presently only one plant remains operational, namely, the Hydrocarbon Technologies, Inc., 4.0- ton-per-day process development unit in Lawrenceville, New Jersey. The period from 1974 to 1982 saw the greatest amount of development of direct coal liquefaction in the United States with four major pilot plants being devoted to variants of this technology. The plants included the SRC-I plant at Wilsonville, Alabama, which operated from 1974 to 1992; the SRC-I/II plant at Fort Lewis, Washington, which operated from 1974 to 1981; the H-Coal plant at Catlettsburg, Kentucky, which operated from 1980 to 1982; and the Exxon Coal Liquefaction Pilot Plant at Baytown, Texas, which operated from 1980 to 1982. Oak Ridge National Laboratory scientists and engineers were actively involved in many phases and technical disciplines at all four of these plants, especially in materials testing, evaluation, and failure analyses. In addition, ORNL materials scientists and engineers conducted reviews of the demonstration and commercial plant designs for materials selections. The ORNL staff members worked closely with materials engineers at the pilot plants in identifying causes of materials degradation and failures, and in identifying solutions to these problems. This report provides a comprehensive summary of those materials activities. Materials performance data from laboratory and coal liquefaction pilot plant tests, failure analyses, and analyses of components after use in pilot plants were reviewed and assessed to determine the extent and causes of materials degradation in direct coal liquefaction process environments. Reviews of demonstration and commercial plant design documents for materials selections were conducted. These reviews and assessments are presented to capture the knowledge base on the most likely materials of construction for direct coal liquefaction plants.

  15. Performance analysis on a large scale borehole ground source heat pump in Tianjin cultural centre

    Science.gov (United States)

    Yin, Baoquan; Wu, Xiaoting

    2018-02-01

    In this paper, the temperature distribution of the geothermal field for the vertical borehole ground-coupled heat pump was tested and analysed. Besides the borehole ground-coupled heat pump, the system composed of the ice storage, heat supply network and cooling tower. According to the operation data for nearly three years, the temperature constant zone is in the ground depth of 40m -120m with a temperature gradient of about 3.0°C/100m. The temperature of the soil dropped significantly in the heating season, increased significantly in the cooling season, and reinstated in the transitional season. With the energy balance design of the heating and cooling and the existence of the soil thermal inertia, the soil temperature stayed in a relative stable range and the ground source heat pump system was operated with a relative high efficiency. The geothermal source heat pump was shown to be applicable for large scale utilization.

  16. Japan`s New Sunshine Project. 1996 Annual Summary of Coal Liquefaction and Gasification; 1996 nendo new sunshine keikaku seika hokokusho gaiyoshu. Sekitan no ekika gasuka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    In reference to the results of the research and development under the fiscal 1996 New Sunshine Project, a report was summed up on coal liquefaction and coal gasification. As to the R and D of coal liquefaction technology, researches were conducted on liquefaction characteristics and engineering properties by coal kind, catalysts for coal liquefaction, liquefaction reaction of coal and reformation utilization of the liquefied products, liquefaction reaction mechanism and coking mechanism, solubility of coal in solvent and catalytic reaction mechanism, solvent reaction mechanism by hydrogen donor solvent, etc. Concerning the R and D of coal gasification technology, made were the basic study of eco-technology adaptable gasification technology and the study of coal gasification enhancing technology. Further, as to the development of bituminous coal liquefaction technology, carried out were the study in pilot plants and the support study of pilot plants. Additionally, R and D were done of the basic technology of coal liquefaction such as upgrading technology and environmentally acceptable coal liquefaction technology, and of coal hydrogasification technology. 3 refs., 81 figs., 25 tabs.

  17. Technique of tritium-tagging of soil moisture for determination of ground water recharge. Some results from north eastern region of Brazil

    International Nuclear Information System (INIS)

    Chandra, U.

    1986-01-01

    The technique of reactor produced tritium for tracing downward movement of soil moisture and its application for detemination of ground water recharge is described. Data of rainfall infiltration and the consequent recharge in purely sandy sites and one clayey site of semi-arid climate are described. Tritiated water was injected below 70-90 cm ground surface in five radially concentric points 10 cm appart. Sampling of soil was carried out after one year, at every 10 cm depth interval. Soil samples were vacuum distilled and tritium in distilled moisture was determined by liquid scintillation counting. (Author) [pt

  18. Efficient direct coal liquefaction of a premium brown coal catalyzed by cobalt-promoted fumed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Trautmann, M.; Loewe, A.; Traa, Y. [Stuttgart Univ. (Germany). Inst. of Chemical Technology

    2013-11-01

    The search for alternatives in the fuel sector is an important technological challenge. An interim solution could be provided by direct coal liquefaction. Hydrogen economy and the lack of an efficient catalyst are the main obstacles for this process. We used a premium German brown coal with a high H/C molar ratio of 1.25 and nanostructured cobalt catalysts to improve the efficiency of direct coal liquefaction. We were able to recover and recycle the catalyst efficiently and reached good brown coal conversions and oil yields with single-stage coal liquefaction. The oil quality observed almost reached that of a conventional crude oil considering higher heating value (HHV), H/C molar ratio and aliphatic content. (orig.)

  19. Coal liquefaction with preasphaltene recycle

    Science.gov (United States)

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  20. Soil respiration and photosynthetic uptake of carbon dioxide by ground-cover plants in four ages of jack pine forest

    Science.gov (United States)

    Striegl, Robert G.; Wickland, K.P.

    2001-01-01

    Soil carbon dioxide (CO2) emission (soil respiration), net CO2 exchange after photosynthetic uptake by ground-cover plants, and soil CO2 concentration versus depth below land surface were measured at four ages of jack pine (Pinus banksiana Lamb.) forest in central Saskatchewan. Soil respiration was smallest at a clear-cut site, largest in an 8-year-old stand, and decreased with stand age in 20-year-old and mature (60-75 years old) stands during May-September 1994 (12.1, 34.6, 31.5, and 24.9 mol C??m-2, respectively). Simulations of soil respiration at each stand based on continuously recorded soil temperature were within one standard deviation of measured flux for 48 of 52 measurement periods, but were 10%-30% less than linear interpolations of measured flux for the season. This was probably due to decreased soil respiration at night modeled by the temperature-flux relationships, but not documented by daytime chamber measurements. CO2 uptake by ground-cover plants ranged from 0 at the clear-cut site to 29, 25, and 9% of total growing season soil respiration at the 8-year, 20-year, and mature stands. CO2 concentrations were as great as 7150 ppmv in the upper 1 m of unsaturated zone and were proportional to measured soil respiration.

  1. A preliminary study on the optimal configuration and operating range of a “microgrid scale” air liquefaction plant for Liquid Air Energy Storage

    International Nuclear Information System (INIS)

    Borri, E.; Tafone, A.; Romagnoli, A.; Comodi, G.

    2017-01-01

    Highlights: • A liquefaction cycle for a microgrid scale Liquid Air Energy Storage is proposed. • Different liquefaction cycles are compared by means of parametric analysis. • The optimal configuration proposed is a Kapitza cycle with two stage compression. • The specific consumption of the optimal configuration is around 700 kW h/t. • Specific consumption reduces to 532 kW h/t if a pressurized phase separator is used. - Abstract: Liquid Air Energy Storage systems represent a sustainable solution to store energy. Although a lot of interest is dedicated to large scale systems (up to 300 tons per day), a small-scale Liquid Air Energy Storage can be used as energy storage as part of a microgrid and/or an energy distribution network. However, when scaling down the size of the system, the round trip efficiency decreases due to the low performance of the liquefaction process. In this paper a preliminary study on the optimal configuration for a microgrid scale liquefaction cycle (10 tons per 12 h) for a Liquid Air Energy Storage application is proposed in order to minimize the specific consumption. The Linde, Claude and Kapitza cycles are modelled and compared by means of a parametric analysis carried out with the software Aspen HYSYS. The results show that the two stages compression Kapitza cycle operating at 40 bar represents an optimal solution in terms of performance and cycle configuration resulting in a specific consumption of about 700 kW h/t. The analysis also shows that the implementation of a pressurized phase separator leads to a reduction of the specific consumption as high as 21% (≈550 kW h/t).

  2. Seismic simulation analysis of nuclear reactor building by soil-building interaction model

    International Nuclear Information System (INIS)

    Muto, K.; Kobayashi, T.; Motohashi, S.; Kusano, N.; Mizuno, N.; Sugiyama, N.

    1981-01-01

    Seismic simulation analysis were performed for evaluating soil-structure interaction effects by an analytical approach using a 'Lattice Model' developed by the authors. The purpose of this paper is to check the adequacy of this procedure for analyzing soil-structure interaction by means of comparing computed results with recorded ones. The 'Lattice Model' approach employs a lumped mass interactive model, in which not only the structure but also the underlying and/or surrounding soil are modeled as descretized elements. The analytical model used for this study extends about 310 m in the horizontal direction and about 103 m in depth. The reactor building is modeled as three shearing-bending sticks (outer wall, inner wall and shield wall) and the underlying and surrounding soil are divided into four shearing sticks (column directly beneath the reactor building, adjacent, near and distant columns). A corresponding input base motion for the 'Lattice Model' was determined by a deconvolution analysis using a recorded motion at elevation -18.5 m in the free-field. The results of this simulation analysis were shown to be in reasonably good agreement with the recorded ones in the forms of the distribution of ground motions and structural responses, acceleration time histories and related response spectra. These results showed that the 'Lattice Model' approach was an appropriate one to estimate the soil-structure interaction effects. (orig./HP)

  3. FY 1980 Report on results of Sunshine Project by Coal Group. Basic researches on coal liquefaction techniques by solvolysis; 1980 nendo sunshine keikaku sekitanhan hokokusho. Sekitan no solvolysis ekika gijutsu no kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-01

    The basic experimental researches were carried out for coal liquefaction by solvolysis. The studied items include hydrogenation conditions for treating the primary liquefied products, asphalt, pitch and model solvents (e.g., anthracene oil) in the presence of a commercial catalyst, solvolysis conditions for finely divided, molten coal using a hydrogenation recycled solvent, hydrotreating solvents, analysis of solvolysis-liquefied products, and liquefaction capacity of fractionated solvents for finely divided, molten coal. The studied items for separation of minerals include settlement at high temperature of the solid residue from the first liquefaction stage, and changed coal particle size distribution as a result of the first-stage liquefaction reactions in the presence of a hydrogenation solvent. The experimental study results indicate that conversion of finely divided molten coal into asphaltenes and preasphaltenes is notably accelerated in the phase-II coal liquefaction process by solvolysis, when a hydrotreating solvent is used for the first stage solvolysis process. (NEDO)

  4. Liquefaction induced by modern earthquakes as a key to paleoseismicity: A case study of the 1988 Saguenay event

    International Nuclear Information System (INIS)

    Tuttle, M.; Cowie, P.; Wolf, L.

    1992-01-01

    Liquefaction features, including sand dikes, sills, and sand-filled craters, that formed at different distances from the epicenter of the 1988 (Mw 5.9) Saguenay earthquake are compared with one another and with older features. Modern liquefaction features decrease in size with increasing distance from the Saguenay epicenter. This relationship suggests that the size of liquefaction features may be used to determine source zones of past earthquakes and to estimate attenuation of seismic energy. Pre-1988 liquefaction features are cross-cut by the 1988 features. Although similar in morphology to the modern features, the pre-1988 features are more weathered and considerably larger in size. The larger pre-1988 features are located in the Ferland area, whereas the smallest pre-1988 feature occurs more than 37 km to the southwest. This spatial distribution of different size features suggests that an unidentified earthquake source zone (in addition to the one that generated the Saguenay earthquake) may exist in the Laurentide-Saguenay region. Structural relationships of the liquefaction features indicate that one, possibly two, earthquakes induced liquefaction in the region prior to 1988. The age of only one pre-1988 feature is well-constrained at 340 ± 70 radiocarbon years BP. If the 1663 earthquake was responsible for the formation of this feature, this event may have been centered in the Laurentide-Saguenay region rather than in the Charlevoix seismic zone

  5. Mechanics of Ship Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    In these notes first a simplified mathematical model is presented for analysis of ship hull loading due to grounding on relatively hard and plane sand, clay or rock sea bottoms. In a second section a more rational calculation model is described for the sea bed soil reaction forces on the sea bott...

  6. Technology for advanced liquefaction processes: Coal/waste coprocessing studies

    Energy Technology Data Exchange (ETDEWEB)

    Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandia National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.

  7. Solid waste burial grounds interim safety analysis

    International Nuclear Information System (INIS)

    Saito, G.H.

    1994-01-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment

  8. Solid waste burial grounds interim safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saito, G.H.

    1994-10-01

    This Interim Safety Analysis document supports the authorization basis for the interim operation and restrictions on interim operations for the near-surface land disposal of solid waste in the Solid Waste Burial Grounds. The Solid Waste Burial Grounds Interim Safety Basis supports the upgrade progress for the safety analysis report and the technical safety requirements for the operations in the Solid Waste Burial Grounds. Accident safety analysis scenarios have been analyzed based on the significant events identified in the preliminary hazards analysis. The interim safety analysis provides an evaluation of the operations in the Solid Waste Burial Grounds to determine if the radiological and hazardous material exposures will be acceptable from an overall health and safety standpoint to the worker, the onsite personnel, the public, and the environment.

  9. Characteristics of process oils from HTI coal/plastics co-liquefaction runs

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A. [and others

    1995-12-31

    The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are presented. During a few operating periods of Run POC-2, HTI co-liquefied mixed plastics with coal, and tire rubber with coal. Although steady-state operation was not achieved during these brief tests periods, the results indicated that a liquefaction plant could operate with these waste materials as feedstocks. CONSOL analyzed 65 process stream samples from coal-only and coal/waste portions of the run. Some results obtained from characterization of samples from Run POC-2 coal/plastics operation are presented.

  10. Initial Earthquake Centrifuge Model Experiments for the Study of Liquefaction

    National Research Council Canada - National Science Library

    Steedman, R

    1998-01-01

    .... These are intended to gather data suitable for the development of improved design approaches for the prediction of liquefaction under earthquake loading using the new centrifuge facility at the WES...

  11. An Advanced Wet Expansion Turbine for Hydrogen Liquefaction, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is responsive to NASA SBIR Topic X10.01, specifically, the need for efficient small- to medium-scale hydrogen liquefaction technologies including...

  12. Sunshine Program for fiscal 1981. Research on direct coal-liquefaction reactor; 1981 nendo sekitan chokusetsu ekika hannoki no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-04-17

    The research aims to develop a new-type high-efficiency reactor for direct coal-liquefaction from a reaction engineering viewpoint and, at the same time, to settle problems expected to occur in industrializing this technique. The research items are Item 1 on the analysis of characteristics of a tubular continuous reactor and Item 2 on high-activity catalysts. Under Item 1, on the assumption that liquefaction reaction is dominantly a reaction in a continuous phase, a reactor is selected in consideration of homogeneous-phase reaction, and operating conditions are set according to the selected reactor and to the liquefaction reaction characteristics. A somewhat large Re number is assigned to the paste. Since the hydrogen partial pressure lowers with the progress of reaction, hydrogen is resupplied at the middle of the reaction tube. The volume of gas increases toward the final stage of reaction, decreasing the continuous phase holdup. Since it is undesirable to let the decrease stand, a vapor-liquid separator is provided for the control of the gas volume. In this fiscal year, investigation is conducted into details so as to determine if the reactor is equipped with intended characteristics. Under Item 2, the iron ore is deemed to be the most promising as disposal catalysts for liquefaction. In this fiscal year, studies are conducted to disclose the activity etc. of catalysts of this type. (NEDO)

  13. Comparison of predicted and observed pore pressure increases on Rio Blanco

    International Nuclear Information System (INIS)

    Banister, J.R.; Ellett, D.M.; Pyke, R.; Winters, L.

    1976-01-01

    The RIO BLANCO event presented the opportunity to monitor, under controlled conditions in the field, the increase in pore pressures resulting from ground motion similar to an earthquake. In situ measurements of pore pressure changes were made by Sandia Laboratories and Dames and Moore. This report contains the results of laboratory tests believed to be indicative in assessing the magnitude of pore pressure increases and probability of soil liquefaction. These include triaxial load tests, gradation of grain size, and relative density. No liquefaction was observed in the field, and the increase of in situ pore pressures were much less than expected from laboratory measurements. Allied subjects presented in this report are pore pressure propagation and dissipation profiles, the previously unpublished pore pressure measurements made by Dames and Moore, and the boring logs for the various sites where measurements were taken. It is concluded that methods used to predict pore pressure increases and liquefaction potential are overly conservative, at least for these alluvial and colluvial soils found in Colorado

  14. Nitrogen expander cycles for large capacity liquefaction of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun [Hong Ik University, Department of Mechanical Engineering, Seoul, 121-791 (Korea, Republic of); Choe, Kun Hyung [Korea Gas Corporation, Incheon, 406-130 (Korea, Republic of)

    2014-01-29

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  15. Nitrogen expander cycles for large capacity liquefaction of natural gas

    Science.gov (United States)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-01

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  16. Nitrogen expander cycles for large capacity liquefaction of natural gas

    International Nuclear Information System (INIS)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-01

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity

  17. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area

  18. The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessments.

    Science.gov (United States)

    Kim, Min-Suk; Min, Hyun-Gi; Koo, Namin; Park, Jeongsik; Lee, Sang-Hwan; Bak, Gwan-In; Kim, Jeong-Gyu

    2014-12-15

    Spent coffee grounds (SCG) and charred spent coffee grounds (SCG-char) have been widely used to adsorb or to amend heavy metals that contaminate water or soil and their success is usually assessed by chemical analysis. In this work, the effects of SCG and SCG-char on metal-contaminated water and soil were evaluated using chemical and biological assessments; a phytotoxicity test using bok choy (Brassica campestris L. ssp. chinensis Jusl.) was conducted for the biological assessment. When SCG and SCG-char were applied to acid mine drainage, the heavy metal concentrations were decreased and the pH was increased. However, for SCG, the phytotoxicity increased because a massive amount of dissolved organic carbon was released from SCG. In contrast, SCG-char did not exhibit this phenomenon because any easily released organic matter was removed during pyrolysis. While the bioavailable heavy metal content decreased in soils treated with SCG or SCG-char, the phytotoxicity only rose after SCG treatment. According to our statistical methodology, bioavailable Pb, Cu and As, as well as the electrical conductivity representing an increase in organic content, affected the phytotoxicity of soil. Therefore, applying SCG during environment remediation requires careful biological assessments and evaluations of the efficiency of this remediation technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Report on the achievements in the Sunshine Project in fiscal 1986. Surveys on coal type selection and surveys on coal types (Data file); 1986 nendo tanshu sentei chosa tanshu chosa seika hokokusho. Data file

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-03-01

    This data file is a data file concerning coal types for liquefaction in the report on the achievements in the surveys on coal type selection and on coal types (JN0040843). Such items of information were filed as existence and production of coals, various kinds of analyses, and test values relative to data for liquefaction tests that have been collected and sent to date. The file consists of two files of a test sample information file related to existence and production of coals and coal mines, and an analysis and test file accommodating the results of different analyses and tests. However, the test sample information files (1) through (6) have not been put into order on such items of information as test samples and sample collection, geography, geology, ground beds, coal beds, coal mines, development and transportation. The analysis and test file contains (7) industrial analyses, (8) element analysis, (9) ash composition, (10) solubility of ash, (11) structure analysis, (12) liquefaction characteristics (standard version), (13) analysis of liquefaction produced gas, (14) distillation characteristics of liquefaction produced oil, (15) liquefaction characteristics (simplified version), (16) analysis of liquefaction produced gas (simplified version), and (17) distillation characteristics of liquefaction produced oil (simplified version). However, the information related to liquefaction test using a tubing reactor in (15) through (17) has not been put into order. (NEDO)

  20. Nonlinear Time Domain Seismic Soil-Structure Interaction (SSI) Deep Soil Site Methodology Development

    International Nuclear Information System (INIS)

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-01-01

    Currently the Department of Energy (DOE) and the nuclear industry perform seismic soil-structure interaction (SSI) analysis using equivalent linear numerical analysis tools. For lower levels of ground motion, these tools should produce reasonable in-structure response values for evaluation of existing and new facilities. For larger levels of ground motion these tools likely overestimate the in-structure response (and therefore structural demand) since they do not consider geometric nonlinearities (such as gaping and sliding between the soil and structure) and are limited in the ability to model nonlinear soil behavior. The current equivalent linear SSI (SASSI) analysis approach either joins the soil and structure together in both tension and compression or releases the soil from the structure for both tension and compression. It also makes linear approximations for material nonlinearities and generalizes energy absorption with viscous damping. This produces the potential for inaccurately establishing where the structural concerns exist and/or inaccurately establishing the amplitude of the in-structure responses. Seismic hazard curves at nuclear facilities have continued to increase over the years as more information has been developed on seismic sources (i.e. faults), additional information gathered on seismic events, and additional research performed to determine local site effects. Seismic hazard curves are used to develop design basis earthquakes (DBE) that are used to evaluate nuclear facility response. As the seismic hazard curves increase, the input ground motions (DBE's) used to numerically evaluation nuclear facility response increase causing larger in-structure response. As ground motions increase so does the importance of including nonlinear effects in numerical SSI models. To include material nonlinearity in the soil and geometric nonlinearity using contact (gaping and sliding) it is necessary to develop a nonlinear time domain methodology. This

  1. Nonlinear interaction analysis of RC cylindrical tank with subsoil by adopting two kinds of constitutive models for ground and structure

    Science.gov (United States)

    Lewiński, Paweł M.; Dudziak, Sławomir

    2018-01-01

    In the paper, two kinds of constitutive models for ground and structure were adopted for the nonlinear interaction analysis of the RC cylindrical tank with subsoil. The paper discusses deformational and incremental approaches to a nonlinear FE analysis of soil-structure interaction including the description of behaviour of the RC structure and the subsoil under short-term loading. Moreover, a non-linear elastic-brittle-plastic analysis of RC axisymmetric structures using finite element iterative techniques is presented. The constitutive laws for concrete and subsoil are developed in compliance with the deformational and plastic flow theories of plasticity. Two examples of an FE analysis of soil-structure interaction were performed and the results were analysed.

  2. Subcritical hydrothermal liquefaction of barley straw in fresh water and recycled aqueous phase

    DEFF Research Database (Denmark)

    Zhu, Zhe; Toor, Saqib; Rosendahl, Lasse

    2014-01-01

    This project focuses on the investigation of addition of aqueous phase in the production of biofuel from biomass through hydrothermal liquefaction (HTL) technology. Hydrothermal liquefaction is a wet thermal conversion process, which can convert all kinds of biomass to fuels. In this study, barley...... straw was first liquefied in fresh distilled water with the presence of K2CO3 catalyst at 300 C as the reference run. Afterwards, the aqueous phase which is obtained from liquefaction process in the previous run was recycled and used as the reaction medium from the second to the fourth run....... With the addition of recycling aqueous phase in HTL process, it is expected that the amount of the waste water and energy consumption can be reduced. The effect of water recirculation on product yield and properties was investigated in this study. The results showed that bio-oil yield was 34.85 wt% when the barley...

  3. Experimental assessment of the liquefaction resistance of calcareous biogenous sands

    Directory of Open Access Journals (Sweden)

    Sandoval Eimar

    2012-10-01

    Full Text Available

    ABSTRACT

    Liquefaction is a phenomenon in which soils, typically sands, suddenly loose a substantial amount of their shear strength and stiffness, this often triggered by large-magnitude earthquakes. Most liquefaction research has focused on silicate-based sands and not on other sand types, such as calcareous biogenous sands Calcareous sands are usually composed of skeletal or non-skeletal remains of marine organisms, with unique characteristics in terms of their mineralogy surface roughness, particle shape, crushability, and intraparticle porosity. The unique characteristics of calcareous sands suggest that their geotechnical engineering behaviour can be substantially different compared to that of terrigenous sands, including their behaviour under seismic loading, which have not been very well studied

    This paper presents the results of an experimental programme aimed at studying the cyclic liquefaction resistance of uncemented calcareous biogenous sands retrieved from south-western Puerto Rico Evaluation of liquefaction potential involved a comprehensive set of isotropically consolidated undrained cyclic triaxial tests on reconstituted samples of this calcareous sand. The programme also included tests on Ottawa terrigenous silica sand samples prepared and tested in similar conditions for comparison purposes.

    In general, the experimental results showed that Cabo Rojo calcareous sands had higher liquefaction resistance compared to Ottawa silica sands tested under similar conditions. Important differences between calcareous and silica sands regarding pore pressure generation characteristics and axial strain accumulation were also observed


  4. Advanced direct liquefaction concepts for PETC generic units. Final report, Phase I

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The Advanced Concepts for Direct Coal Liquefaction program was initiated by the Department of Energy in 1991 to develop technologies that could significantly reduce the cost of producing liquid fuels by the direct liquefaction of coal. The advanced 2-stage liquefaction technology that was developed at Wilsonville over the past 10 years has contributed significantly toward decreasing the cost of producing liquids from coal to about $33/bbl. It remains, however, the objective of DOE to further reduce this cost to a level more competitive with petroleum based products. This project, among others, was initiated to investigate various alternative approaches to develop technologies that might ultimately lead to a 25 % reduction in cost of product. In this project a number of novel concepts were investigated, either individually or in a coupled configuration that had the potential to contribute toward meeting the DOE goal. The concepts included mature technologies or ones closely related to them, such as coal cleaning by oil agglomeration, fluid coking and distillate hydrotreating and dewaxing. Other approaches that were either embryonic or less developed were chemical pretreatment of coal to remove oxygen, and dispersed catalyst development for application in the 2-stage liquefaction process. This report presents the results of this project. It is arranged in four sections which were prepared by participating organizations responsible for that phase of the project. A summary of the overall project and the principal results are given in this section. First, however, an overview of the process economics and the process concepts that were developed during the course of this program is presented.

  5. Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication

    Science.gov (United States)

    Jiulong Xie; Chung Hse; Cornelis F. De Hoop; Tingxing Hu; Jinqiu Qi; Todd F. Shupe

    2016-01-01

    Cellulose nanofibers were successfully isolated from bamboo using microwave liquefaction combinedwith chemical treatment and ultrasonic nanofibrillation processes. The microwave liquefaction couldeliminate almost all the lignin in bamboo, resulting in high cellulose content residues within 7 min, andthe cellulose enriched residues could be readily purified by...

  6. Fiscal 1989 report on the bituminous coal liquefaction section meeting; 1989 nendo rekiseitan ekika bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    At the 1st, 2nd, and 3rd group meetings held for the fiscal year, reports are given and discussions are made about the progress of research and development. Reported and discussed in relation to the progress of the pilot plant support research are studies with the 1t/d PSU (process supporting unit) (Nippon Steel Corporation, Mitsui Coal Liquefaction Co., Ltd., and Japan Coal Oil Co., Ltd.); improvement on distillate distribution (Sumitomo Metal Industries, Ltd.); development of an optimum decalcification technique (Sumitomo Coal Mining Co., Ltd., and Sumitomo Metal Industries, Ltd.); studies of solvent hydrogenation catalysts (Sumitomo Metal Mining Co., Ltd., and Chiyoda Corp.); and studies of coal liquefaction conditions (Mitsui Engineering and Shipbuilding Co., Ltd.). In relation to studies using a bituminous coal liquefaction pilot plant, the progress of the 150t/d PP (pilot plant) effort (Japan Coal Oil, Co., Ltd.) and the outlines of pilot surveys (Japan Coal Oil Co., Ltd.) are reported and discussed, the latter covering liquefaction solvent performance optimization, slurry preheating furnaces, coal slurry properties, and so forth. (NEDO)

  7. Fiscal 1990 report on the bituminous coal liquefaction section meeting; 1990 nendo rekiseitan ekika bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    At the 1st, 2nd, and 3rd group meetings held for the fiscal year, reports are delivered and discussions are made concerning the progress of research and development activities. Reported and discussed in relation to the pilot plant support research, etc., are studies with the 1t/d PSU (process supporting unit) (Nippon Steel Corporation, Mitsui Coal Liquefaction Co., Ltd., and Japan Coal Oil Co., Ltd.); development of an optimum coal refining technique (Sumitomo Coal Mining Co., Ltd.); development of an optimum pretreatment technique and improvement on distillate distribution (Sumitomo Metal Industries, Ltd.); studies of coal liquefaction conditions (Mitsui Engineering and Shipbuilding Co., Ltd.); and studies of solvent hydrogenation catalysts (Sumitomo Metal Mining Co., Ltd., and Chiyoda Corp.). Reported and discussed in relation to researches using a bituminous coal liquefaction pilot plant are the progress of the 150t/d PP (pilot plant) effort (Japan Coal Oil Co., Ltd.) and the outlines of pilot surveys (Japan Coal Oil Co., Ltd.), the latter covering liquefaction solvent performance optimization, slurry pre-heating furnaces, coal slurry properties, and so forth. (NEDO)

  8. Status of health and environmental research relative to direct coal liquefaction: 1976 to the present

    Energy Technology Data Exchange (ETDEWEB)

    Gray, R.H.; Cowser, K.E. (eds.)

    1982-06-01

    This document describes the status of health and environmental research efforts, supported by the US Department of Energy (DOE), to assist in the development of environmentally acceptable coal liquefaction processes. Four major direct coal liquefaction processes are currently in (or have been investigated at) the pilot plant stage of development. Two solvent refined coal processes (SRC-I and -II), H-coal (a catalytic liquefaction process) and Exxon donor solvent (EDS). The Pacific Northwest Laboratory was assigned responsibility for evaluating SRC process materials and prepared comprehensive health and environmental effects research program plans for SRC-I and -II. A similar program plan was prepared for H-coal process materials by the Oak Ridge National Laboratory. A program has been developed for EDS process materials by Exxon Research and Engineering Co. The program includes short-term screening of coal-derived materials for potential health and ecological effects. Longer-term assays are used to evaluate materials considered most representative of potential commercial practice and with greatest potential for human exposure or release to the environment. Effects of process modification, control technologies and changing operational conditions on potential health and ecological effects are also being evaluated. These assessments are being conducted to assist in formulating cost-effective environmental research programs and to estimate health and environmental risks associated with a large-scale coal liquefaction industry. Significant results of DOE's health and environmental research efforts relative to coal liquefaction include the following: chemical characterization, health effects, ecological fate and effects, amelioration and risk assessment.

  9. Ground Albedo Neutron Sensing (GANS) method for measurements of soil moisture in cropped fields

    Science.gov (United States)

    Andres Rivera Villarreyes, Carlos; Baroni, Gabriele; Oswald, Sascha E.

    2013-04-01

    Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only few methods are on the way to close this gap between point measurements and remote sensing. This study evaluates the applicability of the Ground Albedo Neutron Sensing (GANS) for integral quantification of seasonal soil moisture in the root zone at the scale of a field or small watershed, making use of the crucial role of hydrogen as neutron moderator relative to other landscape materials. GANS measurements were performed at two locations in Germany under different vegetative situations and seasonal conditions. Ground albedo neutrons were measured at (i) a lowland Bornim farmland (Brandenburg) cropped with sunflower in 2011 and winter rye in 2012, and (ii) a mountainous farmland catchment (Schaefertal, Harz Mountains) since middle 2011. At both sites depth profiles of soil moisture were measured at several locations in parallel by frequency domain reflectometry (FDR) for comparison and calibration. Initially, calibration parameters derived from a previous study with corn cover were tested under sunflower and winter rye periods at the same farmland. GANS soil moisture based on these parameters showed a large discrepancy compared to classical soil moisture measurements. Therefore, two new calibration approaches and four different ways of integration the soil moisture profile to an integral value for GANS were evaluated in this study. This included different sets of calibration parameters based on different growing periods of sunflower. New calibration parameters showed a good agreement with FDR network during sunflower period (RMSE = 0.023 m3 m-3), but they underestimated soil moisture in the winter rye period. The GANS approach resulted to be highly affected by temporal changes of biomass and crop types which suggest the need of neutron corrections for long-term observations with crop rotation. Finally

  10. Pattern of ground deformation in Kathmandu valley during 2015 Gorkha Earthquake, central Nepal

    Science.gov (United States)

    Ghimire, S.; Dwivedi, S. K.; Acharya, K. K.

    2016-12-01

    The 25th April 2015 Gorkha Earthquake (Mw=7.8) epicentered at Barpak along with thousands of aftershocks released seismic moment nearly equivalent to an 8.0 Magnitude earthquake rupturing a 150km long fault segment. Although Kathmandu valley was supposed to be severely devastated by such major earthquake, post earthquake scenario is completely different. The observed destruction is far less than anticipated as well as the spatial pattern is different than expected. This work focuses on the behavior of Kathmandu valley sediments during the strong shaking by the 2015 Gorkha Earthquake. For this purpose spatial pattern of destruction is analyzed at heavily destructed sites. To understand characteristics of subsurface soil 2D-MASW survey was carried out using a 24-channel seismograph system. An accellerogram recorded by Nepal Seismological Center was analyzed to characterize the strong ground motion. The Kathmandu valley comprises fluvio-lacustrine deposit with gravel, sand, silt and clay along with few exposures of basement rocks within the sediments. The observations show systematic repetition of destruction at an average interval of 2.5km mostly in sand, silt and clay dominated formations. Results of 2D-MASW show the sites of destruction are characterized by static deformation of soil (liquefaction and southerly dipping cracks). Spectral analysis of the accelerogram indicates maximum power associated with frequency of 1.0Hz. The result of this study explains the observed spatial pattern of destruction in Kathmandu valley. This is correlated with the seismic energy associated with the frequency of 1Hz, which generates an average wavelength of 2.5km with an average S-wave velocity of 2.5km/s. The cumulative effect of dominant frequency and associated wavelength resulted in static deformation of surface soil layers at an average interval of 2.5km. This phenomenon clearly describes the reason for different scenario than that was anticipated in Kathmandu valley.

  11. In situ analysis of soil at an open burning/open detonation disposal facility: J-Field, Aberdeen Proving Ground, Maryland

    International Nuclear Information System (INIS)

    Martino, L.; Cho, E.; Wrobel, J.

    1994-01-01

    Investigators have used a field-portable X-Ray Fluorescence (XRF) Analyzer to screen soils for a suite of metals indicative of the open burning and open detonation (OB/OD) activities that occurred at the J-Field site at Aberdeen Proving Ground, Maryland. The field XRF results were incorporated into a multiphase investigation of contaminants at the Toxic Burning Pits Area of Concern at J-Field. The authors determined that the field-portable XRF unit used for the study and the general concept of field XRF screening are invaluable tools for investigating an OB/OD site where intrusive sampling techniques could present unacceptable hazards to site workers

  12. Soil forensics: How far can soil clay analysis distinguish between soil vestiges?

    Science.gov (United States)

    Corrêa, R S; Melo, V F; Abreu, G G F; Sousa, M H; Chaker, J A; Gomes, J A

    2018-03-01

    Soil traces are useful as forensic evidences because they frequently adhere to individuals and objects associated with crimes and can place or discard a suspect at/from a crime scene. Soil is a mixture of organic and inorganic components and among them soil clay contains signatures that make it reliable as forensic evidence. In this study, we hypothesized that soils can be forensically distinguished through the analysis of their clay fraction alone, and that samples of the same soil type can be consistently distinguished according to the distance they were collected from each other. To test these hypotheses 16 Oxisol samples were collected at distances of between 2m and 1.000m, and 16 Inceptisol samples were collected at distances of between 2m and 300m from each other. Clay fractions were extracted from soil samples and analyzed for hyperspectral color reflectance (HSI), X-ray diffraction crystallographic (XRD), and for contents of iron oxides, kaolinite and gibbsite. The dataset was submitted to multivariate analysis and results were from 65% to 100% effective to distinguish between samples from the two soil types. Both soil types could be consistently distinguished for forensic purposes according to the distance that samples were collected from each other: 1000m for Oxisol and 10m for Inceptisol. Clay color and XRD analysis were the most effective techniques to distinguish clay samples, and Inceptisol samples were more easily distinguished than Oxisol samples. Soil forensics seems a promising field for soil scientists as soil clay can be useful as forensic evidence by using routine analytical techniques from soil science. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  13. Soil temperature distribution around a U-tube heat exchanger in a multi-function ground source heat pump system

    International Nuclear Information System (INIS)

    Li Shuhong; Yang Weihua; Zhang Xiaosong

    2009-01-01

    The imbalance of heat extracted from the earth by the underground heat exchangers in winter and ejected into it in summer is expected to affect the long term performance of conventional ground source heat pump (GSHP) in territories with a cold winter and a warm summer such as the middle and downstream areas of the Yangtze River in China. This paper presents a new multi-function ground source heat pump (MFGSHP) system which supplies hot water as well as space cooling/heating to mitigate the soil imbalance of the extracted and ejected heat by a ground source heat pump system. The heat transfer characteristic is studied and the soil temperature around the underground heat exchangers are simulated under a typical climatic condition of the Yangtze River. A three-dimensional model was constructed with the commercial computational fluid dynamics software FLUENT based on the inner heat source theory. Temperature distribution and variation trend of a tube cluster of the underground heat exchanger are simulated for the long term performance. The results show that the soil temperature around the underground tube keeps increasing due to the surplus heat ejected into the earth in summer, which deteriorates the system performance and may lead to the eventual system deterioration. The simulation shows that MFGSHP can effectively alleviate the temperature rise by balancing the heat ejected to/extracted from underground by the conventional ground source heat pump system. The new system also improves the energy efficiency.

  14. Fractional Multistage Hydrothermal Liquefaction of Biomass and Catalytic Conversion into Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cortright, Randy [Virent, Inc., Madison, WI (United States); Rozmiarek, Robert [Virent, Inc., Madison, WI (United States); Dally, Brice [Virent, Inc., Madison, WI (United States); Holland, Chris [Virent, Inc., Madison, WI (United States)

    2017-08-31

    The objective of this project was to develop an improved multistage process for the hydrothermal liquefaction (HTL) of biomass to serve as a new front-end, deconstruction process ideally suited to feed Virent’s well-proven catalytic technology, which is already being scaled up. This process produced water soluble, partially de-oxygenated intermediates that are ideally suited for catalytic finishing to fungible distillate hydrocarbons. Through this project, Virent, with its partners, demonstrated the conversion of pine wood chips to drop-in hydrocarbon distillate fuels using a multi-stage fractional conversion system that is integrated with Virent’s BioForming® process. The majority of work was in the liquefaction task and included temperature scoping, solvent optimization, and separations.

  15. Method for controlling boiling point distribution of coal liquefaction oil product

    Science.gov (United States)

    Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships.

  16. BP and NCB to collaborate in coal liquefaction study. [Supercritical gas extraction; dissolution in anthracene oil

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-17

    British Petroleum and NCB are collaborating in a two year study of coal liquefaction which could result in a demonstration plant being built. The two liquefaction techniques which the NCB is developing at present are supercritical extraction, and dissolution in anthracene oil. A disadvantage of the latter process is that high grade coking coals must be used.

  17. Thermodynamic design of natural gas liquefaction cycles for offshore application

    Science.gov (United States)

    Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung

    2014-09-01

    A thermodynamic study is carried out for natural gas liquefaction cycles applicable to offshore floating plants, as partial efforts of an ongoing governmental project in Korea. For offshore liquefaction, the most suitable cycle may be different from the on-land LNG processes under operation, because compactness and simple operation are important as well as thermodynamic efficiency. As a turbine-based cycle, closed Claude cycle is proposed to use NG (natural gas) itself as refrigerant. The optimal condition for NG Claude cycle is determined with a process simulator (Aspen HYSYS), and the results are compared with fully-developed C3-MR (propane pre-cooled mixed refrigerant) JT cycles and various N2 (nitrogen) Brayton cycles in terms of efficiency and compactness. The newly proposed NG Claude cycle could be a good candidate for offshore LNG processes.

  18. Re-Condensation and Liquefaction of Helium and Hydrogen Using Coolers

    International Nuclear Information System (INIS)

    Green, Michael A.

    2009-01-01

    Coolers are used to cool cryogen free devices at temperatures from 5 to 30 K. Cryogen free cooling involves a temperature drop within the device being cooled and between the device and the cooler cold heads. Liquid cooling with a liquid cryogen distributed over the surface of a device combined with re-condensation can result in a much lower temperature drop between the cooler and the device being cooled. The next logical step beyond simple re-condensation is using a cooler to liquefy the liquid cryogen in the device. A number of tests of helium liquefaction and re-condensation of helium have been run using a pulse tube cooler in the drop-in mode. This report discusses the parameter space over which re-condensation and liquefaction for helium and hydrogen can occur.

  19. Effect of Soil Moisture Management on the Quality of Wax apple

    African Journals Online (AJOL)

    Michael Chen

    Pretreatment and analysis of soil and plants. Pretreatment and analysis of soil. After getting back soil samples, they were air dried, ground and were filtered through a 2 mm sieve. The soil was analyzed: 1) pH: water: soil = 1:1, measured by a pH meter (McLean, 1982); 2) orga- nic content: measured by wet oxidation method ...

  20. Report on results of R and D of coal liquefaction technology in fiscal 1981; 1981 nendo sekitan ekika gijutsu no kenkyu kaihatsu seika setsumeisho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    This paper explains the results of development of coal liquefaction technology under the Sunshine Project in fiscal 1981. In connection with solvent extraction and liquefaction, an 1 t/day experimental plant was completed for bituminous coals and operated continuously for 153 hours. An examination also started for the development of a 250 t/day pilot plant. As the element studies, R and D is in progress on the solvent extraction and liquefaction process, solid-liquid separation, secondary hydrogenation, and plant materials. In brown coals, the construction work of a 50 t/day pilot plant started for the purpose of establishing liquefaction technology for brown coal in Victoria State, Australia, with a part of the equipment manufactured. As the element studies, research was conducted on primary hydrogenation, deliming, secondary hydrogenation, dehydration and catalysts. In solvolysis liquefaction, a short-time concluding liquefaction reaction was continuously performed by a plant of 1 t/day scale. In direct hydro-liquefaction, a 2.4 t/day experimental plant was constructed, with the element studies conducted successively. In other words, researches were carried out by the bench scale plant on liquefaction, solid-liquid separation, iron-based catalysts, catalyst and reutilization, motive force recovery system by hydrohoist, and effect of preheating and deaeration. (NEDO)

  1. Hydrothermal Liquefaction of Agricultural and Biorefinery Residues Final Report – CRADA #PNNL/277

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Rotness, Leslie J.; Zacher, Alan H.; Fjare, K. A.; Dunn, B. C.; McDonald, S. L.; Dassor, G.

    2010-07-28

    This project was performed as a Cooperative Research and Development Agreement (CRADA) with the participants: Archer-Daniels-Midland Company (ADM), ConocoPhillips (COP), and Pacific Northwest National Laboratory (PNNL). Funding from the federal government was provided by the Office of the Biomass Program within the Energy Efficiency and Renewable Energy assistant secretariat as part of the Thermochemical Conversion Platform. The three-year project was initiated in August 2007 with formal signing of the CRADA (#PNNL/277) in March 3, 2008 with subsequent amendments approved in November of 2008 and August of 2009. This report describes the results of the work performed by PNNL and the CRADA partners ADM and COP. It is considered Protected CRADA Information and is not available for public disclosure. The work conducted during this project involved developing process technology at PNNL for hydrothermal liquefaction (HTL) of agricultural and biorefinery residues and catalytic hydrothermal gasification (CHG) of the aqueous byproduct from the liquefaction step. Related work performed by the partners included assessment of aqueous phase byproducts, hydroprocessing of the bio-oil product and process analysis and economic modeling of the technology.

  2. The survey and mapping of sand-boil landforms related to the Emilia 2012 earthquakes: preliminary results

    Directory of Open Access Journals (Sweden)

    Andrea Ninfo

    2012-10-01

    Full Text Available Sand boils, which are also known as sand blows or sand volcanoes, are among the most common superficial effects induced by high-magnitude earthquakes. These generally occur in or close to alluvial plains when a strong earthquake (M >5 strikes on a lens of saturated and unconsolidated sand deposits that are constrained between silt-clay layers [Ambraseys 1988, Carter and Seed 1988, Galli 2000, Tuttle 2001, Obermeier et al. 2005], where the sediments are converted into a fluid suspension. The liquefaction phenomena requires the presence of saturated and uncompacted sand, and a groundwater table near the ground surface. This geological–geomorphological setting is common and widespread for the Po Plain (Italy [Castiglioni et al. 1997]. The Po Plain (ca. 46,000 km2 represents 15% of the Italian territory. It hosts a population of about 20 million people (mean density of 450 people/km2 and many infrastructures. Thus, the Po Plain is an area of high vulnerability when considering the liquefaction potential in the case of a strong earthquake. Despite the potential, such phenomena are rarely observed in northern Italy [Cavallin et al. 1977, Galli 2000], because strong earthquakes are not frequent in this region; e.g., historical data report soil liquefaction near Ferrara in 1570 (M 5.3 and in Argenta 1624 (M 5.5 [Prestininzi and Romeo 2000, Galli 2000]. In the Emilia quakes of May 20 and 29, 2012, the most widespread coseismic effects were soil liquefaction and ground cracks, which occurred over wide areas in the Provinces of Modena, Ferrara, Bologna, Reggio Emilia and Mantova (Figure 1. […

  3. Bio-char derived from sewage sludge by liquefaction: Characterization and application for dye adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Lijian [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yuan, Xingzhong, E-mail: yxz@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Huang, Huajun [School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045 (China); Shao, Jianguang; Wang, Hou [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Chen, Xiaohong [School of Business, Central South University, Changsha 410083 (China); Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2015-08-15

    Graphical abstract: - Highlights: • SS liquefaction bio-chars were effective on MG and MB removal from aqueous. • MG adsorption capacity depended strongly on carboxylic and phenolic groups. • Metal release accounted for nearly 30% of the total MG adsorbed on bio-chars. • Acetone and low temperature favor effective adsorbent production by liquefaction. - Abstract: Bio-chars produced by liquefaction of sewage sludge with methanol, ethanol, or acetone as the solvent at 260–380 °C were characterized in terms of their elemental composition, thermogravimetric characteristics, surface area and pore size distribution, and oxygen-containing functional groups composition. The surface area and total volume of the bio-chars were low, but the contents of oxygen-containing functional groups were high. The bio-chars were effective on Malachite green (MG) and Methylene blue (MB) removal from aqueous solution. The MG adsorption equilibrium data showed excellent fit to the Langmuir model and the kinetic data fitted well to the Pseudo-second-order model. Thermodynamic investigations indicated that MG adsorption on bio-char was spontaneous and endothermic. The MG adsorption mechanism appears to be associated with cation release and functional group participation. Additionally, liquefaction of SS with acetone as the solvent at low temperature (280 °C) would favor the production of bio-char adsorbent in terms of bio-char yield and MG and MB adsorption capacity.

  4. Can impurities from soil-contaminated coffees reach the cup?

    International Nuclear Information System (INIS)

    Tagliaferro, F.S.; De Nadai Fernandes, E.A.; Bacchi, M.A.; Joacir De Franca, E.; Bode, P.

    2007-01-01

    Depending on the harvest conditions, coffee beans can be contaminated by soil when dropped to the ground. It is well known that agricultural soils act as sinks for agrochemicals applied to the crops. While coffee is brewed, substances present in the roasted and ground coffee beans are extracted by hot water, emphasizing the need to assess the possible transfer of impurities from the soil to the beverage. Soil-contaminated samples of roasted coffee beans were split into 2 groups according to the treatments: (a) washed and ground and (b) only ground. Brewing was performed in a household espresso machine for both coffees. The resulting beverage was freeze-dried and the elemental composition determined by instrumental neutron activation analysis (INAA). The mass fractions of the terrigenous elements Fe, La, Sc, Sm and Th in the freeze-dried non-washed coffee beverages were, at least, 2 times higher than in the washed samples. These elements are tracers of the soil, indicating that the impurities from the soil reached the beverage. (author)

  5. Summary of FY 1980 results of Sunshine Project. Development of coal liquefaction techniques; 1980 nendo sekitan ekika gijutsu no kaihatsu seika hokokusho. Sunshine keikaku itaku kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This report summarizes the results of the 3 R and D themes for coal liquefaction techniques, pursued by the Sunshine Project; (1) development of solvent extraction type liquefaction plant, and brown coal liquefaction technique R and D demonstration surveys, (2) development of solvolysis type liquefaction plant, and (3) development of direct hydrogenation type liquefaction plant. For the theme (1), the 1 T/D test plant, solid/liquid separator and small-size continuous settlement separator are constructed, and partly completed. The elementary studies include solvent extraction type liquefaction process, materials for coal liquefaction plant and solid/liquid separation. Australia's Victoria brown coal and Chinese coal are studied to clarify the possible problems involved in liquefaction of these coal species for commercialization of the liquefaction techniques in the early stage. The elementary techniques studied include dehydration of brown coal, milling at high temperature in oil, de-ashing, and secondary and primary hydrogenation. For the theme (2), the 1 T/D plant is inspected and maintained to clarify the problems involved in the continuous operation, revamped and repaired as necessary, given preventive maintenance, and tested for operability confirmation. The elementary studies include solvolysis type liquefaction process, scale-up, hydrogenation plant for solvolysis pitch. For the item (3), the 2.4 T/D test plant is constructed, and the elementary studies are conducted, for, e.g., liquefaction reactions in the presence of an iron-based catalyst. (NEDO)

  6. Summary of FY 1980 results of Sunshine Project. Development of coal liquefaction techniques; 1980 nendo sekitan ekika gijutsu no kaihatsu seika hokokusho. Sunshine keikaku itaku kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This report summarizes the results of the 3 R and D themes for coal liquefaction techniques, pursued by the Sunshine Project; (1) development of solvent extraction type liquefaction plant, and brown coal liquefaction technique R and D demonstration surveys, (2) development of solvolysis type liquefaction plant, and (3) development of direct hydrogenation type liquefaction plant. For the theme (1), the 1 T/D test plant, solid/liquid separator and small-size continuous settlement separator are constructed, and partly completed. The elementary studies include solvent extraction type liquefaction process, materials for coal liquefaction plant and solid/liquid separation. Australia's Victoria brown coal and Chinese coal are studied to clarify the possible problems involved in liquefaction of these coal species for commercialization of the liquefaction techniques in the early stage. The elementary techniques studied include dehydration of brown coal, milling at high temperature in oil, de-ashing, and secondary and primary hydrogenation. For the theme (2), the 1 T/D plant is inspected and maintained to clarify the problems involved in the continuous operation, revamped and repaired as necessary, given preventive maintenance, and tested for operability confirmation. The elementary studies include solvolysis type liquefaction process, scale-up, hydrogenation plant for solvolysis pitch. For the item (3), the 2.4 T/D test plant is constructed, and the elementary studies are conducted, for, e.g., liquefaction reactions in the presence of an iron-based catalyst. (NEDO)

  7. Techno-economic feasibility and life cycle assessment of dairy effluent to renewable diesel via hydrothermal liquefaction.

    Science.gov (United States)

    Summers, Hailey M; Ledbetter, Rhesa N; McCurdy, Alex T; Morgan, Michael R; Seefeldt, Lance C; Jena, Umakanta; Hoekman, S Kent; Quinn, Jason C

    2015-11-01

    The economic feasibility and environmental impact is investigated for the conversion of agricultural waste, delactosed whey permeate, through yeast fermentation to a renewable diesel via hydrothermal liquefaction. Process feasibility was demonstrated at laboratory-scale with data leveraged to validate systems models used to perform industrial-scale economic and environmental impact analyses. Results show a minimum fuel selling price of $4.78 per gallon of renewable diesel, a net energy ratio of 0.81, and greenhouse gas emissions of 30.0g-CO2-eqMJ(-1). High production costs and greenhouse gas emissions can be attributed to operational temperatures and durations of both fermentation and hydrothermal liquefaction. However, high lipid yields of the yeast counter these operational demands, resulting in a favorable net energy ratio. Results are presented on the optimization of the process based on economy of scale and a sensitivity analysis highlights improvements in conversion efficiency, yeast biomass productivity and hydrotreating efficiency can dramatically improve commercial feasibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. System evaluation of offshore platforms with gas liquefaction processes

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; de Oliveira Júnior, Silvio

    2018-01-01

    Abstract Floating, production, storage and offloading plants are facilities used for offshore processing of hydrocarbons in remote locations. At present, the produced gas is injected back into the reservoir instead of being exported. The implementation of refrigeration processes offshore for liqu......Abstract Floating, production, storage and offloading plants are facilities used for offshore processing of hydrocarbons in remote locations. At present, the produced gas is injected back into the reservoir instead of being exported. The implementation of refrigeration processes offshore...... improvements are discussed based on an energy and exergy analysis. Compared to a standard platform where gas is directly injected into the reservoir, the total power consumption increases by up to 50%, and the exergy destruction within the processing plant doubles when a liquefaction system is installed....... It is therefore essential to conduct a careful analysis of the trade-off between the capital costs and operating revenues for such options....

  9. Performance Analysis of Slinky Horizontal Ground Heat Exchangers for a Ground Source Heat Pump System

    Directory of Open Access Journals (Sweden)

    Md. Hasan Ali

    2017-10-01

    Full Text Available This paper highlights the thermal performance of reclined (parallel to ground surface and standing (perpendicular to ground surface slinky horizontal ground heat exchangers (HGHEs with different water mass flow rates in the heating mode of continuous and intermittent operations. A copper tube with an outer surface protected with low-density polyethylene was selected as the tube material of the ground heat exchanger. Effects on ground temperature around the reclined slinky HGHE due to heat extraction and the effect of variation of ground temperatures on reclined HGHE performance are discussed. A higher heat exchange rate was experienced in standing HGHE than in reclined HGHE. The standing HGHE was affected by deeper ground temperature and also a greater amount of backfilled sand in standing HGHE (4.20 m3 than reclined HGHE (1.58 m3, which has higher thermal conductivity than site soil. For mass flow rate of 1 L/min with inlet water temperature 7 °C, the 4-day average heat extraction rates increased 45.3% and 127.3%, respectively, when the initial average ground temperatures at 1.5 m depth around reclined HGHE increased from 10.4 °C to 11.7 °C and 10.4 °C to 13.7 °C. In the case of intermittent operation, which boosted the thermal performance, a short time interval of intermittent operation is better than a long time interval of intermittent operation. Furthermore, from the viewpoint of power consumption by the circulating pump, the intermittent operation is more efficient than continuous operation.

  10. Role of soil characteristics on analysis of water flow in shallow land

    International Nuclear Information System (INIS)

    Tohaya, Takayuki; Wakabayashi, Noriaki; Wadachi, Yoshiki.

    1987-09-01

    Analysis of water flow on posutulated model grounds has been carried out by using 2-dimensional finite element analytical model, to clarify the effects of soil characteristics (hydroulic conductivities in saturated and unsaturated zones, moisture content - water head relationship, porosity, etc.) of a shallow land layer on variations in water tables and water flow rates. Results thus obtained indicate that hydroulic conductivities in saturated and unsaturated zones play an important role in governing the development of a water table, especially the hydroulic conductivity of the top layer and of the layers near the water table give significant effect on the water table development. It was found through multiple regression analyses of the variation of the water table that among soil characteristics following parameters give pronounced effect on the development of the water table in the order; the relationship between moisture content of the unsaturated zone and pressure head, the distance between the water table and ground surface, and the saturated hydroulic conductivity of the layer immediately above the water table. (author)

  11. Investigation of bio-composites using Novolac type liquefied wood resin: effects of liquefaction and fabrication conditions

    Science.gov (United States)

    Hui Pan; Chung-Yun Hse; Todd F. Shupe

    2009-01-01

    Wood liquefaction using an organic solvent and an acid catalyst has long been studied as a novel technique to utilize biomass as an alternative to petroleum-based products. Oxalic acid is a weaker organic acid than a mineral acid and wood liquefaction with oxalic acid as a catalyst will result in a higher amount of wood residue than that with a mineral acid....

  12. Infiltration properties of covering soil into the void of buried concrete waste due to fluctuation of ground water level and its prevention

    International Nuclear Information System (INIS)

    Takatsu, Tadashi; Tadano, Hideki; Abe, Satoshi; Imai, Jun; Yanagisawa, Eiji; Mitachi, Toshiyuki

    1999-01-01

    Low level radioactive concrete waste will be produced in future by breaking up the nuclear facilities, and the waste will be disposed in shallow depth of ground. In order to prepare for those situation, it is needed to clarify the infiltration properties of the covering soil into the void of buried concrete waste due to the fluctuation of ground water level and to develop the prevention methods against the infiltration of the covering soil. In this study, full-scale concrete structure specimens were broken up, and were compacted in large scale testing boxes and a series tests changing water level up and down in the concrete waste and covering soil were performed. From the test results, it was found that the appropriate filter installed between the covering soil and the concrete waste, enable us to prevent the infiltration of covering soil into the void of concrete waste. (author)

  13. Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Strong Ground Motion

    Science.gov (United States)

    Borcherdt, Roger D.

    1994-01-01

    Strong ground motion generated by the Loma Prieta, Calif., earthquake (MS~7.1) of October 17, 1989, resulted in at least 63 deaths, more than 3,757 injuries, and damage estimated to exceed $5.9 billion. Strong ground motion severely damaged critical lifelines (freeway overpasses, bridges, and pipelines), caused severe damage to poorly constructed buildings, and induced a significant number of ground failures associated with liquefaction and landsliding. It also caused a significant proportion of the damage and loss of life at distances as far as 100 km from the epicenter. Consequently, understanding the characteristics of the strong ground motion associated with the earthquake is fundamental to understanding the earthquake's devastating impact on society. The papers assembled in this chapter address this problem. Damage to vulnerable structures from the earthquake varied substantially with the distance from the causative fault and the type of underlying geologic deposits. Most of the damage and loss of life occurred in areas underlain by 'soft soil'. Quantifying these effects is important for understanding the tragic concentrations of damage in such areas as Santa Cruz and the Marina and Embarcadero Districts of San Francisco, and the failures of the San Francisco-Oakland Bay Bridge and the Interstate Highway 880 overpass. Most importantly, understanding these effects is a necessary prerequisite for improving mitigation measures for larger earthquakes likely to occur much closer to densely urbanized areas in the San Francisco Bay region. The earthquake generated an especially important data set for understanding variations in the severity of strong ground motion. Instrumental strong-motion recordings were obtained at 131 sites located from about 6 to 175 km from the rupture zone. This set of recordings, the largest yet collected for an event of this size, was obtained from sites on various geologic deposits, including a unique set on 'soft soil' deposits

  14. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, R.F.; Coless, L.A.; Davis, S.M. [and others

    1995-12-31

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263. Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.

  15. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  16. Technical and economic aspects of brown coal gasification and liquefaction

    International Nuclear Information System (INIS)

    Speich, P.

    1980-01-01

    A number of gasification and liquefaction processes for Rhenish brown coal are investigated along with the technical and economic aspects of coal beneficiation. The status of coal beneficiation and the major R + D activities are reviewed. (orig.) [de

  17. Bio-crude production from secondary pulp/paper-mill sludge and waste newspaper via co-liquefaction in hot-compressed water

    International Nuclear Information System (INIS)

    Zhang, Linghong; Champagne, Pascale; Xu, Chunbao

    2011-01-01

    Co-liquefaction of secondary pulp/paper-mill sludge (solids concentration: 1.6 wt%) and waste newspaper with a total solids concentration of 11.3 wt% was investigated with and without the addition of catalysts in a 75 ml Parr High-Pressure reactor at temperatures of 250-380 o C for 20 min. The yield of heavy oil (HO) without catalyst was between 16.7 and 28.0 wt% within this temperature range, and peaked at 350 o C. The addition of HCO 2 H, FeS, or KOH at 5 wt% of the total solids (on a dry basis) was found to enhance the HO yield at 300 o C, particularly HCO 2 H, which increased the yield of HO from 24.9 to 34.4 wt%. More interestingly, synergistic effects between secondary pulp/paper-mill sludge and waste newspaper were observed in the co-liquefaction operations. For example, the HO yield attained was 26.9 wt% at 300 o C in the co-liquefaction of the mixture of 33 wt% sludge and 67 wt% waste newspaper, and was noted to be 9 wt% and 6 wt% higher than the yields obtained from liquefaction of sludge and waste newspaper alone, respectively. The HOs from liquefaction or co-liquefaction at 300 o C for 20 min exhibited significantly higher energy contents (HHV ≥ 30 MJ/kg), almost doubled those (-tilde 16 MJ/kg) of the original feedstocks.

  18. Effects of near surface soil moisture profiles during evaporation on far-field ground-penetrating radar data: A numerical study

    KAUST Repository

    Moghadas, Davood

    2013-01-01

    We theoretically investigated the effect of vapor flow on the drying front that develops in soils when water evaporates from the soil surface and on GPR data. The results suggest the integration of the full-wave GPR model with a coupled water, vapor, and heat flow model to accurately estimate the soil hydraulic properties. We investigated the Effects of a drying front that emerges below an evaporating soil surface on the far-field ground-penetrating radar (GPR) data. First, we performed an analysis of the width of the drying front in soils with 12 different textures by using an analytical model. Then, we numerically simulated vertical soil moisture profiles that develop during evaporation for the soil textures. We performed the simulations using a Richards flow model that considers only liquid water flow and a model that considers coupled water, vapor, and heat flows. The GPR signals were then generated from the simulated soil water content profiles taking into account the frequency dependency of apparent electrical conductivity and dielectric permittivity. The analytical approach indicated that the width of the drying front at the end of Stage I of the evaporation was larger in silty soils than in other soil textures and smaller in sandy soils. We also demonstrated that the analytical estimate of the width of the drying front can be considered as a proxy for the impact that a drying front could have on far-field GPR data. The numerical simulations led to the conclusion that vapor transport in soil resulted in S-shaped soil moisture profiles, which clearly influenced the GPR data. As a result, vapor flow needs to be considered when GPR data are interpreted in a coupled inversion approach. Moreover, the impact of vapor flow on the GPR data was larger for silty than for sandy soils. These Effects on the GPR data provide promising perspectives regarding the use of radars for evaporation monitoring. © Soil Science Society of America 5585 Guilford Rd., Madison, WI

  19. Catalyst dispersion and activity under conditions of temperature-staged liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1993-02-01

    This research program involves the investigation of the use of highly dispersed catalyst precursors for the pretreatment of coals by mild hydrogenation. During the course of this effort solvent preswelling of the coal was evaluated as a means of deeply impregnating catalysts into coal, active phases of catalysts under reaction conditions were studied and the impact of these techniques were evaluated during pretreatment and temperature-staged liquefaction. Two coals, a Texas subbituminous and a Utah high volatile A bituminous, were used to examine the effects of solvent swelling pretreatment and catalyst impregnation on conversion behavior at 275[degrees]C, representative of the first, low-temperature stage in a temperature-staged liquefaction reaction. Ferrous sulfate, iron pentacarbonyl, ammonium tetrathiomolybdate, and molybdenum hexacarbonyl were used as catalyst precursors. Without swelling pretreatment, impregnation of both coals increased conversion, mainly through increased yields of preasphaltenes.

  20. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Yunhua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Daniel B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hallen, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schmidt, Andrew J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Albrecht, Karl O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Todd R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Butcher, Mark G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Drennan, Corinne [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kinchin, Christopher [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-03-20

    This report provides a preliminary analysis of the costs associated with converting whole wet algal biomass into primarily diesel fuel. Hydrothermal liquefaction converts the whole algae into an oil that is then hydrotreated and distilled. The secondary aqueous product containing significant organic material is converted to a medium btu gas via catalytic hydrothermal gasification.