Sample records for ground reaction force

  1. Ground Reaction Forces in Alternative Footwear during Slip Events

    Directory of Open Access Journals (Sweden)

    Harish Chander


    Full Text Available Slips, trips and falls are major causitive factors for occupational and non-occupational falls. Alternative footwear such has crocs and flip flops have been used in and around work places and communities that can be slip prone environments. The purpose of the study is to analyze the effects of alternative footwear [crocs (CC, flip-flops (FF] and industry standard slip resistant shoes (LT on ground reaction forces (GRFs during slip events. Eighteen healthy male participants following a repeated measures design for each footwear condition, were tested for heel kinematics during normal dry surface gait (NG; unexpected slip (US, alert slip (AS and expected slip (ES. A 3x4 repeated measures ANOVA was used to analyze the dependent vertical GRFs parameters (Mean Z-GRF and Peak Z-GRF at p = 0.05. Significant interactions between footwear and gait trials were found for Mean Z-GRF and significant main effect in gait trials for Peak Z-GRF were evident. On average significantly lower GRFs were seen in slip trials compared to normal gait. FF exhibited significantly lower GRFs during slip trials while LT demonstrated lower GRFs in normal gait. The reduced ground reaction forces during all slip events compared to normal gait can be attributed to the incomplete weight transfer on the slipping foot during the unexpected and alert slips and to the anticipation of the slippery environment in expected slips. Flip flops which had greater incidence of slips also demonstrated reduced GRFs compared to CC and LT during slip events, further suggesting incomplete weight transfer, while during normal gait, LT demonstrated reduced GRFs compared to alternative footwear owing to its cushioning midsole properties. The LT with lowest incidence of slips demonstrates to be the choice of footwear for maneuvering slippery flooring conditions and for reducing impact reaction forces during non-slippery flooring conditions.Keywords: Slips, Falls, Alternative Footwear, Ground Reaction

  2. Systematic review of ground reaction force measurements in cats. (United States)

    Schnabl, E; Bockstahler, B


    Although orthopaedic abnormalities in cats are frequently observed radiographically, they remain clinically underdiagnosed, and kinetic motion analysis, a fundamental aspect of orthopaedic research in dogs and horses, is not commonly performed. More information obtained with non-invasive measurement techniques to assess normal and abnormal gait in cats would provide a greater insight into their locomotion and biomechanics and improve the objective measurement of disease alterations and treatment modalities. In this systematic review, 12 previously performed studies that investigated ground reaction force measurements in cats during locomotion were evaluated. The aims of these studies, the measurement methods and equipment used, and the outcomes of parameters used to assess both sound and diseased cats are summarised and discussed. All reviewed studies used pressure sensitive walkways to gain data and all provided an acclimatisation period as a prerequisite for measurements. In sound cats during walking, the forelimb peak vertical force was greater than in the hindlimb and the peak vertical force in the hindlimb was greater in cats than in dogs. This review confirms that ground reaction forces can be used to evaluate lameness and treatment effects in the cat.

  3. Analysis of dynamic foot pressure distribution and ground reaction forces (United States)

    Ong, F. R.; Wong, T. S.


    The purpose of this study was to assess the relationship between forces derived from in-shoe pressure distribution and GRFs during normal gait. The relationship served to demonstrate the accuracy and reliability of the in-shoe pressure sensor. The in-shoe pressure distribution from Tekscan F-Scan system outputs vertical forces and Centre of Force (COF), while the Kistler force plate gives ground reaction forces (GRFs) in terms of Fz, Fx and Fy, as well as vertical torque, Tz. The two systems were synchronized for pressure and GRFs measurements. Data was collected from four volunteers through three trials for both left and right foot under barefoot condition with the in-shoe sensor. The forces derived from pressure distribution correlated well with the vertical GRFs, and the correlation coefficient (r2) was in the range of 0.93 to 0.99. This is a result of extended calibration, which improves pressure measurement to give better accuracy and reliability. The COF from in-shoe sensor generally matched well with the force plate COP. As for the maximum vertical torque at the forefoot during toe-off, there was no relationship with the pressure distribution. However, the maximum torque was shown to give an indication of the rotational angle of the foot.

  4. Does an instrumented treadmill correctly measure the ground reaction forces?

    Directory of Open Access Journals (Sweden)

    Patrick A. Willems


    Since the 1990s, treadmills have been equipped with multi-axis force transducers to measure the three components of the ground reaction forces during walking and running. These measurements are correctly performed if the whole treadmill (including the motor is mounted on the transducers. In this case, the acceleration of the treadmill centre of mass relative to the reference frame of the laboratory is nil. The external forces exerted on one side of the treadmill are thus equal in magnitude and opposite in direction to the external forces exerted on the other side. However, uncertainty exists about the accuracy of these measures: due to friction between the belt and the tread-surface, due to the motor pulling the belt, some believe that it is not possible to correctly measure the horizontal components of the forces exerted by the feet on the belt. Here, we propose a simple model of an instrumented treadmill and we demonstrate (1 that the forces exerted by the subject moving on the upper part of the treadmill are accurately transmitted to the transducers placed under it and (2 that all internal forces – including friction – between the parts of the treadmill are cancelling each other.

  5. System of gait analysis based on ground reaction force assessment

    Directory of Open Access Journals (Sweden)

    František Vaverka


    Full Text Available Background: Biomechanical analysis of gait employs various methods used in kinematic and kinetic analysis, EMG, and others. One of the most frequently used methods is kinetic analysis based on the assessment of the ground reaction forces (GRF recorded on two force plates. Objective: The aim of the study was to present a method of gait analysis based on the assessment of the GRF recorded during the stance phase of two steps. Methods: The GRF recorded with a force plate on one leg during stance phase has three components acting in directions: Fx - mediolateral, Fy - anteroposterior, and Fz - vertical. A custom-written MATLAB script was used for gait analysis in this study. This software displays instantaneous force data for both legs as Fx(t, Fy(t and Fz(t curves, automatically determines the extremes of functions and sets the visual markers defining the individual points of interest. Positions of these markers can be easily adjusted by the rater, which may be necessary if the GRF has an atypical pattern. The analysis is fully automated and analyzing one trial takes only 1-2 minutes. Results: The method allows quantification of temporal variables of the extremes of the Fx(t, Fy(t, Fz(t functions, durations of the braking and propulsive phase, duration of the double support phase, the magnitudes of reaction forces in extremes of measured functions, impulses of force, and indices of symmetry. The analysis results in a standardized set of 78 variables (temporal, force, indices of symmetry which can serve as a basis for further research and diagnostics. Conclusions: The resulting set of variable offers a wide choice for selecting a specific group of variables with consideration to a particular research topic. The advantage of this method is the standardization of the GRF analysis, low time requirements allowing rapid analysis of a large number of trials in a short time, and comparability of the variables obtained during different research measurements.

  6. Comparison of vertical ground reaction forces during overground and treadmill running. A validation study

    NARCIS (Netherlands)

    Kluitenberg, Bas; Bredeweg, Steef W.; Zijlstra, Sjouke; Zijlstra, Wiebren; Buist, Ida


    Background: One major drawback in measuring ground-reaction forces during running is that it is time consuming to get representative ground-reaction force (GRF) values with a traditional force platform. An instrumented force measuring treadmill can overcome the shortcomings inherent to overground te

  7. Acute fatigue effects on ground reaction force of lower limbs during countermovement jumps


    Carlos Gabriel Fábrica; González,Paula V.; Jefferson Fagundes Loss


    Parameters associated with the performance of countermovement jumps were identified from vertical ground reaction force recordings during fatigue and resting conditions. Fourteen variables were defined, dividing the vertical ground reaction force into negative and positive external working times and times in which the vertical ground reaction force values were lower and higher than the participant's body weight. We attempted to explain parameter variations by considering the relationship betw...

  8. Kinematic and ground reaction force accommodation during weighted walking. (United States)

    James, C Roger; Atkins, Lee T; Yang, Hyung Suk; Dufek, Janet S; Bates, Barry T


    Weighted walking is a functional activity common in daily life and can influence risks for musculoskeletal loading, injury and falling. Much information exists about weighted walking during military, occupational and recreational tasks, but less is known about strategies used to accommodate to weight carriage typical in daily life. The purposes of the study were to examine the effects of weight carriage on kinematics and peak ground reaction force (GRF) during walking, and explore relationships between these variables. Twenty subjects walked on a treadmill while carrying 0, 44.5 and 89 N weights in front of the body. Peak GRF, sagittal plane joint/segment angular kinematics, stride length and center of mass (COM) vertical displacement were measured. Changes in peak GRF and displacement variables between weight conditions represented accommodation. Effects of weight carriage were tested using analysis of variance. Relationships between peak GRF and kinematic accommodation variables were examined using correlation and regression. Subjects were classified into sub-groups based on peak GRF responses and the correlation analysis was repeated. Weight carriage increased peak GRF by an amount greater than the weight carried, decreased stride length, increased vertical COM displacement, and resulted in a more extended and upright posture, with less hip and trunk displacement during weight acceptance. A GRF increase was associated with decreases in hip extension (|r|=.53, p=.020) and thigh anterior rotation (|r|=.57, p=.009) displacements, and an increase in foot anterior rotation displacement (|r|=.58, p=.008). Sub-group analysis revealed that greater GRF increases were associated with changes at multiple sites, while lesser GRF increases were associated with changes in foot and trunk displacement. Weight carriage affected walking kinematics and revealed different accommodation strategies that could have implications for loading and stability.

  9. Acute fatigue effects on ground reaction force of lower limbs during countermovement jumps

    Directory of Open Access Journals (Sweden)

    Carlos Gabriel Fábrica


    Full Text Available Parameters associated with the performance of countermovement jumps were identified from vertical ground reaction force recordings during fatigue and resting conditions. Fourteen variables were defined, dividing the vertical ground reaction force into negative and positive external working times and times in which the vertical ground reaction force values were lower and higher than the participant's body weight. We attempted to explain parameter variations by considering the relationship between the set of contractile and elastic components of the lower limbs. We determined that jumping performance is based on impulsion optimization and not on instantaneous ground reaction force value: the time in which the ground reaction force was lower than the body weight, and negative external work time was lower under fatigue. The results suggest that, during fatigue, there is less contribution from elastic energy and from overall active state. However, the participation of contractile elements could partially compensate for the worsening of jumping performance.

  10. Evaluation of instrumented shoes for ambulatory assessment of ground reaction forces

    NARCIS (Netherlands)

    Liedtke, Christian; Fokkenrood, Steven A.W.; Menger, Jasper T.; Kooij, van der Herman; Veltink, Peter H.


    Currently, force plates or pressure sensitive insoles are the standard tools to measure ground reaction forces and centre of pressure data during human gait. Force plates, however, impose constraints on foot placement, and the available pressure sensitive insoles measure only one component of force.

  11. Ground reaction forces in ballet dancers landing in flat shoes versus pointe shoes. (United States)

    Walter, Heather L; Docherty, Carrie L; Schrader, John


    Reports in the literature suggest an abundance of lower extremity injuries in ballet dancers; however, few studies have identified the underlying causes of these injuries. Excessive ground reaction forces and shoe type are two potential contributing factors. Eighteen collegiate female ballet majors volunteered for this study. Each participant performed 12 trials of a basic ballet jump, six trials in flat shoes and 6 trials in pointe shoes, landing on a force plate. Ground reaction force (Newtons) and jump height (centimeters) were assessed for each trial. The mean ground reaction force and jump height for each shoe condition was used for statistical analysis. Two dependent t-tests were conducted to determine differences between the shoe types, one for ground reaction force and one for jump height. Alpha level was set at p < .05. We found that the ground reaction force was significantly higher when landing in flat shoes than in pointe shoes (p = .003). There was no significant difference in jump height between the two shoe conditions. This leads us to believe that the increase in ground reaction force was produced primarily by the shoe type.

  12. Forelimb and hindlimb ground reaction forces of walking cats: Assessment and comparison with walking dogs

    NARCIS (Netherlands)

    Corbee, Ronald; Hazewinkel, Herman; Doornenbal, Arie; Maas, Huub


    The primary aim of this study was to assess the potential of force plate analysis for describing the stride cycle of the cat. The secondary aim was to define differences in feline and canine locomotion based on force plate characteristics. Ground reaction forces of 24 healthy cats were measured and

  13. Comparison of vertical ground reaction forces during overground and treadmill running. A validation study

    Directory of Open Access Journals (Sweden)

    Kluitenberg Bas


    Full Text Available Abstract Background One major drawback in measuring ground-reaction forces during running is that it is time consuming to get representative ground-reaction force (GRF values with a traditional force platform. An instrumented force measuring treadmill can overcome the shortcomings inherent to overground testing. The purpose of the current study was to determine the validity of an instrumented force measuring treadmill for measuring vertical ground-reaction force parameters during running. Methods Vertical ground-reaction forces of experienced runners (12 male, 12 female were obtained during overground and treadmill running at slow, preferred and fast self-selected running speeds. For each runner, 7 mean vertical ground-reaction force parameters of the right leg were calculated based on five successful overground steps and 30 seconds of treadmill running data. Intraclass correlations (ICC(3,1 and ratio limits of agreement (RLOA were used for further analysis. Results Qualitatively, the overground and treadmill ground-reaction force curves for heelstrike runners and non-heelstrike runners were very similar. Quantitatively, the time-related parameters and active peak showed excellent agreement (ICCs between 0.76 and 0.95, RLOA between 5.7% and 15.5%. Impact peak showed modest agreement (ICCs between 0.71 and 0.76, RLOA between 19.9% and 28.8%. The maximal and average loading-rate showed modest to excellent ICCs (between 0.70 and 0.89, but RLOA were higher (between 34.3% and 45.4%. Conclusions The results of this study demonstrated that the treadmill is a moderate to highly valid tool for the assessment of vertical ground-reaction forces during running for runners who showed a consistent landing strategy during overground and treadmill running. The high stride-to-stride variance during both overground and treadmill running demonstrates the importance of measuring sufficient steps for representative ground-reaction force values. Therefore, an

  14. Software for analysis of equine ground reaction force data

    NARCIS (Netherlands)

    Schamhardt, H.C.; Merkens, H.W.; Lammertink, J.L.M.A.


    Software for analysis of force plate recordings of the horse at normal walk is described. The data of a number of stance phases are averaged to obtain a representative tracing of that horse. The amplitudes of a number of characteristic peaks in the force-time curves are used to compare left and righ

  15. A New Method of Desired Gait Synthesis for Biped Walking Robot Based on Ground Reaction Force

    Institute of Scientific and Technical Information of China (English)


    A new method of desired gait synthesis for biped walking robot based on the ground reaction force was proposed. The relation between the ground reaction force and joint motion is derived using the D'Almbert principle. In view of dynamic walking with high stability, the ZMP(Zero Moment Point)stability criterion must be considered in the desired gait synthesis. After that, the joint trajectories of biped walking robot are decided by substituting the ground reaction force into the aforesaid relation based on the ZMP criterion. The trajectory of desired ZMP is determined by a fuzzy logic based upon the body posture of biped walking robot. The proposed scheme is simulated and experimented on a 10 degree of freedom biped walking robot. The results indicate that the proposed method is feasible.

  16. The influence of cricket fast bowlers' front leg technique on peak ground reaction forces. (United States)

    Worthington, Peter; King, Mark; Ranson, Craig


    High ground reaction forces during the front foot contact phase of the bowling action are believed to be a major contributor to the high prevalence of lumbar stress fractures in fast bowlers. This study aimed to investigate the influence of front leg technique on peak ground reaction forces during the delivery stride. Three-dimensional kinematic data and ground reaction forces during the front foot contact phase were captured for 20 elite male fast bowlers. Eight kinematic parameters were determined for each performance, describing run-up speed and front leg technique, in addition to peak force and time to peak force in the vertical and horizontal directions. There were substantial variations between bowlers in both peak forces (vertical 6.7 ± 1.4 body weights; horizontal (braking) 4.5 ± 0.8 body weights) and times to peak force (vertical 0.03 ± 0.01 s; horizontal 0.03 ± 0.01 s). These differences were found to be linked to the orientation of the front leg at the instant of front foot contact. In particular, a larger plant angle and a heel strike technique were associated with lower peak forces and longer times to peak force during the front foot contact phase, which may help reduce the likelihood of lower back injuries.


    Directory of Open Access Journals (Sweden)

    William I. Sellers


    Full Text Available Racquet sports have high levels of joint injuries suggesting the joint loads during play may be excessive. Sports such as badminton employ lateral sidestepping (SS and crossover stepping (XS movements which so far have not been described in terms of biomechanics. This study examined bilateral ground reaction forces and three dimensional joint kinetics for both these gaits in order to determine the demands of the movements on the leading and trailing limb and predict the contribution of these movements to the occurrence of overuse injury of the lower limbs. A force platform and motion-analysis system were used to record ground reaction forces and track marker trajectories of 9 experienced male badminton players performing lateral SS, XS and forward running tasks at a controlled speed of 3 m·s-1 using their normal technique. Ground reaction force and kinetic data for the hip, knee and ankle were analyzed, averaged across the group and the biomechanical variables compared. In all cases the ground reaction forces and joint moments were less than those experienced during moderate running suggesting that in normal play SS and XS gaits do not lead to high forces that could contribute to increased injury risk. Ground reaction forces during SS and XS do not appear to contribute to the development of overuse injury. The distinct roles of the leading and trailing limb, acting as a generator of vertical force and shock absorber respectively, during the SS and XS may however contribute to the development of muscular imbalances which may ultimately contribute to the development of overuse injury. However it is still possible that faulty use of these gaits might lead to high loads and this should be the subject of future work

  18. Forelimb and hindlimb ground reaction forces of walking cats: assessment and comparison with walking dogs. (United States)

    Corbee, R J; Maas, H; Doornenbal, A; Hazewinkel, H A W


    The primary aim of this study was to assess the potential of force plate analysis for describing the stride cycle of the cat. The secondary aim was to define differences in feline and canine locomotion based on force plate characteristics. Ground reaction forces of 24 healthy cats were measured and compared with ground reaction forces of 24 healthy dogs. Force-time waveforms in cats generated by force plate analysis were consistent, as reflected by intra-class correlation coefficients for peak vertical force, peak propulsive force and peak braking force (0.94-0.95, 0.85-0.89 and 0.89-0.90, respectively). Compared with dogs, cats had a higher peak vertical force during the propulsion phase (cat, 3.89 ± 0.19 N/kg; dog, 3.03 ± 0.16 N/kg), and a higher hindlimb propulsive force (cat, -1.08 ± 0.13 N/kg; dog, (-0.87 ± 0.13 N/kg) and hindlimb impulse (cat, -0.18 ± 0.03 N/kg; dog, -0.14 ± 0.02 N/kg). Force plate analysis is a valuable tool for the assessment of locomotion in cats, because it can be applied in the clinical setting and provides a non-invasive and objective measurement of locomotion characteristics with high repeatability in cats, as well as information about kinetic characteristics. Differences in force-time waveforms between cats and dogs can be explained by the more crouched position of cats during stance and their more compliant gait compared with dogs. Feline waveforms of the medio-lateral ground reaction forces also differ between cats and dogs and this can be explained by differences in paw supination-pronation.

  19. Bilateral contact ground reaction forces and contact times during plyometric drop jumping. (United States)

    Ball, Nick B; Stock, Christopher G; Scurr, Joanna C


    Drop jumping (DJ) is used in training programs aimed to improve lower extremity explosive power. When performing double-leg drop jumps, it is important to provide an equal stimulus to both legs to ensure balanced development of the lower legs. The aim of this study was to bilaterally analyze the ground reactions forces and temporal components of drop jumping from 3 heights. Ten recreationally active male subjects completed 3 bounce-drop jumps from 3 starting heights (0.2, 0.4, and 0.6 m). Two linked force platforms were used to record left- and right-leg peak vertical force, time to peak force, average force, ground contact time, impulse and time differential. Between-height and between-leg comparisons for each variable were made using a multivariate analysis of variance with post hoc Wilcoxon tests (p vertical forces and temporal components occur; however, shorter contact times were found at the lower heights.

  20. Use of pressure insoles to calculate the complete ground reaction forces

    NARCIS (Netherlands)

    Forner Cordero, A.; Koopman, H.F.J.M.; Helm, van der F.C.T.


    A method to calculate the complete ground reaction force (GRF) components from the vertical GRF measured with pressure insoles is presented and validated. With this approach it is possible to measure several consecutive steps without any constraint on foot placement and compute a standard inverse dy

  1. In-Shoe Plantar Pressures and Ground Reaction Forces during Overweight Adults' Overground Walking (United States)

    de Castro, Marcelo P.; Abreu, Sofia C.; Sousa, Helena; Machado, Leandro; Santos, Rubim; Vilas-Boas, João Paulo


    Purpose: Because walking is highly recommended for prevention and treatment of obesity and some of its biomechanical aspects are not clearly understood for overweight people, we compared the absolute and normalized ground reaction forces (GRF), plantar pressures, and temporal parameters of normal-weight and overweight participants during…

  2. Mechanical stimulation of the foot sole in a supine position for ground reaction force simulation



    Background:\\ud To promote early rehabilitation of walking, gait training can start even when patients are on bed rest. Supine stepping in the early phase after injury is proposed to maximise the beneficial effects of gait restoration. In this training paradigm, mechanical loading on the sole of the foot is required to mimic the ground reaction forces that occur during overground walking. A pneumatic shoe platform was developed to produce adjustable forces on the heel and the forefoot with an ...

  3. Analysis of kinematic data and determination of ground reaction force of foot in slow squat

    Institute of Scientific and Technical Information of China (English)

    Xu-Shu Zhang; Yuan Guo; Mei-Wen An; Wei-Yi Chen


    In the present paper,the ground reaction force (GRF) acting on foot in slow squat was determined through a force measuring system,and at the same time,the kinematic data of human squat were obtained by analyzing the photographed image sequences.According to the height and body weight,six healthy volunteers were selected,three men in one group and the other three women in another group,and the fundamental parameters of subjects were recorded,including body weight,height and age,etc.Based on the anatomy characteristics,some markers were placed on the right side of joints.While the subject squatted at slow speed on the force platform,the ground reaction forces on the forefoot and heel for each foot were obtained through calibrated force platform.The analysis results show that the reaction force on heel is greater than that on forefoot,and double feet have nearly constant force.Moreover,from processing and analyzing the synchronously photographed image sequences in squat,the kinematic data of human squat were acquired,including mainly the curves of angle,angular velocity and angular acceleration varied with time for knee,hip and ankle joints in a sagittal plane.The obtained results can offer instructive reference for photographing and analyzing the movements of human bodies,diagnosing some diseases,and establishing in the future appropriate mathematical models for the human motion.

  4. Analysis of kinematic data and determination of ground reaction force of foot in slow squat (United States)

    Zhang, Xu-Shu; Guo, Yuan; An, Mei-Wen; Chen, Wei-Yi


    In the present paper, the ground reaction force (GRF) acting on foot in slow squat was determined through a force measuring system, and at the same time, the kinematic data of human squat were obtained by analyzing the photographed image sequences. According to the height and body weight, six healthy volunteers were selected, three men in one group and the other three women in another group, and the fundamental parameters of subjects were recorded, including body weight, height and age, etc. Based on the anatomy characteristics, some markers were placed on the right side of joints. While the subject squatted at slow speed on the force platform, the ground reaction forces on the forefoot and heel for each foot were obtained through calibrated force platform. The analysis results show that the reaction force on heel is greater than that on forefoot, and double feet have nearly constant force. Moreover, from processing and analyzing the synchronously photographed image sequences in squat, the kinematic data of human squat were acquired, including mainly the curves of angle, angular velocity and angular acceleration varied with time for knee, hip and ankle joints in a sagittal plane. The obtained results can offer instructive reference for photographing and analyzing the movements of human bodies, diagnosing some diseases, and establishing in the future appropriate mathematical models for the human motion.

  5. Grizzly bear (Ursus arctos horribilis) locomotion: gaits and ground reaction forces. (United States)

    Shine, Catherine L; Penberthy, Skylar; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P


    Locomotion of plantigrade generalists has been relatively little studied compared with more specialised postures even though plantigrady is ancestral among quadrupeds. Bears (Ursidae) are a representative family for plantigrade carnivorans, they have the majority of the morphological characteristics identified for plantigrade species, and they have the full range of generalist behaviours. This study compared the locomotion of adult grizzly bears (Ursus arctos horribilis Linnaeus 1758), including stride parameters, gaits and analysis of three-dimensional ground reaction forces, with that of previously studied quadrupeds. At slow to moderate speeds, grizzly bears use walks, running walks and canters. Vertical ground reaction forces demonstrated the typical M-shaped curve for walks; however, this was significantly more pronounced in the hindlimb. The rate of force development was also significantly higher for the hindlimbs than for the forelimbs at all speeds. Mediolateral forces were significantly higher than would be expected for a large erect mammal, almost to the extent of a sprawling crocodilian. There may be morphological or energetic explanations for the use of the running walk rather than the trot. The high medial forces (produced from a lateral push by the animal) could be caused by frontal plane movement of the carpus and elbow by bears. Overall, while grizzly bears share some similarities with large cursorial species, their locomotor kinetics have unique characteristics. Additional studies are needed to determine whether these characters are a feature of all bears or plantigrade species.

  6. Ambulatory assessment of 3D ground reaction force using plantar pressure distribution. (United States)

    Rouhani, H; Favre, J; Crevoisier, X; Aminian, K


    This study aimed to use the plantar pressure insole for estimating the three-dimensional ground reaction force (GRF) as well as the frictional torque (T(F)) during walking. Eleven subjects, six healthy and five patients with ankle disease participated in the study while wearing pressure insoles during several walking trials on a force-plate. The plantar pressure distribution was analyzed and 10 principal components of 24 regional pressure values with the stance time percentage (STP) were considered for GRF and T(F) estimation. Both linear and non-linear approximators were used for estimating the GRF and T(F) based on two learning strategies using intra-subject and inter-subjects data. The RMS error and the correlation coefficient between the approximators and the actual patterns obtained from force-plate were calculated. Our results showed better performance for non-linear approximation especially when the STP was considered as input. The least errors were observed for vertical force (4%) and anterior-posterior force (7.3%), while the medial-lateral force (11.3%) and frictional torque (14.7%) had higher errors. The result obtained for the patients showed higher error; nevertheless, when the data of the same patient were used for learning, the results were improved and in general slight differences with healthy subjects were observed. In conclusion, this study showed that ambulatory pressure insole with data normalization, an optimal choice of inputs and a well-trained nonlinear mapping function can estimate efficiently the three-dimensional ground reaction force and frictional torque in consecutive gait cycle without requiring a force-plate.

  7. Measured and estimated ground reaction forces for multi-segment foot models. (United States)

    Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L; Richards, James G


    Accurate measurement of ground reaction forces under discrete areas of the foot is important in the development of more advanced foot models, which can improve our understanding of foot and ankle function. To overcome current equipment limitations, a few investigators have proposed combining a pressure mat with a single force platform and using a proportionality assumption to estimate subarea shear forces and free moments. In this study, two adjacent force platforms were used to evaluate the accuracy of the proportionality assumption on a three segment foot model during normal gait. Seventeen right feet were tested using a targeted walking approach, isolating two separate joints: transverse tarsal and metatarsophalangeal. Root mean square (RMS) errors in shear forces up to 6% body weight (BW) were found using the proportionality assumption, with the highest errors (peak absolute errors up to 12% BW) occurring between the forefoot and toes in terminal stance. The hallux exerted a small braking force in opposition to the propulsive force of the forefoot, which was unaccounted for by the proportionality assumption. While the assumption may be suitable for specific applications (e.g. gait analysis models), it is important to understand that some information on foot function can be lost. The results help highlight possible limitations of the assumption. Measured ensemble average subarea shear forces during normal gait are also presented for the first time.

  8. Does walking in a virtual environment induce unstable gait? An examination of vertical ground reaction forces. (United States)

    Hollman, John H; Brey, Robert H; Bang, Tami J; Kaufman, Kenton R


    Virtual reality (VR) can induce postural instability in standing and walking, as quantified with kinematic parameters. This study examines the effect of a VR environment on kinetic gait parameters. Ten healthy volunteers walked on an instrumented treadmill in a VR environment and a non-VR environment. In the VR environment, a corridor with colored vertical stripes comprising the walls was projected onto a concave screen placed in front of the treadmill. The speed of the moving image was perceptually equivalent to the speed of the treadmill, creating an illusion that subjects walked through the corridor. Vertical ground reaction forces were sampled. Kinetic parameters that reflect gait stability (weight acceptance peak force, weight acceptance rate, push-off peak force and push-off rate) were compared between the VR and non-VR environments. Subjects walked in the VR environment with increased magnitudes and rates of weight acceptance force and with increased rates of push-off force. Variability in weight acceptance rates and peak forces, and variability in push-off peak forces, were also increased in the VR environment. The gait deviations reflect a compensatory response to visual stimulation that occurs in the VR environment, suggesting that walking in a VR environment may induce gait instability in healthy subjects.

  9. Determination of the vertical ground reaction forces acting upon individual limbs during healthy and clinical gait. (United States)

    Meurisse, Guillaume M; Dierick, Frédéric; Schepens, Bénédicte; Bastien, Guillaume J


    In gait lab, the quantification of the ground reaction forces (GRFs) acting upon individual limbs is required for dynamic analysis. However, using a single force plate, only the resultant GRF acting on both limbs is available. The aims of this study are (a) to develop an algorithm allowing a reliable detection of the front foot contact (FC) and the back foot off (FO) time events when walking on a single plate, (b) to reconstruct the vertical GRFs acting upon each limb during the double contact phase (DC) and (c) to evaluate this reconstruction on healthy and clinical gait trials. For the purpose of the study, 811 force measurements during DC were analyzed based on walking trials from 27 healthy subjects and 88 patients. FC and FO are reliably detected using a novel method based on the distance covered by the centre of pressure. The algorithm for the force reconstruction is a revised version of the approach of Davis and Cavanagh [24]. In order to assess the robustness of the algorithm, we compare the resulting GRFs with the real forces measured with individual force plates. The median of the relative error on force reconstruction is 1.8% for the healthy gait and 2.5% for the clinical gait. The reconstructed and the real GRFs during DC are strongly correlated for both healthy and clinical gait data (R(2)=0.998 and 0.991, respectively).

  10. Ground reaction forces and lower-limb joint kinetics of turning gait in typically developing children. (United States)

    Dixon, Philippe C; Stebbins, Julie; Theologis, Tim; Zavatsky, Amy B


    Turning is a common locomotor task essential to daily activity; however, very little is known about the forces and moments responsible for the kinematic adaptations occurring relative to straight-line gait in typically developing children. Thus, the aims of this study were to analyse ground reaction forces (GRFs), ground reaction free vertical torque (TZ), and the lower-limb joint kinetics of 90° outside (step) and inside (spin) limb turns. Step, spin, and straight walking trials from fifty-four typically developing children were analysed. All children were fit with the Plug-in Gait and Oxford Foot Model marker sets while walking over force plates embedded in the walkway. Net internal joint moments and power were computed via a standard inverse dynamics approach. All dependent variables were statistically analysed over the entire curves using the mean difference 95% bootstrap confidence band approach. GRFs were directed medially for step turns and laterally for spin turns during the turning phase. Directions were reversed and magnitudes decreased during the approach phase. Step turns showed reduced ankle power generation, while spin turns showed large TZ. Both strategies required large knee and hip coronal and transverse plane moments during swing. These kinetic differences highlight adaptations required to maintain stability and reorient the body towards the new walking direction during turning. From a clinical perspective, turning gait may better reveal weaknesses and motor control deficits than straight walking in pathological populations, such as children with cerebral palsy, and could potentially be implemented in standard gait analysis sessions.

  11. External Load Affects Ground Reaction Force Parameters Non-uniformly during Running in Weightlessness (United States)

    DeWitt, John; Schaffner, Grant; Laughlin, Mitzi; Loehr, James; Hagan, R. Donald


    Long-term exposure to microgravity induces detrimefits to the musculcskdetal system (Schneider et al., 1995; LeBlanc et al., 2000). Treadmill exercise is used onboard the International Space Station as an exercise countermeasure to musculoskeletal deconditioning due to spaceflight. During locomotive exercise in weightlessness (0G), crewmembers wear a harness attached to an external loading mechanism (EL). The EL pulls the crewmember toward the treadmill, and provides resistive load during the impact and propulsive phases of gait. The resulting forces may be important in stimulating bone maintenance (Turner, 1998). The EL can be applied via a bungee and carabineer clip configuration attached to the harness and can be manipulated to create varying amounts of load levels during exercise. Ground-based research performed using a vertically mounted treadmill found that peak ground reaction forces (GRF) during running at an EL of less than one body weight (BW) are less than those that occur during running in normal gravity (1G) (Davis et al., 1996). However, it is not known how the GRF are affected by the EL in a true OG environment. Locomotion while suspended may result in biomechanics that differ from free running. The purpose of this investigation was to determine how EL affects peak impact force, peak propulsive force, loading rate, and impulse of the GRF during running in 0G. It was hypothesized that increasing EL would result in increases in each GRF parameter.

  12. Isokinetic analysis of ankle and ground reaction forces in runners and triathletes

    Directory of Open Access Journals (Sweden)

    Natália Mariana Silva Luna


    Full Text Available OBJECTIVE: To analyze and compare the vertical component of ground reaction forces and isokinetic muscle parameters for plantar flexion and dorsiflexion of the ankle between long-distance runners, triathletes, and nonathletes. METHODS: Seventy-five males with a mean age of 30.26 (±6.5 years were divided into three groups: a triathlete group (n=26, a long-distance runner group (n = 23, and a non-athlete control group. The kinetic parameters were measured during running using a force platform, and the isokinetic parameters were measured using an isokinetic dynamometer. RESULTS: The non-athlete control group and the triathlete group exhibited smaller vertical forces, a greater ground contact time, and a greater application of force during maximum vertical acceleration than the long-distance runner group. The total work (180º/s was greater in eccentric dorsiflexion and concentric plantar flexion for the non-athlete control group and the triathlete group than the long-distance runner group. The peak torque (60º/s was greater in eccentric plantar flexion and concentric dorsiflexion for the control group than the athlete groups. CONCLUSIONS: The athlete groups exhibited less muscle strength and resistance than the control group, and the triathletes exhibited less impact and better endurance performance than the runners.


    Directory of Open Access Journals (Sweden)

    Suzanna Logan


    Full Text Available Various shoes are worn by distance runners throughout a training season. This study measured the differences in ground reaction forces between running shoes, racing flats, and distance spikes in order to provide information about the potential effects of footwear on injury risk in highly competitive runners. Ten male and ten female intercollegiate distance runners ran across a force plate at 6.7 m·s-1 (for males and 5.7 m·s-1 (for females in each of the three types of shoes. To control for differences in foot strike, only subjects who exhibited a heel strike were included in the data analysis. Two repeated-measures ANOVAs with Tukey's post-hoc tests (p < 0.05 were used to detect differences in shoe types among males and females. For the males, loading rate, peak vertical impact force and peak braking forces were significantly greater in flats and spikes compared to running shoes. Vertical stiffness in spikes was also significantly greater than in running shoes. Females had significantly shorter stance times and greater maximum propulsion forces in racing flats compared to running shoes. Changing footwear between the shoes used in this study alters the loads placed on the body. Care should be taken as athletes enter different phases of training where different footwear is required. Injury risk may be increased since the body may not be accustomed to the differences in force, stance time, and vertical stiffness

  14. Ground Reaction Forces Generated by Twenty-eight Hatha Yoga Postures. (United States)

    Wilcox, Sylvia J; Hager, Ron; Lockhart, Barbara; Seeley, Matthew K

    Adherents claim many benefits from the practice of yoga, including promotion of bone health and prevention of osteoporosis. However, no known studies have investigated whether yoga enhances bone mineral density. Furthermore, none have estimated reaction forces applied by yoga practitioners. The purpose of this study was to collect ground reaction force (GRF) data on a variety of hatha yoga postures that would commonly be practiced in fitness centers or private studios. Twelve female and eight male volunteers performed a sequence of 28 hatha yoga postures while GRF data were collected with an AMTI strain-gauge force platform. The sequence was repeated six times by each study subject. Four dependent variables were studied: peak vertical GRF, mean vertical GRF, peak resultant GRF, and mean resultant GRF. Univariate analysis was used to identify mean values and standard deviations for the dependent variables. Peak vertical and resultant values of each posture were similar for all subjects, and standard deviations were small. Similarly, mean vertical and resultant values were similar for all subjects. This 28 posture yoga sequence produced low impact GRF applied to upper and lower extremities. Further research is warranted to determine whether these forces are sufficient to promote osteogenesis or maintain current bone health in yoga practitioners.

  15. Estimation of sitting posture by using the combination of ground reaction force

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hye Ob; Park, Suk Yung [KAIST, Daejeon (Korea, Republic of)


    To avoid back pain and related diseases, an appropriate sitting posture should be maintained. Inertial measurement units (IMUs) or marker-less motion cameras, such as Kinect, has recently been used to achieve simpler posture measurements than optical motion capture camera systems. However, multiple IMUs can affect the natural posture of users. The space requirement to guarantee reliable camera data is also somewhat excessive (>1 m) for some personal space setups. Therefore, we propose an unobtrusive method for estimating sitting posture on the basis of ground reaction force measurement, which can be achieved without the use of markers or additional space for measurement. To eliminate additional measurement information other than the ground reaction force underneath the chair and desk, we modeled the posture as a multi-segment rigid body. Several assumptions were proposed and verified to simplify the model and data processing without deteriorating the posture information. Furthermore, to examine whether the combined GRF information provides the appropriateness of the posture, we performed sitting tests for various postures. Results showed that the combinations of GRF measurement could reasonably estimate the sitting posture by the simplified rigid body model and could reliably differentiate the inappropriate forward bent posture. The results showed that the proposed method could serve as a sensing mechanism of posture monitoring systems.

  16. Investigation of spinal posture signatures and ground reaction forces during landing in elite female gymnasts. (United States)

    Wade, Melanie; Campbell, Amity; Smith, Anne; Norcott, Joanne; O'Sullivan, Peter


    The link between static and dynamic landing lumbar postures, when gymnasts are exposed to large ground reaction forces, has not been established. This investigation aimed to (a) determine if a relationship exists between sagittal static and dynamic landing lumbar spine angles at peak ground reaction force (GRF) and (b) quantify how close to end-range postures the gymnasts were at landing peak GRF. Twenty-one female gymnasts' upper and lower lumbar spine angles were recorded: statically in sitting and standing, during landing of three gymnastic skills, and during active end-range lumbar flexion. Pearson's correlations were used to investigate relationships between the angles in different postures. Significant correlations (r = .77-.89, p postures in the lower lumbar spine angle, while fewer and less significant upper lumbar spine correlations were reported. Thirty percent of gymnasts landed a backsault with their lower lumbar spine flexed beyond their active end-range while experiencing GRF 6.8-13.3 times their body weight. These results inform low back pain prevention and management strategies in this population and highlight areas for future research.

  17. Assessment of changes in gait parameters and vertical ground reaction forces after total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Bhargava P


    Full Text Available The principal objectives of arthroplasty are relief of pain and enhancement of range of motion. Currently, postoperative pain and functional capacity are assessed largely on the basis of subjective evaluation scores. Because of the lack of control inherent in this method it is often difficult to interpret data presented by different observers in the critical evaluation of surgical method, new components and modes of rehabilitation. Gait analysis is a rapid, simple and reliable method to assess functional outcome. This study was undertaken in an effort to evaluate the gait characteristics of patients who underwent arthroplasty, using an Ultraflex gait analyzer. Materials and Methods: The study was based on the assessment of gait and weight-bearing pattern of both hips in patients who underwent total hip replacement and its comparison with an age and sex-matched control group. Twenty subjects of total arthroplasty group having unilateral involvement, operated by posterior approach at our institution with a minimum six-month postoperative period were selected. Control group was age and sex-matched, randomly selected from the general population. Gait analysis was done using Ultraflex gait analyzer. Gait parameters and vertical ground reaction forces assessment was done by measuring the gait cycle properties, step time parameters and VGRF variables. Data of affected limb was compared with unaffected limb as well as control group to assess the weight-bearing pattern. Statistical analysis was done by′t′ test. Results: Frequency is reduced and gait cycle duration increased in total arthroplasty group as compared with control. Step time parameters including Step time, Stance time and Single support time are significantly reduced ( P value < .05 while Double support time and Single swing time are significantly increased ( P value < .05 in the THR group. Forces over each sensor are increased more on the unaffected limb of the THR group as compared to

  18. Comparisons of peak ground reaction force and rate of force development during variations of the power clean. (United States)

    Comfort, Paul; Allen, Mark; Graham-Smith, Phillip


    The aim of this investigation was to determine the differences in vertical ground reaction forces and rate of force development (RFD) during variations of the power clean. Elite rugby league players (n = 11; age 21 ± 1.63 years; height 181.56 ± 2.61 cm; body mass 93.65 ± 6.84 kg) performed 1 set of 3 repetitions of the power clean, hang-power clean, midthigh power clean, or midthigh clean pull, using 60% of 1-repetition maximum power clean, in a randomized order, while standing on a force platform. Differences in peak vertical ground reaction forces (F(z)) and instantaneous RFD between lifts were analyzed via 1-way analysis of variance and Bonferroni post hoc analysis. Statistical analysis revealed a significantly (p clean (2,801.7 ± 195.4 N) and the midthigh clean pull (2,880.2 ± 236.2 N) compared to both the power clean (2,306.24 ± 240.47 N) and the hang-power clean (2,442.9 ± 293.2 N). The midthigh power clean (14,655.8 ± 4,535.1 N·s⁻¹) and the midthigh clean pull (15,320.6 ± 3,533.3 N·s⁻¹) also demonstrated significantly (p clean (8,839.7 ± 2,940.4 N·s⁻¹) and the hang-power clean (9,768.9 ± 4,012.4 N·s⁻¹). From the findings of this study, when training to maximize peak F(z) and RFD the midthigh power clean and midthigh clean pull appear to be the most advantageous variations of the power clean to perform.

  19. Gender Differences among Sagittal Plane Knee Kinematic and Ground Reaction Force Characteristics during a Rapid Sprint and Cut Maneuver (United States)

    James, C. Roger; Sizer, Phillip S.; Starch, David W.; Lockhart, Thurmon E.; Slauterbeck, James


    Women are more prone to anterior cruciate ligament (ACL) injury during cutting sports than men. The purpose of this study was to examine knee kinematic and ground reaction forces (GRF) differences between genders during cutting. Male and female athletes performed cutting trials while force platform and video data were recorded (180 Hz).…

  20. Machine learning techniques for gait biometric recognition using the ground reaction force

    CERN Document Server

    Mason, James Eric; Woungang, Isaac


    This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF. This book · introduces novel machine-learning-based temporal normalization techniques · bridges research gaps concerning the effect of ...

  1. A ground reaction force analysis for designing a sustainable energy-harvesting stairway (United States)

    Puspitarini, Debrina; Suzianti, Amalia; Rasyid, Harun Al; Priscandy, Nabila


    There are many issues of how energy is currently generated and consumed. These include the cost of harvesting energy, the ever-growing demand for it, and the ever-decreasing reserve of current most applicable energy resources. Numerous ways to exploit new sustainable potential energy sources have been pursued, one of which is to create an energy-harvester; a device that captures free potential energy, scattered around in its environment, and transform it into another form of energy. Using NPD approach, Puspitarini, Suzianti, and Al Rasyid (2016) has developed a conceptual design of an energy-harvesting device, which includes a selection of product specification options and a gear set layout design. In this study, a mockup was built for the experiment based on those product specification options. The experiment was conducted using AMTI Force Platform, and its results were processed using Factorial Design. This effort is to test which product specification option contributes the most to Ground Reaction Force (GRF) generation. The greater the generated GRF, the greater amount of electricity produced. A theoretical calculation of electromotive force was also conducted based on the experiment result and the gear set layout design. The result of this study was later discussed and used as a basis to develop further the stairway design.

  2. Automatic classification of pathological gait patterns using ground reaction forces and machine learning algorithms. (United States)

    Alaqtash, Murad; Sarkodie-Gyan, Thompson; Yu, Huiying; Fuentes, Olac; Brower, Richard; Abdelgawad, Amr


    An automated gait classification method is developed in this study, which can be applied to analysis and to classify pathological gait patterns using 3D ground reaction force (GRFs) data. The study involved the discrimination of gait patterns of healthy, cerebral palsy (CP) and multiple sclerosis subjects. The acquired 3D GRFs data were categorized into three groups. Two different algorithms were used to extract the gait features; the GRFs parameters and the discrete wavelet transform (DWT), respectively. Nearest neighbor classifier (NNC) and artificial neural networks (ANN) were also investigated for the classification of gait features in this study. Furthermore, different feature sets were formed using a combination of the 3D GRFs components (mediolateral, anterioposterior, and vertical) and their various impacts on the acquired results were evaluated. The best leave-one-out (LOO) classification accuracy 85% was achieved. The results showed some improvement through the application of a features selection algorithm based on M-shaped value of vertical force and the statistical test ANOVA of mediolateral and anterioposterior forces. The optimal feature set of six features enhanced the accuracy to 95%. This work can provide an automated gait classification tool that may be useful to the clinician in the diagnosis and identification of pathological gait impairments.

  3. Validity and reliability of pressure-measurement insoles for vertical ground reaction force assessment in field situations. (United States)

    Koch, Markus; Lunde, Lars-Kristian; Ernst, Michael; Knardahl, Stein; Veiersted, Kaj Bo


    This study aimed to test the validity and reliability of pressure-measurement insoles (medilogic® insoles) when measuring vertical ground reaction forces in field situations. Various weights were applied to and removed from the insoles in static mechanical tests. The force values measured simultaneously by the insoles and force plates were compared for 15 subjects simulating work activities. Reliability testing during the static mechanical tests yielded an average interclass correlation coefficient of 0.998. Static loads led to a creeping pattern of the output force signal. An individual load response could be observed for each insole. The average root mean square error between the insoles and force plates ranged from 6.6% to 17.7% in standing, walking, lifting and catching trials and was 142.3% in kneeling trials. The results show that the use of insoles may be an acceptable method for measuring vertical ground reaction forces in field studies, except for kneeling positions.

  4. Metabolic Rate and Ground Reaction Force During Motorized and Non-Motorized Treadmill Exercise (United States)

    Everett, Meghan E.; Loehr, James A.; DeWitt, John K.; Laughlin, Mitzi; Lee, Stuart M. C.


    PURPOSE: To measure vertical ground reaction force (vGRF) and oxygen consumption (VO2) at several velocities during exercise using a ground-based version of the ISS treadmill in the M and NM modes. METHODS: Subjects (n = 20) walked or ran at 0.89, 1.34, 1.79, 2.24, 2.68, and 3.12 m/s while VO2 and vGRF data were collected. VO2 was measured using open-circuit spirometry (TrueOne 2400, Parvo-Medics). Data were averaged over the last 2 min of each 5-min stage. vGRF was measured in separate 15-s bouts at 125 Hz using custom-fitted pressure-sensing insoles (F-Scan Sport Sensors, Tekscan, Inc). A repeated-measures ANOVA was used to test for differences in VO2 and vGRF between M and NM and across speeds. Significance was set at P < 0.05. RESULTS: Most subjects were unable to exercise for 5 min at treadmill speeds above 1.79 m/s in the NM mode; however, vGRF data were obtained for all subjects at each speed in both modes. VO2 was approx.40% higher during NM than M exercise across treadmill speeds. vGRF increased with treadmill speed but was not different between modes. CONCLUSION: Higher VO2 with no change in vGRF suggests that the additional metabolic cost associated with NM treadmill exercise is accounted for in the horizontal forces required to move the treadmill belt. Although this may limit the exercise duration at faster speeds, high-intensity NM exercise activates the hamstrings and plantarflexors, which are not specifically targeted or well protected by other in-flight countermeasures.

  5. A wearable force plate system for the continuous measurement of triaxial ground reaction force in biomechanical applications (United States)

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko


    The ambulatory measurement of ground reaction force (GRF) and human motion under free-living conditions is convenient, inexpensive and never restricted to gait analysis in a laboratory environment and is therefore much desired by researchers and clinical doctors in biomedical applications. A wearable force plate system was developed by integrating small triaxial force sensors and three-dimensional (3D) inertial sensors for estimating dynamic triaxial GRF in biomechanical applications. The system, in comparison to existent systems, is characterized by being lightweight, thin and easy-to-wear. A six-axial force sensor (Nitta Co., Japan) was used as a verification measurement device to validate the static accuracy of the developed force plate. To evaluate the precision during dynamic gait measurements, we compared the measurements of the triaxial GRF and the center of pressure (CoP) by using the developed system with the reference measurements made using a stationary force plate and an optical motion analysis system. The root mean square (RMS) differences of the two transverse components (x- and y-axes) and the vertical component (z-axis) of the GRF were 4.3 ± 0.9 N, 6.0 ± 1.3 N and 12.1 ± 1.1 N, respectively, corresponding to 5.1 ± 1.1% and 6.5 ± 1% of the maximum of each transverse component and 1.3 ± 0.2% of the maximum vertical component of GRF. The RMS distance between the two systems' CoP traces was 3.2 ± 0.8 mm, corresponding to 1.2 ± 0.3% of the length of the shoe. Moreover, based on the results of the assessment of the influence of the system on natural gait, we found that gait was almost never affected. Therefore, the wearable system as an alternative device can be a potential solution for measuring CoP and triaxial GRF in non-laboratory environments.

  6. The Effects of Opposition and Gender on Knee Kinematics and Ground Reaction Force during Landing from Volleyball Block Jumps (United States)

    Hughes, Gerwyn; Watkins, James; Owen, Nick


    The aim of this study was to examine the effect of opposition and gender on knee kinematics and ground reaction force during landing from a volleyball block jump. Six female and six male university volleyball players performed two landing tasks: (a) an unopposed and (b) an opposed volleyball block jump and landing. A 12-camera motion analysis…

  7. Ground reaction force analysed with correlation coefficient matrix in group of stroke patients. (United States)

    Szczerbik, Ewa; Krawczyk, Maciej; Syczewska, Małgorzata


    Stroke is the third cause of death in contemporary society and causes many disorders. Clinical scales, ground reaction force (GRF) and objective gait analysis are used for assessment of patient's rehabilitation progress during treatment. The goal of this paper is to assess whether signal correlation coefficient matrix applied to GRF can be used for evaluation of the status of post-stroke patients. A group of patients underwent clinical assessment and instrumented gait analysis simultaneously three times. The difference between components of patient's GRF (vertical, fore/aft, med/lat) and normal ones (reference GRF of healthy subjects) was calculated as correlation coefficient. Patients were divided into two groups ("worse" and "better") based on the clinical functional scale tests done at the beginning of rehabilitation process. The results obtained by these two groups were compared using statistical analysis. An increase of median value of correlation coefficient is observed in all components of GRF, but only in non-paretic leg. Analysis of GRF signal can be helpful in assessment of post-stroke patients during rehabilitation. Improvement in stroke patients was observed in non-paretic leg of the "worse" group. GRF analysis should not be the only tool for objective validation of patient's improvement, but could be used as additional source of information.

  8. Peak Vertical Ground Reaction Force during Two-Leg Landing: A Systematic Review and Mathematical Modeling

    Directory of Open Access Journals (Sweden)

    Wenxin Niu


    Full Text Available Objectives. (1 To systematically review peak vertical ground reaction force (PvGRF during two-leg drop landing from specific drop height (DH, (2 to construct a mathematical model describing correlations between PvGRF and DH, and (3 to analyze the effects of some factors on the pooled PvGRF regardless of DH. Methods. A computerized bibliographical search was conducted to extract PvGRF data on a single foot when participants landed with both feet from various DHs. An innovative mathematical model was constructed to analyze effects of gender, landing type, shoes, ankle stabilizers, surface stiffness and sample frequency on PvGRF based on the pooled data. Results. Pooled PvGRF and DH data of 26 articles showed that the square root function fits their relationship well. An experimental validation was also done on the regression equation for the medicum frequency. The PvGRF was not significantly affected by surface stiffness, but was significantly higher in men than women, the platform than suspended landing, the barefoot than shod condition, and ankle stabilizer than control condition, and higher than lower frequencies. Conclusions. The PvGRF and root DH showed a linear relationship. The mathematical modeling method with systematic review is helpful to analyze the influence factors during landing movement without considering DH.

  9. Ground reaction forces and osteogenic index of the sport of cyclocross. (United States)

    Tolly, Brian; Chumanov, Elizabeth; Brooks, Alison


    Weight-bearing activity has been shown to increase bone mineral density. Our purpose was to measure vertical ground reaction forces (GRFs) during cyclocross-specific activities and compute their osteogenic index (OI). Twenty-five healthy cyclocross athletes participated. GRF was measured using pressure-sensitive insoles during seated and standing cycling and four cyclocross-specific activities: barrier flat, barrier uphill, uphill run-up, downhill run-up. Peak and mean GRF values, according to bodyweight, were determined for each activity. OI was computed using peak GRF and number of loading cycles. GRF and OI were compared across activities using repeated-measures ANOVA. Number of loading cycles per activity was 6(1) for barrier flat, 8(1) barrier uphill, 7(1) uphill run-up, 12(3) downhill run-up. All activities had significantly (P < 0.01) higher peak GRF, mean GRF values and OI when compared to both seated and standing cycling. The barrier flat condition (P < 0.01) had highest peak (2.9 times bodyweight) and mean GRF values (2.3 times bodyweight). Downhill run-up (P < 0.01) had the highest OI (6.5). GRF generated during the barrier flat activity is similar in magnitude to reported GRFs during running and hopping. Because cyclocross involves weight bearing components, it may be more beneficial to bone health than seated road cycling.

  10. Estimation of ground reaction force and zero moment point on a powered ankle-foot prosthesis. (United States)

    Martinez-Villalpando, Ernesto C; Herr, Hugh; Farrell, Matthew


    The ground reaction force (GRF) and the zero moment point (ZMP) are important parameters for the advancement of biomimetic control of robotic lower-limb prosthetic devices. In this document a method to estimate GRF and ZMP on a motorized ankle-foot prosthesis (MIT Powered Ankle-Foot Prosthesis) is presented. The method proposed is based on the analysis of data collected from a sensory system embedded in the prosthetic device using a custom designed wearable computing unit. In order to evaluate the performance of the estimation methods described, standing and walking clinical studies were conducted on a transtibial amputee. The results were statistically compared to standard analysis methodologies employed in a gait laboratory. The average RMS error and correlation factor were calculated for all experimental sessions. By using a static analysis procedure, the estimation of the vertical component of GRF had an averaged correlation coefficient higher than 0.94. The estimated ZMP location had a distance error of less than 1 cm, equal to 4% of the anterior-posterior foot length or 12% of the medio-lateral foot width.

  11. Ground reaction force estimates from ActiGraph GT3X+ hip accelerations.

    Directory of Open Access Journals (Sweden)

    Jennifer M Neugebauer

    Full Text Available Simple methods to quantify ground reaction forces (GRFs outside a laboratory setting are needed to understand daily loading sustained by the body. Here, we present methods to estimate peak vertical GRF (pGRFvert and peak braking GRF (pGRFbrake in adults using raw hip activity monitor (AM acceleration data. The purpose of this study was to develop a statistically based model to estimate pGRFvert and pGRFbrake during walking and running from ActiGraph GT3X+ AM acceleration data. 19 males and 20 females (age 21.2 ± 1.3 years, height 1.73 ± 0.12 m, mass 67.6 ± 11.5 kg wore an ActiGraph GT3X+ AM over their right hip. Six walking and six running trials (0.95-2.19 and 2.20-4.10 m/s, respectively were completed. Average of the peak vertical and anterior/posterior AM acceleration (ACCvert and ACCbrake, respectively and pGRFvert and pGRFbrake during the stance phase of gait were determined. Thirty randomly selected subjects served as the training dataset to develop generalized equations to predict pGRFvert and pGRFbrake. Using a holdout approach, the remaining 9 subjects were used to test the accuracy of the models. Generalized equations to predict pGRFvert and pGRFbrake included ACCvert and ACCbrake, respectively, mass, type of locomotion (walk or run, and type of locomotion acceleration interaction. The average absolute percent differences between actual and predicted pGRFvert and pGRFbrake were 8.3% and 17.8%, respectively, when the models were applied to the test dataset. Repeated measures generalized regression equations were developed to predict pGRFvert and pGRFbrake from ActiGraph GT3X+ AM acceleration for young adults walking and running. These equations provide a means to estimate GRFs without a force plate.

  12. Estimating youth locomotion ground reaction forces using an accelerometer-based activity monitor.

    Directory of Open Access Journals (Sweden)

    Jennifer M Neugebauer

    Full Text Available To address a variety of questions pertaining to the interactions between physical activity, musculoskeletal loading and musculoskeletal health/injury/adaptation, simple methods are needed to quantify, outside a laboratory setting, the forces acting on the human body during daily activities. The purpose of this study was to develop a statistically based model to estimate peak vertical ground reaction force (pVGRF during youth gait. 20 girls (10.9 ± 0.9 years and 15 boys (12.5 ± 0.6 years wore a Biotrainer AM over their right hip. Six walking and six running trials were completed after a standard warm-up. Average AM intensity (g and pVGRF (N during stance were determined. Repeated measures mixed effects regression models to estimate pVGRF from Biotrainer activity monitor acceleration in youth (girls 10-12, boys 12-14 years while walking and running were developed. Log transformed pVGRF had a statistically significant relationship with activity monitor acceleration, centered mass, sex (girl, type of locomotion (run, and locomotion type-acceleration interaction controlling for subject as a random effect. A generalized regression model without subject specific random effects was also developed. The average absolute differences between the actual and predicted pVGRF were 5.2% (1.6% standard deviation and 9% (4.2% standard deviation using the mixed and generalized models, respectively. The results of this study support the use of estimating pVGRF from hip acceleration using a mixed model regression equation.

  13. Squat Ground Reaction Force on a Horizontal Squat Device, Free Weights, and Smith Machine (United States)

    Scott-Pandorf, Melissa M.; Newby, Nathaniel J.; Caldwell, Erin; DeWitt, John K.; Peters, Brian T.


    Bed rest is an analog to spaceflight and advancement of exercise countermeasures is dependent on the development of exercise equipment that closely mimic actual upright exercise. The Horizontal Squat Device (HSD) was developed to allow a supine exerciser to perform squats that mimic upright squat exercise. PURPOSE: To compare vertical ground reaction force (GRFv) on the HSD with Free Weight (FW) or Smith Machine (SM) during squat exercise. METHODS: Subjects (3F, 3M) performed sets of squat exercise with increasing loads up to 1-repetition (rep) maximum. GRF data were collected and compared with previous GRF data for squat exercise performed with FW & SM. Loads on the HSD were adjusted to magnitudes comparable with FW & SM by subtracting the subject s body weight (BW). Peak GRFv for 45-, 55-, 64-, & 73-kg loads above BW were calculated. Percent (%) difference between HSD and the two upright conditions were computed. Effect size was calculated for the 45-kg load. RESULTS: Most subjects were unable to lift >45 kg on the HSD; however, 1 subject completed all loads. Anecdotal evidence suggested that most subjects shoulders or back failed before their legs. The mean % difference are shown. In the 45-kg condition, effect sizes were 0.37 & 0.83 (p>0.05) for HSD vs. FW and HSD vs. SM, respectively, indicating no differences between exercise modes. CONCLUSION: When BW was added to the target load, results indicated that vertical forces were similar to those in FW and SM exercise. The exercise prescription for the HSD should include a total external resistance equivalent to goal load plus subject BW. The HSD may be used as an analog to upright exercise in bed rest studies, but because most subjects were unable to lift >45 kg, it may be necessary to prescribe higher reps and lower loads to better target the leg musculature

  14. Sagittal Plane Knee Biomechanics and Vertical Ground Reaction Forces Are Modified Following ACL Injury Prevention Programs (United States)

    Padua, Darin A.; DiStefano, Lindsay J.


    Context: Injuries to the anterior cruciate ligament (ACL) occur because of excessive loading on the knee. ACL injury prevention programs can influence sagittal plane ACL loading factors and vertical ground reaction force (VGRF). Objective: To determine the influence of ACL injury prevention programs on sagittal plane knee biomechanics (anterior tibial shear force, knee flexion angle/moments) and VGRF. Data Sources: The PubMed database was searched for studies published between January 1988 and June 2008. Reference lists of selected articles were also reviewed. Study Selection: Studies were included that evaluated healthy participants for knee flexion angle, sagittal plane knee kinetics, or VGRF after performing a multisession training program. Two individuals reviewed all articles and determined which articles met the selection criteria. Approximately 4% of the articles fulfilled the selection criteria. Data Extraction: Data were extracted regarding each program’s duration, frequency, exercise type, population, supervision, and testing procedures. Means and variability measures were recorded to calculate effect sizes. One reviewer extracted all data and assessed study quality using PEDro (Physiotherapy Evidence Database). A second reviewer (blinded) verified all information. Results: There is moderate evidence to indicate that knee flexion angle, external knee flexion moment, and VGRF can be successfully modified by an ACL injury prevention program. Programs utilizing multiple exercises (ie, integrated training) appear to produce the most improvement, in comparison to that of single-exercise programs. Knee flexion angle was improved following integrated training (combined balance and strength exercises or combined plyometric and strength exercises). Similarly, external knee flexion moment was improved following integrated training consisting of balance, plyometric, and strength exercises. VGRF was improved when incorporating supervision with instruction and

  15. Effects of backpack weight on posture, gait patterns and ground reaction forces of male children with obesity during stair descent. (United States)

    Song, Qipeng; Yu, Bing; Zhang, Cui; Sun, Wei; Mao, Dewei


    This study investigates the effects of backpack weight on posture, gait pattern, and ground reaction forces for children with obesity in an attempt to define a safe backpack weight limit for them. A total of 16 obese (11.19 ± 0.66 years of age) and 21 normal body weight (11.13 ± 0.69 years of age) schoolboys were recruited. Two force plates and two video cameras were used. Multivariate analysis of variance with repeated measures was employed. Obese children showed increased trunk and head forward inclination angle, gait cycle duration and stance phase, decreased swing phase, and increased ground reaction force in the medial-lateral and anterior-posterior directions when compared with male children with a normal body weight. The changes were observed even with an empty backpack in comparison with normal body weight children and a 15% increase in backpack weight led to further instability and damage on their already strained bodies.


    Directory of Open Access Journals (Sweden)

    Paul Worsfold


    Full Text Available In an effort to reduce golf turf damage the traditional metal spike golf shoe has been redesigned, but shoe-ground biomechanical evaluations have utilised artificial grass surfaces. Twenty-four golfers wore three different golf shoe traction designs (traditional metal spikes, alternative spikes, and a flat-soled shoe with no additional traction when performing shots with a driver, 3 iron and 7 iron. Ground action forces were measured beneath the feet by two natural grass covered force platforms. The maximum vertical force recorded at the back foot with the 3 iron and 7 iron was 0.82 BW (body weight and at the front foot 1.1 BW approximately in both the metal spike and alternative spike golf shoe designs. When using the driver these maximal vertical values were 0.49 BW at the back foot and 0.84 BW at the front foot. Furthermore, as performance of the backswing and then downswing necessitates a change in movement direction the range of force generated during the complete swing was calculated. In the metal spike shoe the vertical force generated at the back foot with both irons was 0.67 BW and at the front foot 0.96 BW with the 3 iron and 0.92 BW with the 7 iron. The back foot vertical force generated with the driver was 0.33 BW and at the front foot 0.83 BW wearing the metal spike shoe. Results indicated the greater force generation with the irons. When using the driver the more horizontal swing plane associated with the longer club reduced vertical forces at the back and front foot. However, the mediolateral force generated across each foot in the metal and alternative spike shoes when using the driver was greater than when the irons were used. The coefficient of friction was 0. 62 at the back and front foot whichever shoe was worn or club used

  17. Lower Extremity Kinematics and Ground Reaction Forces After Prophylactic Lace-Up Ankle Bracing (United States)

    DiStefano, Lindsay J; Padua, Darin A; Brown, Cathleen N; Guskiewicz, Kevin M


    Context: Long-term effects of ankle bracing on lower extremity kinematics and kinetics are unknown. Ankle motion restriction may negatively affect the body's ability to attenuate ground reaction forces (GRFs). Objective: To evaluate the immediate and long-term effects of ankle bracing on lower extremity kinematics and GRFs during a jump landing. Design: Experimental mixed model (2 [group] × 2 [brace] × 2 [time]) with repeated measures. Setting: Sports medicine research laboratory. Patients or Other Participants: A total of 37 healthy subjects were assigned randomly to either the intervention (n  =  11 men, 8 women; age  =  19.63 ± 0.72 years, height  =  176.05 ± 10.58 cm, mass  =  71.50 ± 13.15 kg) or control group (n  =  11 men, 7 women; age  =  19.94 ± 1.44 years, height  =  179.15 ± 8.81 cm, mass  =  74.10 ± 10.33 kg). Intervention(s): The intervention group wore braces on both ankles and the control group did not wear braces during all recreational activities for an 8-week period. Main Outcome Measure(s): Initial ground contact angles, maximum joint angles, time to reach maximum joint angles, and joint range of motion for sagittal-plane knee and ankle motion were measured during a jump-landing task. Peak vertical GRF and the time to reach peak vertical GRF were assessed also. Results: While participants were wearing the brace, ankle plantar flexion at initial ground contact (brace  =  35° ± 13°, no brace  =  38° ± 15°, P  =  .024), maximum dorsiflexion (brace  =  21° ± 7°, no brace  =  22° ± 6°, P  =  .04), dorsiflexion range of motion (brace  =  56° ± 14°, no brace  =  59° ± 16°, P  =  .001), and knee flexion range of motion (brace  =  79° ± 16°, no brace  =  82° ± 16°, P  =  .036) decreased, whereas knee flexion at initial ground contact increased (brace  =  12° ± 9°, no brace  =  9° ± 9°, P  =  .0001). Wearing the brace for 8


    Directory of Open Access Journals (Sweden)

    C. Roger James


    Full Text Available The objectives were to determine the number of trials necessary to achieve performance stability of selected ground reaction force (GRF variables during landing and to compare two methods of determining stability. Ten subjects divided into two groups each completed a minimum of 20 drop or step-off landings from 0.60 or 0.61 m onto a force platform (1000 Hz. Five vertical GRF variables (first and second peaks, average loading rates to these peaks, and impulse were quantified during the initial 100 ms post-contact period. Test-retest reliability (stability was determined using two methods: (1 intra-class correlation coefficient (ICC analysis, and (2 sequential averaging analysis. Results of the ICC analysis indicated that an average of four trials (mean 3.8 ± 2.7 Group 1; 3.6 ± 1.7 Group 2 were necessary to achieve maximum ICC values. Maximum ICC values ranged from 0.55 to 0.99 and all were significantly (p < 0. 05 different from zero. Results of the sequential averaging analysis revealed that an average of 12 trials (mean 11.7 ± 3.1 Group 1; 11.5 ± 4.5 Group 2 were necessary to achieve performance stability using criteria previously reported in the literature. Using 10 reference trials, the sequential averaging technique required standard deviation criterion values of 0.60 and 0.49 for Groups 1 and 2, respectively, in order to approximate the ICC results. The results of the study suggest that the ICC might be a less conservative, but more objective method for determining stability, especially when compared to previous applications of the sequential averaging technique. Moreover, criteria for implementing the sequential averaging technique can be adjusted so that results closely approximate the results from ICC. In conclusion, subjects in landing experiments should perform a minimum of four and possibly as many as eight trials to achieve performance stability of selected GRF variables. Researchers should use this information to plan future

  19. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions. (United States)

    Tomelleri, Christopher; Waldner, Andreas; Werner, Cordula; Hesse, Stefan


    The main goal of robotic gait rehabilitation is the restoration of independent gait. To achieve this goal different and specific patterns have to be practiced intensively in order to stimulate the learning process of the central nervous system. The gait robot G-EO Systems was designed to allow the repetitive practice of floor walking, stair climbing and stair descending. A novel control strategy allows training in adaptive mode. The force interactions between the foot and the ground were analyzed on 8 healthy volunteers in three different conditions: real floor walking on a treadmill, floor walking on the gait robot in passive mode, floor walking on the gait robot in adaptive mode. The ground reaction forces were measured by a Computer Dyno Graphy (CDG) analysis system. The results show different intensities of the ground reaction force across all of the three conditions. The intensities of force interactions during the adaptive training mode are comparable to the real walking on the treadmill. Slight deviations still occur in regard to the timing pattern of the forces. The adaptive control strategy comes closer to the physiological swing phase than the passive mode and seems to be a promising option for the treatment of gait disorders. Clinical trials will validate the efficacy of this new option in locomotor therapy on the patients.

  20. Effects of Prophylactic Ankle Supports on Vertical Ground Reaction Force During Landing: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Wenxin Niu, Tienan Feng, Lejun Wang, Chenghua Jiang, Ming Zhang


    Full Text Available There has been much debate on how prophylactic ankle supports (PASs may influence the vertical ground reaction force (vGRF during landing. Therefore, the primary aims of this meta-analysis were to systematically review and synthesize the effect of PASs on vGRF, and to understand how PASs affect vGRF peaks (F1, F2 and the time from initial contact to peak loading (T1, T2 during landing. Several key databases, including Scopus, Cochrane, Embase, PubMed, ProQuest, Medline, Ovid, Web of Science, and the Physical Activity Index, were used for identifying relevant studies published in English since inception to April 1, 2015. The computerized literature search and cross-referencing the citation list of the articles yielded 3,993 articles. Criteria for inclusion required that 1 the study was conducted on healthy adults; 2 the subject number and trial number were known; 3 the subjects performed landing with and without PAS; 4 the landing movement was in the sagittal plane; 5 the comparable vGRF parameters were reported; and 6 the F1 and F2 must be normalized to the subject’s body weight. After the removal of duplicates and irrelevant articles, 6, 6, 15 and 11 studies were respectively pooled for outcomes of F1, T1, F2 and T2. This study found a significantly increased F2 (.03 BW, 95% CI: .001, .05 and decreased T1 (-1.24 ms, 95% CI: -1.77, -.71 and T2 (-3.74 ms, 95% CI: -4.83, -2.65 with the use of a PAS. F1 was not significantly influenced by the PAS. Heterogeneity was present in some results, but there was no evidence of publication bias for any outcome. These changes represented deterioration in the buffering characteristics of the joint. An ideal PAS design should limit the excessive joint motion of ankle inversion, while allowing a normal range of motion, especially in the sagittal plane.

  1. Extraction of primitive representation from captured human movements and measured ground reaction force to generate physically consistent imitated behaviors. (United States)

    Ariki, Yuka; Hyon, Sang-Ho; Morimoto, Jun


    In this paper, we propose an imitation learning framework to generate physically consistent behaviors by estimating the ground reaction force from captured human behaviors. In the proposed framework, we first extract behavioral primitives, which are represented by linear dynamical models, from captured human movements and measured ground reaction force by using the Gaussian mixture of linear dynamical models. Therefore, our method has small dependence on classification criteria defined by an experimenter. By switching primitives with different combinations while estimating the ground reaction force, different physically consistent behaviors can be generated. We apply the proposed method to a four-link robot model to generate squat motion sequences. The four-link robot model successfully generated the squat movements by using our imitation learning framework. To show generalization performance, we also apply the proposed method to robot models that have different torso weights and lengths from a human demonstrator and evaluate the control performances. In addition, we show that the robot model is able to recognize and imitate demonstrator movements even when the observed movements are deviated from the movements that are used to construct the primitives. For further evaluation in higher-dimensional state space, we apply the proposed method to a seven-link robot model. The seven-link robot model was able to generate squat-and-sway motions by using the proposed framework.

  2. Multi-body simulation of a canine hind limb: model development, experimental validation and calculation of ground reaction forces

    Directory of Open Access Journals (Sweden)

    Wefstaedt Patrick


    Full Text Available Abstract Background Among other causes the long-term result of hip prostheses in dogs is determined by aseptic loosening. A prevention of prosthesis complications can be achieved by an optimization of the tribological system which finally results in improved implant duration. In this context a computerized model for the calculation of hip joint loadings during different motions would be of benefit. In a first step in the development of such an inverse dynamic multi-body simulation (MBS- model we here present the setup of a canine hind limb model applicable for the calculation of ground reaction forces. Methods The anatomical geometries of the MBS-model have been established using computer tomography- (CT- and magnetic resonance imaging- (MRI- data. The CT-data were collected from the pelvis, femora, tibiae and pads of a mixed-breed adult dog. Geometric information about 22 muscles of the pelvic extremity of 4 mixed-breed adult dogs was determined using MRI. Kinematic and kinetic data obtained by motion analysis of a clinically healthy dog during a gait cycle (1 m/s on an instrumented treadmill were used to drive the model in the multi-body simulation. Results and Discussion As a result the vertical ground reaction forces (z-direction calculated by the MBS-system show a maximum deviation of 1.75%BW for the left and 4.65%BW for the right hind limb from the treadmill measurements. The calculated peak ground reaction forces in z- and y-direction were found to be comparable to the treadmill measurements, whereas the curve characteristics of the forces in y-direction were not in complete alignment. Conclusion In conclusion, it could be demonstrated that the developed MBS-model is suitable for simulating ground reaction forces of dogs during walking. In forthcoming investigations the model will be developed further for the calculation of forces and moments acting on the hip joint during different movements, which can be of help in context with the in

  3. Gender difference in older adult's utilization of gravitational and ground reaction force in regulation of angular momentum during stair descent. (United States)

    Singhal, Kunal; Kim, Jemin; Casebolt, Jeffrey; Lee, Sangwoo; Han, Ki-Hoon; Kwon, Young-Hoo


    Angular momentum of the body is a highly controlled quantity signifying stability, therefore, it is essential to understand its regulation during stair descent. The purpose of this study was to investigate how older adults use gravity and ground reaction force to regulate the angular momentum of the body during stair descent. A total of 28 participants (12 male and 16 female; 68.5 years and 69.0 years of mean age respectively) performed stair descent from a level walk in a step-over-step manner at a self-selected speed over a custom made three-step staircase with embedded force plates. Kinematic and force data were used to calculate angular momentum, gravitational moment, and ground reaction force moment about the stance foot center of pressure. Women show a significantly greater change in normalized angular momentum (0.92Nms/Kgm; p=.004) as compared to men (0.45Nms/Kgm). Women produce higher normalized GRF (p=.031) during the double support phase. The angular momentum changes show largest backward regulation for Step 0 and forward regulation for Step 2. This greater difference in overall change in the angular momentum in women may explain their increased risk of fall over the stairs.

  4. An individual and dynamic Body Segment Inertial Parameter validation method using ground reaction forces. (United States)

    Hansen, Clint; Venture, Gentiane; Rezzoug, Nasser; Gorce, Philippe; Isableu, Brice


    Over the last decades a variety of research has been conducted with the goal to improve the Body Segment Inertial Parameters (BSIP) estimations but to our knowledge a real validation has never been completely successful, because no ground truth is available. The aim of this paper is to propose a validation method for a BSIP identification method (IM) and to confirm the results by comparing them with recalculated contact forces using inverse dynamics to those obtained by a force plate. Furthermore, the results are compared with the recently proposed estimation method by Dumas et al. (2007). Additionally, the results are cross validated with a high velocity overarm throwing movement. Throughout conditions higher correlations, smaller metrics and smaller RMSE can be found for the proposed BSIP estimation (IM) which shows its advantage compared to recently proposed methods as of Dumas et al. (2007). The purpose of the paper is to validate an already proposed method and to show that this method can be of significant advantage compared to conventional methods.

  5. The influence of gait cadence on the ground reaction forces and plantar pressures during load carriage of young adults. (United States)

    Castro, Marcelo P; Figueiredo, Maria Cristina; Abreu, Sofia; Sousa, Helena; Machado, Leandro; Santos, Rubim; Vilas-Boas, João Paulo


    Biomechanical gait parameters--ground reaction forces (GRFs) and plantar pressures--during load carriage of young adults were compared at a low gait cadence and a high gait cadence. Differences between load carriage and normal walking during both gait cadences were also assessed. A force plate and an in-shoe plantar pressure system were used to assess 60 adults while they were walking either normally (unloaded condition) or wearing a backpack (loaded condition) at low (70 steps per minute) and high gait cadences (120 steps per minute). GRF and plantar pressure peaks were scaled to body weight (or body weight plus backpack weight). With medium to high effect sizes we found greater anterior-posterior and vertical GRFs and greater plantar pressure peaks in the rearfoot, forefoot and hallux when the participants walked carrying a backpack at high gait cadences compared to walking at low gait cadences. Differences between loaded and unloaded conditions in both gait cadences were also observed.

  6. Self-Described Differences Between Legs in Ballet Dancers: Do They Relate to Postural Stability and Ground Reaction Force Measures? (United States)

    Mertz, Laura; Docherty, Carrie


    Ballet technique classes are designed to train dancers symmetrically, but they may actually create a lateral bias. It is unknown whether dancers in general are functionally asymmetrical, or how an individual dancer's perceived imbalance between legs might manifest itself. The purpose of this study was to examine ballet dancers' lateral preference by analyzing their postural stability and ground reaction forces in fifth position when landing from dance-specific jumps. Thirty university ballet majors volunteered to participate in this study. The subjects wore their own ballet technique shoes and performed fundamental ballet jumps out of fifth position on a force plate. The force plate recorded center of pressure (COP) and ground reaction force (GRF) data. Each subject completed a laterality questionnaire that determined his or her preferred landing leg for ballet jumps, self-identified stronger leg, and self-identified leg with better balance. All statistical comparisons were made between the leg indicated on the laterality questionnaire and the other leg (i.e., if the dancer's response to a question was "left," the comparison was made with the left leg as the "preferred" leg and the right leg as the "non-preferred leg"). No significant differences were identified between the limbs in any of the analyses conducted (all statistical comparisons produced p values > 0.05). The results of this study indicate that a dancer's preferential use of one limb over the other has no bearing on GRFs or balance ability after landing jumps in ballet. Similarly, dancers' opinions of their leg characteristics (such as one leg being stronger than the other) seem not to correlate with the dancers' actual ability to absorb GRFs or to balance when landing from ballet jumps.

  7. The analysis of three-dimensional ground reaction forces during gait in children with autism spectrum disorders. (United States)

    Hasan, C Z C; Jailani, Rozita; Md Tahir, N; Ilias, Suryani


    Minimal information is known about the three-dimensional (3D) ground reaction forces (GRF) on the gait patterns of individuals with autism spectrum disorders (ASD). The purpose of this study was to investigate whether the 3D GRF components differ significantly between children with ASD and the peer controls. 15 children with ASD and 25 typically developing (TD) children had participated in the study. Two force plates were used to measure the 3D GRF data during walking. Time-series parameterization techniques were employed to extract 17 discrete features from the 3D GRF waveforms. By using independent t-test and Mann-Whitney U test, significant differences (p<0.05) between the ASD and TD groups were found for four GRF features. Children with ASD demonstrated higher maximum braking force, lower relative time to maximum braking force, and lower relative time to zero force during mid-stance. Children with ASD were also found to have reduced the second peak of vertical GRF in the terminal stance. These major findings suggest that children with ASD experience significant difficulties in supporting their body weight and endure gait instability during the stance phase. The findings of this research are useful to both clinicians and parents who wish to provide these children with appropriate treatments and rehabilitation programs.

  8. Prediction of ground reaction forces and moments during various activities of daily living

    NARCIS (Netherlands)

    Fluit, R.; Andersen, M.S.; Kolk, S.; Verdonschot, N.J.J.; Koopman, H.F.J.M.


    Inverse dynamics based simulations on musculoskeletal models is a commonly used method for the analysis of human movement. Due to inaccuracies in the kinematic and force plate data, and a mismatch between the model and the subject, the equations of motion are violated when solving the inverse dynami

  9. Gait Phases Recognition from Accelerations and Ground Reaction Forces: Application of Neural Networks

    Directory of Open Access Journals (Sweden)

    S. Rafajlović


    Full Text Available The goal of this study was to test the applicability of accelerometer as the sensor for assessment of the walking. We present here the comparison of gait phases detected from the data recorded by force sensing resistors mounted in the shoe insoles, non-processed acceleration and processed acceleration perpendicular to the direction of the foot. The gait phases in all three cases were detected by means of a neural network. The output from the neural network was the gait phase, while the inputs were data from the sensors. The results show that the errors were in the ranges: 30 ms (2.7% – force sensors; 150 ms (13.6% – nonprocessed acceleration, and 120 ms (11% – processed acceleration data. This result suggests that it is possible to use the accelerometer as the gait phase detector, however, with the knowledge that the gait phases are time shifted for about 100 ms with respect the neural network predicted times.

  10. 溜冰机器人地面反作用力的建模研究%Modeling Study of Ground Reaction Force for a Biped Skating Robot

    Institute of Scientific and Technical Information of China (English)

    李金良; 孙友霞


    The ground reaction force for a biped skating robot was calculated and analyzed,and a modeling method for the ground reaction force by using convex optimization was proposed. On the basis of reasonable assumption,the modeling of ground reaction force was transformed as a minimization problem of robot kinetic energy after collision under condition with certain constrains,and as a stand-ard convex optimization form. By using CVX software of convex optimization to calculate and simulate the ground reaction force,the re-sults prove the effectiveness of the method.%对两足溜冰机器人的地面反作用力进行了分析与计算,提出了应用凸优化方法进行地面反作用力的建模方法。在合理假设的基础上,将地面反作用力建模问题转换为在一定约束条件下使碰撞后的溜冰机器人动能达到最小的问题,并转化为凸优化的标准形式。应用凸优化程序CVX进行了地面反作用力的计算与仿真,结果证明了该方法的有效性。

  11. Do runners who suffer injuries have higher vertical ground reaction forces than those who remain injury-free? : A systematic review and meta-analysis

    NARCIS (Netherlands)

    van der Worp, Henk; Vrielink, Jelte W.; Bredeweg, Steef W.


    BACKGROUND: Vertical ground reaction force (VGRF) parameters have been implicated as a cause of several running-related injuries. However, no systematic review has examined this relationship. AIM: We systematically reviewed evidence for a relation between VGRF parameters and specific running-related

  12. Do runners who suffer injuries have higher vertical ground reaction forces than those who remain injury-free? A systematic review and meta-analysis

    NARCIS (Netherlands)

    van der Worp, Henk; Vrielink, Jelte W.; Bredeweg, Steef W.


    Background Vertical ground reaction force (VGRF) parameters have been implicated as a cause of several running-related injuries. However, no systematic review has examined this relationship. Aim We systematically reviewed evidence for a relation between VGRF parameters and specific running-related i

  13. The vertical ground reaction force and the pressure distribution on the claws of dairy cows while walking on a flat substrate

    NARCIS (Netherlands)

    Tol, van der P.P.J.; Metz, J.H.M.; Noordhuizen-Stassen, E.N.; Back, W.; Braam, C.R.; Weijs, W.A.


    The pressure distribution under the bovine claw while walking was measured to test the hypotheses that the vertical ground reaction force is unevenly distributed and makes some (regions of the) claws more prone to injuries due to overloading than others. Each limb of nine recently trimmed Holstein F

  14. Vertical ground reaction force responses to different head-out aquatic exercises performed in water and on dry land. (United States)

    Alberton, Cristine Lima; Finatto, Paula; Pinto, Stephanie Santana; Antunes, Amanda Haberland; Cadore, Eduardo Lusa; Tartaruga, Marcus Peikriszwili; Kruel, Luiz Fernando Martins


    The purpose was to analyse the vertical ground reaction forces (Fz) of head-out aquatic exercises [stationary running (SR), frontal kick (FK), cross-country skiing (CCS), jumping jacks (JJ), adductor hop (ADH) and abductor hop (ABH)] at two cadences in both aquatic and dry land environments. Twelve young women completed two sessions in each environment, each consisting of three exercises performed at two cadences (first and second ventilatory thresholds - C1 and C2, respectively). Two-way and three-way repeated measures analysis of variance were used to the statistical analysis. The results showed that the peak Fz and impulse were significantly lower in the aquatic environment, resulting in values from 28.2% to 58.5% and 60.4% to 72.8% from those obtained on dry land, respectively. In the aquatic environment, the peak Fz was lower and the impulse was higher at the C1 than at the C2. Furthermore, it was observed that SR and FK (0.9-1.1 BW) elicited a significantly higher peak Fz values compared to the ADH and JJ exercises (0.5-0.8 BW). It can be concluded that the aquatic environment reduces the Fz during head-out aquatic exercises. It should be noted that its magnitude is also dependent on the intensity and the identity of the exercise performed.

  15. A Wearable Ground Reaction Force Sensor System and Its Application to the Measurement of Extrinsic Gait Variability (United States)

    Liu, Tao; Inoue, Yoshio; Shibata, Kyoko


    Wearable sensors for gait analysis are attracting wide interest. In this paper, a wearable ground reaction force (GRF) sensor system and its application to measure extrinsic gait variability are presented. To validate the GRF and centre of pressure (CoP) measurements of the sensor system and examine the effectiveness of the proposed method for gait analysis, we conducted an experimental study on seven volunteer subjects. Based on the assessment of the influence of the sensor system on natural gait, we found that no significant differences were found for almost all measured gait parameters (p-values < 0.05). As for measurement accuracy, the root mean square (RMS) differences for the two transverse components and the vertical component of the GRF were 7.2% ± 0.8% and 9.0% ± 1% of the maximum of each transverse component and 1.5% ± 0.9% of the maximum vertical component of GRF, respectively. The RMS distance between both CoP measurements was 1.4% ± 0.2% of the length of the shoe. The area of CoP distribution on the foot-plate and the average coefficient of variation of the triaxial GRF, are the introduced parameters for analysing extrinsic gait variability. Based on a statistical analysis of the results of the tests with subjects wearing the sensor system, we found that the proposed parameters changed according to walking speed and turning (p-values < 0.05). PMID:22163468

  16. A Wearable Ground Reaction Force Sensor System and Its Application to the Measurement of Extrinsic Gait Variability

    Directory of Open Access Journals (Sweden)

    Kyoko Shibata


    Full Text Available Wearable sensors for gait analysis are attracting wide interest. In this paper, a wearable ground reaction force (GRF sensor system and its application to measure extrinsic gait variability are presented. To validate the GRF and centre of pressure (CoP measurements of the sensor system and examine the effectiveness of the proposed method for gait analysis, we conducted an experimental study on seven volunteer subjects. Based on the assessment of the influence of the sensor system on natural gait, we found that no significant differences were found for almost all measured gait parameters (p-values < 0.05. As for measurement accuracy, the root mean square (RMS differences for the two transverse components and the vertical component of the GRF were 7.2% ± 0.8% and 9.0% ± 1% of the maximum of each transverse component and 1.5% ± 0.9% of the maximum vertical component of GRF, respectively. The RMS distance between both CoP measurements was 1.4% ± 0.2% of the length of the shoe. The area of CoP distribution on the foot-plate and the average coefficient of variation of the triaxial GRF, are the introduced parameters for analysing extrinsic gait variability. Based on a statistical analysis of the results of the tests with subjects wearing the sensor system, we found that the proposed parameters changed according to walking speed and turning (p-values < 0.05.

  17. The preparatory state of ground reaction forces in defending against a dribbler in a basketball 1-on-1 dribble subphase. (United States)

    Fujii, Keisuke; Yoshioka, Shinsuke; Isaka, Tadao; Kouzaki, Motoki


    We previously demonstrated the relationship between sidestepping performance and the preparatory state of ground reaction forces (GRFs). The present study investigated the effect of the preparatory state of GRFs on defensive performance in 1-on-1 subphase of basketball. Ten basketball players participated in 1-on-1 dribble game of basketball. The outcomes (penetrating and guarding) and the preparatory state of GRFs (non-weighted and weighted states, i.e. vertical GRFs below and above 120% of body weight, respectively) were assessed by separating the phases. In the non-weighted state and the weighted state to determine the outcome, the probability of successful guarding was 78.8% and 29.6%, respectively. The non-weighted state prevented delay of the defensive step in the determination phase. Both the non-weighted and weighted states, immediately before the determination phase, were likely to change to the weighted state in the determination phase; during this time, the defender's preparatory state would be destabilised, presumably by the dribbler's movement. These results revealed that the preparatory GRFs before the defensive step help to explain the outcome of the 1-on-1 subphase, and suggest a better way to prevent delaying initiation of the defensive step and thereby to guard more effectively against a dribbler.

  18. Computerized identification and classification of stance phases as made by front or hind feet of walking cows based on 3-dimensional ground reaction forces

    DEFF Research Database (Denmark)

    Skjøth, Flemming; Thorup, V. M.; do Nascimento, Omar Feix


    Lameness is a frequent disorder in dairy cows and in large dairy herds manual lameness detection is a time-consuming task. This study describes a method for automatic identification of stance phases in walking cows, and their classification as made by a front or a hind foot based on ground reaction...... force information. Features were derived from measurements made using two parallel 3-dimensional force plates. The approach presented is based on clustering of Centre of Pressure (COP) trace points over space and time, combined with logical sequencing of stance phases based on the dynamics...

  19. Effect of Five-Finger Shoes on Vertical Ground Reaction Force Loading Rates and Perceived Comfort during the Stance Phase of the Running

    Directory of Open Access Journals (Sweden)

    Seyede Zeynab Hoseini


    Full Text Available Objective:  Increased vertical ground reaction force loading rates and lack of comfort footwear in the early stance phase can increase the risk of overuse injuries. The purpose of this study was to investigate the effect of Five-finger shoes on vertical ground reaction force loading rate and perceived comfort during the stance phase of running. Methods: 15 male students (aged 24 ± 5/24 years, weight 75/8 ± 4/61 kg, height 178/6 ± 6/64 cm were selected. Subjects were asked to run over a force plate, in control shoe, five finger shoe and barefoot conditions. Loading rate using the slope of the vertical reaction force and perceived comfort were determined using a visual analogue scale. One factor repeated measures ANOVA was used to test the loading rate hypothesis and Paired t-tests was used to test the meaningfulness of perceived comfort (P<0/05. Results: The effect of shoes on loading rate was found to be not significant (P=0.1. However, comfort of control shoes increased by 10. 92% as compared to that of five-finger shoes (P=0.001.  Conclusion: The loading rate of five-finger shoes is the same as that of barefoot during running; however, as subjects did not perceive them as comfortable as regular shoes are five-finger shoes cannot be advised as a desirable choice in exercises.

  20. Influence of pressure-relief insoles developed for loaded gait (backpackers and obese people) on plantar pressure distribution and ground reaction forces. (United States)

    Peduzzi de Castro, Marcelo; Abreu, Sofia; Pinto, Viviana; Santos, Rubim; Machado, Leandro; Vaz, Mario; Vilas-Boas, João Paulo


    The aims of this study were to test the effects of two pressure relief insoles developed for backpackers and obese people on the ground reaction forces (GRF) and plantar pressure peaks during gait; and to compare the GRF and plantar pressures among normal-weight, backpackers, and obese participants. Based on GRF, plantar pressures, and finite element analysis two insoles were manufactured: flat cork-based insole with (i) corkgel in the rearfoot and forefoot (SLS1) and with (ii) poron foam in the great toe and lateral forefoot (SLS2). Gait data were recorded from 21 normal-weight/backpackers and 10 obese participants. The SLS1 did not influence the GRF, but it relieved the pressure peaks for both backpackers and obese participants. In SLS2 the load acceptance GRF peak was lower; however, it did not reduce the plantar pressure peaks. The GRF and plantar pressure gait pattern were different among the normal-weight, backpackers and obese participants.


    Directory of Open Access Journals (Sweden)

    Daniel Rojano Ortega


    Full Text Available In most common bilateral landings of vertical jumps, there are two peak forces (F1 and F2 in the force-time curve. The combination of these peak forces and the high frequency of jumps during sports produce a large amount of stress in the joints of the lower limbs which can be determinant of injury. The aim of this study was to find possible relationships between the jump height and F1 and F2, between F1 and F2 themselves, and between F1, F2, the time they appear (T1 and T2, respectively and the length of the impact absorption phase (T. Thirty semi-professional football players made five countermovement jumps and the highest jump of each player was analyzed. They were instructed to perform the jumps with maximum effort and to land first with the balls of their feet and then with their heels. All the data were collected using a Kistler Quattro Jump force plate with a sample rate of 500 Hz. Quattro Jump Software, v., was used. There was neither significant correlation between T1 and F1 nor between T1 and F2. There was a significant positive correlation between flight height (FH and F1 (r = 0.584, p = 0.01 but no significant correlation between FH and F2. A significant positive correlation between F1 and T2 (r = 0.418, p < 0.05 and a significant negative correlation between F2 and T2 (r = -0.406, p < 0.05 were also found. There is a significant negative correlation between T2 and T (r = -0. 443, p < 0.05. T1 has a little effect in the impact absorption process. F1 increases with increasing T2 but F2 decreases with increasing T2. Besides, increasing T2, with the objective of decreasing F2, makes the whole impact absorption shorter and the jump landing faster.

  2. Concurrent validity and reliability of using ground reaction force and center of pressure parameters in the determination of leg movement initiation during single leg lift. (United States)

    Aldabe, Daniela; de Castro, Marcelo Peduzzi; Milosavljevic, Stephan; Bussey, Melanie Dawn


    Postural adjustment evaluations during single leg lift requires the initiation of heel lift (T1) identification. T1 measured by means of motion analyses system is the most reliable approach. However, this method involves considerable workspace, expensive cameras, and time processing data and setting up laboratory. The use of ground reaction forces (GRF) and centre of pressure (COP) data is an alternative method as its data processing and setting up is less time consuming. Further, kinetic data is normally collected using frequency samples higher than 1000Hz whereas kinematic data are commonly captured using 50-200Hz. This study describes the concurrent-validity and reliability of GRF and COP measurements in determining T1, using a motion analysis system as reference standard. Kinematic and kinetic data during single leg lift were collected from ten participants. GRF and COP data were collected using one and two force plates. Displacement of a single heel marker was captured by means of ten Vicon(©) cameras. Kinetic and kinematic data were collected using a sample frequency of 1000Hz. Data were analysed in two stages: identification of key events in the kinetic data, and assessing concurrent validity of T1 based on the chosen key events with T1 provided by the kinematic data. The key event presenting the least systematic bias, along with a narrow 95% CI and limits of agreement against the reference standard T1, was the Baseline COPy event. Baseline COPy event was obtained using one force plate and presented excellent between-tester reliability.

  3. Lower limb joint angles and ground reaction forces in forefoot strike and rearfoot strike runners during overground downhill and uphill running. (United States)

    Kowalski, Erik; Li, Jing Xian


    This study investigated the normal and parallel ground reaction forces during downhill and uphill running in habitual forefoot strike and habitual rearfoot strike (RFS) runners. Fifteen habitual forefoot strike and 15 habitual RFS recreational male runners ran at 3 m/s ± 5% during level, uphill and downhill overground running on a ramp mounted at 6° and 9°. Results showed that forefoot strike runners had no visible impact peak in all running conditions, while the impact peaks only decreased during the uphill conditions in RFS runners. Active peaks decreased during the downhill conditions in forefoot strike runners while active loading rates increased during downhill conditions in RFS runners. Compared to the level condition, parallel braking peaks were larger during downhill conditions and parallel propulsive peaks were larger during uphill conditions. Combined with previous biomechanics studies, our findings suggest that forefoot strike running may be an effective strategy to reduce impacts, especially during downhill running. These findings may have further implications towards injury management and prevention.

  4. Ground Reaction Force and Mechanical Differences Between the Interim Resistive Exercise Device (iRED) and Smith Machine While Performing a Squat (United States)

    Amonette, William E.; Bentley, Jason R.; Lee, Stuart M. C.; Loehr, James A.; Schneider, Suzanne


    Musculoskeletal unloading in microgravity has been shown to induce losses in bone mineral density, muscle cross-sectional area, and muscle strength. Currently, an Interim Resistive Exercise Device (iRED) is being flown on board the ISS to help counteract these losses. Free weight training has shown successful positive musculoskeletal adaptations. In biomechanical research, ground reaction forces (GRF) trajectories are used to define differences between exercise devices. The purpose of this evaluation is to quantify the differences in GRF between the iRED and free weight exercise performed on a Smith machine during a squat. Due to the differences in resistance properties, inertial loading and load application to the body between the two devices, we hypothesize that subjects using iRED will produce GRF that are significantly different from the Smith machine. There will be differences in bar/harness range of motion and the time when peak GRF occurred in the ROMbar. Three male subjects performed three sets of ten squats on the iRED and on the Smith Machine on two separate days at a 2-second cadence. Statistically significant differences were found between the two devices in all measured GRF variables. Average Fz and Fx during the Smith machine squat were significantly higher than iRED. Average Fy (16.82 plus or minus.23; p less than .043) was significantly lower during the Smith machine squat. The mean descent/ascent ratio of the magnitude of the resultant force vector of all three axes for the Smith machine and iRED was 0.95 and 0.72, respectively. Also, the point at which maximum Fz occurred in the range of motion (Dzpeak) was at different locations with the two devices.

  5. Force approach to radiation reaction

    Energy Technology Data Exchange (ETDEWEB)

    López, Gustavo V., E-mail:


    The difficulty of the usual approach to deal with the radiation reaction is pointed out, and under the condition that the radiation force must be a function of the external force and is zero whenever the external force be zero, a new and straightforward approach to radiation reaction force and damping is proposed. Starting from the Larmor formula for the power radiated by an accelerated charged particle, written in terms of the applied force instead of the acceleration, an expression for the radiation force is established in general, and applied to the examples for the linear and circular motion of a charged particle. This expression is quadratic in the magnitude of the applied force, inversely proportional to the speed of the charged particle, and directed opposite to the velocity vector. This force approach may contribute to the solution of the very old problem of incorporating the radiation reaction to the motion of the charged particles, and future experiments may tell us whether or not this approach point is in the right direction.

  6. Force approach to radiation reaction (United States)

    López, Gustavo V.


    The difficulty of the usual approach to deal with the radiation reaction is pointed out, and under the condition that the radiation force must be a function of the external force and is zero whenever the external force be zero, a new and straightforward approach to radiation reaction force and damping is proposed. Starting from the Larmor formula for the power radiated by an accelerated charged particle, written in terms of the applied force instead of the acceleration, an expression for the radiation force is established in general, and applied to the examples for the linear and circular motion of a charged particle. This expression is quadratic in the magnitude of the applied force, inversely proportional to the speed of the charged particle, and directed opposite to the velocity vector. This force approach may contribute to the solution of the very old problem of incorporating the radiation reaction to the motion of the charged particles, and future experiments may tell us whether or not this approach point is in the right direction.

  7. Reproducibility of the spatio-temporal variables and the ground reaction forces walking with fire fighting boots REPRODUCIBILIDAD DE LAS VARIABLES ESPACIO-TEMPORALES Y DE LAS COMPONENTES DE LA FUERZA DE REACCIÓN DEL SUELO EN LA MARCHA CON BOTAS DE BOMBERO [Reproducibility of the spatio-temporal variables and the ground reaction forces walking with fire fighting boo

    Directory of Open Access Journals (Sweden)

    Begoña Gavilanes


    Full Text Available AbstractThe aim of this study is to analyze the reproducibility of the spatio-temporal variables and the ground reaction forces (GRF when walking with fire fighting boots in comparison to walking with low calf shoes. Spatio-temporal parameters and the variables related to the three components of the GRF of 39 people were recorded under two different walking conditions. A T-test to contrast the difference between the coefficients of variation (CV in both conditions was used. The CV of the spatio-temporal variables (i.e velocity (V, condition I = 2.01%; condition II = 1.81%, of the vertical (i.e. contact force (FZA of the left foot, condition I = 2.54%; condition II = 2.73% and of the antero-posterior GRF (i.e. maximum force (FXMAX of the left foot, condition I = 4.47%; condition II = 4.59% was lower than 12.5%, suggesting that these variables could be used to analyze the influence of fire fighting boots on the gait. However, the low reproducibility showed by medium-lateral parameters does not allow to use them. Apart from the bipodal phase no differences were found between the two walking conditions. Key words: biomechanics, footwear, variability.ResumenEl objetivo del presente trabajo es analizar la reproducibilidad de las variables espacio-temporales y de la fuerza de reacción del suelo (FRS durante la marcha con botas de bombero y compararla con la mostrada durante la marcha con calzado de cuero sin caña. Se registraron las variables espacio-temporales de 39 personas así como las variables que definen las tres componentes de la FRS con dos tipos de calzado diferente. Se utilizó la prueba T para contrastar la hipótesis referida a la diferencia del coeficiente de variación (CV entre los dos tipos de calzado. El CV de las variables espacio-temporales (p. ej. velocidad (V, condición I = 2,01%; condición II = 1,81%, así como de las que definen la componente vertical (p. ej. fuerza de apoyo (FZA del pie izquierdo, condición I = 2

  8. Predição da força de reação do solo durante a corrida na água Prediction of ground reaction force during water immersion running

    Directory of Open Access Journals (Sweden)

    Alessandro Haupenthal


    Full Text Available Este estudo visou desenvolver um modelo para a predição da força de reação do solo na corrida subaquática. Participaram 20 sujeitos (9 homens e 11 mulheres, que realizaram corrida subaquática em dois níveis de imersão e três velocidades. Para cada sujeito foram coletadas seis passagens válidas em cada condição, com a utilização de uma plataforma subaquática de força. O modelo para predição da força foi construído por regressão linear múltipla. Foram consideradas variáveis dependentes a componente vertical e a componente ântero-posterior da força de reação do solo. As variáveis imersão, sexo, velocidade, massa corporal, densidade corporal e percentual de gordura foram consideradas independentes. Permaneceu no modelo final de regressão para a componente vertical a velocidade (pThis study aimed at developing a model to predict ground reaction force during deep-water running. A total of 20 subjects ((9 men, 11 women ran in water at two immersion levels and three different speeds. Each subject performed six valid trials in each condition, data being captured by an underwater force plate. The force prediction model was build by multiple linear regression. Dependent variables were the vertical and anteroposterior components of the ground reaction force; independent variables were runners' immersion, sex, speed, body mass, body density, and percentage of fat. At the final regression model for the vertical component, only speed remained (p<0.001, while for the anteroposterior component, speed, immersion, and body mass were maintained (all at p<0.001. The obtained model for the anteroposterior component of ground reaction force may be found satisfactory, as adjusted determination coefficient was 0.79. However, the prediction model for the vertical component cannot be recommended for prediction during deep-water running, since that coefficient was 0.18. It must be noted that the proposed prediction model applies to subjects

  9. Unmanned ground vehicles for integrated force protection (United States)

    Carroll, Daniel M.; Mikell, Kenneth; Denewiler, Thomas


    The combination of Command and Control (C2) systems with Unmanned Ground Vehicles (UGVs) provides Integrated Force Protection from the Robotic Operation Command Center. Autonomous UGVs are directed as Force Projection units. UGV payloads and fixed sensors provide situational awareness while unattended munitions provide a less-than-lethal response capability. Remote resources serve as automated interfaces to legacy physical devices such as manned response vehicles, barrier gates, fence openings, garage doors, and remote power on/off capability for unmanned systems. The Robotic Operations Command Center executes the Multiple Resource Host Architecture (MRHA) to simultaneously control heterogeneous unmanned systems. The MRHA graphically displays video, map, and status for each resource using wireless digital communications for integrated data, video, and audio. Events are prioritized and the user is prompted with audio alerts and text instructions for alarms and warnings. A control hierarchy of missions and duty rosters support autonomous operations. This paper provides an overview of the key technology enablers for Integrated Force Protection with details on a force-on-force scenario to test and demonstrate concept of operations using Unmanned Ground Vehicles. Special attention is given to development and applications for the Remote Detection Challenge and Response (REDCAR) initiative for Integrated Base Defense.

  10. Effects of ground and joint reaction force exercise on lumbar spine and femoral neck bone mineral density in postmenopausal women: a meta-analysis of randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Kelley George A


    Full Text Available Abstract Background Low bone mineral density (BMD and subsequent fractures are a major public health problem in postmenopausal women. The purpose of this study was to use the aggregate data meta-analytic approach to examine the effects of ground (for example, walking and/or joint reaction (for example, strength training exercise on femoral neck (FN and lumbar spine (LS BMD in postmenopausal women. Methods The a priori inclusion criteria were: (1 randomized controlled trials, (2 exercise intervention ≥ 24 weeks, (3 comparative control group, (4 postmenopausal women, (5 participants not regularly active, i.e., less than 150 minutes of moderate intensity (3.0 to 5.9 metabolic equivalents weight bearing endurance activity per week, less than 75 minutes of vigorous intensity (> 6.0 metabolic equivalents weight bearing endurance activity per week, resistance training g was calculated for each FN and LS BMD result and pooled using random-effects models. Z-score alpha values, 95%confidence intervals (CI and number-needed-to-treat (NNT were calculated for pooled results. Heterogeneity was examined using Q and I2. Mixed-effects ANOVA and simple meta-regression were used to examine changes in FN and LS BMD according to selected categorical and continuous variables. Statistical significance was set at an alpha value ≤0.05 and a trend at >0.05 to ≤ 0.10. Results Small, statistically significant exercise minus control group improvements were found for both FN (28 g’s, 1632 participants, g = 0.288, 95% CI = 0.102, 0.474, p = 0.002, Q = 90.5, p I2 = 70.1%, NNT = 6 and LS (28 g’s, 1504 participants, g = 0.179, 95% CI = −0.003, 0.361, p = 0.05, Q = 77.7, p I2 = 65.3%, NNT = 6 BMD. Clinically, it was estimated that the overall changes in FN and LS would reduce the 20-year relative risk of osteoporotic fracture at any site by approximately 11% and 10%, respectively. None of the mixed

  11. About Radiation Reaction with Force Approach

    CERN Document Server

    Velazquez, Gustavo Lopez


    The difficulty of usual approach to radiation reaction is pointed out , and a possible approach based on the force acting to the charged particle which produces the acceleration itself, is presented. This approach brings about an expression such that acceleration is zero whenever the external force is zero.

  12. Radiation Reaction Force on a Particle


    Fearn, H.; Bengtsson, J.


    The Abrahamn Lorentz radiation reaction force term, with da/dt, derived in text books is shown to be incomplete. We show that, with the addition of a term, the classical radiation reaction force can be generalized to the relativistic force expression. This addition is the Poynting Robertson term, seen mostly in astrophysics and usually missing from texts in electromagnetism. With this term added, it takes into account the rate of change of mass dm/dt of the particle and makes the generalizati...

  13. Exercise Countermeasures for Bone Loss During Space Flight: A Method for the Study of Ground Reaction Forces and their Implications for Bone Strain (United States)

    Peterman, M.; McCrory, J. L.; Sharkey, N. A.; Piazza, S.; Cavanagh, P. R.


    Effective countermeasures to prevent loss of bone mineral during long duration space flight remain elusive. Despite an exercise program on MIR flights, the data from LeBlanc et al. (1996) indicated that there was still a mean rate of loss of bone mineral density in the proximal femur of 1.58% per month (n=18, flight duration 4 - 14.4 months). The specific mechanisms regulating bone mass are not known, but most investigators agree that bone maintenance is largely dependent upon mechanical demand and the resultant local bone strains. A plausible hypothesis is that bone loss during space flight, such as that reported by LeBlanc et al. (1996), may result from failure to effectively load the skeleton in order to generate localized bone strains of sufficient magnitude to prevent disuse osteoporosis. A variety of methods have been proposed to simulate locomotor exercise in reduced gravity. In such simulations, and in an actual microgravity environment, a gravity replacement load (GRL) must always be added to return the exercising subject to the support surface and the resulting skeletal load is critically dependent upon the magnitude of the GRL. To our knowledge, GRLs during orbital flight have only been measured once (on STS 81) and it is likely that most or all prior treadmill exercise in space has used GRLs that were less than one body weight. McCrory (1997) has shown that subjects walking and running in simulated zero-G can tolerate GRLs of 1 if an appropriate harness is used. Several investigators have attempted to measure in vivo strains and forces in the bones of humans, but have faced ethical and technical limitations. The anteromedial aspect of the tibial midshaft has been a common site for the placement of strain gauges; one reason to measure strains in the anterior tibia is that this region is surgically accessible. Aamodt et al. (1997) were able to measure strains on the lateral surface of the proximal femur only because their experimental subjects were

  14. Dynamic input to determine hip joint moments, power and work on the prosthetic limb of transfemoral amputees: ground reaction vs knee reaction


    FROSSARD, Laurent; Cheze, Laurence; Dumas, Raphaël


    Background: Calculation of lower limb kinetics is limited by floor-mounted force-plates. Objectives: Comparison of hip joint moments, power and mechanical work on the prosthetic limb of a transfemoral amputee calculated by inverse dynamics using either the ground reactions (force-plates) or knee reactions (transducer). Study design: Comparative analysis. Methods: Kinematics, ground reaction and knee reaction data were collected using a motion analysis system, two forceplates, and a multi-axia...

  15. Running-specific prostheses limit ground-force during sprinting (United States)

    Grabowski, Alena M.; McGowan, Craig P.; McDermott, William J.; Beale, Matthew T.; Kram, Rodger; Herr, Hugh M.


    Running-specific prostheses (RSP) emulate the spring-like behaviour of biological limbs during human running, but little research has examined the mechanical means by which amputees achieve top speeds. To better understand the biomechanical effects of RSP during sprinting, we measured ground reaction forces (GRF) and stride kinematics of elite unilateral trans-tibial amputee sprinters across a range of speeds including top speed. Unilateral amputees are ideal subjects because each amputee's affected leg (AL) can be compared with their unaffected leg (UL). We found that stance average vertical GRF were approximately 9 per cent less for the AL compared with the UL across a range of speeds including top speed (p < 0.0001). In contrast, leg swing times were not significantly different between legs at any speed (p = 0.32). Additionally, AL and UL leg swing times were similar to those reported for non-amputee sprinters. We infer that RSP impair force generation and thus probably limit top speed. Some elite unilateral trans-tibial amputee sprinters appear to have learned or trained to compensate for AL force impairment by swinging both legs rapidly. PMID:19889694


    Directory of Open Access Journals (Sweden)

    Matthew Kirk Seeley


    Full Text Available The purpose of this study was to examine reaction forces transmitted to the upper extremities of high-level gymnasts during the round-off phase of the Yurchenko vault. A secondary purpose of this study was to compare reaction forces during the Yurchenko vault to reaction forces observed in a tumbling pass during the floor exercise. Ten high-level, female gymnasts volunteered to participate. Conditions of the independent variable were the Yurchenko vault and floor exercise; dependent variables were peak vertical and peak anterior-posterior reaction forces. Each participant performed three trials of both conditions with the trail hand contacting a force platform. Vertical and anterior-posterior reaction forces, normalized to body weight, were greater (p < 0.05 during the round-off phase of the Yurchenko vault (2.38 than during the floor exercise round-off (2.15. Vertical reaction forces during the round-off phase of the Yurchenko vault and floor exercise round-off are similar to reaction forces transmitted to upper extremities during other gymnastic skills and ground reaction forces transmitted to lower extremities while running and walking at various speeds. Results of this study reveal a need for further research considering methods aimed at reducing reaction forces transmitted to the upper extremities during the Yurchenko vault and floor exercise.

  17. Air Force Implementation is Off the Ground (United States)


    actions taken by the Air Force that have a permanent, positive effect resulting from a particular action area of BBP 2.0. The KC-46 Tanker, F-22 Raptor Europe was able to save $57 million on a back-to-basics approach on its six largest acquisitions by en- couraging early industry involvement to

  18. Grounding-Induced Sectional Forces and Residual Strength of Grounded Ship Hulls

    DEFF Research Database (Denmark)

    Paik, Jeom Kee; Pedersen, Preben Terndrup


    The aim of the present study is to determine the sectional forces induced by ship grounding and also to assess the residual strength of groundedship hulls. An analytical approach is used to estimate the grounding-induced sectional forces of ships. The extent and location of structural damage due...... to grounding is defined based on the ABS Safe Hull guide. The residual strength of damaged hulls is calculated by using a simple analytical formula. The method is applied to residual strength assessment of a damaged double hull tanker of 38,400 dwt due to grounding....

  19. Flexible Forces: US Ground Forces in Future War (United States)


    simply design and create a force we believe to be appropriate. We start not from tabula rasa , but from an established organization whose equipment...increasing pressures of non-national economic interdependency seem to have eroded the role of the traditional nation-state in security affairs. Some...efforts of other countries who resist the roles they have been assigned.” Ibid, pg.44. 13 announced enemy whose capabilities and intentions can drive


    Grove, David B.; Stollenwerk, Kenneth G.


    Recent literature concerning the modeling of chemical reactions during transport in ground water is examined with emphasis on sorption reactions. The theory of transport and reactions in porous media has been well documented. Numerous equations have been developed from this theory, to provide both continuous and sequential or multistep models, with the water phase considered for both mobile and immobile phases. Chemical reactions can be either equilibrium or non-equilibrium, and can be quantified in linear or non-linear mathematical forms. Non-equilibrium reactions can be separated into kinetic and diffusional rate-limiting mechanisms. Solutions to the equations are available by either analytical expressions or numerical techniques. Saturated and unsaturated batch, column, and field studies are discussed with one-dimensional, laboratory-column experiments predominating. A summary table is presented that references the various kinds of models studied and their applications in predicting chemical concentrations in ground waters.

  1. Determining the Forces Generated by the Contact of an Electrically-Operated Vehicle with the Ground

    Institute of Scientific and Technical Information of China (English)


    In this paper we analyse the motion of an electric vehicle,when there is only the pure rolling of the wheels on the ground.The equations of holonomic and non-holonomic constraints have been rendered explicitly obtaining 27 equations algebraic-differential system with the same number of unknowns.Besides,this system supplies a model to calculate the bonding reaction forces.

  2. Force-Depending Radiation Reaction study in an undulator devise

    CERN Document Server

    López, Gustavo V


    The effect of force-depending radiation reaction on charge motion traveling inside an undulator is studied using the new force approach for radiation reaction. The effect on the dynamics of a charged particle is determined with the hope that this one can be measured experimentally and can be determined whether or not this approach points on the right direction to understand the nature of radiation reaction.

  3. Force-activated reactivity switch in a bimolecular chemical reaction at the single molecule level (United States)

    Szoszkiewicz, Robert; Garcia-Manyes, Sergi; Liang, Jian; Kuo, Tzu-Ling; Fernandez, Julio M.


    Mechanical force can deform the reacting molecules along a well-defined direction of the reaction coordinate. However, the effect of mechanical force on the free-energy surface that governs a chemical reaction is still largely unknown. The combination of protein engineering with single-molecule AFM force-clamp spectroscopy allows us to study the influence of mechanical force on the rate at which a protein disulfide bond is reduced by some reducing agents in a bimolecular substitution reaction (so-called SN2). We found that cleavage of a protein disulfide bond by hydroxide anions exhibits an abrupt reactivity ``switch'' at 500 pN, after which the accelerating effect of force on the rate of an SN2 chemical reaction greatly diminishes. We propose that an abrupt force-induced conformational change of the protein disulfide bond shifts its ground state, drastically changing its reactivity in SN2 chemical reactions. Our experiments directly demonstrate the action of a force-activated switch in the chemical reactivity of a single molecule. References: Sergi Garcia-Manyes, Jian Liang, Robert Szoszkiewicz, Tzu-Ling Kuo and Julio M. Fernandez, Nature Chemistry, 1, 236-242, 2009.

  4. Generalization of the Force Approach to Radiation Reaction

    CERN Document Server

    Lopez, Gustavo V


    A generalization of the force approach to radiation reaction is given, taken into consideration an arbitrary motion of the charged particle . The expression obtained brings about the expression already given for the linear an the circular acceleration cases.

  5. Relação entre a mobilidade do tornozelo e pé e a magnitude da força vertical de reação do solo Relationship between ankle and foot mobility and the magnitude of the vertical ground reaction force

    Directory of Open Access Journals (Sweden)

    DL Vianna


    Full Text Available OBJETIVO: Verificar a relação entre a mobilidade do tornozelo e do pé, e o pico da força vertical de reação do solo, considerada como porcentagem do peso corporal, gerada durante a fase de apoio da marcha. MÉTODOS: foram estudados pés normais do lado direito e esquerdo de 15 homens com 22,1±2,7 anos (19-28 e 15 mulheres 24,20±5,24 anos (19-34. Os parâmetros de exclusão foram: deformidades nos pés, doenças ou traumas, que pudessem acometer o sistema musculoesquelético e a marcha. A mobilidade do tornozelo e dos pés foi obtida através da goniometria da flexão plantar, dorsiflexão, extensão do hálux e extensão dos dedos, o pico da força vertical de reação do solo FRS, foi obtido pela baropodometria computadorizada do sistema FSCAN R. A correlação entre ambas foi feita pelo teste estatístico de Spearman. RESULTADOS: os indivíduos do grupo masculino apresentaram menores valores de mobilidade, e maiores valores do pico da força vertical de reação do solo, quando comparados com o grupo feminino. Não houve diferença entre os pés direito e esquerdo. No sexo feminino foi encontrada correlação negativa estatisticamente significante entre os valores da flexão plantar e a força vertical, e entre os valores da extensão dos dedos e a foça vertical. No sexo masculino, houve correlação negativa estatisticamente significante entre os valores da dorsiflexão e a força vertical. Entre os demais valores não foi encontrada correlação significante. CONCLUSÃO: Há relação entre a mobilidade e a força vertical gerada durante a marcha.OBJECTIVE: To investigate the relationship between ankle and foot mobility and the peak of the vertical ground reaction force, as a percentage of body weight, generated during the gait stance phase. METHOD: Fifteen men with mean age of 22.1 ± 2.7 years (range: 19-28 and fifteen women with mean age of 24.20 ± 5.24 years (range: 19-34 with normal feet were studied. The exclusion criteria

  6. Force, reaction time, and precision of Kung Fu strikes. (United States)

    Neto, Osmar Pinto; Bolander, Richard; Pacheco, Marcos Tadeu Tavares; Bir, Cynthia


    The goal was to compare values of force, precision, and reaction time of several martial arts punches and palm strikes performed by advanced and intermediate Kung Fu practitioners, both men and women. 13 Kung Fu practitioners, 10 men and three women, participated. Only the men, three advanced and seven intermediate, were considered for comparisons between levels. Reaction time values were obtained using two high speed cameras that recorded each strike at 2500 Hz. Force of impact was measured by a load cell. For comparisons of groups, force data were normalized by participant's body mass and height. Precision of the strikes was determined by a high speed pressure sensor. The results show that palm strikes were stronger than punches. Women in the study presented, on average, lower values of reaction time and force but higher values of precision than men. Advanced participants presented higher forces than intermediate participants. Significant negative correlations between the values of force and precision and the values of force and reaction time were also found.

  7. A influência do uso acumulado de calçados de corrida sobre a força de reação do solo e as respostas de pressão plantar The influence of running shoes cumulative usage on the ground reaction forces and plantar pressure responses

    Directory of Open Access Journals (Sweden)

    Roberto Bianco


    Full Text Available Acredita-se que a eficiência do calçado seja afetada pelo uso prolongado, mas as alterações biomecânicas ainda não estão bem compreendidas. O objetivo deste estudo é analisar a influência do uso de calçados de corrida na força de reação do solo e os parâmetros de pressão plantar. Três corredores do sexo masculino receberam quatro calçados de corrida para usarem em suas sessões de treinamento. O Sistema Gaitway e o Sistema de F-scan foram usados para registrar a força de reação do solo e parâmetros pressão plantar em diferentes regiões do pé. As coletas ocorreram em quatro momentos: novo e 100, 200 e 300 km de uso. O primeiro pico diminuiu da condição novo para os 300 km de uso (p The prolonged use of a running shoe is thought to affect the efficiency of its impact attenuation properties. However, its effect over biomechanical variables has yet not been well understood. The aim of this study was to examine the influence of running shoe usage on ground reaction force and plantar pressure parameters. Three male runners received four running shoes each to use at their training sessions. The Gaitway System was used to register the vertical component of the ground reaction force, whereas the contact area and peak plantar pressure at different regions of the foot were assessed via the the F-scan System. Data collection occurred at baseline (when the shoes were new - New and after 100, 200 and 300km of use. The first peak decreased significantly from New to 300km (p < 0.01 and the loading rate showed a significant decrease at 200km in relation to the New condition (p < 0.01. Total area increased significantly from New to 100km (p < 0.01 of use and maintained a similar value when compared with the other conditions. There was a continuous and significant decrease (p < 0.01 on forefoot peak pressure as the mileage increased from New to 300km. The hallux peak pressure values were significantly smaller (p < 0.01 at 300km when

  8. A thermodynamic force generated by chemical gradient and adsorption reaction

    CERN Document Server

    Sugawara, Takeshi


    Biological units such as macromolecules, organelles, and cells are directed to a proper location under gradients of relevant chemicals. By considering a macroscopic element that has binding sites for a chemical adsorption reaction to occur on its surface, we show the existence of a thermodynamic force that is generated by the gradient and exerted on the element. By assuming local equilibrium and adopting the grand potential from thermodynamics, we derive a formula for such a thermodynamic force, which depends on the chemical potential gradient and Langmuir isotherm. The conditions under which the formula can be applied are demonstrated to hold in intracellular reactions. The role of the force in the partitioning of bacterial chromosome/plasmid during cell division is discussed.

  9. The reaction force: Three key points along an intrinsic reaction coordinate

    Indian Academy of Sciences (India)

    Peter Politzer; Alejandro Toro-Labbé; Soledad Gutiérrez-Oliva; Bárbara herrera; Pablo Jaque; Monica C Concha; Jane S Murray


    The concept of the reaction force is presented and discussed in detail. For typical processes with energy barriers, it has a universal form which defines three key points along an intrinsic reaction coordinate: the force minimum, zero and maximum. We suggest that the resulting four zones be interpreted as involving preparation of reactants in the first, transition to products in the second and third, and relaxation in the fourth. This general picture is supported by the distinctive patterns of the variations in relevant electronic properties. Two important points that are brought out by the reaction force are that (a) the traditional activation energy comprises two separate contributions, and (b) the transition state corresponds to a balance between the driving and the retarding forces.

  10. Experimental verification of a computational technique for determining ground reactions in human bipedal stance. (United States)

    Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J


    We have developed a three-dimensional (3D) biomechanical model of human standing that enables us to study the mechanisms of posture and balance simultaneously in various directions in space. Since the two feet are on the ground, the system defines a kinematically closed-chain which has redundancy problems that cannot be resolved using the laws of mechanics alone. We have developed a computational (optimization) technique that avoids the problems with the closed-chain formulation thus giving users of such models the ability to make predictions of joint moments, and potentially, muscle activations using more sophisticated musculoskeletal models. This paper describes the experimental verification of the computational technique that is used to estimate the ground reaction vector acting on an unconstrained foot while the other foot is attached to the ground, thus allowing human bipedal standing to be analyzed as an open-chain system. The computational approach was verified in terms of its ability to predict lower extremity joint moments derived from inverse dynamic simulations performed on data acquired from four able-bodied volunteers standing in various postures on force platforms. Sensitivity analyses performed with model simulations indicated which ground reaction force (GRF) and center of pressure (COP) components were most critical for providing better estimates of the joint moments. Overall, the joint moments predicted by the optimization approach are strongly correlated with the joint moments computed using the experimentally measured GRF and COP (0.78 unity slope (experimental=computational results) for postures of the four subjects examined. These results indicate that this model-based technique can be relied upon to predict reasonable and consistent estimates of the joint moments using the predicted GRF and COP for most standing postures.

  11. Dynamics of gecko locomotion: a force-measuring array to measure 3D reaction forces. (United States)

    Dai, Zhendong; Wang, Zhouyi; Ji, Aihong


    Measuring the interaction between each foot of an animal and the substrate is one of the most effective ways to understand the dynamics of legged locomotion. Here, a new facility - the force-measuring array (FMA) - was developed and applied to measure 3D reaction forces of geckos on different slope surfaces. The FMA consists of 16 3D sensors with resolution to the mN level. At the same time the locomotion behaviour of geckos freely moving on the FMA was recorded by high speed camera. The reaction forces acting on the gecko's individual feet measured by the FMA and correlated with locomotion behaviour provided enough information to reveal the mechanical and dynamic secrets of gecko locomotion. Moreover, dynamic forces were also measured by a force platform and correlated with locomotion behaviour. The difference between the forces measured by the two methods is discussed. From the results we conclude that FMA is the best way to obtain true reaction forces acting on the gecko's individual feet.

  12. Reduction in ground reaction force variables with instructed barefoot running

    Directory of Open Access Journals (Sweden)

    Cynthia D. Samaan


    Conclusion: As impact loading has been associated with certain running-related injuries, instruction and feedback on the proper forefoot strike pattern may help reduce the injury risk associated with transitioning to BF running.

  13. The Intersection of Interfacial Forces and Electrochemical Reactions



    We review recent developments in experimental techniques that simultaneously combine measurements of the interaction forces or energies between two extended surfaces immersed in electrolyte solutions - primarily aqueous - with simultaneous monitoring of their (electro)chemical reactions and controlling the electrochemical surface potential of at least one of the surfaces. Combination of these complementary techniques allows for simultaneous real time monitoring of angstrom level changes in su...

  14. 模拟高空跳伞着陆状态下踝关节动态角速度与垂直反作用力的测定%Measurement of the angular velocity and perpendicular ground reaction force of the ankle joint in parachute landing simulation

    Institute of Scientific and Technical Information of China (English)

    郑超; 伍骥; 黄蓉蓉; 崔松超; 文偃伍; 李毅; 吴迪


    Objective To measure the angular velocity and perpendicular ground reaction force of the ankle joint under different heights with half-squat jumping in parachute training simulation,providing a reliable experiment basis for the preventing of ankle injury.Methods A total of 18 volunteers participated in this study.The experimental group included 9 male with experience of parachute landing,while the other 9 male without experience of parachute landing were assigned to the control group.Each subject was instructed to jump off a platform with a height of 30 cm and 60 cm and land on a hard surface in a half-squat posture.The dynamic landing process was recorded with a high speed camera and the biomechanical data was collected and analyzed,including perpendicular ground reaction force,angular displacement,velocity and acting time.Results From 30 cm's height,the ankle angular displacement of the control group was significantly larger than the experimental group (25.73°± 8.13° vs 20.05°± 12.27°,P < 0.05).The perpendicular ground reaction force of the control group was significantly smaller than the experimental group (3 372.4±748.6 N vs 5 181.5±1 726.2 N,P < 0.05).The acting time of the control group was significantly longer than the ex perimental group (0.049±0.015 s vs 0.012±0.004 s,P < 0.05).The buffer time of the control group was significantly shorter than the experimental group (1.397±0.746 s vs 1.737±0.451 s,P < 0.05).From 60 cm's height,the ankle angular velocity of the control group was significantly higher than the experimental group (25.45± 15.01 °/s vs 16.51 ±4.18 °/s,P < 0.05).The perpendicular ground reaction force of the control group was significantly smaller than the experimental group (4 616.0±1 124.7 N vs 7 119.5±2 307.4 N,P < 0.05).The acting time of the control group was significantly longer than the experimental group (0.048±0.013 s vs 0.015±0.006 s,P < 0.05).The buffer time of the control group was significantly

  15. Comparison of the electron-spin force and radiation reaction force (United States)

    Mahajan, Swadesh M.; Asenjo, Felipe A.; Hazeltine, Richard D.


    It is shown that the forces that originate from the electron-spin interacting with the electromagnetic field can play, along with the Lorentz force, a fundamentally important role in determining the electron motion in a high energy density plasma embedded in strong high-frequency radiation, a situation that pertains to both laser-produced and astrophysical systems. These forces, for instance, dominate the standard radiation reaction force as long as there is a `sufficiently' strong ambient magnetic field for affecting spin alignment. The inclusion of spin forces in any advanced modelling of electron dynamics pertaining to high energy density systems (for instance in particle-in-cell codes), therefore, is a must.

  16. Forced thermal cycling of catalytic reactions: experiments and modelling

    DEFF Research Database (Denmark)

    Jensen, Søren; Olsen, Jakob Lind; Thorsteinsson, Sune;


    Recent studies of catalytic reactions subjected to fast forced temperature oscillations have revealed a rate enhancement increasing with temperature oscillation frequency. We present detailed studies of the rate enhancement up to frequencies of 2.5 Hz. A maximum in the rate enhancement is observed...... at about 1 Hz. A model for the rate enhancement that includes the surface kinetics and the dynamic partial pressure variations in the reactor is introduced. The model predicts a levelling off of the rate enhancement with frequency at about 1 Hz. The experimentally observed decrease above 1 Hz is explained...... by dynamic thermal limitations of the reactor. (c) 2007 Elsevier B.V. All rights reserved....

  17. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)


    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  18. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)


    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  19. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.


    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  20. The Enemy Below: Preparing Ground Forces for Subterranean Warfare (United States)


    can endanger the lives of U.S. forces and render mechanical breaching tools inoperable. Air blowers can be used as a hasty means to ventilate a... Penguin Books, 1996). 179 Tom Mangold, The Tunnels of Cu Chi (New York, NY: Random House, 1985). 147 6. A Historical Analysis of Tunnel Warfare and... Penguin Group, 1996. 157 Lester, W. G., & Ali, A. J. “Underground Combat: Stereophonic Blasting, tunnel Rats, and the Soviet-Afghan War.” Engineer

  1. Keyboard reaction force and finger flexor electromyograms during computer keyboard work. (United States)

    Martin, B J; Armstrong, T J; Foulke, J A; Natarajan, S; Klinenberg, E; Serina, E; Rempel, D


    This study examines the relationship between forearm EMGs and keyboard reaction forces in 10 people during keyboard tasks performed at a comfortable speed. A linear fit of EMG force data for each person and finger was calculated during static fingertip loading. An average r2 of .71 was observed for forces below 50% of the maximal voluntary contraction (MVC). These regressions were used to characterize EMG data in force units during the typing task. Averaged peak reaction forces measured during typing ranged from 3.33 N (thumb) to 1.84 N (little finger), with an overall average of 2.54 N, which represents about 10% MVC and 5.4 times the key switch make force (0.47 N). Individual peak or mean finger forces obtained from EMG were greater (1.2 to 3.2 times) than force measurements; hence the range of r2 for EMG force was .10 to .46. A closer correspondence between EMG and peak force was obtained using EMG averaged across all fingers. For 5 of the participants the force computed from EMG was within +/-20% of the reaction force. For the other 5 participants forces were overestimated. For 9 participants the difference between EMG estimated force and the reaction force was less than 13% MVC. It is suggested that the difference between EMG and finger force partly results from the amount of muscle load not captured by the measured applied force.

  2. Vertical peak ground force in human infant crawling. (United States)

    Yozu, Arito; Haga, Nobuhiko; Tojima, Michio; Zhang, Yasu; Sumitani, Masahiko; Otake, Yuko


    Quadrupedalism is a common mode of locomotion in land animals. The load distribution between the forelimbs (FL) and hindlimbs (HL) in quadrupedalism has been of great interest to researchers, and a database of the vertical peak force (Vpk) for FL and HL has been created for various species. However, Vpk in human infant crawling, a natural form of human quadrupedalism, has not been evaluated. We aimed to study Vpk in human infant crawling. Eight healthy infants who used a typical crawling style (i.e., crawling on the hands and knees) were included. The infants were encouraged to crawl over pressure mats placed on the floor, and Vpk of FL and HL were calculated. FL Vpk was 0.631±0.087 (per BW), and HL Vpk was 0.638±0.089 (per BW). No significant difference was observed between FL and HL Vpk. The mean FL/HL Vpk ratio was -0.011 on a natural logarithmic scale. These data could be added to the current database on Vpk for quadrupedalism.

  3. Resolution of Forces and Strain Measurements from an Acoustic Ground Test (United States)

    Smith, Andrew M.; LaVerde, Bruce T.; Hunt, Ronald; Waldon, James M.


    The Conservatism in Typical Vibration Tests was Demonstrated: Vibration test at component level produced conservative force reactions by approximately a factor of 4 (approx.12 dB) as compared to the integrated acoustic test in 2 out of 3 axes. Reaction Forces Estimated at the Base of Equipment Using a Finite Element Based Method were Validated: FEM based estimate of interface forces may be adequate to guide development of vibration test criteria with less conservatism. Element Forces Estimated in Secondary Structure Struts were Validated: Finite element approach provided best estimate of axial strut forces in frequency range below 200 Hz where a rigid lumped mass assumption for the entire electronics box was valid. Models with enough fidelity to represent diminishing apparent mass of equipment are better suited for estimating force reactions across the frequency range. Forward Work: Demonstrate the reduction in conservatism provided by; Current force limited approach and an FEM guided approach. Validate proposed CMS approach to estimate coupled response from uncoupled system characteristics for vibroacoustics.

  4. Force Reconnaissance: A Key Enabler in the Marine Air Ground Task Force and Beyond (United States)


    Vietnam – Stingray /Keyhole………………………………………………..........13 MSPF – Direct Action/VBSS……………………………………………………15 OIF/OEF – Direct Action/VBSS/COIN...or “combat patrol.” Based on the leadership of General Lewis Walt (USMC), he led to the establishment of Keyhole and Stingray missions. General Walt...their mission. ( Stingray combat patrols were organized to make contact with enemy forces through ambush or supporting fire. Stingray patrols were

  5. History of the Army Ground Forces. Study Number 24. History of the Mountain Training Center (United States)


    An ex- ample Is afforded by the action of men in setting out to retrieve para- chuted loads which had grounded on P potentially dangerous snow slope...skiers in the Office of the Quartermaeter Generar. On 20 May 1943 the Mountain and Winter Warfare Board submitted a list of aug- gestions to the Special...Winter Varfare Board subaitted a list of sug- gestions to the Special Forces Section of the Quartermaster General in Washington regarding a proposed

  6. Understanding chemical binding using the Berlin function and the reaction force (United States)

    Chakraborty, Debajit; Cárdenas, Carlos; Echegaray, Eleonora; Toro-Labbe, Alejandro; Ayers, Paul W.


    We use the derivative of the electron density with respect to the reaction coordinate, interpreted through the Berlin binding function, to identify portions of the reaction path where chemical bonds are breaking and forming. The results agree with the conventional description for SN2 reactions, but they are much more general and can be used to elucidate other types of reactions also. Our analysis offers support for, and detailed information about, the use of the reaction force profile to separate the reaction coordinates into intervals, each with characteristic extents of geometry change and electronic rearrangement.

  7. Separable Forces for (d, p Reactions in Momentum Space

    Directory of Open Access Journals (Sweden)

    Hlophe L.


    Full Text Available Treating (d, p reactions in a Faddeev-AGS framework requires the interactions in the sub-systems as input. We derived separable representations for the neutron and proton-nucleus interactions from phenomenological global optical potentials. In order to take into account excitations of the nucleus, excitations need to be included explicitly, leading to a coupled-channel separable representation of the optical potential.

  8. Separable Forces for $(d,p)$ Reactions in Momentum Space

    CERN Document Server

    Hlophe, L; Eremenko, V; Nunes, F M; Thompson, I J; Arbanas, G; Escher, J


    Treating $(d,p)$ reactions in a Faddeev-AGS framework requires the interactions in the sub-systems as input. We derived separable representations for the neutron- and proton-nucleus interactions from phenomenological global optical potentials. In order to take into account excitations of the nucleus, excitations need to be included explicity, leading to a coupled-channel separable representation of the optical potential.

  9. Pulpal reactions to orthodontic force application in humans: a systematic review

    NARCIS (Netherlands)

    Bohl, M. von; Ren, Y.; Fudalej, P.S.; Kuijpers-Jagtman, A.M.


    INTRODUCTION: Force application to a tooth during orthodontic treatment evokes a biological response of the dental pulp. The aim of this systematic literature review was to investigate the relationship between orthodontic force level and pulp reaction in humans. METHODS: Electronic search was made o

  10. Pulpal reactions to orthodontic force application in humans : a systematic review

    NARCIS (Netherlands)

    von Bohl, Martina; Ren, Yijin; Fudalej, Piotr S.; Kuijpers-Jagtman, Anne M.


    INTRODUCTION: Force application to a tooth during orthodontic treatment evokes a biological response of the dental pulp. The aim of this systematic literature review was to investigate the relationship between orthodontic force level and pulp reaction in humans. METHODS: Electronic search was made o

  11. Adaptive method for real-time gait phase detection based on ground contact forces. (United States)

    Yu, Lie; Zheng, Jianbin; Wang, Yang; Song, Zhengge; Zhan, Enqi


    A novel method is presented to detect real-time gait phases based on ground contact forces (GCFs) measured by force sensitive resistors (FSRs). The traditional threshold method (TM) sets a threshold to divide the GCFs into on-ground and off-ground statuses. However, TM is neither an adaptive nor real-time method. The threshold setting is based on body weight or the maximum and minimum GCFs in the gait cycles, resulting in different thresholds needed for different walking conditions. Additionally, the maximum and minimum GCFs are only obtainable after data processing. Therefore, this paper proposes a proportion method (PM) that calculates the sums and proportions of GCFs wherein the GCFs are obtained from FSRs. A gait analysis is then implemented by the proposed gait phase detection algorithm (GPDA). Finally, the PM reliability is determined by comparing the detection results between PM and TM. Experimental results demonstrate that the proposed PM is highly reliable in all walking conditions. In addition, PM could be utilized to analyze gait phases in real time. Finally, PM exhibits strong adaptability to different walking conditions.

  12. Role of the radiation-reaction force in the optical response of two-dimensional crystals

    CERN Document Server

    Merano, Michele


    A classical theory of a radiating two-dimensional crystal is proposed and an expression for the radiative-reaction force is derived. It is shown how this force, acting on the dipoles forming the material, induces a flow of energy away from the dipole vibrations into radiative electromagnetic energy. As conservation of energy requires, the time-average work per unit time and unit area done by the radiation-reaction force is negative and equal in absolute value to the time-average intensity radiated by the crystal.

  13. Radiation Reaction as a Non-conservative Force

    CERN Document Server

    Aashish, Sandeep


    We study a system of a finite-size charged particle and electromagnetic field by exploiting the Hamilton's principle for classical non-conservative systems introduced recently by Galley[1] and obtain the equation of motion of the charged particle which turns out to be the same as obtained by Jackson[2]. We show that radiation reaction stems from the non-conservative potential of the effective Lagrangian. We derive the Abraham-Lorentz equation using the effective non-conservative Lagrangian for a point charge. We establish a correspondence between a charge interacting with its own electromagnetic field and that of a particle interacting with infinite bath oscillators which in turn affords a way to justify the non-conservative nature of the former system.

  14. Ground-based measurements of aerosol optical properties and radiative forcing in North China

    Institute of Scientific and Technical Information of China (English)

    Hongbin Chen; Xiangao Xia; Pucai Wang; Wenxing Zhang


    In order to gain an insight into the aerosol properties and their climatic effect over the continental source regions of China, it is of significance to carry out long-term ground-based measurements of aerosol optical properties and radiative forcing. A couple of temporary and permanent Aerosol Robotic Network (AERONET) sites and three comprehensive radiative sites were established in China as a result of international cooperation in recent years. Heavy aerosol loading and significant temporal and spatial variation over North China are revealed by the AERONET data.Aerosol-induced reductions in surface radiation budget are examined on the basis of collocated observations by sun photometers and pyranometers.

  15. (Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)


    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  16. Optimal control of the initiation of a pericyclic reaction in the electronic ground state

    Indian Academy of Sciences (India)

    Timm Bredtmann; Jörn Manz


    Pericyclic reactions in the electronic ground state may be initiated by down-chirped pump-dump sub-pulses of an optimal laser pulse, in the ultraviolet (UV) frequency and sub-10 femtosecond (fs) time domain. This is demonstrated by means of a quantum dynamics model simulation of the Cope rearrangement of Semibullvalene. The laser pulse is designed by means of optimal control theory, with detailed analysis of the mechanism. The theoretical results support the recent experimental initiation of a pericyclic reaction. The present approach provides an important step towards monitoring asynchronous electronic fluxes during synchronous nuclear pericyclic reaction dynamics, with femto-to-attosecond time resolution, as motivated by the recent prediction of our group.

  17. Intra-Articular Knee Contact Force Estimation During Walking Using Force-Reaction Elements and Subject-Specific Joint Model. (United States)

    Jung, Yihwan; Phan, Cong-Bo; Koo, Seungbum


    Joint contact forces measured with instrumented knee implants have not only revealed general patterns of joint loading but also showed individual variations that could be due to differences in anatomy and joint kinematics. Musculoskeletal human models for dynamic simulation have been utilized to understand body kinetics including joint moments, muscle tension, and knee contact forces. The objectives of this study were to develop a knee contact model which can predict knee contact forces using an inverse dynamics-based optimization solver and to investigate the effect of joint constraints on knee contact force prediction. A knee contact model was developed to include 32 reaction force elements on the surface of a tibial insert of a total knee replacement (TKR), which was embedded in a full-body musculoskeletal model. Various external measurements including motion data and external force data during walking trials of a subject with an instrumented knee implant were provided from the Sixth Grand Challenge Competition to Predict in vivo Knee Loads. Knee contact forces in the medial and lateral portions of the instrumented knee implant were also provided for the same walking trials. A knee contact model with a hinge joint and normal alignment could predict knee contact forces with root mean square errors (RMSEs) of 165 N and 288 N for the medial and lateral portions of the knee, respectively, and coefficients of determination (R2) of 0.70 and -0.63. When the degrees-of-freedom (DOF) of the knee and locations of leg markers were adjusted to account for the valgus lower-limb alignment of the subject, RMSE values improved to 144 N and 179 N, and R2 values improved to 0.77 and 0.37, respectively. The proposed knee contact model with subject-specific joint model could predict in vivo knee contact forces with reasonable accuracy. This model may contribute to the development and improvement of knee arthroplasty.

  18. Forcing factors of cloud-to-ground lightning over Iberia: regional-scale assessments

    Directory of Open Access Journals (Sweden)

    J. A. Santos


    Full Text Available Cloud-to-ground lightning in a sector covering the Iberian Peninsula, the Balearic Islands and nearby seas (36–44° N, 10° W–5° E is analysed in the period from 2003 to 2009 (7 yr. Two Iberian lightning detection networks, composed of 18 sensors over Portugal and Spain, are combined for the first time in the present study. The selected characteristics are cloud-to-ground flashes (CGFs, first stroke peak current, polarity and multiplicity (number of strokes in a given flash. This study examines the temporal (on hourly, monthly and seasonal timescales and spatial variability of CGFs. The influence of five forcing factors on lightning (elevation, lifted index, convective available potential energy and daily minimum and maximum near-surface air temperatures over the Iberian sector is also assessed. For regional-scale assessments, six subsectors with different climatic conditions were analysed separately. Despite important regional differences, the strongest lightning activity occurs from late spring to early autumn, and mostly in the afternoon. Furthermore, CGFs are mainly located over high-elevation areas in late spring to summer, while they tend to occur over the sea in autumn. The results suggest that (1 orographically forced thunderstorms over mountainous areas, mostly from May to September, (2 tropospheric buoyancy forcing over western-central and northern regions in summer and over the Mediterranean regions in autumn, and (3 near-surface thermal contrasts from October to February largely control the location of lightning in Iberia. There is no evidence of different forcings by polarity. A clear correspondence between summertime precipitation patterns and CGFs is also found.

  19. New technique for studying reaction forces during primate behaviors on vertical substrates. (United States)

    Vinyard, Christopher J; Schmitt, Daniel


    Recording reaction forces from primates during behaviors on vertical substrates, such as leaping, climbing, or biting trees, typically requires the design and construction of customized recording devices or mounting commercially available force platforms in a vertical position. The technical difficulties imposed by either option have hindered in vivo research on the kinetics of primate behaviors on vertical substrates. We describe a simple, inexpensive apparatus for recording forces from primate behaviors on vertical substrates. The apparatus includes an instrumented beam fastened directly to a horizontal force platform and a surrounding vertical substrate that does not contact the instrumented beam or platform. The contact piece at the end of the instrumented beam is positioned flush with the noninstrumented vertical substrate, and reaction forces elicited on this instrumented section are directed to the force platform. Because most of the vertical substrate is not instrumented, we can isolate and record forces from a single limb or jaw during a behavior. Biewener and Full ([1992] Biomechanics Structures and Positions: A Practical Approach; New York: Oxford University press, p. 45-73) gave seven criteria to consider when designing a customized force-recording device. Where appropriate, we tested if our apparatus met their criteria. The apparatus accurately records forces in three orthogonal directions, has low cross-talk, maintains a high frequency response, exhibits a linear response up to at least 200 Newtons, and displays a uniform response to a given force across the instrumented contact piece. Our design does not easily facilitate the identification of the point of force application. Therefore, joint moments cannot be easily calculated. This limitation, however, does not affect the apparatus's ability to accurately record the magnitude and direction of a force (as shown by other tests). We developed this apparatus to measure jaw forces during tree gouging in

  20. On the ponderomotive force and the effect of loss reaction on parametric instability

    Institute of Scientific and Technical Information of China (English)

    Wu Jun; Wu Jian; Cesar La Hoz


    In this paper, the growth rate, ponderomotive force and the exciting condition for parametric instability are derived by considering the loss reaction using a new method. On the basis of the hydrodynamic equations, we take the production and loss reactions in plasma into account to derive the coupling equations for the electron plasma oscillation and ion acoustic oscillation, and obtain the growth rate for the parametric instability, the ponderomotive force and the exciting condition. The result shows that (a) the production reaction has no effect on the parametric instability, and the effect of loss reaction on the parametric instability is a damping one, (b) the more intensive the external field or pump is, the larger the growth rate is, (c) there exist two modes of the ponderomotive force, i.e. the high frequency mode and the low frequency mode, and (d) when ponderomotive force counteracts the damping force, the oscillations become non-damping and non-driving. The ratio of the electron plasma oscillation to ion acoustic oscillation is independent of the loss reaction and the external field.

  1. Cloud-to-ground lightning in Portugal: patterns and dynamical forcing

    Directory of Open Access Journals (Sweden)

    J. A. Santos


    Full Text Available An analysis of the cloud-to-ground discharges (CGD over Portugal is carried out using data collected by a network of sensors maintained by the Portuguese Meteorological Institute for 2003–2009 (7 yr. Only cloud-to-ground flashes are considered and negative polarity CGD are largely dominant. The total number of discharges reveals a considerable interannual variability and a large irregularity in their distribution throughout the year. However, it is shown that a large number of discharges occur in the May–September period (71%, with a bimodal distribution that peaks in May and September, with most of the lightning activity recorded in the afternoon (from 16:00 to 18:00 UTC. In spring and autumn the lightning activity tends to be scattered throughout the country, whereas in summer it tends to be more concentrated over northeastern Portugal. Winter generally presents low lightning activity. Furthermore, two significant couplings between the monthly number of days with discharges and the large-scale atmospheric circulation are isolated: a regional forcing, predominantly in summer, and a remote forcing. In fact, the identification of daily lightning regimes revealed three important atmospheric conditions for triggering lightning activity: regional cut-off lows, cold troughs induced by remote low pressure systems and summertime regional low pressures at low-tropospheric levels combined with a mid-tropospheric cold trough.

  2. "Emergence" vs. "Forcing" of Empirical Data? A Crucial Problem of "Grounded Theory" Reconsidered

    Directory of Open Access Journals (Sweden)

    Udo Kelle


    Full Text Available Since the late 1960s Barney GLASER and Anselm STRAUSS, developers of the methodology of "Grounded Theory" have made several attempts to explicate, clarify and reconceptualise some of the basic tenets of their methodological approach. Diverging concepts and understandings of Grounded Theory have arisen from these attempts which have led to a split between its founders. Much of the explication and reworking of Grounded Theory surrounds the relation between data and theory and the role of previous theoretical assumptions. The book which initially established the popularity of GLASER's and STRAUSS' methodological ideas, "The Discovery of Grounded Theory", contains two conflicting understandings of the relation between data and theory—the concept of "emergence" on the one hand and the concept of "theoretical sensitivity" on the other hand. Much of the later developments of Grounded Theory can be seen as attempts to reconcile these prima facie diverging concepts. Thereby GLASER recommends to draw on a variety of "coding families" while STRAUSS proposes the use of a general theory of action to build an axis for an emerging theory. This paper first summarises the most important developments within "Grounded Theory" concerning the understanding of the relation between empirical data and theoretical statements. Thereby special emphasis will be laid on differences between GLASER's and STRAUSS' concepts and on GLASER's current critique that the concepts of "coding paradigm" and "axial coding" described by STRAUSS and Juliet CORBIN lead to the "forcing" of data. It will be argued that GLASER's critique points out some existing weaknesses of STRAUSS' concepts but vastly exaggerates the risks of the STRAUSSian approach. A main argument of this paper is that basic problems of empirically grounded theory construction can be treated much more effectively if one draws on certain results of contemporary philosophical and epistemological discussions and on widely

  3. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Bill


    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  4. Artificial Force Induced Reaction (AFIR) Method for Exploring Quantum Chemical Potential Energy Surfaces. (United States)

    Maeda, Satoshi; Harabuchi, Yu; Takagi, Makito; Taketsugu, Tetsuya; Morokuma, Keiji


    In this account, a technical overview of the artificial force induced reaction (AFIR) method is presented. The AFIR method is one of the automated reaction-path search methods developed by the authors, and has been applied extensively to a variety of chemical reactions, such as organocatalysis, organometallic catalysis, and photoreactions. There are two modes in the AFIR method, i.e., a multicomponent mode and a single-component mode. The former has been applied to bimolecular and multicomponent reactions and the latter to unimolecular isomerization and dissociation reactions. Five numerical examples are presented for an Aldol reaction, a Claisen rearrangement, a Co-catalyzed hydroformylation, a fullerene structure search, and a nonradiative decay path search in an electronically excited naphthalene molecule. Finally, possible applications of the AFIR method are discussed.

  5. A test on reactive force fields for the study of silica dimerization reactions

    Energy Technology Data Exchange (ETDEWEB)

    Moqadam, Mahmoud; Riccardi, Enrico; Trinh, Thuat T.; Åstrand, Per-Olof; Erp, Titus S. van, E-mail: [Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Realfagbygget D3-117, 7491 Trondheim (Norway)


    We studied silica dimerization reactions in the gas and aqueous phase by density functional theory (DFT) and reactive force fields based on two parameterizations of ReaxFF. For each method (both ReaxFF force fields and DFT), we performed constrained geometry optimizations, which were subsequently evaluated in single point energy calculations using the other two methods. Standard fitting procedures typically compare the force field energies and geometries with those from quantum mechanical data after a geometry optimization. The initial configurations for the force field optimization are usually the minimum energy structures of the ab initio database. Hence, the ab initio method dictates which structures are being examined and force field parameters are being adjusted in order to minimize the differences with the ab initio data. As a result, this approach will not exclude the possibility that the force field predicts stable geometries or low transition states which are realistically very high in energy and, therefore, never considered by the ab initio method. Our analysis reveals the existence of such unphysical geometries even at unreactive conditions where the distance between the reactants is large. To test the effect of these discrepancies, we launched molecular dynamics simulations using DFT and ReaxFF and observed spurious reactions for both ReaxFF force fields. Our results suggest that the standard procedures for parameter fitting need to be improved by a mutual comparative method.

  6. Ground reaction curves for circular excavations in non-homogeneous, axisymmetric strain-softening rock masses

    Institute of Scientific and Technical Information of China (English)

    J. González-Cao; F. Varas; F.G. Bastante; L.R. Alejano


    Fast methods to solve the unloading problem of a cylindrical cavity or tunnel excavated in elasto-perfectly plastic, elasto-brittle or strain-softening materials under a hydrostatic stress field can be derived based on the self-similarity of the solution. As a consequence, they only apply when the rock mass is homoge-neous and so exclude many cases of practical interest. We describe a robust and fast numerical technique that solves the tunnel unloading problem and estimates the ground reaction curve for a cylindrical cavity excavated in a rock mass with properties depending on the radial coordinate, where the solution is no longer self-similar. The solution is based on a continuation-like approach (associated with the unloading and with the incremental formulation of the elasto-plastic behavior), finite element spatial discretization and a combination of explicit sub-stepping schemes and implicit techniques to integrate the constitutive law, so as to tackle the difficulties associated with both strong strain-softening and elasto-brittle behav-iors. The developed algorithm is used for two practical ground reaction curve computation applications. The first application refers to a tunnel surrounded by an aureole of material damaged by blasting and the second to a tunnel surrounded by a ring-like zone of reinforced (rock-bolted) material.

  7. Harmonic versus subharmonic patterns in a spatially forced oscillating chemical reaction. (United States)

    Hammele, Martin; Zimmermann, Walter


    The effects of a spatially periodic forcing on an oscillating chemical reaction as described by the Lengyel-Epstein model are investigated. We find a surprising competition between two oscillating patterns, where one is harmonic and the other subharmonic with respect to the spatially periodic forcing. The occurrence of a subharmonic pattern is remarkable as well as its preference up to rather large values of the modulation amplitude. For small modulation amplitudes we derive from the model system a generic equation for the envelope of the oscillating reaction that includes an additional forcing contribution, compared to the amplitude equations known from previous studies in other systems. The analysis of this amplitude equation allows the derivation of analytical expressions even for the forcing corrections to the threshold and to the oscillation frequency, which are in a wide range of parameters in good agreement with the numerical analysis of the complete reaction equations. In the nonlinear regime beyond threshold, the subharmonic solutions exist in a finite range of the control parameter that has been determined by solving the reaction equations numerically for various sets of parameters.

  8. Postural stability, clicker reaction time and bow draw force predict performance in elite recurve archery. (United States)

    Spratford, Wayne; Campbell, Rhiannon


    Recurve archery is an Olympic sport that requires extreme precision, upper body strength and endurance. The purpose of this research was to quantify how postural stability variables both pre- and post-arrow release, draw force, flight time, arrow length and clicker reaction time, collectively, impacted on the performance or scoring outcomes in elite recurve archery athletes. Thirty-nine elite-level recurve archers (23 male and 16 female; mean age = 24.7 ± 7.3 years) from four different countries volunteered to participate in this study prior to competing at a World Cup event. An AMTI force platform (1000Hz) was used to obtain centre of pressure (COP) measurements 1s prior to arrow release and 0.5s post-arrow release. High-speed footage (200Hz) allowed for calculation of arrow flight time and score. Results identified clicker reaction time, draw force and maximum sway speed as the variables that best predicted shot performance. Specifically, reduced clicker reaction time, greater bow draw force and reduced postural sway speed post-arrow release were predictors of higher scoring shots. It is suggested that future research should focus on investigating shoulder muscle tremors at full draw in relation to clicker reaction time, and the effect of upper body strength interventions (specifically targeting the musculature around the shoulder girdle) on performance in recurve archers.

  9. Calculations of three-nucleon reactions with N3LO chiral forces: achievements and challenges

    CERN Document Server

    Witala, Henryk; Skibinski, Roman; Topolnicki, Kacper


    We discuss the application of the chiral N3LO forces to three-nucleon reactions and point to the challenges which will have to be addressed. Present approaches to solve three-nucleon Faddeev equations are based on a partial-wave decomposition. A rapid increase of the number of terms contributing to the chiral three-nucleon force when increasing the order of the chiral expansion from N2LO to N3LO forced us to develop a fast and effective method of automatized partial wave decomposition. At low energies of the incoming nucleon below about 20MeV, where only a limited number of partial waves is required, this method allowed us to perform calculations of reactions in the three-nucleon continuum using N3LO two- and three-nucleon forces. It turns out that inclusion of consistent chiral interactions, with relativistic 1/m corrections and short-range 2pi-contact term omitted in the N3LO three-nucleon force, does not explain the long standing low energy Ay-puzzle. We discuss problems arising when chiral forces are appl...

  10. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.


    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  11. Glenohumeral joint reaction forces increase with critical shoulder angles representative of osteoarthritis-A biomechanical analysis. (United States)

    Viehöfer, Arnd F; Snedeker, Jess G; Baumgartner, Daniel; Gerber, Christian


    Osteoarthritis (OA) of the glenohumeral joint constitutes the most frequent indication for nontraumatic shoulder joint replacement. Recently, a small critical shoulder angle (CSA) was found to be associated with a high prevalence of OA. This study aims to verify the hypothesis that a small CSA leads to higher glenohumeral joint reaction forces during activities of daily living than a normal CSA. A shoulder simulator with simulated deltoid (DLT), supraspinatus (SSP), infraspinatus/teres minor (ISP/TM), and subscapularis (SSC) musculotendinous units was constructed. The DLT wrapping on the humerus was simulated using a pulley that could be horizontally adjusted to simulate the 28° CSA found in OA or the 33° CSA found in disease-free shoulders. Over a range of motion between 6° and 82° of thoracohumeral abduction joint forces were measured using a six-axis load cell. An OA-associated CSA yielded higher net joint reaction forces than a normal CSA over the entire range of motion. The maximum difference of 26.4 N (8.5%) was found at 55° of thoracohumeral abduction. Our model thus suggests that a CSA typical for OA predisposes the glenohumeral joint to higher joint reaction forces and could plausibly play a role in joint overloading and development of OA. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1047-1052, 2016.

  12. Determination and optimization of joint torques and joint reaction forces in therapeutic exercises with elastic resistance. (United States)

    Biscarini, Andrea


    A model has been developed to definitively characterize the resistance properties and the joint loading (i.e., shear and compressive components of the joint reaction force) in single-joint exercises with ideal elastic bands. The model accounts for the relevant geometric and elastic properties of the band, the band pre-stretching, and the relative positioning among the joint center of rotation and the fixation points of the band. All the possible elastic torque profiles of ascending-descending, descending, or ascending type were disclosed in relation to the different ranges of joint angles. From these results the elastic resistance setting that best reproduces the average-user's knee extensor torque in maximal isometric/isokinetic efforts was determined. In this optimized setting, the shear tibiofemoral reaction force corresponding to an anterior (posterior) tibial displacement was 65% smaller than (nearly the same as) that obtained in a cam-equipped leg-extension equipment for equal values of resistance torque peak, whereas the compressive tibiofemoral reaction force was 22% higher. Compared to a weight-stack leg-extension equipment, an elastic resistance optimized setting has the potential to give a more effective quadriceps activation across the range of motion, and greatly reduces the anterior cruciate ligament strain force, which represents the main drawback of existing open kinetic-chain knee-extension exercises.

  13. Inertia artefacts and their effect on the parameterisation of keyboard reaction forces. (United States)

    Asundi, Krishna; Johnson, Peter W; Dennerlein, Jack T


    Reaction force measurements collected during typing on keyboard trays contain inertia artefacts due to dynamic movements of the supporting work surface. To evaluate the effect of these artefacts, vertical forces and accelerations were measured while nine volunteers touch-typed on a rigid desk and a compliant keyboard tray. Two signal processing methods were evaluated: 1) low pass filtering with 20 Hz cut-off; 2) inertial force cancellation by subtracting the accelerometer signal. High frequency artefacts in the force signal, present on both surfaces, were eliminated by low pass filtering. Low frequency artefacts, present only when subjects typed on the keyboard tray, were attenuated by subtracting the accelerometer signal. Attenuation of these artefacts altered the descriptive statistics of the force signal by as much as 7%. For field measurements of typing force, reduction of low frequency artefacts should be considered for making more accurate comparisons across groups using work surfaces with different compliances. Direct measures of physical risk factors in the workplace can improve understanding of the aetiology of musculoskeletal disorders. Findings from this study characterise inertia artefacts in typing force measures and provide a method for eliminating them. These artefacts can add variability to measures, masking possible differences between subject groups.

  14. Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait. (United States)

    Dumas, Raphaël; Moissenet, Florent; Gasparutto, Xavier; Cheze, Laurence


    Several three-dimensional (3D) lower-limb musculo-skeletal models have been developed for gait analysis and different hip, knee and ankle joint models have been considered in the literature. Conversely to the influence of the musculo-tendon geometry, the influence of the joint models--i.e. number of degrees of freedom and passive joint moments--on the estimated musculo-tendon forces and 3D joint reaction forces has not been extensively examined. In this paper musculo-tendon forces and 3D joint reaction forces have been estimated for one subject and one gait cycle with nine variations of a musculoskeletal model and outputs have been compared to measured electromyographic signals and knee joint contact forces. The model outputs are generally in line with the measured signals. However, the 3D joint reaction forces were higher than published values and the contact forces measured for the subject. The results of this study show that, with more degrees of freedom in the model, the musculo-tendon forces and the 3D joint reaction forces tend to increase but with some redistribution between the muscles. In addition, when taking into account passive joint moments, the 3D joint reaction forces tend to decrease during the stance phase and increase during the swing phase. Although further investigations are needed, a five-degree-of-freedom lower-limb musculo-skeletal model with some angle-dependent joint coupling and stiffness seems to provide satisfactory musculo-tendon forces and 3D joint reaction forces.

  15. Isomeric and ground state energy level measurements of natural tellurium isotopes via (γ,n) reaction (United States)

    Tamkas, M.; Akcali, O.; Durusoy, A.


    We have planned to measure isomeric and ground state energy levels in 120Te(γ,n)119m,gTe, 122Te(γ,n)121m,gTe, 128Te(γ,n)127m,gTe, 130Te(γ,n)129m,gTe photonuclear reactions of natural tellurium induced by bremsstrahlung photons with end-point energy at 18 MeV. The sample was irradiated in the clinical linear electron accelerator (Philips SLi-25) at Akdeniz University Hospital. The gamma spectrum of the tellurium sample was measured using HP(Ge) semiconductor detector (ORTEC) and multi channel analyzer. We used both MAESTRO (ORTEC) and home made root based gui program (Theia) for data analyzing. The obtained experimental data values are compared with NUDAT energy values.

  16. ERA-Interim forced H-TESSEL and WRF schemes for modeling ground (United States)

    Rocha, M. J.; Dutra, E.; Vieira, G.; Miranda, P.; Fragoso, M.; Ramos, M.


    Permafrost is central to the carbon cycle and to the climate system and is recognized by the WCRP/WMO as a key element of the Earth System in which research efforts should focus. Compared with the Arctic, very little is known about the distribution, thickness, and properties of permafrost in the Antarctic. The main reason for this is the scarce network of permafrost temperature monitoring boreholes, as well as the short number of active layer monitoring sites. According to the IPCC in the last decades regions underlain by permafrost have been reduced in extent, and a warming of the ground has been observed in many areas. This study focus on Livingston and Deception Islands (South Shetlands), located in the Antarctic Peninsula region, one of the Earth's regions where warming has been more significant in the last 50 years. Our work is integrated in a project focusing on studying the influence of climate change on permafrost temperatures, which includes systematic and long-term terrain monitoring and also modeling using mesoscale meteorological models. A significant contribution will be the evaluation of the possibilities for using the mesoscale modeling approaches to other areas of the Antarctic Peninsula where no data exist on permafrost temperatures. Climate variability of the Antarctic Peninsula region was studied using the new reanalysis product from ECMWF Era-Interim and observational data from meteorological monitoring sites and boreholes run by our group. Monthly and annual cycles of near surface climate variables are compared. The modeling approach includes the H-TESSEL (Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land) and the WRF (Weather Research and Forecasting), both forced with ERA-Interim for modeling ground temperatures in the study region. Simulations of both land surface and mesoscale models are compared with the observational data of soil temperatures. Preliminary results are presented and show that our approach can provide a good tool

  17. Single-drop reactive extraction/extractive reaction with forced convective diffusion and interphase mass transfer (United States)

    Kleinman, Leonid S.; Reed, X. B., Jr.


    An algorithm has been developed for the forced convective diffusion-reaction problem for convection inside and outside a droplet by a recirculating flow field hydrodynamically coupled at the droplet interface with an external flow field that at infinity becomes a uniform streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet or reactions can take place in both phases. The algorithm has been implemented and results are shown here for the case of no reaction and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.

  18. Effects of brain polarization on reaction times and pinch force in chronic stroke

    Directory of Open Access Journals (Sweden)

    Giraux Pascal


    Full Text Available Abstract Background Previous studies showed that anodal transcranial DC stimulation (tDCS applied to the primary motor cortex of the affected hemisphere (M1affected hemisphere after subcortical stroke transiently improves performance of complex tasks that mimic activities of daily living (ADL. It is not known if relatively simpler motor tasks are similarly affected. Here we tested the effects of tDCS on pinch force (PF and simple reaction time (RT tasks in patients with chronic stroke in a double-blind cross-over Sham-controlled experimental design. Results Anodal tDCS shortened reaction times and improved pinch force in the paretic hand relative to Sham stimulation, an effect present in patients with higher impairment. Conclusion tDCS of M1affected hemisphere can modulate performance of motor tasks simpler than those previously studied, a finding that could potentially benefit patients with relatively higher impairment levels.

  19. Classical Radiation Reaction Off-Shell Corrections to the Covariant Lorentz Force


    Oron, O.; Horwitz, L. P.


    It has been shown by Gupta and Padmanabhan that the radiation reaction force of the Abraham-Lorentz-Dirac equation can be obtained by a coordinate transformation from the inertial frame of an accelerating charged particle to that of the laboratory. We show that the problem may be formulated in a flat space of five dimensions, with five corresponding gauge fields in the framework of the classical version of a fully gauge covariant form of the Stueckelberg- Feynman-Schwinger covariant mechanics...

  20. Plasma acceleration and cooling by strong laser field due to the action of radiation reaction force. (United States)

    Berezhiani, V I; Mahajan, S M; Yoshida, Z


    It is shown that for super intense laser pulses propagating in a hot plasma, the action of the radiation reaction force (appropriately incorporated into the equations of motion) causes strong bulk plasma motion with the kinetic energy raised even to relativistic values; the increase in bulk energy is accompanied by a corresponding cooling (intense cooling) of the plasma. The effects are demonstrated through explicit analytical calculations.

  1. Biomechanics of gecko locomotion: the patterns of reaction forces on inverted, vertical and horizontal substrates. (United States)

    Wang, Zhouyi; Dai, Zhendong; Ji, Aihong; Ren, Lei; Xing, Qiang; Dai, Liming


    The excellent locomotion ability of geckos on various rough and/or inclined substrates has attracted scientists' attention for centuries. However, the moving ability of gecko-mimicking robots on various inclined surfaces still lags far behind that of geckos, mainly because our understanding of how geckos govern their locomotion is still very poor. To reveal the fundamental mechanism of gecko locomotion and also to facilitate the design of gecko-mimicking robots, we have measured the reaction forces (RFs) acting on each individual foot of moving geckos on inverted, vertical and horizontal substrates (i.e. ceiling, wall and floor), have associated the RFs with locomotion behaviors by using high-speed camera, and have presented the relationships of the force components with patterns of reaction forces (PRFs). Geckos generate different PRF on ceiling, wall and floor, that is, the PRF is determined by the angles between the direction of gravity and the substrate on which geckos move. On the ceiling, geckos produce reversed shear forces acting on the front and hind feet, which pull away from the body in both lateral and fore-aft directions. They use a very large supporting angle from 21° to 24° to reduce the forces acting on their legs and feet. On the floor, geckos lift their bodies using a supporting angle from 76° to 78°, which not only decreases the RFs but also improves their locomotion ability. On the wall, geckos generate a reliable self-locking attachment by using a supporting angle of 14.8°, which is only about half of the critical angle of detachment.

  2. Influence of radiation reaction force on ultraintense laser-driven ion acceleration. (United States)

    Capdessus, R; McKenna, P


    The role of the radiation reaction force in ultraintense laser-driven ion acceleration is investigated. For laser intensities ∼10(23)W/cm(2), the action of this force on electrons is demonstrated in relativistic particle-in-cell simulations to significantly enhance the energy transfer to ions in relativistically transparent targets, but strongly reduce the ion energy in dense plasma targets. An expression is derived for the revised piston velocity, and hence ion energy, taking account of energy loses to synchrotron radiation generated by electrons accelerated in the laser field. Ion mass is demonstrated to be important by comparing results obtained with proton and deuteron plasma. The results can be verified in experiments with cryogenic hydrogen and deuterium targets.

  3. Low-energy neutron-deuteron reactions with N{sup 3}LO chiral forces

    Energy Technology Data Exchange (ETDEWEB)

    Golak, J.; Skibinski, R.; Topolnicki, K.; Witala, H. [Jagiellonian University, M. Smoluchowski Institute of Physics, Krakow (Poland); Epelbaum, E.; Krebs, H. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (Germany); Kamada, H. [Kyushu Institute of Technology, Department of Physics, Faculty of Engineering, Kitakyushu (Japan); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); JARA - High Performance Computing Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich Center for Hadron Physics, Juelich (Germany); Bernard, V. [CNRS/Univ. Paris-Sud, Institut de Physique Nucleaire, Orsay (France); Maris, P.; Vary, J. [Iowa State University, Department of Physics and Astronomy, Ames, Iowa (United States); Binder, S.; Calci, A.; Langhammer, J.; Roth, R. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Hebeler, K. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Extreme Matter Institute EMMI, Darmstadt (Germany); Nogga, A. [Juelich Center for Hadron Physics, Forschungszentrum Juelich, Institut fuer Kernphysik, Institute for Advanced Simulation, Juelich (Germany); Liebig, S.; Minossi, D. [Juelich Center for Hadron Physics, Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany)


    We solve three-nucleon Faddeev equations with nucleon-nucleon and three-nucleon forces derived consistently in the framework of chiral perturbation theory at next-to-next-to-next-to-leading order in the chiral expansion. In this first investigation we include only matrix elements of the three-nucleon force for partial waves with the total two-nucleon (three-nucleon) angular momenta up to 3 (5/2). Low-energy neutron-deuteron elastic scattering and deuteron breakup reaction are studied. Emphasis is put on A{sub y} puzzle in elastic scattering and cross sections in symmetric-space-star and neutron-neutron quasi-free-scattering breakup configurations, for which large discrepancies between data and theory have been reported. (orig.)

  4. Low-energy neutron-deuteron reactions with N3LO chiral forces

    CERN Document Server

    Golak, J; Topolnicki, K; Witala, H; Epelbaum, E; Krebs, H; Kamada, H; Meissner, Ulf-G; Bernard, V; Maris, P; Vary, J; Binder, S; Calci, A; Hebeler, K; Langhammer, J; Roth, R; Nogga, A; Liebig, S; Minossi, D


    We solve three-nucleon Faddeev equations with nucleon-nucleon and three-nucleon forces derived consistently in the framework of chiral perturbation theory at next-to-next-to-next-to-leading order in the chiral expansion. In this first investigation we include only matrix elements of the three-nucleon force for partial waves with the total two-nucleon (three-nucleon) angular momenta up to 3 (5/2). Low-energy neutron-deuteron elastic scattering and deuteron breakup reaction are studied. Emphasis is put on Ay puzzle in elastic scattering and cross sections in symmetric-space-star and neutron-neutron quasi-free-scattering breakup configurations, for which large discrepancies between data and theory have been reported.

  5. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly (United States)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron


    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  6. Constructing a Mass-Current Radiation-Reaction Force For Numerical Simulations

    CERN Document Server

    Rezzolla, L; Asada, H; Baumgarte, T W; Shapiro, S L


    We present a new set of 3.5 Post-Newtonian equations in which Newtonian hydrodynamics is coupled to the nonconservative effects of gravitational radiation emission. Our formalism differs in two significant ways from a similar 3.5 Post-Newtonian approach proposed by Blanchet (1993, 1997). Firstly we concentrate only on the radiation-reaction effects produced by a time-varying mass-current quadrupole $S_{ij}$. Secondly, we adopt a gauge in which the radiation-reaction force densities depend on the fourth time derivative of $S_{ij}$, rather than on the fifth, as in Blanchet's approach. This difference makes our formalism particularly well-suited to numerical implementation and could prove useful in performing fully numerical simulations of the recently discovered $r$-mode instability for rotating neutron stars subject to axial perturbations.

  7. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule (United States)

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin


    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions.

  8. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule. (United States)

    Zheng, Peng; Arantes, Guilherme M; Field, Martin J; Li, Hongbin


    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions.

  9. Preparing to be unprepared: ground force commander decision making in a volatile, uncertain, complex, and ambiguous world


    Karaoguz, Adam A.


    Approved for public release; distribution is unlimited What are the characteristics of effective ground force commander (GFC) decision making? What commonalities do we see? What are best practices for pre-mission preparation and mission execution? This thesis focuses on GFC decision making in order to investigate how to better prepare leaders for the current operating environment. It examines tactical-level decision making under conditions of uncertainty. It does so by drawing on interview...

  10. Hydrogeology and simulation of ground-water flow at Arnold Air Force Base, Coffee and Franklin counties, Tennessee (United States)

    Haugh, C.J.; Mahoney, E.N.


    The U.S. Air Force at Arnold Air Force Base (AAFB), in Coffee and Franklin Counties, Tennessee, is investigating ground-water contamination in selected areas of the base. This report documents the results of a comprehensive investigation of the regional hydrogeology of the AAFB area. Three aquifers within the Highland Rim aquifer system, the shallow aquifer, the Manchester aquifer, and the Fort Payne aquifer, have been identified in the study area. Of these, the Manchester aquifer is the primary source of water for domestic use. Drilling and water- quality data indicate that the Chattanooga Shale is an effective confining unit, isolating the Highland Rim aquifer system from the deeper, upper Central Basin aquifer system. A regional ground-water divide, approximately coinciding with the Duck River-Elk River drainage divide, underlies AAFB and runs from southwest to northeast. The general direction of most ground-water flow is to the north- west or to the northwest or to the southeast from the divide towards tributary streams that drain the area. Recharge estimates range from 4 to 11 inches per year. Digital computer modeling was used to simulate and provide a better understanding of the ground-water flow system. The model indicates that most of the ground-water flow occurs in the shallow and Manchester aquifers. The model was most sensitive to increases in hydraulic conductivity and changes in recharge rates. Particle-tracking analysis from selected sites of ground-water contamination indicates a potential for contami- nants to be transported beyond the boundary of AAFB.

  11. Referral of tactile stimuli to action points in virtual reality with reaction force. (United States)

    Moizumi, Shunjiro; Yamamoto, Shinya; Kitazawa, Shigeru


    When we touch something with a tool, we feel the touch at the tip of the tool rather than at the hand. Yamamoto and Kitazawa [Yamamoto, S., Kitazawa, S., 2001b. Sensation at the tips of invisible tools. Nat. Neurosci. 4, 979-980] previously showed that the judgment of the temporal order of two successive stimuli, delivered to the tips of sticks held in each hand, was dramatically altered by crossing the sticks without changing the positions of the hands. This provided evidence for the referral of tactile signals to the tip of a tool in hand. In this study, we examined importance of force feedback from the tool in the referral by manipulating the direction of force feedback in a virtual reality. The virtual tool consisted of a spherical action point that was moved with a stylus in hand. Subjects held two styli, one in each hand, put each action point on each of two buttons in the virtual reality, and were required to judge the order of successive taps, delivered to the two styli. We manipulated the direction of reaction force from each button so that it was congruent or incongruent to the visual configuration of the button. When the arms were uncrossed, judgment primarily depended on whether the action points were crossed or not in the visual space. But when the arms were crossed, judgment critically depended on the direction of force feedback. The results show that tactile signals can be referred to the action point in the virtual reality and that the force feedback becomes a critical factor when the arms are crossed.

  12. Ground State Reactions of nC60 with Free Chlorine in Water. (United States)

    Wu, Jiewei; Benoit, Denise; Lee, Seung Soo; Li, Wenlu; Fortner, John D


    Facile, photoenhanced transformations of water-stable C60 aggregates (nC60) to oxidized, soluble fullerene derivatives, have been described as key processes in understanding the ultimate environmental fate of fullerene based materials. In contrast, fewer studies have evaluated the aqueous reactivity of nC60 during ground-state conditions (i.e., dark conditions). Herein, this study identifies and characterizes the physicochemical transformations of C60 (as nC60 suspensions) in the presence of free chlorine, a globally used chemical oxidant, in the absence of light under environmentally relevant conditions. Results show that nC60 undergoes significant oxidation in the presence of free chlorine and the oxidation reaction rates increase with free chlorine concentration while being inversely related to solution pH. Product characterization by FTIR, XPS, Raman Spectroscopy, TEM, XRD, TOC, collectively demonstrates that oxidized C60 derivatives are readily formed in the presence of free chlorine with extensive covalent oxygen and even chlorine additions, and behave as soft (or loose) clusters in solution. Aggregation kinetics, as a function of pH and ionic strength/type, show a significant increase in product stabilities for all cases evaluated, even at pH values approaching 1. As expected with increased (surface) oxidation, classic Kow partitioning studies indicate that product clusters are relatively more hydrophilic than parent (reactant) nC60. Taken together, this work highlights the importance of understanding nanomaterial reactivity and the identification of corresponding stable daughter products, which are likely to differ significantly from parent material properties and behaviors.

  13. Extraction of ground reaction forces for real-time synthesis of walking sounds

    DEFF Research Database (Denmark)

    Serafin, Stefania; Turchet, Luca; Nordahl, Rolf


    A shoe-independent system to synthesize real-time footstep sounds on different materials has been developed. A footstep sound is considered as the result of an interaction between an exciter (the shoe) and a resonator (the floor). To achieve our goal, we propose two different solutions. The first...... solution is based on contact microphones attached on the exterior part of each shoe, which capture the sound of a footstep. The second approach consists on using microphones placed on the floor. In both situations, the captured sound is analysed and used to control a sound synthesis engine. We discuss...

  14. Extraction of ground reaction forces for real-time synthesis of walking sounds


    Serafin, Stefania; Turchet, Luca; Nordahl, Rolf


    A shoe-independent system to synthesize real-time footstep sounds on different materials has beendeveloped. A footstep sound is considered as the result of an interaction between an exciter (the shoe) and aresonator (the floor). To achieve our goal, we propose two different solutions. The first solution is based oncontact microphones attached on the exterior part of each shoe, which capture the sound of a footstep. Thesecond approach consists on using microphones placed on the floor. In both ...

  15. Ground Reaction Force Differences in the Countermovement Jump in Girls with Different Levels of Performance (United States)

    Floría, Pablo; Harrison, Andrew J.


    Purpose: The aim of this study was to ascertain the biomechanical differences between better and poorer performers of the vertical jump in a homogeneous group of children. Method: Twenty-four girls were divided into low-scoring (LOW; M [subscript age] = 6.3 ± 0.8 years) and high-scoring (HIGH; M [subscript age] = 6.6 ± 0.8 years) groups based on…

  16. Development of Velocity Guidance Assistance System by Haptic Accelerator Pedal Reaction Force Control (United States)

    Yin, Feilong; Hayashi, Ryuzo; Raksincharoensak, Pongsathorn; Nagai, Masao

    This research proposes a haptic velocity guidance assistance system for realizing eco-driving as well as enhancing traffic capacity by cooperating with ITS (Intelligent Transportation Systems). The proposed guidance system generates the desired accelerator pedal (abbreviated as pedal) stroke with respect to the desired velocity obtained from ITS considering vehicle dynamics, and provides the desired pedal stroke to the driver via a haptic pedal whose reaction force is controllable and guides the driver in order to trace the desired velocity in real time. The main purpose of this paper is to discuss the feasibility of the haptic velocity guidance. A haptic velocity guidance system for research is developed on the Driving Simulator of TUAT (DS), by attaching a low-inertia, low-friction motor to the pedal, which does not change the original characteristics of the original pedal when it is not operated, implementing an algorithm regarding the desired pedal stroke calculation and the reaction force controller. The haptic guidance maneuver is designed based on human pedal stepping experiments. A simple velocity profile with acceleration, deceleration and cruising is synthesized according to naturalistic driving for testing the proposed system. The experiment result of 9 drivers shows that the haptic guidance provides high accuracy and quick response in velocity tracking. These results prove that the haptic guidance is a promising velocity guidance method from the viewpoint of HMI (Human Machine Interface).

  17. Ab initio nuclear structure and reactions with chiral three-body forces

    Energy Technology Data Exchange (ETDEWEB)

    Langhammer, Joachim; Roth, Robert; Calci, Angelo [Institut fuer Kernphysik - Theoriezentrum, TU Darmstadt (Germany); Navratil, Petr [TRIUMF, Vancouver (Canada)


    One major ambition of ab initio nuclear theory is the description of nuclear-structure and reaction observables on equal footing. This is accomplished by combining the no-core shell model (NCSM) with the resonating-group method (RGM) to a unified ab initio approach to bound and continuum states, which is developed further to the no-core shell model with continuum (NCSMC). We present the formal developments to include three-nucleon interactions in both the NCSM/RGM and NCSMC formalism. This provides the possibility to assess the predictive power of chiral two- and three-nucleon forces in the variety of scattering observables. We study three-nucleon force effects on phase-shifts, cross sections and analyzing powers in first ab-initio studies of nucleon-{sup 4}He scattering with chiral two- and three-nucleon forces. Finally, we focus on heavier target nuclei using the NCSMC, e.g., in neutron-{sup 8}Be scattering and study the impact of the continuum on the spectrum of {sup 9}Be.

  18. Japanese Ground Forces Order of Battle Bulletins (7 April - 2 June 1945) Part 1 (United States)


    after the Allied forces had*" landed oh MOROTAI in mid-Sept ember. Furthermore," MENADO th© Second Area Army was a considerable distance from...controlled.the- ^ Japanese forces on HALMAEERA)^ere moved by barge a t - ^ to MOROTAI and* committed piece-meal in unsuccessful attempts to dislodge the

  19. Chemical reactions of uranium in ground water at a mill tailings site (United States)

    Abdelouas, A.; Lutze, W.; Nuttall, E.


    We studied soil and ground water samples from the tailings disposal site near Tuba City, AZ, located on Navajo sandstone, in terms of uranium adsorption and precipitation. The uranium concentration is up to 1 mg/l, 20 times the maximum concentration for ground water protection in the United States. The concentration of bicarbonate (HCO 3-) in the ground water increased from ≤7×10 -4 M, the background concentration, to 7×10 -3 M. Negatively charged uranium carbonate complexes prevail at high carbonate concentrations and uranium is not adsorbed on the negatively charged mineral surfaces. Leaching experiments using contaminated and uncontaminated sandstone and 1 N HCl show that adsorption of uranium from the ground water is negligible. Batch adsorption experiments with the sandstone and ground water at 16°C, the in situ ground water temperature, show that uranium is not adsorbed, in agreement with the results of the leaching experiments. Adsorption of uranium at 16°C is observed when the contaminated ground water is diluted with carbonate-free water. The observed increase in pH from 6.7 to 7.3 after dilution is too small to affect adsorption of uranium on the sandstone. Storage of undiluted ground water to 24°C, the temperature in the laboratory, causes coprecipitation of uranium with aragonite and calcite. Our study provides knowledge of the on-site uranium chemistry that can be used to select the optimum ground water remediation strategy. We discuss our results in terms of ground water remediation strategies such as pump and treat, in situ bioremediation, steam injection, and natural flushing.

  20. Special Operations Forces and Elusive Enemy Ground Targets: Lessons from Vietnam and the Persian Gulf War (United States)


    Enemy Ground Targets team members to fire their weapons as they were lifted from the forest floor . 4 9 Moving through and searching the jungle...MACVSOG headquarters, and as bartenders and waitresses at MACVSOG compounds, where they 61Prados, Blood Road, p. 274. Yearly totals for SHINING BRASS

  1. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 5, Appendix A, Part 1, Field Investigation report

    Energy Technology Data Exchange (ETDEWEB)


    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  2. Environmental Assessment Distributed Common Ground System (DCGS) Operations Facility, Beale Air Force Base, California (United States)


    to: USAF_2014_0410_001 Gregory S. Capra , P.E., LEED AP Deputy Base Civil Engineer Department of the Air Force Headquarters 9th Mission Support...Facility, Main Base District, Beale Air Force Base, Yuba County Dear Mr. Capra : Thank you for initiating consultation regarding the United States...Reply Refer lo: 08ESM.l󈧄- 20l4-I-0371 Gregory S. Capra Deputy Base Civil Engineer 9 CES/CD 6601 B Street FISH AND WILDLIFE SERVICE Sacramento

  3. Force

    CERN Document Server

    Graybill, George


    Forces are at work all around us. Discover what a force is, and different kinds of forces that work on contact and at a distance. We use simple language and vocabulary to make this invisible world easy for students to ""see"" and understand. Examine how forces ""add up"" to create the total force on an object, and reinforce concepts and extend learning with sample problems.

  4. The ground state of medium-heavy nuclei with non central forces

    CERN Document Server

    Fabrocini, A


    We study microscopically the ground state properties of 16O and 40Ca nuclei within correlated basis function theory. A truncated version of the realistic Urbana v14 (U14) potential, without momentum dependent terms, is adopted with state dependent correlations having spin, isospin and tensor components. Fermi hypernetted chain integral equations and single operator chain approximation are used to evaluate one- and two-body densities and ground state energy. The results are in good agreement with the available variational MonteCarlo data, providing a first substantial check for the accuracy of the cluster expansion method with state dependent correlations. The finite nuclei treatment of non central interactions and correlations has, at least, the same level of accuracy as in infinite nuclear matter. The binding energy for the full U14+TNI interaction is computed, addressing its small momentum dependent contributions in local density approximation. The nuclei are underbound by about 1 MeV per nucleon. Further e...

  5. Space station operations task force. Panel 2 report: Ground operations and support systems (United States)


    The Ground Operations Concept embodied in this report provides for safe multi-user utilization of the Space Station, eases user integration, and gives users autonomy and flexibility. It provides for meaningful multi-national participation while protecting U.S. interests. The concept also supports continued space operations technology development by maintaining NASA expertise and enabling technology evolution. Given attention here are pre/post flight operations, logistics, sustaining engineering/configuration management, transportation services/rescue, and information systems and communication.

  6. Radiation-reaction-force-induced nonlinear mixing of Raman sidebands of an ultraintense laser pulse in a plasma. (United States)

    Kumar, Naveen; Hatsagortsyan, Karen Z; Keitel, Christoph H


    Stimulated Raman scattering of an ultraintense laser pulse in plasmas is studied by perturbatively including the leading order term of the Landau-Lifshitz radiation reaction force in the equation of motion for plasma electrons. In this approximation, the radiation reaction force causes a phase shift in nonlinear current densities that drive the two Raman sidebands (anti-Stokes and Stokes waves), manifesting itself into the nonlinear mixing of two sidebands. This mixing results in a strong enhancement in the growth of the forward Raman scattering instability.

  7. Sudden drop in ground support produces force-related unload response in human overground walking

    DEFF Research Database (Denmark)

    Af Klint, Richard; Nielsen, Jens Bo; Sinkjaer, Thomas


    healthy volunteers. Subjects walked unrestrained over a hydraulically actuated platform. On random trials the platform was accelerated downward at 0.8 g, unloading the plantar flexor muscles in midstance or late stance. The drop of the platform resulted in a significant depression of the soleus muscle...... was decreased starting 22 ms (SD 15) after the drop. To investigate the role of length- and velocity-sensitive afferents on the depression in soleus muscle activity, the ankle rotation was arrested by using an ankle foot orthotic as the platform was dropped. Preventing the ankle movement did not significantly...... change the soleus depression in late stance [-18.2% (SD 15)], whereas the depression in midstance was removed [+4.9% (SD 13)]. It is concluded that force feedback from ankle extensors increases the locomotor output through positive feedback in late stance. In midstance the effect of force feedback...

  8. You’ve got to be Kidding: Empowering the JFACC with Selected Ground Reconnaissance Forces (United States)


    headquarters as well. The other organization that is a powerful aid to the success of airpower is the Joint Warfare Analysis Center (JWAC). This...organization made up of multidiscipline analysts, engineers, and scientists whose primary mission is to perform material-based systems analysis focused...Forces Attack” ( FOFA ) doctrine. While not mutually exclusive doctrines, they did create friction in whether the focus of air operations was the

  9. Data Supporting Mobile Application Development for Use within the Marine Air-Ground Task Force (United States)


    follow-on forces, or contingency operations. Both of the continental United States (CONUS) MEFs provide three standing CEs. One CE will be stood up...Client Computing. These considerations could include: • Tax liabilities associated with stipends and whether or not they are treated as salary or... provisioning of technologies. Basing much of the procurement process on the disposition of “desired versus required” necessitates investigation into

  10. Transforming America’s Military: Integrating Unconventional Ground Forces into Combat Air Operations (United States)


    the Vietnam War, Operation Desert One (the failed Iranian hostage rescue attempt), and Operation Urgent Fury (the disjointed Grenada operation) was...airpower could have in the upcoming operation to liberate Kuwait. The former commander of JSOC , Army General (Ret.) Wayne Downing, believed that “no...Operations Air Component Commander JSOC —Joint Special Operations Command JSOTF—Joint Special Operations Task Force 22 JSTARS—Joint Surveillance Target

  11. Revisiting the Dielectric Constant Effect on the Nucleophile and Leaving Group of Prototypical Backside Sn2 Reactions: a Reaction Force and Atomic Contribution Analysis. (United States)

    Pedraza-González, Laura Milena; Galindo, Johan Fabian; Gonzalez, Ronald; Reyes, Andrés


    The solvent effect on the nucleophile and leaving group atoms of the prototypical F(-) + CH3Cl → CH3F + Cl(-) backside bimolecular nucleophilic substitution reaction (SN2) is analyzed employing the reaction force and the atomic contributions methods on the intrinsic reaction coordinate (IRC). Solvent effects were accounted for using the polarizable continuum solvent model. Calculations were performed employing eleven dielectric constants, ε, ranging from 1.0 to 78.5, to cover a wide spectrum of solvents. The reaction force data reveals that the solvent mainly influences the region of the IRC preceding the energy barrier, where the structural rearrangement to reach the transition state occurs. A detailed analysis of the atomic role in the reaction as a function of ε reveals that the nucleophile and the carbon atom are the ones that contribute the most to the energy barrier. In addition, we investigated the effect of the choice of nucleophile and leaving group on the ΔE0 and ΔE(↕) of Y(-) + CH3X → YCH3 + X(-) (X,Y= F, Cl, Br, I) in aqueous solution. Our analysis allowed us to find relationships between the atomic contributions to the activation energy and leaving group ability and nucleophilicity.

  12. Squatting-Related Tibiofemoral Shear Reaction Forces and a Biomechanical Rationale for Femoral Component Loosening

    Directory of Open Access Journals (Sweden)

    Ashvin Thambyah


    Full Text Available Previous gait studies on squatting have described a rapid reversal in the direction of the tibiofemoral joint shear reaction force when going into a full weight-bearing deep knee flexion squat. The effects of such a shear reversal have not been considered with regard to the loading demand on knee implants in patients whose activities of daily living require frequent squatting. In this paper, the shear reversal effect is discussed and simulated in a finite element knee implant-bone model, to evaluate the possible biomechanical significance of this effect on femoral component loosening of high flexion implants as reported in the literature. The analysis shows that one of the effects of the shear reversal was a switch between large compressive and large tensile principal strains, from knee extension to flexion, respectively, in the region of the anterior flange of the femoral component. Together with the known material limits of cement and bone, this large mismatch in strains as a function of knee position provides new insight into how and why knee implants may fail in patients who perform frequent squatting.

  13. Air Force Support of Army Ground Operations Lessons Learned during World War II, Korea, and Vietnam (United States)


    Th ;e 8epre--cdin this paper .rv thoe. of ’:ceauhor IDep 2rtmt-nt of Diefense rayo t gr: s hsPcC % FOC, O P 0- C GOUND OP!-txA’TONS ’A NS tTAI.D 11...NOTE S T edder, Preudice: The War Memoirs . - y Air Force. Lord Tedaer. rr- 40-43. 2.".~ : X :"~ , M~.c, ’ = A r Power in Three Wars WW 7:, Kora...that FEAF assume operational control over land based Marine air units and over bjdsed aviation operating over Korea effective as soon as X

  14. Thermodynamic properties of hydrogen dissociation reaction from the small system method and reactive force field ReaxFF (United States)

    Trinh, Thuat T.; Meling, Nora; Bedeaux, Dick; Kjelstrup, Signe


    We present thermodynamic properties of the H2 dissociation reaction by means of the Small System Method (SSM) using Reactive Force Field (ReaxFF) simulations. Thermodynamic correction factors, partial molar enthalpies and heat capacities of the reactant and product were obtained in the high temperature range; up to 30,000 K. The results obtained from the ReaxFF potential agree well with previous results obtained with a three body potential (TBP). This indicates that the popular reactive force field method can be combined well with the newly developed SSM in realistic simulations of chemical reactions. The approach may be useful in the study of heat and mass transport in combination with chemical reactions.

  15. Reaction Force/Torque Sensing in a Master-Slave Robot System without Mechanical Sensors

    Directory of Open Access Journals (Sweden)

    Kyoko Shibata


    Full Text Available In human-robot cooperative control systems, force feedback is often necessary in order to achieve high precision and high stability. Usually, traditional robot assistant systems implement force feedback using force/torque sensors. However, it is difficult to directly mount a mechanical force sensor on some working terminals, such as in applications of minimally invasive robotic surgery, micromanipulation, or in working environments exposed to radiation or high temperature. We propose a novel force sensing mechanism for implementing force feedback in a master-slave robot system with no mechanical sensors. The system consists of two identical electro-motors with the master motor powering the slave motor to interact with the environment. A bimanual coordinated training platform using the new force sensing mechanism was developed and the system was verified in experiments. Results confirm that the proposed mechanism is capable of achieving bilateral force sensing and mirror-image movements of two terminals in two reverse control directions.

  16. The decay characteristic of $^{22}$Si and its ground-state mass significantly affected by three-nucleon forces

    CERN Document Server

    Xu, X X; Sun, L J; Wang, J S; Lam, Y H; Lee, J; Fang, D Q; Li, Z H; Smirnova, N A; Yuan, C X; Yang, L; Wang, Y T; Li, J; Ma, N R; Wang, K; Zang, H L; Wang, H W; Li, C; Liu, M L; Wang, J G; Shi, C Z; Nie, M W; Li, X F; Li, H; Ma, J B; Ma, P; Jin, S L; Huang, M R; Bai, Z; Yang, F; Jia, H M; Liu, Z H; Wang, D X; Yang, Y Y; Zhou, Y J; Ma, W H; Chen, J; Hu, Z G; Zhang, Y H; Ma, X W; Zhou, X H; Ma, Y G; Xu, H S; Xiao, G Q; Zhang, H Q


    The decay of the proton-rich nucleus $^{22}$Si was studied by a silicon array coupled with germanium clover detectors. Nine charged-particle groups are observed and most of them are recognized as $\\beta$-delayed proton emission. A charged-particle group at 5600 keV is identified experimentally as $\\beta$-delayed two-proton emission from the isobaric analog state of $^{22}$Al. Another charged-particle emission without any $\\beta$ particle at the low energy less than 300 keV is observed. The half-life of $^{22}$Si is determined as 27.5 (18) ms. The experimental results of $\\beta$-decay of $^{22}$Si are compared and in nice agreement with shell-model calculations. The mass excess of the ground state of $^{22}$Si deduced from the experimental data shows that three-nucleon (3N) forces with repulsive contributions have significant effects on nuclei near the proton drip line.

  17. Regulating emotions uniquely modifies reaction time, rate of force production, and accuracy of a goal-directed motor action. (United States)

    Beatty, Garrett F; Fawver, Bradley; Hancock, Gabriella M; Janelle, Christopher M


    We investigated how emotion regulation (ER) strategies influence the execution of a memory guided, ballistic pinch grip. Participants (N=33) employed ER strategies (expressive suppression, emotional expression, and attentional deployment) while viewing emotional stimuli (IAPS images). Upon stimulus offset, participants produced a targeted pinch force aimed at 10% of their maximum voluntary contraction. Performance measures included reaction time (RT), rate of force production, and performance accuracy. As hypothesized, attentional deployment resulted in the slowest RT, largest rate of force production, and poorest performance accuracy. In contrast, expressive suppression reduced the rate of force production and increased performance accuracy relative to emotional expression and attentional deployment. Findings provide evidence that emotion regulation strategies uniquely influence human movement. Future work should further delineate the interacting role that emotion regulation strategies have in modulating both affective experience and motor performance.

  18. Unattended wireless proximity sensor networks for counterterrorism, force protection, littoral environments, PHM, and tamper monitoring ground applications (United States)

    Forcier, Bob


    This paper describes a digital-ultrasonic ground network, which forms an unique "unattended mote sensor system" for monitoring the environment, personnel, facilities, vehicles, power generation systems or aircraft in Counter-Terrorism, Force Protection, Prognostic Health Monitoring (PHM) and other ground applications. Unattended wireless smart sensor/tags continuously monitor the environment and provide alerts upon changes or disruptions to the environment. These wireless smart sensor/tags are networked utilizing ultrasonic wireless motes, hybrid RF/Ultrasonic Network Nodes and Base Stations. The network is monitored continuously with a 24/7 remote and secure monitoring system. This system utilizes physical objects such as a vehicle"s structure or a building to provide the media for two way secure communication of key metrics and sensor data and eliminates the "blind spots" that are common in RF solutions because of structural elements of buildings, etc. The digital-ultrasonic sensors have networking capability and a 32-bit identifier, which provide a platform for a robust data acquisition (DAQ) for a large amount of sensors. In addition, the network applies a unique "signature" of the environment by comparing sensor-to-sensor data to pick up on minute changes, which would signal an invasion of unknown elements or signal a potential tampering in equipment or facilities. The system accommodates satellite and other secure network uplinks in either RF or UWB protocols. The wireless sensors can be dispersed by ground or air maneuvers. In addition, the sensors can be incorporated into the structure or surfaces of vehicles, buildings, or clothing of field personnel.

  19. The electronic behavior of a photosynthetic reaction center monitored by conductive atomic force microscopy. (United States)

    Mikayama, Takeshi; Iida, Kouji; Suemori, Yoshiharu; Dewa, Takehisa; Miyashita, Tokuji; Nango, Mamoru; Gardiner, Alastair T; Cogdell, Richard J


    The conductivity of a photosynthetic reaction center (RC) from Rhodobacter sphaeroides was measured with conductive atomic force microscopy (CAFM) on SAM-modified Au(111) substrates. 2-mercaptoethanol (2ME), 2-mercaptoacetic acid (MAC), 2-mercaptopyridine (2MP) and 4-mercaptopyridine (4MP) were prepared as SAM materials to investigate the stability and morphology of RCs on the substrate by using near-IR absorption spectroscopy and AFM, respectively. The clear presence of the three well known RC near-IR absorption peaks indicates that the RCs were native on the SAM-modified Au(111). Dense grains with various diameters of 5-20 nm, which corresponded to mixtures of single RCs up to aggregates of 10, were observed in topographs of RCs adsorbed on all the different SAM-modified Au(111) substrates. The size of currents obtained from the RC using a bare conductive cantilever were produced in the following order for SAM molecules: 2MP > 2ME > 4MP > MAC. A clear rectification of this current was observed for the modification of the Au(111) substrate with the pi-conjugated thiol, 2MP, indicating that 2MP was effective in both promoting the specific orientation of the RCs on the electrode and electron injection into the RC. Cyclic voltammetry measurements indicate that the 2MP is better mediator for the electron transfer between a quinone and substrate. The current with 2MP-modified cantilever was twice as high as that obtained with the Au-coated one alone, indicating that 2MP has an important role in lowering the electron injection barrier between special pair side of RC and gold electrode.

  20. Toward Determining ATPase Mechanism in ABC Transporters: Development of the Reaction Path–Force Matching QM/MM Method (United States)

    Zhou, Y.; Ojeda-May, P.; Nagaraju, M.; Pu, J.


    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are ubiquitous ATP-dependent membrane proteins involved in translocations of a wide variety of substrates across cellular membranes. To understand the chemomechanical coupling mechanism as well as functional asymmetry in these systems, a quantitative description of how ABC transporters hydrolyze ATP is needed. Complementary to experimental approaches, computer simulations based on combined quantum mechanical and molecular mechanical (QM/MM) potentials have provided new insights into the catalytic mechanism in ABC transporters. Quantitatively reliable determination of the free energy requirement for enzymatic ATP hydrolysis, however, requires substantial statistical sampling on QM/MM potential. A case study shows that brute force sampling of ab initio QM/MM (AI/MM) potential energy surfaces is computationally impractical for enzyme simulations of ABC transporters. On the other hand, existing semiempirical QM/MM (SE/MM) methods, although affordable for free energy sampling, are unreliable for studying ATP hydrolysis. To close this gap, a multiscale QM/MM approach named reaction path–force matching (RP–FM) has been developed. In RP–FM, specific reaction parameters for a selected SE method are optimized against AI reference data along reaction paths by employing the force matching technique. The feasibility of the method is demonstrated for a proton transfer reaction in the gas phase and in solution. The RP–FM method may offer a general tool for simulating complex enzyme systems such as ABC transporters. PMID:27498639

  1. Cluster emission in superdeformed Sr isotopes in the ground state and formed in heavy-ion reaction

    Indian Academy of Sciences (India)

    K P Santhosh; Antony Joseph


    Cluster decay of superdeformed 76,78,80Sr isotopes in their ground state are studied taking the Coulomb and proximity potential as the interacting barrier for the post-scission region. The predicted 1/2 values are found to be in close agreement with those values reported by the preformed cluster model (PCM). Our calculation shows that these nuclei are stable against both light and heavy cluster emissions. We studied the decay of these nuclei produced as an excited compound system in heavy-ion reaction. It is found that inclusion of excitation energy increases the decay rate (decreases 1/2 value) considerably and these nuclei become unstable against decay. These findings support earlier observation of Gupta et al based on PCM.

  2. Mechanics of Ship Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup


    In these notes first a simplified mathematical model is presented for analysis of ship hull loading due to grounding on relatively hard and plane sand, clay or rock sea bottoms. In a second section a more rational calculation model is described for the sea bed soil reaction forces on the sea bottom....... Finally, overall hull failure is considered first applying a quasistatic analysis model and thereafter a full dynamic model....

  3. Russian Military and Security Forces: A Postulated Reaction to a Nuclear Detonation

    Energy Technology Data Exchange (ETDEWEB)

    Ball, D


    In this paper, we will examine how Russia's military and security forces might react to the detonation of a 10-kiloton nuclear weapon placed next to the walls surrounding the Kremlin. At the time of this 'big bang,' Putin is situated outside Moscow and survives the explosion. No one claims responsibility for the detonation. No other information is known. Numerous variables will determine how events ultimately unfold and how the military and security forces will respond. Prior to examining these variables in greater detail, it is imperative to elucidate first what we mean by Russia's military and security forces.

  4. Calculation of Reaction Forces in the Boiler Supports Using the Method of Equivalent Stiffness of Membrane Wall

    Directory of Open Access Journals (Sweden)

    Josip Sertić


    Full Text Available The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of “Milano” boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized.

  5. Calculation of reaction forces in the boiler supports using the method of equivalent stiffness of membrane wall. (United States)

    Sertić, Josip; Kozak, Dražan; Samardžić, Ivan


    The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of "Milano" boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized.

  6. Morphology and reaction force of toes of geckos freely moving on ceilings and walls

    Institute of Scientific and Technical Information of China (English)


    The 3-dimensional interactions between toes of a gecko and substrates (ceilings or walls) were measured when it moves on ceilings or walls by using a 3-dimensional force measuring array,and the correspondent morphology of the gecko toes was recorded by a high speed camera.The study aims to understand the relationship between adhesive and shear forces generated by the toes of the gecko and the locomotion behavior when it walks on walls and ceilings.Results showed that shear force is along the toe-only 12.6° and 3.1° away from the toe for wall-climbing and ceiling-crawling,respectively while the adhesion is big enough to balance the body weight and moment.The shear forces generated by the first and the fifth toes are in opposite directions;this redundant force increases the reliability of adhesion and stability of locomotion.The support angles of toes are equal approximately for ceiling-crawling and wall-climbing.The study greatly inspires the design of a gecko-like robot.

  7. Conformational gating of the electron transfer reaction QA−⋅QB → QAQB−⋅ in bacterial reaction centers of Rhodobacter sphaeroides determined by a driving force assay (United States)

    Graige, M. S.; Feher, G.; Okamura, M. Y.


    The mechanism of the electron transfer reaction, QA−⋅QB → QAQB−⋅, was studied in isolated reaction centers from the photosynthetic bacterium Rhodobacter sphaeroides by replacing the native Q10 in the QA binding site with quinones having different redox potentials. These substitutions are expected to change the intrinsic electron transfer rate by changing the redox free energy (i.e., driving force) for electron transfer without affecting other events that may be associated with the electron transfer (e.g., protein dynamics or protonation). The electron transfer from QA−⋅ to QB was measured by three independent methods: a functional assay involving cytochrome c2 to measure the rate of QA−⋅ oxidation, optical kinetic spectroscopy to measure changes in semiquinone absorption, and kinetic near-IR spectroscopy to measure electrochromic shifts that occur in response to electron transfer. The results show that the rate of the observed electron transfer from QA−⋅ to QB does not change as the redox free energy for electron transfer is varied over a range of 150 meV. The strong temperature dependence of the observed rate rules out the possibility that the reaction is activationless. We conclude, therefore, that the independence of the observed rate on the driving force for electron transfer is due to conformational gating, that is, the rate limiting step is a conformational change required before electron transfer. This change is proposed to be the movement, controlled kinetically either by protein dynamics or intermolecular interactions, of QB by ≈5 Å as observed in the x-ray studies of Stowell et al. [Stowell, M. H. B., McPhillips, T. M., Rees, D. C., Soltis, S. M., Abresch, E. & Feher, G. (1997) Science 276, 812–816]. PMID:9751725

  8. Students' Understanding on Newton's Third Law in Identifying the Reaction Force in Gravity Interactions (United States)

    Zhou, Shaona; Zhang, Chunbin; Xiao, Hua


    In the past three decades, previous researches showed that students had various misconceptions of Newton's Third Law. The present study focused on students' difficulties in identifying the third-law force pair in gravity interaction situations. An instrument involving contexts with gravity and non-gravity associated interactions was designed and…

  9. Construction of cryptographic information protection in automated control systems for rapid reaction military forces

    Directory of Open Access Journals (Sweden)

    Sergey Petrovich Evseev


    Full Text Available New approaches to realizations of military operations are analyzed. The main factors that directly affect the construction and operation of information security subsystems in prospective automated command and control military systems are described. Possible ways of the construction of cryptographic subsystems of information protection in automated operation management systems for united military force groups are investigated.

  10. Evaluation of a size-resolved aerosol model based on satellite and ground observations and its implication on aerosol forcing (United States)

    Ma, Xiaoyan; Yu, Fangqun


    The latest AeroCom phase II experiments have showed a large diversity in the simulations of aerosol concentrations, size distribution, vertical profile, and optical properties among 16 detailed global aerosol microphysics models, which contribute to the large uncertainty in the predicted aerosol radiative forcing and possibly induce the distinct climate change in the future. In the last few years, we have developed and improved a global size-resolved aerosol model (Yu and Luo, 2009; Ma et al., 2012; Yu et al., 2012), GEOS-Chem-APM, which is a prognostic multi-type, multi-component, size-resolved aerosol microphysics model, including state-of-the-art nucleation schemes and condensation of low volatile secondary organic compounds from successive oxidation aging. The model is one of 16 global models for AeroCom phase II and participated in a couple of model inter-comparison experiments. In this study, we employed multi-year aerosol optical depth (AOD) data from 2004 to 2012 taken from ground-based Aerosol Robotic Network (AERONET) measurements and Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging SpectroRadiometer (MISR) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite retrievals to evaluate the performance of the GEOS-Chem-APM in predicting aerosol optical depth, including spatial distribution, reginal variation and seasonal variabilities. Compared to the observations, the modelled AOD is overall good over land, but quite low over ocean possibly due to low sea salt emission in the model and/or higher AOD in satellite retrievals, specifically MODIS and MISR. We chose 72 AERONET sites having at least 36 months data available and representative of high spatial domain to compare with the model and satellite data. Comparisons in various representative regions show that the model overall agrees well in the major anthropogenic emission regions, such as Europe, East Asia and North America. Relative to the observations, the modelled AOD is

  11. Repulsion forces of superplasticizers on ground granulated blast furnace slag in alkaline media, from AFM measurements to rheological properties

    Directory of Open Access Journals (Sweden)

    Palacios, M.


    Full Text Available The electrostatic and steric repulsion induced by different superplasticizers on ground granulated blast furnace slag in alkaline media have been studied. The superplasticizers were sulfonated naphthalene, sulfonated melamine, vinyl copolymer, and polycarboxylate- based admixtures. With these superplasticizers the slag suspensions had negative zeta potentials, ranging from -3 to -10 mV. For the first time the adsorbed layer thicknesses for superplasticizers on slag using colloidal probe atomic force microscopy has been measured. To model the interparticle force interactions an effective Hamaker constant was computed from dielectric properties measured on a dense slag sample produced by spark plasma sintering. The obtained results conclude that the dispersion mechanism for all the superplasticizers studied in the present work is mainly dominated by the steric repulsion. Results were then used in a yield stress model, YODEL, to predict the yield stress with and without the superplasticizers. Predictions of the yield stress agreed well with experimental results.

    En este trabajo se ha estudiado la repulsión electrostática y estérica inducida por diferentes aditivos superplastificantes en sistemas de escoria de horno alto en medios alcalinos. Se han estudiado aditivos superplastificantes basados en naftaleno, melamina, copolímeros vinílicos y basados en policarboxilato. Estos aditivos inducen en la escoria un potencial zeta negativo, entre -3 y -10 mV. Por primera vez, se ha determinado el grosor de la capa de aditivo adsorbido sobre la escoria mediante microscopía de fuerzas atómicas (AFM. Para modelizar las fuerzas de interacción entre partículas, se ha determinado la constante efectiva de Hamaker de la escoria a partir de las propiedades dieléctricas de una muestra de escoria obtenida mediante sinterización spark plasma sintering. Los resultados obtenidos concluyen que el mecanismo de dispersión de los superplastificantes

  12. Kinetic study of radiation-reaction-limited particle acceleration during the relaxation of unstable force-free equilibria

    CERN Document Server

    Yuan, Yajie; Zrake, Jonathan; East, William E; Blandford, Roger D


    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short time scales. These are likely due to rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reaction. We focus on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The "flares" are accompanied by an increased pol...

  13. Empirical Force Fields for Mechanistic Studies of Chemical Reactions in Proteins. (United States)

    Das, A K; Meuwly, M


    Following chemical reactions in atomistic detail is one of the most challenging aspects of current computational approaches to chemistry. In this chapter the application of adiabatic reactive MD (ARMD) and its multistate version (MS-ARMD) are discussed. Both methods allow to study bond-breaking and bond-forming processes in chemical and biological processes. Particular emphasis is put on practical aspects for applying the methods to investigate the dynamics of chemical reactions. The chapter closes with an outlook of possible generalizations of the methods discussed.

  14. Mechanical demand and multijoint control during landing depend on orientation of the body segments relative to the reaction force. (United States)

    McNitt-Gray, J L; Hester, D M; Mathiyakom, W; Munkasy, B A


    The purpose of this study was to determine how diverse momentum conditions and anatomical orientation at contact influences mechanical loading and multijoint control of the reaction force during landings. Male collegiate gymnasts (n=6) performed competition style landings (n=3) of drop jumps, front saltos, and back saltos from a platform (0.72 m) onto landing mats (0.12 m). Kinematics (200 fps), reaction forces (800 Hz) and muscle activation patterns (surface EMG, 1600 Hz) of seven lower extremity muscles were collected simultaneously. Between-task differences in segment orientation relative to the reaction force contributed to significant between-task differences in knee and hip net joint moments (NJM) during the impact phase. During the stabilization phase, ankle, knee, and hip NJMs acted to control joint flexion. Between-task differences in muscle activation patterns indicated that gymnasts scaled biarticular muscle activation to accommodate for between-task differences in NJM after contact. Activation of muscles on both sides of the joint suggests that impedance like control was used to stabilize the joints and satisfy the mechanical demand imposed on the lower extremity. Between-subject differences in the set of muscles used to control total body center of mass (TBCM) trajectory and achieve lower extremity NJMs suggests that control of multijoint movements involving impact needs to incorporate mechanical objectives at both the total body and local level. The functional consequences of such a control structure may prove to be an asset to gymnasts, particularly when required to perform a variety of landing tasks under a variety of environmental constraints.

  15. Control of chemical reaction pathways by femtosecond ponderomotive forces: Time-resolved multiphoton ionization spectroscopic study of OCIO photodissociation (United States)

    Blackwell, M.; Ludowise, P.; Chen, Y.


    Femtosecond time-resolved multiphoton ionization spectroscopy is applied to the study of the photodissociation of OClO. The observed ratio of O2+/ClO+ signal increases 12-fold with a 3-fold increase of the pump laser intensity. They are attributed to the change in the branching ratio between the two independent reaction channels leading to Cl+O2 and ClO+O, respectively. We believe this is the first experimental demonstration of laser controlled chemical reactions by femtosecond ponderomotive forces. At low pump power, the photodissociation dynamics at 386 nm is shown to be a two-step process, with the OClO slowly approaching (time constant 4.6 ps) a transition state that falls apart rapidly (time constant 250 fs).

  16. Reactions to Reading 'Remaining Consistent with Method? An Analysis of Grounded Theory Research in Accounting': A Comment on Gurd



    Purpose: This paper is a comment on Gurd's paper published in QRAM 5(2) on the use of grounded theory in interpretive accounting research. Methodology: Like Gurd, we conducted a bibliographic study on prior pieces of research claiming the use of grounded theory. Findings: We found a large diversity of ways of doing grounded theory. There are as many ways as articles. Consistent with the spirit of grounded theory, the field suggested the research questions, methods and verifiability criteria. ...

  17. Organometallic Bonding in an Ullmann-Type On-Surface Chemical Reaction Studied by High-Resolution Atomic Force Microscopy. (United States)

    Kawai, Shigeki; Sadeghi, Ali; Okamoto, Toshihiro; Mitsui, Chikahiko; Pawlak, Rémy; Meier, Tobias; Takeya, Jun; Goedecker, Stefan; Meyer, Ernst


    The on-surface Ullmann-type chemical reaction synthesizes polymers by linking carbons of adjacent molecules on solid surfaces. Although an organometallic compound is recently identified as the reaction intermediate, little is known about the detailed structure of the bonded organometallic species and its influence on the molecule and the reaction. Herein atomic force microscopy at low temperature is used to study the reaction with 3,9-diiododinaphtho[2,3-b:2',3'-d]thiophene (I-DNT-VW), which is polymerized on Ag(111) in vacuum. Thermally sublimated I-DNT-VW picks up a Ag surface atom, forming a CAg bond at one end after removing an iodine. The CAg bond is usually short-lived, and a CAgC organometallic bond immediately forms with an adjacent molecule. The existence of the bonded Ag atoms strongly affects the bending angle and adsorption height of the molecular unit. Density functional theory calculations reveal the bending mechanism, which reveals that charge from the terminus of the molecule is transferred via the Ag atom into the organometallic bond and strengths the local adsorption to the substrate. Such deformations vanish when the Ag atoms are removed by annealing and CC bonds are established.

  18. Contribution of seat and foot reaction forces to anticipatory postural adjustments (APAs) in sitting isometric ramp pushes. (United States)

    Le Bozec, Serge; Bouisset, Simon


    The aim of this paper was to examine the role of the upper and lower body on the dynamic phenomena, which precede the voluntary movement (anticipatory postural adjustments: APAs), and the way in which they contribute to postural control. In this view, sitting subjects were asked to perform horizontal two-handed ramp pushes as quickly as possible. A dynamometric bar was used to provide the push force (F(x)). Local reaction forces along the antero-posterior and vertical axes, at the seat and foot-rests (R(Sx), R(Sz), and R(fx), R(fz), respectively), as well as global ones (R(x) and R(z)), were measured. Two postural conditions were considered: full (100 BP) and one-third ischio-femoral contact (30 BP). Anticipatory postural adjustments durations (dAPAs) were measured between the onset of global or local (that is, at the seat and foot level) reaction forces, and the onset of push force increase. Firstly, the dAPAs were longer at the foot than at the seat level, that is, the APA sequence starts at the foot level: it is suggested that a "posturo-focal" sequence is followed, whose progression order is precisely dependent on the postural conditions. Moreover, the APA peak amplitudes (pAPA), measured at the seat contact were significantly greater than the corresponding ones measured at the foot contact: the upper body dynamics are larger than the lower body dynamics. Secondly, a greater peak push force (pF(x)) entailed significant dAPA increases, in preference to pAPA increases. As APAs are dynamic phenomena, they can perturb balance, suggesting that, in order to avoid unnecessary perturbation, APAs are increased in terms of duration rather than amplitude. Lastly, the impulses corresponding to the push force increase ("BPI(x)") and to the APA periods ("ACPI(x)") were calculated. As ACPI(x) was very low as compared to BPI(x), it was suggested that the APA action was limited to the period of the voluntary movement onset.

  19. Wave packet and statistical quantum calculations for the He + NeH{sup +} → HeH{sup +} + Ne reaction on the ground electronic state

    Energy Technology Data Exchange (ETDEWEB)

    Koner, Debasish; Panda, Aditya N., E-mail: [Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039 (India); Barrios, Lizandra; González-Lezana, Tomás, E-mail: [Instituto de Física Fundamental, C.S.I.C., Serrano 123, Madrid 28006 (Spain)


    A real wave packet based time-dependent method and a statistical quantum method have been used to study the He + NeH{sup +} (v, j) reaction with the reactant in various ro-vibrational states, on a recently calculated ab initio ground state potential energy surface. Both the wave packet and statistical quantum calculations were carried out within the centrifugal sudden approximation as well as using the exact Hamiltonian. Quantum reaction probabilities exhibit dense oscillatory pattern for smaller total angular momentum values, which is a signature of resonances in a complex forming mechanism for the title reaction. Significant differences, found between exact and approximate quantum reaction cross sections, highlight the importance of inclusion of Coriolis coupling in the calculations. Statistical results are in fairly good agreement with the exact quantum results, for ground ro-vibrational states of the reactant. Vibrational excitation greatly enhances the reaction cross sections, whereas rotational excitation has relatively small effect on the reaction. The nature of the reaction cross section curves is dependent on the initial vibrational state of the reactant and is typical of a late barrier type potential energy profile.

  20. Chemical reaction mechanisms in solution from brute force computational Arrhenius plots. (United States)

    Kazemi, Masoud; Åqvist, Johan


    Decomposition of activation free energies of chemical reactions, into enthalpic and entropic components, can provide invaluable signatures of mechanistic pathways both in solution and in enzymes. Owing to the large number of degrees of freedom involved in such condensed-phase reactions, the extensive configurational sampling needed for reliable entropy estimates is still beyond the scope of quantum chemical calculations. Here we show, for the hydrolytic deamination of cytidine and dihydrocytidine in water, how direct computer simulations of the temperature dependence of free energy profiles can be used to extract very accurate thermodynamic activation parameters. The simulations are based on empirical valence bond models, and we demonstrate that the energetics obtained is insensitive to whether these are calibrated by quantum mechanical calculations or experimental data. The thermodynamic activation parameters are in remarkable agreement with experiment results and allow discrimination among alternative mechanisms, as well as rationalization of their different activation enthalpies and entropies.

  1. Finite size corrections to the radiation reaction force in classical electrodynamics. (United States)

    Galley, Chad R; Leibovich, Adam K; Rothstein, Ira Z


    We introduce an effective field theory approach that describes the motion of finite size objects under the influence of electromagnetic fields. We prove that leading order effects due to the finite radius R of a spherically symmetric charge is order R2 rather than order R in any physical model, as widely claimed in the literature. This scaling arises as a consequence of Poincaré and gauge symmetries, which can be shown to exclude linear corrections. We use the formalism to calculate the leading order finite size correction to the Abraham-Lorentz-Dirac force.

  2. EMMI Rapid Reaction Task Force Meeting on 'Quark Matter in Compact Star'

    CERN Document Server

    Buballa, Michael; Drago, Alessandro; Fraga, Eduardo; Haensel, Pawel; Mishustin, Igor; Pagliara, Giuseppe; Schaffner-Bielich, Jurgen; Schramm, Stefan; Sedrakian, Armen; Weber, Fridolin


    The recent measurement of two solar mass pulsars has initiated an intense discussion on its impact on our understanding of the high-density matter in the cores of neutron stars. A task force meeting was held from October 7-10, 2013 at the Frankfurt Institute for Advanced Studies to address the presence of quark matter in these massive stars. During this meeting, the recent oservational astrophysical data and heavy-ion data was reviewed. The possibility of pure quark stars, hybrid stars and the nature of the QCD phase transition were discussed and their observational signals delineated.

  3. Assessment of Clear Sky Radiative Forcing in the Caribbean Region Using an Aerosol Dispersion Model and Ground Radiometry During Puerto Rico Dust Experiment (United States)

    Gasso, Santiago; Qi, Qiang; Westpthal, Douglas; Reid, Jeffery; Tsay, Si-Chee


    This study investigates the surface and top of the atmosphere solar radiative forcing by long-range transport of Saharan dust. The calculations of radiative forcing are based on measurements collected in the Puerto Rico Dust Experiment (PRIDE) carried out during July, 2000. The purpose of the experiment was the characterization of the Saharan dust plume, which frequently reaches the Caribbean region during the summer. The experiment involved the use of three approaches to study the plume: space and ground based remote sensing, airborne and ground based in-situ measurements and aerosol dispersion modeling. The diversity of measuring platforms provides an excellent opportunity for determination of the direct effect of dust on the clear sky radiative forcing. Specifically, comparisons of heating rates, surface and TOA fluxes derived from the Navy global aerosol dispersion model NAAPS (NRL Aerosol Analysis and Prediction System) and actual measurements of fluxes from ground and space based platforms are shown. In addition, the direct effect of dust on the clear sky radiative forcing is modeled. The extent and time of evolution of the radiative properties of the plume are computed with the aerosol concentrations modeled by NAAPS. Standard aerosol parameterizations, as well as in-situ composition and size distributions measured during PRIDE, are utilized to compute the aerosol optical depth, single scattering albedo and asymmetry factor. Radiative transfer computations are done with an in-house modified spectral radiative transfer code (Fu-Liou). The code includes gas absorption and cloud particles (ice and liquid phase) and it allows the input of meteorological data. The code was modified to include modules for the aerosols contribution to the calculated fluxes. This comparison study helps to narrow the current uncertainty in the dust direct radiative forcing, as recently reported in the 2001 IPCC assessment.

  4. Kinetic Study of Radiation-reaction-limited Particle Acceleration During the Relaxation of Unstable Force-free Equilibria (United States)

    Yuan, Yajie; Nalewajko, Krzysztof; Zrake, Jonathan; East, William E.; Blandford, Roger D.


    Many powerful and variable gamma-ray sources, including pulsar wind nebulae, active galactic nuclei and gamma-ray bursts, seem capable of accelerating particles to gamma-ray emitting energies efficiently over very short timescales. These are likely due to the rapid dissipation of electromagnetic energy in a highly magnetized, relativistic plasma. In order to understand the generic features of such processes, we have investigated simple models based on the relaxation of unstable force-free magnetostatic equilibria. In this work, we make the connection between the corresponding plasma dynamics and the expected radiation signal, using 2D particle-in-cell simulations that self-consistently include synchrotron radiation reactions. We focus on the lowest order unstable force-free equilibrium in a 2D periodic box. We find that rapid variability, with modest apparent radiation efficiency as perceived by a fixed observer, can be produced during the evolution of the instability. The “flares” are accompanied by an increased polarization degree in the high energy band, with rapid variation in the polarization angle. Furthermore, the separation between the acceleration sites and the synchrotron radiation sites for the highest energy particles facilitates acceleration beyond the synchrotron radiation reaction limit. We also discuss the dynamical consequences of the radiation reaction, and some astrophysical applications of this model. Our current simulations with numerically tractable parameters are not yet able to reproduce the most dramatic gamma-ray flares, e.g., from the Crab Nebula. Higher magnetization studies are promising and will be carried out in the future.

  5. 基于足地接触力跟踪的单足机器人弹跳运动控制%Hopping Control of Single leg Robot on Compliant Ground Based on Ground Force Control

    Institute of Scientific and Technical Information of China (English)

    尹鹏; 李满天; 王俊; 查富生; 孙立宁


    The performance of legged hopping robot is subjected to the influence of the ground stiffness feature during the contact phase.To avoid the influence and insulate the ground stiffness disturbance we first established the simplified single leg hopping model with elastic featured ground,then an analysis about the relation of ground stiffness with moving trajectory and contact force profile is made.Based on this a control strategy to utilized to compensate the ground contact force to be the same as that of an undisturbed system via active extension or retraction of the leg during contact.The validity is demonstrated by simulation result.%为了使足式弹跳机器人在运动中避免由于地面接触刚度的变化对弹跳运动产生的影响,首先建立了单足弹跳机器人在弹性地面条件下的运动简化模型,进而分析了地面弹簧刚度变化对机体重心运动轨迹以及着地相中足地接触力的影响。采用足地接触力补偿控制的手段,通过主动控制单腿的伸缩,使模型中弹簧系统的足力输出与期望保持一致,消除了地面刚度变化对机体运动的干扰。利用仿真实验表明了控制方法的可行性。

  6. The Soret and Dufour Effects in Non-thermal Equilibrium Packed Beds with Forced Convection and Endothermic Reactions

    Institute of Scientific and Technical Information of China (English)

    李明春; 赵中亮; 静宇; 刘家涛; 吴玉胜


    To study the influence of the Soret and Dufour effects on the reactive characteristics of a porous packed bed with endothermic reactions and forced convection, a two-dimensional mathematical model considering the cross-diffusion effects was developed in accordance with the thermodynamics of irreversible processes and the lo-cal thermal non-equilibrium model. The simulation results were validated by comparing with experimental data. The influence of the Soret and Dufour effects on the heat transfer, mass transfer and endothermic chemical reaction in the non-thermal equilibrium packed bed is discussed. It was found that when the Peclet number reaches 1865, the maximum relative error of the concentration of gas product induced by the Soret effect is 34.7% and that of the solid fractional conversion caused by the Dufour effect is 10.8%at reaction time 160 s and initial temperature 1473 K. The differences induced by the Soret and Dufour effects are demonstrated numerically to increase gradually with the initial temperature of feeding gas and the Peclet number.

  7. Correlations between sagittal plane kinematics and landing impact force during single-leg lateral jump-landings (United States)

    Aizawa, Junya; Ohji, Shunsuke; Koga, Hideyuki; Masuda, Tadashi; Yagishita, Kazuyoshi


    [Purpose] The correlations of peak vertical ground reaction force and sagittal angles during single-leg lateral jump-landing with noncontact anterior cruciate ligament injury remain unknown. This study aimed to clarify the correlations between kinematics and impact force during lateral jump-landing. [Subjects and Methods] Twenty active males were included in the analysis. A sagittal-view movie camera and force plate were time synchronized. Trunk and lower extremity sagittal angles were measured 100 ms before initial contact and at peak vertical ground reaction force. Peak vertical ground reaction force, time between initial contact and peak vertical ground reaction force, and loading rate were calculated. [Results] The mean sagittal angle was 40.7° ± 7.7° for knee flexion during the flight phase and 16.4° ± 6.3° for pelvic anterior inclination during the landing phase. The mean peak vertical ground reaction force was four times the body weight. The median time to peak vertical ground reaction force was 63.8 ms. The knee flexion during the flight phase and pelvic anterior inclination angles during the landing phase were related to the peak vertical ground reaction force. [Conclusion] Increasing knee flexion and decreasing pelvic anterior inclination might reduce the impact during single-leg lateral jump-landing. PMID:27630422

  8. Surface aerosol radiative forcing derived from collocated ground-based radiometric observations during PRIDE, SAFARI, and ACE-Asia. (United States)

    Hansell, Richard A; Tsay, Si-Chee; Ji, Qiang; Liou, K N; Ou, Szu-Cheng


    An approach is presented to estimate the surface aerosol radiative forcing by use of collocated cloud-screened narrowband spectral and thermal-offset-corrected radiometric observations during the Puerto Rico Dust Experiment 2000, South African Fire Atmosphere Research Initiative (SAFARI) 2000, and Aerosol Characterization Experiment-Asia 2001. We show that aerosol optical depths from the Multiple-Filter Rotating Shadowband Radiometer data match closely with those from the Cimel sunphotometer data for two SAFARI-2000 dates. The observed aerosol radiative forcings were interpreted on the basis of results from the Fu-Liou radiative transfer model, and, in some cases, cross checked with satellite-derived forcing parameters. Values of the aerosol radiative forcing and forcing efficiency, which quantifies the sensitivity of the surface fluxes to the aerosol optical depth, were generated on the basis of a differential technique for all three campaigns, and their scientific significance is discussed.

  9. Where the Lorentz-Abraham-Dirac equation for the radiation reaction force fails, and why the "proofs" break down

    CERN Document Server

    Gromes, Dieter


    We calculate the energy radiated coherently by a system of $N$ charged non relativistic particles. It disagrees with the energy loss which is obtained if one employs the Lorentz Abraham Dirac (LAD) equation for each particle, and sums up the contributions. This fact was already clearly stated in the classical literature long ago. The reason for the discrepancy is the omission of the mixing terms in the Poynting vector. For some simple systems we present a generalized equation for the radiation reaction force which cures this defect. The counter examples show that the LAD equation cannot be generally valid and that all "proofs" must fail somewhere. We demonstrate this failure for some popular examples in the literature.

  10. The effect of basketball footwear on the vertical ground reaction force during the landing phase of drop jumps

    Directory of Open Access Journals (Sweden)

    Jes\\u00FAs C\\u00E1mara Tobalina


    Full Text Available Aunque la etiología de las lesiones por sobreuso es multifactorial, los impactos repetidos y la amortiguación insuficiente, han sido propuestos como dos de las principales causas de lesión. Los impactos son caracterizados por la fuerza de reacción vertical del suelo en dos picos. El primero de ellos, se corresponde con el aterrizaje de la parte delantera del pie (F1 y el segundo (F2, esta mas asociado a la producción de lesiones. El calzado de baloncesto, debido a su diseño y materiales, también podría ayudar a amortiguar el impacto del pie con la tierra. Sin embargo, no ha sido averiguado aún, si este calzado reduce dicho impacto. Objetivo. El objetivo de este estudio, fue determinar que el efecto del calzado de baloncesto sobre la fuerza de reacción de la tierra en la componente vertical durante el aterrizaje. Treinta estudiantes de la Universidad del País Vasco (Edad = 21.54 ± 1.12 años; masa corporal = 71.83 ± 8.15 kg; Altura = 177 ± 7 cm tomaron parte en este estudio. Todos ellos, realizaron 3 aterrizajes, después de ejecutar un salto drop (DL desde 30 cm (DL30 y desde 60 cm (DL60 de altura, en 2 condiciones diferentes: con calzado de baloncesto o con calzado de running. El periodo de descanso entre saltos fue de entre 60 a 90 sg. Se presentan datos desde 30 cm de altura, 2.27 ± 1.07, v (m. s–1 con calzado de baloncesto y de 2.49 ± 1.23 v (m • s–1 con calzado de running. Respecto a F2, el análisis concluyó que en ambas alturas desde 30 cm y desde 60 cm, se presentaron diferencias entre las botas de baloncesto y el calzado de running (6.20 ± 1.93 vs. 5.72 ± 1.79 Bw; 9.34 ± 2.16 vs. 8.27 ± 2.07 Bw. Los valores de F2 registrados con calzado de running fueron más bajos que los registrados con los de baloncesto (DL30: 11.13% DL60: 11.46%. Los impactos de la parte delantera y de reverso, son más altos cuando se ejecutan los saltos desde 60 cm con ambos calzados. El parámetro F2, fue el único estadísticamente distinto entre ambos calzados, desde ambas alturas de salto, con valores más bajos para el calzado de running.

  11. Multi-Level Wild Land Fire Fighting Management Support System for an Optimized Guidance of Ground and Air Forces (United States)

    Almer, Alexander; Schnabel, Thomas; Perko, Roland; Raggam, Johann; Köfler, Armin; Feischl, Richard


    Climate change will lead to a dramatic increase in damage from forest fires in Europe by the end of this century. In the Mediterranean region, the average annual area affected by forest fires has quadrupled since the 1960s (WWF, 2012). The number of forest fires is also on the increase in Central and Northern Europe. The Austrian forest fire database shows a total of 584 fires for the period 2012 to 2014, while even large areas of Sweden were hit by forest fires in August 2014, which were brought under control only after two weeks of intense fire-fighting efforts supported by European civil protection modules. Based on these facts, the improvements in forest fire control are a major international issue in the quest to protect human lives and resources as well as to reduce the negative environmental impact of these fires to a minimum. Within this paper the development of a multi-functional airborne management support system within the frame of the Austrian national safety and security research programme (KIRAS) is described. The main goal of the developments is to assist crisis management tasks of civil emergency teams and armed forces in disaster management by providing multi spectral, near real-time airborne image data products. As time, flexibility and reliability as well as objective information are crucial aspects in emergency management, the used components are tailored to meet these requirements. An airborne multi-functional management support system was developed as part of the national funded project AIRWATCH, which enables real-time monitoring of natural disasters based on optical and thermal images. Airborne image acquisition, a broadband line of sight downlink and near real-time processing solutions allow the generation of an up-to-date geo-referenced situation map. Furthermore, this paper presents ongoing developments for innovative extensions and research activities designed to optimize command operations in national and international fire

  12. Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996 (United States)

    Parnell, J.M.


    The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.

  13. Influence of the solvent on the ground- and excited-state buffer-mediated proton-transfer reactions of a xanthenic dye. (United States)

    Paredes, Jose M; Crovetto, Luis; Orte, Angel; Alvarez-Pez, Jose M; Talavera, Eva M


    The buffer-mediated proton-transfer reactions of the fluorescent xanthenic derivative 9-[1-(2-Methyl-4-methoxyphenyl)]-6-hydroxy-3H-xanthen-3-one (TG-II) have been studied in different aqueous media. We have employed various buffers to investigate the influence of donor/acceptor systems with different anion and/or cation chemical constituents on the kinetic parameters of proton-transfer. The kinetic parameters were recovered both in the ground-state by means of Fluorescence Lifetime Correlation Spectroscopy (FLCS) and in the excited-state by means of Time Correlated Single Photon Counting (TCSPC) and Global Compartmental Analysis (GCA). Both ground- and excited- deprotonation and protonation recovered rate constants in the presence of either phosphate or acetate buffer as donor/acceptor systems were similar. The presence of Tris-HCl buffer does not promote the excited-state proton-transfer (ESPT) reaction. The results indicate the influence of the ions on the ground-state proton-transfer (GSPT) rates and concomitantly on the ESPT reaction. The proton-transfer rate constants recovered here show a trend correlated with the Hofmeister series or the Marcus classification of ions.

  14. Comparative Finite Element Analysis of the Effects of Tillage Tool Geometry on Soil Disturbance and Reaction Forces

    Directory of Open Access Journals (Sweden)

    Mohamed Ahmed Elbashir


    Full Text Available In this study a comparative finite element analysis was conducted to investigate the effects of tillage tool geometry on soil disturbance and reaction forces. A nonlinear three dimensional finite element model, using ANSYS software, was developed to study the soil cutting process by trapezoidal (T1 and rectangular (T2 flat tools that inclined to the horizontal at three rake angles (R1 = 30°, R2 = 60° and R3 = 90°, therefore a total of six treatments were considered in this analysis. The soil media was assumed as elastic-perfectly plastic material with Drucker-Prager’s model. Results of this study revealed that the maximum vertical soil displaced by T1 is greater than that of T2; hence T1 disturbed the soil better than T2 . Results also showed that a significant reduction in draft force was noticed when cutting the soil with T1 in comparison to T2 . Designing the tool in the form of T1 significantly reduces the surface area of the tool; thus conserving the engineering material.

  15. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 3, Appendix A, Draft standard operating procedures and elements: Sampling and Analysis Plan (SAP): Phase 1, Task 4, Field Investigation, Draft

    Energy Technology Data Exchange (ETDEWEB)


    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  16. Chemical reactions in low-g (United States)

    Grodzka, P. G.; Facemire, B. R.


    The Apollo-Soyuz flight experiment, 'Chemical Foams' demonstrated that foams and air/liquid dispersions are much more stable in low-gravity than on the ground. It thus should be possible to conduct unique chemical reactions in space foams. The low-g results and subsequent ground work on the formaldehyde clock reaction indicate that the reaction is strongly influenced by (1) dissociated and undissociated solution species being adsorbed at solid/liquid and gas/liquid surfaces and (2) chemical reaction rates apparently being affected by long-range forces determined by the liquid mass and the extent and nature of all surface interfaces.

  17. [Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio]. Volume 4, Health and Safety Plan (HSP); Phase 1, Task 4 Field Investigation report: Draft

    Energy Technology Data Exchange (ETDEWEB)


    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  18. Rotational, steric, and coriolis effects on the F + HCl --> HF + Cl reaction on the 1(2)A' ground-state surface. (United States)

    Defazio, Paolo; Petrongolo, Carlo


    We present a quantum study of the reaction F((2)P) + HCl(X(1)Sigma(+)) --> HF(X(1)Sigma(+)) + Cl((2)P) on a recently computed 1(2)A' ground-state surface, considering HCl in the ground vibrational state, with up to 16 rotational quanta j(0). We employ the real wavepacket (WP) and flux methods for calculating coupled-channel (CC) and centrifugal-sudden (CS) initial-state probabilities up to J = 80 and 140, respectively. We also report CC and CS ground-state cross sections and CS excited-state cross sections and discuss the dynamics analyzing WP time evolutions. The HCl rotation highly enhances reaction probabilities and cross sections, as it was previously found for probabilities at J Coriolis couplings favor instead the energy flow from the HCl rotation to the F-H---Cl reactive vibration. WP snapshots confirm and explain the HCl rotational effects, because the density into the nearly collinear F-H---Cl product channel increases remarkably with j(0). Finally, our CS rate constant is underestimated with respect to the experiment, pointing out the need of more accurate multisurface and CC calculations.

  19. Large-eddy simulation of pollutant dispersion from a ground-level area source over urban street canyons with irreversible chemical reactions (United States)

    Du, T. Z.; Liu, C.-H.; Zhao, Y. B.


    In this study, the dispersion of chemically reactive pollutants is calculated by large-eddy simulation (LES) in a neutrally stratified urban canopy layer (UCL) over urban areas. As a pilot attempt, idealized street canyons of unity building-height-to-street-width (aspect) ratio are used. Nitric oxide (NO) is emitted from the ground surface of the first street canyon into the domain doped with ozone (O3). In the absence of ultraviolet radiation, this irreversible chemistry produces nitrogen dioxide (NO2), developing a reactive plume over the rough urban surface. A range of timescales of turbulence and chemistry are utilized to examine the mechanism of turbulent mixing and chemical reactions in the UCL. The Damköhler number (Da) and the reaction rate (r) are analyzed along the vertical direction on the plane normal to the prevailing flow at 10 m after the source. The maximum reaction rate peaks at an elevation where Damköhler number Da is equal or close to unity. Hence, comparable timescales of turbulence and reaction could enhance the chemical reactions in the plume.

  20. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 3, Sampling and analysis plan (SAP): Phase 1, Task 4, Field Investigation: Draft

    Energy Technology Data Exchange (ETDEWEB)


    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  1. Accelerating potential of mean force calculations for lipid membrane permeation: System size, reaction coordinate, solute-solute distance, and cutoffs (United States)

    Nitschke, Naomi; Atkovska, Kalina; Hub, Jochen S.


    Molecular dynamics simulations are capable of predicting the permeability of lipid membranes for drug-like solutes, but the calculations have remained prohibitively expensive for high-throughput studies. Here, we analyze simple measures for accelerating potential of mean force (PMF) calculations of membrane permeation, namely, (i) using smaller simulation systems, (ii) simulating multiple solutes per system, and (iii) using shorter cutoffs for the Lennard-Jones interactions. We find that PMFs for membrane permeation are remarkably robust against alterations of such parameters, suggesting that accurate PMF calculations are possible at strongly reduced computational cost. In addition, we evaluated the influence of the definition of the membrane center of mass (COM), used to define the transmembrane reaction coordinate. Membrane-COM definitions based on all lipid atoms lead to artifacts due to undulations and, consequently, to PMFs dependent on membrane size. In contrast, COM definitions based on a cylinder around the solute lead to size-independent PMFs, down to systems of only 16 lipids per monolayer. In summary, compared to popular setups that simulate a single solute in a membrane of 128 lipids with a Lennard-Jones cutoff of 1.2 nm, the measures applied here yield a speedup in sampling by factor of ˜40, without reducing the accuracy of the calculated PMF.

  2. Environmental Assessment - Construct a Ground-to-Air Transmitter and Receiver (GATR) Facility at Grand Forks Air Force Base (United States)


    herbaceous plants. Included in the grasses and legumes vegetation species are tall wheat grass, brome grass, Kentucky bluegrass, sweet clover, and...grass, switchgrass, blue gramma, buffalo grass, and many native wildflower species. The Grand Forks AFB Natural Resources Manager and volunteers...Inventory and the BS Bioserve biological inventory update for Grand Forks Air Force Base. Two rare orchid species are known to exist on Grand Forks

  3. The interaction between reaction forces and stabilization systems during intrusion of the anterior teeth and its effect on the posterior unit. (United States)

    Van den Bulcke, M M; Dermaut, L R


    The aim of this research is to attain a better understanding of the initial reaction forces induced by an intrusion mechanism (acting on the anterior teeth) on the posterior unit and to examine how these forces can be neutralized. The experiments were performed on the dentition of a dry human skull and initial tooth displacements were registered by means of two laser measuring techniques, namely holographic interferometry and the laser reflection technique. It was established that of all reaction forces induced by the intrusion arch, distal tipping of the first molars is the most pronounced. A transpalatal bar connecting the teeth does not counteract this movement. The stabilization of the posterior unit with a transpalatal bar, buccal sectionals, and high-pull headgear proved to be the most effective technique.

  4. Effects of the tensor force on the ground and first $2^{+}$ states of the magic $^{54}$Ca nucleus

    CERN Document Server

    Yüksel, E; Khan, E; Bozkurt, K


    The magic nature of the $^{54}$Ca nucleus is investigated in the light of the recent experimental results. We employ both HFB and HF+BCS methods using Skyrme-type SLy5, SLy5+T and T44 interactions. The evolution of the single-particle spectra is studied for the N=34 isotones: $^{60}$Fe, $^{58}$Cr, $^{56}$Ti and $^{54}$Ca. An increase is obtained in the neutron spin-orbit splittings of $p$ and $f$ states due to the effect of the tensor force which also makes $^{54}$Ca a magic nucleus candidate. QRPA calculations on top of HF+BCS are performed to investigate the first $J^{\\pi}$=$2^{+}$ states of the calcium isotopic chain. A good agreement for excitation energies is obtained when we include the tensor force in the mean-field part of the calculations. The first $2^{+}$ states indicate a subshell closure for both $^{52}$Ca and $^{54}$Ca nuclei. We confirm that the tensor part of the interaction is quite essential in explaining the neutron subshell closure in $^{52}$Ca and $^{54}$Ca nuclei.

  5. Experimental differential cross sections, level densities, and spin cutoffs as a testing ground for nuclear reaction codes (United States)

    Voinov, A. V.; Grimes, S. M.; Brune, C. R.; Bürger, A.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Massey, T. N.; Siem, S.


    Proton double-differential cross sections from 59Co(α,p)62Ni, 57Fe(α,p)60Co, 56Fe(7Li,p)62Ni, and 55Mn(6Li,p)60Co reactions have been measured with 21-MeV α and 15-MeV lithium beams. Cross sections have been compared against calculations with the empire reaction code. Different input level density models have been tested. It was found that the Gilbert and Cameron [A. Gilbert and A. G. W. Cameron, Can. J. Phys.0008-420410.1139/p65-139 43, 1446 (1965)] level density model is best to reproduce experimental data. Level densities and spin cutoff parameters for 62Ni and 60Co above the excitation energy range of discrete levels (in continuum) have been obtained with a Monte Carlo technique. Excitation energy dependencies were found to be inconsistent with the Fermi-gas model.

  6. Modeling Study of the Impact of Heterogeneous Reactions on Dust Surfaces on Aerosol Optical Depth and Direct Radiative Forcing over East Asia in Springtime

    Institute of Scientific and Technical Information of China (English)

    LI Jia-Wei; HAN Zhi-Wei


    The spatial distributions and interannual variations of aerosol concentrations, aerosol optical depth (AOD), aerosol direct radiative forcings, and their responses to heterogeneous reactions on dust surfaces over East Asia in March 2006-10 were investigated by utilizing a regional coupled climate-chemistry/aerosol model. Anthropogenic aerosol concentrations (inorganic + carbonaceous) were higher in March 2006 and 2008, whereas soil dust reached its highest levels in March 2006 and 2010, resulting in stronger aerosol radiative forcings in these periods. The domain and five-year (2006-10) monthly mean concentrations of anthropogenic and dust aerosols, AOD, and radiative forcings at the surface (SURF) and at the top of the atmosphere (TOA) in March were 2.4 μg m 3 13.1 lag m^-3, 0.18, -19.0 W m^-2, and -7.4 W m^-2, respectively. Heterogeneous reactions led to an increase of total inorganic aerosol concentration; however, the ambient inorganic aerosol concentration decreased, resulting in a smaller AOD and weaker aerosol radiative forcings. In March 2006 and 2010, the changes in ambient inorganic aerosols, AOD, and aerosol radiative forcings were more evident. In terms of the domain and five-year averages, the total inorganic aerosol concentrations increased by 13.7% (0.17 μg m^-3) due to heterogeneous reactions, but the ambient inorganic aerosol concentrations were reduced by 10.5% (0.13 lag m-3). As a result, the changes in AOD, SURF and TOA radiative forcings were estimated to be -3.9% (-0.007), -1.7% (0.34 W m^-2), and -4.3% (0.34 W m^-2), respectively, in March over East Asia.

  7. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions. (United States)

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin


    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea') decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea' under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea' was determined. MW irradiation energy was partially transformed to reduce the Ea', and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology.

  8. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions (United States)

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin


    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea’) decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea’ under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea’ was determined. MW irradiation energy was partially transformed to reduce the Ea’, and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology.

  9. Exact and truncated Coriolis coupling calculations for the S(1D)+HD reaction employing the ground adiabatic electronic state. (United States)

    Yang, Huan; Han, Keli; Schatz, George C; Smith, Sean C; Hankel, Marlies


    We present exact quantum differential cross sections and exact and estimated integral cross sections and branching ratios for the title reaction. We employ a time-dependent wavepacket method as implemented in the DIFFREALWAVE code including all Coriolis couplings and also an adapted DIFFREALWAVE code where the helicity quantum number and with this the Coriolis couplings have been truncated. Our exact differential cross sections at 0.453 eV total energy, one of the experimental energies, show good agreement with the experimental results for one of the product channels. While the truncated calculation present a significant reduction in the computational effort needed they overestimate the exact integral cross sections.

  10. Search for $\\Delta^{++}$ component in $^{12}C$ ground state using $^{12}C(\\gamma, \\pi^{+} p)$ reaction

    CERN Document Server

    Bystritsky, V M; Glavanakov, I V; Grabmayr, P; Krechetov, Yu F; Saigushkin, O K; Schuvalov, E N; Tabachenko, A N; Krechetov, Yu. F


    The differential cross section for the $^{12}$C$(\\gamma,\\pi^{+}p)$ reaction has been measured in the $\\Delta$(1232) resonance region at high recoil momenta of the residual nuclear system. The data are analyzed under the assumption that the formation of the $\\pi^+p$ pairs may be interpreted as a $\\gamma\\Delta^{++}\\to\\pi^+p$ process which takes place on a $\\Delta^{++}$ preexisting in the target nucleus. Estimates of the $\\Delta^{++}$ momentum distribution $\\rho_{\\Delta^{++}}(\\bar{p})$=0.17 fm$^3$ for a mean momentum $\\bar{p}=300\\pm49$ MeV/c as well as the number of $\\Delta$ isobars per nucleon $N_\\Delta=0.017$ were obtained for $^{12}$C.

  11. Solar energy assessment in the Alpine area: satellite data and ground instruments integration for studying the radiative forcing of aerosols. (United States)

    Castelli, M.; Petitta, M.; Emili, E.


    measurement site of Bolzano, where we installed an AERONET sun-photometer for measuring aerosol optical properties and column water-vapor amount. The impact of aerosols on the surface irradiance was already demonstrated, in fact the literature shows that the daily aerosol direct forcing on the surface radiation in the Italian Po valley amounts on average to -12.2 Wm-2, with extremes values beyond -70 Wm-2. In particular here we examine the role in the radiation budget of the Alpine valleys of aerosol microphysical characteristics, such as size distribution, and optical properties, such as phase function, derived from the inversion of spectrally resolved sky radiances. After provided evidence of the radiative impact of atmospheric aerosols on solar energy availability in the Alpine area, the final step will be the enhancement of the most advanced existent algorithm for retrieving SIS in the Alpine area from satellite data, developed by MeteoSwiss in the framework of CM-SAF, which thoroughly considers the effect of topography and clouds, while can still be improved in terms of atmospheric input data.

  12. Development of Measuring System for Animal’s Surface Reaction Force%动物接触力测试系统的研制与应用

    Institute of Scientific and Technical Information of China (English)

    田树林; 王卫英; 李伟


    By measuring the target surface-foot reaction forces generated by animal’ s walking on an inverted surface, the adhesive mechanism and locomotion dynamics can be learned. A measurement system for animal’ s surface reaction force is composed of a 3-D force sensor, signal amplification, data acquisition and processing and dynamic images manipulation. The system is of great importance in animal’ s locomotive measurement. Mechanical testing about the tree-frog when crawling on the vertical surface are done by using the system and the changing regularity of the 3-D reaction force during the tree-frog’ s movements is analyzed.%研究爬壁动物在爬壁运动时其足掌与接触面间的接触力学规律及其运动步态,可为爬壁机器的设计与控制提供重要启示.研制的动物接触力测试系统由三维力传感器、信号调理模块、数据采集与处理模块、动态图像的记录与分析等组成,可用于树蛙、壁虎等在不同表面状况下的足掌与接触面之间的接触力学测试.利用该系统进行了树蛙垂直表面爬行时的力学测试,分析了三维接触力在树蛙运动过程中的变化规律.

  13. Procedures for addressing uncertainty and variability in exposure to characterize potential health risk from trichloroethylene contaminated ground water at Beale Air Force Base in California

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, J I; Bogen, K T; Hall, L C


    Conservative deterministic, screening-level calculations of exposure and risk commonly are used in quantitative assessments of potential human-health consequences from contaminants in environmental media. However, these calculations generally are based on multiple upper-bound point estimates of input parameters, particularly for exposure attributes, and can therefore produce results for decision makers that actually overstate the need for costly remediation. Alternatively, a more informative and quantitative characterization of health risk can be obtained by quantifying uncertainty and variability in exposure. This process is illustrated in this report for a hypothetical population at a specific site at Beale Air Force Base in California, where there is trichloroethylene (TCE) contaminated ground water and a potential for future residential use. When uncertainty and variability in exposure were addressed jointly for this case, the 95th-percentile upper-bound value of individual excess lifetime cancer risk was a factor approaching 10 lower than the most conservative deterministic estimate. Additionally, the probability of more than zero additional cases of cancer can be estimated, and in this case it is less than 0.5 for a hypothetical future residential population of up to 26,900 individuals present for any 7.6-y interval of a 70-y time period. Clearly, the results from application of this probabilistic approach can provide reasonable and equitable risk-acceptability criteria for a contaminated site.

  14. Ground Forces Modernization in China. (United States)


    Soviets reasserted control in Manchuria , as far south as the old Chinese Eastern Railway line (Tsitsihar- Harbin -Vladivostock), they could cripple much...of China’s capability to challenge {. Soviet control of all of Manchuria . Because there is very little defensible terrain between Manchuria and the...Yangtze River, a Soviet conquest of Manchuria would effectively destroy Chinese military power throughout northern China and give the Soviet Union

  15. The Weber-curve pitfall : effects of a forced introduction on reporting rates and reported adverse reaction profiles

    NARCIS (Netherlands)

    de Graaf, Linda; Fabius, Mariette A; Diemont, Willem L; van Puijenbroek, Eugène P


    BACKGROUND: In May 1999 Losec MUPS (MUPS) were granted a marketing authorization in the Netherlands, followed by the withdrawal of the Losec capsules (capsules) in September 1999. Both formulations contain omeprazole as active substance. This forced switch resulted in a large number of spontaneous r

  16. Testing nuclear forces by polarization transfer coefficients in d(p,p)d and d(p,d)p reactions at Ep=22.7 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Evgeny Epelbaum


    The proton to proton polarization transfer coefficients K{sub x}{sup x'}, K{sub y}{sup y'}, K{sub z}{sup x'} and the proton to deuteron polarization transfer coefficients K{sub x}{sup x'}, K{sub y}{sup y'}, K{sub z}{sup x'}, K{sub x}{sup y'z'}, K{sub y}{sup z'z'}, K{sub z}{sup y'z'}, K{sub y}{sup x'z'} and K{sub y}{sup x'x'-y'y'} have been measured in d({rvec p}, {rvec p})d and d({rvec p}, {rvec d})p reactions at E{sub p}{sup lab} = 22.7 MeV, respectively. The data have been compared to predictions of modern nuclear forces obtained by solving the three-nucleon Faddeev equations in momentum space. Realistic (semi) phenomenological nucleon-nucleon potentials combined with model three-nucleon forces and modern chiral nuclear forces have been used. The AV18, CD Bonn, Nijm I and II nucleon-nucleon interactions have been applied alone or combined with the Tucson-Melbourne 99 three-nucleon force, adjusted separately for each potential to reproduce the triton binding energy. For the AV18 potential also the Urbana IX three-nucleon force have been used. In addition chiral NN potentials in the next-to-leading-order and chiral two- and three-nucleon forces in the next-to-next-to-leading-order have been applied. Only when three-nucleon forces are included a satisfactory description of all data results. For the chiral approach the restriction to the forces in the next-to-leading order is insufficient. Only when going over to the next-to-next-to-leading order one gets a satisfactory description of the data, similar to the one obtained with the (semi) phenomenological forces.

  17. Growth of zinc sulfide thin films on (100)Si with the successive ionic layer adsorption and reaction method studied by atomic force microscopy (United States)

    Valkonen, Mika P.; Lindroos, Seppo; Resch, Roland; Leskelä, Markku; Friedbacher, Gernot; Grasserbauer, Manfred


    Zinc sulfide (ZnS) thin films were grown on (100)Si substrates from solution with the successive ionic layer adsorption and reaction (SILAR) method. Aqueous solutions of ZnCl 2 and Na 2S were used as precursors. The morphological development of the films with increasing number of SILAR cycles was monitored ex situ by atomic force microscopy (AFM) operated in tapping mode. Their roughness increased vs. the growth cycles. AFM studies on (100)Si substrates treated with Na 2S solution revealed that the dissolution of the silicon substrates is a process competing with the thin film growth and has to be considered when interpreting the AFM images.

  18. Hybrid Quantum Mechanical and Molecular Mechanics Study of the SN2 Reaction of CCl4 + OH- in Aqueous Solution: The Potential of Mean Force, Reaction Energetics, and Rate Constants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting; Yin, Hongyun; Wang, Dunyou; Valiev, Marat


    The bimolecular nucleophilic substitution reaction of CCl{sub 4} and OH{sup -} in aqueous solution was investigated on the basis of a combined quantum mechanical and molecular mechanics method. A multilayered representation approach is employed to achieve high accuracy results at the CCSD(T) level of theory. The potential of mean force calculations at the DFT level and CCSD(T) level of theory yield reaction barrier heights of 22.7 and 27.9 kcal/mol, respectively. Both the solvation effects and the solvent-induced polarization effect have significant contributions to the reaction energetics, for example, the solvation effect raises the saddle point by 10.6 kcal/mol. The calculated rate constant coefficient is 8.6 x 10{sup -28} cm{sup 3} molecule{sup -1} s{sup -1} at the standard state condition, which is about 17 orders magnitude smaller than that in the gas phase. Among the four chloromethanes (CH{sub 3}Cl, CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and CCl{sub 4}), CCl{sub 4} has the lowest free energy activation barrier for the reaction with OH{sup -1} in aqueous solution, confirming the trend that substitution of Cl by H in chloromethanes diminishes the reactivity.

  19. Objective Lightning Forecasting at Kennedy Space Center/Cape Canaveral Air Force Station using Cloud-to-Ground Lightning Surveillance System Data (United States)

    Lambert, Winifred; Wheeler, Mark


    The 45th Weather Squadron (45 WS) forecasters at Cape Canaveral Air Force Station (CCAFS) in Florida include a probability of thunderstorm occurrence in their daily morning briefings. This information is used by personnel involved in determining the possibility of violating Launch Commit Criteria, evaluating Flight Rules for the Space Shuttle, and daily planning for ground operation activities on Kennedy Space Center (KSC)/CCAFS. Much of the current lightning probability forecast is based on a subjective analysis of model and observational data. The forecasters requested that a lightning probability forecast tool based on statistical analysis of historical warm-season (May - September) data be developed in order to increase the objectivity of the daily thunderstorm probability forecast. The tool is a set of statistical lightning forecast equations that provide a lightning occurrence probability for the day by 1100 UTC (0700 EDT) during the warm season. This study used 15 years (1989-2003) of warm season data to develop the objective forecast equations. The local CCAFS 1000 UTC sounding was used to calculate stability parameters for equation predictors. The Cloud-to-Ground Lightning Surveillance System (CGLSS) data were used to determine lightning occurrence for each day. The CGLSS data have been found to be more reliable indicators of lightning in the area than surface observations through local informal analyses. This work was based on the results from two earlier research projects. Everitt (1999) used surface observations and rawinsonde data to develop logistic regression equations that forecast the daily thunderstorm probability at CCAFS. The Everitt (1999) equations showed an improvement in skill over the Neumann-Pfeffer thunderstorm index (Neumann 1971), which uses multiple linear regression, and also persistence and climatology forecasts. Lericos et al. (2002) developed lightning distributions over the Florida peninsula based on specific flow regimes. The

  20. Catalysis of Photochemical Reactions. (United States)

    Albini, A.


    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  1. Mass Transfer and Reaction Kinetics in the Carbonization of Magnesium Oxide from Light Calcined Magnesia with Mechanical Force Enhancement

    Institute of Scientific and Technical Information of China (English)

    张焕军; 朱国才


    The carbonization of magnesium oxide particles by CO2 was investigated using a stirring mill reactor.The effects of the system temperature, stirring rotation speed, influx rate of CO2 and initial diameter of the magnesium oxide particles on the carbonization process were determined. The results show that the system temperature and the stirring rotation speed are the most significant influencing factors on the carbonization rate. The determination of critical decomposition temperature (CDT) gives the maximum carbonization rate with other conditions fixed. A theoretical model involving mass transfer and reaction kinetics was presented for the carbonization process.The apparent activation energy was calculated to be 32.8kJ·mo1-1. The carbonization process is co-controlled by diffusive mass transfer and chemical reaction. The model fits well with the experimental results.

  2. Impulse-forces during walking are not increased in patients with knee osteoarthritis

    DEFF Research Database (Denmark)

    Henriksen, Marius; Simonsen, Erik B; Graven-Nielsen, Thomas


    BACKGROUND: Impulsive forces in the knee joint have been suspected to be a co-factor in the development and progression of knee osteoarthritis. We thus evaluated the impulsive sagittal ground reaction forces (iGRF), shock waves and lower extremity joint kinematics at heel strike during walking...

  3. Reactions to reading “Remaining consistent with method? An analysis of grounded theory research in accounting”: A comment on Gurd



    Purpose: The present paper is a comment on Gurd's paper published in QRAM on the use of grounded theory in interpretive accounting research. Methodology: Like Gurd, we conducted a bibliographic study on prior pieces of research claiming the use of grounded theory. Findings: We found a large diversity of ways of doing grounded theory. There are as many ways as articles. Consistent with the spirit of grounded theory, the field suggested the research questions, methods and verifiability criteria...

  4. Reactions to reading “Remaining consistent with method? An analysis of grounded theory research in accounting”: A comment on Gurd



    Purpose: The present paper is a comment on Gurd’s paper published in QRAM on the use of grounded theory in interpretive accounting research. Methodology: Like Gurd, we conducted a bibliographic study on prior pieces of research claiming the use of grounded theory. Findings: We found a large diversity of ways of doing grounded theory. There are as many ways as articles. Consistent with the spirit of grounded theory, the field suggested the research questions, methods and verifiability criteria...

  5. Approach to Deep Plate Loading Test of Self-reaction Force Method%自反力法深层平板载荷试验探讨

    Institute of Scientific and Technical Information of China (English)

    王晓伟; 林泽耿; 刘炳凯


    This article took a project of Guangdong as an example, introduced the technique of deep plate loading test of self-reaction force method in detail,and compared with the traditional method of deep plate loading test,and finally,problems that need to pay attention to deep plate loading test of self-reaction force method were put forward from the processing technology at the bottom of testing hole,keeping test hole straight,keeping stability of hole wall,and so on.%以广东某工程为例,详细介绍采用自反力法进行深层平板载荷试验测试技术,并将该方法与传统法深层平板载荷试验进行比较,最后从测试孔的孔底处理技术、测孔保直、孔壁稳定等方面提出采用自反力法进行深层平板载荷试验需要注意的问题。

  6. A radial basis function (RBF) finite difference method for the simulation of reaction-diffusion equations on stationary platelets within the augmented forcing method (United States)

    Shankar, Varun; Wright, Grady B.; Fogelson, Aaron L.; Kirby, Robert M.


    We present a computational method for solving the coupled problem of chemical transport in a fluid (blood) with binding/unbinding of the chemical to/from cellular (platelet) surfaces in contact with the fluid, and with transport of the chemical on the cellular surfaces. The overall framework is the Augmented Forcing Point Method (AFM) (\\emph{L. Yao and A.L. Fogelson, Simulations of chemical transport and reaction in a suspension of cells I: An augmented forcing point method for the stationary case, IJNMF (2012) 69, 1736-52.}) for solving fluid-phase transport in a region outside of a collection of cells suspended in the fluid. We introduce a novel Radial Basis Function-Finite Difference (RBF-FD) method to solve reaction-diffusion equations on the surface of each of a collection of 2D stationary platelets suspended in blood. Parametric RBFs are used to represent the geometry of the platelets and give accurate geometric information needed for the RBF-FD method. Symmetric Hermite-RBF interpolants are used for enforcing the boundary conditions on the fluid-phase chemical concentration, and their use removes a significant limitation of the original AFM. The efficacy of the new methods are shown through a series of numerical experiments; in particular, second order convergence for the coupled problem is demonstrated.

  7. 土质路基荷载下地基反力试验研究%Experimental Study on Ground Reaction under Loding of Soil Subgrade

    Institute of Scientific and Technical Information of China (English)

    蒋关鲁; 王海龙; 李安洪; 张崇磊


    地基反力σ能够反映荷载作用下地基受力的情况,但其在土质路基特别是高压实度土质路基荷载作用下的研究并不多.本文通过现场及室内离心模型模拟土质路基的填筑及放置过程的试验,对地基反力进行研究.研究表明:高压实度土质路基荷载作用下地基反力呈弧形分布,路基宽度范围内地基反力小于γH值,靠近坡脚的路基边坡区域大于γH值.路基中心处地基反力σc与路基宽高比b/H有很大关系,当路基宽高比b/H较小时,σc与γH值差距较大;当b/H较大时,σc与7H值差距减小;当b/H大于10时,σc基本等于γH值.本文结合试验结果得出考虑b/H影响的路基中心处地基反力σc的计算方法,提出新的地基反力沿路基横断面的计算公式,使路基荷载下地基反力的计算结果更接近实际;结合试验得到路基中心处实测地基反力及地基沉降值,对两种中等压缩性土地基在路基荷载作用下的地基反力与地基沉降的关系进行讨论,得出其相关性较好的地基反力系数,为今后土质路基荷载作用下地基反力系数的应用提供了参考资料.%Ground reaction(GR) σ reflects the stressed conditions of ground under the action of loading, however, it is seldom referred to when ground is subjected to self-weight loading of soil subgrade,especially highly-compacted soil subgrade. Field tests and indoor centrifugal model simulation were conducted on filling and placement of soil subgrade to study GR. The results show as follows:Under the loading of highly-compacted soil subgrade, GR(σ) is arc-shaped across the subgrade section, the value of GR(σ) is smaller than γH within the width of the subgrade and larger than YH near the foot of the subgrade slope;at the center of the subgrade, GR(σ)is highly related to the width height ratio (b/H) of the subgrade,the difference between GR(σ) and YH is large corresponding to a small b/H,it decreases with increasing of b

  8. Development of a Subject-Specific Foot-Ground Contact Model for Walking. (United States)

    Jackson, Jennifer N; Hass, Chris J; Fregly, Benjamin J


    Computational walking simulations could facilitate the development of improved treatments for clinical conditions affecting walking ability. Since an effective treatment is likely to change a patient's foot-ground contact pattern and timing, such simulations should ideally utilize deformable foot-ground contact models tailored to the patient's foot anatomy and footwear. However, no study has reported a deformable modeling approach that can reproduce all six ground reaction quantities (expressed as three reaction force components, two center of pressure (CoP) coordinates, and a free reaction moment) for an individual subject during walking. This study proposes such an approach for use in predictive optimizations of walking. To minimize complexity, we modeled each foot as two rigid segments-a hindfoot (HF) segment and a forefoot (FF) segment-connected by a pin joint representing the toes flexion-extension axis. Ground reaction forces (GRFs) and moments acting on each segment were generated by a grid of linear springs with nonlinear damping and Coulomb friction spread across the bottom of each segment. The stiffness and damping of each spring and common friction parameter values for all springs were calibrated for both feet simultaneously via a novel three-stage optimization process that used motion capture and ground reaction data collected from a single walking trial. The sequential three-stage process involved matching (1) the vertical force component, (2) all three force components, and finally (3) all six ground reaction quantities. The calibrated model was tested using four additional walking trials excluded from calibration. With only small changes in input kinematics, the calibrated model reproduced all six ground reaction quantities closely (root mean square (RMS) errors less than 13 N for all three forces, 25 mm for anterior-posterior (AP) CoP, 8 mm for medial-lateral (ML) CoP, and 2 N·m for the free moment) for both feet in all walking trials. The

  9. Forcing of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with strong visible light. (United States)

    Nagao, Raphael; Epstein, Irving R; Dolnik, Milos


    We investigate the sensitivity of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction to illumination by strong white light. Intense illumination results in an increase of [I(-)], in contrast to previous studies, which found only decreased [I(-)] for weak and intermediate intensities of illumination. We propose an expanded mechanism to explain the experimental observations. Both experimental and numerical results suggest that [ClO2] is the key parameter that determines whether the high iodide state is obtained under strong illumination. When strong illumination is applied through a spatially periodic mask with black and white stripes, a dark state with high [I(-)] is produced in the illuminated domain and a light state with low [I(-)] forms in the nonilluminated domain. Depending on the black:white ratio of the mask and its wavelength, Turing patterns can coexist with either the light or the dark state in the nonilluminated domain.

  10. Non-destructive characterization of vertical ZnO nanowire arrays by slow positron implantation spectroscopy, atomic force microscopy, and nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, G [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Postfach 510119, D-01314 Dresden (Germany); Anwand, W [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Postfach 510119, D-01314 Dresden (Germany); Grambole, D [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Postfach 510119, D-01314 Dresden (Germany); Skorupa, W [Institut fuer Ionenstrahlphysik und Materialforschung, Forschungszentrum Dresden-Rossendorf, Postfach 510119, D-01314 Dresden (Germany); Hou, Y [Institut fuer Physik, Montanuniversitaet Leoben, Franz Josef Strasse 18, A-8700 Leoben (Austria); Andreev, A [Institut fuer Physik, Montanuniversitaet Leoben, Franz Josef Strasse 18, A-8700 Leoben (Austria); Teichert, C [Institut fuer Physik, Montanuniversitaet Leoben, Franz Josef Strasse 18, A-8700 Leoben (Austria); Tam, K H [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China); Djurisic, A B [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (China)


    ZnO nanorods, grown by a hydrothermal method, have been characterized by slow positron implantation spectroscopy (SPIS) and atomic force microscopy (AFM). It has been demonstrated that such non-destructive characterization techniques can provide a comprehensive picture of the nanorod structure (including its length, shape, orientation, and seed layer thickness), as well as provide additional information about defects present in the structure. Nanorods were also characterized by scanning electron microscopy (SEM) and x-ray diffraction (XRD), and it was found that the SPIS/AFM combination is more sensitive to the nanorod orientation and the thickness of the seed layer. To obtain still more information about defects in the nanorods, as well as to confirm the findings on the sample structure, nuclear reaction analysis (NRA) was performed and a large concentration of bound hydrogen was found. The results obtained by different characterization techniques are discussed.

  11. The chemical hardness of molecules and the band gap of solids within charge equilibration formalisms. Toward force field-based simulations of redox reactions (United States)

    Müser, M. H.


    This work finds that different charge equilibration methods lead to qualitatively different responses of molecules and solids to an excess charge. The investigated approaches are the regular charge equilibration (QE), the atom-atom-charge transfer (AACT), and the split-charge equilibration (SQE) method. In QE, the hardness of molecules and the band gap of solids approaches zero at large particle numbers, affirming the claim that QE induces metallic behavior. AACT suffers from producing negative values of the hardness; moreover valence and conduction bands of solids cross. In contrast to these methods, SQE can reproduce the generic behavior of dielectric molecules or solids. Moreover, first quantitative results for the NaCl molecule are promising. The results derived in this work may have beneficial implications for the modeling of redox reactions. They reveal that by introducing formal oxidation states into force field-based simulations it will become possible to simulate redox reactions including non-equilibrium contact electrification, voltage-driven charging of galvanic cells, and the formation of zwitterionic molecules.

  12. 等长收缩法测定小鼠阻力血管舒缩反应*%Isometric Force Measurement of Vasomotor Reaction in Mouse Resistance Arteries

    Institute of Scientific and Technical Information of China (English)

    张英展; 周应毕; 刘斌


    Objective:To detect vasomotor reaction of mouse mesenteric arteries with isometric force measurement in order to establish a direct and reliable method to study the regulatory mechanisms of vessel function in mouse resistance arteries.Method:Vascular rings(1.0 mm)were prepared using the mesenteric artery of C57BL/6 adult male mice to observe the effects of acetylcholine and arachidonic acid on vasomotor reaction of vessels pre-contracted by phenylephrine.Result:Acetylcholine induced dose-dependent vasodilation of mesenteric arterial rings in the absence of nitric oxide synthase inhibitor.Arachidonic acid also evoked vasodilation mesenteric artery in the presence of nitric oxide synthase inhibitor.Conclusion:A method of isometric force measurement is successfully established to detect vasomotor reaction in mouse resistance vessels such as mesenteric artery.%  目的:通过等长收缩法检测小鼠肠系膜动脉的舒缩效应,为研究小鼠阻力血管张力变化及其调控机制提供直观、可靠的实验方法。方法:取C57BL/6成年雄鼠肠系膜动脉制备1.0 mm长血管环,在苯肾上腺素预收缩的基础上,观察乙酰胆碱、花生四烯酸对小鼠肠系膜动脉张力变化的影响。结果:未加入一氧化氮合酶抑制剂,乙酰胆碱能很好地诱导小鼠肠系膜动脉血管环的血管舒张效应,该效应随浓度的增加而增大;而在加入一氧化氮合酶抑制剂的情况下,花生四烯酸亦能很好地诱导小鼠肠系膜动脉血管环浓度依赖性的血管舒张效应。结论:成功建立用等长收缩法测定以肠系膜动脉为代表的小鼠阻力血管舒缩反应的方法。

  13. Linear energy relationships in ground state proton transfer and excited state proton-coupled electron transfer. (United States)

    Gamiz-Hernandez, Ana P; Magomedov, Artiom; Hummer, Gerhard; Kaila, Ville R I


    Proton-coupled electron transfer (PCET) processes are elementary chemical reactions involved in a broad range of radical and redox reactions. Elucidating fundamental PCET reaction mechanisms are thus of central importance for chemical and biochemical research. Here we use quantum chemical density functional theory (DFT), time-dependent density functional theory (TDDFT), and the algebraic diagrammatic-construction through second-order (ADC(2)) to study the mechanism, thermodynamic driving force effects, and reaction barriers of both ground state proton transfer (pT) and photoinduced proton-coupled electron transfer (PCET) between nitrosylated phenyl-phenol compounds and hydrogen-bonded t-butylamine as an external base. We show that the obtained reaction barriers for the ground state pT reactions depend linearly on the thermodynamic driving force, with a Brønsted slope of 1 or 0. Photoexcitation leads to a PCET reaction, for which we find that the excited state reaction barrier depends on the thermodynamic driving force with a Brønsted slope of 1/2. To support the mechanistic picture arising from the static potential energy surfaces, we perform additional molecular dynamics simulations on the excited state energy surface, in which we observe a spontaneous PCET between the donor and the acceptor groups. Our findings suggest that a Brønsted analysis may distinguish the ground state pT and excited state PCET processes.

  14. Relationship between tibial acceleration and proximal anterior tibia shear force across increasing jump distance. (United States)

    Sell, Timothy C; Akins, Jonathan S; Opp, Alexis R; Lephart, Scott M


    Proximal anterior tibia shear force is a direct loading mechanism of the anterior cruciate ligament (ACL) and is a contributor to ACL strain during injury. Measurement of this force during competition may provide insight into risk factors for ACL injury. Accelerometers may be capable of measuring tibial acceleration during competition. The purpose of this study was to examine the relationship between acceleration measured by a tibia-mounted accelerometer and proximal anterior tibia shear force as measured through inverse dynamics and peak posterior ground reaction forces during two leg stop-jump tasks. Nineteen healthy male subjects performed stop-jump tasks across increasing jump distances. Correlation coefficients were calculated to determine if a relationship exists between accelerometer data and proximal anterior tibia shear force and peak posterior ground reaction force. An analysis of variance was performed to compare these variables across jump distance. Significant correlations were observed between accelerometer data and peak posterior ground reaction force, but none between accelerometer data and proximal anterior tibia shear force. All variables except peak proximal anterior tibia shear force increased significantly as jump distance increased. Overall, results of this study provide initial, positive support for the use of accelerometers as a useful tool for future injury prevention research.

  15. 废弃咖啡渣化学链气化反应特性%Reaction characteristics of chemical-looping gasification for waste coffee grounds

    Institute of Scientific and Technical Information of China (English)

    张云鹏; 刘永卓; 杨勤勤; 郭庆杰


    Iron-based composite oxygen carrier (OC) (Fe4ATP6K1) was prepared by sol-gel method, which features Fe2O3 as an active component, and natural attapugite (ATP) as an inert support, as well as being modified by KNO3. Effects of reaction temperature, flow rate of steam and molar ratio of O/C on chemical looping gasification (CLG) of coffee grounds were investigated in a high temperature fluidized bed using steam as gasification agent. It suggests that the Fe4ATP6K1 oxygen carrier as bed material could facilitate carbon conversion in CLG of coffee grounds from 71.38% to 86.25%, compared with that of SiO2. Under optimized conditions for CLG such as 900℃, 0.23 g·min−1of steam flow rate and 1 of molar ratio of O/C, up to 52.75% of average concentration of H2, 83.79 g·kg−1 of H2 production rate, and 1.30 m3·kg−1 of syngas production rate were achieved. The OC samples before and after reaction at 900℃ were characterized by X-ray diffraction (XRD) and scanning electron microscope-energy dispersive spectrometer (SEM-EDS). The interactions within phases of Fe, K and Si, and K in presence of KFeSi3O8 phase in the OCs were observed. Twenty redox cycles testing demonstrated that the Fe4ATP6K1 oxygen carrier possessed a good cyclic stability, over 75% of both carbon conversion and cold gas efficiency, while the average concentration of each gas kept almost stable.%利用溶胶-凝胶法制备了以Fe2O3为活性组分,天然凹凸棒土(ATP)为惰性载体,KNO3修饰的Fe4ATP6K1铁基复合载氧体。在高温流化床中考察了反应温度、水蒸气流量和O/C摩尔比对咖啡渣化学链气化过程的影响。结果表明,与以石英砂为床料的咖啡渣气化相比,以Fe4ATP6K1载氧体为床料的咖啡渣化学链气化对应的碳转化率由71.38%提高到86.25%。咖啡渣化学链气化的较优操作条件为:反应温度900℃、水蒸气量0.23 g·min−1、O/C摩尔比1;在此操作条件下,合成气产量达到1.30 m3

  16. The CMS Experiment: on and under Ground Motions of Structures Due to the Magnetic Field Forces as Observed by the Link Alignment System

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Arce, J.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.; Brochero, J.; Calderon, A.; Fernandez, M. G.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martinez-Ribero, C.; Matorras, F.; Rodrigo, T.; Rui-Arbol, P.; Scodellaro, L.; Sobron, M.; Vila, I.; Virto, A. L.; Fernandez, J.


    This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test (at SX5 on ground Hall) and the CRAFT08 and 09 periods data taking in the point P5 (UX5), 100 m underground. A brief description of the system is followed by the discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotation of detector structures (from microradiants to milliradiants). Observed motions are studied as functions of the magnetic fi eld intensity. Comparisons between recorded data on and under ground are made. (Author) 23 refs.

  17. Atmospheric aerosol radiative forcing over a semi-continental location Tripura in North-East India: Model results and ground observations. (United States)

    Dhar, Pranab; De, Barin Kumar; Banik, Trisanu; Gogoi, Mukunda M; Babu, S Suresh; Guha, Anirban


    Northeast India (NEI) is located within the boundary of the great Himalayas in the north and the Bay of Bengal (BoB) in the southwest, experiences the mixed influence of the westerly dust advection from the Indian desert, anthropogenic aerosols from the highly polluted Indo-Gangetic Plains (IGP) and marine aerosols from BoB. The present study deals with the estimation and characterization of aerosol radiative forcing over a semi-continental site Tripura, which is a strategic location in the western part of NEI having close proximity to the outflow of the IGP. Continuous long term measurements of aerosol black carbon (BC) mass concentrations and columnar aerosol optical depth (AOD) are used for the estimation of aerosol radiative forcing in each monthly time scale. The study revealed that the surface forcing due to aerosols was higher during both winter and pre-monsoon seasons, having comparable values of 32W/m(2) and 33.45W/m(2) respectively. The atmospheric forcing was also higher during these months due to increased columnar aerosol loadings (higher AOD ~0.71) shared by abundant BC concentrations (SSA ~0.7); while atmospheric forcing decreased in monsoon due to reduced magnitude of BC (SSA ~0.94 in July) as well as columnar AOD. The top of the atmosphere (TOA) forcing is positive in pre-monsoon and monsoon months with the highest positive value of 3.78W/m(2) in June 2012. The results are discussed in light of seasonal source impact and transport pathways from adjacent regions.

  18. 模拟高空跳伞“分腿”半蹲式着陆对双足垂直作用力的影响%The perpendicular ground reactive force on paratrooper's feet in " straddling" half-squat landing simulation

    Institute of Scientific and Technical Information of China (English)

    胡袒; 郑超; 伍骥; 黄蓉蓉; 吴迪; 李毅; 王隆风; 王林飞


    Objective To analyze the characteristics of perpendicular ground reaction force on paratrooper's feet in "straddling" half-squat parachute landing simulation,and to provide a theoretical basis for further the exploration of parachute landing injury mechanisms and the prevention.Methods Eighteen active service paratroopers,who were wearing Model-06 parachute boots,jumped from 30 cm or 60 cm height and landed on a tri-axial force measuring platform with "straddling" half-squat or standard half-squat landing posture.When with "straddling" half-squat landing every paratrooper was marked by bigger and smaller force foot according to the measured perpendicular ground reaction force.The forces on feet determined by different jumping height were analyzed by paired sample t-test and those with different landing postures were tested by the analysis of variance.Results ①The difference of maximal perpendicular ground reaction force showed significance between paratrooper's feet as they were in "straddling" half-squat landing and it got larger with the height increase (t=5.80,7.31,P<0.01);There also existed significant difference in the maximal action buffer time (P<0.05).The maximal action buffer time of the "straddling" half-squat landing was significantly longer than that of the standard half-squat parachute landing (F=11.11,22.12,P<0.01).Conclusions With the " straddling" half-squat landing simulation,paratrooper experience significant different maximal perpendicular ground reaction force on their feet and the difference get bigger as height increased.It indicates that such landing approach can lead to the instability of landing due to the unbalanced forces acted on feet and may easily result in landing injury.%目的 分析伞兵“分腿”半蹲式着陆时双足受到的垂直反作用力的特点,为进一步探究跳伞着陆损伤机制及预防损伤提供理论基础. 方法 18名现役伞兵穿06伞兵作训靴,模拟“分腿”半蹲式、标准半蹲

  19. Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account (United States)

    Bashinov, Aleksei V.; Gonoskov, Arkady A.; Kim, A. V.; Marklund, Mattias; Mourou, G.; Sergeev, Aleksandr M.


    A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features of the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed.

  20. Demonstration/Validation of the Snap Sampler Passive Ground Water Sampling Device for Sampling Inorganic Analytes at the Former Pease Air Force Base (United States)


    it starts to undergo biodegradation . Also, because diffusion samplers typically require at least several days for equilibration to occur, they... PAHs ), and metals have been found in soils on the base. The ground wa- ter has been found to be contaminated with volatile organic compounds ERDC...CRREL TR-09-12 14 (VOCs) including trichloroethylene (TCE) and tetrachloroethylene (PCE). PAHs , pesticides, and heavy metals have been found in the

  1. Investigating the combined impact of plasticizer and shear force on the efficiency of low temperature reclaiming of ground tire rubber (GTR)


    Formela, Krzysztof; Klein, Marek; Colom Fajula, Xavier; Reza Saeb, Mohammad


    In the present work, ground tire rubber (GTR) was mechano-chemically reclaimed at ambient temperature using two-roll mills. Road bitumen and styrene-butadiene-styrene (SBS)-modified bitumen at variable content (in range: 2.5-20 phr) were applied as reactive plasticizers to enhance reclaiming of GTR. For better understanding the plasticizing effect of bitumen on the quality of obtained reclaimed rubber, mechano-chemically reclaimed GTR has been compared with GTR after thermo-mechanical reclaim...

  2. Theoretical study on the photo disso ciation reaction ofα-cyclohexanedione in ground state%1,2-环己二酮基态光解离反应的理论研究∗

    Institute of Scientific and Technical Information of China (English)

    杨雪; 闫冰; 连科研; 丁大军


    Theα-cyclohexanedione (α-CHD) molecule is an important structural unit in the six-membered ring systems with a large number of biologically meaningful molecules which have been found. It has important applications in synthetic science also. It is found that some fragments can be obtained through vacuum ultraviolet absorption spectrum and induction photolysis experiments for α-CHD molecules. In order to understand the dissociation reaction mechanism of α-CHD and reveal the resource of those fragments, the potential energy surface of the dissociation reaction for α-CHD molecules in ground state is studied by B3LYP and CCSD(T) methods. The reaction paths of the products are obtained, such as P1(c-C5H8O + CO), P2(2 C2H4+ 2 CO), P3 (CH2CHCH2CH2CHO + CO), P4(2 C2H2O + C2H4), P5(CH3CHCO + CH2CHCHO). And the structure parameters of the reactant, products, intermediates and transition states in the reaction processes are also obtained. Their reaction mechanisms can be summarized as the isomerization and dissociation processes, and these processes mainly involve the hydrogen atom transfer, ring-opening and C—C bond cleavages. A reaction channel in which α-CHD dissociates into cyclopentanone and CO needs lower energy, so it is more advantage our to make dissociation study than other studies. In addition, we think that α-dissociation reaction cannot occur directly in ground state from our calculations. Based on the UV photolysis experiment of α-CHD with a wavelength of 253.7 nm (112.7 kcal/mol) and the theoretical calculation of potential energy surface in ground state, we obtain that Path 1 (α-CHD→ c-C5H8O + CO) is the most possible channel, Path 3 (α-CHD→ CH2CHCH2CH2CHO+ CO) is the next, and Path 5(α-CHD→ CH3CHCO + CH2CHCHO) is the third, while Path 2 (α-CHD→2 C2H4+ 2 CO) and Path 4 (α-CHD→2 CH2CO+C2H4) are difficult to be achieved. So c-C5H8O and CO are the major fragment products, CH2CHCH2CH2CHO is the subsidiary one, maybe a minor distribution of

  3. Large atmospheric shortwave radiative forcing by Mediterranean aerosols derived from simultaneous ground-based and spaceborne observations and dependence on the aerosol type and single scattering albedo (United States)

    di Biagio, Claudia; di Sarra, Alcide; Meloni, Daniela


    Aerosol optical properties and shortwave irradiance measurements at the island of Lampedusa (central Mediterranean) during 2004-2007 are combined with Clouds and the Earth's Radiant Energy System observations of the outgoing shortwave flux at the top of the atmosphere (TOA). The measurements are used to estimate the surface (FES), the top of the atmosphere (FETOA), and the atmospheric (FEATM) shortwave aerosol forcing efficiencies for solar zenith angle (θ) between 15° and 55° for desert dust (DD), urban/industrial-biomass burning aerosols (UI-BB), and mixed aerosols (MA). The forcing efficiency at the different atmospheric levels is derived by applying the direct method, that is, as the derivative of the shortwave net flux versus the aerosol optical depth at fixed θ. The diurnal average forcing efficiency at the surface/TOA at the equinox is (-68.9 ± 4.0)/(-45.5 ± 5.4) W m-2 for DD, (-59.0 ± 4.3)/(-19.2 ± 3.3) W m-2 for UI-BB, and (-94.9 ± 5.1)/(-36.2 ± 1.7) W m-2 for MA. The diurnal average atmospheric radiative forcing at the equinox is (+7.3 ± 2.5) W m-2 for DD, (+8.4 ± 1.9) W m-2 for UI-BB, and (+8.2 ± 1.9) W m-2 for MA, suggesting that the mean atmospheric forcing is almost independent of the aerosol type. The largest values of the atmospheric forcing may reach +35 W m-2 for DD, +23 W m-2 for UI-BB, and +34 W m-2 for MA. FETOA is calculated for MA and 25° ≤ θ ≤ 35° for three classes of single scattering albedo (0.7 ≤ ω < 0.8, 0.8 ≤ ω < 0.9, and 0.9 ≤ ω ≤ 1) at 415.6 and 868.7 nm: FETOA increases, in absolute value, for increasing ω. A 0.1 increment in ω determines an increase in FETOA by 10-20 W m-2.

  4. Dynamical response of the Galileo Galilei on the ground rotor to test the equivalence principle: Theory, simulation, and experiment. II. The rejection of common mode forces (United States)

    Comandi, G. L.; Toncelli, R.; Chiofalo, M. L.; Bramanti, D.; Nobili, A. M.


    "Galileo Galilei on the ground" (GGG) is a fast rotating differential accelerometer designed to test the equivalence principle (EP). Its sensitivity to differential effects, such as the effect of an EP violation, depends crucially on the capability of the accelerometer to reject all effects acting in common mode. By applying the theoretical and simulation methods reported in Part I of this work, and tested therein against experimental data, we predict the occurrence of an enhanced common mode rejection of the GGG accelerometer. We demonstrate that the best rejection of common mode disturbances can be tuned in a controlled way by varying the spin frequency of the GGG rotor.

  5. Investigating the relationship between pressure force and acoustic waveform in footstep sounds

    DEFF Research Database (Denmark)

    Grani, Francesco; Serafin, Stefania; Götzen, Amalia De;


    In this paper we present an inquiry into of the relationships between audio waveforms and ground reaction force in recorded footstep sounds. In an anechoic room, we recorded several footstep sounds produced while walking on creaking wood and gravel. The recordings were performed by using a pair...... of sandals embedded with six pressure sensors each. Investigations of the relationships between recorded force and footstep sounds is presented, together with several possible applications of the system....

  6. Ab initio study of {sup 2}H(d,{gamma}){sup 4}He, {sup 2}H(d,p){sup 3}H, and {sup 2}H(d,n){sup 4}He reactions and the tensor force

    Energy Technology Data Exchange (ETDEWEB)

    Arai, K.; Aoyama, S.; Suzuki, Y.; Descouvemont, P.; Baye, D. [Division of General Education, Nagaoka National College of Technology, 888 Nishikatakai, Nagaoka, Niigata, 940-8532 (Japan); Center for Academic Information Service, Niigata University, Niigata 950-2181 (Japan); Department of Physics, Niigata University, Niigata 950-2181, Japan and RIKEN Nishina Center, Wako 351-0198 (Japan); Physique Nucleaire Theorique et Physique Mathematique, C.P.229, Universite Libre de Bruxelles, B 1050 Brussels (Belgium); Physique Quantique, CP165/82, Universite Libre de Bruxelles, B-1050 Brussels (Belgium)


    The {sup 2}H(d,p){sup 3}H, {sup 2}H(d,n){sup 3}He, and {sup 2}H(d,{gamma}){sup 4}He reactions at low energies are studied with realistic nucleon-nucleon interactions in an ab initio approach. The obtained astrophysical S-factors are all in very good agreement with experiment. The most important channels for both transfer and radiative capture are all found to dominate thanks to the tensor force.

  7. Objective Lightning Forecasting at Kennedy Space Center and Cape Canaveral Air Force Station using Cloud-to-Ground Lightning Surveillance System Data (United States)

    Lambert, Winfred; Wheeler, Mark; Roeder, William


    The 45th Weather Squadron (45 WS) at Cape Canaveral Air-Force Station (CCAFS)ln Florida issues a probability of lightning occurrence in their daily 24-hour and weekly planning forecasts. This information is used for general planning of operations at CCAFS and Kennedy Space Center (KSC). These facilities are located in east-central Florida at the east end of a corridor known as 'Lightning Alley', an indication that lightning has a large impact on space-lift operations. Much of the current lightning probability forecast is based on a subjective analysis of model and observational data and an objective forecast tool developed over 30 years ago. The 45 WS requested that a new lightning probability forecast tool based on statistical analysis of more recent historical warm season (May-September) data be developed in order to increase the objectivity of the daily thunderstorm probability forecast. The resulting tool is a set of statistical lightning forecast equations, one for each month of the warm season, that provide a lightning occurrence probability for the day by 1100 UTC (0700 EDT) during the warm season.

  8. Grounded theory. (United States)

    Harris, Tina


    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  9. Guided-Ion-Beam and ab Initio Study of the Li+, K+, and Rb+ Association Reactions with Gas-Phase Butanone and Cyclohexanone in Their Ground Electronic States (United States)

    Lucas, J. M.; de Andrés, J.; López, E.; Albertí, M.; Bofill, J. M.; Bassi, D.; Ascenzi, D.; Tosi, P.; Aguilar, A.


    The association reactions between Li+, K+, and Rb+ (M) and butanone and cyclohexanone molecules under single collision conditions have been studied using a radiofrequency-guided ion-beam apparatus, characterizing the adducts by mass spectrometry. The excitation function for the [M-(molecule)]+ adducts (in arbitrary units) has been obtained at low collision energies in the 0.10 eV up to a few eV range in the center of mass frame. The measured relative cross sections decrease when collision energy increases, showing the expected energy dependence for adduct formation. The energetics and structure of the different adducts have been calculated ab initio at the MP2(full) level, showing that the M+-molecule interaction takes place through the carbonyl oxygen atom, as an example of a nontypical covalent chemical bond. The cross-section energy dependence and the role of radiative cooling rates allowing the stabilization of the collision complexes are also discussed.

  10. Column Aerosol Optical Properties and Aerosol Radiative Forcing During a Serious Haze-Fog Month over North China Plain in 2013 Based on Ground-Based Sunphotometer Measurements (United States)

    Che, H.; Xia, X.; Zhu, J.; Li, Z.; Dubovik, O.; Holben, Brent N.; Goloub, P.; Chen, H.; Estelles, V.; Cuevas-Agullo, E.


    In January 2013, North China Plain experienced several serious haze events. Cimel sunphotometer measurements at seven sites over rural, suburban and urban regions of North China Plain from 1 to 30 January 2013 were used to further our understanding of spatial-temporal variation of aerosol optical parameters and aerosol radiative forcing (ARF). It was found that Aerosol Optical Depth at 500 nm (AOD500nm) during non-pollution periods at all stations was lower than 0.30 and increased significantly to greater than 1.00 as pollution events developed. The Angstrom exponent (Alpha) was larger than 0.80 for all stations most of the time. AOD500nm averages increased from north to south during both polluted and non-polluted periods on the three urban sites in Beijing. The fine mode AOD during pollution periods is about a factor of 2.5 times larger than that during the non-pollution period at urban sites but a factor of 5.0 at suburban and rural sites. The fine mode fraction of AOD675nm was higher than 80% for all sites during January 2013. The absorption AOD675nm at rural sites was only about 0.01 during pollution periods, while 0.03-0.07 and 0.01-0.03 during pollution and non-pollution periods at other sites, respectively. Single scattering albedo varied between 0.87 and 0.95 during January 2013 over North China Plain. The size distribution showed an obvious tri-peak pattern during the most serious period. The fine mode effective radius in the pollution period was about 0.01-0.08 microns larger than during nonpollution periods, while the coarse mode radius in pollution periods was about 0.06-0.38 microns less than that during nonpollution periods. The total, fine and coarse mode particle volumes varied by about 0.06-0.34 cu microns, 0.03-0.23 cu microns, and 0.03-0.10 cu microns, respectively, throughout January 2013. During the most intense period (1-16 January), ARF at the surface exceeded -50W/sq m, -180W/sq m, and -200W/sq m at rural, suburban, and urban sites

  11. Half-Lives of ground states in Pm and Eu nuclei following the 154,152Sm (p,x) reactions at 25 MeV (United States)

    Watwood, N. J.; Beausang, C. W.; Humby, P.; Simon, A.; Gell, K.


    The primary experiment was designed to study low/medium spin states in Sm nuclei following the 154,152Sm (p,x) reactions where x = d or t. During the experiment the Sm target was irradiated by a 25 MeV proton beam, provided by the K150 Cyclotron at Texas A&M University, with an average beam current of ~1 nA for about one week. Following the experiment, residual radioactivity in the target was measured in the Environmental Radioactivity Laboratory at the University of Richmond using a 25% efficiency coaxial Ge detector enclosed in a 6-inch thick Pb shield. The gamma ray spectra were internally calibrated using a 152Eu source and the energies of known gamma-rays from the target decays and from long lived environmental radioactivity. The decays of three long lived (~1 month or more) mass A ~ 150 nuclei were identified (148Sm, 148Eu, and 147Eu), and half lives for their beta-decay were (re)measured. Work is still in progress and preliminary results will be presented at the APS conference.

  12. Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: Comparison of the generalized Mulliken-Hush and block diagonalization methods (United States)

    Cave, Robert J.; Newton, Marshall D.


    Two independent methods are presented for the nonperturbative calculation of the electronic coupling matrix element (Hab) for electron transfer reactions using ab initio electronic structure theory. The first is based on the generalized Mulliken-Hush (GMH) model, a multistate generalization of the Mulliken Hush formalism for the electronic coupling. The second is based on the block diagonalization (BD) approach of Cederbaum, Domcke, and co-workers. Detailed quantitative comparisons of the two methods are carried out based on results for (a) several states of the system Zn2OH2+ and (b) the low-lying states of the benzene-Cl atom complex and its contact ion pair. Generally good agreement between the two methods is obtained over a range of geometries. Either method can be applied at an arbitrary nuclear geometry and, as a result, may be used to test the validity of the Condon approximation. Examples of nonmonotonic behavior of the electronic coupling as a function of nuclear coordinates are observed for Zn2OH2+. Both methods also yield a natural definition of the effective distance (rDA) between donor (D) and acceptor (A) sites, in contrast to earlier approaches which required independent estimates of rDA, generally based on molecular structure data.

  13. Grounded cognition. (United States)

    Barsalou, Lawrence W


    Grounded cognition rejects traditional views that cognition is computation on amodal symbols in a modular system, independent of the brain's modal systems for perception, action, and introspection. Instead, grounded cognition proposes that modal simulations, bodily states, and situated action underlie cognition. Accumulating behavioral and neural evidence supporting this view is reviewed from research on perception, memory, knowledge, language, thought, social cognition, and development. Theories of grounded cognition are also reviewed, as are origins of the area and common misperceptions of it. Theoretical, empirical, and methodological issues are raised whose future treatment is likely to affect the growth and impact of grounded cognition.

  14. Variability of a "force signature" during windmill softball pitching and relationship between discrete force variables and pitch velocity. (United States)

    Nimphius, Sophia; McGuigan, Michael R; Suchomel, Timothy J; Newton, Robert U


    This study assessed reliability of discrete ground reaction force (GRF) variables over multiple pitching trials, investigated the relationships between discrete GRF variables and pitch velocity (PV) and assessed the variability of the "force signature" or continuous force-time curve during the pitching motion of windmill softball pitchers. Intraclass correlation coefficient (ICC) for all discrete variables was high (0.86-0.99) while the coefficient of variance (CV) was low (1.4-5.2%). Two discrete variables were significantly correlated to PV; second vertical peak force (r(5)=0.81, p=0.03) and time between peak forces (r(5)=-0.79; p=0.03). High ICCs and low CVs support the reliability of discrete GRF and PV variables over multiple trials and significant correlations indicate there is a relationship between the ability to produce force and the timing of this force production with PV. The mean of all pitchers' curve-average standard deviation of their continuous force-time curves demonstrated low variability (CV=4.4%) indicating a repeatable and identifiable "force signature" pattern during this motion. As such, the continuous force-time curve in addition to discrete GRF variables should be examined in future research as a potential method to monitor or explain changes in pitching performance.

  15. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: Sequential sampling and optimization on the potential of mean force surface (United States)

    Hu, Hao; Lu, Zhenyu; Parks, Jerry M.; Burger, Steven K.; Yang, Weitao


    To accurately determine the reaction path and its energetics for enzymatic and solution-phase reactions, we present a sequential sampling and optimization approach that greatly enhances the efficiency of the ab initio quantum mechanics/molecular mechanics minimum free-energy path (QM/MM-MFEP) method. In the QM/MM-MFEP method, the thermodynamics of a complex reaction system is described by the potential of mean force (PMF) surface of the quantum mechanical (QM) subsystem with a small number of degrees of freedom, somewhat like describing a reaction process in the gas phase. The main computational cost of the QM/MM-MFEP method comes from the statistical sampling of conformations of the molecular mechanical (MM) subsystem required for the calculation of the QM PMF and its gradient. In our new sequential sampling and optimization approach, we aim to reduce the amount of MM sampling while still retaining the accuracy of the results by first carrying out MM phase-space sampling and then optimizing the QM subsystem in the fixed-size ensemble of MM conformations. The resulting QM optimized structures are then used to obtain more accurate sampling of the MM subsystem. This process of sequential MM sampling and QM optimization is iterated until convergence. The use of a fixed-size, finite MM conformational ensemble enables the precise evaluation of the QM potential of mean force and its gradient within the ensemble, thus circumventing the challenges associated with statistical averaging and significantly speeding up the convergence of the optimization process. To further improve the accuracy of the QM/MM-MFEP method, the reaction path potential method developed by Lu and Yang [Z. Lu and W. Yang, J. Chem. Phys. 121, 89 (2004)] is employed to describe the QM/MM electrostatic interactions in an approximate yet accurate way with a computational cost that is comparable to classical MM simulations. The new method was successfully applied to two example reaction processes, the

  16. Exact integral constraint requiring only the ground-state electron density as input on the exchange-correlation force - partial differential(V)(xc)(r)/partial differential(r) for spherical atoms. (United States)

    March, N H; Nagy, A


    Following some studies of integral(n)(r)inverted DeltaV(r)dr by earlier workers for the density functional theory (DFT) one-body potential V(r) generating the exact ground-state density, we consider here the special case of spherical atoms. The starting point is the differential virial theorem, which is used, as well as the Hiller-Sucher-Feinberg [Phys. Rev. A 18, 2399 (1978)] identity to show that the scalar quantity paralleling the above vector integral, namely, integral(n)(r) partial differential(V)(r)/partial differential(r)dr, is determined solely by the electron density n(0) at the nucleus for the s-like atoms He and Be. The force - partial differential(V)/ partial differential(r) is then related to the derivative of the exchange-correlation potential V(xc)(r) by terms involving only the external potential in addition to n(r). The resulting integral constraint should allow some test of the quality of currently used forms of V(xc)(r). The article concludes with results from the differential virial theorem and the Hiller-Sucher-Feinberg identity for the exact many-electron theory of spherical atoms, as well as for the DFT for atoms such as Ne with a closed p shell.

  17. General Purpose Ground Forces: What Purpose? (United States)


    PEACEKEEPING CONTINGENCY eSTRATEGIC RESERVE " ACTIVEARMY DIVlSIO S 1 Note a 1 5 Note b 2 Note c ! ~ESERVE ARMY _ S , EAVY]CADRE REGIS... designed to perform traditional domestic missions and those overseas humanitarian and peacekeeping assignments that carry litt].e risk of combat

  18. Military Modernization and the Russian Ground Forces (United States)


    interest. Conscripts, when hired out by officers as cheap labor to local enterprises or farms, provide a means for many an officer to supplement...The Russian equivalent of the Global Position- ing System (Global”naya Navigatsionayya Sputnikovaya Sistema [GLONASS]) did not work properly. In

  19. Study on Factors of Devulcanization of Ground Tire Rubber through Stress-induced Reaction%废旧轮胎胶粉应力诱导脱硫反应影响因素的研究

    Institute of Scientific and Technical Information of China (English)

    闫标; 孟亚男; 司虎; 张云灿


    在废旧轮胎胶粉/EPDM的熔融挤出过程中,以仲丁醇为脱硫反应促进剂,研究螺杆转速和挤出反应温度对脱硫共混物凝胶质量分数(w)、凝胶分子链结构以及SBR/脱硫共混物再硫化材料物理性能的影响.结果表明:在废旧轮胎胶粉/EPDM的熔融挤出过程中,随着螺杆转速和挤出反应温度的升高,废旧轮胎胶粉颗粒所受的机械剪切应力作用增强,引起废旧轮胎胶粉中交联网络的断裂、降解或解交联反应,导致脱硫共混物w显著减小以及SBR/脱硫共混物再硫化材料中凝胶粒子尺寸明显减小;添加仲丁醇有利于脱硫反应的进行,并具有抑制交联副反应和保护脱硫产物中双键的作用,使脱硫共混物的w进一步减小;在螺杆转速为1 000r· min-1、挤出反应温度为240℃的条件下,SBR/脱硫共混物(添加仲丁醇)再硫化材料的拉伸强度和拉断伸长率分别为19.3 MPa和567%.%During melt extrusion of the mixture of ground tire rubber and EPDM,2-butyl alcohol was added as devulcanization accelerator,and the effect of screw rotating speed and reaction temperature on the gel content of devulcanized blends, molecular structure of gel and physical properties of SBR/devulcanized blends was investigated. The results showed that,as the screw rotating speed and reaction temperature increased during extrusion,the mechanical shear stress on ground tire rubber enhanced, which made cross-linking network break up, degrade or retro-crosslink, resulting in low gel content of devulcanized blends and small size of gel particles in SBR/devulcanized blends. By adding 2-butyl alcohol, the process of devulcanization was accelerated, side-reactions were restrained, double bonds were protected,and the gel content of devulcanized blends was further decreased. With the 2-bu-tyl alcohol accelerated devulcanization condition of screw rotating speed at 1 000 r · min-1 and reaction temperature at 240 ℃ ,the tensile strength

  20. Análisis cuantitativo de la evolución post-quirúrgica de la rotura de ligamento cruzado anterior mediante el uso de la plataforma de fuerza - Quantitative analysis of the evolution of post-surgical anterior cruciate ligament rupture using force platform

    Directory of Open Access Journals (Sweden)

    Vilar, JM


    Full Text Available ResumenEl analisis cinético mediante plataforma de fuerza es un método objetivo de cuantificar el apoyo de los miembros en los animales domésticos.SummaryKinetic análisis by jeans of force platforms is an objetive method to measure weight - bearing or ground reaction force (GRF.

  1. Evidence for the ground-state resonance of 26O

    CERN Document Server

    Lunderberg, E; Kohley, Z; Attanayake, H; Baumann, T; Bazin, D; Christian, G; Divaratne, D; Grimes, S M; Haagsma, A; Finck, J E; Frank, N; Luther, B; Mosby, S; Nagy, T; Peaslee, G F; Schiller, A; Snyder, J; Spyrou, A; Strongman, M J; Thoennessen, M


    Evidence for the ground state of the neutron-unbound nucleus 26O was observed for the first time in the single proton-knockout reaction from a 82 MeV/u 27F beam. Neutrons were measured in coincidence with 24O fragments. 26O was determined to be unbound by 150+50-150 keV from the observation of low-energy neutrons. This result agrees with recent shell model calculations based on microscopic two- and three-nucleon forces.

  2. Methods for Addressing Uncertainty and Variability to Characterize Potential Health Risk from Trichloroethylene-Contaminated Ground Water at Beale Air Force Base in California:Integration of Uncertainty and Variability in Pharmacokinetics and Dose-Response

    Energy Technology Data Exchange (ETDEWEB)

    Bogen, K T


    Traditional estimates of health risk are typically inflated, particularly if cancer is the dominant endpoint and there is fundamental uncertainty as to mechanism(s) of action. Risk is more realistically characterized if it accounts for joint uncertainty and interindividual variability within a systematic probabilistic framework to integrate the joint effects on risk of distributed parameters of all (linear as well as nonlinear) risk-extrapolation models involved. Such a framework was used to characterize risks to potential future residents posed by trichloroethylene (TCE) in ground water at an inactive landfill site on Beale Air Force Base in California. Variability and uncertainty were addressed in exposure-route-specific estimates of applied dose, in pharmacokinetically based estimates of route-specific metabolized fractions of absorbed TCE, and in corresponding biologically effective doses estimated under a genotoxic/linear (MA{sub G}) vs. a cytotoxic/nonlinear (MA{sub c}) mechanistic assumption for TCE-induced cancer. Increased risk conditional on effective dose was estimated under MA{sub G} based on seven rodent-bioassay data sets, and under MA{sub c} based on mouse hepatotoxicity data. Mean and upper-bound estimates of combined risk calculated by the unified approach were <10{sup -6} and 10{sup -4}, respectively, while corresponding estimates based on traditional deterministic methods were >10{sup -5} and 10{sup -4}, respectively. It was estimated that no TCE-related harm is likely to occur due to any plausible residential exposure scenario involving the site. The systematic probabilistic framework illustrated is particularly suited to characterizing risks that involve uncertain and/or diverse mechanisms of action.

  3. Methods for Addressing Uncertainty and Variability to Characterize Potential Health Risk From Trichloroethylene-Contaminated Ground Water Beale Air Force Base in California: Integration of Uncertainty and Variability in Pharmacokinetics and Dose-Response

    Energy Technology Data Exchange (ETDEWEB)

    Bogen, K.T.


    Traditional estimates of health risk are typically inflated, particularly if cancer is the dominant endpoint and there is fundamental uncertainty as to mechanism(s) of action. Risk is more realistically characterized if it accounts for joint uncertainty and interindividual variability after applying a unified probabilistic approach to the distributed parameters of all (linear as well as nonlinear) risk-extrapolation models involved. Such an approach was applied to characterize risks to potential future residents posed by trichloroethylene (TCE) in ground water at an inactive landfill site on Beale Air Force Base in California. Variability and uncertainty were addressed in exposure-route-specific estimates of applied dose, in pharmacokinetically based estimates of route-specific metabolized fractions of absorbed TCE, and in corresponding biologically effective doses estimated under a genotoxic/linear (MA{sub g}) vs. a cytotoxic/nonlinear (MA{sub c}) mechanistic assumption for TCE-induced cancer. Increased risk conditional on effective dose was estimated under MA{sub G} based on seven rodent-bioassay data sets, and under MA, based on mouse hepatotoxicity data. Mean and upper-bound estimates of combined risk calculated by the unified approach were <10{sup -6} and <10{sup -4}, respectively, while corresponding estimates based on traditional deterministic methods were >10{sup -5} and >10{sup -4}, respectively. It was estimated that no TCE-related harm is likely occur due any plausible residential exposure scenario involving the site. The unified approach illustrated is particularly suited to characterizing risks that involve uncertain and/or diverse mechanisms of action.

  4. Avoiding a Hollow Force: Force Planning with Any Budget (United States)


    1 Cassata, Burns, Dozier, and Baldor , ―U.S. ground forces could be cut by 100,000, Defense Secretary Panetta says‖, Associated Press...spending. Figure 2 8 7 Cassata, Burns, Dozier, and Baldor , op cit. 8 Ibid. 4 Figure 3 (below... Baldor , ―U.S. ground forces could be cut by 100,000, Defense Secretary Panetta says‖, Associated Press, Jan 26 2012.

  5. Precision measurements of the pp\\to \\pi^+pn and pp\\to \\pi^+d reactions: importance of long-range and tensor force effects

    CERN Document Server

    Budzanowski, A; Hawranek, P; Jahn, R; Jha, V; Kilian, K; Kirillov, Da; Kirillov, Di; Kliczewski, S; Kolev, D; Kravcikova, M; Lesiak, M; Lieb, J; Machner, H; Magiera, A; Maier, R; Martinská, G; Nedev, S; Niskanen, J A; Piskunov, N; Protic, D; Ritman, 6 J; Von Rossen, P; Roy, B J; Sitnik, I; Siudak, R; Stein, H J; Tsenov, R; Urbán, J; Vankova, 2 G; Wilkin, C


    Inclusive measurements of pion production in proton--proton collisions in the forward direction were undertaken at 400 and 600 MeV at COSY using the Big Karl spectrograph. The high resolution in the $\\pi^+$ momentum ensured that there was an unambiguous separation of the $pp\\to {\\pi}^+d/\\pi^+pn$ channels. Using these and earlier data, the ratio of the production cross sections could be followed through the $\\Delta$ region and compared with the predictions of final state interaction theory. Deviations are strongly influenced by long-range terms in the production operator and the tensor force in the final $pn$ system. These have been investigated in a realistic $pp\\to\\pi^+d/\\pi^+pn$ calculation that includes $S \\rightleftharpoons D$ channel coupling between the final nucleons. A semi-quantitative understanding of the observed effects is achieved.

  6. The cost of leg forces in bipedal locomotion: a simple optimization study.

    Directory of Open Access Journals (Sweden)

    John R Rebula

    Full Text Available Simple optimization models show that bipedal locomotion may largely be governed by the mechanical work performed by the legs, minimization of which can automatically discover walking and running gaits. Work minimization can reproduce broad aspects of human ground reaction forces, such as a double-peaked profile for walking and a single peak for running, but the predicted peaks are unrealistically high and impulsive compared to the much smoother forces produced by humans. The smoothness might be explained better by a cost for the force rather than work produced by the legs, but it is unclear what features of force might be most relevant. We therefore tested a generalized force cost that can penalize force amplitude or its n-th time derivative, raised to the p-th power (or p-norm, across a variety of combinations for n and p. A simple model shows that this generalized force cost only produces smoother, human-like forces if it penalizes the rate rather than amplitude of force production, and only in combination with a work cost. Such a combined objective reproduces the characteristic profiles of human walking (R² = 0.96 and running (R² = 0.92, more so than minimization of either work or force amplitude alone (R² = -0.79 and R² = 0.22, respectively, for walking. Humans might find it preferable to avoid rapid force production, which may be mechanically and physiologically costly.

  7. The cost of leg forces in bipedal locomotion: a simple optimization study. (United States)

    Rebula, John R; Kuo, Arthur D


    Simple optimization models show that bipedal locomotion may largely be governed by the mechanical work performed by the legs, minimization of which can automatically discover walking and running gaits. Work minimization can reproduce broad aspects of human ground reaction forces, such as a double-peaked profile for walking and a single peak for running, but the predicted peaks are unrealistically high and impulsive compared to the much smoother forces produced by humans. The smoothness might be explained better by a cost for the force rather than work produced by the legs, but it is unclear what features of force might be most relevant. We therefore tested a generalized force cost that can penalize force amplitude or its n-th time derivative, raised to the p-th power (or p-norm), across a variety of combinations for n and p. A simple model shows that this generalized force cost only produces smoother, human-like forces if it penalizes the rate rather than amplitude of force production, and only in combination with a work cost. Such a combined objective reproduces the characteristic profiles of human walking (R² = 0.96) and running (R² = 0.92), more so than minimization of either work or force amplitude alone (R² = -0.79 and R² = 0.22, respectively, for walking). Humans might find it preferable to avoid rapid force production, which may be mechanically and physiologically costly.

  8. Determination of External Forces in Alpine Skiing Using a Differential Global Navigation Satellite System

    Directory of Open Access Journals (Sweden)

    Erich Müller


    Full Text Available In alpine ski racing the relationships between skier kinetics and kinematics and their effect on performance and injury-related aspects are not well understood. There is currently no validated system to determine all external forces simultaneously acting on skiers, particularly under race conditions and throughout entire races. To address the problem, this study proposes and assesses a method for determining skier kinetics with a single lightweight differential global navigation satellite system (dGNSS. The dGNSS kinetic method was compared to a reference system for six skiers and two turns each. The pattern differences obtained between the measurement systems (offset ± SD were −26 ± 152 N for the ground reaction force, 1 ± 96 N for ski friction and −6 ± 6 N for the air drag force. The differences between turn means were small. The error pattern within the dGNSS kinetic method was highly repeatable and precision was therefore good (SD within system: 63 N ground reaction force, 42 N friction force and 7 N air drag force allowing instantaneous relative comparisons and identification of discriminative meaningful changes. The method is therefore highly valid in assessing relative differences between skiers in the same turn, as well as turn means between different turns. The system is suitable to measure large capture volumes under race conditions.

  9. Motion synthesis and force distribution analysis for a biped robot. (United States)

    Trojnacki, Maciej T; Zielińska, Teresa


    In this paper, the method of generating biped robot motion using recorded human gait is presented. The recorded data were modified taking into account the velocity available for robot drives. Data includes only selected joint angles, therefore the missing values were obtained considering the dynamic postural stability of the robot, which means obtaining an adequate motion trajectory of the so-called Zero Moment Point (ZMT). Also, the method of determining the ground reaction forces' distribution during the biped robot's dynamic stable walk is described. The method was developed by the authors. Following the description of equations characterizing the dynamics of robot's motion, the values of the components of ground reaction forces were symbolically determined as well as the coordinates of the points of robot's feet contact with the ground. The theoretical considerations have been supported by computer simulation and animation of the robot's motion. This was done using Matlab/Simulink package and Simulink 3D Animation Toolbox, and it has proved the proposed method.

  10. Kinetics of the forelimb in horses circling on different ground surfaces at the trot. (United States)

    Chateau, Henry; Camus, Mathieu; Holden-Douilly, Laurène; Falala, Sylvain; Ravary, Bérangère; Vergari, Claudio; Lepley, Justine; Denoix, Jean-Marie; Pourcelot, Philippe; Crevier-Denoix, Nathalie


    Circling increases the expression of distal forelimb lameness in the horse, depending on rein, diameter and surface properties of the circle. However, there is limited information about the kinetics of horses trotting on circles. The aim of this study was to quantify ground reaction force (GRF) and moments in the inside and outside forelimb of horses trotting on circles and to compare the results obtained on different ground surfaces. The right front hoof of six horses was equipped with a dynamometric horseshoe, allowing the measurement of 3-dimensional GRF, moments and trajectory of the centre of pressure. The horses were lunged at slow trot (3 m/s) on right and left 4 m radius circles on asphalt and on a fibre sand surface. During circling, the inside forelimb produced a smaller peak vertical force and the stance phase was longer in comparison with the outside forelimb. Both right and left circling produced a substantial transversal force directed outwards. On a soft surface (sand fibre), the peak transversal force and moments around the longitudinal and vertical axes of the hoof were significantly decreased in comparison with a hard surface (asphalt). Sinking of the lateral or medial part of the hoof in a more compliant surface enables reallocation of part of the transversal force into a proximo-distal force, aligned with the limb axis, thus limiting extrasagittal stress on the joints.

  11. 'Grounded' Politics

    DEFF Research Database (Denmark)

    Schmidt, Garbi


    play within one particular neighbourhood: Nørrebro in the Danish capital, Copenhagen. The article introduces the concept of grounded politics to analyse how groups of Muslim immigrants in Nørrebro use the space, relationships and history of the neighbourhood for identity political statements....... The article further describes how national political debates over the Muslim presence in Denmark affect identity political manifestations within Nørrebro. By using Duncan Bell’s concept of mythscape (Bell, 2003), the article shows how some political actors idealize Nørrebro’s past to contest the present...

  12. On Grounding of Fast Ships

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Pedersen, Preben Terndrup


    numerical examples also indicate that, even with impact speeds of 40 knots against a 1:10 sloping bottom, the global strength of the hull girder is not exceeded by the grounding induced loads.For the local deformation of high-speed ship hulls at the point of contact with the ground, the paper presents...... experimental results from crushing tests of aluminium hull girder components with realistic full-scale scantlings. A comparison with existing simplified calculation procedures for ductile metallic structures show that these procedures cannot be used to predict the crushing behaviour of the fore body of high......The paper deals with analysis of grounding of high-speed crafts. It is the purpose to present a comprehensive mathematical model for calculation of the overall dynamic ship response during grounding. This procedure is applied to derive the motions, the time varying sectional forces and the local...

  13. Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant. (United States)

    Kim, Hyung J; Fernandez, Justin W; Akbarshahi, Massoud; Walter, Jonathan P; Fregly, Benjamin J; Pandy, Marcus G


    Musculoskeletal modeling and optimization theory are often used to determine muscle forces in vivo. However, convincing quantitative evaluation of these predictions has been limited to date. The present study evaluated model predictions of knee muscle forces during walking using in vivo measurements of joint contact loading acquired from an instrumented implant. Joint motion, ground reaction force, and tibial contact force data were recorded simultaneously from a single subject walking at slow, normal, and fast speeds. The body was modeled as an 8-segment, 21-degree-of-freedom articulated linkage, actuated by 58 muscles. Joint moments obtained from inverse dynamics were decomposed into leg-muscle forces by solving an optimization problem that minimized the sum of the squares of the muscle activations. The predicted knee muscle forces were input into a 3D knee implant contact model to calculate tibial contact forces. Calculated and measured tibial contact forces were in good agreement for all three walking speeds. The average RMS errors for the medial, lateral, and total contact forces over the entire gait cycle and across all trials were 140 +/- 40 N, 115 +/- 32 N, and 183 +/- 45 N, respectively. Muscle coordination predicted by the model was also consistent with EMG measurements reported for normal walking. The combined experimental and modeling approach used in this study provides a quantitative framework for evaluating model predictions of muscle forces in human movement.

  14. Unsteady propulsion in ground effects (United States)

    Park, Sung Goon; Kim, Boyoung; Sung, Hyung Jin


    Many animals in nature experience hydrodynamic benefits by swimming or flying near the ground, and this phenomenon is commonly called 'ground effect'. A flexible fin flapping near the ground was modelled, inspired by animals swimming. A transverse heaving motion was prescribed at the leading edge, and the posterior parts of the fin were passively fluttering by the fin-fluid interaction. The fin moved freely horizontally in a quiescent flow, by which the swimming speed was dynamically determined. The fin-fluid interaction was considered by using the penalty immersed boundary method. The kinematics of the flexible fin was altered by flapping near the ground, and the vortex structures generated in the wake were deflected upward, which was qualitatively analyzed by using the vortex dipole model. The swimming speed and the thrust force of the fin increased by the ground effects. The hydrodynamic changes from flapping near the ground affected the required power input in two opposite ways; the increased and decreased hydrodynamic pressures beneath the fin hindered the flapping motion, increasing the power input, while the transversely reduced flapping motion induced the decreased power input. The Froude propulsive efficiency was increased by swimming in the ground effects Creative Research Initiatives (No. 2016-004749) program of the National Research Foundation of Korea (MSIP).

  15. Design and construction of anchor jacked piles under no reaction force conditions%无反力条件下锚杆静压桩的设计与施工

    Institute of Scientific and Technical Information of China (English)

    乔国华; 周森


    The anchor jacked piles are the fully-developed underpinning technique for reinforced foundations,which are specially effect in narrow spaces,but they are confined to the reaction forces and can not be pressed in if they are not supported from the reinforced foundations.The uneven settlement reinforcement of the dormitory complexes of certain university in Guangdong province is taken as an example to introduce the construction process and design of anchor jacked piles under no reaction force conditions.The calculation methods and the construction parameters for the anchor jacked piles are discussed based on the working principle and mechanism of the pile penetration.The monitoring observations show that the uneven settlement of the foundation tends to be stable after the completion of the pile penetration.The techniques used in the case can be as the reference for the similar projects.%锚杆静压桩是一项成熟的基础加固托换技术,在狭小空间内更显其长,但它往往受到基础反力的局限,若没有被加固基础提供反力,就无法进行压桩施工。本文结合广东某综合性大学二级学院学生宿舍楼不均匀沉降加固实例,对锚杆静压桩的工作原理及沉桩机理进行了分析,探讨了锚杆静压桩设计参数的计算和取值原则,详细介绍了无反力条件下锚杆静压桩的设计与施工技术。沉降观测结果表明,加固方案对控制基础不均匀沉降起到了良好作用,为类似工程问题提供了参考经验。

  16. Outdoor ground impedance models. (United States)

    Attenborough, Keith; Bashir, Imran; Taherzadeh, Shahram


    Many models for the acoustical properties of rigid-porous media require knowledge of parameter values that are not available for outdoor ground surfaces. The relationship used between tortuosity and porosity for stacked spheres results in five characteristic impedance models that require not more than two adjustable parameters. These models and hard-backed-layer versions are considered further through numerical fitting of 42 short range level difference spectra measured over various ground surfaces. For all but eight sites, slit-pore, phenomenological and variable porosity models yield lower fitting errors than those given by the widely used one-parameter semi-empirical model. Data for 12 of 26 grassland sites and for three beech wood sites are fitted better by hard-backed-layer models. Parameter values obtained by fitting slit-pore and phenomenological models to data for relatively low flow resistivity grounds, such as forest floors, porous asphalt, and gravel, are consistent with values that have been obtained non-acoustically. Three impedance models yield reasonable fits to a narrow band excess attenuation spectrum measured at short range over railway ballast but, if extended reaction is taken into account, the hard-backed-layer version of the slit-pore model gives the most reasonable parameter values.

  17. Discussing the theological grounds of moral principles. (United States)

    Heller, Jan C


    Discussing the theological beliefs that ground Catholic moral principles can make some people uncomfortable, even while others will appreciate it. But these reactions will sometimes be revealed not as the emotions they are, but as objections to the relative independence or dependence of morality on foundational beliefs. In the end, context should dictate whether one displays the theological beliefs that ground Catholic moral principles.

  18. Estimation of forces at the interface between an artificial limb and an implant directly fixed into the femur in above-knee amputees. (United States)

    Stephenson, Paul; Seedhom, Bahaa B


    This article describes the method used for estimating the forces and moments, acting during locomotion, at the interface between an artificial leg and an implant directly fixed into the femur, in above-knee amputees. Twelve transfemoral amputees completed a predefined gait assessment during which kinetic (ground reaction loads and torque) and kinematic (limb orientation) gait data were recorded. A developed mathematical model enabled the ground reaction forces to be translated to the level of amputation. It is assumed that the loads calculated at the stump-socket interface would approximate those experienced by the proposed implant. The longitudinal force and the moment in the sagittal plane were the two most significant loads at the stump. These data were essential to obtain to facilitate the analysis of stress arising at the implant-bone interface that has been subsequently undertaken.

  19. Adding Value to Force Diagrams: Representing Relative Force Magnitudes (United States)

    Wendel, Paul


    Nearly all physics instructors recognize the instructional value of force diagrams, and this journal has published several collections of exercises to improve student skill in this area.1-4 Yet some instructors worry that too few students perceive the conceptual and problem-solving utility of force diagrams,4-6 and over recent years a rich variety of approaches has been proposed to add value to force diagrams. Suggestions include strategies for identifying candidate forces,6,7 emphasizing the distinction between "contact" and "noncontact" forces,5,8 and the use of computer-based tutorials.9,10 Instructors have suggested a variety of conventions for constructing force diagrams, including approaches to arrow placement and orientation2,11-13 and proposed notations for locating forces or marking action-reaction force pairs.8,11,14,15

  20. Coaxial Atomic Force Microscope Tweezers

    CERN Document Server

    Brown, K A; Westervelt, R M


    We demonstrate coaxial atomic force microscope (AFM) tweezers that can trap and place small objects using dielectrophoresis (DEP). An attractive force is generated at the tip of a coaxial AFM probe by applying a radio frequency voltage between the center conductor and a grounded shield; the origin of the force is found to be DEP by measuring the pull-off force vs. applied voltage. We show that the coaxial AFM tweezers (CAT) can perform three dimensional assembly by picking up a specified silica microsphere, imaging with the microsphere at the end of the tip, and placing it at a target destination.

  1. Labor Force (United States)

    Occupational Outlook Quarterly, 2012


    The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…

  2. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. (United States)

    Samozino, P; Rabita, G; Dorel, S; Slawinski, J; Peyrot, N; Saez de Villarreal, E; Morin, J-B


    This study aimed to validate a simple field method for determining force- and power-velocity relationships and mechanical effectiveness of force application during sprint running. The proposed method, based on an inverse dynamic approach applied to the body center of mass, estimates the step-averaged ground reaction forces in runner's sagittal plane of motion during overground sprint acceleration from only anthropometric and spatiotemporal data. Force- and power-velocity relationships, the associated variables, and mechanical effectiveness were determined (a) on nine sprinters using both the proposed method and force plate measurements and (b) on six other sprinters using the proposed method during several consecutive trials to assess the inter-trial reliability. The low bias (<5%) and narrow limits of agreement between both methods for maximal horizontal force (638 ± 84 N), velocity (10.5 ± 0.74 m/s), and power output (1680 ± 280 W); for the slope of the force-velocity relationships; and for the mechanical effectiveness of force application showed high concurrent validity of the proposed method. The low standard errors of measurements between trials (<5%) highlighted the high reliability of the method. These findings support the validity of the proposed simple method, convenient for field use, to determine power, force, velocity properties, and mechanical effectiveness in sprint running.

  3. Assessment of Knee Cartilage Stress Distribution and Deformation Using Motion Capture System and Wearable Sensors for Force Ratio Detection

    Directory of Open Access Journals (Sweden)

    N. Mijailovic


    Full Text Available Knowledge about the knee cartilage deformation ratio as well as the knee cartilage stress distribution is of particular importance in clinical studies due to the fact that these represent some of the basic indicators of cartilage state and that they also provide information about joint cartilage wear so medical doctors can predict when it is necessary to perform surgery on a patient. In this research, we apply various kinds of sensors such as a system of infrared cameras and reflective markers, three-axis accelerometer, and force plate. The fluorescent marker and accelerometers are placed on the patient’s hip, knee, and ankle, respectively. During a normal walk we are recording the space position of markers, acceleration, and ground reaction force by force plate. Measured data are included in the biomechanical model of the knee joint. Geometry for this model is defined from CT images. This model includes the impact of ground reaction forces, contact force between femur and tibia, patient body weight, ligaments, and muscle forces. The boundary conditions are created for the finite element method in order to noninvasively determine the cartilage stress distribution.

  4. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi


    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  5. Ground based materials science experiments (United States)

    Meyer, M. B.; Johnston, J. C.; Glasgow, T. K.


    The facilities at the Microgravity Materials Science Laboratory (MMSL) at the Lewis Research Center, created to offer immediate and low-cost access to ground-based testing facilities for industrial, academic, and government researchers, are described. The equipment in the MMSL falls into three categories: (1) devices which emulate some aspect of low gravitational forces, (2) specialized capabilities for 1-g development and refinement of microgravity experiments, and (3) functional duplicates of flight hardware. Equipment diagrams are included.

  6. Modelling of Muscle Force Distributions During Barefoot and Shod Running. (United States)

    Sinclair, Jonathan; Atkins, Stephen; Richards, Jim; Vincent, Hayley


    Research interest in barefoot running has expanded considerably in recent years, based around the notion that running without shoes is associated with a reduced incidence of chronic injuries. The aim of the current investigation was to examine the differences in the forces produced by different skeletal muscles during barefoot and shod running. Fifteen male participants ran at 4.0 m·s-1 (± 5%). Kinematics were measured using an eight camera motion analysis system alongside ground reaction force parameters. Differences in sagittal plane kinematics and muscle forces between footwear conditions were examined using repeated measures or Freidman's ANOVA. The kinematic analysis showed that the shod condition was associated with significantly more hip flexion, whilst barefoot running was linked with significantly more flexion at the knee and plantarflexion at the ankle. The examination of muscle kinetics indicated that peak forces from Rectus femoris, Vastus medialis, Vastus lateralis, Tibialis anterior were significantly larger in the shod condition whereas Gastrocnemius forces were significantly larger during barefoot running. These observations provide further insight into the mechanical alterations that runners make when running without shoes. Such findings may also deliver important information to runners regarding their susceptibility to chronic injuries in different footwear conditions.

  7. Modelling of Muscle Force Distributions During Barefoot and Shod Running

    Directory of Open Access Journals (Sweden)

    Sinclair Jonathan


    Full Text Available Research interest in barefoot running has expanded considerably in recent years, based around the notion that running without shoes is associated with a reduced incidence of chronic injuries. The aim of the current investigation was to examine the differences in the forces produced by different skeletal muscles during barefoot and shod running. Fifteen male participants ran at 4.0 m·s-1 (± 5%. Kinematics were measured using an eight camera motion analysis system alongside ground reaction force parameters. Differences in sagittal plane kinematics and muscle forces between footwear conditions were examined using repeated measures or Freidman’s ANOVA. The kinematic analysis showed that the shod condition was associated with significantly more hip flexion, whilst barefoot running was linked with significantly more flexion at the knee and plantarflexion at the ankle. The examination of muscle kinetics indicated that peak forces from Rectus femoris, Vastus medialis, Vastus lateralis, Tibialis anterior were significantly larger in the shod condition whereas Gastrocnemius forces were significantly larger during barefoot running. These observations provide further insight into the mechanical alterations that runners make when running without shoes. Such findings may also deliver important information to runners regarding their susceptibility to chronic injuries in different footwear conditions.

  8. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.


    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  9. Transition States from Empirical Force Fields

    DEFF Research Database (Denmark)

    Jensen, Frank; Norrby, Per-Ola


    This is an overview of the use of empirical force fields in the study of reaction mechanisms. EVB-type methods (including RFF and MCMM) produce full reaction surfaces by mixing, in the simplest case, known force fields describing reactants and products. The SEAM method instead locates approximate...

  10. Strong Force

    CERN Document Server

    Without the strong force, there could be no life. The carbon in living matter is synthesised in stars via the strong force. Lighter atomic nuclei become bound together in a process called nuclear fusion. A minor change in this interaction would make life impossible. As its name suggests, the strong force is the most powerful of the 4 forces, yet its sphere of influence is limited to within the atomic nucleus. Indeed it is the strong force that holds together the quarks inside the positively charged protons. Without this glue, the quarks would fly apart repulsed by electromagnetism. In fact, it is impossible to separate 2 quarks : so much energy is needed, that a second pair of quarks is produced. Text for the interactive: Can you pull apart the quarks inside a proton?

  11. A force plate based method for the calibration of force/torque sensors. (United States)

    Faber, Gert S; Chang, Chien-Chi; Kingma, Idsart; Schepers, H Martin; Herber, Sebastiaan; Veltink, Peter H; Dennerlein, Jack T


    This study describes a novel calibration method for six-degrees-of-freedom force/torque sensors (FTsensors) using a pre-calibrated force plate (FP) as a reference measuring device. In this calibration method, the FTsensor is rigidly connected to a FP and force/torque data are synchronously recorded while a dynamic functional loading procedure is applied by the researcher. Based on these data an accurate calibration matrix for the FTsensor can easily be obtained via least-squares optimization. Using this calibration method, this study further investigated what loading methods are appropriate for the calibration of FTsensors intended for ambulatory measurement of ground reaction forces (GRFs). Seven different loading methods were compared (e.g., walking, pushing while standing on the FTsensor). Calibration matrices were calculated based on the raw data from the seven loading methods individually and all loading methods combined. Performance of these calibration matrices was subsequently compared in an in situ trial. During the in situ trial, five common work tasks (e.g., walking, manual lifting, pushing) were performed by an experimenter, while standing on the FP wearing a "ForceShoe" with two calibrated FTsensors attached to its sole. Root-mean-square differences (RMSDs) between the FTsensor and FP outcomes were calculated over all tasks. Using the calibration matrices based on all loading methods combined resulted in small RMSDs (GRF: <8 N, center of pressure: <2 mm). Using the calibration matrices based on "pushing against manual resistance" resulted in similar RMSDs, proving it to be the best single loading method.

  12. Weak Force

    CERN Multimedia

    Without the weak force, the sun wouldn't shine. The weak force causes beta decay, a form of radioactivity that triggers nuclear fusion in the heart of the sun. The weak force is unlike other forces: it is characterised by disintegration. In beta decay, a down quark transforms into an up quark and an electron is emitted. Some materials are more radioactive than others because the delicate balance between the strong force and the weak force varies depending on the number of particles in the atomic nucleus. We live in the midst of a natural radioactive background that varies from region to region. For example, in Cornwall where there is a lot of granite, levels of background radiation are much higher than in the Geneva region. Text for the interactive: Move the Geiger counter to find out which samples are radioactive - you may be surprised. It is the weak force that is responsible for the Beta radioactivity here. The electrons emitted do not cross the plastic cover. Why do you think there is some detected radioa...


    Institute of Scientific and Technical Information of China (English)

    GAO Tong; LIU Nan-sheng; LU Xi-yun


    The ground effect on insect hovering is investigated using an immersed boundary-lattice Boltzmann method to solve the two-dimensional incompressible Navier-Stokes equations. A virtual model of an elliptic foil with oscillating translation and rotation near a ground is used. The objective of this study is to deal with the ground effect on the unsteady forces and vortical structures and to get the physical insights in the relevant mechanisms. Two typical insect hovering modes, I.e., normal and dragonfly hovering mode, are examined. Systematic computations have been carried out for some parameters, and the ground effect on the unsteady forces and vortical structures is analyzed.

  14. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)


    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  15. 空军地勤人员角色认知、自我效能感与职业倦怠相关性的调查分析%Investigation in Air Force Ground Crew on the Correlation between Role Cognition, Self-efficacy and Job Burnout

    Institute of Scientific and Technical Information of China (English)

    甘景梨; 梁学军; 程正祥; 高存友; 段惠峰; 赵兰民


    Objective To explore the correlation between role cognition, self-efficacy and job burnout in air force ground crew so as to provide basis for psychological research of ground crew. Methods The military job burnout scale, role perception scale and self-effi-cacy scale were applied to 204 ground crew for evaluation and the correlation between the scores of job burnout scale and the scores of role perception scale and self-efficacy scale was analyzed. Results (1)The total score and the score of each factor of air force ground crew were much higher than military norm(P<0.05 or 0.01);(2)The officers’total score of job burnout, the scores of the sense of achievement, somatization, self-evaluation, interpersonal relationship were significantly higher than those of soldiers(P<0.05 or 0.01);(3)There existed an obvious correlation between the total score of job burnout, the score of each factor and role ambiguity, role conflict and self-efficacy(P<0.05 or 0.01). Conclusions The job burnout in air force ground crew is serious;there exists an obvious causality between role cognition and self-efficacy; more attention should be paid to the capacity training of role cognition and the raising of self-efficacy so as to reduce job burnout.%目的:探讨空军地勤人员的职业倦怠与角色认知、自我效能感的相关性,以期为地勤人员的心理研究提供参考。方法采用军人职业倦怠量表、角色认知量表和自我效能感量表,对204名空军地勤人员进行测评,分析职业倦怠量表得分与角色认知得分、自我效能感得分之间的相关关系。结果(1)空军地勤人员职业倦怠总分及各因子分均显著高于军人常模(P<0.05或0.01)。(2)军官的职业倦怠总分、成就感、躯体化、自我评价、人际关系得分均明显高于士兵(P<0.05或0.01)。(3)空军地勤人员职业倦怠总分和各因子与角色模糊、角色冲突和自我效能

  16. A new bi-axial cantilever beam design for biomechanics force measurements. (United States)

    Lin, Huai-Ti; Trimmer, Barry A


    The demand for measuring forces exerted by animals during locomotion has increased dramatically as biomechanists strive to understand and implement biomechanical control strategies. In particular, multi-axial force transducers are often required to capture animal limb coordination patterns. Most existing force transducers employ strain gages arranged in a Wheatstone bridge on a cantilever beam. Bi-axial measurements require duplicating this arrangement in the transverse direction. In this paper, we reveal a method to embed a Wheatstone bridge inside another to allow bi-axial measurements without additional strain gages or additional second beams. This hybrid configuration resolves two force components from a single bridge circuit and simplifies fabrication for the simultaneous assessment of normal and transverse loads. This design can be implemented with two-dimensional fabrication techniques and can even be used to modify a common full bridge cantilever force transducer. As a demonstration of the new design, we built a simple beam which achieved bi-axial sensing capability that outperformed a conventional half-bridge-per-axis bi-axial strain gage design. We have used this design to measure the ground reaction forces of a crawling caterpillar and a caterpillar-mimicking soft robot. The simplicity and increased sensitivity of this method could facilitate bi-axial force measurements for experimental biologists.

  17. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. (United States)

    Zhao, Dong; Banks, Scott A; Mitchell, Kim H; D'Lima, Darryl D; Colwell, Clifford W; Fregly, Benjamin J


    The external knee adduction torque has been proposed as a surrogate measure for medial compartment load during gait. However, a direct link between these two quantities has not been demonstrated using in vivo measurement of medial compartment load. This study uses in vivo data collected from a single subject with an instrumented knee implant to evaluate this link. The subject performed five different overground gait motions (normal, fast, slow, wide, and toe-out) with simultaneous collection of instrumented implant, video motion, and ground reaction data. For each trial, the knee adduction torque was measured externally while the total axial force applied to the tibial insert was measured internally. Based on data collected from the same subject performing treadmill gait under fluoroscopic motion analysis, a regression equation was developed to calculate medial contact force from the implant load cell measurements. Correlation analyses were performed for the stance phase and entire gait cycle to quantify the relationship between the knee adduction torque and both the medial contact force and the medial to total contact force ratio. When the entire gait cycle was analyzed, R(2) for medial contact force was 0.77 when all gait trials were analyzed together and between 0.69 and 0.93 when each gait trial was analyzed separately (p knee adduction torque is highly correlated with medial compartment contact force and medial to total force ratio during gait.

  18. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. (United States)

    Gerus, Pauline; Sartori, Massimo; Besier, Thor F; Fregly, Benjamin J; Delp, Scott L; Banks, Scott A; Pandy, Marcus G; D'Lima, Darryl D; Lloyd, David G


    Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model.

  19. Forced Snaking (United States)

    Ponedel, Benjamin; Knobloch, Edgar


    We study spatial localization in the real subcritical Ginzburg-Landau equation ut =m0 u +m1 cos2/π l x u +uxx +d | u | 2 u -| u | 4 u with spatially periodic forcing. When d > 0 and m1 = 0 this equation exhibits bistability between the trivial state u = 0 and a homogeneous nontrivial state u =u0 with stationary localized structures which accumulate at the Maxwell point m0 = - 3d2 / 16 . When spatial forcing is included its wavelength is imprinted on u0 creating conditions favorable to front pinning and hence spatial localization. We use numerical continuation to show that under appropriate conditions such forcing generates a sequence of localized states organized within a snakes-and-ladders structure centered on the Maxwell point, and refer to this phenomenon as forced snaking. We determine the stability properties of these states and show that longer lengthscale forcing leads to stationary trains consisting of a finite number of strongly localized, weakly interacting pulses exhibiting foliated snaking.

  20. Radiation reaction in fusion plasmas. (United States)

    Hazeltine, R D; Mahajan, S M


    The effects of a radiation reaction on thermal electrons in a magnetically confined plasma, with parameters typical of planned burning plasma experiments, are studied. A fully relativistic kinetic equation that includes the radiation reaction is derived. The associated rate of phase-space contraction is computed and the relative importance of the radiation reaction in phase space is estimated. A consideration of the moments of the radiation reaction force show that its effects are typically small in reactor-grade confined plasmas, but not necessarily insignificant.

  1. Reaction Graph

    Institute of Scientific and Technical Information of China (English)



    The paper proposes reaction graphs as graphical representations of computational objects.A reaction graph is a directed graph with all its arrows and some of its nodes labeled.Computations are modled by graph rewriting of a simple nature.The basic rewriting rules embody the essence of both the communications among processes and cut-eliminations in proofs.Calculi of graphs are ideentified to give a formal and algebraic account of reaction graphs in the spirit of process algebra.With the help of the calculi,it is demonstrated that reaction graphs capture many interesting aspects of computations.

  2. Prediction and mitigation analysis of ground vibration caused by running high-speed trains on rigid-frame viaducts (United States)

    Sun, Liangming; Xie, Weiping; He, Xingwen; Hayashikawa, Toshiro


    In this study a 3D numerical analysis approach is developed to predict the ground vibration around rigid-frame viaducts induced by running high-speed trains. The train-bridge-ground interaction system is divided into two subsystems: the train-bridge interaction and the soil-structure interaction. First, the analytical program to simulate bridge vibration with consideration of train-bridge interaction is developed to obtain the vibration reaction forces at the pier bottoms. The highspeed train is described by a multi-DOFs vibration system and the rigid-frame viaduct is modeled with 3D beam elements. Second, applying these vibration reaction forces as input external excitations, the ground vibration is simulated by using a general-purpose program that includes soil-structure interaction effects. The validity of the analytical procedure is confirmed by comparing analytical and experimental results. The characteristics of high-speed train-induced vibrations, including the location of predominant vibration, are clarified. Based on this information a proposed vibration countermeasure using steel strut and new barrier is found effective in reducing train-induced vibrations and it satisfies environmental vibration requirements. The vibration screening efficiency is evaluated by reduction VAL based on 1/3 octave band spectral analysis.

  3. Intermolecular forces. (United States)

    Buckingham, A D


    The nature of molecular interactions is examined. Intermolecular forces are divided into long-range and short-range components; the former operate at distances where the effects of electron exchange are negligible and decrease as an inverse power of the separation. The long-range interactions may be subdividied into electrostatic, induction and dispersion contributions, where the electrostatic component is the interaction of the permanent charge distributions and the others originate in the fluctuations in the distributions. Typical magnitudes of the various contributions are given. The forces between macroscopic bodies are briefly considered, as are the effects of a medium. Some of the manifestations of molecular interactions are discussed.

  4. Acceleration capability in elite sprinters and ground impulse: Push more, brake less? (United States)

    Morin, Jean-Benoît; Slawinski, Jean; Dorel, Sylvain; de Villareal, Eduardo Saez; Couturier, Antoine; Samozino, Pierre; Brughelli, Matt; Rabita, Giuseppe


    Overground sprint studies have shown the importance of net horizontal ground reaction force impulse (IMPH) for acceleration performance, but only investigated one or two steps over the acceleration phase, and not in elite sprinters. The main aim of this study was to distinguish between propulsive (IMPH+) and braking (IMPH-) components of the IMPH and seek whether, for an expected higher IMPH, faster elite sprinters produce greater IMPH+, smaller IMPH-, or both. Nine high-level sprinters (100-m best times range: 9.95-10.60s) performed 7 sprints (2×10 m, 2×15 m, 20 m, 30 m and 40 m) during which ground reaction force was measured by a 6.60 m force platform system. By placing the starting-blocks further from the force plates at each trial, and pooling the data, we could assess the mechanics of an entire "virtual" 40-m acceleration. IMPH and IMPH+ were significantly correlated with 40-m mean speed (r=0.868 and 0.802, respectively; P<0.01), whereas vertical impulse and IMPH- were not. Multiple regression analyses confirmed the significantly higher importance of IMPH+ for sprint acceleration performance. Similar results were obtained when considering these mechanical data averaged over the first half of the sprint, but not over the second half. In conclusion, faster sprinters were those who produced the highest amounts of horizontal net impulse per unit body mass, and those who "pushed more" (higher IMPH+), but not necessarily those who also "braked less" (lower IMPH-) in the horizontal direction.

  5. Feed forward and feedback control for over-ground locomotion in anaesthetized cats (United States)

    Mazurek, K. A.; Holinski, B. J.; Everaert, D. G.; Stein, R. B.; Etienne-Cummings, R.; Mushahwar, V. K.


    The biological central pattern generator (CPG) integrates open and closed loop control to produce over-ground walking. The goal of this study was to develop a physiologically based algorithm capable of mimicking the biological system to control multiple joints in the lower extremities for producing over-ground walking. The algorithm used state-based models of the step cycle each of which produced different stimulation patterns. Two configurations were implemented to restore over-ground walking in five adult anaesthetized cats using intramuscular stimulation (IMS) of the main hip, knee and ankle flexor and extensor muscles in the hind limbs. An open loop controller relied only on intrinsic timing while a hybrid-CPG controller added sensory feedback from force plates (representing limb loading), and accelerometers and gyroscopes (representing limb position). Stimulation applied to hind limb muscles caused extension or flexion in the hips, knees and ankles. A total of 113 walking trials were obtained across all experiments. Of these, 74 were successful in which the cats traversed 75% of the 3.5 m over-ground walkway. In these trials, the average peak step length decreased from 24.9 ± 8.4 to 21.8 ± 7.5 (normalized units) and the median number of steps per trial increased from 7 (Q1 = 6, Q3 = 9) to 9 (8, 11) with the hybrid-CPG controller. Moreover, within these trials, the hybrid-CPG controller produced more successful steps (step length ≤ 20 cm ground reaction force ≥ 12.5% body weight) than the open loop controller: 372 of 544 steps (68%) versus 65 of 134 steps (49%), respectively. This supports our previous preliminary findings, and affirms that physiologically based hybrid-CPG approaches produce more successful stepping than open loop controllers. The algorithm provides the foundation for a neural prosthetic controller and a framework to implement more detailed control of locomotion in the future.

  6. Estimation of lumbar spinal loading and trunk muscle forces during asymmetric lifting tasks: application of whole-body musculoskeletal modelling in OpenSim. (United States)

    Kim, Hyun-Kyung; Zhang, Yanxin


    Large spinal compressive force combined with axial torsional shear force during asymmetric lifting tasks is highly associated with lower back injury (LBI). The aim of this study was to estimate lumbar spinal loading and muscle forces during symmetric lifting (SL) and asymmetric lifting (AL) tasks using a whole-body musculoskeletal modelling approach. Thirteen healthy males lifted loads of 7 and 12 kg under two lifting conditions (SL and AL). Kinematic data and ground reaction force data were collected and then processed by a whole-body musculoskeletal model. The results show AL produced a significantly higher peak lateral shear force as well as greater peak force of psoas major, quadratus lumborum, multifidus, iliocostalis lumborum pars lumborum, longissimus thoracis pars lumborum and external oblique than SL. The greater lateral shear forces combined with higher muscle force and asymmetrical muscle contractions may have the biomechanical mechanism responsible for the increased risk of LBI during AL. Practitioner Summary: Estimating lumbar spinal loading and muscle forces during free-dynamic asymmetric lifting tasks with a whole-body musculoskeletal modelling in OpenSim is the core value of this research. The results show that certain muscle groups are fundamentally responsible for asymmetric movement, thereby producing high lumbar spinal loading and muscle forces, which may increase risks of LBI during asymmetric lifting tasks.

  7. Calculation of excitation functions of the 54,56,57,58Fe(, ) reaction from threshold to 30 MeV

    Indian Academy of Sciences (India)

    Damewan Suchiang; J Joseph Jeremiah; B M Jyrwa


    The cross-sections for the formation of 54,56,57,58Co in the 54,56,57,58Fe(, ) reaction from threshold to 30 MeV protons have been theoretically calculated using the TALYS-1.4 nuclear model code, whereby we have studied major nuclear reaction mechanisms, including direct, preequilibrium and compound nuclear reaction. Subsequently, the level density and shell damping parameters have been adjusted and at the same time, the odd–even effects are well comprehended. The excitation functions have been compared with experimental nuclear data. It is observed that the theoretical cross-sections match fairly well. Proton-induced reaction cross-sections provide clues to understand the nuclear structure and offers a good testing ground for ideas about nuclear forces. In addition, complete information in this field is very much required for application in accelerator-driven subcritical system.

  8. ``Force,'' ontology, and language (United States)

    Brookes, David T.; Etkina, Eugenia


    We introduce a linguistic framework through which one can interpret systematically students’ understanding of and reasoning about force and motion. Some researchers have suggested that students have robust misconceptions or alternative frameworks grounded in everyday experience. Others have pointed out the inconsistency of students’ responses and presented a phenomenological explanation for what is observed, namely, knowledge in pieces. We wish to present a view that builds on and unifies aspects of this prior research. Our argument is that many students’ difficulties with force and motion are primarily due to a combination of linguistic and ontological difficulties. It is possible that students are primarily engaged in trying to define and categorize the meaning of the term “force” as spoken about by physicists. We found that this process of negotiation of meaning is remarkably similar to that engaged in by physicists in history. In this paper we will describe a study of the historical record that reveals an analogous process of meaning negotiation, spanning multiple centuries. Using methods from cognitive linguistics and systemic functional grammar, we will present an analysis of the force and motion literature, focusing on prior studies with interview data. We will then discuss the implications of our findings for physics instruction.

  9. Force decomposition in robot force control (United States)

    Murphy, Steve H.; Wen, John T.


    The unit inconsistency in force decomposition has motivated an investigation into the force control problem in multiple-arm manipulation. Based on physical considerations, it is argued that the force that should be controlled is the internal force at the specified frame in the payload. This force contains contributions due to both applied forces from the arms and the inertial force from the payload and the arms. A least-squares scheme free of unit inconsistency for finding this internal force is presented. The force control issue is analyzed, and an integral force feedback controller is proposed.

  10. Elbow moment and forces at the hands during swing-through axillary crutch gait. (United States)

    Reisman, M; Burdett, R G; Simon, S R; Norkin, C


    We investigated swing-through axillary crutch gait (nonweight bearing on the left lower extremity) to determine the effects of gait speed, crutch length, and handle position on the forces exerted at the hands and on the moments exerted about the elbow joints. Ten healthy subjects, skilled in swing-through crutch gait, walked at three speeds using fitted crutches, at a fixed speed with four different crutch lengths, and at a fixed speed with four different handle positions. We collected ground reaction forces that exerted simultaneously on the right crutch and motion data with a force plate and three high-speed movie cameras. A biomechanical model was developed to calculate the forces exerted at the right hand and the moments exerted about the right elbow joint. Changing gait speed from slow to the normal gait of the subject showed statistically significant effects (p less than .05) on the forces at the hand. When we changed crutch heights for the subjects, we found no significant effects on the forces at the subjects' hands. Changing handle position significantly affected the moment at the elbow. Increasing the elbow-flexion angle above 30 degrees by raising the crutch handle 1 to 2 in resulted in a 100 percent increase in elbow-extension moment. We found a correlation of .82 between actual average elbow-flexion angle and elbow-extension moment. Changing gait speed or crutch length did not affect elbow moment.

  11. Calculation of muscle forces during normal gait under consideration of femoral bending moments. (United States)

    Lutz, Frederick; Mastel, Roland; Runge, Martin; Stief, Felix; Schmidt, André; Meurer, Andrea; Witte, Hartmut


    This paper introduces a new approach for computing lower extremity muscle forces by incorporating equations that consider "bone structure" and "prevention of bending by load reduction" into existing optimization algorithms. Lower extremity muscle and joint forces, during normal gait, were calculated and compared using two different optimization approaches. We added constraint equations that prevent femoral bending loads to an existing approach that considers "minimal total muscular force". Gait parameters such as kinematics, ground reaction forces, and surface electromyographic activation patterns were examined using standardized gait analysis. A subject-specific anatomic model of the lower extremities, obtained from magnetic resonance images of a healthy male, was used for the simulations. Finite element analysis was used to calculate femoral loads. The conventional method of calculating muscle forces leads to higher rates of femoral bending and structural stress than the new approach. Adding equations with structural subject-specific parameters in our new approach resulted in reduced femoral stress patterns. These findings show that our new approach improves the accuracy of femoral stress and strain simulations. Structural overloads caused by bending can be avoided during inverse calculation of muscle forces.

  12. [The effect of the motion of forefoot joint at the force exerted upon the floor during walking exercise]. (United States)

    Maeda, A; Nishizono, H; Ebashi, H; Shibayama, H


    In walking exercise the human body is exposed to external forces. Some of them are produced by constraints such as surface, shoes or opponent. In kick action of walking, the ground reaction force (GRF) is the most important external force. The magnitude of the GRF, its direction, and point of application have an influence on the load on the human body. The purpose of this study is to clarify the role of forefoot joint (artt. metatarsophalangeae) at the force exerted upon the floor during kick action of walking. The device used in this study to analyze the GRF and its three components consists of Kistler's force platform. Output from force transducer was collected online with a TEAC data recorder and MEM-4101 minicomputer. The impact force measurements were taken from the anterior-posterior force time curves at the take-off for 1 subject walking 10 trials at 2 m/sec with 2 different pairs of shoes (Shoes 1: thin sole of 4mm, and Shoes 2: thick sole of 40mm) and without shoes. High speed (200f/sec) cinematography was also used to analyze the angular displacement of forefoot joint at the take-off of walking exercise. The force acting at the forefoot joint may produce the anterior-posterior force of the GRF which is defined as the propelling power acting on the human body during walking exercise. The result showed that the impact force peak occurred 40-60 msec before take-off and the propelling part of kick action accounted for only about 6% of the external force.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Prediction of Ground Vibration from Freight Trains (United States)

    Jones, C. J. C.; Block, J. R.


    Heavy freight trains emit ground vibration with predominant frequency components in the range 4-30 Hz. If the amplitude is sufficient, this may be felt by lineside residents, giving rise to disturbance and concern over possible damage to their property. In order to establish the influence of parameters of the track and rolling stock and thereby enable the design of a low vibration railway, a theoretical model of both the generation and propagation of vibration is required. The vibration is generated as a combination of the effects of dynamic forces, due to the unevenness of the track, and the effects of the track deformation under successive axle loads. A prediction scheme, which combines these effects, has been produced. A vehicle model is used to predict the dynamic forces at the wheels. This includes the non-linear effects of friction damped suspensions. The loaded track profile is measured by using a track recording coach. The dynamic loading and the effects of the moving axles are combined in a track response model. The predicted track vibration is compared to measurements. The transfer functions from the track to a point in the ground can be calculated by using a coupled track and a three-dimensional layered ground model. The propagation effects of the ground layers are important but the computation of the transfer function from each sleeper, which would be required for a phase coherent summation of the vibration in the ground, would be prohibitive. A compromise summation is used and results are compared with measurements.

  14. Airport Ground Staff Scheduling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    travels safely and efficiently through the airport. When an aircraft lands, a significant number of tasks must be performed by different groups of ground crew, such as fueling, baggage handling and cleaning. These tasks must be complete before the aircraft is able to depart, as well as check......-in and security services. These tasks are collectively known as ground handling, and are the major source of activity with airports. The business environments of modern airports are becoming increasingly competitive, as both airports themselves and their ground handling operations are changing to private...... ownership. As airports are in competition to attract airline routes, efficient and reliable ground handling operations are imperative for the viability and continued growth of both airports and airlines. The increasing liberalization of the ground handling market prompts ground handling operators...

  15. [Introduction to grounded theory]. (United States)

    Wang, Shou-Yu; Windsor, Carol; Yates, Patsy


    Grounded theory, first developed by Glaser and Strauss in the 1960s, was introduced into nursing education as a distinct research methodology in the 1970s. The theory is grounded in a critique of the dominant contemporary approach to social inquiry, which imposed "enduring" theoretical propositions onto study data. Rather than starting from a set theoretical framework, grounded theory relies on researchers distinguishing meaningful constructs from generated data and then identifying an appropriate theory. Grounded theory is thus particularly useful in investigating complex issues and behaviours not previously addressed and concepts and relationships in particular populations or places that are still undeveloped or weakly connected. Grounded theory data analysis processes include open, axial and selective coding levels. The purpose of this article was to explore the grounded theory research process and provide an initial understanding of this methodology.

  16. Nuclear reactions an introduction

    CERN Document Server

    Paetz gen. Schieck, Hans


    Nuclei and nuclear reactions offer a unique setting for investigating three (and in some cases even all four) of the fundamental forces in nature. Nuclei have been shown – mainly by performing scattering experiments with electrons, muons, and neutrinos – to be extended objects with complex internal structures: constituent quarks; gluons, whose exchange binds the quarks together; sea-quarks, the ubiquitous virtual quark-antiquark pairs and, last but not least, clouds of virtual mesons, surrounding an inner nuclear region, their exchange being the source of the nucleon-nucleon interaction.   The interplay between the (mostly attractive) hadronic nucleon-nucleon interaction and the repulsive Coulomb force is responsible for the existence of nuclei; their degree of stability, expressed in the details and limits of the chart of nuclides; their rich structure and the variety of their interactions. Despite the impressive successes of the classical nuclear models and of ab-initio approaches, there is clearly no ...

  17. TARDEC Ground Vehicle Robotics (United States)


    TARDEC Ground Vehicle Robotics Mr. Jim Parker, Associate Director Dr. Greg Hudas, Chief Engineer UNCLASSIFIED: Distribution Statement A (OPSEC...TARDEC Ground Vehicle Robotics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jim Parker; Greg Hudas 5d. PROJECT...Provide Transition-Ready, Cost-Effective, and Innovative Robotics and Control System Solutions for Manned, Optionally-Manned, and Unmanned Ground Vehicles

  18. Ground Vehicle Robotics (United States)


    Ground Vehicle Robotics Jim Parker Associate Director, Ground Vehicle Robotics UNCLASSIFIED: Distribution Statement A. Approved for public...DATE 20 AUG 2013 2. REPORT TYPE Briefing Charts 3. DATES COVERED 09-05-2013 to 15-08-2013 4. TITLE AND SUBTITLE Ground Vehicle Robotics 5a...Willing to take Risk on technology -User Evaluated -Contested Environments -Operational Data Applied Robotics for Installation & Base Ops -Low Risk

  19. The Grounded Theory Bookshelf

    Directory of Open Access Journals (Sweden)

    Vivian B. Martin, Ph.D.


    Full Text Available Bookshelf will provide critical reviews and perspectives on books on theory and methodology of interest to grounded theory. This issue includes a review of Heaton’s Reworking Qualitative Data, of special interest for some of its references to grounded theory as a secondary analysis tool; and Goulding’s Grounded Theory: A practical guide for management, business, and market researchers, a book that attempts to explicate the method and presents a grounded theory study that falls a little short of the mark of a fully elaborated theory.Reworking Qualitative Data, Janet Heaton (Sage, 2004. Paperback, 176 pages, $29.95. Hardcover also available.

  20. Reaction Wheel Disturbance Model Extraction Software Project (United States)

    National Aeronautics and Space Administration — Reaction wheel mechanical noise is one of the largest sources of disturbance forcing on space-based observatories. Such noise arises from mass imbalance, bearing...

  1. Within- and between-session reliability of power, force, and rate of force development during the power clean. (United States)

    Comfort, Paul


    Although there has been extensive research regarding the power clean, its application to sports performance, and use as a measure of assessing changes in performance, no research has determined the reliability assessing the kinetics of the power clean across testing session. The aim of this study was to determine the within- and between-session reliability of kinetic variables during the power clean. Twelve professional rugby league players (age 24.5 ± 2.1 years; height 182.86 ± 6.97 cm; body mass 92.85 ± 5.67 kg; 1 repetition maximum [1RM] power clean 102.50 ± 10.35 kg) performed 3 sets of 3 repetitions of power cleans at 70% of their 1RM, while standing on a force plate, to determine within-session reliability and repeated on 3 separate occasions to determine reliability between sessions. Intraclass correlation coefficients revealed a high reliability within- (r ≥ 0.969) and between-sessions (r ≥ 0.988). Repeated-measures analysis of variance showed no significant difference (p > 0.05) in peak vertical ground reaction force, rate of force development, and peak power between sessions, with small standard error of the measurements and smallest detectable differences for each kinetic variable (3.13 and 8.68 N; 84.39 and 233.93 N·s; 24.54 and 68.01 W, respectively). Therefore, to identify a meaningful change in performance, the strength and conditioning coach should look for a change in peak force ≥8.68 N, rate of force development ≥24.54 N·s, and a change in peak power ≥68.01 W to signify an adaptive response to training, which is greater than the variance between sessions, in trained athletes proficient at performing the power clean.

  2. Performance and Stability of a Winged Vehicle in Ground Effect

    CERN Document Server

    de Divitiis, Nicola


    Present work deals with the dynamics of vehicles which intentionally operate in the ground proximity. The dynamics in ground effect is influenced by the vehicle orientation with respect to the ground, since the aerodynamic force and moment coefficients, which in turn depend on height and angle of attack, also vary with the Euler angles. This feature, usually neglected in the applications, can be responsible for sizable variations of the aircraft performance and stability. A further effect, caused by the sink rate, determines unsteadiness that modifies the aerodynamic coefficients. In this work, an analytical formulation is proposed for the force and moment calculation in the presence of the ground and taking the aircraft attitude and sink rate into account. The aerodynamic coefficients are firstly calculated for a representative vehicle and its characteristics in ground effect are investigated. Performance and stability characteristics are then discussed with reference to significant equilibrium conditions, w...

  3. Capture reactions

    NARCIS (Netherlands)

    Endt, P.M.


    Capture reactions will be considered here from the viewpoint of the nuclear spectroscopist. Especially important to him are the capture of neutrons, protons, and alpha particles, which may proceed through narrow resonances, offering a well defined initial state for the subsequent deexcitation proces

  4. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup


    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  5. Redefinition of the four fundamental forces (United States)

    Heaston, R. J.


    Unification of the fundamental forces has been one of the great theoretical problems in physics in the twentieth century. Beginning in 1918 with Weyl and continuing through the last thirty five years of Einstein's life, many different attempts were made to unify the electromagnetic and the gravitational forces. Moreover, since the four fundamental forces were first defined in the early forties, extensive efforts by numerous investigators have gone into measuring and attempting to unify two or more of these forces. This paper defines the four forces and discusses some of the difficulties in unifying the forces. A new approach to unification will be presented with a discussion of the consequences and predictions of this approach. The four fundamental forces are defined. These four forces are all that are necessary to characterize all phenomena. From an Army perspective, the strong force is only of interest in the basic structure of matter and in nuclear weapons effects. The electromagnetic force is involved in the structure of matter, all electronic devices, all chemical reactions, explosives, and propellants. The weak force occurs in nuclear weapons effects. The gravitational force becomes involved in every load carrying device and in the motion of aircraft, projectiles and missiles. Frequently, such as in a fuze, more than one force is involved.

  6. Structuring U.S. Ground Forces to Meet All Threats (United States)


    79 Martin Samuels , Doctrine and Dogma: German and...83 J.H. Boraston, ed. Sir Douglas Haig Despatches. (London: J.M. Dent and Sons LTD, 1919), 322. 84 Samuels , 149. 85 Edmonds, History of the...Regular Army in 1914,” in A Nation in Arms: A Social Study of the British Army in the First World War, ed. Ian Beckett and Keith Simpson (Manchester

  7. A Ground Force Concept for Low Intensity Conflict (United States)


    the continued 25Frank R. Barnett, Richard H. Shultz and B. Hugh Tovar , eds., Special Operations in US Strategy (Washington, D.C.: National Defense...Richard H.; and Tovar , B. Hugh, eds. Special Operations in US Strategy. Washington, D.C.: National Defense University Press, 1984. Beckett, Ian F.W...1980. Carnesale, Albert; Doty, Paul; Hoffman, Stanley; and Huntington, Samuel . "How Might A Nuclear War Begin." In The Nuclear Reader, 2d ed., pp. 256

  8. Unattended Ground Sensors for Expeditionary Force 21 Intelligence Collections (United States)


    ADAPT) to serve in an innovative method as nonlethal mines . Each of the three select types of UGS systems are described in this chapter, as well as...optional switch closure/tripwire.  Two AA batteries ( lithium preferred).  Solar and extended life power available.  Weight: 8 ounces.  Rugged...switch. [25] 63 The ADAPT was first designed as non-lethal mines in addition to surveillance assets, and has since then evolved to meet the

  9. Communication, concepts and grounding. (United States)

    van der Velde, Frank


    This article discusses the relation between communication and conceptual grounding. In the brain, neurons, circuits and brain areas are involved in the representation of a concept, grounding it in perception and action. In terms of grounding we can distinguish between communication within the brain and communication between humans or between humans and machines. In the first form of communication, a concept is activated by sensory input. Due to grounding, the information provided by this communication is not just determined by the sensory input but also by the outgoing connection structure of the conceptual representation, which is based on previous experiences and actions. The second form of communication, that between humans or between humans and machines, is influenced by the first form. In particular, a more successful interpersonal communication might require forms of situated cognition and interaction in which the entire representations of grounded concepts are involved.

  10. Stochastic ground motion simulation (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan


    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  11. Relational grounding facilitates development of scientifically useful multiscale models

    Directory of Open Access Journals (Sweden)

    Lam Tai


    Full Text Available Abstract We review grounding issues that influence the scientific usefulness of any biomedical multiscale model (MSM. Groundings are the collection of units, dimensions, and/or objects to which a variable or model constituent refers. To date, models that primarily use continuous mathematics rely heavily on absolute grounding, whereas those that primarily use discrete software paradigms (e.g., object-oriented, agent-based, actor typically employ relational grounding. We review grounding issues and identify strategies to address them. We maintain that grounding issues should be addressed at the start of any MSM project and should be reevaluated throughout the model development process. We make the following points. Grounding decisions influence model flexibility, adaptability, and thus reusability. Grounding choices should be influenced by measures, uncertainty, system information, and the nature of available validation data. Absolute grounding complicates the process of combining models to form larger models unless all are grounded absolutely. Relational grounding facilitates referent knowledge embodiment within computational mechanisms but requires separate model-to-referent mappings. Absolute grounding can simplify integration by forcing common units and, hence, a common integration target, but context change may require model reengineering. Relational grounding enables synthesis of large, composite (multi-module models that can be robust to context changes. Because biological components have varying degrees of autonomy, corresponding components in MSMs need to do the same. Relational grounding facilitates achieving such autonomy. Biomimetic analogues designed to facilitate translational research and development must have long lifecycles. Exploring mechanisms of normal-to-disease transition requires model components that are grounded relationally. Multi-paradigm modeling requires both hyperspatial and relational grounding.

  12. Determination of the feed force of a milling type longwall shearer

    Energy Technology Data Exchange (ETDEWEB)

    Krauze, K. (Akademia Gorniczo-Hutnicza, Cracow (Poland). Instytut Maszyn Gorniczych, Przerobczych i Automatyki)


    Presents an analytical method of determining forces that appear in a shearer. Departing from loads on a shearer during its various operation phases, formulae are derived for feed forces and loads on skids of the slide base. Schematic diagrams of loads on a shearer body from arm forces, reduced forces, forces of resistance to motion, the tractor force and reaction torque of the coal body are presented. Exemplary calculations of the feed force and reaction force in shearer skids are given for the KWB-3RDU and KGS-320 shearer loaders. Graphs of forces versus cutting head rotation angle, slotting time and arm motion time are provided. 2 refs.

  13. Convection in Drying and Freezing Ground

    CERN Document Server

    Faizal, Mir


    In this paper we analyse the drying of a soil composed of particles, water and solute impurities, and study the occurrence of convective instabilities during evaporation. We find that the main driving force for instability is the formation of a concentration gradient at the soil surface due to the evaporation of water. A similar phenomenon may occur during the thawing of frozen ground in Arctic regions.

  14. Finding Reaction Pathways of Type A + B → X: Toward Systematic Prediction of Reaction Mechanisms. (United States)

    Maeda, Satoshi; Morokuma, Keiji


    In these five decades, many useful tools have been developed for exploring quantum chemical potential energy surfaces. The success in theoretical studies of chemical reaction mechanisms has been greatly supported by these tools. However, systematic prediction of reaction mechanisms starting only from given reactants and catalysts is still very difficult. Toward this goal, we describe the artificial force induced reaction (AFIR) method for automatically finding reaction paths of type A + B → X (+ Y). By imposing an artificial force to given reactants and catalysts, the method can find the reactive sites very efficiently. Further pressing by the artificial force provides approximate transition states and product structures, which can be easily reoptimized to the corresponding true ones. This procedure can be executed very efficiently just by minimizing a single function called the AFIR function. All important reaction paths can be found by repeating this cycle starting from many initial orientations. We also discuss perspectives of automated reaction path search methods toward the above goal.

  15. Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal and supramaximal running speeds in sprinters. (United States)

    Mero, A; Komi, P V


    The relationships between ground reaction forces, electromyographic activity (EMG), elasticity and running velocity were investigated at five speeds from submaximal to supramaximal levels in 11 male and 8 female sprinters. Supramaximal running was performed by a towing system. Reaction forces were measured on a force platform. EMGs were recorded telemetrically with surface electrodes from the vastus lateralis and gastrocnemius muscles, and elasticity of the contact leg was evaluated with spring constant values measured by film analysis. Data showed increases in most of the parameters studied with increasing running speed. At supramaximal velocity (10.36 +/- 0.31 m X s-1; 108.4 +/- 3.8%) the relative increase in running velocity correlated significantly (P less than 0.01) with the relative increase in stride rate of all subjects. In male subjects the relative change in stride rate correlated with the relative change of IEMG in the eccentric phase (P less than 0.05) between maximal and supramaximal runs. Running with the towing system caused a decrease in elasticity during the impact phase but this was significant (P less than 0.05) only in the female sprinters. The average net resultant force in the eccentric and concentric phases correlated significantly (P less than 0.05-0.001) with running velocity and stride length in the maximal run. It is concluded that increased neural activation in supramaximal effort positively affects stride rate and that average net resultant force as a specific force indicator is primarily related to stride length and that the values in this indicator may explain the difference in running velocity between men and women.

  16. A History of the Army Ground Forces; Study Number 16. The Army Ground Forces History of the Second Army (United States)


    artillery with infantry was poor, orders were verbose, and time and space factors were not -sufficiently considered. Genera.. Fredndall observed pungently ...practicable, he must be subjected in training to every eight, sound, and sensation of battle. He must be trained to act calmly and with sound judgment

  17. A 3D mathematical model to predict spinal joint and hip joint force for trans-tibial amputees with different SACH foot pylon adjustments. (United States)

    Yu, Chung-huang; Hung, Yu-Cheng; Lin, Yang-Hua; Chen, Guan-Xun; Wei, Shun-Hwa; Huang, Chang-Hung; Chen, Chen-Sheng


    A solid-ankle cushioned heel (SACH) foot is a non-joint foot without natural ankle function. Trans-tibial amputees may occur toe scuffing in the late swing phase due to a lack of active dorsiflexion. To address this problem, clinical guidelines suggests shortening the pylon to produce a smooth gait. However, this causes a leg length discrepancy, induces asymmetry in the hip joint, and causes an overload of L5/S1 joint force. Therefore, this study aimed to investigate the influence of different prosthesis pylons on the hip joint and L5/S1 joint forces. Ten subjects were recruited using leg length for normalisation. Four different pylon reductions (0%, 1%, 2%, and 3%) were used for gait analysis. A Vicon system and force plates were used to collect kinematic data and ground reaction force, respectively. The software package MATLAB was used to create a mathematical model for evaluating the symmetry and force of the hip joint and the low back force of the L5/S1 joint. The model was validated by the correlation coefficient (CC=0.947) and root mean square (RMS=0.028 BW). The model estimated that the 1% group had a symmetrical hip joint force and a lower L5/S1 joint force in the vertical direction. This study indicates that a 1% pylon shortening on a SACH prosthesis is appropriate for a trans-tibial amputee.

  18. Ground State Spin Logic

    CERN Document Server

    Whitfield, J D; Biamonte, J D


    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground state subspace encoding the truth tables of Boolean formulas. The ground state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  19. Ground Vehicle Robotics Presentation (United States)


    Mr. Jim Parker Associate Director Ground Vehicle Robotics Distribution Statement A. Approved for public release Report Documentation Page...Briefing 3. DATES COVERED 01-07-2012 to 01-08-2012 4. TITLE AND SUBTITLE Ground Vehicle Robotics Presentation 5a. CONTRACT NUMBER 5b. GRANT...ABSTRACT Provide Transition-Ready, Cost-Effective, and Innovative Robotics and Control System Solutions for Manned, Optionally-Manned, and Unmanned

  20. Modulating tibiofemoral contact force in the sheep hind limb via treadmill walking: Predictions from an opensim musculoskeletal model. (United States)

    Lerner, Zachary F; Gadomski, Benjamin C; Ipson, Allison K; Haussler, Kevin K; Puttlitz, Christian M; Browning, Raymond C


    Sheep are a predominant animal model used to study a variety of orthopedic conditions. Understanding and controlling the in-vivo loading environment in the sheep hind limb is often necessary for investigations relating to bone and joint mechanics. The purpose of this study was to develop a musculoskeletal model of an adult sheep hind limb and investigate the effects of treadmill walking speed on muscle and joint contact forces. We constructed the skeletal geometry of the model from computed topography images. Dual-energy x-ray absorptiometry was utilized to establish the inertial properties of each model segment. Detailed dissection and tendon excursion experiments established the requisite muscle lines of actions. We used OpenSim and experimentally-collected marker trajectories and ground reaction forces to quantify muscle and joint contact forces during treadmill walking at 0.25 m• s(-1) and 0.75 m• s(-1) . Peak compressive and anterior-posterior tibiofemoral contact forces were 20% (0.38 BW, p = 0.008) and 37% (0.17 BW, p = 0.040) larger, respectively, at the moderate gait speed relative to the slower speed. Medial-lateral tibiofemoral contact forces were not significantly different. Adjusting treadmill speed appears to be a viable method to modulate compressive and anterior-posterior tibiofemoral contact forces in the sheep hind limb. The musculoskeletal model is freely-available at

  1. Behavior and Mechanism of Pozzolanic Reaction Heat of Fly Ash and Ground Granulated Blastfurnace Slag at Early Age%粉煤灰与矿渣的早期火山灰反应放热行为及其机理

    Institute of Scientific and Technical Information of China (English)

    王冲; 杨长辉; 钱觉时; 钟明全; 赵爽


    针对大体积混凝土绝热温升计算中粉煤灰与矿渣的火山灰反应放热问题,利用微量热仪法测试了不同掺量粉煤灰和矿渣对水泥水化热及放热速率的影响规律,分析了粉煤灰和矿渣水化3d以前的火山灰反应放热行为,采用X射线衍射与差示扫描量热–热重法研究了粉煤灰与矿渣对水泥早期水化及其火山灰放热行为的影响机理。结果表明:粉煤灰与矿渣水化3d时火山灰反应热分别约为3~5J/g和15~16J/g。粉煤灰对水泥水化的阻碍作用在水化24h前最为明显,其火山灰效应主要发生于水化24h之后;矿渣对水泥水化有促进作用,自加水开始即表现出一定的火山灰效应。粉煤灰与矿渣掺入后有助于水泥水化产物中钙矾石的稳定,钙矾石抑制了水泥水化,Ca(OH)2生成量减少,因而粉煤灰与矿渣的火山灰反应也受到影响。%In order to evaluate the pozzolanic reaction heat of fly ash (FA) and ground granulated blastfumace slag (GGBS) in temperature simulation of mass concrete, the influence of replacement of FA and GGBS on the hydration process and heat rate of cement was investigated via microcalorimetry, and the behaviors of pozzolanic reaction heat of FA and GGBS before 3 d were analyzed. Reaction heat of FA and GGBS at early age was discussed by X-ray diffraction and differential scanning calorimetry-thermogravimetry (DSC-TG), respectively. The mechanism of pozzolanic. The results show that the pozzolanic reaction heat of FA and GGBS is 3-5 J/g and 15-16 J/g. The FA has a negative effect on the cement hydration before 24 h, but its pozzolanic effect plays a positive effect on the cement hydration after 24 h. The pozzolanic effect of the GGBS accelerates the cement hydration at early age. Ettringite is more steady in the cement hydration production when FA or GGBS is added, which delays the hydration of cement and produce of Ca(OH)2 Therefore, the pozzolanic

  2. Salmon Muscle Adherence to Polymer Coatings and Determination of Antibiotic Residues by Reversed-Phase High-Performance Liquid Chromatography Coupled to Selected Reaction Monitoring Mass Spectrometry, Atomic Force Microscopy, and Fourier Transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    E. Zumelzu


    Full Text Available The persistent adhesion of salmon muscle to food container walls after treatment with urea solution was observed. This work evaluated the diffusion of antibiotics from the salmon muscle to the polyethylene terephthalate (PET coating protecting the electrolytic chromium coated steel (ECCS plates. New aquaculture production systems employ antibiotics such as florfenicol, florfenicol amine, oxytetracycline, and erythromycin to control diseases. The introduction of antibiotics is a matter of concern regarding the effects on human health and biodiversity. It is important to determine their impact on the adhesion of postmortem salmon muscle to can walls and the surface and structural changes affecting the functionality of multilayers. This work characterized the changes occurring in the multilayer PET polymer and steel of containers by electron microscopy, 3D atomic force microscopy (3D-AFM, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared spectroscopy (FT-IR analyses. A robust mass spectrometry methodology was employed to determine the presence of antibiotic residues. No evidence of antibiotics was observed on the protective coating in the range between 0.001 and 2.0 ng/mL; however, the presence of proteins, cholesterol, and alpha-carotene was detected. This in-depth profiling of the matrix-level elements is relevant for the use of adequate materials in the canning export industry.

  3. Mobility Performance Algorithms for Small Unmanned Ground Vehicles (United States)


    following: min , BFMX MAX T SFTYPC B DCL W æ ö÷ç= ´ ÷ç ÷çè ø100 (5) where: BMX = total braking force used DCLMAX = maximum braking...V = maximum speed limited by visibility BMX = braking force (Equation 5). The reaction time between recognition and application of the brakes

  4. Effects of Sensing Capability on Ground Platform Survivability During Ground Forces Maneuver Operations (United States)


    Bradley M6 Linebacker and M1A2 Abrams Main Battle Tank, and the speed of UAV, were identified to be the three most significant factors affecting platform...Bradley M6 Linebacker and M1A2 Abrams Main Battle Tank, and the speed of UAV, were identified to be the three most significant factors affecting platform...9 1. M1A2 Abrams Main Battle Tank

  5. Applying the cost of generating force hypothesis to uphill running

    Directory of Open Access Journals (Sweden)

    Wouter Hoogkamer


    Full Text Available Historically, several different approaches have been applied to explain the metabolic cost of uphill human running. Most of these approaches result in unrealistically high values for the efficiency of performing vertical work during running uphill, or are only valid for running up steep inclines. The purpose of this study was to reexamine the metabolic cost of uphill running, based upon our understanding of level running energetics and ground reaction forces during uphill running. In contrast to the vertical efficiency approach, we propose that during incline running at a certain velocity, the forces (and hence metabolic energy required for braking and propelling the body mass parallel to the running surface are less than during level running. Based on this idea, we propose that the metabolic rate during uphill running can be predicted by a model, which posits that (1 the metabolic cost of perpendicular bouncing remains the same as during level running, (2 the metabolic cost of running parallel to the running surface decreases with incline, (3 the delta efficiency of producing mechanical power to lift the COM vertically is constant, independent of incline and running velocity, and (4 the costs of leg and arm swing do not change with incline. To test this approach, we collected ground reaction force (GRF data for eight runners who ran thirty 30-second trials (velocity: 2.0–3.0 m/s; incline: 0–9°. We also measured the metabolic rates of eight different runners for 17, 7-minute trials (velocity: 2.0–3.0 m/s; incline: 0–8°. During uphill running, parallel braking GRF approached zero for the 9° incline trials. Thus, we modeled the metabolic cost of parallel running as exponentially decreasing with incline. With that assumption, best-fit parameters for the metabolic rate data indicate that the efficiency of producing mechanical power to lift the center of mass vertically was independent of incline and running velocity, with a value of ∼29

  6. Ground Enterprise Management System Project (United States)

    National Aeronautics and Space Administration — Emergent Space Technologies Inc. proposes to develop the Ground Enterprise Management System (GEMS) for spacecraft ground systems. GEMS will provide situational...

  7. Modifying landing mat material properties may decrease peak contact forces but increase forefoot forces in gymnastics landings. (United States)

    Mills, Chris; Yeadon, Maurice R; Pain, Matthew T G


    This study investigated how changes in the material properties of a landing mat could minimise ground reaction forces (GRF) and internal loading on a gymnast during landing. A multi-layer model of a gymnastics competition landing mat and a subject-specific seven-link wobbling mass model of a gymnast were developed to address this aim. Landing mat properties (stiffness and damping) were optimised using a Simplex algorithm to minimise GRF and internal loading. The optimisation of the landing mat parameters was characterised by minimal changes to the mat's stiffness (<0.5%) but increased damping (272%) compared to the competition landing mat. Changes to the landing mat resulted in reduced peak vertical and horizontal GRF and reduced bone bending moments in the shank and thigh compared to a matching simulation. Peak bone bending moments within the thigh and shank were reduced by 6% from 321.5 Nm to 302.5Nm and GRF by 12% from 8626 N to 7552 N when compared to a matching simulation. The reduction in these forces may help to reduce the risk of bone fracture injury associated with a single landing and reduce the risk of a chronic injury such as a stress fracture.

  8. Reinventing Grounded Theory: Some Questions about Theory, Ground and Discovery (United States)

    Thomas, Gary; James, David


    Grounded theory's popularity persists after three decades of broad-ranging critique. In this article three problematic notions are discussed--"theory," "ground" and "discovery"--which linger in the continuing use and development of grounded theory procedures. It is argued that far from providing the epistemic security promised by grounded theory,…

  9. Adolescent girls' experiences of underlying social processes triggering stress in their everyday life: a grounded theory study. (United States)

    Haraldsson, Katarina; Lindgren, Eva-Carin; Mattsson, Bengt; Fridlund, Bengt; Marklund, Bertil


    The aim of this study was to generate a theoretical model of underlying social processes that trigger stress in adolescent girls' everyday life. In-depth interviews regarding the experiences of stress at home, school and during leisure time were conducted with 14 17-year-old schoolgirls. Data were analysed by means of the grounded theory method. Stress was triggered in the interaction between responsibility and the way in which the girls were encountered. Triggered emotional reactions took the form of four dimensions of stress included ambivalence, frustration, despair and downheartedness. These reactions were dependent on whether the girls voluntary assumed responsibility for various situations or whether they were forced, or felt they were being forced, to assume responsibility in interaction with an encounter characterized by closeness or distance. These forms of stress reactions could appear in one dimension and subsequently shift to another. From the public health perspective, the generated stress model can be used in the planning and implementation of future actions to prevent stress and promote well-being related to stress in adolescent girls.

  10. Detection of ground ice using ground penetrating radar method

    Institute of Scientific and Technical Information of China (English)

    Gennady M. Stoyanovich; Viktor V. Pupatenko; Yury A. Sukhobok


    The paper presents the results of a ground penetrating radar (GPR) application for the detection of ground ice. We com-bined a reflection traveltime curves analysis with a frequency spectrogram analysis. We found special anomalies at specific traces in the traveltime curves and ground boundaries analysis, and obtained a ground model for subsurface structure which allows the ground ice layer to be identified and delineated.

  11. Collison and Grounding

    DEFF Research Database (Denmark)

    Wang, G.; Ji, C.; Kuhala, P.;


    COMMITTEE MANDATE Concern for structural arrangements on ships and floating structures with regard to their integrity and adequacy in the events of collision and grounding, with the view towards risk assessment and management. Consideration shall be given to the frequency of occurrence, the proba......COMMITTEE MANDATE Concern for structural arrangements on ships and floating structures with regard to their integrity and adequacy in the events of collision and grounding, with the view towards risk assessment and management. Consideration shall be given to the frequency of occurrence...

  12. Muscle Activation and Estimated Relative Joint Force During Running with Weight Support on a Lower-Body Positive-Pressure Treadmill. (United States)

    Jensen, Bente R; Hovgaard-Hansen, Line; Cappelen, Katrine L


    Running on a lower-body positive-pressure (LBPP) treadmill allows effects of weight support on leg muscle activation to be assessed systematically, and has the potential to facilitate rehabilitation and prevent overloading. The aim was to study the effect of running with weight support on leg muscle activation and to estimate relative knee and ankle joint forces. Runners performed 6-min running sessions at 2.22 m/s and 3.33 m/s, at 100%, 80%, 60%, 40%, and 20% body weight (BW). Surface electromyography, ground reaction force, and running characteristics were measured. Relative knee and ankle joint forces were estimated. Leg muscles responded differently to unweighting during running, reflecting different relative contribution to propulsion and antigravity forces. At 20% BW, knee extensor EMGpeak decreased to 22% at 2.22 m/s and 28% at 3.33 m/s of 100% BW values. Plantar flexors decreased to 52% and 58% at 20% BW, while activity of biceps femoris muscle remained unchanged. Unweighting with LBPP reduced estimated joint force significantly although less than proportional to the degree of weight support (ankle). It was concluded that leg muscle activation adapted to the new biomechanical environment, and the effect of unweighting on estimated knee force was more pronounced than on ankle force.

  13. Handbook of force transducers

    CERN Document Server

    Stefanescu, Dan Mihai


    Part I introduces the basic ""Principles and Methods of Force Measurement"" acording to a classification into a dozen of force transducers types: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the ""(Strain Gauge) Force Transducers Components"", evolving from the classical force transducer to the digital / intelligent one, with the inco

  14. Malaysia and forced migration


    Arzura Idris


    This paper analyzes the phenomenon of “forced migration” in Malaysia. It examines the nature of forced migration, the challenges faced by Malaysia, the policy responses and their impact on the country and upon the forced migrants. It considers forced migration as an event hosting multifaceted issues related and relevant to forced migrants and suggests that Malaysia has been preoccupied with the issue of forced migration movements. This is largely seen in various responses invoked from Malaysi...

  15. Coding Issues in Grounded Theory (United States)

    Moghaddam, Alireza


    This paper discusses grounded theory as one of the qualitative research designs. It describes how grounded theory generates from data. Three phases of grounded theory--open coding, axial coding, and selective coding--are discussed, along with some of the issues which are the source of debate among grounded theorists, especially between its…

  16. The oxidative burst reaction in mammalian cells depends on gravity. (United States)

    Adrian, Astrid; Schoppmann, Kathrin; Sromicki, Juri; Brungs, Sonja; von der Wiesche, Melanie; Hock, Bertold; Kolanus, Waldemar; Hemmersbach, Ruth; Ullrich, Oliver


    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in "functional weightlessness" were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function

  17. Force modeling for incisions into various tissues with MRF haptic master (United States)

    Kim, Pyunghwa; Kim, Soomin; Park, Young-Dai; Choi, Seung-Bok


    This study proposes a new model to predict the reaction force that occurs in incisions during robot-assisted minimally invasive surgery. The reaction force is fed back to the manipulator by a magneto-rheological fluid (MRF) haptic master, which is featured by a bi-directional clutch actuator. The reaction force feedback provides similar sensations to laparotomy that cannot be provided by a conventional master for surgery. This advantage shortens the training period for robot-assisted minimally invasive surgery and can improve the accuracy of operations. The reaction force modeling of incisions can be utilized in a surgical simulator that provides a virtual reaction force. In this work, in order to model the reaction force during incisions, the energy aspect of the incision process is adopted and analyzed. Each mode of the incision process is classified by the tendency of the energy change, and modeled for realistic real-time application. The reaction force model uses actual reaction force information with three types of actual tissues: hard tissue, medium tissue, and soft tissue. This modeled force is realized by the MRF haptic master through an algorithm based on the position and velocity of a scalpel using two different control methods: an open-loop algorithm and a closed-loop algorithm. The reaction forces obtained from the proposed model are compared with a desired force in time domain.

  18. Grounding in Instant Messaging (United States)

    Fox Tree, Jean E.; Mayer, Sarah A.; Betts, Teresa E.


    In two experiments, we investigated predictions of the "collaborative theory of language use" (Clark, 1996) as applied to instant messaging (IM). This theory describes how the presence and absence of different grounding constraints causes people to interact differently across different communicative media (Clark & Brennan, 1991). In Study 1, we…

  19. Informed Grounded Theory (United States)

    Thornberg, Robert


    There is a widespread idea that in grounded theory (GT) research, the researcher has to delay the literature review until the end of the analysis to avoid contamination--a dictum that might turn educational researchers away from GT. Nevertheless, in this article the author (a) problematizes the dictum of delaying a literature review in classic…

  20. Radiation reaction in various dimensions (United States)

    Gal'Tsov, Dmitri V.


    We discuss the radiation reaction problem for an electric charge moving in flat space-time of arbitrary dimensions. It is shown that four is the unique dimension where a local differential equation exists accounting for the radiation reaction and admitting a consistent mass renormalization (the Lorentz-Dirac equation). In odd dimensions Huygens's principle does not hold, and, as a result, the radiation reaction force depends on the whole past history of a charge (radiative tail). We show that the divergence in the tail integral can be removed by the mass renormalization only in the 2+1 theory. In even dimensions higher than four, divergences cannot be removed by the mass renormalization.

  1. Radiation reaction in various dimensions

    CERN Document Server

    Galtsov, D V


    We discuss the radiation reaction problem for an electric charge moving in flat space-time of arbitrary dimensions. It is shown that four is the unique dimension where a local differential equation exists accounting for the radiation reaction and admitting a consistent mass-renormalization (the Dirac-Lorentz equation). In odd dimensions the Huygens principle does not hold; as a result, the radiation reaction force depends on the whole past history of a charge (radiative tail). We show that the divergence in the tail integral can be removed by the mass renormalization only in the 2+1 theory. In even dimensions higher than four, divergences can not be removed by a renormalization.

  2. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production

    Directory of Open Access Journals (Sweden)

    Jean-Benoit eMORIN


    Full Text Available Recent literature supports the importance of horizontal ground reaction force (GRF production for sprint acceleration performance. Modeling and clinical studies have shown that the hip extensors are very likely contributors to sprint acceleration performance. We experimentally tested the role of the hip extensors in horizontal GRF production during short, maximal, treadmill sprint accelerations. Torque capabilities of the knee and hip extensors and flexors were assessed using an isokinetic dynamometer in 14 males familiar with sprint running. Then, during 6-s sprints on an instrumented motorized treadmill, horizontal and vertical GRF were synchronized with electromyographic (EMG activity of the vastus lateralis, rectus femoris, biceps femoris and gluteus maximus averaged over the first half of support, entire support, entire swing and end-of-swing phases. No significant correlations were found between isokinetic or EMG variables and horizontal GRF. Multiple linear regression analysis showed a significant relationship (P = 0.024 between horizontal GRF and the combination of biceps femoris EMG activity during the end of the swing and the knee flexors eccentric peak torque. In conclusion, subjects who produced the greatest amount of horizontal force were both able to highly activate their hamstring muscles just before ground contact and present high eccentric hamstring peak torque capability.

  3. Surface plasmon polariton assisted optical pulling force

    CERN Document Server

    Petrov, M I; Bogdanov, A A; Shalin, A S; Dogariu, A


    We demonstrate both analytically and numerically the existence of optical pulling forces acting on particles located near plasmonic interfaces. Two main factors contribute to the appearance of this negative reaction force. The interference between the incident and reflected waves induces a rotating dipole with an asymmetric scattering pattern while the directional excitation of surface plasmon polaritons (SPP) enhances the linear momentum of scattered light. The strongly asymmetric SPP excitation is determined by spin-orbit coupling of the rotating dipole and surface plasmon polariton. As a result of the total momentum conservation, the force acting on the particle points in a direction opposite to the incident wave propagation. We derive analytical expressions for the force acting on a dipolar particles placed in the proximity of plasmonic surfaces. Analytical expressions for this pulling force are derived within the dipole approximation and are in excellent agreement with results of electromagnetic numerica...

  4. Limit cycle walking on a regularized ground

    CERN Document Server

    Jacobs, Henry O


    The singular nature of contact problems, such as walking, makes them difficult to analyze mathematically. In this paper we will "regularize" the contact problem of walking by approximating the ground with a smooth repulsive potential energy and a smooth dissipative friction force. Using this model we are able to prove the existence of a limit cycle for a periodically perturbed system which consists of three masses connected by springs. In particular, this limit cycle exists in a symmetry reduced phase. In the unreduced phase space, the motion of the masses resembles walking.

  5. Knudsen forces on microcantilevers (United States)

    Passian, A.; Wig, A.; Meriaudeau, F.; Ferrell, T. L.; Thundat, T.


    When two surfaces at two different temperatures are separated by a distance comparable to a mean-free path of the molecules of the ambient medium, the surfaces experience Knudsen force. This mechanical force can be important in microelectromechanical systems and in atomic force microscopy. A theoretical discussion of the magnitude of the forces and the conditions where they can be encountered is discussed. A potential application of the Knudsen force in designing a cantilever-based vacuum gauge is discussed.

  6. Ibis ground calibration

    Energy Technology Data Exchange (ETDEWEB)

    Bird, A.J.; Barlow, E.J.; Tikkanen, T. [Southampton Univ., School of Physics and Astronomy (United Kingdom); Bazzano, A.; Del Santo, M.; Ubertini, P. [Istituto di Astrofisica Spaziale e Fisica Cosmica - IASF/CNR, Roma (Italy); Blondel, C.; Laurent, P.; Lebrun, F. [CEA Saclay - Sap, 91 - Gif sur Yvette (France); Di Cocco, G.; Malaguti, E. [Istituto di Astrofisica Spaziale e Fisica-Bologna - IASF/CNR (Italy); Gabriele, M.; La Rosa, G.; Segreto, A. [Istituto di Astrofisica Spaziale e Fisica- IASF/CNR, Palermo (Italy); Quadrini, E. [Istituto di Astrofisica Spaziale e Fisica-Cosmica, EASF/CNR, Milano (Italy); Volkmer, R. [Institut fur Astronomie und Astrophysik, Tubingen (Germany)


    We present an overview of results obtained from IBIS ground calibrations. The spectral and spatial characteristics of the detector planes and surrounding passive materials have been determined through a series of calibration campaigns. Measurements of pixel gain, energy resolution, detection uniformity, efficiency and imaging capability are presented. The key results obtained from the ground calibration have been: - optimization of the instrument tunable parameters, - determination of energy linearity for all detection modes, - determination of energy resolution as a function of energy through the range 20 keV - 3 MeV, - demonstration of imaging capability in each mode, - measurement of intrinsic detector non-uniformity and understanding of the effects of passive materials surrounding the detector plane, and - discovery (and closure) of various leakage paths through the passive shielding system.

  7. Calculation of ground vibration spectra from heavy military vehicles (United States)

    Krylov, V. V.; Pickup, S.; McNuff, J.


    The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.

  8. Aerodynamic ground effect in fruitfly sized insect takeoff

    CERN Document Server

    Kolomenskiy, Dmitry; Engels, Thomas; Liu, Hao; Schneider, Kai; Nave, Jean-Christophe


    Flapping-wing takeoff is studied using numerical modelling, considering the voluntary takeoff of a fruitfly as reference. The parameters of the model are then varied to explore the possible effects of interaction between the flapping-wing model and the ground plane. The numerical method is based on a three-dimensional Navier-Stokes solver and a simple flight dynamics solver that accounts for the body weight, inertia, and the leg thrust. Forces, power and displacements are compared for takeoffs with and without ground effect. Natural voluntary takeoff of a fruitfly, modified takeoffs and hovering are analyzed. The results show that the ground effect during the natural voluntary takeoff is negligible. In the modified takeoffs, the ground effect does not produce any significant increase of the vertical force neither. Moreover, the vertical force even drops in most of the cases considered. There is a consistent increase of the horizontal force, and a decrease of the aerodynamic power, if the rate of climb is suff...


    Institute of Scientific and Technical Information of China (English)



    Anational technical standard for electric vehicles (EVs) may be set by year's end,said National Business Daily citing an industry insider from the Society of Automotive Engineers of China on October 12.The issuance of the national technical standard may forcefully promote the commercialization and industrialization of EVs in China.

  10. Theoretical investigation of hyperthermal reactions at the gas-liquid interface: O (3P) and squalane. (United States)

    Kim, Dongwook; Schatz, George C


    Hyperthermal collisions (5 eV) of ground-state atomic oxygen [O ((3)P)] with a liquid-saturated hydrocarbon, squalane (C(30)H(62)), have been studied using QM/MM hybrid "on-the-fly" direct dynamics. The surface structure of the liquid squalane is obtained from a classical molecular dynamics simulation using the OPLS-AA force field. The MSINDO semiempirical Hamiltonian is combined with OPLS-AA for the QM/MM calculations. In order to achieve a more consistent and efficient simulation of the collisions, we implemented a dynamic partitioning of the QM and MM atoms in which atoms are assigned to QM or MM regions based on their proximity to "seed" (open-shell) atoms that determine where bond making/breaking can occur. In addition, the number of seed atoms is allowed to increase or decrease as time evolves so that multiple reactive events can be described. The results show that H abstraction is the most important process for all incident angles, with H elimination, double H abstraction, and C-C bond cleavage also being important. A number of properties of these reactive channels, as well as inelastic nonreactive scattering, are investigated, including angular and translational energy distributions, the effect of incident collision angle, variation with depth of the reactive event within the liquid, with the reaction site on the hydrocarbon, and the effect of dynamics before and after reaction (direct reaction versus trapping reaction-desorption).

  11. Aerodynamics of flapping insect wing in inclined stroke plane hovering with ground effect (United States)

    Gowda v, Krishne; Vengadesan, S.


    This work presents the time-varying aerodynamic forces and the unsteady flow structures of flapping insect wing in inclined stroke plane hovering with ground effect. Two-dimensional dragonfly model wing is chosen and the incompressible Navier-Stokes equations are solved numerically by using immersed boundary method. The main objective of the present work is to analyze the ground effect on the unsteady forces and vortical structures for the inclined stroke plane motions. We also investigate the influences of kinematics parameters such as Reynolds number (Re), stroke amplitude, wing rotational timing, for various distances between the airfoil and the ground. The effects of aforementioned parameters together with ground effect, on the stroke averaged force coefficients and regimes of force behavior are similar in both normal (horizontal) and inclined stroke plane motions. However, the evolution of the vortex structures which produces the effects are entirely different.

  12. First observation of $^{13}$Li ground state

    CERN Document Server

    Kohley, Z; DeYoung, P A; Volya, A; Baumann, T; Bazin, D; Christian, G; Cooper, N L; Frank, N; Gade, A; Hall, C; Hinnefeld, J; Luther, B; Mosby, S; Peters, W A; Smith, J K; Snyder, J; Spyrou, A; Thoennessen, M


    The ground state of neutron-rich unbound $^{13}$Li was observed for the first time in a one-proton removal reaction from $^{14}$Be at a beam energy of 53.6 MeV/u. The $^{13}$Li ground state was reconstructed from $^{11}$Li and two neutrons giving a resonance energy of 120$^{+60}_{-80}$ keV. All events involving single and double neutron interactions in the Modular Neutron Array (MoNA) were analyzed, simulated, and fitted self-consistently. The three-body ($^{11}$Li+$n+n$) correlations within Jacobi coordinates showed strong dineutron characteristics. The decay energy spectrum of the intermediate $^{12}$Li system ($^{11}$Li+$n$) was described with an s-wave scattering length of greater than -4 fm, which is a smaller absolute value than reported in a previous measurement.



    Hozumi, Koki; KOMODA, Masaki; Ono, Takatsugu; TSUKANO, Yukichi; 穂積, 弘毅; 古茂田, 真幸; 小野, 孝次; 塚野, 雄吉


    In order to investigate longitudinal force and moment characteristics of a hang-glider-wing, ground run tests were conducted using a test vehicle. A hang-glider-wing was installed on a test vehicle using a six-components-balance for wind tunnel use. Aerodynamic force and moment were measrued during the vehicle run at various constant speeds. Geometrical twist distribution along the wing span was recorded as well. Measured force and moment data were corrected for possible ground effect and upw...

  14. Classical tunneling as a consequence of radiation reaction forces (United States)

    Denef, Frederik; Raeymaekers, Joris; Studer, Urban M.; Troost, Walter


    We show that the classical equation of motion of a radiating charged point particle (the Lorentz-Dirac equation) has ``tunneling'' solutions. For a given initial position and velocity we find that, contrary to common belief, several different physically acceptable solutions exist for a range of initial data. Both features are demonstrated for a rectangular barrier. To check that these phenomena are not dependent on the discontinuities of the potential, we also study in detail the solutions for a smoothened (single) potential step.

  15. Comparison of frozen-density embedding and discrete reaction field solvent models for molecular properties. (United States)

    Jacob, Christoph R; Neugebauer, Johannes; Jensen, Lasse; Visscher, Lucas


    We investigate the performance of two discrete solvent models in connection with density functional theory (DFT) for the calculation of molecular properties. In our comparison we include the discrete reaction field (DRF) model, a combined quantum mechanics and molecular mechanics (QM/MM) model using a polarizable force field, and the frozen-density embedding (FDE) scheme. We employ these solvent models for ground state properties (dipole and quadrupole moments) and response properties (electronic excitation energies and frequency-dependent polarizabilities) of a water molecule in the liquid phase. It is found that both solvent models agree for ground state properties, while there are significant differences in the description of response properties. The origin of these differences is analyzed in detail and it is found that they are mainly caused by a different description of the ground state molecular orbitals of the solute. In addition, for the calculation of the polarizabilities, the inclusion of the response of the solvent to the polarization of the solute becomes important. This effect is included in the DRF model, but is missing in the FDE scheme. A way of including it in FDE calculations of the polarizabilities using finite field calculations is demonstrated.

  16. Ground penetrating radar

    CERN Document Server

    Daniels, David J


    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  17. Common Ground and Delegation

    DEFF Research Database (Denmark)

    Dobrajska, Magdalena; Foss, Nicolai Juul; Lyngsie, Jacob

    Much recent research suggests that firms need to increase their level of delegation to better cope with, for example, the challenges introduced by dynamic rapid environments and the need to engage more with external knowledge sources. However, there is less insight into the organizational...... preconditions of increasing delegation. We argue that key HR practices?namely, hiring, training and job-rotation?are associated with delegation of decision-making authority. These practices assist in the creation of shared knowledge conditions between managers and employees. In turn, such a ?common ground...

  18. Singlet Ground State Magnetism:

    DEFF Research Database (Denmark)

    Loidl, A.; Knorr, K.; Kjems, Jørgen;


    The magneticGamma 1 –Gamma 4 exciton of the singlet ground state system TbP has been studied by inelastic neutron scattering above the antiferromagnetic ordering temperature. Considerable dispersion and a pronounced splitting was found in the [100] and [110] directions. Both the band width...... and the splitting increased rapidly as the transition temperature was approached in accordance with the predictions of the RPA-theory. The dispersion is analysed in terms of a phenomenological model using interactions up to the fourth nearest neighbour....

  19. The LOFT Ground Segment

    DEFF Research Database (Denmark)

    Bozzo, E.; Antonelli, A.; Argan, A.;


    targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT...... we summarize the planned organization of the LOFT ground segment (GS), as established in the mission Yellow Book 1 . We describe the expected GS contributions from ESA and the LOFT consortium. A review is provided of the planned LOFT data products and the details of the data flow, archiving...

  20. Sticking like sticky tape: tree frogs use friction forces to enhance attachment on overhanging surfaces. (United States)

    Endlein, Thomas; Ji, Aihong; Samuel, Diana; Yao, Ning; Wang, Zhongyuan; Barnes, W Jon P; Federle, Walter; Kappl, Michael; Dai, Zhendong


    To live and clamber about in an arboreal habitat, tree frogs have evolved adhesive pads on their toes. In addition, they often have long and slender legs to facilitate not only long jumps, but also to bridge gaps between leaves when climbing. Both adhesive pads and long limbs are used in conjunction, as we will show in this study. Previous research has shown that tree frogs change from a crouched posture (where the limbs are close to the body) to a sprawled posture with extended limbs when clinging on to steeper inclines such as vertical or overhanging slopes. We investigated this change in posture in White's tree frogs (Litoria caerulea) by challenging the frogs to cling onto a tiltable platform. The platform consisted of an array of 24 three-dimensional force transducers, which allowed us to measure the ground reaction forces of the frogs during a tilt. Starting from a crouched resting position, the normal forces on the forelimbs changed sign and became increasingly negative with increasing slope angle of the platform. At about 106° ± 12°, tilt of the platform the frogs reacted by extending one or two of their limbs outwards. At a steeper angle (131° ± 11°), the frogs spread out all their limbs sideways, with the hindlimbs stretched out to their maximum reach. Although the extension was strongest in the lateral direction, limbs were significantly extended in the fore-aft direction as well. With the extension of the limbs, the lateral forces increased relative to the normal forces. The large contribution of the in-plane forces helped to keep the angle between the force vector and the platform small. The Kendall theory for the peeling of adhesive tape predicts that smaller peel angles lead to higher attachment forces. We compare our data with the predictions of the Kendall model and discuss possible implications of the sliding of the pads on the surface. The forces were indeed much larger for smaller angles and thus can be explained by peeling theory.

  1. Malaysia and forced migration

    Directory of Open Access Journals (Sweden)

    Arzura Idris


    Full Text Available This paper analyzes the phenomenon of “forced migration” in Malaysia. It examines the nature of forced migration, the challenges faced by Malaysia, the policy responses and their impact on the country and upon the forced migrants. It considers forced migration as an event hosting multifaceted issues related and relevant to forced migrants and suggests that Malaysia has been preoccupied with the issue of forced migration movements. This is largely seen in various responses invoked from Malaysia due to “south-south forced migration movements.” These responses are, however, inadequate in terms of commitment to the international refugee regime. While Malaysia did respond to economic and migration challenges, the paper asserts that such efforts are futile if she ignores issues critical to forced migrants.

  2. Hydrophobic Forces in Flotation


    Pazhianur, Rajesh R


    An atomic force microscope (AFM) has been used to conduct force measurements to better understand the role of hydrophobic forces in flotation. The force measurements were conducted between a flat mineral substrate and a hydrophobic glass sphere in aqueous solutions. It is assumed that the hydrophobic glass sphere may simulate the behavior of air bubbles during flotation. The results may provide information relevant to the bubble-particle interactions occurring during flotation. The glass ...

  3. The LOFT Ground Segment

    CERN Document Server

    Bozzo, E; Argan, A; Barret, D; Binko, P; Brandt, S; Cavazzuti, E; Courvoisier, T; Herder, J W den; Feroci, M; Ferrigno, C; Giommi, P; Götz, D; Guy, L; Hernanz, M; Zand, J J M in't; Klochkov, D; Kuulkers, E; Motch, C; Lumb, D; Papitto, A; Pittori, C; Rohlfs, R; Santangelo, A; Schmid, C; Schwope, A D; Smith, P J; Webb, N A; Wilms, J; Zane, S


    LOFT, the Large Observatory For X-ray Timing, was one of the ESA M3 mission candidates that completed their assessment phase at the end of 2013. LOFT is equipped with two instruments, the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD performs pointed observations of several targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT Burst alert System additionally identifies on-board bright impulsive events (e.g., Gamma-ray Bursts, GRBs) and broadcasts the corresponding position and trigger time to the ground using a dedicated system of ~15 VHF receivers. All WFM data are planned to be made public immediately. In this contribution we summarize the planned organization of the LOFT ground segment (GS), as established in the mission Yellow Book 1 . We...

  4. Identification of Motive Forces on the Whole Body System during Walking

    Directory of Open Access Journals (Sweden)

    Raghdan J. AlKhoury


    Full Text Available Motive forces by muscles are applied to different parts of the human body in a periodic fashion when walking at a uniform rate. In this study, the whole human body is modeled as a multidegree of freedom (MDOF system with seven degrees of freedom. In view of the changing contact conditions with the ground due to alternating feet movements, the system under study is considered piecewise time invariant for each half-period when one foot is in contact with the ground. Forces transmitted from the body to the ground while walking at a normal pace are experimentally measured and numerically simulated. Fourth-order Runge-Kutta method is employed to numerically simulate the forces acting on different masses of the body. An optimization problem is formulated with the squared difference between the measured and simulated forces transmitted to the ground as the objective function, and the motive forces on the body masses as the design variables to solve.

  5. Forces in General Relativity (United States)

    Ridgely, Charles T.


    Many textbooks dealing with general relativity do not demonstrate the derivation of forces in enough detail. The analyses presented herein demonstrate straightforward methods for computing forces by way of general relativity. Covariant divergence of the stress-energy-momentum tensor is used to derive a general expression of the force experienced…

  6. Debunking Coriolis Force Myths (United States)

    Shakur, Asif


    Much has been written and debated about the Coriolis force. Unfortunately, this has done little to demystify the paradoxes surrounding this fictitious force invoked by an observer in a rotating frame of reference. It is the purpose of this article to make another valiant attempt to slay the dragon of the Coriolis force! This will be done without…

  7. Ground test for vibration control demonstrator (United States)

    Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.


    In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.

  8. A comparison of methods for determining the rate of force development during isometric midthigh clean pulls. (United States)

    Haff, G Gregory; Ruben, Ryan P; Lider, Joshua; Twine, Corey; Cormie, Prue


    Twelve female division I collegiate volleyball players were recruited to examine the reliability of several methods for calculating the rate of force development (RFD) during the isometric midthigh clean pull. All subjects were familiarized with the isometric midthigh clean pull and participated in regular strength training. Two isometric midthigh clean pulls were performed with 2 minutes rest between each trail. All measures were performed in a custom isometric testing device that included a step-wise adjustable bar and a force plate for measuring ground reaction forces. The RFD during predetermined time zone bands (0-30, 0-50, 0-90, 0-100, 0-150, 0-200, and 0-250 milliseconds) was then calculated by dividing the force at the end of the band by the band's time interval. The peak RFD was then calculated with the use of 2, 5, 10, 20, 30, and 50 milliseconds sampling windows. The average RFD (avgRFD) was calculated by dividing the peak force (PF) by the time to achieve PF. All data were analyzed with the use of intraclass correlation alpha (ICCα) and the coefficient of variation (CV) and 90% confidence intervals. All predetermined RFD time bands were deemed reliable based on an ICCα >0.95 and a CV <4%. Conversely, the avgRFD failed to meet the reliability standards set for this study. Overall, the method used to assess the RFD during an isometric midthigh clean pull impacts the reliability of the measure and predetermined RFD time bands should be used to quantify the RFD.

  9. [Allergic reactions to transfusion]. (United States)

    Hergon, E; Paitre, M L; Coeffic, B; Piard, N; Bidet, J M


    Frequent allergic reactions following transfusion are observed. Usually, they are benign but sometimes we observe severe allergic reactions. Adverse reactions may be brought about by least two mechanisms. First, immediate-type hypersensibility reactions due to IgE. Secondly, anaphylactic-type reactions due to interaction between transfused IgA and class specific anti IgA in the recipient's plasma. They are characterized by their severest form (anaphylactic shock). The frequency of severe reactions following the transfusion blood plasma is very low. These transfusion reactions are complement-mediated and kinins-mediated. Prevention of allergic reactions is necessary among blood donors and recipients.

  10. Investigation of Surface Reaction and Degradation Mechanism of Kapton during Atomic Oxygen Exposure

    Institute of Scientific and Technical Information of China (English)

    Shuwang DUO; Meishuan LI; Yanchun ZHOU; Jingyu TONG; Gang SUN


    The erosion behavior of Kapton when exposed to atomic oxygen (AO) environment in the ground-based simulation facility was studied. The chemical and physical changes of sample surfaces after exposed to AO fluxes were investigated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results indicated that Kapton underwent dramatically degradation, including much mass loss and change of surface morphologies; vacuum outgassing effect of Kapton was the key factor for initial mass loss in the course of atomic oxygen beam exposures. XPS analysis showed that the carbonyl group in Kapton reacted with oxygen atoms to generate CO2, then CO2 desorbed from Kapton surface. In addition, PMDA in the polyimide structure degraded due to the reaction with atomic oxygen of 5 eV.

  11. Testing two-nucleon transfer reaction mechanism with elementary modes of excitation in exotic nuclei

    CERN Document Server

    Broglia, R A; Idini, A; Barranco, F; Vigezzi, E


    Nuclear Field Theory of structure and reactions is confronted with observations made on neutron halo dripline nuclei, resulting in the prediction of a novel (symbiotic) mode of nuclear excitation, and on the observation of the virtual effect of the halo phenomenon in the apparently non-halo nucleus $^7$Li. This effect is forced to become real by intervening the virtual process with an external (t,p) field which, combined with accurate predictive abilities concerning the absolute differential cross section, reveals an increase of a factor 2 in the cross section due to the presence of halo ground state correlations, and is essential to reproduce the value of the observed $d \\sigma(^7$Li(t,p)$^9$Li)/d$\\Omega$.

  12. Influence of Whole Body Vibration and Specific Warm-ups on Force during an Isometric Mid-Thigh Pull

    Directory of Open Access Journals (Sweden)

    Vanessa L. Cazás-Moreno


    Full Text Available Purpose: The purpose of this study was to investigate the effects of general and specific warm-up protocols on rate of force development (RFD, relative RFD (rRFD, ground reaction force (GRF and relative ground reaction force (rGRF during an isometric mid-thigh pull (IMTP, after WBV exposure. Methods: Fifteen healthy recreationally trained males  (age: 24.1 ± 2.3 yrs, height: 72.9 ± 7.8 cm; mass: 86.9 ± 8.3 completed five protocols: baseline, isometric vibration (iVib, isometric no vibration (iNV, dynamic vibration (dVib and dynamic no vibration (dNV. The baseline was completed without any warm-up prior to the IMTP. The intervention protocols had the same prescription of 4 sets of 30-second bouts of quarter squats (dynamic [DQS] and isometric [IQS] on the WBV platform with or without vibration. Following a one-minute rest period after each protocol, participants completed three maximal IMTPs. Results: Repeated measures ANOVA with a Bonferroni post hoc demonstrated that RFD in dNV (7657.8 ± 2292.5 N/s was significantly greater than iVib (7156.4 ± 2170.0 N/s. However, the other experimental trials for RFD demonstrated no significant differences (p>0.05. There were also no significant differences for rRFD, GRF or rGRF between protocols. Conclusion: These results demonstrate that a dynamic warm-up without WBV elicits greater RFD than an isometric warm-up with WBV prior to a maximal isometric exercise. Further research needs to be investigated utilizing dynamic and isometric warm-ups in conjunction with WBV and power output. Keywords: males, recreationally trained, power

  13. Muscle activation and estimated relative joint force during running with weight support on a lower-body positive pressure treadmill

    DEFF Research Database (Denmark)

    Jensen, Bente Rona; Hovgaard-Hansen, Line; Cappelen, Katrine Louise


    Running on a lower-body positive pressure (LBPP) treadmill allows effects of weight support on leg muscle activation to be assessed systematically, and has the potential to facilitate rehabilitation and prevent overloading. The aim was to study the effect of running with weight support on leg...... muscle activation and to estimate relative knee and ankle joint forces. Runners performed 6-min running sessions at 2.22 m/s and 3.33 m/s, at 100, 80, 60, 40 and 20% body-weight (BW). Surface EMG, ground reaction force and running characteristics were measured. Relative knee and ankle joint forces were...... estimated. Leg muscles responded differently to unweighting during running, reflecting different relative contribution to propulsion and anti-gravity forces. At 20%BW, knee extensor EMGpeak decreased to 22% at 2.22 m/s and 28% at 3.33 m/s of 100%BW values. Plantar flexors decreased to 52% and 58% at 20%BW...

  14. Reliability and Validity of Kinetic and Kinematic Parameters Determined With Force Plates Embedded Under Soil-Filled Baseball Mound. (United States)

    Yanai, Toshimasa; Matsuo, Akifumi; Maeda, Akira; Nakamoto, Hiroki; Mizutani, Mirai; Kanehisa, Hiroaki; Fukunaga, Tetsuo


    We developed a force measurement system in a soil-filled mound for measuring ground reaction forces (GRFs) acting on baseball pitchers and examined the reliability and validity of kinetic and kinematic parameters determined from the GRFs. Three soil-filled trays of dimensions that satisfied the official baseball rules were fixed onto three force platforms. Eight collegiate pitchers wearing baseball shoes with metal cleats were asked to throw 5 fastballs with maximum effort from the mound toward a catcher. The reliability of each parameter was determined for each subject as the coefficient of variation across the 5 pitches. The validity of the measurements was tested by comparing the outcomes either with the true values or the corresponding values computed from a motion capture system. The coefficients of variation in the repeated measurements of the peak forces ranged from 0.00 to 0.17, and were smaller for the pivot foot than the stride foot. The mean absolute errors in the impulses determined over entire duration of pitching motion were 5.3 N·s, 1.9 N·s, and 8.2 N·s for the X-, Y-, and Z-directions, respectively. These results suggest that the present method is reliable and valid for determining selected kinetic and kinematic parameters for analyzing pitching performance.

  15. Cascade enzymatic reactions for efficient carbon sequestration. (United States)

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping


    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA.

  16. Designing as middle ground

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian Mossfeldt; Binder, Thomas


    The theoretical background in this chapter is science and technology studies and actor network theory, enabling investigation of heterogeneity, agency and perfor-mative effects through ‘symmetric’ analysis. The concept of design is defined as being imaginative and mindful to a number of actors...... in a network of humans and non-humans, highlighting that design objects and the designer as an authority are constructed throughout this endeavour. The illustrative case example is drawn from product development in a rubber valve factory in Jutland in Denmark. The key contribution to a general core of design...... research is an articulation of design activity taking place as a middle ground and as an intermixture between a ‘scientific’ regime of knowledge transfer and a capital ‘D’ ‘Designerly’ regime of authoring....

  17. Quantum fictitious forces

    DEFF Research Database (Denmark)

    Bialynicki-Birula, I; Cirone, M.A.; Dahl, Jens Peder


    We present Heisenberg's equation of motion for the radial variable of a free non-relativistic particle in D dimensions. The resulting radial force consists of three contributions: (i) the quantum fictitious force which is either attractive or repulsive depending on the number of dimensions, (ii......) a singular quantum force located at the origin, and (iii) the centrifugal force associated with non-vanishing angular momentum. Moreover, we use Heisenberg's uncertainty relation to introduce a lower bound for the kinetic energy of an ensemble of neutral particles. This bound is quadratic in the number...... of atoms and can be traced back to the repulsive quantum fictitious potential. All three forces arise for a free particle: "Force without force"....

  18. Forces in molecules. (United States)

    Hernández-Trujillo, Jesús; Cortés-Guzmán, Fernando; Fang, De-Chai; Bader, Richard F W


    Chemistry is determined by the electrostatic forces acting within a collection of nuclei and electrons. The attraction of the nuclei for the electrons is the only attractive force in a molecule and is the force responsible for the bonding between atoms. This is the attractive force acting on the electrons in the Ehrenfest force and on the nuclei in the Feynman force, one that is countered by the repulsion between the electrons in the former and by the repulsion between the nuclei in the latter. The virial theorem relates these forces to the energy changes resulting from interactions between atoms. All bonding, as signified by the presence of a bond path, has a common origin in terms of the mechanics determined by the Ehrenfest, Feynman and virial theorems. This paper is concerned in particular with the mechanics of interaction encountered in what are classically described as 'nonbonded interactions'--are atoms that 'touch' bonded or repelling one another?

  19. Quantum fictitious forces

    Energy Technology Data Exchange (ETDEWEB)

    Bialynicki-Birula, I. [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Abt. fuer Quantenphysik, Univ. Ulm, Ulm (Germany); Cirone, M.A.; Straub, F.; Schleich, W.P. [Abt. fuer Quantenphysik, Univ. Ulm, Ulm (Germany); Dahl, J.P. [Abt. fuer Quantenphysik, Univ. Ulm, Ulm (Germany); Chemical Physics, Dept. of Chemistry, Technical Univ. of Denmark, Lyngby (Denmark); Seligman, T.H. [Centro de Ciencias Fisicas, Univ. of Mexico (UNAM), Cuernavaca (Mexico)


    We present Heisenberg's equation of motion for the radial variable of a free non-relativistic particle in D dimensions. The resulting radial force consists of three contributions: (i) the quantum fictitious force which is either attractive or repulsive depending on the number of dimensions, (ii) a singular quantum force located at the origin, and (iii) the centrifugal force associated with non-vanishing angular momentum. Moreover, we use Heisenberg's uncertainty relation to introduce a lower bound for the kinetic energy of an ensemble of neutral particles. This bound is quadratic in the number of atoms and can be traced back to the repulsive quantum fictitious potential. All three forces arise for a free particle: ''Force without force''. (orig.)

  20. Experimental investigation on tip vortices and aerodynamics of a wing with ground effect

    Institute of Scientific and Technical Information of China (English)

    Ruimin; Sun; Daichin


    The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force balance,respectively.The evolution of the flow structures and aerodynamics with a ground height were analyzed.The vorticity of tip vortices was found to reduce with the decreasing of the ground height,and the position of vortex-core moved gradually to the outboard of the wing tip.Therefore,the d...

  1. Frictional forces required for unrestrained locomotion in dairy cattle. (United States)

    van der Tol, P P J; Metz, J H M; Noordhuizen-Stassen, E N; Back, W; Braam, C R; Weijs, W A


    Most free-stall housing systems in the Netherlands are equipped with slatted or solid concrete floors with manure scrapers. A slipping incident occurs when the required coefficient of friction (RCOF) exceeds the coefficient of friction (COF) at the claw-floor interface. An experiment was conducted to measure ground reaction forces (GRF) of dairy cows (n = 9) performing various locomotory behaviors on a nonslippery rubber-covered concrete floor. The RCOF was determined as the ratio of the horizontal and vertical components of the GRF. It was shown that during straight walking and walking-a-curve, the RCOF reached values up to the COF, whereas for sudden stop-and-start responses, the RCOF reached values beyond the maximum COF that concrete floors can provide. Our results indicate that concrete floors do not provide enough friction to allow natural locomotory behavior and suggest that tractional properties of floors should be main design criteria in the development of better flooring surfaces for cattle.

  2. Casimir-Polder forces: A nonperturbative approach (United States)

    Buhmann, Stefan Yoshi; Knöll, Ludwig; Welsch, Dirk-Gunnar; Dung, Ho Trung


    Within the frame of macroscopic QED in linear, causal media, we study the radiation force of Casimir-Polder type acting on an atom which is positioned near dispersing and absorbing magnetodielectric bodies and initially prepared in an arbitrary electronic state. It is shown that minimal and multipolar coupling lead to essentially the same lowest-order perturbative result for the force acting on an atom in an energy eigenstate. To go beyond perturbation theory, the calculations are based on the exact center-of-mass equation of motion. For a nondriven atom in the weak-coupling regime, the force as a function of time is a superposition of force components that are related to the electronic density matrix elements at a chosen time. Even the force component associated with the ground state is not derivable from a potential in the ususal way, because of the position dependence of the atomic polarizability. Further, when the atom is initially prepared in a coherent superposition of energy eigenstates, then temporally oscillating force components are observed, which are due to the interaction of the atom with both electric and magnetic fields.

  3. Mechanical gating of a mechanochemical reaction cascade (United States)

    Wang, Junpeng; Kouznetsova, Tatiana B.; Boulatov, Roman; Craig, Stephen L.


    Covalent polymer mechanochemistry offers promising opportunities for the control and engineering of reactivity. To date, covalent mechanochemistry has largely been limited to individual reactions, but it also presents potential for intricate reaction systems and feedback loops. Here we report a molecular architecture, in which a cyclobutane mechanophore functions as a gate to regulate the activation of a second mechanophore, dichlorocyclopropane, resulting in a mechanochemical cascade reaction. Single-molecule force spectroscopy, pulsed ultrasonication experiments and DFT-level calculations support gating and indicate that extra force of >0.5 nN needs to be applied to a polymer of gated gDCC than of free gDCC for the mechanochemical isomerization gDCC to proceed at equal rate. The gating concept provides a mechanism by which to regulate stress-responsive behaviours, such as load-strengthening and mechanochromism, in future materials designs.

  4. Ship Grounding on Rock - I. Theory

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup


    This paper presents a set of analytical expressions which can be used to calculate the reaction force on a ship bottom deformed by a conical rock with a rounded tip. Closed form solutions are given for the resistance of inner and outer bottom plating, longitudinal stiffeners, girders and bulkheads...... by postulating a global mode of deformation for the structure around the rock with one free parameter, the plate split angle, related to the shape of thedeformation mode. It is assumed that intersections between structural components stay intact during the entire deformation process so the resistance...

  5. On the unsteady motion and stability of a heaving airfoil in ground effect

    Institute of Scientific and Technical Information of China (English)

    Juan Molina; Xin Zhang; David Angland


    This study explores the fluid mechanics and force generation capabilities of an inverted heaving airfoil placed close to a moving ground using a URANS solver with the Spalart-Allmaras turbulence model. By varying the mean ground clearance and motion frequency of the airfoil, it was possible to construct a frequency-height diagram of the various forces acting on the airfoil. The ground was found to enhance the downforce and reduce the drag with respect to freestream. The unsteady motion induces hysteresis in the forces' behaviour. At moderate ground clearance, the hysteresis increases with frequency and the airfoil loses energy to the flow, resulting in a stabilizing motion. By analogy with a pitching motion, the airfoil stalls in close proximity to the ground. At low frequencies, the motion is unstable and could lead to stall flutter. A stall flutter analysis was undertaken. At higher frequencies, inviscid effects overcome the large separation and the motion becomes stable. Forced trailing edge vortex shedding appears at high frequencies. The shedding mechanism seems to be independent of ground proximity.However, the wake is altered at low heights as a result of an interaction between the vortices and the ground.

  6. Localizing Ground-Penetrating Radar (United States)


    ing Ground-Penetrating Radar (LGPR) uses very high frequency (VHF) radar reflections of underground features to generate base- line maps and then...Innovative ground- penetrating radar that maps underground geological features provides autonomous vehicles with real-time localization. Localizing...NOV 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Localizing Ground-Penetrating Radar 5a. CONTRACT NUMBER

  7. Burial Ground Expansion Hydrogeologic Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gaughan , T.F.


    Sirrine Environmental Consultants provided technical oversight of the installation of eighteen groundwater monitoring wells and six exploratory borings around the location of the Burial Ground Expansion.

  8. 46 CFR 120.376 - Grounded distribution systems (Neutral grounded). (United States)


    ... ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 120.376 Grounded distribution systems... distribution system having a neutral bus or conductor must have the neutral grounded. (c) The neutral or each... generator is connected to the bus, except the neutral of an emergency power generation system must...

  9. Nonlinear Dynamic Force Spectroscopy

    CERN Document Server

    Björnham, Oscar


    Dynamic force spectroscopy (DFS) is an experimental technique that is commonly used to assess information of the strength, energy landscape, and lifetime of noncovalent bio-molecular interactions. DFS traditionally requires an applied force that increases linearly with time so that the bio-complex under investigation is exposed to a constant loading rate. However, tethers or polymers can modulate the applied force in a nonlinear regime. For example, bacterial adhesion pili and polymers with worm-like chain properties are examples of structures that show nonlinear force responses. In these situations, the theory for traditional DFS cannot be readily applied. In this work we expand the theory for DFS to also include nonlinear external forces while still maintaining compatibility with the linear DFS theory. To validate the theory we modeled a bio-complex expressed on a stiff, an elastic and a worm-like chain polymer, using Monte Carlo methods, and assessed the corresponding rupture force spectra. It was found th...

  10. On the work of internal forces

    CERN Document Server

    Guemez, Julio; Brito, Lucilia


    We discuss the role of the internal forces and how their work changes the energy of a system. We illustrate the contribution of the internal work to the variation of the system's energy, using a pure mechanical example, a thermodynamical system and an example from electromagnetism. We emphasize that internal energy variations related to the work of the internal forces should be pinpointed in the classroom and placed on the same footing as other internal energy variations such as those caused by temperature changes or by chemical reactions.

  11. Getting grounded: using Glaserian grounded theory to conduct nursing research. (United States)

    Hernandez, Cheri Ann


    Glaserian grounded theory is a powerful research methodology for understanding client behaviour in a particular area. It is therefore especially relevant for nurse researchers. Nurse researchers use grounded theory more frequently than other qualitative analysis research methods because of its ability to provide insight into clients' experiences and to make a positive impact. However, there is much confusion about the use of grounded theory.The author delineates key components of grounded theory methodology, areas of concern, and the resulting implications for nursing knowledge development. Knowledge gained from Glaserian grounded theory research can be used to institute measures for enhancing client-nurse relationships, improving quality of care, and ultimately improving client quality of life. In addition, it can serve to expand disciplinary knowledge in nursing because the resulting substantive theory is a middle-range theory that can be subjected to later quantitative testing.

  12. Relativistic Linear Restoring Force (United States)

    Clark, D.; Franklin, J.; Mann, N.


    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  13. Organizing British Joint Rapid Reaction Forces (Joint Force Quarterly, Autumn 2000) (United States)


    1998 Ladbrook Congo August–September 1998 Desert Fox Middle East December 1998 Basilica Sierra Leone January–February 1999 Agricola Kosovo June 1999...engage in the business for which they were trained until relieved by the commandos on May 26. In mid-June, 42 Com- mando also withdrew, leaving behind a

  14. PALSAR ground data processing (United States)

    Frick, Heinrich; Palsetia, Marzban; Carande, Richard; Curlander, James C.


    The upcoming launches of new satellites like ALOS, Envisat, Radarsat2 and ECHO will pose a significant challenge for many ground stations, namely to integrate new SAR processing software into their existing systems. Vexcel Corporation in Boulder, Colorado, has built a SAR processing system, named APEX -Suite, for spaceborne SAR satellites that can easily be expanded for the next generation of SAR satellites. APEX-Suite includes an auto-satellite-detecting Level 0 Processor that includes bit-error correction, data quality characterization, and as a unique feature, a sophisticated and very accurate Doppler centroid estimator. The Level 1 processing is divided into the strip mode processor FOCUST, based on the well-proven range-Doppler algorithm, and the SWATHT ScanSAR processor that uses the Chirp Z Trans-form algorithm. A high-accuracy ortho-rectification processor produces systematic and precision corrected Level 2 SAR image pro ducts. The PALSAR instrument is an L-band SAR with multiple fine and standard resolution beams in strip mode, and several wide-swath ScanSAR modes. We will address the adaptation process of Vexcel's APEX-Suite processing system for the PALSAR sensor and discuss image quality characteristics based on processed simulated point target phase history data.

  15. Spacelab Ground Processing (United States)

    Scully, Edward J.; Gaskins, Roger B.


    Spacelab (SL) ground processing is active at the Kennedy Space Center (KSC). The palletized payload for the second Shuttle launch is staged and integrated with interface verification active. The SL Engineering Model is being assembled for subsequent test and checkout activities. After delivery of SL flight elements from Europe, prelaunch operations for the first SL flight start with receipt of the flight experiment packages and staging of the SL hardware. Experiment operations consist of integrating the various experiment elements into the SL racks, floors and pallets. Rack and floor assemblies with the experiments installed, are integrated into the flight module. Aft end-cone installation, pallet connections, and SL subsystems interface verifications are accomplished, and SL-Orbiter interfaces verified. The Spacelab cargo is then transferred to the Orbiter Processing Facility (OPF) in a controlled environment using a canister/transporter. After the SL is installed into the Orbiter payload bay, physical and functional integrity of all payload-to-Orbiter interfaces are verified and final close-out operations conducted. Spacelab payload activities at the launch pad are minimal with the payload bay doors remaining closed. Limited access is available to the module through the Spacelab Transfer Tunnel. After mission completion, the SL is removed from the Orbiter in the OPF and returned to the SL processing facility for experiment equipment removal and reconfiguration for the subsequent mission.

  16. Intermolecular and surface forces

    CERN Document Server

    Israelachvili, Jacob N


    This reference describes the role of various intermolecular and interparticle forces in determining the properties of simple systems such as gases, liquids and solids, with a special focus on more complex colloidal, polymeric and biological systems. The book provides a thorough foundation in theories and concepts of intermolecular forces, allowing researchers and students to recognize which forces are important in any particular system, as well as how to control these forces. This third edition is expanded into three sections and contains five new chapters over the previous edition.· starts fr

  17. Theory of intermolecular forces

    CERN Document Server

    Margenau, H; Ter Haar, D


    Theory of Intermolecular Forces deals with the exposition of the principles and techniques of the theory of intermolecular forces. The text focuses on the basic theory and surveys other aspects, with particular attention to relevant experiments. The initial chapters introduce the reader to the history of intermolecular forces. Succeeding chapters present topics on short, intermediate, and long range atomic interactions; properties of Coulomb interactions; shape-dependent forces between molecules; and physical adsorption. The book will be of good use to experts and students of quantum mechanics

  18. Solvent- and Catalyst-Free Direct Aldol Reactions

    Institute of Scientific and Technical Information of China (English)

    王宗令; 张成潘; 张春桃; 肖吉昌


    Aldol reaction between simple benzaldehydes and ketones successfully happened in solvent- and catalyst-free condition. The desired products were obtained in moderate yield at suitable temperature. Heat was assumed as the driving force for the reaction. This approach has obvious advantages to fully meet the requirement of the principles of green chemistry.

  19. Grounded action: Achieving optimal and sustainable change

    Directory of Open Access Journals (Sweden)

    Odis E. Simmons, Ph.D.


    Full Text Available Grounded action is the application and extension of grounded theory for the purpose of designing and implementing practical actions such as interventions, program designs, action models, social and organizational policies, and change initiatives. Grounded action is grounded theory with an added action component in which actions are systematically derived from a systematically derived explanatory grounded theory. Actions are grounded in the grounded theory in the same way that grounded theories are grounded in data. Grounded actionwas designed by the authors to address complex, multi-dimensionalorganizational and social problems and issues.

  20. Grounding Damage to Conventional Vessels

    DEFF Research Database (Denmark)

    Lützen, Marie; Simonsen, Bo Cerup


    The present paper is concerned with rational design of conventional vessels with regard to bottom damage generated in grounding accidents. The aim of the work described here is to improve the design basis, primarily through analysis of new statistical data for grounding damage. The current...

  1. Ground water and climate change

    NARCIS (Netherlands)

    Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R. van; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; Konikow, L.; Green, T.R.; Chen, J.; Taniguchi, M.; Bierkens, M.F.P.; MacDonald, A.; Fan, Y.; Maxwell, R.M.; Yechieli, Y.; Gurdak, J.J.; Allen, D.M.; Shamsudduha, M.; Hiscock, K.; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger


    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate chang

  2. Ground Attenuation of Railroad Noise

    DEFF Research Database (Denmark)

    Makarewicz, R.; Rasmussen, Karsten Bo; Kokowski, P.


    The influence of ground effect on railroad noise is described using the concept of the peak A-weighted sound exposure level, and A-weighted sound exposure level. The train is modelled by a continuous line of incoherent point sources that have a cosine directivity. The ground effect is included by...

  3. Eurobot Ground Prototype Control System Overview & Tests Results (United States)

    Merlo, Andrea; Martelli, Andrea; Pensavalle, Emanuele; Ferraris, Simona; Didot, Frederic


    In the planned missions on Moon and Mars, robotics can play a key role, as robots can both assist astronauts and, above all, relieve them of dangerous or too difficult tasks. To this aim, both cooperative capabilities and a great level of autonomy are needed: the robotic crew assistant must be able to work on its own, without supervision by humans, and to help astronauts to accomplish tasks otherwise unfeasible for them. Within this context, a project named Eurobot Ground Prototype, conducted in conjunction with ESA and Thales Alenia Space, is presented. EGP is a dual-arm mobile manipulator and exploits both stereo cameras and force/torque sensors in order to rely on visual and force feedback. This paper provides an overview of the performed and on going activities within the Eurobot Ground Prototype project.

  4. How to calculate stress in above/below ground transition

    Energy Technology Data Exchange (ETDEWEB)

    Schnackenberg, P.J.


    Stresses and deflections occur in natural gas pipe lines at the transition from the below ground (fully restrained) to the above ground (unrestrained) condition. Analysis of the stresses and deflections in transition areas, resulting from internal pressure/temperature change, is necessary in determining anchor block requirements and design. Longitudinal deflections are used to determine whether an anchor block is required. Anchor block forces required to maintain the pipe in a fully constrained condition are then determined. A brief review of the analysis that resulted in more accurate solutions for deflection and anchor block forces is presented. Sample calculations are given for line sizes up to 41-cm OD, pressure to 193 bars, and temperatures to 72/sup 0/C. (JRD)

  5. Regional analysis of ground and above-ground climate

    Energy Technology Data Exchange (ETDEWEB)


    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  6. Polarizable force fields. (United States)

    Antila, Hanne S; Salonen, Emppu


    This chapter provides an overview of the most common methods for including an explicit description of electronic polarization in molecular mechanics force fields: the induced point dipole, shell, and fluctuating charge models. The importance of including polarization effects in biomolecular simulations is discussed, and some of the most important achievements in the development of polarizable biomolecular force fields to date are highlighted.

  7. Rate of force development

    DEFF Research Database (Denmark)

    Maffiuletti, Nicola A; Aagaard, Per; Blazevich, Anthony J;


    The evaluation of rate of force development during rapid contractions has recently become quite popular for characterising explosive strength of athletes, elderly individuals and patients. The main aims of this narrative review are to describe the neuromuscular determinants of rate of force...

  8. Forces in yeast flocculation. (United States)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N; Dufrêne, Yves F


    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion ("flocculation") is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  9. Elementary Particles and Forces. (United States)

    Quigg, Chris


    Discusses subatomic particles (quarks, leptons, and others) revealed by higher accelerator energies. A connection between forces at this subatomic level has been established, and prospects are good for a description of forces that encompass binding atomic nuclei. Colors, fundamental interactions, screening, camouflage, electroweak symmetry, and…

  10. Radiation reaction and energy-momentum conservation

    CERN Document Server

    Gal'tsov, Dmitri


    We discuss subtle points of the momentum balance for radiating particles in flat and curved space-time. An instantaneous balance is obscured by the presence of the Schott term which is a finite part of the bound field momentum. To establish the balance one has to take into account the initial and final conditions for acceleration, or to apply averaging. In curved space-time an additional contribution arises from the tidal deformation of the bound field. This force is shown to be the finite remnant from the mass renormalization and it is different both form the radiation recoil force and the Schott force. For radiation of non-gravitational nature from point particles in curved space-time the reaction force can be computed substituting the retarded field directly to the equations of motion. Similar procedure is applicable to gravitational radiation in vacuum space-time, but fails in the non-vacuum case. The existence of the gravitational quasilocal reaction force in this general case seems implausible, though i...

  11. Kelvin probe force microscopy in liquid using electrochemical force microscopy

    Directory of Open Access Journals (Sweden)

    Liam Collins


    Full Text Available Conventional closed loop-Kelvin probe force microscopy (KPFM has emerged as a powerful technique for probing electric and transport phenomena at the solid–gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe–sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present. Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl and ionically-inactive (non-polar decane liquids by electrochemical force microscopy (EcFM, a multidimensional (i.e., bias- and time-resolved spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids, KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions. EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.

  12. Nanofluids mediating surface forces. (United States)

    Pilkington, Georgia A; Briscoe, Wuge H


    Fluids containing nanostructures, known as nanofluids, are increasingly found in a wide array of applications due to their unique physical properties as compared with their base fluids and larger colloidal suspensions. With several tuneable parameters such as the size, shape and surface chemistry of nanostructures, as well as numerous base fluids available, nanofluids also offer a new paradigm for mediating surface forces. Other properties such as local surface plasmon resonance and size dependent magnetism of nanostructures also present novel mechanisms for imparting tuneable surface interactions. However, our fundamental understanding, experimentally and theoretically, of how these parameters might affect surface forces remains incomplete. Here we review recent results on equilibrium and dynamic surface forces between macroscopic surfaces in nanofluids, highlighting the overriding trends in the correlation between the physical parameters that characterise nanofluids and the surface forces they mediate. We also discuss the challenges that confront existing surface force knowledge as a result of this new paradigm.

  13. Double Pion Production Reactions

    CERN Document Server

    Oset, E; Cano, F; Hernández, E; Kamalov, S S; Nacher, J C; Tejedor, J A G


    We report on reactions producing two pions induced by real and virtual photons or nucleons. The role of different resonances in these reactions is emphasized. Novel results on coherent two pion photoproduction in nuclei are also reported.

  14. Microfluidic chemical reaction circuits (United States)

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine


    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  15. Microscale Thermite Reactions. (United States)

    Arnaiz, Francisco J.; Aguado, Rafael; Arnaiz, Susana


    Describes the adaptation of thermite (aluminum with metal oxides) reactions from whole-class demonstrations to student-run micro-reactions. Lists detailed directions and possible variations of the experiment. (WRM)

  16. Structural Analysis of Grounding Damages on MS DEXTRA

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Simonsen, Bo Cerup; Zhang, Shengming

    Sub-task 1.2 of DEXTREMEL deals with development of models for external ship collision and grounding dynamics and for internal ship structure dynamics. In order to get a better overview of the work performed in this task it has been decided to write two reports on the work. One dealing...... with internal and external collision dynamics and the present report which deals with structural analysis of grounding events.The first part of the present report is devoted to an energy balance for raking damage situations.Then follows a numerical study of the forces associated with cutting and crushing...... of the bottom of MS DEXTRA and other RoRo vessels.Key words: ship grounding, inner mechanics, structural damage, absorbed energy, bottom damage distribution, and Minorsky method....

  17. Approximate photochemical dynamics of azobenzene with reactive force fields. (United States)

    Li, Yan; Hartke, Bernd


    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).

  18. Approximate photochemical dynamics of azobenzene with reactive force fields (United States)

    Li, Yan; Hartke, Bernd


    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).

  19. Chemical transport reactions

    CERN Document Server

    Schäfer, Harald


    Chemical Transport Reactions focuses on the processes and reactions involved in the transport of solid or liquid substances to form vapor phase reaction products. The publication first offers information on experimental and theoretical principles and the transport of solid substances and its special applications. Discussions focus on calculation of the transport effect of heterogeneous equilibria for a gas motion between equilibrium spaces; transport effect and the thermodynamic quantities of the transport reaction; separation and purification of substances by means of material transport; and

  20. Identification of Naegleria fowleri in warm ground water aquifers. (United States)

    Laseke, Ian; Korte, Jill; Lamendella, Regina; Kaneshiro, Edna S; Marciano-Cabral, Francine; Oerther, Daniel B


    The free-living amoeba Naegleria fowleri was identified as the etiological agent of primary amoebic meningoencephalitis that caused the deaths of two children in Peoria, Arizona, in autumn of 2002. It was suspected that the source of N. fowleri was the domestic water supply, which originates from ground water sources. In this study, ground water from the greater Phoenix Metropolitan area was tested for the presence of N. fowleri using a nested polymerase chain reaction approach. Phylogenetic analyses of 16S rRNA sequences of bacterial populations in the ground water were performed to examine the potential link between the presence of N. fowleri and bacterial groups inhabiting water wells. The results showed the presence of N. fowleri in five out of six wells sampled and in 26.6% of all ground water samples tested. Phylogenetic analyses showed that beta- and gamma-proteobacteria were the dominant bacterial populations present in the ground water. Bacterial community analyses revealed a very diverse community structure in ground water samples testing positive for N. fowleri.

  1. Ab initio description of continuum effects in A=11 exotic systems with chiral NN+3N forces (United States)

    Calci, Angelo; Navratil, Petr; Roth, Robert; Dohet-Eraly, Jeremy; Quaglioni, Sofia; Hupin, Guillaume


    Based on the fundamental symmetries of QCD, chiral effective field theory (EFT) provides two- (NN), three- (3N) and many-nucleon interactions in a consistent and systematically improvable scheme. The rapid developments to construct divers families of chiral NN+3N interactions and the conceptual and technical improvements of ab initio many-body approaches pose a great opportunity for nuclear physics. By studying particular interesting phenomena in nuclear structure and reaction observables one can discriminate between different forces and study the predictive power of chiral EFT. The accurate description of the 11Be nucleus, in particular, the ground-state parity inversion and exceptionally strong E1 transition between its two bound states constitute an enormous challenge for the developments of nuclear forces and many-body approaches. We present a sensitivity analysis of structure and reaction observables to different NN+3N interactions in 11Be and n+10Be as well as the mirror p+10C scattering using the ab initio NCSM with continuum (NCSMC). Supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Work Proposal No. SCW1158. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.

  2. Reaction systems with precipitation

    Directory of Open Access Journals (Sweden)

    Marek Rogalski


    Full Text Available This article proposes expanding Reaction Systems of Ehrenfeucht and Rozenberg by incorporating precipitation reactions into it. This improves the computing power of Reaction Systems by allowing us to implement a stack. This addition enables us to implement a Deterministic Pushdown Automaton.

  3. Overwhelming Force - A Persistent Concept in US Military Thinking

    DEFF Research Database (Denmark)

    Ulrich, Philip Christian

    calls the “Civil War Concept”, based on overwhelming numbers in personnel and material superiority. The US Army followed this concept, and the entire US military for that matter, until the Vietnam War. Before the Vietnam War the concept was changed in order to limit the risk to ground forces...

  4. The Total Force Policy and Effective Force (United States)


    analysis.” 23 Roald Dahl, Charlie and the Chocolate Factory , (New York: Pequin Books, 1964), 87, 150. Mr. Dahl’s image of the everlasting gobstopper...Office of the Chief, Army Reserve, 1997. Dahl, Roald. Charlie and the Chocolate Factory . Penguin Books: New York, 1964. Feaver, Peter D. Armed Servants...knot24 that must be untied in order to prove relevance as a military force. Of course, we know the end of these ancient and modern stories. Charlie

  5. OOTW Force Design Tools

    Energy Technology Data Exchange (ETDEWEB)

    Bell, R.E.; Hartley, D.S.III; Packard, S.L.


    This report documents refined requirements for tools to aid the process of force design in Operations Other Than War (OOTWs). It recommends actions for the creation of one tool and work on other tools relating to mission planning. It also identifies the governmental agencies and commands with interests in each tool, from whom should come the user advisory groups overseeing the respective tool development activities. The understanding of OOTWs and their analytical support requirements has matured to the point where action can be taken in three areas: force design, collaborative analysis, and impact analysis. While the nature of the action and the length of time before complete results can be expected depends on the area, in each case the action should begin immediately. Force design for OOTWs is not a technically difficult process. Like force design for combat operations, it is a process of matching the capabilities of forces against the specified and implied tasks of the operation, considering the constraints of logistics, transport and force availabilities. However, there is a critical difference that restricts the usefulness of combat force design tools for OOTWs: the combat tools are built to infer non-combat capability requirements from combat capability requirements and cannot reverse the direction of the inference, as is required for OOTWs. Recently, OOTWs have played a larger role in force assessment, system effectiveness and tradeoff analysis, and concept and doctrine development and analysis. In the first Quadrennial Defense Review (QDR), each of the Services created its own OOTW force design tool. Unfortunately, the tools address different parts of the problem and do not coordinate the use of competing capabilities. These tools satisfied the immediate requirements of the QDR, but do not provide a long-term cost-effective solution.

  6. Adopting a Grounded Theory Approach to Cultural-Historical Research: Conflicting Methodologies or Complementary Methods?

    Directory of Open Access Journals (Sweden)

    Jayson Seaman PhD


    Full Text Available Grounded theory has long been regarded as a valuable way to conduct social and educational research. However, recent constructivist and postmodern insights are challenging long-standing assumptions, most notably by suggesting that grounded theory can be flexibly integrated with existing theories. This move hinges on repositioning grounded theory from a methodology with positivist underpinnings to an approach that can be used within different theoretical frameworks. In this article the author reviews this recent transformation of grounded theory, engages in the project of repositioning it as an approach by using cultural historical activity theory as a test case, and outlines several practical methods implied by the joint use of grounded theory as an approach and activity theory as a methodology. One implication is the adoption of a dialectic, as opposed to a constructivist or objectivist, stance toward grounded theory inquiry, a stance that helps move past the problem of emergence versus forcing.

  7. Improving the optomechanical entanglement and cooling by photothermal force

    CERN Document Server

    Abdi, Mehdi


    Cooling and Entanglement in optomechanical systems coupled through radiation pressure and photothermal force is studied. To develop the photothermal model, we derive an expression for deformation constant of the force. Exploiting linearized quantum Langevin equations we investigate dynamics of such systems. According to our analysis, in addition to separate action of radiation pressure and photothermal force, their cross correlation effect plays an important role in dynamics of the system. We also achieve an exact relation for the phonon number of the mechanical resonator in such systems, and then we derive an analytical expression for it at weak coupling limit. At strong coupling regime, we show that utilizing the photothermal pressure makes the ground state cooling more approachable. The effect of photothermal force on the optomechanical entanglement is investigated in detail. According to our exact numerical and approximate analytical studies, even though the photothermal force is naturally a dissipative f...

  8. Influence of backpack load and gait speed on plantar forces during walking. (United States)

    Watanabe, Kazuhiko; Wang, Yun


    The purpose of this study is to examine the differences in plantar force associated with changes in backpack load and gait speed during walking. The F-scan tethered system was used to collect plantar pressure data. Subjects were asked to walk on a treadmill with varied levels of backpack load (0%, 10%, 20%, and 30% of body mass) and gait speed (4, 5, and 6 km/h). We found that an increase in gait speed and backpack load lead to increase in the magnitude of the first vertical ground reaction force (vGRF) peak. Greater magnitudes of the second vGRF peak were only associated with an increase when gait speeds were 4 km/h and 5 km/h. There was no speed-related change in the magnitudes of the second vGRF peak at the speed of 6 km/h. The results of this study may be important for the purpose of constituting a load-bearing walking program for protecting against osteoporosis.

  9. Effect of sprung (suspended) floor on lower extremity stiffness during a force-returning ballet jump. (United States)

    Hackney, James; Brummel, Sara; Becker, Dana; Selbo, Aubrey; Koons, Sandra; Stewart, Meredith


    Our objective in this study was to compare stiffness of bilateral lower extremities (LEs) in ballet dancers performing sauté on a low-stiffness "sprung floor" to that during the same movement on a high-stiffness floor (wood on concrete). LE stiffness was calculated as the ratio of vertical ground reaction force (in kN) to compression of the lower limb (in meters). Seven female dancers were measured for five repetitions each at the point of maximum leg compression while performing sauté on both of the surfaces, such that 43 ms of data were represented for each trial. The stiffness of bilateral LEs at the point of maximum compression was higher by a mean difference score of 2.48 ± 2.20 kN/m on the low-stiffness floor compared to a high-stiffness floor. Paired t-test analysis of the difference scores yielded a one-tailed probability of 0.012. This effect was seen in six out of seven participants (one participant showed no difference between floor conditions). The finding of increased stiffness of the LEs in the sprung floor condition suggests that some of the force of landing the jump was absorbed by the surface, and therefore did not need to be absorbed by the participants' LEs themselves. This in turn implies that a sprung dance floor may help to prevent dance-related injuries.

  10. Moments About Body Centered Coordinate Axes At Limb Joints From Force Plate And Biplane Photography Measurements (United States)

    Balakrishnan, S.; Thornton-Trump, A. B.; Brodland, G. W.


    Traditional locomotion analysis considers motion in a translating coordinate frame and the analysis is performed primarily in the sagittal plane. The results of several studies in the present work have shown that the aspect of symmetry is rarely present in pathological gait. Loss of function in one plane of movement gives rise to larger motions in other planes. This brings into focus the necessity for three dimensional measurement for adequately representing pathological gait. Description of quantities associated with gait in the appropriate moving frame of each segment would be closer to joint angulation of limb segments. Although this description has been attempted by a few researchers, the assumption of small angle theory and vectorial addition of rotation angles commonly employed for defining the rotation matrices is not applicable to pathological gait. The present work illustrates the use of biplane photography for displacement measurement in human movement. Transformations based on Eulerian angle rotations are derived based on biplane measurements. From the three dimensional ground reaction forces measured by a force plate, moments about the moving upper body coordinate axes are computed through a three dimensional mathematical model.

  11. Ground Enterprise Management System Project (United States)

    National Aeronautics and Space Administration — Spacecraft ground systems are on the cusp of achieving "plug-and-play" capability, i.e., they are approaching the state in which the various components can be...

  12. Ground Beef and Food Safety (United States)

    ... torn. If possible, place the package in a plastic bag so leaking juices won't drip on other ... duty plastic wrap, aluminum foil, freezer paper, or plastic bags made for freezing. Ground beef is safe indefinitely ...

  13. Ground Water and Climate Change (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger


    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  14. Ground Wood Fiber Length Distributions


    Lauri Ilmari Salminen; Sari Liukkonen; Alava, Mikko J.


    This study considers ground wood fiber length distributions arising from pilot grindings. The empirical fiber length distributions appear to be independent of wood fiber length as well as feeding velocity. In terms of mathematics the fiber fragment distributions of ground wood pulp combine an exponential distribution for high-length fragments and a power-law distribution for smaller lengths. This implies that the fiber length distribution is influenced by the stone surface. A fragmentation-ba...

  15. Evaluation of multimodal ground cues

    DEFF Research Database (Denmark)

    Nordahl, Rolf; Lecuyer, Anatole; Serafin, Stefania


    This chapter presents an array of results on the perception of ground surfaces via multiple sensory modalities,with special attention to non visual perceptual cues, notably those arising from audition and haptics, as well as interactions between them. It also reviews approaches to combining synth...... synthetic multimodal cues, from vision, haptics, and audition, in order to realize virtual experiences of walking on simulated ground surfaces or other features....

  16. Increased reaction times and reduced response preparation already starts at middle age

    NARCIS (Netherlands)

    Wolkorte, Ria; Kamphuis, Janine; Zijdewind, Inge


    Generalized slowing characterizes aging and there is some evidence to suggest that this slowing already starts at midlife. This study aims to assess reaction time changes while performing a concurrent low-force and high-force motor task in young and middle-aged subjects. The high-force motor task is

  17. Influência da preocupação com quedas na mobilidade e na força de reação do solo em idosas durante descida de escada = Influence of concern about falls in mobility and ground reaction force in elderly women's during stairs descent

    Directory of Open Access Journals (Sweden)

    Silva, Danilo de Oliveira


    Conclusões: Idosas com preocupação com queda apresentaram menor desempenho no teste funcional do que idosas com ausência dessa preocupação. Entretanto, não houve diferença entre os grupos quanto à variável cinética

  18. Bi-Force

    DEFF Research Database (Denmark)

    Sun, Peng; Speicher, Nora K; Röttger, Richard


    -clustering', has been successfully utilized to discover local patterns in gene expression data and similar biomedical data types. Here, we contribute a new heuristic: 'Bi-Force'. It is based on the weighted bicluster editing model, to perform biclustering on arbitrary sets of biological entities, given any kind...... datasets from Gene Expression Omnibus were analyzed. All resulting biclusters were subsequently investigated by Gene Ontology enrichment analysis to evaluate their biological relevance. The distinct theoretical foundation of Bi-Force (bicluster editing) is more powerful than strict biclustering. We thus...... of pairwise similarities. We first evaluated the power of Bi-Force to solve dedicated bicluster editing problems by comparing Bi-Force with two existing algorithms in the BiCluE software package. We then followed a biclustering evaluation protocol in a recent review paper from Eren et al. (2013) (A...

  19. Entropic-force dark energy reconsidered

    CERN Document Server

    Basilakos, Spyros


    We reconsider the entropic-force model in which both kind of Hubble terms ${\\dot H}$ and $H^{2}$ appear in the effective dark energy (DE) density affecting the evolution of the main cosmological functions, namely the scale factor, deceleration parameter, matter density and growth of linear matter perturbations. However, we find that the entropic-force model is not viable at the background and perturbation levels due to the fact that the entropic formulation does not add a constant term in the Friedmann equations. On the other hand, if on mere phenomenological grounds we replace the ${\\dot H}$ dependence of the effective DE density with a linear term $H$ without including a constant additive term, we find that the transition from deceleration to acceleration becomes possible but the recent structure formation data \

  20. Romanian Armed Forces Transformation (United States)


    strategic importance is defined by the configuration of the Carpathian Mountains to the north-east, by the lower course and estuary of the Danube river...Companies, 1 Engineer Company, 1 Mountain Company, 1 Military Police Company, 1 Mine-clearing Detachment); Air Forces (4 MIG-21 LANCER, 1 C- 130B...Land Forces - 3 Infantry Companies, 1 Engineer Company, 1 Mountain Company, 1 Paratroops Company, 1 Military Police Company, 1 Demining Detachment