WorldWideScience

Sample records for ground radar observations

  1. Comparison of Precipitation Observations from a Prototype Space-based Cloud Radar and Ground-based Radars

    Institute of Scientific and Technical Information of China (English)

    LIU Liping; ZHANG Zhiqiang; YU Danru; YANG Hu; ZHAO Chonghui; ZHONG Lingzhi

    2012-01-01

    A prototype space-based cloud radar has been developed and was installed on an airplane to observe a precipitation system over Tianjin,China in July 2010.Ground-based S-band and Ka-band radars were used to examine the observational capability of the prototype. A cross-comparison algorithm between different wavelengths,spatial resolutions and platform radars is presented.The reflectivity biases,correlation coefficients and standard deviations between the radars are analyzed.The equivalent reflectivity bias between the S- and Ka-band radars were simulated with a given raindrop size distribution.The results indicated that reflectivity bias between the S- and Ka-band radars due to scattering properties was less than 5 dB,and for weak precipitation the bias was negligible. The prototype space-based cloud radar was able to measure a reasonable vertical profile of reflectivity,but the reflectivity below an altitude of 1.5 km above ground level was obscured by ground clutter.The measured reflectivity by the prototype space-based cloud radar was approximately 10.9 dB stronger than that by the S-band Doppler radar (SA radar),and 13.7 dB stronger than that by the ground-based cloud radar.The reflectivity measured by the SA radar was 0.4 dB stronger than that by the ground-based cloud radar.This study could provide a method for the quantitative examination of the observation ability for space-based radars.

  2. Ground deformation near Gada ‘Ale Volcano, Afar, observed by radar interferometry

    Science.gov (United States)

    Amelung, Falk; Oppenheimer, Clive; Segall, P.; Zebker, H.

    2000-10-01

    Radar interferometric measurements of ground-surface displacement using ERS data show a change in radar range, corresponding to up to 12 cm of subsidence near Gada ‘Ale volcano in northern Afar, Ethiopia, that occurred between June 1993 and May 1996. This is the area of lowest topography within the Danakil Depression (-126 m). Geodetic inverse modeling and geological evidence suggest a volcanic origin of the observed deformation; it was probably caused by a combined process of magma withdrawal from a larger reservoir and normal faulting. There is no evidence of subaerial eruption. This is the only identifiable deformation event during June 1993-October 1997 in the 80 km long Erta ‘Ale volcanic range, indicating surprising inactivity elsewhere in the range.

  3. Precipitation and microphysical processes observed by three polarimetric X-band radars and ground-based instrumentation during HOPE

    OpenAIRE

    Xie, Xinxin; Evaristo, Raquel; Simmer, Clemens; Handwerker, Jan; Trömel, Silke

    2016-01-01

    This study presents a first analysis of precipitation and related microphysical processes observed by three polarimetric X-band Doppler radars (BoXPol, JuXPol and KiXPol) in conjunction with a ground-based network of disdrometers, rain gauges and vertically pointing micro rain radars (MRRs) during the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) during April and May 2013 in Germany. While JuXPol...

  4. Sub-Seasonal Variability of Tropical Rainfall Observed by TRMM and Ground-based Polarimetric Radar

    Science.gov (United States)

    Dolan, Brenda; Rutledge, Steven; Lang, Timothy; Cifelli, Robert; Nesbitt, Stephen

    2010-05-01

    Studies of tropical precipitation characteristics from the TRMM-LBA and NAME field campaigns using ground-based polarimetric S-band data have revealed significant differences in microphysical processes occurring in the various meteorological regimes sampled in those projects. In TRMM-LMA (January-February 1999 in Brazil; a TRMM ground validation experiment), variability is driven by prevailing low-level winds. During periods of low-level easterlies, deeper and more intense convection is observed, while during periods of low-level westerlies, weaker convection embedded in widespread stratiform precipitation is common. In the NAME region (North American Monsoon Experiment, summer 2004 along the west coast of Mexico), strong terrain variability drives differences in precipitation, with larger drops and larger ice mass aloft associated with convection occurring over the coastal plain compared to convection over the higher terrain of the Sierra Madre Occidental, or adjacent coastal waters. Comparisons with the TRMM precipitation radar (PR) indicate that such sub-seasonal variability in these two regions are not well characterized by the TRMM PR reflectivity and rainfall statistics. TRMM PR reflectivity profiles in the LBA region are somewhat lower than S-Pol values, particularly in the more intense easterly regime convection. In NAME, mean reflectivities are even more divergent, with TRMM profiles below those of S-Pol. In both regions, the TRMM PR does not capture rain rates above 80 mm hr-1 despite much higher rain rates estimated from the S-Pol polarimetric data, and rain rates are generally lower for a given reflectivity from TRMM PR compared to S-Pol. These differences between TRMM PR and S-Pol may arise from the inability of Z-R relationships to capture the full variability of microphysical conditions or may highlight problems with TRMM retrievals over land. In addition to the TRMM-LBA and NAME regions, analysis of sub-seasonal precipitation variability and

  5. Ground Observation and Correction of P-band Radar Imaging Ionospheric Effects

    Directory of Open Access Journals (Sweden)

    Zhao Ning

    2014-02-01

    Full Text Available For high resolution space-borne P-band SAR system, ionospheric effects could cause serious phase errors. These errors are causally related to the radar frequency and the TEC of ionosphere and make the image quality degraded. To guarantee the image quality, the ionosphere errors must be emended. Based on the mismatched filter model caused by ionosphere, it is pointed out that accurate ionosphere TEC is the key for phase error correction, a high precision ionosphere TEC measurement method is further put forward by using the phase errors of SAR echoes, which is validated by processing the data of a ground based P-band radar with well focused radar image of the international space station obtained. The results indicate that the method can effectively increase the accuracy of ionosphere TEC estimation, and thus improve the radar imaging quality, it is applicable to low frequency space-borne SAR systems for reducing the ionosphere effects.

  6. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  7. Localizing Ground-Penetrating Radar

    Science.gov (United States)

    2014-11-01

    ing Ground-Penetrating Radar (LGPR) uses very high frequency (VHF) radar reflections of underground features to generate base- line maps and then...Innovative ground- penetrating radar that maps underground geological features provides autonomous vehicles with real-time localization. Localizing...NOV 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Localizing Ground-Penetrating Radar 5a. CONTRACT NUMBER

  8. Observations on syntactic landmine detection using impulse ground-penetrating radar

    Science.gov (United States)

    Nasif, Ahmed O.; Hintz, Kenneth J.

    2011-06-01

    We discuss some results and observations on applying syntactic pattern recognition (SPR) methodology for landmine detection using impulse ground-penetrating radar (GPR). In the SPR approach, the GPR A-scans are first converted into binary-valued strings by inverse filtering, followed by concavity detection to identify the peaks and valleys representing the locations of impedance discontinuities in the return signal. During the training phase, the characteristic binary strings for a particular landmine are found by looking at all the exemplars of that mine and selecting the collection of strings that yield the best detection results on these exemplars. These characteristic strings can be detected very efficiently using finite state machines (FSMs). Finally, the FSM detections are clustered to assign confidence to each detection, and discard sparse detections. Provided that the impulse GPR provides enough resolution in range, the SPR method can be a robust and high-speed solution for landmine detection and classification, because it aims to exploit the impedance discontinuity profile of the target, which is a description of the internal material structure of the target and little affected by external clutter. To evaluate the proposed methodology, the SPR scheme is applied to a set of impulse GPR data taken at a government test site. We suggest that coherent frequency-agile radar may be a better option for the SPR approach, since it addresses some of the drawbacks of a non-coherent impulse GPR caused by internally non-coherent within-channel signals which necessitate non-coherent integration and its attendant longer integration times, and non-coherent adjacent channels which severely limit the ability to do spatial, or at a minimum, cross-range processing if the GPR is in a linear array antenna.

  9. Precipitation and microphysical processes observed by three polarimetric X-band radars and ground-based instrumentation during HOPE

    Science.gov (United States)

    Xie, Xinxin; Evaristo, Raquel; Simmer, Clemens; Handwerker, Jan; Trömel, Silke

    2016-06-01

    This study presents a first analysis of precipitation and related microphysical processes observed by three polarimetric X-band Doppler radars (BoXPol, JuXPol and KiXPol) in conjunction with a ground-based network of disdrometers, rain gauges and vertically pointing micro rain radars (MRRs) during the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) during April and May 2013 in Germany. While JuXPol and KiXPol were continuously observing the central HOPE area near Forschungszentrum Jülich at a close distance, BoXPol observed the area from a distance of about 48.5 km. MRRs were deployed in the central HOPE area and one MRR close to BoXPol in Bonn, Germany. Seven disdrometers and three rain gauges providing point precipitation observations were deployed at five locations within a 5 km × 5 km region, while three other disdrometers were collocated with the MRR in Bonn. The daily rainfall accumulation at each rain gauge/disdrometer location estimated from the three X-band polarimetric radar observations showed very good agreement. Accompanying microphysical processes during the evolution of precipitation systems were well captured by the polarimetric X-band radars and corroborated by independent observations from the other ground-based instruments.

  10. Ground-based microwave weather radar observations and retrievals during the 2014 Holuhraun eruption (Bárðarbunga, Iceland)

    Science.gov (United States)

    Mereu, Luigi; Silvio Marzano, Frank; Barsotti, Sara; Montopoli, Mario; Yeo, Richard; Arngrimsson, Hermann; Björnsson, Halldór; Bonadonna, Costanza

    2015-04-01

    During an eruptive event the real-time forecasting of ash dispersal into the atmosphere is a key factor to prevent air traffic disasters. The ash plume is extremely hazardous to aircraft that inadvertently may fly through it. Real-time monitoring of such phenomena is crucial, particularly to obtain specific data for the initialization of eruption and dispersion models in terms of source parameters. The latter, such as plume height, ash concentration, mass flow rate and size spectra, are usually very difficult to measure or to estimate with a relatively good accuracy. Over the last years different techniques have been developed to improved ash plume detection and retrieval. Satellite-based observations, using multi-frequency visible and infrared radiometers, are usually exploited for monitoring and measuring dispersed ash clouds. The observations from geostationary orbit suffer from a relatively poor spatial resolution, whereas the low orbit level has a relatively poor temporal resolution. Moreover, the field-of-view of infrared radiometric measurements may be reduced by obstructions caused by water and ice clouds lying between the ground and the sensor's antenna. Weather radar-based observations represent an emerging technique to detect and, to a certain extent, mitigate the hazard from the ash plumes. Ground-based microwave scanning radar systems can provide the three-dimensional information about the detected ash volume with a fairly high spatial resolution every few minutes and in all weather conditions. Methodological studies have recently investigated the possibility of using single-polarization and dual-polarization ground-based radar for the remote sensing of volcanic ash cloud. In this respect, radar observations can be complementary to satellite observations. A microphysical electromagnetic characterization of volcanic ash was carried out in terms of dielectric properties, composition, size and orientation of ash particles. An extended Volcanic Ash Radar

  11. Ground-Truth Observations of Ice-Covered North Slope Lakes Imaged by Radar

    Science.gov (United States)

    1981-10-01

    Cold regions Radar Ice Water supplies 2 A STRACT ( Candu s revers ebb N necoew ad identli by block numbet) Field observations support the interpretation...strong returns (depths > 1.7 m). Inspection of the base maps used to prepare thisfigure (U.S. Geological Survey Maps Teshekpuk C-1, C-2, D-1, D-2 [1...search and Engineering Laboratory; Springfield, Va.: available from National Technical Information Service , 1981. iii, 20 p., illus.; 28 cm. ( CRREL

  12. Testing sea-level markers observed in ground-penetrating radar data from Feddet, south-eastern Denmark

    DEFF Research Database (Denmark)

    Hede, Mikkel Ulfeldt; Nielsen, Lars; Clemmensen, Lars B;

    2012-01-01

    Ground-penetrating radar (GPR) data have been collected across the modern part (test identification of sea-level markers in GPR data from microtidal depositional environments. Nielsen and Clemmensen (2009) showed...

  13. Comparison of Ground- and Space-based Radar Observations with Disdrometer Measurements During the PECAN Field Campaign

    Science.gov (United States)

    Torres, A. D.; Rasmussen, K. L.; Bodine, D. J.; Dougherty, E.

    2015-12-01

    Plains Elevated Convection At Night (PECAN) was a large field campaign that studied nocturnal mesoscale convective systems (MCSs), convective initiation, bores, and low-level jets across the central plains in the United States. MCSs are responsible for over half of the warm-season precipitation across the central U.S. plains. The rainfall from deep convection of these systems over land have been observed to be underestimated by satellite radar rainfall-retrieval algorithms by as much as 40 percent. These algorithms have a strong dependence on the generally unmeasured rain drop-size distribution (DSD). During the campaign, our group measured rainfall DSDs, precipitation fall velocities, and total precipitation in the convective and stratiform regions of MCSs using Ott Parsivel optical laser disdrometers. The disdrometers were co-located with mobile pod units that measured temperature, wind, and relative humidity for quality control purposes. Data from the operational NEXRAD radar in LaCrosse, Wisconsin and space-based radar measurements from a Global Precipitation Measurement satellite overpass on July 13, 2015 were used for the analysis. The focus of this study is to compare DSD measurements from the disdrometers to radars in an effort to reduce errors in existing rainfall-retrieval algorithms. The error analysis consists of substituting measured DSDs into existing quantitative precipitation estimation techniques (e.g. Z-R relationships and dual-polarization rain estimates) and comparing these estimates to ground measurements of total precipitation. The results from this study will improve climatological estimates of total precipitation in continental convection that are used in hydrological studies, climate models, and other applications.

  14. Combining dual-polarization radar and ground-based observations to study the effect of riming on ice particles

    Science.gov (United States)

    Moisseev, Dmitri; von Lerber, Annakaisa; Tiira, Jussi

    2017-04-01

    Recently a new microphysical scheme based on a single ice-phase category was proposed for the use in numerical weather prediction models. In the proposed scheme, ice particle properties are predicted and vary in time and space. One of the attributes of the proposed scheme is that the prefactor of a power-law relation that links mass and size of ice particles is determined by the rime mass fraction, while the exponent is kept constant. According to this the maximum dimensions of ice particles do not change during riming until graupel growth phase is reached. The dual-polarization radar observations given an additional insight on what are the physical properties of ice particles. Often, it is assumed that differential reflectivity should decrease because of riming. The motivation for this is that heavy riming would transform an ice particle to graupel. A graupel particle typically would have an almost spherical shape and therefore the differential reflectivity will become smaller. On the other hand, at the earlier stages ice particle shape may not change much, while its mass and therefore the density increases. This would lead to the increase of the differential reflectivity, for example. By combining ground-based observations, which allow to quantify the effect of riming on snowfall, and dual-polarization radar observations we investigate the impact of riming on ice particle properties, i.e. mass, density and shape. Furthermore, a connection between, bulk properties of ice particles, liquid water path, radar equivalent reflectivity factor and precipitation rate observations is established. The study is based on data collected during US DOE Biogenic Aerosols - Effects on Clouds and Climate (BAECC) field campaign that took place in Hyytiala, Finland. A detailed analysis of two events is presented to illustrate the method.

  15. Measurements of radar ground returns

    NARCIS (Netherlands)

    Loor, G.P. de

    1974-01-01

    The ground based measurement techniques for the determination of the radar back-scatter of vegetation and soils as used in The Netherlands will be described. Two techniques are employed: one covering a large sample area (> 1000 m2) but working at low grazing angels only and one (short range) coverin

  16. Testing sea-level markers observed in ground-penetrating radar data from Feddet, south-eastern Denmark

    DEFF Research Database (Denmark)

    Hede, Mikkel Ulfeldt; Nielsen, Lars; Clemmensen, Lars B

    2012-01-01

    Ground-penetrating radar (GPR) data have been collected across the modern part (Ground-penetrating radar (GPR) data have been collected across the modern part (... that identified downlap points in GPR data from Anholt (an island in the Kattegat Sea, Denmark) can be interpreted to mark sea level at the time of deposition. The data presented here support this hypothesis. The GPR reflection data have been acquired with shielded 250 MHz Sensors & Software antennae along...

  17. Characteristics of the 14 April 1999 Sydney hailstorm based on ground observations, weather radar, insurance data and emergency calls

    Directory of Open Access Journals (Sweden)

    S. S. Schuster

    2005-01-01

    Full Text Available Hailstorms occur frequently in metropolitan Sydney, in the eastern Australian State of New South Wales, which is especially vulnerable due to its building exposure and geographical location. Hailstorms challenge disaster response agencies and pose a great risk for insurance companies. This study focuses on the Sydney hailstorm of 14 April 1999 – Australia's most expensive insured natural disaster, with supporting information from two other storms. Comparisons are drawn between observed hailstone sizes, radar-derived reflectivity and damage data in the form of insurance claims and emergency calls. The 'emergency response intensity' (defined by the number of emergency calls as a proportion of the total number of dwellings in a Census Collection District is a useful new measure of the storm intensity or severity experienced. The area defined by a radar reflectivity ≥55 dBZ appears to be a good approximation of the damage swath on ground. A preferred area for hail damage is located to the left side of storm paths and corresponds well with larger hailstone sizes. Merging hail cells appear to cause a substantially higher emergency response intensity, which also corresponds well to maximum hailstone sizes. A damage threshold could be identified for hailstone sizes around 2.5 cm (1 cm, based on the emergency response intensity (insurance claims. Emergency response intensity and claims costs both correlate positively with hailstone sizes. Higher claim costs also occurred in areas that experienced higher emergency response intensities.

  18. Radar Observation of Insects - Mosquitoes

    Science.gov (United States)

    Frost, E.; Downing, J.

    1979-01-01

    Tests were conducted at several sites over the coastal lowlands of New Jersey and over a region of high plains and low mountains in Oklahoma. In one area, a salt marsh in New Jersey, extensive ground tests were combined with laboratory data on expected insect backscatter to arrive at an extremely convincing model of the insect origin of most Dot Angels. A great deal of insight was studied from radar on the buildup and dispersal of insect swarms, since radar can follow where other means of trapping and observation cannot. Data on large-scale behavior as a function of wind and topography are presented. Displayed techniques which show individual or small swarm motion within some larger cloud or mass, or which can show the overall motion over great distances were developed. The influence of wind and terrain on insect motion and dispersal is determined from radar data.

  19. Radar Observations of Asteroids

    Science.gov (United States)

    Ostro, S. J.

    2003-05-01

    During the past 25 years, radar investigations have provided otherwise unavailable information about the physical and dynamical properties of more than 200 asteroids. Measurements of the distribution of echo power in time delay and Doppler frequency provide two-dimensional images with spatial resolution as fine as a decameter. Sequences of delay-Doppler images can be used to produce geologically detailed three-dimensional models, to define the rotation state precisely, to constrain the internal density distribution, and to estimate the trajectory of the object's center of mass. Radar wavelengths (4 to 13 cm) and the observer's control of transmitted and received polarizations make the observations sensitive to near-surface bulk density and macroscopic structure. Since delay-Doppler positional measurements are orthogonal to optical angle measurements and typically have much finer fractional precision, they are powerful for refining orbits and prediction ephemerides. Radar astrometry can add decades or centuries to the interval over which an asteroid's close Earth approaches can accurately be predicted and can significantly refine collision probability estimates based on optical astrometry alone. In the highly unlikely case that a small body is on course for an Earth collision in this century, radar reconnaissance would almost immediately distinguish between an impact trajectory and a near miss and would dramatically reduce the difficulty and cost of any effort to prevent the collision. The sizes and rotation periods of radar-detected asteroids span more than four orders of magnitude. These observations have revealed both stony and metallic objects, elongated and nonconvex shapes as well as nearly featureless spheroids, small-scale morphology ranging from smoother than the lunar regolith to rougher than the rockiest terrain on Mars, craters and diverse linear structures, non-principal-axis spin states, contact binaries, and binary systems.

  20. Airborne ground penetrating radar: practical field experiments

    CSIR Research Space (South Africa)

    Van Schoor, Michael

    2013-10-01

    Full Text Available The performance of ground penetrating radar (GPR) under conditions where the ground coupling of the antenna is potentially compromised is investigated. Of particular interest is the effect of increasing the distance between the antennae...

  1. A proposal on the study of solar-terrestrial coupling processes with atmospheric radars and ground-based observation network

    Science.gov (United States)

    Tsuda, Toshitaka; Yamamoto, Mamoru; Hashiguchi, Hiroyuki; Shiokawa, Kazuo; Ogawa, Yasunobu; Nozawa, Satonori; Miyaoka, Hiroshi; Yoshikawa, Akimasa

    2016-09-01

    The solar energy can mainly be divided into two categories: the solar radiation and the solar wind. The former maximizes at the equator, generating various disturbances over a wide height range and causing vertical coupling processes of the atmosphere between the troposphere and middle and upper atmospheres by upward propagating atmospheric waves. The energy and material flows that occur in all height regions of the equatorial atmosphere are named as "Equatorial Fountain." These processes from the bottom also cause various space weather effects, such as satellite communication and Global Navigation Satellite System positioning. While, the electromagnetic energy and high-energy plasma particles in the solar wind converge into the polar region through geomagnetic fields. These energy/particle inflow results in auroral Joule heating and ion drag of the atmosphere particularly during geomagnetic storms and substorms. The ion outflow from the polar ionosphere controls ambient plasma constituents in the magnetosphere and may cause long-term variation of the atmosphere. We propose to clarify these overall coupling processes in the solar-terrestrial system from the bottom and from above through high-resolution observations at key latitudes in the equator and in the polar region. We will establish a large radar with active phased array antenna, called the Equatorial Middle and Upper atmosphere radar, in west Sumatra, Indonesia. We will participate in construction of the EISCAT_3D radar in northern Scandinavia. These radars will enhance the existing international radar network. We will also develop a global observation network of compact radio and optical remote sensing equipment from the equator to polar region.

  2. Mapping plasma structures in the high-latitude ionosphere using beacon satellite, incoherent scatter radar and ground-based magnetometer observations

    Directory of Open Access Journals (Sweden)

    T. Neubert

    2002-06-01

    Full Text Available In the autumn of the year 2000, four radio receivers capable of tracking various beacon satellites were set up along the southwestern coast of Greenland. They are used to reconstruct images of the ionospheric plasma density distribution via the tomographic method. In order to test and validate tomographic imaging under the highly variable conditions often prevailing in the high-latitude ionosphere, a time interval was selected when the Sondrestrom incoherent scatter radar conducted measurements of the ionospheric plasma density while the radio receivers tracked a number of beacon satellites. A comparison between two-dimensional images of the plasma density distribution obtained from the radar and the satellite receivers revealed generally good agreement between radar measurements and tomographic images. Observed discrepancies can be attributed to F region plasma patches moving through the field of view with a speed of several hundred meters per second, thereby smearing out the tomographic image. A notable mismatch occurred around local magnetic midnight when a magnetospheric substorm breakup occurred in the vicinity of southwest Greenland (identified from ground-based magnetometer observations. The breakup was associated with a sudden intensification of the westward auroral electrojet which was centered at about 69 and extended up to some 73 corrected geomagnetic latitude. Ground-based magnetometer data may thus have the potential of indicating when the tomographic method is at risk and may fail. We finally outline the application of tomographic imaging, when combined with magnetic field data, to estimate ionospheric Joule heating rates.

  3. Simultaneous PMC and PMSE observations with a ground-basedlidar and SuperDARN HF radar over Syowa Station, Antarctica

    Science.gov (United States)

    Suzuki, Hidehiko; Nakamura, Takuji; Tsutsumi, Masaki; Kawahara, Takuya D.; Ogawa, Tadahiko; Tomikawa, Yoshihiro; Ejiri, Mitsumu K.; Sessai Yukimatu, Akira; Abo, Makoto

    2012-07-01

    A Rayleigh-Raman lidar system had been installed by the 52nd JapaneseAntarctic Research Expedition on February, 2011 at Syowa Station Antarctica(69.0°S, 39.5°E). Polar Mesospheric Cloud (PMC) was detected by the lidar at22:30UT (+3hr for LT) on Feb 4th, 2011, the first day of a routineoperation. This event is the first time to detect PMC over Syowa Station bya lidar. In the same night, SuperDARN HF radar with oblique incidence beamsalso detected Polar Mesosphere Summer Echoes (PMSEs) during 21:30UT to23:00UT. Although these signals were detected at different times andlocations, PMC motion estimated using horizontal wind velocities obtained bya collocated MF radar strongly suggests that they have a common origin (i.e.ice particle). We consider that this event occurred in the end of PMCactivity period at Syowa Station in the austral summer season (2010-2011),since the lidar did not detected any PMC signals on other days in February,2011. This is consistent with satellite-born PMC observations by AIM/CIPSand atmospheric temperature observations by AURA/MLS instruments.

  4. Volcanic Ash Cloud Observation using Ground-based Ka-band Radar and Near-Infrared Lidar Ceilometer during the Eyjafjallajökull eruption

    Directory of Open Access Journals (Sweden)

    Frank S. Marzano

    2015-03-01

    Full Text Available Active remote sensing techniques can probe volcanic ash plumes, but their sensitivity at a given distance depends upon the sensor transmitted power, wavelength and polarization capability. Building on a previous numerical study at centimeter wavelength, this work aims at i simulating the distal ash particles polarimetric response of millimeter-wave radar and multi-wavelength optical lidar; ii developing and applying a model-based statistical retrieval scheme using a multi-sensor approach. The microphysical electromagnetic forward model of volcanic ash particle distribution, previously set up at microwaves, is extended to include non-spherical particle shapes, vesicular composition, silicate content and orientation phenomena for both millimeter and optical bands. Monte Carlo generation of radar and lidar signatures are driven by random variability of volcanic particle main parameters, using constraints from available data and experimental evidences. The considered case study is related to the ground-based observation of the Eyjafjallajökull (Iceland volcanic ash plume on May 15, 2010, carried out by the Atmospheric Research Station at Mace Head (Ireland with a 35-GHz Ka-band Doppler cloud radar and a 1064-nm ceilometer lidar. The detection and estimation of ash layer presence and composition is carried out using a Bayesian approach, which is trained by the Monte Carlo model-based dataset. Retrieval results are corroborated exploiting auxiliary data such as those from a ground-based microwave radiometer also positioned at Mace Head.

  5. 3D Ground Penetrating Imaging Radar

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    GPiR (ground-penetrating imaging radar) is a new technology for mapping the shallow subsurface, including society’s underground infrastructure. Applications for this technology include efficient and precise mapping of buried utilities on a large scale.

  6. Identifying structural damage with ground penetrating radar

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2008-07-01

    Full Text Available Ground penetrating radar (GPR) and electrical resistance tomography (ERT) surveys were conducted in an urban environment in an attempt to identify the cause of severe structural damage to a historically significant residential property...

  7. Detection of ground ice using ground penetrating radar method

    Institute of Scientific and Technical Information of China (English)

    Gennady M. Stoyanovich; Viktor V. Pupatenko; Yury A. Sukhobok

    2015-01-01

    The paper presents the results of a ground penetrating radar (GPR) application for the detection of ground ice. We com-bined a reflection traveltime curves analysis with a frequency spectrogram analysis. We found special anomalies at specific traces in the traveltime curves and ground boundaries analysis, and obtained a ground model for subsurface structure which allows the ground ice layer to be identified and delineated.

  8. Subsurface investigation with ground penetrating radar

    Science.gov (United States)

    Ground penetrating radar (GPR) data was collected on a small test plot at the OTF/OSU Turfgrass Research & Education Facility in Columbus, Ohio. This test plot was built to USGA standards for a golf course green, with a constructed sand layer just beneath the surface overlying a gravel layer, that i...

  9. Tree root mapping with ground penetrating radar

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2009-09-01

    Full Text Available roots is required a detailed 3D survey approach is recommended. REFERENCES Butnor, J.R., Doolittle, J.A., Johnsen, K.H., Samuelson, L., Stokes, T. and Kress, L., 2003, Utility of Ground-Penetrating Radar as a Root Biomass Survey Tool in Forest...

  10. Ground penetrating radar for asparagus detection

    Science.gov (United States)

    Seyfried, Daniel; Schoebel, Joerg

    2016-03-01

    Ground penetrating radar is a promising technique for detection of buried objects. Recently, radar has more and more been identified to provide benefits for a plurality of applications, where it can increase efficiency of operation. One of these fields is the industrial automatic harvesting process of asparagus, which is performed so far by cutting the soil ridge at a certain height including all the asparagus spears and subsequently sieving the latter out of the soil. However, the height where the soil is cut is a critical parameter, since a wrong value leads to either damage of the roots of the asparagus plants or to a reduced crop yield as a consequence of too much biomass remaining in the soil. In this paper we present a new approach which utilizes ground penetrating radar for non-invasive sensing in order to obtain information on the optimal height for cutting the soil. Hence, asparagus spears of maximal length can be obtained, while keeping the roots at the same time undamaged. We describe our radar system as well as the subsequent digital signal processing steps utilized for extracting the information required from the recorded radar data, which then can be fed into some harvesting unit for setting up the optimal cutting height.

  11. Truffes Detection Using Ground Penetration Radar

    Directory of Open Access Journals (Sweden)

    Ali Aydın

    2015-12-01

    Full Text Available Honaz Mountain (Denizli-SW Turkey has a mild and humid climate and it produces a rich flora in the area. As a natural consequence thereof, the study area offers a rich mushroom potential that is a rising economic value. In recent years, Ground Penetration Radar (GPR is a relatively modern and effective and widely utilized technique for shallow subsurface exploration. GPR with 250 Hz antenna was employed to trace the tubers in Honaz Mountain area. To elucidate how the mushroom can reflect the signals, mineral composition of the mushrooms has been analysed. Percentage of K, Na, Ca, Mg, Fe, Al, P, S, Si, Cl minerals were significantly different from that of earth. This difference in element composition seems to cause the reflection of the signals. A large number of mushroom grooving areas have been detected during the study. The observed GPR data have been confirmed by the physical excavation. The study proposes that this method can be effectively employed to detect the natural mushrooms in the ground.

  12. Tropical convective systems life cycle characteristics from geostationary satellite and precipitating estimates derived from TRMM and ground weather radar observations for the West African and South American regions

    Science.gov (United States)

    Fiolleau, T.; Roca, R.; Angelis, F. C.; Viltard, N.

    2012-12-01

    In the tropics most of the rainfall comes in the form of individual storm events embedded in the synoptic circulations (e.g., monsoons). Understanding the rainfall and its variability hence requires to document these highly contributing tropical convective systems (MCS). Our knowledge of the MCS life cycle, from a physical point of view mainly arises from individual observational campaigns heavily based on ground radar observations. While this large part of observations enabled the creation of conceptual models of MCS life cycle, it nevertheless does not reach any statistically significant integrated perspective yet. To overcome this limitation, a composite technique, that will serve as a Day-1 algorithm for the Megha-Tropiques mission, is considered in this study. this method is based on a collocation in space and time of the level-2 rainfall estimates (BRAIN) derived from the TMI radiometer onboard TRMM with the cloud systems identified by a new MCS tracking algorithm called TOOCAN and based on a 3-dimensional segmentation (image + time) of the geostationary IR imagery. To complete this study, a similar method is also developed collocating the cloud systems with the precipitating features derived from the ground weather radar which has been deployed during the CHUVA campaign over several Brazilian regions from 2010 up to now. A comparison of the MCSs life cycle is then performed for the 2010-2012 summer seasons over the West African, and South American regions. On the whole region of study, the results show that the temporal evolution of the cold cloud shield associated to MCSs describes a symmetry between the growth and the decay phases. It is also shown that the parameters of the conceptual model of MCSs are strongly correlated, reducing thereby the problem to a single degree of freedom. At the system scale, over both land and oceanic regions, rainfall is described by an increase at the beginning (the first third) of the life cycle and then smoothly decreases

  13. Simultaneous PMC and PMSE observations with a ground-based lidar and SuperDARN HF radar at Syowa Station, Antarctica

    Directory of Open Access Journals (Sweden)

    H. Suzuki

    2013-10-01

    Full Text Available A Rayleigh–Raman lidar system was installed in January 2011 at Syowa Station, Antarctica (69.0° S, 39.6° E. Polar mesospheric clouds (PMCs were detected by lidar at around 22:30 UTC (LT −3 h on 4 February 2011, which was the first day of observation. This was the first detection of PMCs over Syowa Station by lidar. On the same day, a Super Dual Auroral Radar Network (SuperDARN HF radar with oblique-incidence beams detected polar mesospheric summer echoes (PMSE between 21:30 and 23:00 UTC. This event is regarded as the last PMC activity around Syowa Station during the austral summer season (2010–2011, since no other PMC signals were detected by lidar in February 2011. This is consistent with results of PMC and mesopause temperature observations by satellite-born instruments of AIM (Aeronomy of Ice in the Mesosphere/CIPS (Cloud Imaging and Particle Size and AURA/MLS (Microwave Limb Sounder and horizontal wind measurements taken by a separate MF radar. Doppler velocity of PMSE observed by the HF radar showed motion toward Syowa Station (westward. This westward motion is consistent with the wind velocities obtained by the MF radar. However, the PMSE region showed horizontal motion from a north-to-south direction during the PMC event. This event indicates that the apparent horizontal motion of the PMSE region can deviate from neutral wind directions and observed Doppler velocities.

  14. Simultaneous PMC and PMSE observations with a ground-based lidar and SuperDARN HF radar at Syowa Station, Antarctica

    Science.gov (United States)

    Suzuki, H.; Nakamura, T.; Ejiri, M. K.; Ogawa, T.; Tsutsumi, M.; Abo, M.; Kawahara, T. D.; Tomikawa, Y.; Yukimatu, A. S.; Sato, N.

    2013-10-01

    A Rayleigh-Raman lidar system was installed in January 2011 at Syowa Station, Antarctica (69.0° S, 39.6° E). Polar mesospheric clouds (PMCs) were detected by lidar at around 22:30 UTC (LT -3 h) on 4 February 2011, which was the first day of observation. This was the first detection of PMCs over Syowa Station by lidar. On the same day, a Super Dual Auroral Radar Network (SuperDARN) HF radar with oblique-incidence beams detected polar mesospheric summer echoes (PMSE) between 21:30 and 23:00 UTC. This event is regarded as the last PMC activity around Syowa Station during the austral summer season (2010-2011), since no other PMC signals were detected by lidar in February 2011. This is consistent with results of PMC and mesopause temperature observations by satellite-born instruments of AIM (Aeronomy of Ice in the Mesosphere)/CIPS (Cloud Imaging and Particle Size) and AURA/MLS (Microwave Limb Sounder) and horizontal wind measurements taken by a separate MF radar. Doppler velocity of PMSE observed by the HF radar showed motion toward Syowa Station (westward). This westward motion is consistent with the wind velocities obtained by the MF radar. However, the PMSE region showed horizontal motion from a north-to-south direction during the PMC event. This event indicates that the apparent horizontal motion of the PMSE region can deviate from neutral wind directions and observed Doppler velocities.

  15. 46 CFR 15.815 - Radar observers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Radar observers. 15.815 Section 15.815 Shipping COAST... Computations § 15.815 Radar observers. (a) Each person in the required complement of deck officers, including... endorsement as radar observer. (b) Each person who is employed or serves as pilot in accordance with...

  16. 46 CFR 11.480 - Radar observer.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Radar observer. 11.480 Section 11.480 Shipping COAST... ENDORSEMENTS Professional Requirements for Deck Officers § 11.480 Radar observer. (a) This section contains the requirements that an applicant must meet to qualify as a radar observer. (Part 15 of this chapter specifies...

  17. Ground Penetrating Radar Technologies in Ukraine

    Science.gov (United States)

    Pochanin, Gennadiy P.; Masalov, Sergey A.

    2014-05-01

    Transient electromagnetic fields are of great interest in Ukraine. The following topics are studied by research teams, with high-level achievements all over the world: (i) Ultra-Wide Band/Short-pulse radar techniques (IRE and LLC "Transient Technologies", for more information please visit http://applied.ire.kharkov.ua/radar%20systems_their%20components%20and%20relevant%20technologies_e.html and http://viy.ua); (ii) Ground Penetrating Radar (GPR) with stepped frequency sounding signals (IRE); (iii) Continuous-Wave (CW) radar with phase-shift keying signals (IRE); and (iv) Radio-wave interference investigation (Scientific and Technical Centre of The Subsurface Investigation, http://geophysics.ua). GPR applications are mainly in search works, for example GPR is often used to search for treasures. It is also used to identify leaks and diffusion of petroleum in soil, in storage areas, as well as for fault location of pipelines. Furthermore, GPR is used for the localization of underground utilities and for diagnostics of the technical state of hydro dams. Deeper GPR probing was performed to identify landslides in Crimea. Rescue radar with CW signal was designed in IRE to search for living people trapped under the rubble of collapsed buildings. The fourth version of this radar has been recently created, showing higher stability and noise immunity. Radio-wave interference investigation allows studying the soil down to tens of meters. It is possible to identify areas with increased conductivity (moisture) of the soil. LLC "Transient Technologies" is currently working with Shevchenko Kyiv University on a cooperation program in which the construction of a test site is one of the planned tasks. In the framework of this program, a GPR with a 300 MHz antenna was handed to the geological Faculty of the University. Employees of "Transient Technologies" held introductory lectures with a practical demonstration for students majoring in geophysics. The authors participated to GPR

  18. Improvements to the OMI O2-O2 operational cloud algorithm and comparisons with ground-based radar-lidar observations

    Science.gov (United States)

    Pepijn Veefkind, J.; de Haan, Johan F.; Sneep, Maarten; Levelt, Pieternel F.

    2016-12-01

    The OMI (Ozone Monitoring Instrument on board NASA's Earth Observing System (EOS) Aura satellite) OMCLDO2 cloud product supports trace gas retrievals of for example ozone and nitrogen dioxide. The OMCLDO2 algorithm derives the effective cloud fraction and effective cloud pressure using a DOAS (differential optical absorption spectroscopy) fit of the O2-O2 absorption feature around 477 nm. A new version of the OMI OMCLDO2 cloud product is presented that contains several improvements, of which the introduction of a temperature correction on the O2-O2 slant columns and the updated look-up tables have the largest impact. Whereas the differences in the effective cloud fraction are on average limited to 0.01, the differences of the effective cloud pressure can be up to 200 hPa, especially at cloud fractions below 0.3. As expected, the temperature correction depends on latitude and season. The updated look-up tables have a systematic effect on the cloud pressure at low cloud fractions. The improvements at low cloud fractions are very important for the retrieval of trace gases in the lower troposphere, for example for nitrogen dioxide and formaldehyde. The cloud pressure retrievals of the improved algorithm are compared with ground-based radar-lidar observations for three sites at mid-latitudes. For low clouds that have a limited vertical extent the comparison yields good agreement. For higher clouds, which are vertically extensive and often contain several layers, the satellite retrievals give a lower cloud height. For high clouds, mixed results are obtained.

  19. Meteorological radar methods for validating space observations of precipitation

    Science.gov (United States)

    Thiele, Otto W.

    1991-01-01

    Meteorological approaches to verification of space measurements of rainfall are examined; validation of Tropical Rainfall Measuring Mission (TRMM) observations is expected to depend significantly on ground-based radars. Two methods of comparison are initially contemplated. TRMM rainfall data over time periods of a month for large areas (500 x 500 km) are averaged and compared with similarly averaged ground truth measurements. Both the rainfall and height distribution data from TRMM are compared with the instantaneous values observed at one or more 'ground truth' stations and from airborne radar and radiometers as available.

  20. Mars Express Bistatic Radar Observations 2016

    Science.gov (United States)

    Andert, Tom; Simpson, Richard A.; Pätzold, Martin; Kahan, Daniel S.; Remus, Stefan; Oudrhiri, Kamal

    2017-04-01

    One objective of the Mars Express Radio Science Experiment (MaRS) is to address the dielectric properties and surface roughness of Mars, which can be determined by means of a surface scattering experiment, also known as bistatic radar (BSR). The radio subsystem transmitter located on board the Mars Express spacecraft beams right circularly polarized (RCP) radio signals at two wavelengths - 3.6 cm (X-Band) and 13 cm (S-Band) - toward Mars' surface. Part of the impinging radiation is then scattered toward a receiver at a ground station on Earth and both the right and left circularly polarized echo components (RCP and LCP, respectively) are recorded. The dielectric constant can be derived in this configuration from the RCP-to-LCP power ratio. This approach eliminates the need for absolute end-to-end calibration in favor of relative calibration of the RCP and LCP ground receiver channels. Nonetheless, accurate relative calibration of the two receiving channels remains challenging. The most favorable configuration for bistatic radar experiments is around Earth-Mars opposition, which occurs approximately every two years. In 2016 the minimum distance of about 0.5 AU was reached on May 30th; eleven BSR experiments were successfully conducted between the end of April and mid-June. The specular point tracks during two experiments over the Syrtis Major region were very similar on April 27th and June 2nd, and the data were collected using the same Earth-based antenna. The separation in time and the different observing angles provide an opportunity to check reproducibility of the calibrations and analysis methods. The paper will illustrate the general spacecraft-to-ground BSR observation technique and describe in detail the calibration procedures at the ground station needed to perform the relative calibration of the two receiving channels. Results from the calibrations and the surface observations will be shown for the two MaRS experiments over Syrtis Major.

  1. Ground Penetrating Radar: Ultra-wideband radars for improvised explosive devices and landmine detection

    NARCIS (Netherlands)

    Yarovoy, A.

    2008-01-01

    For last two decades Ultra-Wideband Ground Penetrating Radars seemed to be a useful tool for detection and classification of landmines and improvised explosive devices (IEDs). However limitations of radar technology considerably limited operational use of these radars. Recent research at TU Delft so

  2. Ground Penetrating Radar: Ultra-wideband radars for improvised explosive devices and landmine detection

    OpenAIRE

    Yarovoy, A.

    2008-01-01

    For last two decades Ultra-Wideband Ground Penetrating Radars seemed to be a useful tool for detection and classification of landmines and improvised explosive devices (IEDs). However limitations of radar technology considerably limited operational use of these radars. Recent research at TU Delft solves the bottleneck problems.

  3. Civil engineering applications of ground penetrating radar

    CERN Document Server

    Pajewski, Lara

    2015-01-01

    This book, based on Transport and Urban Development COST Action TU1208, presents the most advanced applications of ground penetrating radar (GPR) in a civil engineering context, with documentation of instrumentation, methods, and results. It explains clearly how GPR can be employed for the surveying of critical transport infrastructure, such as roads, pavements, bridges, and tunnels, and for the sensing and mapping of underground utilities and voids. Detailed attention is also devoted to use of GPR in the inspection of geological structures and of construction materials and structures, including reinforced concrete, steel reinforcing bars, and pre/post-tensioned stressing ducts. Advanced methods for solution of electromagnetic scattering problems and new data processing techniques are also presented. Readers will come to appreciate that GPR is a safe, advanced, nondestructive, and noninvasive imaging technique that can be effectively used for the inspection of composite structures and the performance of diagn...

  4. Ground penetrating radar for underground sensing in agriculture: a review

    Science.gov (United States)

    Liu, Xiuwei; Dong, Xuejun; Leskovar, Daniel I.

    2016-10-01

    Belowground properties strongly affect agricultural productivity. Traditional methods for quantifying belowground properties are destructive, labor-intensive and pointbased. Ground penetrating radar can provide non-invasive, areal, and repeatable underground measurements. This article reviews the application of ground penetrating radar for soil and root measurements and discusses potential approaches to overcome challenges facing ground penetrating radar-based sensing in agriculture, especially for soil physical characteristics and crop root measurements. Though advanced data-analysis has been developed for ground penetrating radar-based sensing of soil moisture and soil clay content in civil engineering and geosciences, it has not been used widely in agricultural research. Also, past studies using ground penetrating radar in root research have been focused mainly on coarse root measurement. Currently, it is difficult to measure individual crop roots directly using ground penetrating radar, but it is possible to sense root cohorts within a soil volume grid as a functional constituent modifying bulk soil dielectric permittivity. Alternatively, ground penetrating radarbased sensing of soil water content, soil nutrition and texture can be utilized to inversely estimate root development by coupling soil water flow modeling with the seasonality of plant root growth patterns. Further benefits of ground penetrating radar applications in agriculture rely on the knowledge, discovery, and integration among differing disciplines adapted to research in agricultural management.

  5. Penn State Radar Systems: Implementation and Observations

    Science.gov (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  6. The variability of tropical ice cloud properties as a function of the large-scale context from ground-based radar-lidar observations over Darwin, Australia

    Directory of Open Access Journals (Sweden)

    A. Protat

    2010-08-01

    Full Text Available The statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness, cloud fraction as derived considering a typical large-scale model grid box, and the microphysical and radiative properties (ice water content, visible extinction, effective radius, terminal fall speed, and total concentration. The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP, the amplitude and phase of the Madden–Julian Oscillation (MJO, and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The rationale for characterizing this variability is to provide an observational basis to which model outputs can be compared for the different regimes or large-scale characteristics and from which new parameterizations accounting for the large-scale context can be derived.

    The mean vertical variability of ice cloud occurrence and microphysical properties is large (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically. 98% of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3 or a very large cloud fraction (larger than 0.9. Our results also indicate that, at least in the northern Australian region, the upper part of the troposphere can be split into three distinct layers characterized by different statistically-dominant microphysical processes. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase

  7. Application of Ground Penitrating Radar Method in Pipe Laying Detection

    Institute of Scientific and Technical Information of China (English)

    史付生; 赵学军; 宁书年; 宋喜林; 何亚伟

    2003-01-01

    Ground Penetrating Radar method was used in detecting the flaws of underground pipeline. The GPR layer disturbing image was summarized by using a rational method in fieldwork and the in-door interpretation of data. The mark radar images of disturbance of slight, middle, and strong were obtained. The result shows that the radar method can not only determine the position of the concrete pipeline underground, but it can detect the laying quality of pipeline as well.

  8. Cross Validation of Spaceborne and Ground Polarimetric Radar Snowfall Retrievals

    Science.gov (United States)

    Wen, Y.; Hong, Y.; Cao, Q.; Kirstetter, P.; Gourley, J. J.; Zhang, J.

    2013-12-01

    Snow, as a primary contribution to regional or even global water budgets is of critical importance to our society. For large-scale weather monitoring and global climate studies, satellite-based snowfall observations with ground validations have become highly desirable. Ground-based polarimetric weather radar is the powerful validation tool that provides physical insight into the development and interpretation of spaceborne snowfall retrievals. This study aims to compare and resolve discrepancies in snowfall detection and estimation between Cloud Profiling Radar (CPR) on board NASA's Cloudsat satellite and new polarimetric National Mosaic and Multi-sensor QPE (NMQ) system (Q3) developed by OU and NOAA/NSSL scientists. The Global Precipitation Measurement Mission with its core satellite scheduled for launch in 2014 will carry active and passive microwave instrumentation anticipated to detect and estimate snowfall or snowpack. This study will potentially serve as the basis for global validation of space-based snowfall products and also invite synergistic development of coordinated space-ground multisensor snowfall products.

  9. Preliminary results of ground reflectivity measurements using noise radar

    Science.gov (United States)

    Maślikowski, Łukasz; Krysik, Piotr; Dąbrowska-Zielińska, Katarzyna; Kowalik, Wanda; Bartold, Maciej

    2011-10-01

    The paper describes experimental L-band ground reflectivity measurement using noise radar demonstrator working as a scatterometer. The radar ground return is usually described with a scattering coefficient, a quantity that is independent from the scatterometer system. To calculate the coefficient in a function of incidence angle, range profile values obtained after range compression were used. In order to improve dynamic range of the measurement, antenna cross-path interference was removed using lattice filter. The ground return was measured at L band both for HH and VV polarizations of radar wave as well as for HV and VH crosspolarizations using log-periodic antennas placed at a 10 m high mast directed towards a meadow surface. In the paper the theoretical considerations, noise radar setup, measurement campaign and the results are described.

  10. Polarization Diversity for HF Ground Wave Radar

    Institute of Scientific and Technical Information of China (English)

    QIAO Xiaolin; JIN Ming

    2001-01-01

    A new method of single sample polar-ization filtering is proposed.The algorithm is fast andsuitable for the polarization processing of stationaryor nonstationary polarized disturbed signals with oneor more independent sources of disturbance.An HFground wave polarimetric radar with the ability of ra-dio disturbance suppression is then introduced.Somenumerical results demonstrate the effectiveness of sin-gle sample polarization filtering method for groundwave polarimetric radar.

  11. Reconciling Radar Remote-Sensing with MER Ground Truth

    Science.gov (United States)

    Haldemann, A. F. C.; Larsen, K. W.; Jurgens, R. F.; Golombek, M. P.

    2004-11-01

    The Goldstone Solar System Radar (GSSR) carried out Earth-based delay-Doppler radar observations of Mars with four receiving stations during the oppositions in 2001 and 2003, supporting Mars Exploration Rover landing site selection. This interferometric technique demonstrated radar mapping of Mars with a 5 km to 10 km spatial resolution. The data for both Gusev Crater and Meridiani Planum indicated smooth terrains, consistent with, but somewhat different from, previous lower spatial resolution Earth-based radar data. Now, with quantitative ground-truth roughness measurements by Spirit and Opportunity, along with THEMIS visible camera images, we can begin to reconcile these differing remote-sensing observations. For Gusev crater, older λ =3.5 cm wavelength data did not directly sample the crater but were of nearby terrain of the same map unit as Gusev's floor. The reported Hagfors scattering model parameters were θ rms=4.7±1.6 degrees, and ρ 0=0.04±0.02. These quasi-specular parameters refer to roughness in the range 10 λ to 100 λ . The higher resolution data from 2003, averaged over the whole MER Gusev ellipse were θ rms=1.3+1.0-0.5 degrees and ρ 0=0.02±0.01. The ρ 0 for the 5 km pixel where Spirit landed was like the average, but θ rms=1.6+1.0-0.5. The roughness derived from stereo images from Spirits first 30 sols, available on the PDS, implies near-nadir scattering from 3 m scales is dominant. We examine the spatial coverage of the older data, as well as other radar data to reconcile the differing observations. For Meridiani, GSSR made direct observations at 3.5 cm at both 5 km resolution and at 10×150 km resolution in 2001. We will carry out our comparative analyses once rover navigation data beyond Eagle crater, obtained after Sol 58, are released to the PDS, and expect to have them for presentation at the meeting.

  12. Numerical Modelling of Ground Penetrating Radar Antennas

    Science.gov (United States)

    Giannakis, Iraklis; Giannopoulos, Antonios; Pajewski, Lara

    2014-05-01

    Numerical methods are needed in order to solve Maxwell's equations in complicated and realistic problems. Over the years a number of numerical methods have been developed to do so. Amongst them the most popular are the finite element, finite difference implicit techniques, frequency domain solution of Helmontz equation, the method of moments, transmission line matrix method. However, the finite-difference time-domain method (FDTD) is considered to be one of the most attractive choice basically because of its simplicity, speed and accuracy. FDTD first introduced in 1966 by Kane Yee. Since then, FDTD has been established and developed to be a very rigorous and well defined numerical method for solving Maxwell's equations. The order characteristics, accuracy and limitations are rigorously and mathematically defined. This makes FDTD reliable and easy to use. Numerical modelling of Ground Penetrating Radar (GPR) is a very useful tool which can be used in order to give us insight into the scattering mechanisms and can also be used as an alternative approach to aid data interpretation. Numerical modelling has been used in a wide range of GPR applications including archeology, geophysics, forensic, landmine detection etc. In engineering, some applications of numerical modelling include the estimation of the effectiveness of GPR to detect voids in bridges, to detect metal bars in concrete, to estimate shielding effectiveness etc. The main challenges in numerical modelling of GPR for engineering applications are A) the implementation of the dielectric properties of the media (soils, concrete etc.) in a realistic way, B) the implementation of the geometry of the media (soils inhomogeneities, rough surface, vegetation, concrete features like fractures and rock fragments etc.) and C) the detailed modelling of the antenna units. The main focus of this work (which is part of the COST Action TU1208) is the accurate and realistic implementation of GPR antenna units into the FDTD

  13. Ground/Air Task Oriented Radar (G/ATOR)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-386 Ground/Air Task Oriented Radar (G/ATOR) As of FY 2017 President’s Budget Defense...Fax: 703-784-0307 DSN Phone: 378-4982 DSN Fax: 278-0307 Date Assigned: August 1, 2014 Program Information Program Name Ground/Air Task Oriented ...06:47:59 UNCLASSIFIED 5 Mission and Description The Ground/Air Task Oriented Radar (G/ATOR) is a single material solution for the mobile Multi-Role

  14. Application of Two Migration Methods for Ground Penetrating Radar Data

    Institute of Scientific and Technical Information of China (English)

    Shi Jing; Chen Shu-zhen; Zou Lian; Xiao Bo-xun

    2004-01-01

    This paper begins with the basic principles of finite-difference migration and diffraction scan migration, and then compares the processing results of the practical ground penetrating radar GPR data with these two migration methods. It is illustrated that migration can refocus the reflecting points in radar record to their true spatial location and provide the foundation for interpretation, thus improving precision of interpretation of (GPR) profiles.

  15. Compact networked radars for Army unattended ground sensors

    Science.gov (United States)

    Wikner, David A.; Viveiros, Edward A.; Wellman, Ronald; Clark, John; Kurtz, Jim; Pulskamp, Jeff; Proie, Robert; Ivanov, Tony; Polcawich, Ronald G.; Adler, Eric D.

    2010-04-01

    The Army Research Laboratory is in partnership with the University of Florida - Electronics Communications Laboratory to develop compact radar technology and demonstrate that it is scalable to a variety of ultra-lightweight platforms (<10 lbs.) to meet Army mission needs in persistent surveillance, unattended ground sensor (UGS), unmanned systems, and man-portable sensor applications. The advantage of this compact radar is its steerable beam technology and relatively long-range capability compared to other small, battery-powered radar concepts. This paper will review the ongoing development of the sensor and presents a sample of the collected data thus far.

  16. Comparison of airborne radar altimeter and ground-based Ku-band radar measurements on the ice cap Austfonna, Svalbard

    Directory of Open Access Journals (Sweden)

    O. Brandt

    2008-11-01

    Full Text Available We compare coincident data from the European Space Agency's Airborne SAR/Interferometric Radar Altimeter System (ASIRAS with ground-based Very High Bandwidth (VHB stepped-frequency radar measurements in the Ku-band. The ASIRAS instrument obtained data from ~700 m above the surface, using a 13.5 GHz center frequency and a 1 GHz bandwidth. The ground-based VHB radar measurements were acquired using the same center frequency, but with a variable bandwidth of either 1 or 8 GHz. Four sites were visited with the VHB radar; two sites within the transition region from superimposed ice to firn, and two sites in the long-term firn area (wet-snow zone. The greater bandwidth VHB measurements show that the first peak in the airborne data is a composite of the return from the surface (i.e. air-snow interface and returns of similar or stronger amplitude from reflectors in the upper ~30 cm of the subsurface. The peak position in the airborne data is thus not necessarily a good proxy for the surface since the maximum and width of the first return depend on the degree of interference between surface and subsurface reflectors. The major response from the winter snowpack was found to be caused by units of thin crust/ice layers (0.5–2 mm surrounded by large crystals (>3 mm. In the airborne data, it is possible to track such layers for tens of kilometers. The winter snowpack lacked thicker ice layers. The last year's summer surface, characterized by a low density large crystal layer overlaying a harder denser layer, gives a strong radar response, frequently the strongest. The clear relationship observed between the VHB and ASIRAS waveforms, justifies the use of ground-based radar measurements in the validation of air- or spaceborne radars.

  17. Observation and theory of the radar aurora

    Energy Technology Data Exchange (ETDEWEB)

    Sahr, J.D.

    1990-01-01

    Plasma density irregularities occurring near the Aurora Borealis cause scattering of HF, VHF, and UHF radio waves. Analysis of the resulting radar signal provides great detail about the spatial and temporal characteristics of these auroral E region irregularities. Observations are presented of the radar aurora from recent campaigns in northern Sweden. After reviewing the basic theory and observations of auroral electrojet irregularities, a simple nonlinear fluid theory of electrojet ion-acoustic waves is introduced, and reduced to a form of the three-wave interaction equations. This theory provides a simple mechanism for excitation of linearly stable waves at large aspect and flow angles, as well as a prediction of the power spectra that a coherent scatter radar should observe. In addition, this theory may be able to account for type 3 waves without resorting to ion gyro modes, such as the electrostatic ion-cyclotron wave. During the course of the research a simple new radar transmitting mode and signal processing algorithm was generated which very simply solves a frequency aliasing problem that often occurs in CUPRI auroral radar studies. Several new radar data analysis routines were developed, including the principally cross-beam image and scatter plots of the second versus first moments of the power spectrum of the irregularities. Analysis of vertical interferometer data shows that type 3 waves originate at ordinary electrojet altitudes, not in the upper E region, from which it is concluded that the electrostatic ion-cyclotron mode does not generate type 3 waves. The measured height of type 3 waves and other spectral analyses provide support for the pure ion-acoustic theory of type 3 waves. Suggestions are offered for hardware improvements to the CUPRI radar, new experiments to test new and existing theories.

  18. Comparison of the TRMM Precipitation Radar rainfall estimation with ground-based disdrometer and radar measurements in South Greece

    Science.gov (United States)

    Ioannidou, Melina P.; Kalogiros, John A.; Stavrakis, Adrian K.

    2016-11-01

    The performance of the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) rainfall estimation algorithm is assessed, locally, in Crete island, south Greece, using data from a 2D-video disdrometer and a ground-based, X-band, polarimetric radar. A three-parameter, normalized Gamma drop size distribution is fitted to the disdrometer rain spectra; the latter are classified in stratiform and convective rain types characterized by different relations between distribution parameters. The method of moments estimates more accurately the distribution parameters than the best fit technique, which exhibits better agreement with and is more biased by the observed droplet distribution at large diameter values. Power laws between the radar reflectivity factor (Z) and the rainfall rate (R) are derived from the disdrometer data. A significant diversity of the prefactor and the exponent of the estimated power laws is observed, depending on the scattering model and the regression technique. The Z-R relationships derived from the disdrometer data are compared to those obtained from TRMM-PR data. Generally, the power laws estimated from the two datasets are different. Specifically, the greater prefactor found for the disdrometer data suggests an overestimation of rainfall rate by the TRMM-PR algorithm for light and moderate stratiform rain, which was the main rain type in the disdrometer dataset. Finally, contemporary data from the TRMM-PR and a ground-based, X-band, polarimetric radar are analyzed. Comparison of the corresponding surface rain rates for a rain event with convective characteristics indicates a large variability of R in a single TRMM-PR footprint, which typically comprises several hundreds of radar pixels. Thus, the coarse spatial resolution of TRMM-PR may lead to miss of significant high local peaks of convective rain. Also, it was found that the high temporal variability of convective rain may introduce significant errors in the estimation of bias of

  19. Validation of GPM Ka-Radar Algorithm Using a Ground-based Ka-Radar System

    Science.gov (United States)

    Nakamura, Kenji; Kaneko, Yuki; Nakagawa, Katsuhiro; Furukawa, Kinji; Suzuki, Kenji

    2016-04-01

    GPM led by the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration of US (NASA) aims to observe global precipitation. The core satellite is equipped with a microwave radiometer (GMI) and a dual-frequency radar (DPR) which is the first spaceborne Ku/Ka-band dual-wavelength radar dedicated for precipitation measurement. In the DPR algorithm, measured radar reflectivity is converted to effective radar reflectivity by estimating the rain attenuation. Here, the scattering/attenuation characteristics of Ka-band radiowaves are crucial, particularly for wet snow. A melting layer observation using a dual Ka-band radar system developed by JAXA was conducted along the slope of Mt. Zao in Yamagata Prefecture, Japan. The dual Ka-band radar system consists of two nearly identical Ka-band FM-CW radars, and the precipitation systems between two radars were observed in opposite directions. From this experiment, equivalent radar reflectivity (Ze) and specific attenuation (k) were obtained. The experiments were conducted for two winter seasons. During the data analyses, it was found that k estimate easily fluctuates because the estimate is based on double difference calculation. With much temporal and spatial averaging, k-Ze relationship was obtained for melting layers. One of the results is that the height of the peak of k seems slightly higher than that of Ze. The results are compared with in-situ precipitation particle measurements.

  20. Comparison of HRDI wind measurements with radar and rocket observations

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, M.D.; Skinner, W.R.; Marshall, A.R.; Hays, P.B.; Lieberman, R.S.; Gell, D.A.; Ortland, D.A.; Morton, Y.T.; Wu, D.L.; Franke, S.J.; Schmidlin, F.J.; Vincent, R.A.

    1993-06-18

    This paper reports wind measurements in the mesosphere and lower thermosphere made by the high resolution doppler imager (HRDI) on board the upper atmosphere research satellite (UARS). These measurements are correlated with ground based radar and rocket measurements. The HRDI makes measurements by observing doppler shifts in molecular oxygen lines. The intercomparison helps to validate the remote sensing results, helps to verify the on board calibration system, and also gives a common measurement which other measurements systems can be compared against.

  1. Development of Stepped-Frequency Ground-Penetrating Radar

    DEFF Research Database (Denmark)

    Jakobsen, Kaj Bjarne

    1998-01-01

    The status of the development of a multi-monostatic stepped-frequency ground-penetrating radar (GPR) at The Department of Applied Electronics (IAE), The Technical University of Denmark (DTU) is presented. The feasibility of the used approach is demonstrated by the successful detection of small...

  2. Surface and borehole ground-penetrating-radar developments

    NARCIS (Netherlands)

    Slob, E.C.; Sato, M.; Olhoeft, G.

    2010-01-01

    During the past 80 years, ground-penetrating radar (GPR) has evolved from a skeptically received glacier sounder to a full multicomponent 3D volume-imaging and characterization device. The tool can be calibrated to allow for quantitative estimates of physical properties such as water content. Becau

  3. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...

  4. Development of Stepped-Frequency Ground-Penetrating Radar

    DEFF Research Database (Denmark)

    Jakobsen, Kaj Bjarne

    1998-01-01

    The status of the development of a multi-monostatic stepped-frequency ground-penetrating radar (GPR) at The Department of Applied Electronics (IAE), The Technical University of Denmark (DTU) is presented. The feasibility of the used approach is demonstrated by the successful detection of small...

  5. Ground Penetrating Radar Imaging of Buried Metallic Objects

    DEFF Research Database (Denmark)

    Polat, A. Burak; Meincke, Peter

    2001-01-01

    During the past decade there has been considerable research on ground penetrating radar (GPR) tomography for detecting objects such as pipes, cables, mines and barrels buried under the surface of the Earth. While the earlier researches were all based on the assumption of a homogeneous background...

  6. Convolutional Models for Landmine Identification with Ground Penetrating Radar

    NARCIS (Netherlands)

    Roth, F.

    2005-01-01

    This thesis presents new developments in the area of target identification with ground penetrating radar (GPR) intended for the identification of plastic and metal cased antipersonnel (AP) landmines from a single measured GPR return signal, called A-scan. The target identification is formulated as a

  7. Ground penetrating radar estimates of permafrost ice wedge depth

    Science.gov (United States)

    Parsekian, A.; Slater, L. D.; Nolan, J. T.; Grosse, G.; Walter Anthony, K. M.

    2013-12-01

    Vertical ground ice wedges associated with polygonal patterning in permafrost environments form due to frost cracking of soils under harsh winter conditions and subsequent infilling of cracks with snow melt water. Ice wedge polygon patterns have implications for lowland geomorphology, hydrology, and vulnerability of permafrost to thaw. Ice wedge dimensions may exceed two meters width at the surface and several meters depth, however few studies have addressed the question of ice wedge depth due to challenges related to measuring the vertical dimension below the ground. Vertical exposures where ice wedges maybe observed are limited to rapidly retreating lake, river, and coastal bluffs. Coring though the ice wedges to determine vertical extent is possible, however that approach is time consuming and labor intensive. Many geophysical investigations have noted signal anomalies related to the presence of ice wedges, but no reliable method for extracting wedge dimensions from geophysical data has been yet proposed. Here we present new evidence that ground penetrating radar (GPR) may be a viable method for estimating ice wedge depth. We present three new perspectives on processing GPR data collected over ice wedges that show considerable promise for use as a fast, cost effective method for evaluating ice wedge depth. Our novel approaches include 1) a simple frequency-domain analysis, 2) an S-transform frequency domain analysis and 3) an analysis of the returned signal power as a radar cross section (RCS) treating subsurface ice wedges as dihedral corner retro-reflectors. Our methods are demonstrated and validated using finite-difference time domain FDTD) GPR forward models of synthetic idealized ice wedges and field data from permafrost sites in Alaska. Our results indicate that frequency domain and signal power data provide information that is easier to extract from raw GPR data than similar information in the time domain. We also show that we can simplify the problem by

  8. Ground Penetrating Radar for SMART CITIES

    Science.gov (United States)

    Soldovieri, Francesco; Catapano, Ilaria; Gennarelli, Gianluca

    2016-04-01

    The use of monitoring and surveillance technologies is now recognized as a reliable option of the overall smart cities management cycle, for the advantages that they offer in terms of: economically sustainable planning of the ordinary and extraordinary maintenance interventions; situational awareness of possible risks factors in view of a reliable early warning; improvement of the security of the communities especially in public environments. In this frame, the abstract will deal with the recent advances in the development and deployment of radar systems for the urban surveillance, exploitation of the subsurface resources and civil engineering structures. In particular, we will present the recent scientific developments and several examples of use of these systems in operational conditions.

  9. A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network

    Science.gov (United States)

    Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.

    A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the

  10. The RIMFAX Ground Penetrating Radar on the Mars 2020 Rover.

    Science.gov (United States)

    Hamran, S. E.; Amundsen, H. E. F.; Carter, L. M.; Ghent, R. R.; Kohler, J.; Mellon, M. T.; Paige, D. A.

    2014-12-01

    The Radar Imager for Mars' Subsurface Exploration - RIMFAX is a Ground Penetrating Radar selected for NASA's Mars 2020 rover mission. RIMFAX will add a new dimension to the rover's toolset by providing the capability to image the shallow subsurface beneath the rover. The principal goals of the RIMFAX investigation are to image subsurface layering and structure, and to provide information regarding subsurface composition. Depending on materials, RIMFAX will image the subsurface stratigraphy to maximum depths of 10 to 500 meters, with vertical resolutions of 5 to 20 cm, with a horizontal sampling distance of 2 to 20 cm along the rover track. The resulting radar cross sections will provide important information on the geological context of surface outcrops as well as the geological and environmental history of the field area. The radar uses a Gated FMCW waveform and a single ultra wideband antenna that is used both for transmitting and receiving. The presentation will give an overview of the RIMFAX investigation, the radar system and show experimental results from a prototype radar.

  11. Ground-Truthing a Next Generation Snow Radar

    Science.gov (United States)

    Yan, S.; Brozena, J. M.; Gogineni, P. S.; Abelev, A.; Gardner, J. M.; Ball, D.; Liang, R.; Newman, T.

    2016-12-01

    During the early spring of 2016 the Naval Research Laboratory (NRL) performed a test of a next generation airborne snow radar over ground truth data collected on several areas of fast ice near Barrow, AK. The radar was developed by the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas, and includes several improvements compared to their previous snow radar. The new unit combines the earlier Ku-band and snow radars into a single unit with an operating frequency spanning the entire 2-18 GHz, an enormous bandwidth which provides the possibility of snow depth measurements with 1.5 cm range resolution. Additionally, the radar transmits on dual polarizations (H and V), and receives the signal through two orthogonally polarized Vivaldi arrays, each with 128 phase centers. The 8 sets of along-track phase centers are combined in hardware to improve SNR and narrow the beamwidth in the along-track, resulting in 8 cross-track effective phase centers which are separately digitized to allow for beam sharpening and forming in post-processing. Tilting the receive arrays 30 degrees from the horizontal also allows the formation of SAR images and the potential for estimating snow-water equivalent (SWE). Ground truth data (snow depth, density, salinity and SWE) were collected over several 60 m wide swaths that were subsequently overflown with the snow radar mounted on a Twin Otter. The radar could be operated in nadir (by beam steering the receive antennas to point beneath the aircraft) or side-looking modes. Results from the comparisons will be shown.

  12. Accounting for Hydrologic State in Ground-Penetrating Radar Classification Systems

    Science.gov (United States)

    2014-04-22

    on ground - penetrating radar (GPR) signals, particularly those associated with landmines , and (2) investigate the potential for developing contextual... ground - penetrating radar (GPR) signals, particularly those associated with landmines , and (2) investigate the potential for developing contextual GPR...on ground - penetrating radar (GPR) signals, particularly those associated with landmines , and (2) investigate the potential for developing contextual

  13. The study of single station inverting the sea surface current by HF ground wave radar based on adjoint assimilation technology

    Science.gov (United States)

    Han, Shuzong; Yang, Hua; Xue, Wenhu; Wang, Xingchi

    2017-06-01

    This paper introduces the assimilation technology in an ocean dynamics model and discusses the feasibility of inverting the sea surface current in the detection zone by assimilating the sea current radial velocity detected by single station HF ground wave radar in ocean dynamics model. Based on the adjoint assimilation and POM model, the paper successfully inverts the sea surface current through single station HF ground wave radar in the Zhoushan sea area. The single station HF radar inversion results are also compared with the bistatic HF radar composite results and the fixed point measured results by Annderaa current meter. The error analysis shows that acquisition of flow velocity and flow direction data from the single station HF radar based on adjoint assimilation and POM model is viable and the data obtained have a high correlation and consistency with the flow field observed by HF radar.

  14. Automated Ground Penetrating Radar hyperbola detection in complex environment

    Science.gov (United States)

    Mertens, Laurence; Lambot, Sébastien

    2015-04-01

    Ground Penetrating Radar (GPR) systems are commonly used in many applications to detect, amongst others, buried targets (various types of pipes, landmines, tree roots ...), which, in a cross-section, present theoretically a particular hyperbolic-shaped signature resulting from the antenna radiation pattern. Considering the large quantity of information we can acquire during a field campaign, a manual detection of these hyperbolas is barely possible, therefore we have a real need to have at our disposal a quick and automated detection of these hyperbolas. However, this task may reveal itself laborious in real field data because these hyperbolas are often ill-shaped due to the heterogeneity of the medium and to instrumentation clutter. We propose a new detection algorithm for well- and ill-shaped GPR reflection hyperbolas especially developed for complex field data. This algorithm is based on human recognition pattern to emulate human expertise to identify the hyperbolas apexes. The main principle relies in a fitting process of the GPR image edge dots detected with Canny filter to analytical hyperbolas, considering the object as a punctual disturbance with a physical constraint of the parameters. A long phase of observation of a large number of ill-shaped hyperbolas in various complex media led to the definition of smart criteria characterizing the hyperbolic shape and to the choice of accepted value ranges acceptable for an edge dot to correspond to the apex of a specific hyperbola. These values were defined to fit the ambiguity zone for the human brain and present the particularity of being functional in most heterogeneous media. Furthermore, the irregularity is particularly taken into account by defining a buffer zone around the theoretical hyperbola in which the edge dots need to be encountered to belong to this specific hyperbola. First, the method was tested in laboratory conditions over tree roots and over PVC pipes with both time- and frequency-domain radars

  15. Landmines Ground-Penetrating Radar Signal Enhancement by Digital Filtering

    OpenAIRE

    Potin, Delphine; Duflos, Emmanuel; Vanheeghe, Philippe

    2006-01-01

    Until now, humanitarian demining has been unable to provide a solution to the landmine removal problem. Furthermore, new low-cost methods have to be developed quickly. While much progress has been made with the introduction of new sensor types, other problems have been raised by these sensors. Ground-penetrating radars (GPRs) are key sensors for landmine detection as they are capable of detecting landmines with low metal contents. GPRs deliver so-called Bscan data, which are, roughly, vertica...

  16. Introduction to ground penetrating radar inverse scattering and data processing

    CERN Document Server

    Persico, Raffaele

    2014-01-01

    This book presents a comprehensive treatment of ground penetrating radar using both forward and inverse scattering mathematical techniques. Use of field data instead of laboratory data enables readers to envision real-life underground imaging; a full color insert further clarifies understanding. Along with considering the practical problem of achieving interpretable underground images, this book also features significant coverage of the problem's mathematical background. This twofold approach provides a resource that will appeal both to application oriented geologists and testing specialists,

  17. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  18. Wavelet analysis for ground penetrating radar applications: a case study

    Science.gov (United States)

    Javadi, Mehdi; Ghasemzadeh, Hasan

    2017-10-01

    Noises may significantly disturb ground penetrating radar (GPR) signals, therefore, filtering undesired information using wavelet analysis would be challenging, despite the fact that several methods have been presented. Noises are gathered by probe, particularly from deep locations, and they may conceal reflections, suffering from small altitudes, because of signal attenuation. Multiple engineering fields need data analysis to distinguish valued material, based on information obtained by underground observations. Using wavelets as one of the useful methods for analyzing data is considered in this paper. However, optimal wavelet analysis would be challenging in the realm of exploring GPR signals. There is no doubt that accounting for wavelet function, decomposition level, threshold estimation method and threshold transformation, in the matter of de-noising and investigating signals, is of great importance; they must be chosen with judgment as they influence the results enormously if they are not carefully designated. Multiple wavelet functions are applied to perform de-noising and reconstruction on synthetic noisy signals generated by the finite-difference time-domain (FDTD) method to account for the most appropriate function for the purpose. In addition, various possible decomposition levels, threshold estimation methods and threshold transformations in the de-noising procedure are tested. The optimal wavelet analysis is also evaluated by examining real data acquired from several antenna frequencies which are common in engineering practice.

  19. A Spatial Display for Ground Penetrating Radar

    Science.gov (United States)

    2015-04-14

    B. Data Colormap The original colormap for Gopher was a full rainbow . This colormap was chosen because it had superior contrast to standard black...only form of learning bias observed in the data was a small efficiency increase on the second interface; participants had a higher mean time per scenario...the operator rather than visualizing the raw temporal data in array form . This allows the human to provide signal classification and executive

  20. A review of ground penetrating radar research and practice in the United Kingdom

    Science.gov (United States)

    Giannopoulos, Antonios; Alani, Amir

    2014-05-01

    Ground penetrating radar has been playing an important role for many years in assisting in the non-destructive evaluation of UK's built environment as well as being employed in more general shallow depth geophysical investigations. Ground penetrating radar, in the United Kingdom, has a long history of original work both in developing original research ideas on fundamental aspects of the technique, both in hardware and in software, and in exploring innovative ideas relating to the practical implementation of ground penetrating radar in a number of interesting projects. For example, the base of one of the biggest organisations that connects ground penetrating radar practitioners is in the United Kingdom. This paper will endeavour to review the current status of ground penetrating radar research - primarily carried out in UK Universities - and present some key areas and work that is carried out at a practical level - primarily by private enterprises. Although, the main effort is to concentrate on ground penetrating radar applications relating to civil engineering problems other related areas of ground penetrating radar application will also be reviewed. The aim is to create a current picture of ground penetrating radar use with a view to inform and potentially enhance the possibility of new developments and collaborations that could lead to the advancement of ground penetrating radar as a geophysical investigative method. This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar.

  1. Modification of polarization filtering technique in HF ground wave radar

    Institute of Scientific and Technical Information of China (English)

    Zhang Guoyi; Tan Zhongji; Wang Jiantao

    2006-01-01

    The polarization filter using three orthogonal linear polarization antennas can suppress more disturbances than the polarization filter using two orthogonal linear polarization antennas in HF ground wave radar. But the algorithm of the threedimension filter is relatively complicated and not suitable for real-time processing. It can't use linear and nonlinear polarization vector translation technique directly. A modified polarization filter which is simple and has same suppressing ability as the three-dimension polarization filter is given. It only has half parameters of the primary one. Some problems about estimation of polarization parameters and selection of disturbances are discussed. A method of holding the phase of radar backscatter signal constantly is put forward so that unstationary disturbance signal can be processed.

  2. Passive synthetic aperture radar imaging of ground moving targets

    Science.gov (United States)

    Wacks, Steven; Yazici, Birsen

    2012-05-01

    In this paper we present a method for imaging ground moving targets using passive synthetic aperture radar. A passive radar imaging system uses small, mobile receivers that do not radiate any energy. For these reasons, passive imaging systems result in signicant cost, manufacturing, and stealth advantages. The received signals are obtained by multiple airborne receivers collecting scattered waves due to illuminating sources of opportunity such as commercial television, radio, and cell phone towers. We describe a novel forward model and a corresponding ltered-backprojection type image reconstruction method combined with entropy optimization. Our method determines the location and velocity of multiple targets moving at dierent velocities. Furthermore, it can accommodate arbitrary imaging geometries. we present numerical simulations to verify the imaging method.

  3. Exploring inner structure of Titan's dunes from Cassini Radar observations

    Science.gov (United States)

    Sharma, P.; Heggy, E.; Farr, T. G.

    2013-12-01

    Linear dunes discovered in the equatorial regions of Titan by the Cassini-Huygens mission are morphologically very similar to many terrestrial linear dune fields. These features have been compared with terrestrial longitudinal dune fields like the ones in Namib desert in western Africa. This comparison is based on the overall parallel orientation of Titan's dunes to the predominant wind direction on Titan, their superposition on other geomorphological features and the way they wrap around topographic obstacles. Studying the internal layering of dunes has strong implications in understanding the hypothesis for their origin and evolution. In Titan's case, although the morphology of the dunes has been studied from Cassini Synthetic Aperture Radar (SAR) images, it has not been possible to investigate their internal structure in detail as of yet. Since no radar sounding data is available for studying Titan's subsurface yet, we have developed another technique to examine the inner layering of the dunes. In this study, we utilize multiple complementary radar datasets, including radar imaging data for Titan's and Earth's dunes and Ground Penetrating Radar (GPR)/radar sounding data for terrestrial dunes. Based on dielectric mixing models, we suggest that the Cassini Ku-band microwaves should be able to penetrate up to ~ 3 m through Titan's dunes, indicating that the returned radar backscatter signal would include contributions from both surface and shallow subsurface echoes. This implies that the shallow subsurface properties can be retrieved from the observed radar backscatter (σ0). In our analysis, the variation of the radar backscatter as a function of dune height is used to provide an insight into the layering in Titan's dunes. We compare the variation of radar backscatter with elevation over individual dunes on Titan and analogous terrestrial dunes in three sites (Great Sand Sea, Siwa dunes and Qattaniya dunes) in the Egyptian Sahara. We observe a strong, positive

  4. Radar Observations of Main-Belt M-class Asteroids

    NARCIS (Netherlands)

    Shepard, Michael K.; Clark, B. E.; Ockert-Bell, M.; Nolan, M. C.; Howell, E. S.; Magri, C.; Giorgini, J. D.; Benner, L. A. M.; Ostro, S. J.; Harris, A. W.; Warner, B. D.; Stephens, R. D.; Mueller, M.

    2009-01-01

    Using the S-band radar at Arecibo Observatory, we have observed 19 Tholen M-class asteroids. The mean radar albedo for all our targets is 0.28 ± 0.13, considerably higher than the mean radar albedo of every other class (Magri et al. 2007, Icarus 186, 126-151). We find approximately one-third (six) o

  5. Radar Observations of Main-Belt M-class Asteroids

    NARCIS (Netherlands)

    Shepard, Michael K.; Clark, B. E.; Ockert-Bell, M.; Nolan, M. C.; Howell, E. S.; Magri, C.; Giorgini, J. D.; Benner, L. A. M.; Ostro, S. J.; Harris, A. W.; Warner, B. D.; Stephens, R. D.; Mueller, M.

    2009-01-01

    Using the S-band radar at Arecibo Observatory, we have observed 19 Tholen M-class asteroids. The mean radar albedo for all our targets is 0.28 ± 0.13, considerably higher than the mean radar albedo of every other class (Magri et al. 2007, Icarus 186, 126-151). We find approximately one-third (six)

  6. Radar cross sections of ground clutter at 95 GHz for summer and fall conditions

    Science.gov (United States)

    Wellman, R. J.; Hutchins, D. R.; Silvious, J. L.; Dropkin, H.; Goldman, G.; Nemarich, J.; Wikner, D. A.; Dahlstrom, R. K.

    1993-11-01

    Radar cross section (RCS) measurements were made on an extensively instrumented ground-clutter patch over a period of one month from late summer to early fall. The instrumentation allowed collection of a full set of data on meteorological conditions, solar flux, and soil moisture content. The RCS measurements were made using a 95-GHz, polarimetric, monopulse instrumentation radar. The radar is all solid-state, coherent, frequency steppable over a 640-MHz bandwidth, and completely polarimetric for linearly or circularly polarized radiation. The clutter area measured was located in Grayling, Michigan, and consisted of a rectangular patch of ground, 50 by 100 m in area, at a range of about 100 to 250 m from the radar. The clutter patch included areas of bare sandy ground, short grass, low shrubs, evergreen trees, and deciduous trees and was similar to a NATO European environment. A wide range of atmospheric conditions were observed over the measurement period, including a few days of measurable snowfall. The paper describes analysis of the effects of different clutter types and different atmospheric conditions on the measured RCS of the clutter patch.

  7. Advanced Signal Analysis for Forensic Applications of Ground Penetrating Radar

    Energy Technology Data Exchange (ETDEWEB)

    Steven Koppenjan; Matthew Streeton; Hua Lee; Michael Lee; Sashi Ono

    2004-06-01

    Ground penetrating radar (GPR) systems have traditionally been used to image subsurface objects. The main focus of this paper is to evaluate an advanced signal analysis technique. Instead of compiling spatial data for the analysis, this technique conducts object recognition procedures based on spectral statistics. The identification feature of an object type is formed from the training vectors by a singular-value decomposition procedure. To illustrate its capability, this procedure is applied to experimental data and compared to the performance of the neural-network approach.

  8. Locally Adaptive Detection Algorithm for Forward-Looking Ground-Penetrating Radar

    Science.gov (United States)

    2011-02-22

    34Algorithms for landmine discrimination using the NIITEK ground penetrating radar ", Proc. SPIE 4742, 709-718 (2002). [5] Gader, P.D., Grandhi, R., Lee...W.H., Wilson, J.N., and Ho, K.C. “Feature analysis for the NIITEK ground penetrating radar using order weighted averaging operators for landmine ...34Plastic landmine detection using time-frequency analysis for forward-looking ground - penetrating radar ”, Proc. SPIE 5089, 851-862 (2003). [9] Stone

  9. Multiple Kernel Learning for Explosive Hazard Detection in Forward-Looking Ground-Penetrating Radar

    Science.gov (United States)

    2012-04-01

    34Feature analysis for the NIITEK ground penetrating radar using order weighted averaging operators for landmine detection", Proc. SPIE 5415, 953-962...This paper proposes an effective anomaly detection algorithm for forward-looking ground - penetrating radar (FLGPR). The challenges in detecting...TERMS explosive hazards detection, ground - penetrating radar , false alarm rejection, multiple kernel learning, feature-level fusion Timothy C. Havens

  10. Ground Object Recognition using Laser Radar Data : Geometric Fitting, Performance Analysis, and Applications

    OpenAIRE

    Grönwall, Christna

    2006-01-01

    This thesis concerns detection and recognition of ground object using data from laser radar systems. Typical ground objects are vehicles and land mines. For these objects, the orientation and articulation are unknown. The objects are placed in natural or urban areas where the background is unstructured and complex. The performance of laser radar systems is analyzed, to achieve models of the uncertainties in laser radar data. A ground object recognition method is presented. It handles general,...

  11. Proximal Ignimbrite Geometry on Santorini, Greece Using Ground Penetrating Radar

    Science.gov (United States)

    Stasiuk, M. V.; Russell, J. K.; Hill, G. J.; Druitt, T. H.

    2001-12-01

    Ground penetrating radar (GPR) surveys on Santorini, Greece, are used to constrain the 3-dimensional geometry of the near-surface pyroclastic deposits produced by the 3.6 ka caldera-forming Minoan eruption. Specifically, the results elucidate deposit structures at the south end of the island. More than 2.4 km of radar survey data were collected at a measurement spacing of 0.5-1.0 m, using the common offset reflection method (3 m offset) and radar frequencies of 50 and 100 MHz. Imaging depths of the raw data were typically small (caldera rim while phase 4 gradually thickens. The GPR results suggest that the flows were more energetic than the previous model implied, and too energetic to bulk deposit in the subaerial, proximal area. Most of the mass of pyroclastics swept down the slope and into the sea, leaving behind only thin veneers. The velocity reduction caused by a combination of the phase 4 flow thickening as it passed over the ancient sea cliffs, and by entering the sea, caused the flow to switch to a strongly depositional mode resulting in a thickened deposit. An implication of these results is that most of the Minoan pyroclastic flow deposits on Santorini, apart from those near and on the outer coast, were emplaced aggradationally.

  12. High gain GaAs photoconductive semiconductor switches for ground penetrating radar

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, G.M.; Aurand, J.F.; Buttram, M.T.; Zutavern, F.J.; Helgeson, W.D.; O`Malley, M.W. [Sandia National Labs., Albuquerque, NM (United States); Brown, D.J. [Ktech Corp., Albuquerque, NM (United States)

    1996-07-01

    The ability of high gain GaAs Photoconductive Semiconductor switches (PCSS) to deliver high peak power, fast risetime pulses when triggered with small laser diode arrays makes them suitable for their use in radars that rely on fast impulses. This type of direct time domain radar is uniquely suited for observation of large structures under ground because it can operate at low frequencies and at high average power. This paper will summarize the state-of-the-art in high gain GaAs switches and discuss their use in a radar transmitter. We will also present a summary of an analysis of the effectiveness of different pulser geometries that result in transmitted pulses with varying frequency content. To this end we developed a simple model that includes transmit and receive antenna response, attenuation and dispersion of the electromagnetic impulses by the soil, and target cross sections.

  13. Hydrogeological characterisation using cross-borehole ground penetration radar and electrical resistivity tomography

    DEFF Research Database (Denmark)

    Zibar, Majken Caroline Looms

    2007-01-01

    . The methods provided estimates of soil moisture content and electrical resistivity variations among 12 m deep boreholes located 5 – 7 m apart. The moisture content change following natural precipitation was observed to be practically negligible, providing minimal information to constrain the dynamic...... was characterized by ~30 m thick unsaturated zone consisting mainly of sands of varying coarseness. Following an instrumentation of 16 boreholes two geophysical methods (cross-borehole ground penetrating radar and electrical resistivity tomography) were applied during natural precipitation and forced infiltration...... properties of the subsurface. On the other hand, volumetric moisture content variations of up to 5% were observed during a 20-day long forced infiltration experiment. The cross-borehole electrical resistance tomography and ground penetrating radar data collected during this experiment were subsequently...

  14. Hydrogeological characterisation using cross-borehole ground penetration radar and electrical resistivity tomography

    DEFF Research Database (Denmark)

    Zibar, Majken Caroline Looms

    2007-01-01

    . The methods provided estimates of soil moisture content and electrical resistivity variations among 12 m deep boreholes located 5 – 7 m apart. The moisture content change following natural precipitation was observed to be practically negligible, providing minimal information to constrain the dynamic...... was characterized by ~30 m thick unsaturated zone consisting mainly of sands of varying coarseness. Following an instrumentation of 16 boreholes two geophysical methods (cross-borehole ground penetrating radar and electrical resistivity tomography) were applied during natural precipitation and forced infiltration...... properties of the subsurface. On the other hand, volumetric moisture content variations of up to 5% were observed during a 20-day long forced infiltration experiment. The cross-borehole electrical resistance tomography and ground penetrating radar data collected during this experiment were subsequently...

  15. Bistatic radar observations of 2011 UW158

    Science.gov (United States)

    Bondarenko, Yuri; Ipatov, Alexander; Medvedev, Yuri; Mishina, Nadezda; Marshalov, Dmitry; Benner, Lance A. M.

    2016-10-01

    We report results of intercontinental bistatic radar observations of near-Earth Asteroid 2011 UW158 during its close approach to the Earth in July 2015. High power continuous wave signal at a fixed 8.4 GHz frequency was transmitted to the asteroid from the 70 m antenna of the Goldstone Observatory (DSS-14) and then the echo reflected back from the target was received by the 32 m radio telescopes of Quasar VLBI network in Zelenchukskaya and Badary observatories. Analysis of the echo power spectra allowed us to estimate the size and spin period, which agrees with the photometric observations as well as obtain some information about asteroid's shape and near-surface roughness. We also reported 18 Doppler estimates and computed the heliocentric orbit of 2011 UW158.

  16. Accurate Antenna Models in Ground Penetrating Radar Diffraction Tomography

    DEFF Research Database (Denmark)

    Meincke, Peter; Kim, Oleksiy S.

    2002-01-01

    Linear inversion schemes based on the concept of diffraction tomography have proven successful for ground penetrating radar (GPR) imaging. In many GPR surveys, the antennas of the GPR are located close to the air-soil interface and, therefore, it is important to incorporate the presence of this i......Linear inversion schemes based on the concept of diffraction tomography have proven successful for ground penetrating radar (GPR) imaging. In many GPR surveys, the antennas of the GPR are located close to the air-soil interface and, therefore, it is important to incorporate the presence...... of this interface in the inversion scheme (see Hansen, T.B. and Meincke Johansen, P., IEEE Trans. Geoscience and Remote Sensing, vol.38, p.496-506, 2000). Hansen and Meincke Johansen modeled the antennas as ideal (Hertzian) electric dipoles. Since practical GPR antennas are not ideal, it is of interest...... to investigate the validity of this model. We extend that formulation to hold for arbitrary antennas. For simplicity, the 2.5D case is considered, that is, it is assumed that the scattering object in the soil is invariant in one direction, which, for instance, is the case for a pipe. The arbitrary antennas...

  17. Ground moving target signal model and power calculation in forward scattering micro radar

    Institute of Scientific and Technical Information of China (English)

    LONG Teng; HU Cheng; MIKHAIL Cherniakov

    2009-01-01

    Forward scattering micro radar is used for situation awareness;its operational range is relatively short because of the battery power and local horizon,the free space propagation model is not appropriate.The ground moving targets,such as humans,cars and tanks,have only comparable size with the transmitted signal wavelength;the point target model and the linear change of observation angle are not applicable.In this paper,the signal model of ground moving target is developed based on the case of forward scattering micro radar,considering the two-ray propagation model and area target model,and nonlinear change of observation angle as well as high order phase error.Furthermore,the analytical form of the received power from moving target has been obtained.Using the simulated forward scattering radar cross section,the received power of theoretical calculation is near to that of measured data.In addition,the simulated signal model of ground moving target is perfectly matched with the experimented data.All these results show the correctness of analytical calculation completely.

  18. Detection of objects in sandy ground by an FM-CW radar

    OpenAIRE

    Yamaguchi, Y.(International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan); Tsurugi, M.; Watanabe, Y.; Sengoku, M.; Kikuta, T.; Nishino, M; Tsunasaki, M.; Yamaguchi, Yoshio; Sengoku, Masakazu; 山口, 芳雄; 仙石, 正和

    1993-01-01

    An FM-CW radar system for the detection of objects buried in sandy ground is explored and applied to field measurement. The key factors for underground radar performance are the center frequency and the bandwidth determining the depth at which the radar can detect targets and the resolution in the range direction, respectively. To realize a practical underground radar, two ridged horn antennas are employed in the system, which are operative in the frequency range of 250-1000 MHz. The impedanc...

  19. Ground clutter cancellation in incoherent radars: solutions for EISCAT Svalbard radar

    Directory of Open Access Journals (Sweden)

    T. Turunen

    Full Text Available Incoherent scatter radars measure ionosphere parameters using modified Thomson scatter from free electrons in the target (see e.g. Hagfors, 1997. The integrated cross section of the ionospheric scatterers is extremely small and the measurements can easily be disturbed by signals returned by unwanted targets. Ground clutter signals, entering via the antenna side lobes, can render measurements at the nearest target ranges totally impossible. The EISCAT Svalbard Radar (ESR, which started measurements in 1996, suffers from severe ground clutter and the ionosphere cannot be measured in any simple manner at ranges less than about 120–150 km, depending on the modulation employed. If the target and clutter signals have different, and clearly identifiable, properties then, in principle, there are always ways to eliminate the clutter. In incoherent scatter measurements, differences in the coherence times of the wanted and unwanted signals can be used for clutter cancellation. The clutter cancellation must be applied to all modulations, usually alternating codes in modern experiments, used for shorter ranges. Excellent results have been obtained at the ESR using a simple pulse-to-pulse clutter subtraction method, but there are also other possibilities.

    Key words: Radio science (ionospheric physics; signal processing; instruments and techniques

  20. Ground clutter cancellation in incoherent radars: solutions for EISCAT Svalbard radar

    Science.gov (United States)

    Turunen, T.; Markkanen, J.; van Eyken, A. P.

    2000-09-01

    Incoherent scatter radars measure ionosphere parameters using modified Thomson scatter from free electrons in the target (see e.g. Hagfors, 1997). The integrated cross section of the ionospheric scatterers is extremely small and the measurements can easily be disturbed by signals returned by unwanted targets. Ground clutter signals, entering via the antenna side lobes, can render measurements at the nearest target ranges totally impossible. The EISCAT Svalbard Radar (ESR), which started measurements in 1996, suffers from severe ground clutter and the ionosphere cannot be measured in any simple manner at ranges less than about 120-150 km, depending on the modulation employed. If the target and clutter signals have different, and clearly identifiable, properties then, in principle, there are always ways to eliminate the clutter. In incoherent scatter measurements, differences in the coherence times of the wanted and unwanted signals can be used for clutter cancellation. The clutter cancellation must be applied to all modulations, usually alternating codes in modern experiments, used for shorter ranges. Excellent results have been obtained at the ESR using a simple pulse-to-pulse clutter subtraction method, but there are also other possibilities.

  1. Ground level cosmic ray observations

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements); Grimani, C.; Brunetti, M.T.; Codino, A. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Papini, P.; Massimo Brancaccio, F.; Piccardi, S. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Basini, G.; Bongiorno, F. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Hof, M. [Siegen Univ. (Germany). Fachbereich Physik

    1995-09-01

    Cosmic rays at ground level have been collected using the NMSU/Wizard - MASS2 instrument. The 17-hr observation run was made on September 9. 1991 in Fort Sumner, New Mexico, Usa. Fort Sumner is located at 1270 meters a.s.l., corresponding to an atmospheric depth of about 887 g/cm{sup 2}. The geomagnetic cutoff is 4.5 GV/c. The charge ratio of positive and negative muons and the proton to muon ratio have been determined. These observations will also be compared with data collected at a higher latitude using the same basic apparatus.

  2. Investigation of Underground Hydrocarbon Leakage using Ground Penetrating Radar

    Science.gov (United States)

    Srigutomo, Wahyu; Trimadona; Agustine, Eleonora

    2016-08-01

    Ground Penetrating Radar (GPR) survey was carried out in several petroleum plants to investigate hydrocarbon contamination beneath the surface. The hydrocarbon spills are generally recognized as Light Non-Aqueous Phase Liquids (LNAPL) if the plume of leakage is distributed in the capillary fringe above the water table and as Dense Non-Aqueous Phase Liquids (DNAPL) if it is below the water table. GPR antennas of 200 MHz and 400 MHz were deployed to obtain clear radargrams until 4 m deep. In general, the interpreted radargram sections indicate the presence of surface concrete layer, the compacted silty soill followed by sand layer and the original clayey soil as well as the water table. The presence of hydrocarbon plumes are identified as shadow zones (radar velocity and intensity contrasts) in the radargram that blur the layering pattern with different intensity of reflected signal. Based on our results, the characteristic of the shadow zones in the radargram is controlled by several factors: types of hydrocarbon (fresh or bio-degraded), water moisture in the soil, and clay content which contribute variation in electrical conductivity and dielectric constants of the soil.

  3. Experiments on a Ground-Based Tomographic Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Hoonyol Lee

    2016-08-01

    Full Text Available This paper presents the development and experiment of three-dimensional image formation by using a ground-based tomographic synthetic aperture radar (GB-TomoSAR system. GB-TomoSAR formulates two-dimensional synthetic aperture by the motion of antennae, both in azimuth and vertical directions. After range compression, three-dimensional image focusing is performed by applying Deramp-FFT (Fast Fourier Transform algorithms, both in azimuth and vertical directions. Geometric and radiometric calibrations were applied to make an image cube, which is then projected into range-azimuth and range-vertical cross-sections for visualization. An experiment with a C-band GB-TomoSAR system with a scan length of 2.49 m and 1.86 m in azimuth and vertical-direction, respectively, shows distinctive three-dimensional radar backscattering of stable buildings and roads with resolutions similar to the theoretical values. Unstable objects such as trees and moving cars generate severe noise due to decorrelation during the eight-hour image-acquisition time.

  4. Investigation of Rainfall Characteristics Using TRMM PR and Ground Based Radar

    Science.gov (United States)

    Dolan, B.; Lang, T. J.; Nesbitt, S. W.; Cifelli, R.; Rutledge, S. A.

    2011-12-01

    Despite relatively good agreement between reflectivity profiles, comparisons of rainfall statistics derived from TRMM Precipitation Radar (PR) deviate from ground-based radar (GR) observations in various field locations across the globe. TRMM PR rain rate probability distribution functions underestimate the occurrence of high rain rates (> 80 mm hr-1) compared with similar ground-based statistics, and similarly, GR distributes the total rain volume over a larger range of rain rates. Analysis of ten years of TRMM data over three field sites has shown that the greatest disagreements occur in the most intense convection, such as over land and during the east and break wind regimes over the Amazon and Australia, respectively. These differences are investigated further in this study. Ten years of TRMM PR data are analyzed in conjunction with data collected during two field experiments involving the NCAR S-Pol radar. S-Pol was deployed in Brazil in the Amazon during TRMM LBA in 1998-1999 and near Mazatlan, Mexico as part of the North American Monsoon Experiment (NAME) in 2004. Additionally, multiple years of data from the Australian Bureau of Meteorology CPOL radar located in Darwin, Australia, are examined to extend the robustness of the GR observations beyond the relatively short field campaigns. Polarimetric data collected by the two radars are used to characterize the differences between TRMM PR and GR observations as a function of bulk hydrometeor type. For example, profiles with significant graupel, as identified by GR, are analyzed to investigate the role of mixed phase in the PR retrievals. The vertical variability of D0 is examined as a function of reflectivity and related to the underlying microphysical conditions using the polarimetric data provided by the GR observations. Spatial variability of D0 is also explored by correlating D0 values derived from GR at different heights. Several significant changes were made to the TRMM processing algorithms in the

  5. Fundamental of ground penetrating radar in environmental and engineering applications

    Directory of Open Access Journals (Sweden)

    L. Rivero

    2000-06-01

    Full Text Available Ground Penetrating Radar (GPR is a high frequency electromagnetic sounding technique that has been developed to investigate the shallow subsurface using the contrast of dielectric properties. The method operates on the simple principle that electromagnetic waves, emitted from a transmitter antenna, are reflected from buried objects and detected at another antenna, acting as receiver. GPR data is presented in the form of time-distance plots that are analogous to conventional reflection seismic records, and in fact the method has many similarities to seismic reflection method with a pulse of electromagnetic energy substituting for the elastic (seismic energy. Nevertheless, the principles and theory of the method are based on the wave equation derived from Maxwell's equations for electromagnetic wave propagation. This paper has been written for tutorial purposes, and it is hoped that it will provide the reader with a good outline of GPR presenting an overview of its theoretical basis, guidelines for interpretation and some practical field examples.

  6. Microphysical retrievals from simultaneous polarimetric and profiling radar observations

    Directory of Open Access Journals (Sweden)

    M. P. Morris

    2009-12-01

    Full Text Available The character of precipitation detected at the surface is the final product of many microphysical interactions in the cloud above, the combined effects of which may be characterized by the observed drop size distribution (DSD. This necessitates accurate retrieval of the DSD from remote sensing data, especially radar as it offers large areal coverage, high spatial resolution, and rigorous quality control and testing. Combined instrument observations with a UHF wind profiler, an S-band polarimetric weather radar, and a video disdrometer are analyzed for two squall line events occuring during the calendar year 2007. UHF profiler Doppler velocity spectra are used to estimate the DSD aloft, and are complemented by DSDs retrieved from an exponential model applied to polarimetric data. Ground truth is provided by the disdrometer. A complicating factor in the retrieval from UHF profiler spectra is the presence of ambient air motion, which can be corrected using the method proposed by Teshiba et al. (2009, in which a comparison between idealized Doppler spectra calculated from the DSDs retrieved from KOUN and those retrieved from contaminated wind profiler spectra is performed. It is found that DSDs measured using the distrometer at the surface and estimated using the wind profiler and polarimetric weather radar generally showed good agreement. The DSD retrievals using the wind profiler were improved when the estimates of the vertical wind were included into the analysis, thus supporting the method of Teshiba et al. (2009. Furthermore, the the study presents a method of investigating the time and height structure of DSDs.

  7. Ground Penetrating Radar (GPR) Signatures of Lacustrine Soils in Volcanic Basins of Mexico

    Science.gov (United States)

    Carreon-Freyre, D.; Oleschko, K.; Cerca, M.

    2002-12-01

    Ground Penetrating Radar (GPR) profiles have been collected in volcanic and lacustrine basins of Mexico in order to obtain radar signatures and correlate electromagnetic wave propagation with their near-surface stratigraphy. Study sites included Pleistocene to Recent lacustrine sequences in Chalco and Texcoco, near Mexico City, and a Pliocene to Quaternary fluvio-lacustrine sequence in the Queretaro Valley, 250 Km to the northwest. All the sequences present alterning layers of soils, fluvio-lacustrine sediments, pyroclastic and volcanic rocks. GPR method is used because of the sensitivity of the propagation of electromagnetic waves to the granulometric variations and water content of sediments (water molecules polarization). Profiles were carried out with a Zond 12c GPR (Radar Systems Inc.), using four main prospecting frequencies: 2000, 900, 300 and 100 MHz. The purpose of using these frequencies is to evaluate different ranges of depths of investigation and resolution for each site and to relate attenuation and variations in amplitude with impedances and reflection coefficients for stratigraphic associations such as clay-sand, silt-clay and pyroclastics-silt. The analysis of multiple sets of profiles in the studied areas and their correlation with the observed near-surface stratigraphy permits the identification of radar signatures for each depositional condition. GPR characterization also allowed to associate radar signatures with the evolution of fracturing within the sequence. In particular, the Chalco and Queretaro sites are affected by fracturing, an increasing problem in several urbanized areas of Mexico and the world. This phenomenon is generally associated to ground-water withdrawal but its geometry is related closely to the regional structural pattern. Another factor that influences the propagation and morphology of near-surface fracturing in volcanic valleys is their highly heterogeneous stratigraphy. Therefore, the propagation of electromagnetic waves

  8. Real-time Gaussian Markov random-field-based ground tracking for ground penetrating radar data

    Science.gov (United States)

    Bradbury, Kyle; Torrione, Peter A.; Collins, Leslie

    2009-05-01

    Current ground penetrating radar algorithms for landmine detection require accurate estimates of the location of the air/ground interface to maintain high levels of performance. However, the presence of surface clutter, natural soil roughness, and antenna motion lead to uncertainty in these estimates. Previous work on improving estimates of the location of the air/ground interface have focused on one-dimensional filtering techniques to localize the air/ground interface. In this work, we propose an algorithm for interface localization using a 2- D Gaussian Markov random field (GMRF). The GMRF provides a statistical model of the surface structure, which enables the application of statistical optimization techniques. In this work, the ground location is inferred using iterated conditional modes (ICM) optimization which maximizes the conditional pseudo-likelihood of the GMRF at a point, conditioned on its neighbors. To illustrate the efficacy of the proposed interface localization approach, pre-screener performance with and without the proposed ground localization algorithm is compared. We show that accurate localization of the air/ground interface provides the potential for future performance improvements.

  9. Stakeholder needs for ground penetrating radar utility location

    Science.gov (United States)

    Thomas, A. M.; Rogers, C. D. F.; Chapman, D. N.; Metje, N.; Castle, J.

    2009-04-01

    In the UK alone there are millions of miles of underground utilities with often inaccurate, incomplete, or non-existent location records that cause significant health and safety problems for maintenance personnel, together with the potential for large, unnecessary, social and financial costs for their upkeep and repair. This has led to increasing use of Ground Penetrating Radar (GPR) for utility location, but without detailed consideration of the degree of location accuracy required by stakeholders — i.e. all those directly involved in streetworks ranging from utility owners to contractors and surveyors and government departments. In order to ensure that stakeholder requirements are incorporated into a major new UK study, entitled Mapping the Underworld, a questionnaire has been used to determine the current and future utility location accuracy requirements. The resulting data indicate that stakeholders generally require location tolerances better than 100 mm at depths usually extending down to 3 m, and more occasionally to 5 m, below surface level, providing significant challenges to GPR if their needs are to be met in all ground conditions. As well as providing much useful data on stakeholder needs, these data are also providing a methodology for assessment of GPR utility location in terms of the factor most important to them — the degree to which the equipment provides location within their own accuracy requirements.

  10. Synchronization of Radar Observations with Multi-Scale Storm Tracking

    Institute of Scientific and Technical Information of China (English)

    YANG Hongping; Jian ZHANG; Carrie LANGSTON

    2009-01-01

    The 3-D radar reflectivity data has become increasingly important for use in data assimilation towards convective scale numerical weather prediction as well as next generation precipitation estimation. Typically, reflectivity data from multiple radars are objectively analyzed and mosaiced onto a regional 3-D Cartesian grid prior to being assimilated into the models. One of the scientific issues associated with the mosaic of multi-radar observations is the synchronization of all the observations. Since radar data is usually rapidly updated (~every 5-10 min), it is common in current multi-radar mosaic techniques to combine multiple radar' observations within a time window by assuming that the storms are steady within the window. The assumption holds well for slow evolving precipitation systems, but for fast evolving convective storms, this assumption may be violated and the mosaic of radar observations at different times may result in inaccurate storm structure depictions. This study investigates the impact of synchronization on storm structures in multiple radar data analyses using a multi-scale storm tracking algorithm.

  11. Detection of small, slow ground targets using Synthetic Aperture Radar

    Science.gov (United States)

    Chen, Curtis; Chapin, Elaine; Rosen, Paul

    2005-01-01

    Synthetic aperture radar (SAR) along-track interferometry (ATI) is a technique for sensing Earth-surface motion. The technique involves interferometrically combining data from two radar images acquired from phase centers separated along the platform flight track.

  12. Removal of systematic seasonal atmospheric signal from interferometric synthetic aperture radar ground deformation time series

    Science.gov (United States)

    Samsonov, Sergey V.; Trishchenko, Alexander P.; Tiampo, Kristy; González, Pablo J.; Zhang, Yu; Fernández, José

    2014-09-01

    Applying the Multidimensional Small Baseline Subset interferometric synthetic aperture radar algorithm to about 1500 Envisat and RADARSAT-2 interferograms spanning 2003-2013, we computed time series of ground deformation over Naples Bay Area in Italy. Two active volcanoes, Vesuvius and Campi Flegrei, are located in this area in close proximity to the densely populated city of Naples. For the first time, and with remarkable clarity, we observed decade-long elevation-dependent seasonal oscillations of the vertical displacement component with a peak-to-peak amplitude of up to 3.0 cm, substantially larger than the long-term deformation rate (Vesuvius previously observed by geodetic techniques.

  13. Intercomparison of Vertical Structure of Storms Revealed by Ground-Based (NMQ and Spaceborne Radars (CloudSat-CPR and TRMM-PR

    Directory of Open Access Journals (Sweden)

    Veronica M. Fall

    2013-01-01

    Full Text Available Spaceborne radars provide great opportunities to investigate the vertical structure of clouds and precipitation. Two typical spaceborne radars for such a study are the W-band Cloud Profiling Radar (CPR and Ku-band Precipitation Radar (PR, which are onboard NASA’s CloudSat and TRMM satellites, respectively. Compared to S-band ground-based radars, they have distinct scattering characteristics for different hydrometeors in clouds and precipitation. The combination of spaceborne and ground-based radar observations can help in the identification of hydrometeors and improve the radar-based quantitative precipitation estimation (QPE. This study analyzes the vertical structure of the 18 January, 2009 storm using data from the CloudSat CPR, TRMM PR, and a NEXRAD-based National Mosaic and Multisensor QPE (NMQ system. Microphysics above, within, and below the melting layer are studied through an intercomparison of multifrequency measurements. Hydrometeors’ type and their radar scattering characteristics are analyzed. Additionally, the study of the vertical profile of reflectivity (VPR reveals the brightband properties in the cold-season precipitation and its effect on the radar-based QPE. In all, the joint analysis of spaceborne and ground-based radar data increases the understanding of the vertical structure of storm systems and provides a good insight into the microphysical modeling for weather forecasts.

  14. Radar observations of individual rain drops in the free atmosphere.

    Science.gov (United States)

    Schmidt, Jerome M; Flatau, Piotr J; Harasti, Paul R; Yates, Robert D; Littleton, Ricky; Pritchard, Michael S; Fischer, Jody M; Fischer, Erin J; Kohri, William J; Vetter, Jerome R; Richman, Scott; Baranowski, Dariusz B; Anderson, Mark J; Fletcher, Ed; Lando, David W

    2012-06-12

    Atmospheric remote sensing has played a pivotal role in the increasingly sophisticated representation of clouds in the numerical models used to assess global and regional climate change. This has been accomplished because the underlying bulk cloud properties can be derived from a statistical analysis of the returned microwave signals scattered by a diverse ensemble comprised of numerous cloud hydrometeors. A new Doppler radar, previously used to track small debris particles shed from the NASA space shuttle during launch, is shown to also have the capacity to detect individual cloud hydrometeors in the free atmosphere. Similar to the traces left behind on film by subatomic particles, larger cloud particles were observed to leave a well-defined radar signature (or streak), which could be analyzed to infer the underlying particle properties. We examine the unique radar and environmental conditions leading to the formation of the radar streaks and develop a theoretical framework which reveals the regulating role of the background radar reflectivity on their observed characteristics. This main expectation from theory is examined through an analysis of the drop properties inferred from radar and in situ aircraft measurements obtained in two contrasting regions of an observed multicellular storm system. The observations are placed in context of the parent storm circulation through the use of the radar's unique high-resolution waveforms, which allow the bulk and individual hydrometeor properties to be inferred at the same time.

  15. Prediction and archival tools for asteroid radar observations

    Science.gov (United States)

    Margot, J.

    2014-07-01

    The Earth-based radar facilities at Arecibo and Goldstone have provided very powerful tools for characterizing the trajectories and physical properties of asteroids. This is especially important for near-Earth asteroids (NEAs) which are key in the contexts of hazard mitigation, spacecraft exploration, and resource utilization. Over 10,000 NEAs have been identified and over 430 have been detected with radar (http://radarastronomy.org). Both of these numbers are growing rapidly, necessitating efficient tools for data archival and observation planning. The asteroid radar database hosted at radarastronomy.org keeps track of all radar detections, documents NEA physical properties, and provides NEA observability conditions. With the help of UCLA students, we are integrating a number of tools with the database to facilitate recordkeeping and observation planning. For instance, a geometry-finder tool allows us to identify the optimal times to observe specific NEAs and to compute rise-transit-set windows. Signal-to-noise (SNR) tools allow us to compute SNR values for both Arecibo and Goldstone observations. Python-based graphical tools help visualize the history of asteroid detections and plan future observations. A collaborative research environment (wiki) facilitates interactions among radar observers. These tools and others in preparation enable a more coordinated and efficient process for asteroid radar observations.

  16. Counter electrojet features in the Brazilian sector: simultaneous observation by radar, digital sounder and magnetometers

    Directory of Open Access Journals (Sweden)

    C. M. Denardini

    2009-04-01

    Full Text Available In the present work we show new results regarding equatorial counter electrojet (CEJ events in the Brazilian sector, based on the RESCO radar, two set of fluxgate magnetometer systems and a digital sounder. RESCO radar is a 50 MHz backscatter coherent radar installed in 1998 at São Luís (SLZ, 2.33° S, 44.60° W, an equatorial site. The Digital sounder routinely monitors the electron density profile at the radar site. The magnetometer systems are fluxgate-type installed at SLZ and Eusébio (EUS, 03.89° S, 38.44° W. From the difference between the horizontal component of magnetic field at SLZ station and the same component at EUS (EEJ ground strength several cases of westward morning electrojet and its normal inversion to the eastward equatorial electrojet (EEJ have been observed. Also, the EEJ ground strength has shown some cases of CEJ events, which been detected with the RESCO radar too. Detection of these events were investigated with respect to their time and height of occurrence, correlation with sporadic E (Es layers at the same time, and their spectral characteristics as well as the radar echo power intensity.

  17. Radar model fusion of asteroid (4179) Toutatis via its optical images observed by Chang'e-2 probe

    Science.gov (United States)

    Zhao, Wei; Xiao, Ting; Liu, Peng; Sun, Lei; Huang, Jiangchuan; Tang, Xianglong

    2016-06-01

    Asteroid (4179) Toutatis has been modeling by ground-based radar observations until Dec 13th, 2012, when distinct optical images of Toutatis were captured during the Chang'e-2 flyby at the shortest distance for the first time. The surface details on Toutatis in the optical images are abundant enough to reinforce the radar model descriptions. Under this context, we customized a method of frequency domain data fusion, which combines the topography information of radar model and the 3rd dimension information estimated from optical image by shape from shading algorithm, and gave out a new Toutatis' radar model. A model with abundant surface characteristics had been resulted.

  18. Mapping peat morphology in sag pond with ground penetrating radar

    Science.gov (United States)

    Iryanti, Mimin; Nugraha, Harya Dwi; Setiawan, Tedy; Bijaksana, Satria

    2013-09-01

    In the tropics peat is commonly found in low-land areas. In certain condition, however, peat could also be found in high elevation, such as in sag ponds near fault zones. Information regarding thickness and morphology of peat in Sag Pond can be used to infer fault activities in the past. In this study, we attempt to identify the thickness and morphology of peat in a sag pond at Karyawangi Village near the Lembang fault, to the north of Bandung, West Java, Indonesia. We use ground penetrating radar (GPR) method with 250 Mhz antennae in several lines. The data were them processes using Reflexw software. The results show that in each survey line, peat layer is clearly identifiable. In some lines, the peat layer is continous while in some other, the peat layer is undulated. The peat layer in general in about 0.5 to 2 m thick. In conclusion, the GPR method with 250 Mhz antennae is suitable for mapping peat thickness and morphology in Sag Pond.

  19. Efficient Underground Object Detection for Ground Penetrating Radar Signals

    Directory of Open Access Journals (Sweden)

    Ibrahim Mesecan

    2016-12-01

    Full Text Available Ground penetrating radar (GPR is one of the common sensor system for underground inspection. GPR emits electromagnetic waves which can pass through objects. The reflecting waves are recorded and digitised, and then, the B-scan images are formed. According to the properties of scanning object, GPR creates higher or lower intensity values on the object regions. Thus, these changes in signal represent the properties of scanning object. This paper proposes a 3-step method to detect and discriminate landmines: n-row average-subtraction (NRAS; Min-max normalisation; and image scaling. Proposed method has been tested using 3 common algorithms from the literature. According to the results, it has increased object detection ratio and positive object discrimination (POD significantly. For artificial neural networks (ANN, POD has increased from 77.4 per cent to 87.7 per cent. And, it has increased from 37.8 per cent to 80.2 per cent, for support vector machines (SVM.

  20. Urban Underground Pipelines Mapping Using Ground Penetrating Radar

    Science.gov (United States)

    Jaw, S. W.; M, Hashim

    2014-02-01

    Underground spaces are now being given attention to exploit for transportation, utilities, and public usage. The underground has become a spider's web of utility networks. Mapping of underground utility pipelines has become a challenging and difficult task. As such, mapping of underground utility pipelines is a "hit-and-miss" affair, and results in many catastrophic damages, particularly in urban areas. Therefore, this study was conducted to extract locational information of the urban underground utility pipeline using trenchless measuring tool, namely ground penetrating radar (GPR). The focus of this study was to conduct underground utility pipeline mapping for retrieval of geometry properties of the pipelines, using GPR. In doing this, a series of tests were first conducted at the preferred test site and real-life experiment, followed by modeling of field-based model using Finite-Difference Time-Domain (FDTD). Results provide the locational information of underground utility pipelines associated with its mapping accuracy. Eventually, this locational information of the underground utility pipelines is beneficial to civil infrastructure management and maintenance which in the long term is time-saving and critically important for the development of metropolitan areas.

  1. On Estimation of Fracture Aperture with Ground Penetrating Radar

    Science.gov (United States)

    Linde, N.; Shakas, A.

    2016-12-01

    Ground penetrating radar (GPR) is an excellent tool for fracture imaging, but GPR-assisted estimation of fracture aperture is a largely unresolved challenge. The main reason for this is that traditional modeling techniques face severe limitations in fractured rock environments. For example, finite-difference time-domain (FDTD) formulations of Maxwell's equations are poorly adapted to deal with fractures of arbitrary orientations and apertures that are three-five orders of magnitude smaller than the modeling domain. An alternative is to use analytical solutions for thin-bed responses, but they are based on strong assumptions that often do not apply in practise. We have recently developed an efficient modeling approach to simulate GPR propagation and reflection in fractured rock. Here, we first use this modeling formulation to examine the ability of the thin-bed solution to infer the aperture of a homogeneous fracture. We then consider a suite of synthetic examples with heterogeneous fracture aperture fields of varying fractal (Hurst) exponents and spatial correlation lengths. We then use a global optimization algorithm to infer a mean (effective) fracture aperture in each case using the noise-contaminated synthetic data. The thin-bed solution leads to biased aperture estimates even if the fracture has a constant aperture and all other modeling parameters are known. With our modeling approach, we find that appropriate mean apertures are estimated in the homogeneous case, and when the correlation length of the aperture distribution is of similar scale (or larger) than the dominant GPR wavelength.

  2. Ground-penetrating radar: A tool for monitoring bridge scour

    Science.gov (United States)

    Anderson, N.L.; Ismael, A.M.; Thitimakorn, T.

    2007-01-01

    Ground-penetrating radar (GPR) data were acquired across shallow streams and/or drainage ditches at 10 bridge sites in Missouri by maneuvering the antennae across the surface of the water and riverbank from the bridge deck, manually or by boat. The acquired two-dimensional and three-dimensional data sets accurately image the channel bottom, demonstrating that the GPR tool can be used to estimate and/or monitor water depths in shallow fluvial environments. The study results demonstrate that the GPR tool is a safe and effective tool for measuring and/or monitoring scour in proximity to bridges. The technique can be used to safely monitor scour at assigned time intervals during peak flood stages, thereby enabling owners to take preventative action prior to potential failure. The GPR tool can also be used to investigate depositional and erosional patterns over time, thereby elucidating these processes on a local scale. In certain instances, in-filled scour features can also be imaged and mapped. This information may be critically important to those engaged in bridge design. GPR has advantages over other tools commonly employed for monitoring bridge scour (reflection seismic profiling, echo sounding, and electrical conductivity probing). The tool doesn't need to be coupled to the water, can be moved rapidly across (or above) the surface of a stream, and provides an accurate depth-structure model of the channel bottom and subchannel bottom sediments. The GPR profiles can be extended across emerged sand bars or onto the shore.

  3. Ground penetrating radar mini-CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, R. [AlliedSignal, Inc., Kansas City, MO (United States). Federal Mfg. and Technologies; Stump, G. [Vermeer Mfg. Co. (United States); Weil, G. [EnTech Engineering, Inc. (United States)

    1996-09-01

    The purpose of this project was to determine the feasibility of using ground penetrating radar (GPR) to assess the ease of excavability prior to and during trenching operations. The project partners were EnTech Engineering Inc., Vermeer Manufacturing Co., and AlliedSignal Federal Manufacturing & Technology (FM&T)/Kansas City Plant (KCP). Commercial GPRs were field tested as well as a system developed at AlliedSignal FM&T. The AlliedSignal GPR was centered around a HP8753 Network Analyzer instrument. Commercial GPR antennas were connected to the analyzer and data was collected under control of software written for a notebook PC. Images of sub-surface features were generated for varied system parameters including: frequency, bandwidth, FFT windowing, gain, antenna orientation, and surface roughness conditions. Depths to 10 feet were of primary interest in this project. Although further development is required, this project has demonstrated that GPR can be used to identify transitions between different sub-surface conditions, as in going from one rock type to another. Additionally, the average relative dielectric constant of the material can be estimated which can be used to help identify the material. This information can be used to characterize an excavation site for use in budgeting a job. A real-time GPR would provide the operator with sub-surface images that could help with setting the optimum feed and speed rates of the trenching machine.

  4. GSTAMIDS ground-penetrating radar: data processing algorithms

    Science.gov (United States)

    Sower, Gary D.; Kilgore, Roger; Roman, Jaime R.

    2001-10-01

    The Ground Standoff Mine Detection System is now in the Engineering, Manufacturing and Development (EMD) Block 0 phase for USA CECOM. This paper describes the data processing algorithms for the GPR that are used to extract the features used for anti-tank (AT) mine detection; those used for pre-processing the data re included herein to show the enhancement of the mine signals. A key feature of the processing is the acquisition of a clean radar return signal from undisturbed soil, which is then deconvolved from each data frame waveform. This soil signal is an estimate of the system impulse response function, save for the magnitude of the reflection coefficient of the soil, which is a scalar to first order. Deconvolution thus gives the impulse response function of the buried mines, a strong enhancement over their raw measured signals. A matched filter test statistic is generated to discriminate between mines and background. Discrimination algorithms using hidden Markov model processing are describe in a paper by PD Gader et al. These processes were developed in MATLAB using dat files acquired and stored from prototype GPR systems and then refined with data form production units. The MATLAB code is then converted into C code for use on the real-time processor on GSTAMIDS. The C code modules are run as dynamic library links in MATLAB for verification. The GPR sensor suite hardware and its physical incorporation into the GSTAMIDS sensor modules are described fully in a companion paper.

  5. Electromagnetic modelling of Ground Penetrating Radar responses to complex targets

    Science.gov (United States)

    Pajewski, Lara; Giannopoulos, Antonis

    2014-05-01

    This work deals with the electromagnetic modelling of composite structures for Ground Penetrating Radar (GPR) applications. It was developed within the Short-Term Scientific Mission ECOST-STSM-TU1208-211013-035660, funded by COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar". The Authors define a set of test concrete structures, hereinafter called cells. The size of each cell is 60 x 100 x 18 cm and the content varies with growing complexity, from a simple cell with few rebars of different diameters embedded in concrete at increasing depths, to a final cell with a quite complicated pattern, including a layer of tendons between two overlying meshes of rebars. Other cells, of intermediate complexity, contain pvc ducts (air filled or hosting rebars), steel objects commonly used in civil engineering (as a pipe, an angle bar, a box section and an u-channel), as well as void and honeycombing defects. One of the cells has a steel mesh embedded in it, overlying two rebars placed diagonally across the comers of the structure. Two cells include a couple of rebars bent into a right angle and placed on top of each other, with a square/round circle lying at the base of the concrete slab. Inspiration for some of these cells is taken from the very interesting experimental work presented in Ref. [1]. For each cell, a subset of models with growing complexity is defined, starting from a simple representation of the cell and ending with a more realistic one. In particular, the model's complexity increases from the geometrical point of view, as well as in terms of how the constitutive parameters of involved media and GPR antennas are described. Some cells can be simulated in both two and three dimensions; the concrete slab can be approximated as a finite-thickness layer having infinite extension on the transverse plane, thus neglecting how edges affect radargrams, or else its finite size can be fully taken into account. The permittivity of concrete can be

  6. VISUAL INSPECTION OF WATER LEAKAGE FROM GROUND PENETRATING RADAR RADARGRAM

    Directory of Open Access Journals (Sweden)

    N. N. Halimshah

    2015-10-01

    Full Text Available Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR as a non-destructive method to correctly and efficiently detect mains water leaks has been examined. Several experiments were designed and conducted to prove that GPR can be used as tool for water leakage detection. These include instrument validation test and soil compaction test to clarify the maximum dry density (MDD of soil and simulation studies on water leakage at a test bed consisting of PVC pipe burying in sand to a depth of 40 cm. Data from GPR detection are processed using the Reflex 2D software. Identification of water leakage was visually inspected from the anomalies in the radargram based on GPR reflection coefficients. The results have ascertained the capability and effectiveness of the GPR in detecting water leakage which could help avoiding difficulties with other leak detection methods.

  7. On reconciling ground-based with spaceborne normalized radar cross section measurements

    DEFF Research Database (Denmark)

    Baumgartner, Francois; Munk, Jens; Jezek, K C

    2002-01-01

    This study examines differences in the normalized radar cross section, derived from ground-based versus spaceborne radar data. A simple homogeneous half-space model, indicates that agreement between the two improves as 1) the distance from the scatterer is increased; and/or 2) the extinction...

  8. Characterizing Englacial Attenuation and Grounding Zone Geometry Using Airborne Radar Sounding

    Science.gov (United States)

    Schroeder, D. M.; Grima, C.; Blankenship, D. D.

    2014-12-01

    The impact of warm ocean water on ice sheet retreat and stability is a one of the primary drivers and sources of uncertainty for the rate of global sea level rise. One critical but challenging observation required to understand and model this impact is the location and extent of grounding ice sheet zones. However, existing surface topography based techniques do not directly detect the location where ocean water reaches (or breaches) grounded ice at the bed, which can significantly affect ice sheet stability. The primary geophysical tool for directly observing the basal properties of ice sheets is airborne radar sounding. However, uncertainty in englacial attenuation from unknown ice temperature and chemistry can lead to erroneous interpretation of subglacial conditions from bed echo strengths alone . Recently developed analysis techniques for radar sounding data have overcome this challenge by taking advantage of information in the angular distribution of bed echo energy and joint modeling of radar returns and water routing. We have developed similar approaches to analyze the spatial pattern and character of echoes to address the problems of improved characterization of grounding zone geometry and englacial attenuation. The spatial signal of the transition from an ice-bed interface to an ice-ocean interface is an increase in bed echo strength. However, rapidly changing attenuation near the grounding zone prevents the unambiguous interpretation of this signal in typical echo strength profiles and violates the assumptions of existing empirical attenuation correction techniques. We present a technique that treat bed echoes as continuous signals to take advantage of along-profile ice thickness and echo strength variations to constrain the spatial pattern of attenuation and detect the grounding zone transition. The transition from an ice-bed interface to an ice-ocean interface will also result in a change in the processes that determine basal interface morphology (e

  9. Ground-based radar reflectivity mosaic of mei-yu precipitation systems over the Yangtze River-Huaihe River basins

    Science.gov (United States)

    Luo, Yali; Qian, Weimiao; Gong, Yu; Wang, Hongyan; Zhang, Da-Lin

    2016-11-01

    The 3D radar reflectivity produced by a mosaic software system, with measurements from 29 operational weather radars in the Yangtze River-Huaihe River Basins (YRHRB) during the mei-yu season of 2007, is compared to coincident TRMM PR observations in order to evaluate the value of the ground-based radar reflectivity mosaic in characterizing the 3D structures of mei-yu precipitation. Results show reasonable agreement in the composite radar reflectivity between the two datasets, with a correlation coefficient of 0.8 and a mean bias of -1 dB. The radar mosaic data at constant altitudes are reasonably consistent with the TRMM PR observations in the height range of 2-5 km, revealing essentially the same spatial distribution of radar echo and nearly identical histograms of reflectivity. However, at altitudes above 5 km, the mosaic data overestimate reflectivity and have slower decreasing rates with height compared to the TRMM PR observations. The areas of convective and stratiform precipitation, based on the mosaic reflectivity distribution at 3-km altitude, are highly correlated with the corresponding regions in the TRMM products, with correlation coefficients of 0.92 and 0.97 and mean relative differences of -7.9% and -2.5%, respectively. Finally, the usefulness of the mosaic reflectivity at 3-km altitude at 6-min intervals is illustrated using a mesoscale convective system that occurred over the YRHRB.

  10. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    Science.gov (United States)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  11. Joint ACE ground penetrating radar antenna test facility at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter; Sarri, A.;

    2005-01-01

    A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented.......A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented....

  12. A Deep Neural Network Model for Rainfall Estimation UsingPolarimetric WSR-88DP Radar Observations

    Science.gov (United States)

    Tan, H.; Chandra, C. V.; Chen, H.

    2016-12-01

    Rainfall estimation based on radar measurements has been an important topic for a few decades. Generally, radar rainfall estimation is conducted through parametric algorisms such as reflectivity-rainfall relation (i.e., Z-R relation). On the other hand, neural networks are developed for ground rainfall estimation based on radar measurements. This nonparametric method, which takes into account of both radar observations and rainfall measurements from ground rain gauges, has been demonstrated successfully for rainfall rate estimation. However, the neural network-based rainfall estimation is limited in practice due to the model complexity and structure, data quality, as well as different rainfall microphysics. Recently, the deep learning approach has been introduced in pattern recognition and machine learning areas. Compared to traditional neural networks, the deep learning based methodologies have larger number of hidden layers and more complex structure for data representation. Through a hierarchical learning process, the high level structured information and knowledge can be extracted automatically from low level features of the data. In this paper, we introduce a novel deep neural network model for rainfall estimation based on ground polarimetric radar measurements .The model is designed to capture the complex abstractions of radar measurements at different levels using multiple layers feature identification and extraction. The abstractions at different levels can be used independently or fused with other data resource such as satellite-based rainfall products and/or topographic data to represent the rain characteristics at certain location. In particular, the WSR-88DP radar and rain gauge data collected in Dallas - Fort Worth Metroplex and Florida are used extensively to train the model, and for demonstration purposes. Quantitative evaluation of the deep neural network based rainfall products will also be presented, which is based on an independent rain gauge

  13. Combined radar observations of equatorial electrojet irregularities at Jicamarca

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2007-03-01

    Full Text Available Daytime equatorial electrojet plasma irregularities were investigated using five distinct radar diagnostics at Jicamarca including range-time-intensity (RTI mapping, Faraday rotation, radar imaging, oblique scattering, and multiple-frequency scattering using the new AMISR prototype UHF radar. Data suggest the existence of plasma density striations separated by 3–5 km and propagating slowly downward. The striations may be caused by neutral atmospheric turbulence, and a possible scenario for their formation is discussed. The Doppler shifts of type 1 echoes observed at VHF and UHF frequencies are compared and interpreted in light of a model of Farley Buneman waves based on kinetic ions and fluid electrons with thermal effects included. Finally, the up-down and east-west asymmetries evident in the radar observations are described and quantified.

  14. Temporal and spatial variability of the Greenland firn aquifer revealed by ground and airborne radar data

    Science.gov (United States)

    Miège, C.; Forster, R. R.; Koenig, L.; Brucker, L.; Box, J. E.; Burgess, E. W.; Solomon, D. K.

    2014-12-01

    During the last two decades, the Greenland ice sheet has been losing mass, significantly contributing to sea level rise (0.33±0.08 mm yr-1). In the meantime, summer surface melt has been increasing in both duration and extent, and subsequent runoff represents about half of the total mass lost. However, small-scale heterogeneous physical processes and residence times associated with meltwater formation, infiltration in the firn, refreezing and/or runoff remain unconstrained in coarser resolution numerical models, leading to significant error bars while estimating total runoff. In Southeast and South Greenland, widespread aquifers have been observed in relative high accumulation and melt regions, persisting throughout the year, storing a significant mass of water within the firn. The presence of a persistent water table within the firn aquifer is observed using a 400 MHz ground-penetrating radar and the 750 MHz airborne Accumulation Radar over the same location. In both radar echograms, a strong reflection is present, illustrating the important dielectric contrast between dry firn and water-saturated firn. Since 2011, NASA's Operation IceBridge mission allows us to produce an ice-sheet-wide map of the location and depth of the firn aquifer using the Accumulation Radar echograms. Over the last four years, from one spring to the next, repeated flight lines demonstrate a relatively steady short-term behavior of water in the aquifer with constant lateral boundaries (with a few exceptions) and water table surface. An earlier radar survey (1993) implies the aquifer presence by lack of bed return, but the study area was limited to the Helheim Glacier region. Within the aquifer, a relatively slow flow of water is inferred from 2-D hydrological flow modeling, while assuming a constant hydraulic conductivity in the aquifer. On the aquifer low-elevation lateral boundary, connection with crevasses are observed in the airborne radar echograms and documented in this study. More

  15. Lightning and radar observations of hurricane Rita landfall

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Bradley G [Los Alamos National Laboratory; Suszcynsky, David M [Los Alamos National Laboratory; Hamlin, Timothy E [Los Alamos National Laboratory; Jeffery, C A [Los Alamos National Laboratory; Wiens, Kyle C [TEXAS TECH U.; Orville, R E [TEXAS A& M

    2009-01-01

    Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physical parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.

  16. Clear-air radar observations of the atmospheric boundary layer

    Science.gov (United States)

    Ince, Turker

    2001-10-01

    This dissertation presents the design and operation of a high-resolution frequency-modulated continuous-wave (FM- CW) radar system to study the structure and dynamics of clear-air turbulence in the atmospheric boundary layer (ABL). This sensitive radar can image the vertical structure of the ABL with both high spatial and temporal resolutions, and provide both qualitative information about the morphology of clear-air structures and quantitative information on the intensity of fluctuations in refractive-index of air. The principles of operation and the hardware and data acquisition characteristics of the radar are described in the dissertation. In October 1999, the radar participated in the Cooperative Atmosphere-Surface Exchange Study (CASES'99) Experiment to characterize the temporal structure and evolution of the boundary-layer features in both convective and stable conditions. The observed structures include clear-air convection, boundary layer evolution, gravity waves, Kelvin-Helmholtz instabilities, stably stratified layers, and clear-air turbulence. Many of the S-band radar images also show high- reflectivity returns from Rayleigh scatterers such as insects. An adaptive median filtering technique based on local statistics has, therefore, been developed to discriminate between Bragg and Rayleigh scattering in clear-air radar observations. The filter is tested on radar observations of clear air convection with comparison to two commonly used image processing techniques. The dissertation also examines the statistical mean of the radar-measured C2n for clear-air convection, and compares it with the theoretical predictions. The study also shows that the inversion height, local thickness of the inversion layer, and the height of the elevated atmospheric layers can be estimated from the radar reflectivity measurements. In addition, comparisons to the radiosonde-based height estimates are made. To examine the temporal and spatial structure of C2n , the dissertation

  17. Multiple instance learning for landmine detection using ground penetrating radar

    Science.gov (United States)

    Manandhar, Achut; Morton, Kenneth D., Jr.; Collins, Leslie M.; Torrione, Peter A.

    2012-06-01

    Ground Penetrating Radar (GPR) has been extensively employed as a technology for the detection of subsurface buried threats. Although vehicular mounted GPRs generate data in three dimensions, alarm declarations are usually only available in the form of 2-D spatial coordinates. The uncertainty in the depth of the target in the three dimensional volume of data, and the difficulties associated with automatically localizing objects in depth, can adversely impact feature extraction and training in some detection algorithms. In order to mitigate the negative impact of uncertainty in target depth, several algorithms have been developed that extract features from multiple depth regions and utilize these feature vectors in classification algorithms to perform final mine/nonmine decisions. However, the uncertainty in object depth significantly complicates learning since features at the correct target depth are often significantly different from features at other depths but in the same volume. Multiple Instance Learning (MIL) is a type of supervised learning approach in which labels are available for a collection of feature vectors but not for individual samples, or in this application, depths. The goal of MIL is to classify new collections of vectors as they become available. This set-based learning method is applicable in the landmine detection problem because features that are extracted independently from several depth bins can be viewed as a set of unlabeled feature vectors, where the entire set either corresponds to a buried threat or a false alarm. In this work, a novel generative Dirichlet Process Gaussian mixture model for MIL is developed that automatically infers the number of mixture components required to model the underlying distributions of mine/non-mine signatures and performs classification using a likelihood ratio test. In this work, we show that the performance of the proposed approach for discriminating targets from non-targets in GPR data is promising.

  18. O' Connell bridge inspection by means of Ground Penetrating Radar

    Science.gov (United States)

    Santos Assuncao, Sonia, ,, Dr

    2016-04-01

    Ground Penetrating Radar (GPR) is a well-known technique successfully applied in different areas. In structural inspection the methodology may expose information about structural arrangement and pathologies. GPR emits high frequency electromagnetic impulses allowing to detect changes on the electromagnetic properties: electrical conductivity, dielectric constant and magnetic permeability. The central frequency of the each antenna is characterized by a specific resolution and penetration depth. Therefore, different scales of structures can be analysed. High frequency antennas output high resolution images/signals about the shallowest elements such as rebar and the thickness of the first layer. On the other hand, intermediate or lower frequency antennas locate deeper structures, such as the thickness of the arch. The compilation of distinct frequencies gives a better understanding and a more accurate detection of elements in the inner structure. O'Connell Bridge (1877) is one of 24 bridges along River Liffey and one the most famous historical structures in Dublin. It is composed by sandstones and granite and covered by asphalt which represents a suitable structure to evaluate by means of GPR. The lack of inner structural information, especially the thickness of the layer, presence of reinforcement or other metallic elements of support required, at least, a dual frequency analysis of the bridge. In this case, it was applied the (200 MHz and 600 MHz) Multi-Channel Stream EM combined with 1.6 GHz GSSI high frequency antenna. The inspection of bridges by means of GPR may provide not exclusively interesting structural data but historical information and the state of conservation.

  19. Dunes on Titan observed by Cassini Radar

    Science.gov (United States)

    Radebaugh, J.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Boubin, G.; Reffet, E.; Kirk, R.L.; Lopes, R.M.; Stofan, E.R.; Soderblom, L.; Allison, M.; Janssen, M.; Paillou, P.; Callahan, P.; Spencer, C.; ,

    2008-01-01

    Thousands of longitudinal dunes have recently been discovered by the Titan Radar Mapper on the surface of Titan. These are found mainly within ??30?? of the equator in optically-, near-infrared-, and radar-dark regions, indicating a strong proportion of organics, and cover well over 5% of Titan's surface. Their longitudinal duneform, interactions with topography, and correlation with other aeolian forms indicate a single, dominant wind direction aligned with the dune axis plus lesser, off-axis or seasonally alternating winds. Global compilations of dune orientations reveal the mean wind direction is dominantly eastwards, with regional and local variations where winds are diverted around topographically high features, such as mountain blocks or broad landforms. Global winds may carry sediments from high latitude regions to equatorial regions, where relatively drier conditions prevail, and the particles are reworked into dunes, perhaps on timescales of thousands to tens of thousands of years. On Titan, adequate sediment supply, sufficient wind, and the absence of sediment carriage and trapping by fluids are the dominant factors in the presence of dunes. ?? 2007 Elsevier Inc. All rights reserved.

  20. Geostatistical inference using crosshole ground-penetrating radar

    DEFF Research Database (Denmark)

    Looms, Majken C; Hansen, Thomas Mejer; Cordua, Knud Skou

    2010-01-01

    , the moisture content will reflect the variation of the physical properties of the subsurface, which determine the flow patterns in the unsaturated zone. Deterministic least-squares inversion of crosshole groundpenetrating-radar GPR traveltimes result in smooth, minimumvariance estimates of the subsurface radar...... wave velocity structure, which may diminish the utility of these images for geostatistical inference. We have used a linearized stochastic inversion technique to infer the geostatistical properties of the subsurface radar wave velocity distribution using crosshole GPR traveltimes directly. Expanding...

  1. Ground-penetrating radar evaluation of bridge decks

    Science.gov (United States)

    Roberts, Glenn E.

    1995-05-01

    Radar has emerged as a valuable non-destructive test method for evaluating the condition of New Hampshire bridge decks. It allows the inspector to 'see' the top surface of the portland cement concrete deck which is typically covered with asphalt pavement. Radar is also very 'customer friendly' in that it allows inspectors to evaluate the bridge decks without closing travel lanes or otherwise impeding traffic flow in any way. This paper discusses the inspection needs of the New Hampshire Department of Transportation which necessitated the use of radar, as well as a history of its selection, development, and incorporation into New Hampshire's bridge management system.

  2. The ELDORA/ASTRAIA Airborne Doppler Weather Radar: High-Resolution Observations from TOGA COARE.

    Science.gov (United States)

    Hildebrand, Peter H.; Lee, Wen-Chau; Walther, Craig A.; Frush, Charles; Randall, Mitchell; Loew, Eric; Neitzel, Richard; Parsons, Richard; Testud, Jacques; Baudin, François; Lecornec, Alain

    1996-02-01

    The ELDORA/ASTRAIA (Electra Doppler Radar/Analyese Stereoscopic par Impulsions Aeroporte) airborne Doppler weather radar was recently placed in service by the National Center for Atmospheric Research and the Centre d'étude des Environnements Terrestre et Planetaires in France. After a multiyear development effort, the radar saw its first field tests in the TOGA COARE (Tropical Oceans-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment) field program during January and February 1993. The ELDORA/ASTRAIA radar (herein referred to as ELDORA) is designed to provide high-resolution measurements of the air motion and rainfall characteristics of very large storms, storms that are frequently too large or too remote to be adequately observed by ground-based radars. This paper discusses the measurement requirements and the design goals of the radar and concludes with an evaluation of the performance of the system using data from TOGA COARE.The performance evaluation includes data from two cases. First, observations of a mesoscale convective system on 9 February 1993 are used to compare the data quality of the ELDORA radar with the National Oceanic and Atmospheric Administration P-3 airborne Doppler radars. The large-scale storm structure and airflow from ELDORA are seen to compare quite well with analyses using data from the P-3 radars. The major differences observed between the ELDORA and P-3 radar analyses were due to the higher resolution of the ELDORA data and due to the different domains observed by the individual radars, a result of the selection of flight track past the storm for each aircraft. In a second example, the high-resolution capabilities of ELDORA are evaluated using observations of a shear-parallel mesoscale convective system (MCS) that occurred on 18 February 1993. This MCS line was characterized by shear-parallel clusters of small convective cells, clusters that were moving quickly with the low-level winds. High-resolution analysis of these

  3. Orbital bistatic radar observations of asteroid Vesta by the Dawn mission.

    Science.gov (United States)

    Palmer, Elizabeth M; Heggy, Essam; Kofman, Wlodek

    2017-09-12

    We present orbital bistatic radar observations of a small-body, acquired during occultation by the Dawn spacecraft at asteroid Vesta. The radar forward-scattering properties of different reflection sites are used to assess the textural properties of Vesta's surface at centimeter-to-decimeter scales and are compared to subsurface hydrogen concentrations observed by Dawn's Gamma Ray and Neutron Detector to assess potential volatile occurrence in the surface and shallow subsurface. We observe significant differences in surface radar reflectivity, implying substantial spatial variations in centimeter-to-decimeter-scale surface roughness. Our results suggest that unlike the Moon, Vesta's surface roughness variations cannot be explained by cratering processes only. In particular, the occurrence of heightened hydrogen concentrations within large smoother terrains (over hundreds of square kilometers) suggests that potential ground-ice presence may have contributed to the formation of Vesta's current surface texture. Our observations are consistent with geomorphological evidence of transient water flow from Dawn Framing Camera images.The Dawn spacecraft has provided orbital bistatic radar observations of a small body in the solar system. Here, the authors present results from Vesta suggesting that smooth terrains with heightened hydrogen concentrations indicate that ground-ice presence potentially helped shape Vesta's current surface texture.

  4. Mean winds observed with Indian MST radar over tropical mesosphere and comparison with various techniques

    Energy Technology Data Exchange (ETDEWEB)

    Venkat Ratnam, M.; Narayana Rao, D.; Narayana Rao, T. [Sri Venkateswara Univ., Tirupati (India). Dept. of Physics; Thulasiraman, S.; Nee, J.B. [National Central Univ., Chung Li (Taiwan); Gurubaran, S.; Rajaram, R. [Equatorial Geophysical Research Lab., Indian Inst. of Geomagnetism, Tirunelveli (India)

    2001-08-01

    Temporal variation of mean winds between the 65 to 85 km height region from the data collected over the course of approximately four years (1995-99), using the Indian MST radar located at Gadanki (13.5 N, 79.2 E), India is presented in this paper. Mesospheric mean winds and their seasonal variation in the horizontal and vertical components are presented in detail. Westward flows during each of the equinoxes and eastward flows during the solstices are observed in the zonal component. The features of the semi-annual oscillation (SAO) and the quasi-biennial oscillation (QBO) in the zonal component are noted. In the meridional component, contours reveal a northward motion during the winter and a southward motion during the summer. Large inter-annual variability is found in the vertical component with magnitudes of the order of {+-}2 ms{sup -1}. The MST observed winds are also compared with the winds observed by the MF radar located at Tirunelveli (8.7 N, 77.8 E), India, the high resolution Doppler imager (HRDI) onboard the upper atmospheric research satellite (UARS), and with the CIRA-86 model. A very good agreement is found between both the ground-based instruments (MST radar and MF radar) in the zonal component and there are few discrepancies in the meridional component. UARS/HRDI observed winds usually have larger magnitudes than the ground-based mean winds. Comparison of the MST derived winds with the CIRA-86 model in the zonal component shows that during the spring equinox and the summer, the winds agree fairly well, but there are a lot of discrepancies in the other seasons and the observed winds with the MST radar are less in magnitude, though the direction is same. The strengths and limitations in estimating reliable mesospheric mean winds using the MST radar are also discussed. (orig.)

  5. A radar unattended ground sensor with micro-Doppler capabilities for false alarm reduction

    Science.gov (United States)

    Tahmoush, Dave; Silvious, Jerry; Burke, Ed

    2010-10-01

    Unattended ground sensors (UGS) provide the capability to inexpensively secure remote borders and other areas of interest. However, the presence of normal animal activity can often trigger a false alarm. Accurately detecting humans and distinguishing them from natural fauna is an important issue in security applications to reduce false alarm rates and improve the probability of detection. In particular, it is important to detect and classify people who are moving in remote locations and transmit back detections and analysis over extended periods at a low cost and with minimal maintenance. We developed and demonstrate a compact radar technology that is scalable to a variety of ultra-lightweight and low-power platforms for wide area persistent surveillance as an unattended, unmanned, and man-portable ground sensor. The radar uses micro-Doppler processing to characterize the tracks of moving targets and to then eliminate unimportant detections due to animals as well as characterize the activity of human detections. False alarms from sensors are a major liability that hinders widespread use. Incorporating rudimentary intelligence into sensors can reduce false alarms but can also result in a reduced probability of detection. Allowing an initial classification that can be updated with new observations and tracked over time provides a more robust framework for false alarm reduction at the cost of additional sensor observations. This paper explores these tradeoffs with a small radar sensor for border security. Multiple measurements were done to try to characterize the micro-Doppler of human versus animal and vehicular motion across a range of activities. Measurements were taken at the multiple sites with realistic but low levels of clutter. Animals move with a quadrupedal motion, which can be distinguished from the bipedal human motion. The micro-Doppler of a vehicle with rotating parts is also shown, along with ground truth images. Comparisons show large variations for

  6. Ground Penetrating Radar employment for searching ancient cisterns.

    Science.gov (United States)

    Semeraro, Grazia; Notario, Corrado; Persico, Raffaele

    2017-04-01

    Ground Penetrating Radar technology and methodology can provide support for the archaeological research. In particular, investigations in archaeological sites [1-3] and monuments of historical interest [4-6] have provided in many cases information of interest about the presence, the size, the shape and the depth of embedded anomalies, that can range from foundations to crypts, or also walled passages, walled doors, embedded voids or reinforcement bars, fractures and so on. In this contribution we will focus on the possibility to identify ancient cisterns with the aid of a GPR prospection. In particular, the attention will be focused on Messapic cisterns. The Messapians were a population that used to reside in the southern part of the Apulia region (the so called Salento), Their remains dates back from the 8th century B.C. up to the Roman conquest, in the 3rd century B.C. They used to build cisterns for gathering the rain water, both for drinking and for agricultural purposes. The shape of the cisterns can be quite different from case to case, and rarely they are found empty. Rether, in most cases the remains shows a structure with the roof collapsed and filled up with loose materials, which makes their identification with a GPR a challenging issue. At the conference, the results and the interpretation of GPR data gathered in the two Messapic sites of San Vito dei Normanni and Cavallino (both in the Salento area) will be shown and discussed. References 1) R. Lasaponara, G. Leucci, N. Masini, R. Persico, Investigating archaeological looting using satellite images and GEORADAR: the experience in Lambayeque in North Peru, Journal of Archaeological Science, vol. 42, pp. 216-230, 2014. 2) R. Castaldo, L. Crocco, M. Fedi, B. Garofalo, R. Persico, A. Rossi, F. Soldovieri, GPR Microwave Tomography for Diagnostic of Archaeological Sites: the Case of a high-way construction in Pontecagnano (Southern Italy), Archaeological Prospection, vol. 16, pp. 203-217, 2009. 3) L. Matera

  7. Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    Full Text Available Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.

    Key words. Ionosphere (ionosphere – atmosphere interactions · Meteorology and atmospheric dynamics (thermospheric dynamics · Radio science (ionospheric propagations

  8. Ground Penetrating Radar Assessment of Flexible Road Pavement Degradation

    Directory of Open Access Journals (Sweden)

    Sandro Colagrande

    2011-01-01

    Full Text Available GPR investigations were used to study degraded road pavements built in cutting sections. Road integrity was assessed via quantitative analysis of power curves. 1600 MHz and 600 MHz radar sections were collected in 40 damaged and undamaged road pavement sites. The collected data were processed as follows: (i linearisation with regression analysis of power curves; (ii assessment of absorption angle α′ which is directly proportional to absorption coefficient α (this was obtained by setting the e.m. propagation velocity to 10 cm/ns; (iii comparison of absorption coefficients in both damaged and undamaged zones with respect to road pavement degradation. If the absorption coefficients of damaged and undamaged road sections have nearly the same value, then the likely cause of degradation is the fatigue or the thermal shrinkage; if they are not, then road degradation is due to the different compactness of the soil caused by vehicular traffic load. In a considerable number of sites, the statistical comparison of damaged and undamaged zones through the absorption coefficient analysis shows that surface observations of road pavements are quite consistent with power curve analyses.

  9. Ground Penetrating Radar technique for railway track characterization in Portugal

    Science.gov (United States)

    De Chiara, Francesca; Fontul, Simona; Fortunato, Eduardo; D'Andrea, Antonio

    2013-04-01

    Maintenance actions are significant for transport infrastructures but, today, costs have to be necessary limited. A proper quality control since the construction phase is a key factor for a long life cycle and for a good economy policy. For this reason, suitable techniques have to be chosen and non-destructive tests represent an efficient solution, as they allow to evaluate infrastructure characteristics in a continuous or quasi-continuous way, saving time and costs, enabling to make changes if tests results do not comply with the project requirements. Ground Penetrating Radar (GPR) is a quick and effective technique to evaluate infrastructure condition in a continuous manner, replacing or reducing the use of traditional drilling method. GPR application to railways infrastructures, during construction and monitoring phase, is relatively recent. It is based on the measuring of layers thicknesses and detection of structural changes. It also enables the assessment of materials properties that constitute the infrastructure and the evaluation of the different types of defects such as ballast pockets, fouled ballast, poor drainage, subgrade settlement and transitions problems. These deteriorations are generally the causes of vertical deviations in track geometry and they cannot be detected by the common monitoring procedures, namely the measurements of track geometry. Moreover, the development of new GPR systems with higher antenna frequencies, better data acquisition systems, more user friendly software and new algorithms for calculation of materials properties can lead to a regular use of GPR. Therefore, it represents a reliable technique to assess track geometry problems and consequently to improve maintenance planning. In Portugal, rail inspection is performed with Plasser & Theurer EM120 equipment and recently 400 MHz IDS antennas were installed on it. GPR tests were performed on the Portuguese rail network and, as case study in this paper, a renewed track was

  10. NAPL detection with ground-penetrating radar (Invited)

    Science.gov (United States)

    Bradford, J. H.

    2013-12-01

    Non-polar organic compounds are common contaminants and are collectively referred to as nonaqueous-phase liquids (NAPLs). NAPL contamination problems occur in virtually every environment on or near the earth's surface and therefore a robust suite of geophysical tools is required to accurately characterize NAPL spills and monitor their remediation. NAPLs typically have low dielectric permittivity and low electric conductivity relative to water. Thus a zone of anomalous electrical properties often occurs when NAPL displaces water in the subsurface pore space. Such electric property anomalies make it possible to detect NAPL in the subsurface using electrical or electromagnetic geophysical methods including ground-penetrating radar (GPR). The GPR signature associated with the presence of NAPL is manifest in essentially three ways. First, the decrease in dielectric permittivity results in increased EM propagation velocity. Second, the decrease in permittivity can significantly change reflectivity. Finally, electric conductivity anomalies lead to anomalous GPR signal attenuation. The conductivity anomaly may be either high or low depending on the state of NAPL degradation, but with either high or low conductivity, GPR attenuation analysis can be a useful tool for identifying contaminated-zones. Over the past 15 years I have conducted numerous modeling, laboratory, and field tests to investigate the ability to use GPR to measure NAPL induced anomalies. The emphasis of this work has been on quantitative analysis to characterize critical source zone parameters such as NAPL concentration. Often, the contaminated zones are below the conventional resolution of the GPR signal and require thin layer analysis. Through a series of field examples, I demonstrate 5 key GPR analysis tools that can help identify and quantify NAPL contaminants. These tools include 1) GPR velocity inversion from multi-fold data, 2) amplitude vs offset analysis, 3) spectral decomposition, 4) frequency

  11. Analysis of landslide mitigation effects using Ground Penetrating Radar

    Science.gov (United States)

    Ristic, Aleksandar; Govedarica, Miro; Vrtunski, Milan; Petrovacki, Dusan

    2013-04-01

    Area of Ground Penetrating Radar (GPR) technology applications becomes wider nowadays. It includes utility mapping as important part of civil engineering applications, geological structure and soil analyses, applications in agriculture, etc. Characteristics of the technology make it suitable for structure analysis of shallow landslides, whose number and impact on environment is dominant in the region. Especially when shallow landslide endangers some man-made structures such as buildings, roads or bridges, analysis of GPR data can yield very useful results. The results of GPR data analysis of the shallow landslide are represented here. It is situated on the mountain Fruska Gora in Serbia. Despite its dimensions (50x20m) this landslide was interesting for analysis for two reasons: - The landslide occurred at the part of the single road between the cement factory and the marl mine. The cement factory "Lafarge" in Beocin (Fruska Gora) is the largest cement manufacturer in the country. One of major priorities of the factory management is to keep the function of this road. The road is heavily exploited and over the years it led to landslide movements and damaging of the road itself. - The landslide dates back to earlier period and the mitigation measures were performed twice. Laying the foundation of the retaining wall was not performed during the first mitigation measures. The second mitigation measures were performed in 2010 and included detailed geotechnical analysis of the location with the appropriate foundation laying. Since the GPR technology can produce high resolution images of subsurface it provides clear insight into the current state of surveyed location. That kind of analysis is necessary to maintain permanent functionality of the road and to check the status of mitigation measures. Furthermore, the location characteristics do not allow easy access so the possibilities of other analysis technologies application are limited. In order to assess the effects of

  12. Typhoon 9707 observations with the MU radar and L-band boundary layer radar

    Directory of Open Access Journals (Sweden)

    M. Teshiba

    Full Text Available Typhoon 9707 (Opal was observed with the VHF-band Middle and Upper atmosphere (MU radar, an L-band boundary layer radar (BLR, and a vertical-pointing C-band meteorological radar at the Shigaraki MU Observatory in Shiga prefecture, Japan on 20 June 1997. The typhoon center passed about 80 km southeast from the radar site. Mesoscale precipitating clouds developed due to warm-moist airmass transport from the typhoon, and passed over the MU radar site with easterly or southeasterly winds. We primarily present the wind behaviour including the vertical component which a conventional meteorological Doppler radar cannot directly observe, and discuss the relationship between the wind behaviour of the typhoon and the precipitating system. To investigate the dynamic structure of the typhoon, the observed wind was divided into radial and tangential wind components under the assumption that the typhoon had an axi-symmetric structure. Altitude range of outflow ascended from 1–3 km to 2–10 km with increasing distance (within 80–260 km range from the typhoon center, and in-flow was observed above and below the outflow. Outflow and inflow were associated with updraft and downdraft, respectively. In the tangential wind, the maximum speed of counterclockwise winds was confirmed at 1–2 km altitudes. Based on the vertical velocity and the reflectivity obtained with the MU radar and the C-band meteorological radar, respectively, precipitating clouds, accompanied by the wind behaviour of the typhoon, were classified into stratiform and convective precipitating clouds. In the stratiform precipitating clouds, a vertical shear of radial wind and the maximum speed of counterclockwise wind were observed. There was a strong reflectivity layer called a ‘bright band’ around the 4.2 km altitude. We confirmed strong updrafts and down-drafts below and above it, respectively, and the existence of a relatively dry layer around the bright band level from radiosonde

  13. Lightning and Radar Observations of the 29 May 2004 Tornadic HP Supercell during TELEX

    Science.gov (United States)

    Macgorman, D. R.; Kuhlman, K. M.

    2006-12-01

    On 29 May 2004, a tornadic heavy-precipitation (HP) supercell storm moved through central Oklahoma and through the Thunderstorm Electrification and Lightning Experiment (TELEX) domain. Three dimensional lightning location data from the Oklahoma Lightning Mapping Array (OK-LMA) depict the evolution of the storm, including convective surges, overshooting tops, and the formation and dissipation of lightning weak holes. In addition to the OK-LMA, the storm was also observed by two C-band mobile radars (SMART-R radars) providing three-minute volume scans and by the KOUN polarimetric S-band radar. Analysis of a lightning weak hole showed that it was co-located horizontally with a core of strong updrafts and with a bounded weak echo region. The majority of the cloud-to-ground lightning detected in the storm by the National Lightning Detection Network lowered negative charge to ground. However, during genesis of the strongest tornado, the dominant polarity of ground flashes near the reflectivity core of the storm evolved to positive. Also at approximately this time, negative ground strikes began occurring under the anvil, tens of kilometers from the reflectivity core, as lightning activity surged roughly 100 km into the anvil. Observations from these platforms provide insight into HP supercell evolution and structure and into relationships of lightning with other properties of the storm.

  14. Geostatistical inference using crosshole ground-penetrating radar

    DEFF Research Database (Denmark)

    Looms, Majken C; Hansen, Thomas Mejer; Cordua, Knud Skou

    2010-01-01

    , the moisture content will reflect the variation of the physical properties of the subsurface, which determine the flow patterns in the unsaturated zone. Deterministic least-squares inversion of crosshole groundpenetrating-radar GPR traveltimes result in smooth, minimumvariance estimates of the subsurface radar...... wave velocity structure, which may diminish the utility of these images for geostatistical inference. We have used a linearized stochastic inversion technique to infer the geostatistical properties of the subsurface radar wave velocity distribution using crosshole GPR traveltimes directly. Expanding...... of the subsurface are used to evaluate the uncertainty of the inversion estimate. We have explored the full potential of the geostatistical inference method using several synthetic models of varying correlation structures and have tested the influence of different assumptions concerning the choice of covariance...

  15. The Southern Argentina Agile Meteor Radar (SAAMER): Platform for comprehensive meteor radar observations and studies

    Science.gov (United States)

    Janches, D.; Hormaechea, J.; Pifko, S.; Hocking, W.; Fritts, D.; Brunini, C.; Close, S.; Michell, R.; Samara, M.

    2014-07-01

    The Southern Argentina Agile Meteor Radar (SAAMER) is a new generation system deployed in Rio Grande, Tierra del Fuego, Argentina (53^oS) in May 2008 (Janches et al., 2013,2014). SAAMER transmits 10 times more power than regular meteor radars, and uses a newly developed transmitting array, which focuses power upward instead of the traditional single-antenna-all-sky configuration. The system is configured such that the transmitter array can also be utilized as a receiver. The new design greatly increases the sensitivity of the radar enabling the detection of large numbers of particles at low zenith angles. The more concentrated transmitted power enables additional meteor studies besides those typical of these systems based on the detection of specular reflections, such as routine detections of head echoes and non-specular trails, previously only possible with High Power and Large Aperture radars (Janches et al., 2014). In August 2010, SAAMER was upgraded to a system capable to determine meteoroid orbital parameters. This was achieved by adding two remote receiving stations approximately 10 km away from the main site in near perpendicular directions (Pifko et al., 2014). The upgrade significantly expands the science that is achieved with this new radar enabling us to study the orbital properties of the interplanetary dust environment. Because of the unique geographical location, the SAAMER allows for additional inter-hemispheric comparison with measurements from Canadian Meteor Orbit Radar, which is geographically conjugate. Initial surveys show, for example, that SAAMER observes a very strong contribution of the South Toroidal Sporadic meteor source (Pifko et al., 2014), of which limited observational data is available. In addition, SAAMER offers similar unique capabilities for meteor showers and streams studies given the range of ecliptic latitudes that the system enables to survey (Janches et al., 2013). It can effectively observe radiants from the ecliptic south

  16. Information theoretic approach using neural network for determining radiometer observations from radar and vice versa

    Science.gov (United States)

    Kannan, Srinivasa Ramanujam; Chandrasekar, V.

    2016-05-01

    Even though both the rain measuring instruments, radar and radiometer onboard the TRMM observe the same rain scenes, they both are fundamentally different instruments. Radar is an active instrument and measures backscatter component from vertical rain structure; whereas radiometer is a passive instrument that obtains integrated observation of full depth of the cloud and rain structure. Further, their spatial resolutions on ground are different. Nevertheless, both the instruments are observing the same rain scene and retrieve three dimensional rainfall products. Hence it is only natural to seek answer to the question, what type of information about radiometric observations can be directly retrieved from radar observations. While there are several ways to answer this question, an informational theoretic approach using neural networks has been described in the present work to find if radiometer observations can be predicted from radar observations. A database of TMI brightness temperature and collocated TRMM vertical attenuation corrected reflectivity factor from the year 2012 was considered. The entire database is further classified according to surface type. Separate neural networks were trained for land and ocean and the results are presented.

  17. Detection of Aircraft Embedded in Ground Clutter by Means of Non-Doppler X-band Radar

    Science.gov (United States)

    Hwang, Seongin; Ishii, Seishiro; Sayama, Shuji; Sekine, Matsuo

    It is reported that various radar clutter obey a Weibull distribution under certain conditions. To suppress such Weibull-distributed clutter, a new adaptive method was proposed by the present author. In this method, the parameters of the Weibull distribution and the threshold level for an adaptive Constant False Alarm Rate (CFAR) detector are determined by calculating the variance before it passes through a logarithmic amplifier. To apply this new method to practical problems observed by an X-band radar, a computer simulation are made for a finite number of samples in order to obtain the CFAR maintenance in Weibull radar clutter. Finally an improvement value of target-to-clutter ratio 30.07 dB was obtained for the detection of an aircraft embedded in ground clutter.

  18. Automatic Classification of Offshore Wind Regimes With Weather Radar Observations

    DEFF Research Database (Denmark)

    Trombe, Pierre-Julien; Pinson, Pierre; Madsen, Henrik

    2014-01-01

    Weather radar observations are called to play an important role in offshore wind energy. In particular, they can enable the monitoring of weather conditions in the vicinity of large-scale offshore wind farms and thereby notify the arrival of precipitation systems associated with severe wind...... and amplitude) using reflectivity observations from a single weather radar system. A categorical sequence of most likely wind regimes is estimated from a wind speed time series by combining a Markov-Switching model and a global decoding technique, the Viterbi algorithm. In parallel, attributes of precipitation...... systems are extracted from weather radar images. These attributes describe the global intensity, spatial continuity and motion of precipitation echoes on the images. Finally, a CART classification tree is used to find the broad relationships between precipitation attributes and wind regimes...

  19. A Recent Radar Observation of Asteroid 1566 Icarus

    Science.gov (United States)

    Mahapatra, P. R.; Ostro, S. J.; Benner, L. A. M.; Rosema, K. D.; Jurgens, R. F.; Winkler, R.; Rose, R.; Giorgini, J. D.; Yeomans, D. K.; Slade, M. A.

    1998-09-01

    We report Doppler-only radar observations of 1566 Icarus at Goldstone at a transmitter frequency of 8510 MHz (3.5 cm wavelength) during 1996 June 8-10, the first radar detection of the object since 1968. Optimally filtered and folded spectra achieve a maximum opposite-circular (OC) polarization signal-to-noise ratio of about 10 and help to constrain Icarus' physical properties. We obtain an OC radar cross section of 0.05 square kilometers (+/- 35%), which is about one-half that estimated by Goldstein (1969, Icarus 10, 430) and by Pettengill et al. (1969, Icarus 10, 432), and a circular polarization ratio of 0.5 +/- 0.2. We analyze the echo power spectrum with a model incorporating the echo bandwidth B and a spectral shape parameter n, yielding a coupled constraint between B and n. We adopt 25 Hz as the lower bound on B, which gives a lower bound on the maximum pole-on breadth of about 0.6 km, and upper bounds on the radar and optical albedos that are consistent with Icarus' QS-class taxonomy. The observed circular polarization ratio indicates a very rough near-surface at spatial scales near the radar wavelength.

  20. Extended radar observations with the frequency radar domain interferometric imaging (FII) technique

    Science.gov (United States)

    Luce, H.; Yamamoto, M.; Fukao, S.; Crochet, M.

    2001-07-01

    In this paper, we present high-resolution observations obtained with the Middle and Upper Atmosphere (MU) radar (Shigaraki, Japan, /34.85°N, /136.10°E) using the frequency radar domain interferometric imaging (FII) technique. This technique has recently been introduced for improving the range resolution capabilities of the mesosphere-stratosphere-troposphere (MST) radars which are limited by their minimum pulse length. The Fourier-based imaging, the Capon method have been performed with 5 equally spaced frequencies between 46.25 and 46.75MHz and with an initial range resolution of 300m. These results have been compared firstly to results obtained using the frequency domain interferometry (FDI) technique with Δf=0.5MHz and, secondly, to results from a classical Doppler beam swinging (DBS) mode applied with a range resolution of 150m. Thin echoing structures could be tracked owing to the improved radar range resolution and some complex structures possibly related to Kelvin Helmholtz instabilities have been detected. Indeed, these structures appeared within the core of a wind shear and were associated with intense vertical wind fluctuations. Moreover, a well-defined thin echo layer was found in an altitude range located below the height of the wind shear. The radar observations have not been fully interpreted yet because the radar configuration was not adapted for this kind of study and because of the lack of complementary information provided by other techniques when the interesting echoing phenomena occurred. However, the results confirm the high potentialities of the FII technique for the study of atmospheric dynamics at small scales.

  1. Comparison and error analysis of remotely measured waveheight by high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    High frequency ground wave radar (HFGWR) has unique advantage in the survey of dynamical factors, such as sea surface current, sea wave, and sea surface wind in marine conditions in coastal sea area.Compared to marine satellite remote sensing, it involves lower cost, has higher measuring accuracy and spatial resolution and sampling frequency. High frequency ground wave radar is a new land based remote sensing instrument with superior vision and greater application potentials. This paper reviews the development history and application status of high frequency wave radar, introduces its remote-sensing principle and method to inverse offshore fluid, and wave and wind field. Based on the author's "863 Project", this paper recounts comparison and verification of radar remote-sensing value, the physical calibration of radar-measured data and methods to control the quality of radar-sensing data. The authors discuss the precision of radar-sensing data's inversing on offshore fluid field and application of the assimilated data on assimilation.

  2. PMSE Observations With the Tri-Static EISCAT VHF Radars

    Science.gov (United States)

    Mann, I.; Tjulin, A.; Häggström, I.

    2013-12-01

    The polar mesospheric summer echoes (PMSE) are generated in the ionosphere at roughly 80 to 90 altitude by electron irregularities in the presence of charged solid particles and PMSE are most likely observed when ice particles form onto nanodust. PMSE formation is an important part in understanding mesospheric processes, but is also an interesting example for dusty plasma phenomena occurring in space. To investigate the phenomena that lead to formation of PMSE it is helpful to study the radar reflectivity of the mesosphere at different angles. PMSE were previously studied at different aspect angles in order to better understand the scattering process. Another way is observing PMSE from multiple sites simultaneously. During this summer the EISCAT radars that are located in Northern Scandinavia could for the first time be used for tri-static observations in the VHF band and we carried out observations during three subsequent days in June 2013. The radar signal was transmitted in zenith direction with the EISCAT VHF antenna near Tromsø (69.59 deg N, 19.23 deg E) and the scattered signal was measured from Tromsø, Kiruna (67.86 deg N, 20.44 deg E) and Sodankylä (67.36 deg N, 26.63 deg E). Zenith observations were simultaneously carried out with the Tromsø UHF radar (933 MHz). Other groups have previously reported the observations of PMSE simultaneously with the EISCAT VHF and UHF radars, but with a much lower occurrence rate for the UHF. UHF observations made during this campaign are dominated by incoherent scatter. The VHF system in Tromsø detected PMSE for a large fraction of the observation time. The VHF receivers in Kiruna and Sodankylä were pointed at typical PMSE heights above the Tromsø transmitter and detected radar reflections at the same time and altitude as the Tromsø radar. These observations are among the first tri-static observations of PMSE. Preliminary results from the campaign will be presented and discussed.

  3. Validation of TRMM Precipitation Radar Through Comparison of its Multi-Year Measurements to Ground-Based Radar

    Science.gov (United States)

    Liao, Liang; Meneghini, Robert

    2010-01-01

    A procedure to accurately resample spaceborne and ground-based radar data is described, and then applied to the measurements taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and the ground-based Weather Surveillance Radar-1988 Doppler (WSR-88D or WSR) for the validation of the PR measurements and estimates. Through comparisons with the well-calibrated, non-attenuated WSR at Melbourne, Florida for the period 1998-2007, the calibration of the Precipitation Radar (PR) aboard the TRMM satellite is checked using measurements near the storm top. Analysis of the results indicates that the PR, after taking into account differences in radar reflectivity factors between the PR and WSR, has a small positive bias of 0.8 dB relative to the WSR, implying a soundness of the PR calibration in view of the uncertainties involved in the comparisons. Comparisons between the PR and WSR reflectivities are also made near the surface for evaluation of the attenuation-correction procedures used in the PR algorithms. It is found that the PR attenuation is accurately corrected in stratiform rain but is underestimated in convective rain, particularly in heavy rain. Tests of the PR estimates of rainfall rate are conducted through comparisons in the overlap area between the TRMM overpass and WSR scan. Analyses of the data are made both on a conditional basis, in which the instantaneous rain rates are compared only at those pixels where both the PR and WSR detect rain, and an unconditional basis, in which the area-averaged rain rates are estimated independently for the PR and WSR. Results of the conditional rain comparisons show that the PR-derived rain is about 9% greater and 19% less than the WSR estimates for stratiform and convective storms, respectively. Overall, the PR tends to underestimate the conditional mean rain rate by 8% for all rain categories, a finding that conforms to the results of the area-averaged rain (unconditional) comparisons.

  4. The 183-WSL Fast Rain Rate Retrieval Algorithm. Part II: Validation Using Ground Radar Measurements

    Science.gov (United States)

    Laviola, Sante; Levizzani, Vincenzo

    2014-01-01

    The Water vapour Strong Lines at 183 GHz (183-WSL) algorithm is a method for the retrieval of rain rates and precipitation type classification (convectivestratiform), that makes use of the water vapor absorption lines centered at 183.31 GHz of the Advanced Microwave Sounding Unit module B (AMSU-B) and of the Microwave Humidity Sounder (MHS) flying on NOAA-15-18 and NOAA-19Metop-A satellite series, respectively. The characteristics of this algorithm were described in Part I of this paper together with comparisons against analogous precipitation products. The focus of Part II is the analysis of the performance of the 183-WSL technique based on surface radar measurements. The ground truth dataset consists of 2.5 years of rainfall intensity fields from the NIMROD European radar network which covers North-Western Europe. The investigation of the 183-WSL retrieval performance is based on a twofold approach: 1) the dichotomous statistic is used to evaluate the capabilities of the method to identify rain and no-rain clouds; 2) the accuracy statistic is applied to quantify the errors in the estimation of rain rates.The results reveal that the 183-WSL technique shows good skills in the detection of rainno-rain areas and in the quantification of rain rate intensities. The categorical analysis shows annual values of the POD, FAR and HK indices varying in the range 0.80-0.82, 0.330.36 and 0.39-0.46, respectively. The RMSE value is 2.8 millimeters per hour for the whole period despite an overestimation in the retrieved rain rates. Of note is the distribution of the 183-WSL monthly mean rain rate with respect to radar: the seasonal fluctuations of the average rainfalls measured by radar are reproduced by the 183-WSL. However, the retrieval method appears to suffer for the winter seasonal conditions especially when the soil is partially frozen and the surface emissivity drastically changes. This fact is verified observing the discrepancy distribution diagrams where2the 183-WSL

  5. Radar observations of near-Earth asteroids from Arecibo Observatory

    Science.gov (United States)

    Rivera-Valentin, Edgard G.; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Zambrano Marin, Luisa Fernanda; Virkki, Anne; Aponte Hernandez, Betzaida

    2016-10-01

    The Arecibo S-Band (2.38 GHz, 12.6 cm, 1 MW) planetary radar system at the 305-m William E. Gordon Telescope in Arecibo, Puerto Rico is the most active and most sensitive planetary radar facility in the world. Since October 2015, we have detected 56 near-Earth asteroids, of which 17 are classified as potentially hazardous to Earth and 22 are compliant with the Near-Earth Object Human Space Flight Accessible Target Study (NHATS) as possible future robotic- or human-mission destinations. We will present a sampling of the asteroid zoo observed by the Arecibo radar since the 2015 DPS meeting. This includes press-noted asteroids 2015 TB145, the so-called "Great Pumpkin", and 2003 SD220, the so-called "Christmas Eve asteroid".

  6. Radar observations and physical model of asteroid 6489 Golevka

    Science.gov (United States)

    Hudson, R.; Ostro, S.; Jurgens, R.; Rosema, K.; Giorgini, J.; Winkler, R.; Rose, R.; Choate, D.; Cormier, R.; Franck, C.; Frye, R.; Howard, D.; Kelley, D.; Littlefair, R.; Slade, M.; Benner, L.; Thomas, M.; Mitchell, D.; Chodas, P.; Yeomans, D.; Scheeres, D.; Palmer, P.; Zaitsev, A.; Koyama, Y.; Nakamura, A.

    2000-01-01

    We report 8510-MHz (3,5-cm) radar observations of the Earth crossing asteroid (ECA) 6489 Golevka (1991 JX) obtained between June 3 and June 15, 1995, at Goldstone, the Very Large Array and the Evpatoria (Ukraine) and Kashima (Japan) radio antennas.

  7. The potentialities of ground-penetrating radar in the engineering geology using the radars GROT-12 and GROT-12E

    Science.gov (United States)

    Volkomirskaya, Liudmila; Gulevich, Oxana; Musalev, Dmitri

    2013-04-01

    The potentialities of ground-penetrating radar in the engineering geology using the radars GROT-12 and GROT-12E L.B. Volkomirskaya(1,2), O.A. Gulevich(1,2), D.N. Musalev(3) 1. IZMIRAN, 142190, Russia, Moscow, Troitsk, Kalugskoe 4 2. ZAO Timer, 142190, Russia, Moscow, Troitsk, Lesnaya str. 4B 3. OAO Belgorchemprom, Republic of Belarus, Minsk, Masherov str. 17 The article presents the potentialities of ground-penetrating radar in the engineering geology on the basis of the latest modifications of the GPR "GROT": the low-frequency GPR GROT-12 and the high-frequency GPR GROT-12E. The article gives technical specifications of the GPRs GROT-12 and GROT-12E and their particular characteristics that define them from analogues. The solutions of direct problems of ground penetrating radar on the basis of Maxwell's equations in general formulation with given wide-band signal source are confronted to experimental data received from different fields of the engineering geology, for example: 1. To secure mining in salt mines the method was adapted to locate in the working layers the investigating boreholes, fault lines, borders of displacement and blowout of productive layers, as well as working pits without access. 2. To monitor the reinforced concrete structures of airport runways the technology was worked out to collect and process GPR data so as to locate communications under the runways and examine basement condition. 3. To carry out the reconstruction of buildings and pre-project engineering geological works the GPR shooting technology was improved to process the examinations of the bearing capacity of soils and to locate lost communications. 4. To perform ecological monitoring of abandoned mines the technology of the GPR data collecting and processing was developed to assess the conditions of stowage materials in mouths of destroyed vertical mine shafts, the location of inclined mine shafts, the determination of hollow spaces and thinning zones, the localization of ground

  8. Application of ground-penetrating radar at McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, J.E.

    1992-01-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station.

  9. Application of ground-penetrating radar at McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, J.E.

    1992-05-01

    Argonne National Laboratory initiated a site investigation program at McMurdo Station, Antarctica, to characterize environmental contamination. The performance and usefulness of ground-penetrating radar (GPR) was evaluated under antarctic conditions during the initial site investigation in January 1991. Preliminary surveys were successful in defining the contact between reworked pyroclastic material and in the prefill, undisturbed pyroclastics and basalts at some sites. Interference from radio traffic at McMurdo Station was not observed, but interference was a problem in work with unshielded antennas near buildings. In general, the results of this field test suggest that high-quality, high-resolution, continuous subsurface profiles can be produced with GPR over most of McMurdo Station.

  10. Fluvial channels on Titan: Initial Cassini RADAR observations

    Science.gov (United States)

    Lorenz, R.D.; Lopes, R.M.; Paganelli, F.; Lunine, J.I.; Kirk, R.L.; Mitchell, K.L.; Soderblom, L.A.; Stofan, E.R.; Ori, G.; Myers, M.; Miyamoto, H.; Radebaugh, J.; Stiles, B.; Wall, S.D.; Wood, C.A.

    2008-01-01

    Cassini radar images show a variety of fluvial channels on Titan's surface, often several hundreds of kilometers in length. Some (predominantly at low- and mid-latitude) are radar-bright and braided, resembling desert washes where fines have been removed by energetic surface liquid flow, presumably from methane rainstorms. Others (predominantly at high latitudes) are radar-dark and meandering and drain into or connect polar lakes, suggesting slower-moving flow depositing fine-grained sediments. A third type, seen predominantly at mid- and high latitudes, have radar brightness patterns indicating topographic incision, with valley widths of up to 3 km across and depth of several hundred meters. These observations show that fluvial activity occurs at least occasionally at all latitudes, not only at the Huygens landing site, and can produce channels much larger in scale than those observed there. The areas in which channels are prominent so far amount to about 1% of Titan's surface, of which only a fraction is actually occupied by channels. The corresponding global sediment volume inferred is not enough to account for the extensive sand seas. Channels observed so far have a consistent large-scale flow pattern, tending to flow polewards and eastwards. ?? 2008.

  11. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  12. Ground-based observations of exoplanet atmospheres

    NARCIS (Netherlands)

    Mooij, Ernst Johan Walter de

    2011-01-01

    This thesis focuses on the properties of exoplanet atmospheres. The results for ground-based near-infrared secondary eclipse observations of three different exoplanets, TrES-3b, HAT-P-1b and WASP-33b, are presented which have been obtained with ground-based telescopes as part of the GROUSE project.

  13. Sedimentology and Ground-Penetrating Radar Characteristics of a Pleistocene Sandur Deposit

    DEFF Research Database (Denmark)

    Olsen, Henrik; Andreasen, Frank Erik

    1995-01-01

    -upward lithology, terminating with a jökulhlaup episode characterized by large compound dune migration and slack-water draping. Mapping of a more than 200 m long well exposed pitwall and ground-penetrating radar measurements in a 50 × 200 m grid along the pitwall made it possible to outline the three......-dimensional geometry of the jökulhlaup deposit, forming the top part of the succession. The paper describes the sedimentology of the sandur deposits and the application of the ground-penetrating radar technique to sedimentary architecture studies....

  14. Efficient Calculation of Born Scattering for Fixed-Offset Ground-Penetrating Radar Surveys

    DEFF Research Database (Denmark)

    Meincke, Peter

    2007-01-01

    A formulation is presented for efficient calculation of linear electromagnetic scattering by buried penetrable objects, as involved in the analysis of fixed-offset ground-penetrating radar (GPR) systems. The actual radiation patterns of the GPR antennas are incorporated in the scattering calculat......A formulation is presented for efficient calculation of linear electromagnetic scattering by buried penetrable objects, as involved in the analysis of fixed-offset ground-penetrating radar (GPR) systems. The actual radiation patterns of the GPR antennas are incorporated in the scattering...

  15. On the radar cross section (RCS) prediction of vehicles moving on the ground

    Energy Technology Data Exchange (ETDEWEB)

    Sabihi, Ahmad [Department of Mathematical Sciences, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2014-12-10

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Target’s material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea.

  16. Sedimentology and Ground-Penetrating Radar Characteristics of a Pleistocene Sandur Deposit

    DEFF Research Database (Denmark)

    Olsen, Henrik; Andreasen, Frank Erik

    1995-01-01

    -upward lithology, terminating with a jökulhlaup episode characterized by large compound dune migration and slack-water draping. Mapping of a more than 200 m long well exposed pitwall and ground-penetrating radar measurements in a 50 × 200 m grid along the pitwall made it possible to outline the three......-dimensional geometry of the jökulhlaup deposit, forming the top part of the succession. The paper describes the sedimentology of the sandur deposits and the application of the ground-penetrating radar technique to sedimentary architecture studies....

  17. Ground Penetrating Radar Assessment of Flexible Road Pavement Degradation

    OpenAIRE

    Sandro Colagrande; Danilo Ranalli; Marco Tallini

    2011-01-01

    GPR investigations were used to study degraded road pavements built in cutting sections. Road integrity was assessed via quantitative analysis of power curves. 1600 MHz and 600 MHz radar sections were collected in 40 damaged and undamaged road pavement sites. The collected data were processed as follows: (i) linearisation with regression analysis of power curves; (ii) assessment of absorption angle α′ which is directly proportional to absorption coefficient α (this was obtained by setting t...

  18. MST radar and polarization lidar observations of tropical cirrus

    Directory of Open Access Journals (Sweden)

    Y. Bhavani Kumar

    Full Text Available Significant gaps in our understanding of global cirrus effects on the climate system involve the role of frequently occurring tropical cirrus. Much of the cirrus in the atmosphere is largely due to frequent cumulus and convective activity in the tropics. In the Indian sub-tropical region, the deep convective activity is very prominent from April to December, which is a favorable period for the formation of deep cumulus clouds. The fibrous anvils of these clouds, laden with ice crystals, are one of the source mechanisms for much of the cirrus in the atmosphere. In the present study, several passages of tropical cirrus were investigated by simultaneously operating MST radar and a co-located polarization lidar at the National MST Radar Facility (NMRF, Gadanki (13.45° N, 79.18° E, India to understand its structure, the background wind field and the microphysics at the cloud boundaries. The lidar system used is capable of measuring the degree of depolarization in the laser backscatter. It has identified several different cirrus structures with a peak linear depolarization ratio (LDR in the range of 0.1 to 0.32. Simultaneous observations of tropical cirrus by the VHF Doppler radar indicated a clear enhancement of reflectivity detected in the vicinity of the cloud boundaries, as revealed by the lidar and are strongly dependent on observed cloud LDR. An inter-comparison of radar reflectivity observed for vertical and oblique beams reveals that the radar-enhanced reflectivity at the cloud boundaries is also accompanied by significant aspect sensitivity. These observations indicate the presence of anisotropic turbulence at the cloud boundaries. Radar velocity measurements show that boundaries of cirrus are associated with enhanced horizontal winds, significant vertical shear in the horizontal winds and reduced vertical velocity. Therefore, these measurements indicate that a circulation at the cloud boundaries suggest an entrainment taking place close to

  19. Applying the Hough transform for detecting ground movers in synthetic aperture radar imagery

    Science.gov (United States)

    Miller, J.; Linnehan, R.; Doerry, A.

    2016-05-01

    This paper describes the impact of ground target motion in Synthetic Aperture Radar (SAR) and video SAR mode imagery. The observations provide an approach for optimizing algorithms that detect moving targets by using only the magnitude of a SAR image. A slowly moving target at a constant velocity in the along-track direction or accelerating in the cross-track direction often generates a ridge of intensity that is distinguishable from the background clutter. The direction and location of a detected ridge provide information about the motion of the associated target. The ridge can be approximated as a linear feature and detected using the Hough transform. This approach acts as a complement to detecting the radar shadow of a moving target, improving detection probability. The method is robust enough to discriminate between a ridge associated with a moving target and false alarms due to vegetation, boulders, or stationary manmade objects. Simulated and flight test data collected by General Atomics Aeronautical Systems, Inc. (GA-ASI) validate the method.

  20. Simultaneous radar and spaced receiver VHF scintillation observations of ESF irregularities

    Directory of Open Access Journals (Sweden)

    D. Tiwari

    2006-07-01

    Full Text Available Simultaneous observations of equatorial spread F (ESF irregularities made on 10 nights during March-April 1998 and 1999, using an 18-MHz radar at Trivandrum (77° E, 8.5° N, dip 0.5° N and two spaced receivers recording scintillations on a 251-MHz signal at Tirunelveli (77.8° E, 8.7° N, dip 0.4° N, have been used to study the evolution of Equatorial Spread F (ESF irregularities. Case studies have been carried out on the day-to-day variability in ESF structure and dynamics, as observed by 18-MHz radar, and with spaced receiver measurements of average zonal drift Vo of the 251-MHz radio wave diffraction pattern on the ground, random velocity Vc, which is a measure of random changes in the characteristics of scintillation-producing irregularities, and maximum cross-correlation CI of the spaced receivers signals. Results show that in the initial phase of plasma bubble development, the greater the maximum height of ESF irregularities responsible for the radar backscatter, the greater the decorrelation is of the spaced receiver scintillation signals, indicating greater turbulence. The relationship of the maximum spectral width derived from the radar observations and CI also supports this result.

  1. Ground-based optical observation system for LEO objects

    Science.gov (United States)

    Yanagisawa, T.; Kurosaki, H.; Oda, H.; Tagawa, M.

    2015-08-01

    We propose a ground-based optical observation system for monitoring LEO objects, which uses numerous optical sensors to cover a vast region of the sky. Its potential in terms of detection and orbital determination were examined. About 30 cm LEO objects at 1000 km altitude are detectable using an 18 cm telescope, a CCD camera and the analysis software developed. Simulations and a test observation showed that two longitudinally separate observation sites with arrays of optical sensors can identify the same objects from numerous data sets and determine their orbits precisely. The proposed system may complement or replace the current radar observation system for monitoring LEO objects, like space-situation awareness, in the near future.

  2. Polarization differences in airborne ground penetrating radar performance for landmine detection

    Science.gov (United States)

    Dogaru, Traian; Le, Calvin

    2016-05-01

    The U.S. Army Research Laboratory (ARL) has investigated the ultra-wideband (UWB) radar technology for detection of landmines, improvised explosive devices and unexploded ordnance, for over two decades. This paper presents a phenomenological study of the radar signature of buried landmines in realistic environments and the performance of airborne synthetic aperture radar (SAR) in detecting these targets as a function of multiple parameters: polarization, depression angle, soil type and burial depth. The investigation is based on advanced computer models developed at ARL. The analysis includes both the signature of the targets of interest and the clutter produced by rough surface ground. Based on our numerical simulations, we conclude that low depression angles and H-H polarization offer the highest target-to-clutter ratio in the SAR images and therefore the best radar performance of all the scenarios investigated.

  3. Application of Markov random fields to landmine detection in ground penetrating radar data

    Science.gov (United States)

    Torrione, Peter A.; Collins, Leslie

    2008-04-01

    Recent advances in ground penetrating radar (GPR) design and fabrication have resulted in improved fidelity responses from relatively small, shallow-buried objects like landmines and improvised explosive devices. As the responses measured with GPR improve, more and more advanced processing techniques can be brought to bear on the problem of target identification in GPR data. From an electromagnetic point of view, the problem of target detection in GPR signal processing is reducible to inferring the presence or absence of changes in the electromagnetic properties of soils and thus the presence or absence of buried targets. Problems arise because the algorithms required for the full electromagnetic inversion of GPR signals are extremely computationally expensive, and usually rely on assumptions of electromagnetically constant transmission media; these problems typically make the real-time implementation of purely electromagnetic-inspired algorithms infeasible. On the other hand, purely statistical or signal-processing inspired approaches to target identification in GPR often lack a solid theoretical basis in the underlying physics, which is fundamental to understanding responses in GPR. In this work, we propose a model for responses in time-domain ground penetrating radar that attempts to incorporate the underlying physics of the problem, but avoids several of the issues inherent in assuming constant media with known electrical parameters by imposing a statistical model over the observed parameters of interest in A-scans - namely the signal gains, times of arrival, etc. The spatial requirements of the proposed statistical model suggests the application of Markov random field (MRF) distributions which provide expressive, but computationally simple models of spatial interactions. In this work we will explore the application of physics-based MRF's as generative models for time-domain GPR data, the pre-screening algorithms that this model motivates, and discuss how the

  4. Preliminary design of a space system operating a ground-penetrating radar

    Science.gov (United States)

    D'Errico, Marco; Ponte, Salvatore; Grassi, Michele; Moccia, Antonio

    2005-12-01

    Ground-penetrating radars (GPR) are currently used only in ground campaigns or in few airborne installations. A feasibility analysis of a space mission operating a GPR for archaeological applications is presented in this work with emphasis on spacecraft critical aspects: antenna dimension and power required for achieving adequate depth and accuracy. Sensor parametric design is performed considering two operating altitudes (250 and 500 km) and user requirements, such as minimum skin depth, vertical and horizontal resolution. A 500-km altitude, 6 a.m.-6 p.m. sun-synchronous orbit is an adequate compromise between atmospheric drag and payload transmitted average power (12 kW) to achieve a 3-m penetration depth. The satellite bus preliminary design is then performed, with focus on critical subsystems and technologies. The payload average power requirement can be kept within feasible limits (1 kW) by using NiH2 batteries to supply the radar transmitter, and with a strong reduction of the mission duty cycle ( 40km×1100km are observed per orbit). As for the electric power subsystem, a dual-voltage strategy is adopted, with the battery charge regulator supplied at 126 V and the bus loads at 50 V. The overall average power (1.9 kW), accounting for both payload and bus needs, can be supplied by a 20m2 GaAs solar panel for a three-year lifetime. Finally, the satellite mass is kept within reasonable limits (1.6 tons) using inflatable-rigidisable structure for both the payload antenna and the solar panels.

  5. Efficient multiple layer boundary detection in ground-penetrating radar data using an extended Viterbi algorithm

    Science.gov (United States)

    Smock, Brandon; Wilson, Joseph

    2012-06-01

    In landmine detection using vehicle-mounted ground-penetrating radar (GPR) systems, ground tracking has proven to be an eective pre-processing step. Identifying the ground can aid in the correction of distortions in downtrack radar data, which can result in the reduction of false alarms due to ground anomalies. However, the air-ground interface is not the only layer boundary detectable by GPR systems. Multiple layers can exist within the ground, and these layers are of particular importance because they give rise to anomalous signatures below the ground surface, where target signatures will typically reside. In this paper, an ecient method is proposed for performing multiple ground layer-identication in GPR data. The method is an extension of the dynamic programming-based Viterbi algorithm, nding not only the globally optimal path, which can be associated with the ground surface, but also locally optimal paths that can be associated with distinct layer boundaries within the ground. In contrast with the Viterbi algorithm, this extended method is uniquely suited to detecting not only multiple layers that span the entire antenna array, but also layers that span only a subset of the channels of the array. Furthermore, it is able to accomplish this while retaining the ecient nature of the original Viterbi scheme.

  6. Effects of propagation conditions on radar beam-ground interaction: impact on data quality

    Directory of Open Access Journals (Sweden)

    A. Fornasiero

    2005-01-01

    Full Text Available A large part of the research in the radar meteorology is devoted to the evaluation of the radar data quality and to the radar data processing. Even when, a set of absolute quality indexes can be produced (like as ground clutter presence, beam blockage rate, distance from radar, etc., the final product quality has to be determined as a function of the task and of all the processing steps. In this paper the emphasis lies on the estimate of the rainfall at the ground level taking extra care for the correction for ground clutter and beam blockage, that are two main problems affecting radar reflectivity data in complex orography. In this work a combined algorithm is presented that avoids and/or corrects for these two effects. To achieve this existing methods are modified and integrated with the analysis of radar signal propagation in different atmospheric conditions. The atmospheric refractivity profile is retrieved from the nearest in space and time radiosounding. This measured profile is then used to define the `dynamic map' used as a declutter base-field. Then beam blockage correction is applied to the data at the scan elevations computed from this map. Two case studies are used to illustrate the proposed algorithm. One is a summer event with anomalous propagation conditions and the other one is a winter event. The new algorithm is compared to a previous method of clutter removal based only on static maps of clear air and vertical reflectivity continuity test. The improvement in rain estimate is evaluated applying statistical analysis and using rain gauges data. The better scores are related mostly to the ``optimum" choice of the elevation maps, introduced by the more accurate description of the signal propagation. Finally, a data quality indicator is introduced as an output of this scheme. This indicator has been obtained from the general scheme, which takes into account all radar data processing steps.

  7. Fully correcting the meteor speed distribution for radar observing biases

    Science.gov (United States)

    Moorhead, Althea V.; Brown, Peter G.; Campbell-Brown, Margaret D.; Heynen, Denis; Cooke, William J.

    2017-09-01

    Meteor radars such as the Canadian Meteor Orbit Radar (CMOR) have the ability to detect millions of meteors, making it possible to study the meteoroid environment in great detail. However, meteor radars also suffer from a number of detection biases; these biases must be fully corrected for in order to derive an accurate description of the meteoroid population. We present a bias correction method for patrol radars that accounts for the full form of ionization efficiency and mass distribution. This is an improvement over previous methods such as that of Taylor (1995), which requires power-law distributions for ionization efficiency and a single mass index. We apply this method to the meteor speed distribution observed by CMOR and find a significant enhancement of slow meteors compared to earlier treatments. However, when the data set is severely restricted to include only meteors with very small uncertainties in speed, the fraction of slow meteors is substantially reduced, indicating that speed uncertainties must be carefully handled.

  8. Multi-Feature Based Multiple Landmine Detection Using Ground Penetration Radar

    OpenAIRE

    Park, S.; K. Kim; Ko, K. H.

    2014-01-01

    This paper presents a novel method for detection of multiple landmines using a ground penetrating radar (GPR). Conventional algorithms mainly focus on detection of a single landmine, which cannot linearly extend to the multiple landmine case. The proposed algorithm is composed of four steps; estimation of the number of multiple objects buried in the ground, isolation of each object, feature extraction and detection of landmines. The number of objects in the GPR signal is estimated by using th...

  9. Using ground penetrating radar for roof hazard detection in underground mines. Report of investigations/1996

    Energy Technology Data Exchange (ETDEWEB)

    Molinda, G.M.; Monaghan, W.D.; Mowrey, G.L.; Persetic, G.F.

    1996-08-01

    Ground penetrating radar (GPR) is being investigated for the potential to determine roof hazards in underground mines. GPR surveys were conducted at four field sites with accompanying ground truth in order to determine the value of GPR for roof hazard detection. The resolution of the current system allows detection of gross roof fractures (>1/4 in zone) or rider beds in coal measure roof. Differences in data quality are discussed, as well as suggestions for collecting improved data.

  10. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  11. A 2.5-D Diffraction Tomography Inversion Scheme for Ground Penetrating Radar

    DEFF Research Database (Denmark)

    Meincke, Peter

    1999-01-01

    A new 2.5-D inversion scheme is derived for ground penetrating radar (GPR) that applies to a monostatic fixed-offset measurement configuration. The inversion scheme, which is based upon the first Born approximation and the pseudo-inverse operator, takes rigorously into account the planar air...

  12. Location of Agricultural Drainage Pipes and Assessment of Agricultural Drainage Pipe Conditions Using Ground Penetrating Radar

    Science.gov (United States)

    Methods are needed to not only locate buried agricultural drainage pipe, but to also determine if the pipes are functioning properly with respect to water delivery. The primary focus of this research project was to confirm the ability of ground penetrating radar (GPR) to locate buried drainage pipe ...

  13. Ground penetrating radar antenna measurements based on plane-wave expansions

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of the system consisting of the ground penetrating radar (GPR) antenna and the air-soil interface is measured using a loop buried in the soil. The plane-wave spectrum is used to determine various parameters characterizing the radiation of the GPR antenna...

  14. Measurement of Plane-Wave Spectra of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of a ground penetrating radar (GPR) loop antenna close to the air-soil interface is measured by means of a probe buried in soil. Probe correction is implemented based upon knowledge about the complex permittivity of the soil and the current distribution...

  15. Delineation of rockburst fractures with ground penetrating radar in the Witwatersrand Basin, South Africa

    CSIR Research Space (South Africa)

    Grodner, M

    2001-09-01

    Full Text Available into the excavation) is preconditioning. Ground Penetrating Radar (GPR) is used to quantify the change in fracture pattern with preconditioning. It is found that both the intensity and depth to which fracturing occurs ahead of the mining face increased, thereby...

  16. The ACE-DTU Planar Near-Field Ground Penetrating Radar Antenna Test Facility

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    The ACE-DTU planar near-field ground penetrating radar (GPR) antenna test facility is used to measure the plane-wave transmitting spectrum of a GPR loop antenna close to the air-soil interface by means of a probe buried in soil. Probe correction is implemented using knowledge about the complex...

  17. Measurement of Plane-Wave Spectra of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2005-01-01

    The plane-wave transmitting spectrum of a ground penetrating radar (GPR) loop antenna close to the air-soil interface is measured by means of a probe buried in soil. Probe correction is implemented based upon knowledge about the complex permittivity of the soil and the current distribution...

  18. Uncertainty in peat volume and soil carbon estimated using ground-penetrating radar and probing

    Science.gov (United States)

    Andrew D. Parsekian; Lee Slater; Dimitrios Ntarlagiannis; James Nolan; Stephen D. Sebestyen; Randall K. Kolka; Paul J. Hanson

    2012-01-01

    Estimating soil C stock in a peatland is highly dependent on accurate measurement of the peat volume. In this study, we evaluated the uncertainty in calculations of peat volume using high-resolution data to resolve the three-dimensional structure of a peat basin based on both direct (push probes) and indirect geophysical (ground-penetrating radar) measurements. We...

  19. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.

    1999-01-01

    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  20. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.

    1998-01-01

    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  1. Development of ground-penetrating radar equipment for detecting pavement condition for preventive maintenance

    Science.gov (United States)

    Smith, S. S.; Scuillion, T.

    1993-10-01

    The report documents the development of a ground penetrating radar (GPR) system for locating potential maintenance problems in highway pavements. The report illustrates how GPR has the potential to detect four defects in pavements: stripping in an asphalt layer; moisture in base layer; voids or loss of support under rigid pavements; and overlay delamination.

  2. Raw Ground Penetrating Radar Data,Taku Glacier, Alaska; 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Common-offset GPR surveys were conducted with a Sensors and Software 500-MHz Pulse Ekko Pro system. We collected data from the ground, towed behind a researcher on...

  3. Raw Ground Penetrating Radar Data, Valdez Glacier, Alaska; 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Common-offset GPR surveys were conducted with a Sensors and Software 500-MHz Pulse Ekko Pro system. We collected data from the ground, towed behind a researcher on...

  4. Raw Ground Penetrating Radar Data, Wolverine Glacier, Alaska; 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Common-offset GPR surveys were conducted with a Sensors and Software 500-MHz Pulse Ekko Pro system. We collected data from the ground, towed behind a researcher on...

  5. Raw Ground Penetrating Radar Data, Eureka Glacier, Alaska; 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Common-offset GPR surveys were conducted with a Sensors and Software 500-MHz Pulse Ekko Pro system. We collected data from the ground, towed behind a researcher on...

  6. Raw Ground Penetrating Radar Data, Scott Glacier, Alaska; 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Common-offset GPR surveys were conducted with a Sensors and Software 500-MHz Pulse Ekko Pro system. We collected data from the ground, towed behind a researcher on...

  7. Raw Ground Penetrating Radar Data, Eklutna Glacier, Alaska; 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Common-offset GPR surveys were conducted with a Sensors and Software 500-MHz Pulse Ekko Pro system. We collected data from the ground, towed behind a researcher on...

  8. Raw Ground Penetrating Radar Data, Gulkana Glacier, Alaska; 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Common-offset GPR surveys were conducted with a Sensors and Software 500-MHz Pulse Ekko Pro system. We collected data from the ground, towed behind a researcher on...

  9. Raw Ground Penetrating Radar Data, Wolverine Glacier, Alaska; 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Common-offset GPR surveys were conducted with a Sensors and Software 500-MHz Pulse Ekko Pro system. We collected data from the ground, towed behind a researcher on...

  10. Temporal Stability of Soil Moisture and Radar Backscatter Observed by the Advanced Synthetic Aperture Radar (ASAR).

    Science.gov (United States)

    Wagner, Wolfgang; Pathe, Carsten; Doubkova, Marcela; Sabel, Daniel; Bartsch, Annett; Hasenauer, Stefan; Blöschl, Günter; Scipal, Klaus; Martínez-Fernández, José; Löw, Alexander

    2008-02-21

    The high spatio-temporal variability of soil moisture is the result of atmosphericforcing and redistribution processes related to terrain, soil, and vegetation characteristics.Despite this high variability, many field studies have shown that in the temporal domainsoil moisture measured at specific locations is correlated to the mean soil moisture contentover an area. Since the measurements taken by Synthetic Aperture Radar (SAR)instruments are very sensitive to soil moisture it is hypothesized that the temporally stablesoil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT AdvancedSynthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located inthe Duero basin, Spain. It is found that a time-invariant linear relationship is well suited forrelating local scale (pixel) and regional scale (50 km) backscatter. The observed linearmodel coefficients can be estimated by considering the scattering properties of the terrainand vegetation and the soil moisture scaling properties. For both linear model coefficients,the relative error between observed and modelled values is less than 5 % and thecoefficient of determination (R²) is 86 %. The results are of relevance for interpreting anddownscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT)and passive (SMOS, AMSR-E) instruments.

  11. Radar observations and shape model of asteroid 16 Psyche

    Science.gov (United States)

    Shepard, Michael K.; Richardson, James; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Conrad, Al; de Pater, Imke; Adamkovics, Mate; de Kleer, Katherine; Males, Jared R.; Morzinski, Katie M.; Close, Laird M.; Kaasalainen, Mikko; Viikinkoski, Matti; Timerson, Bradley; Reddy, Vishnu; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.; Benner, Lance A. M.; Giorgini, Jon D.; Warner, Brian D.; Harris, Alan W.

    2017-01-01

    Using the S-band radar at Arecibo Observatory, we observed 16 Psyche, the largest M-class asteroid in the main belt. We obtained 18 radar imaging and 6 continuous wave runs in November and December 2015, and combined these with 16 continuous wave runs from 2005 and 6 recent adaptive-optics (AO) images (Drummond et al., 2016) to generate a three-dimensional shape model of Psyche. Our model is consistent with a previously published AO image (Hanus et al., 2013) and three multi-chord occultations. Our shape model has dimensions 279 × 232 × 189 km (± 10%), Deff = 226 ± 23 km, and is 6% larger than, but within the uncertainties of, the most recently published size and shape model generated from the inversion of lightcurves (Hanus et al., 2013). Psyche is roughly ellipsoidal but displays a mass-deficit over a region spanning 90° of longitude. There is also evidence for two ∼50-70 km wide depressions near its south pole. Our size and published masses lead to an overall bulk density estimate of 4500 ± 1400 kgm-3. Psyche's mean radar albedo of 0.37 ± 0.09 is consistent with a near-surface regolith composed largely of iron-nickel and ∼40% porosity. Its radar reflectivity varies by a factor of 1.6 as the asteroid rotates, suggesting global variations in metal abundance or bulk density in the near surface. The variations in radar albedo appear to correlate with large and small-scale shape features. Our size and Psyche's published absolute magnitude lead to an optical albedo of pv = 0.15 ± 0.03, and there is evidence for albedo variegations that correlate with shape features.

  12. Asteroid 16 Psyche: Radar Observations and Shape Model

    Science.gov (United States)

    Shepard, Michael K.; Richardson, James E.; Taylor, Patrick A.; Rodriguez-Ford, Linda A.; Conrad, Al; de Pater, Imke; Adamkovics, Mate; de Kleer, Katherine R.; Males, Jared; Morzinski, Kathleen M.; Miller Close, Laird; Kaasalainen, Mikko; Viikinkoski, Matti; Timerson, Bradley; Reddy, Vishnu; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.; Warner, Brian D.; Harris, Alan W.

    2016-10-01

    We observed 16 Psyche, the largest M-class asteroid in the main belt, using the S-band radar at Arecibo Observatory. We obtained 18 radar imaging and 6 continuous wave runs in November and December 2015, and combined these with 16 continuous wave runs from 2005 and 6 recent adaptive-optics (AO) images to generate a three-dimensional shape model of Psyche. Our model is consistent with a previously published AO image [Hanus et al. Icarus 226, 1045-1057, 2013] and three multi-chord occultations. Our shape model has dimensions 279 x 232 x 189 km (±10%), Deff = 226 ± 23 km, and is 6% larger than, but within the uncertainties of, the most recently published size and shape model generated from the inversion of lightcurves [Hanus et al., 2013]. Psyche is roughly ellipsoidal but displays a mass-deficit over a region spanning 90° of longitude. There is also evidence for two ~50-70 km wide depressions near its south pole. Our size and published masses lead to an overall bulk density estimate of 4500 ± 1400 kg m-3. Psyche's mean radar albedo of 0.37 ± 0.09 is consistent with a near-surface regolith composed largely of iron-nickel and ~40% porosity. Its radar reflectivity varies by a factor of 1.6 as the asteroid rotates, suggesting global variations in metal abundance or bulk density in the near surface. The variations in radar albedo appear to correlate with large and small-scale shape features. Our size and Psyche's published absolute magnitude lead to an optical albedo of pv = 0.15 ± 0.03, and there is evidence for albedo variegations that correlate with shape features.

  13. Relationship between Cloud Characteristics and Radar Reflectivity Based on Aircraft and Cloud Radar Co-observations

    Institute of Scientific and Technical Information of China (English)

    ZONG Rong; LIU Liping; YIN Yan

    2013-01-01

    Cloud properties were investigated based on aircraft and cloud radar co-observation conducted at Yitong,Jilin,Northeast China.The aircraft provided in situ measurements of cloud droplet size distribution,while the millimeter-wavelength cloud radar vertically scanned the same cloud that the aircraft penetrated.The reflectivity factor calculated from aircraft measurements was compared in detail with simultaneous radar observations.The results showed that the two reflectivities were comparable in warm clouds,but in ice cloud there were more differences,which were probably associated with the occurrence of liquid water.The acceptable agreement between reflectivities obtained in water cloud confirmed that it is feasible to derive cloud properties by using aircraft data,and hence for cloud radar to remotely sense cloud properties.Based on the dataset collected in warm clouds,the threshold of reflectivity to diagnose drizzle and cloud particles was studied by analyses of the probability distribution function of reflectivity from cloud particles and drizzle drops.The relationship between reflectivity factor (Z) and cloud liquid water content (LWC) was also derived from data on both cloud particles and drizzle.In comparison with cloud droplets,the relationship for drizzle was blurred by many scatter points and thus was less evident.However,these scatters could be partly removed by filtering out the drop size distribution with a large ratio of reflectivity and large extinction coefficient but small effective radius.Empirical relationships of Z-LWC for both cloud particles and drizzle could then be derived.

  14. Ground-penetrating radar insight into a coastal aquifer: the freshwater lens of Borkum Island

    Directory of Open Access Journals (Sweden)

    J. Igel

    2013-02-01

    Full Text Available Freshwater lenses, as important resource for drinking water, are sensitive to climate changes and sea level rise. To simulate this impact on the groundwater systems, hydraulic subsurface models have to be designed. Geophysical techniques can provide information for generating realistic models. The aim of our work is to show how ground-penetrating radar (GPR investigations can contribute to such hydrological simulations. In the pilot area, Borkum island, GPR was used to map the shape of the groundwater table (GWT and to characterise the aquifer.

    In total, 20 km of constant offset (CO profiles were measured with centre frequencies of 80 and 200 MHz. Wave velocities were determined by common midpoint (CMP measurements and vertical radar profiling (VRP in a monitoring well. The 80 MHz CO data show a clear reflection at the groundwater table, whereas the reflection is weaker for the 200 MHz data. After correcting the GPR water tables for the capillary rise, they are in good accordance with the pressure heads of the observation wells in the area. In the centre of the island, the groundwater table is found up to 3.5 m above sea level, however it is lower towards the coastline and marshland. Some local depressions are observed in the region of dune valleys and around pumping stations of the local water supplier. GPR also reveals details within the sediments and highly-permeable aeolian sands can be distinguished from less-permeable marine sediments. Further, a silt loam layer below the water table could be mapped on a large area. The reflection characteristics indicates scattered erosion channels in this layer that cause it to be an aquitard with some leakage.

    GPR provides a high resolution map of the groundwater table and insight into the stratigraphy of the sediments and their hydraulic properties. This is valuable complementary information to the observation of sparsely distributed monitoring wells as input to hydraulic simulation.

  15. Assessment of radar interferometry performance for ground subsidence monitoring due to underground mining

    Energy Technology Data Exchange (ETDEWEB)

    Ng, A.H.M.; Chang, H.C.; Ge, L.L.; Rizos, C.; Omura, M. [Cooperative Research Centre for Spatial Information, Carlton, Vic. (Australia)

    2009-07-01

    This paper describes the results from the recently launched SAR satellites for the purpose of subsidence monitoring over underground coal mine sites in the state of New South Wales, Australia, using differential interferometric synthetic aperture radar (DInSAR) technique. The quality of the mine subsidence monitoring results is mainly constrained by noise due to the spatial and temporal decorrelation between the interferometric pair and the phase discontinuities in the interferogram. This paper reports oil the analysis of the impact of these two factors on the performance of DInSAR for monitoring ground deformation. Simulations were carried out prior to real data analyses. SAR data acquired using different operating frequencies, for example, X-, C- and L-band, from the TerraSAR-X, ERS-1/2, ENVISAT, JERS-1 and ALOS satellite missions, were examined. The simulation results showed that the new satellites ALOS, TerraSAR-X and COSMO-SkyMed perform much better than the satellites launched before 2006. ALOS and ENVISAT satellite SAR images with similar temporal coverage were searched for the test site. The ALOS PALSAR DInSAR results have been compared to DInSAR results obtained from ENVISAT ASAR data to investigate the performance of both satellites for ground subsidence monitoring. Strong phase discontinuities and decorrelation have been observed in almost all ENVISAT interferograms and hence it is not possible to generate the displacement maps without errors. However these problems are minimal in ALOS PALSAR interferograms due to its spatial resolution and longer wavelength. Hence ALOS PALSAR is preferred for ground subsidence monitoring in areas covered by vegetation and where there is a high rate ground deformation.

  16. Polarimetric analysis of radar backscatter from ground-based scatterometers and wheat biomass monitoring with advanced synthetic aperture radar images

    Science.gov (United States)

    He, Lei; Tong, Ling; Li, Yuxia; Chen, Yan; Tan, Longfei; Guo, Caizheng

    2016-04-01

    This article presents an analysis of the scattering measurements for an entire wheat growth cycle by ground-based scatterometers at a frequency of 5.3 GHz. Since wheat ears are related to wheat growth and yield, the radar backscatter of wheat was analyzed at two different periods, i.e., with and without wheat ears. Simultaneously, parameters such as wheat and soil characteristics as well as volume scattering and soil scattering were analyzed for the two periods during the entire growth cycle. Wheat ears have been demonstrated to have a great influence on radar backscatter; therefore, a modified version of water-cloud model used for retrieving biomass should consider the effect of wheat ears. This work presents two retrieval models based on the water-cloud model and adopts the advanced integral equation model to simulate the soil backscatter before the heading stage and the backscatter from the layer under wheat ears after the heading stage. The research results showed that the biomass retrieved from the advanced synthetic aperture radar (ASAR) images to agree well with the data measured in situ after setting the modified water-cloud model for the growth stages with ears. Furthermore, it was concluded that wheat ears should form an essential component of theoretical modeling as they influence the final yield.

  17. Terrestrial Radar Interferometer Observations of a Rapid Landslide Over Vegetated Terrain

    Science.gov (United States)

    Werner, C. L.; Caduff, R.; Strozzi, T.; Wegmüller, U.

    2013-12-01

    In the Spring of 2013 a landslide in the Hintergraben region of canton Obwalden in Switzerland showed a rapid increase in velocity. Hintergraben, at an elevation of about 900 meters is characterized by meadow and some trees. A region approximately 200 meters wide and 500 meters long was affected. Starting in February, the velocity increased to 30 cm/day by 1-May and continued to accelerate by deceleration to 8 cm/day by 27-May. We report on observations of this landslide using the Gamma Portable Radar Interferometer (GPRI). The GPRI is an FM-CW radar operating at 17.2 GHz (Ku-Band) with an operational range up to 10 km. Range resolution is 90 cm along the LOS. The instrument operates in real-aperture mode with 0.4 degree wide fan-beam giving an azimuth resolution better than 7 meters at 1 kilometer range. During data acquisition, the radar performed an azimuth scan of the scene at a rate of 5 degrees/sec. The radar is phase coherent and capable of acquiring data suitable for differential interferometry with a precision for measuring changes in the LOS distance > 0.1 mm. Limiting factors in the accuracy of LOS motion are interferometric phase coherence and variations in delay due to water vapor. The GPRI was deployed to map ground motion for 2 campaigns on 6 May and 26-27 May 2013. The radar position over 3.5 km from the landslide on the opposite side of Lake Sarnen. Due to rapid temporal decorrelation at Ku-Band data, acquisitions were made at 1 minute intervals. The GPRI deformation maps cover almost the entire region of the active landslide during both observation periods of 6 hours on 6 May and 9 hours on 26-27 May. Measured peak velocities were 35 and 8 cm/day respectively. Point-wise verification of the radar observations was carried out using a Leica TCR803 total station with an estimated accuracy of 1/2 mm at 3.5 km distance. A set of optical corner cubes and radar reflectors were set up in the region of the landslide on 26-May. The radar deformation

  18. Intercomparison of snowfall estimates derived from the CloudSat Cloud Profiling Radar and the ground-based weather radar network over Sweden

    Directory of Open Access Journals (Sweden)

    L. Norin

    2015-12-01

    Full Text Available Accurate snowfall estimates are important for both weather and climate applications. Ground-based weather radars and space-based satellite sensors are often used as viable alternatives to rain gauges to estimate precipitation in this context. In particular, the Cloud Profiling Radar (CPR on board CloudSat is proving to be a useful tool to map snowfall globally, in part due to its high sensitivity to light precipitation and its ability to provide near-global vertical structure. CloudSat snowfall estimates play a particularly important role in the high-latitude regions as other ground-based observations become sparse and passive satellite sensors suffer from inherent limitations. In this paper, snowfall estimates from two observing systems – Swerad, the Swedish national weather radar network, and CloudSat – are compared. Swerad offers a well-calibrated data set of precipitation rates with high spatial and temporal resolution, at very high latitudes. The measurements are anchored to rain gauges and provide valuable insights into the usefulness of CloudSat CPR's snowfall estimates in the polar regions. In total, 7.2 × 105 matchups of CloudSat and Swerad observations from 2008 through 2010 were intercompared, covering all but the summer months (June to September. The intercomparison shows encouraging agreement between the two observing systems despite their different sensitivities and user applications. The best agreement is observed when CloudSat passes close to a Swerad station (46–82 km, where the observational conditions for both systems are comparable. Larger disagreements outside this range suggest that both platforms have difficulty with shallow snow but for different reasons. The correlation between Swerad and CloudSat degrades with increasing distance from the nearest Swerad station, as Swerad's sensitivity decreases as a function of distance. Swerad also tends to overshoot low-level precipitating systems further away from the station

  19. Multi-band sensor-fused explosive hazards detection in forward-looking ground penetrating radar

    Science.gov (United States)

    Havens, Timothy C.; Becker, John; Pinar, Anthony; Schulz, Timothy J.

    2014-05-01

    Explosive hazard detection and remediation is a pertinent area of interest for the U.S. Army. There are many types of detection methods that the Army has or is currently investigating, including ground-penetrating radar, thermal and visible spectrum cameras, acoustic arrays, laser vibrometers, etc. Since standoff range is an important characteristic for sensor performance, forward-looking ground-penetrating radar has been investigated for some time. Recently, the Army has begun testing a forward-looking system that combines L-band and X-band radar arrays. Our work focuses on developing imaging and detection methods for this sensor-fused system. In this paper, we investigate approaches that fuse L-band radar and X-band radar for explosive hazard detection and false alarm rejection. We use multiple kernel learning with support vector machines as the classification method and histogram of gradients (HOG) and local statistics as the main feature descriptors. We also perform preliminary testing on a context aware approach for detection. Results on government furnished data show that our false alarm rejection method improves area-under-ROC by up to 158%.

  20. Consolidated Ground Segment Requirements for a UHF Radar for the ESSAS

    Science.gov (United States)

    Muller, Florent; Vera, Juan

    2009-03-01

    ESA has launched a nine months long study to define the requirements associated to the ground segment of a UHF (300-3000 MHz) radar system. The study has been awarded in open competition to a consortium led by Onera, associated to the Spanish companies Indra and its sub-contractor Deimos. After a phase of consolidation of the requirements, different monostatic and bistatic concepts of radars will be proposed and evaluated. Two concepts will be selected for further design studies. ESA will then select the best one, for detailed design as well as cost and performance evaluation. The aim of this paper is to present the results of the first phase of the study concerning the consolidation of the radar system requirements. The main mission for the system is to be able to build and maintain a catalogue of the objects in low Earth orbit (apogee lower than 2000km) in an autonomous way, for different sizes of objects, depending on the future successive development phases of the project. The final step must give the capability of detecting and tracking 10cm objects, with a possible upgrade to 5 cm objects. A demonstration phase must be defined for 1 m objects. These different steps will be considered during all the phases of the study. Taking this mission and the different steps of the study as a starting point, the first phase will define a set of requirements for the radar system. It was finished at the end of January 2009. First part will describe the constraints derived from the targets and their environment. Orbiting objects have a given distribution in space, and their observability and detectability are based on it. It is also related to the location of the radar system But they are also dependant on the natural propagation phenomenon, especially ionospheric issues, and the characteristics of the objects. Second part will focus on the mission itself. To carry out the mission, objects must be detected and tracked regularly to refresh the associated orbital parameters

  1. Ground based interferometric radar initial look at Longview, Blue Springs, Tuttle Creek, and Milford Dams

    Science.gov (United States)

    Deng, Huazeng

    Measuring millimeter and smaller deformation has been demonstrated in the literature using RADAR. To address in part the limitations in current commercial satellite-based SAR datasets, a University of Missouri (MU) team worked with GAMMA Remote Sensing to develop a specialized (dual-frequency, polarimetric, and interferometric) ground-based real-aperture RADAR (GBIR) instrument. The GBIR device is portable with its tripod system and control electronics. It can be deployed to obtain data with high spatial resolution (i.e. on the order of 1 meter) and high temporal resolution (i.e. on the order 1 minute). The high temporal resolution is well suited for measurements of rapid deformation. From the same geodetic position, the GBIR may collect dual frequency data set using C-band and Ku-band. The overall goal of this project is to measure the deformation from various scenarios by applying the GBIR system. Initial efforts have been focusing on testing the system performance on different types of targets. This thesis details a number of my efforts on experimental and processing activities at the start of the MU GBIR imaging project. For improved close range capability, a wideband dual polarized antenna option was produced and tested. For GBIR calibration, several trihedral corner reflectors were designed and fabricated. In addition to experimental activities and site selection, I participated in advanced data processing activities. I processed GBIR data in several ways including single-look-complex (SLC) image generation, imagery registration, and interferometric processing. A number of initial-processed GBIR image products are presented from four dams: Longview, Blue Springs, Tuttle Creek, and Milford. Excellent imaging performance of the MU GBIR has been observed for various target types such as riprap, concrete, soil, rock, metal, and vegetation. Strong coherence of the test scene has been observed in the initial interferograms.

  2. Observing hourly changes in a glacier's surface with Terrestrial Radar Interferometry

    Science.gov (United States)

    Voytenko, D.; Dixon, T. H.; Osmanoglu, B.; Werner, C. L.; Howat, I. M.

    2012-12-01

    Capturing rapid changes in the surface of a glacier requires frequent observations. Terrestrial Radar Interferometry (TRI) is a new technique that relies on a portable, ground-based radar to image the terminal zones of glaciers up to 10 km from the calving front. TRI offers denser spatial sampling than GPS and higher temporal sampling than satellite SAR, making it an excellent tool to monitor fast-moving glaciers. This study focuses on developing methods to generate robust topographic and deformation maps with TRI. Breidamerkurjokull is a fast-moving glacier in southeastern Iceland with summer velocities as high as 4 m/d at the calving front. The glacier terminates at, and continuously calves icebergs into, a tidally-influenced lagoon. To better understand its dynamics, we image the glacier with the GAMMA Portable Radar Interferometer (GPRI). The GPRI is a Ku-band real-aperture radar with one transmitting and two receiving antennas. The configuration of the receiving antennas allows estimates of glacier topography with each subsequent image acquisition along with a deformation map, since the baseline between the antennas is known and fixed. We will present results that show the temporal evolution of the glacier's surface over a period of approximately one week, including volumetric ice change estimates for the imaged area.

  3. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Energy Technology Data Exchange (ETDEWEB)

    Handayani, Gunawan [The Earth Physics and Complex Systems Research Group (Jl. Ganesa 10 Bandung Indonesia) gunawanhandayani@gmail.com (Indonesia)

    2015-04-16

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  4. Work flow of signal processing data of ground penetrating radar case of rigid pavement measurements

    Science.gov (United States)

    Handayani, Gunawan

    2015-04-01

    The signal processing of Ground Penetrating Radar (GPR) requires a certain work flow to obtain good results. Even though the Ground Penetrating Radar data looks similar with seismic reflection data, but the GPR data has particular signatures that the seismic reflection data does not have. This is something to do with coupling between antennae and the ground surface. Because of this, the GPR data should be treated differently from the seismic signal data processing work flow. Even though most of the processing steps still follow the same work flow of seismic reflection data such as: filtering, predictive deconvolution etc. This paper presents the work flow of GPR processing data on rigid pavement measurements. The processing steps start from raw data, de-Wow process, remove DC and continue with the standard process to get rid of noises i.e. filtering process. Some radargram particular features of rigid pavement along with pile foundations are presented.

  5. SCENARIO AND TARGET SIMULATION FOR A GROUND BASED MULTIFUNCTION PHASED ARRAY RADAR

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper describes a scenario and target simulation which operates in non real-time to provide full closed-loop operation of the ground based multifunction phased array radar simulation system in support of ballistic missile defence experiments against countermeasure.By simulating the target scattering signature and dynamical signature,this scenario and target simulation provide re- alistic scenario source to evaluate the system performance of multifunction phased array radar,and the key algorithms verification and validation such as target tracking,multi-target imaging and target recognition.

  6. A review of selected ground penetrating radar applications to mineral resource evaluations

    Science.gov (United States)

    Francke, Jan

    2012-06-01

    Since the commercialisation of ground penetrating radar (GPR) in the 1970s, the technology has been relegated to niche applications in the mining industry. Advances in radar technology, such as flexible collinear antennas and the integration of live differential GPS positioning, have spurred GPR's acceptance in recent years as a standard exploration method for a number of deposit types. Provided herein is an overview of commercialised GPR applications for surface mineral resource evaluations, covering examples of alluvial channels, nickel and bauxitic laterites, iron ore deposits, mineral sands, coal and kimberlites.

  7. Influence of the underlying surface on the antenna system of the ground penetrating radar

    Science.gov (United States)

    Balzovsky, E. V.; Buyanov, Yu I.; Shipilov, S. E.

    2017-08-01

    Simulation results of the antenna system of the radar of subsurface sounding intended for contactless investigation of the road condition are presented. The elements of the antenna system of ground penetrating radar with extended bandwidth made as a combination of electric and magnetic type radiators have been designed. The transmission coefficient between the elements of the antenna array determining their mutual influence has been calculated. Despite the close arrangement of the elements in the array, the level of mutual influence of the elements is not critical. The developed antenna array can be used both for excitation with short ultrawideband pulses and for frequency steering in the range of 0.8-4 GHz.

  8. Cloud radar deployment for Indian Monsoon observations: Preliminary Results

    Science.gov (United States)

    Chakravarty, K.; Kalapureddy, M.; Pa, M.; Deshpandy, S.; Das, S.; Pandithurai, G.; Prabhakaran, T.; Chandrasekar, C. V.; Goswami, B.

    2013-12-01

    .04290 N, 73.86890 E, 1.35 km AMSL) from a scanning mobile platform since May, 2013. The initial results of the above cloud radar observations on Indian monsoon will be discussed.

  9. Development of Deep Learning Based Data Fusion Approach for Accurate Rainfall Estimation Using Ground Radar and Satellite Precipitation Products

    Science.gov (United States)

    Chen, H.; Chandra, C. V.; Tan, H.; Cifelli, R.; Xie, P.

    2016-12-01

    Rainfall estimation based on onboard satellite measurements has been an important topic in satellite meteorology for decades. A number of precipitation products at multiple time and space scales have been developed based upon satellite observations. For example, NOAA Climate Prediction Center has developed a morphing technique (i.e., CMORPH) to produce global precipitation products by combining existing space based rainfall estimates. The CMORPH products are essentially derived based on geostationary satellite IR brightness temperature information and retrievals from passive microwave measurements (Joyce et al. 2004). Although the space-based precipitation products provide an excellent tool for regional and global hydrologic and climate studies as well as improved situational awareness for operational forecasts, its accuracy is limited due to the sampling limitations, particularly for extreme events such as very light and/or heavy rain. On the other hand, ground-based radar is more mature science for quantitative precipitation estimation (QPE), especially after the implementation of dual-polarization technique and further enhanced by urban scale radar networks. Therefore, ground radars are often critical for providing local scale rainfall estimation and a "heads-up" for operational forecasters to issue watches and warnings as well as validation of various space measurements and products. The CASA DFW QPE system, which is based on dual-polarization X-band CASA radars and a local S-band WSR-88DP radar, has demonstrated its excellent performance during several years of operation in a variety of precipitation regimes. The real-time CASA DFW QPE products are used extensively for localized hydrometeorological applications such as urban flash flood forecasting. In this paper, a neural network based data fusion mechanism is introduced to improve the satellite-based CMORPH precipitation product by taking into account the ground radar measurements. A deep learning system is

  10. Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution

    Science.gov (United States)

    Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.; Byrnes, A.P.

    2003-01-01

    Resolution is key to confidently identifying unique geologic features using ground-penetrating radar (GPR) data. Source wavelet "ringing" (related to bandwidth) in a GPR section limits resolution because of wavelet interference, and can smear reflections in time and/or space. The resultant potential for misinterpretation limits the usefulness of GPR. Deconvolution offers the ability to compress the source wavelet and improve temporal resolution. Unlike statistical deconvolution, deterministic deconvolution is mathematically simple and stable while providing the highest possible resolution because it uses the source wavelet unique to the specific radar equipment. Source wavelets generated in, transmitted through and acquired from air allow successful application of deterministic approaches to wavelet suppression. We demonstrate the validity of using a source wavelet acquired in air as the operator for deterministic deconvolution in a field application using "400-MHz" antennas at a quarry site characterized by interbedded carbonates with shale partings. We collected GPR data on a bench adjacent to cleanly exposed quarry faces in which we placed conductive rods to provide conclusive groundtruth for this approach to deconvolution. The best deconvolution results, which are confirmed by the conductive rods for the 400-MHz antenna tests, were observed for wavelets acquired when the transmitter and receiver were separated by 0.3 m. Applying deterministic deconvolution to GPR data collected in sedimentary strata at our study site resulted in an improvement in resolution (50%) and improved spatial location (0.10-0.15 m) of geologic features compared to the same data processed without deterministic deconvolution. The effectiveness of deterministic deconvolution for increased resolution and spatial accuracy of specific geologic features is further demonstrated by comparing results of deconvolved data with nondeconvolved data acquired along a 30-m transect immediately adjacent

  11. Non-destructive evaluation of moisture content in wood using ground-penetrating radar

    Science.gov (United States)

    Reci, Hamza; Chinh Maï, Tien; Sbartaï, Zoubir Mehdi; Pajewski, Lara; Kiri, Emanuela

    2016-12-01

    This paper presents the results of a series of laboratory measurements, carried out to study how the ground-penetrating radar (GPR) signal is affected by moisture variation in wood material. The effects of the wood fibre direction, with respect to the polarisation of the electromagnetic field, are investigated. The relative permittivity of wood and the amplitude of the electric field received by the radar are measured for different humidity levels using the direct-wave method in wide angle radar reflection configuration, in which one GPR antenna is moved while the other is kept in a fixed position. The received signal is recorded for different separations between the transmitting and receiving antennas. Dielectric constants estimated from direct waves are compared to those estimated from reflected waves: direct and reflected waves show different behaviour when the moisture content varies, due to their different propagation paths.

  12. Evaluating some factors that affect feasility of using ground penetrating radar for landmine detection

    Science.gov (United States)

    Metwaly, Mohamed; Ismail, Ahmed; Matsushima, Jun

    2007-09-01

    Ground penetrating radar (GPR) is one of the promising technologies that can be used to detect landmines. Many factors may affect the ability of GPR to detect landmines. Among those factors are: 1) the type of landmine material (metallic or plastic), 2) conditions of the host soil (soil texture and soil moisture), and 3) the radar frequency utilized. The impact of these factors on the ability of GPR to detect landmines is investigated by studying their effect on the dielectric permittivity contrast between the landmine and the host soil, as well as on the attenuation of the radar waves. The impact of each factor was theoretically reviewed and modeled using the Matlab and Mathcad software packages. Results of the computer modeling were correlated with GPR data acquired for metallic and plastic landmine types. It was found that the ability of GPR to detect landmines depends to a great extent on the landmine type, water content of the host soil, utilized radar frequency, and soil texture. The landmines are much easier to detect than plastic landmines for any soil conditions and any radar frequency. Increasing the soil’s moisture content, regardless of soil texture, eases the detection of the plastic landmine and worsens the detection of the metallic mines. Increasing the percentage of clay in the soil causes the same effect as the moisture content. However, higher radar frequency delivers better results for landmine detection as long as the percentage of clay and the moisture content in the soil remains low. The results of this study are expected to help in selecting optimum radar antennae and data acquisition parameters depending on the landmine type and environmental conditions.

  13. Holocene relative sea level variations at the spit system Feddet (Denmark) resolved by ground-penetrating radar and geomorphological data

    DEFF Research Database (Denmark)

    Hede, Mikkel Ulfeldt; Bendixen, Mette; Clemmensen, Lars B;

    Estimates of Holocene sea-level variations have been presented in a range of studies based on different approaches, including interpretation of internal beach ridge characteristics from ground-penetrating radar (GPR) and geomorphological data. We present GPR data and geomorphological observations...... of sea level variation and vertical land movement in southern Scandinavia in response to unloading after the last glaciation. We have tested the validity of downlap points, which marks the transition from beach to upper shoreface as sea-level markers. The test is based on comparative analyses...

  14. The subsurface character of Meteor Crater, Arizona, as determined by ground-probing radar

    Science.gov (United States)

    Pilon, J. A.; Grieve, R. A. F.; Sharpton, V. L.

    1991-01-01

    The first results are presented from a ground-probing-radar survey of the subsurface structure of the Meteor Crater (Arizona) and the surrounding ejecta blanket. Five ground-probing radar transects were conducted, including three complete north-south transects of the interior floor of the crater and a partial east-west transect, connecting the three north-south surveys; the fifth transect was exterior to the crater. A number of subsurface dielectric reflectors were identified in both the interior and exterior transects of the Meteor Crater. The depths of most of these reflectors in the interior transects corresponds to lithological boundaries known from previous data from drilling and shaft excavations. However, some of the reflectors, e.g., the horizontal reflectors within the allochthonous breccia lens, were not known from previous work.

  15. Monitoring of landfill leachate dispersion using reflectance spectroscopy and ground-penetrating radar.

    Science.gov (United States)

    Splajt, T; Ferrier, G; Frostick, L E

    2003-09-15

    The utility of ground-penetrating radar and reflectance spectroscopy in the monitoring of landfill sites has been investigated. Strong correlations between red edge inflection position and chlorophyll and heavy metal concentrations have been demonstrated from grassland species affected by leachate contamination of the soil adjacent to the landfill test site. This study demonstrated that reflectance spectroscopy can identify vegetation affected by leachate-contaminated soil at a range of spatial resolutions. To identify the vegetation affected by leachate contamination, the spectroradiometer must have contiguous bands at sufficient spectral resolution over the critical wave range that measures chlorophyll absorption and the red edge (between 650 and 750 nm). The utility of ground-penetrating radar data to identify leachate escaping from breakout points in the contaminant wall has also been demonstrated. An integrated approach using these techniques, combined with field and borehole sampling and contaminant migration modeling, offers a possible cost-effective monitoring approach for landfill sites.

  16. VALUATION OF GROUND PENETRATING RADAR FOR THE RECORD OF STRUCTURES IN FLUVIO LACUSTRINE SOILS

    Directory of Open Access Journals (Sweden)

    E. Méndez

    2003-04-01

    Full Text Available In this work, the response of Ground Penetrating Radar (GPR to geological characteristics of fluvio-lacustrinesoils is analyzed. GPR method is a very useful tool for structural studies of the geological media because itprovides continuous profiles from the subsoil (radargrams. The identification of thin geological structures inthe radar profiles allowed the evaluation of the detection capacity of the GPR Zond 12c for stratigraphicalpurposes. Its detection capacity depends on the achieved depth of penetration and resolution, on thetransmitted wave frequency, and of the system used for acquisition and processing of the signals. Theprospecting principle is based on the emission and reception of short electromagnetic pulses that are reflectedby electric discontinuities related to physical or structural properties of the ground.

  17. Ground penetrating radar for determining volumetric soil water content ; results of comparative measurements at two test sites

    NARCIS (Netherlands)

    Overmeeren, R.A. van; Sariowan, S.V.; Gehrels, J.C.

    1997-01-01

    Ground penetrating radar (GPR) can provide information on the soil water content of the unsaturated zone in sandy deposits via measurements from the surface, and so avoids drilling. Proof of this was found from measurements of radar wave velocities carried out ten times over 13 months at two test si

  18. Contrast validation test for retrieval method of high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    WANG Hailong; GUO Peifang; HAN Shuzong; XIE Qiang; ZHOU Liangming

    2005-01-01

    In this paper, on the basis of the working principles of high frequency ground wave radar for retrieval of ocean wave and sea wind elements were used to systematically study the data obtained from contrast validation test in Zhoushan sea area of Zhejiang Province on Oct. 2000, to validate the accuracy of OSMAR2000for wave and wind parameters, and to analyze the possible error caused when using OSMAR2000 to retrieve ocean parameters.

  19. Feature Extraction and Automatic Material Classification of Underground Objects from Ground Penetrating Radar Data

    OpenAIRE

    Qingqing Lu; Jiexin Pu; Zhonghua Liu

    2014-01-01

    Ground penetrating radar (GPR) is a powerful tool for detecting objects buried underground. However, the interpretation of the acquired signals remains a challenging task since an experienced user is required to manage the entire operation. Particularly difficult is the classification of the material type of underground objects in noisy environment. This paper proposes a new feature extraction method. First, discrete wavelet transform (DWT) transforms A-Scan data and approximation coefficient...

  20. Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-438 Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1) As of FY 2017...11 Track to Budget 17 Cost and Funding 18 Low Rate Initial Production 23 Foreign Military Sales 24 Nuclear Costs 24 Unit Cost...Document CLIN - Contract Line Item Number CPD - Capability Production Document CY - Calendar Year DAB - Defense Acquisition Board DAE - Defense Acquisition

  1. Feature Extraction and Classification of Echo Signal of Ground Penetrating Radar

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hui-lin; TIAN Mao; CHEN Xiao-li

    2005-01-01

    Automatic feature extraction and classification algorithm of echo signal of ground penetrating radar is presented. Dyadic wavelet transform and the average energy of the wavelet coefficients are applied in this paper to decompose and extract feature of the echo signal. Then, the extracted feature vector is fed up to a feed-forward multi-layer perceptron classifier. Experimental results based on the measured GPR echo signals obtained from the Mei-shan railway are presented.

  2. Operational Cloud-to-Ground Lightning Initiation Forecasting Utilizing S-Band Dual-Polarization Radar

    Science.gov (United States)

    2014-03-27

    cells exhibit considerably more complexity in their charge distributions, the tripole model is adequate to explain lightning formation. Although...application of dual-polarization weather radar. Part II: Warm- and cold- season applications. J. Operational Meteor., 1 (20), 243-264. Kumjian, M. R...Res., 94, 13151–13167. 60 Wolf, P., 2006: Anticipating the initiation, cessation , and frequency of cloud-to-ground lightning, utilizing WSR

  3. High-resolution wind and temperature observations from aircraft tracked by Mode-S air traffic control radar

    Science.gov (United States)

    de Haan, S.

    2011-05-01

    Wind, temperature, and humidity observations from radiosonde and aircraft are the main sources of upper air information for meteorology. For mesoscale meteorology, the horizontal coverage of radiosondes is too sparse. Aircraft observations through Aircraft Meteorological Data Relay (AMDAR) sample an atmospheric profile in the vicinity of airports. However, not all aircraft are equipped with AMDAR or have the system activated. Observations inferred from an enhanced tracking and ranging (TAR) air traffic control radar can fill this gap. These radars follows all aircraft in the airspace visible to the radar for air traffic management. The TAR radar at Schiphol airport in Netherlands has a range of 270 km. This Mode-S radar contacts each aircraft every 4 s on which the transponder in the aircraft responds with a message that contains information on flight level, direction, and speed. Combined with the ground track of an aircraft, meteorological information on temperature and wind can be inferred from this information. Because all aircraft are required to respond to the TAR radar, the data volume is extremely large, being around 1.5 million observations per day. Note that there are no extra costs for this data link. The quality of these observations is assessed by comparison to numerical weather prediction (NWP) model information, AMDAR observations, and radiosonde observations. A preprocessing step is applied to enhance the quality of wind and temperature observations, albeit with a reduced time frequency of one observation of horizontal wind vector and temperature per aircraft per minute. Nevertheless, the number of observations per day is still very large. In this paper it is shown that temperature observations from Mode-S, even after corrections, are not very good; an RMS which is twice as large as AMDAR is observed when compared to NWP. In contrast to the temperature observations, the quality found for wind after correction and calibration is good; it is comparable

  4. Polarimetric and Multi-Doppler Radar Observations of Sprite-producing Storms

    Science.gov (United States)

    Lang, TImothy J.; Lyons, Walter A.; Rutledge, Steven A.; Dolan, Brenda; Cummer, Steven A.; Krehbiel, Paul; Rison, William

    2014-01-01

    Sprites are caused by luminous electrical breakdown of the upper atmosphere, and frequently occur over large mesoscale precipitation systems. Two sprite-producing storms (on 8 and 25 June) were observed in Colorado during the summer of 2012. Unlike most past studies of sprites, these storms were observed by a polarimetric radar - the CSU-CHILL facility - which provided both PPI and RHI scans of the cases. Also available were multiple-Doppler syntheses from CSU-CHILL, local NEXRAD radars, and the CSU-Pawnee radar; as well as data from the Colorado Lightning Mapping Array (COLMA), high speed cameras, and other lightning-detection instrumentation. This unique dataset provided an unprecedented look at the detailed kinematic and microphysical structures of the thunderstorms as they produced sprites, including electrical alignment signatures in the immediate location of the charge layers neutralized by sprite-parent positive cloud-to-ground lightning strokes. One of the sprite-producing cases (25 June) featured an anomalous charge structure and may serve as a model for how sprites can be produced over convection rather than the more typical stratiform regions. Also to be presented will be evidence for advection of charge into a common stratiform precipitation region (on 8 June), which was then tapped by lightning originating from multiple different convective cores to produce sprites. Depending on the outcome of the 2013 convective season, polarimetric data from additional storms that produce sprites and other transient luminous events (TLEs) may be presented.

  5. Radar Observations of Snowpack Changes from the Second Cold Land Processes Experiment

    Science.gov (United States)

    Cline, D.; Yueh, S.; Elder, K.

    2007-12-01

    To support the NASA Snow and Cold Land Processes (SCLP) and the ESA Cold Regions High-Resolution Hydrologic Observatory (CoRe-H2O) missions and advance observation of the global water cycle, NASA is supporting the second Cold Land Processes Experiment (CLPX-II). The experiment is being conducted in two parts over two winter seasons (Colorado 2006-2007, and Alaska 2007-2008). The focus of CLPX-II is on testing and development of advanced snow measurement using high-frequency radar through repeat observations of changing snow conditions using airborne and spaceborne radars and intensive in situ measurements. During 2006-2007 three field campaigns were conducted in a 90-km x 9-km study area in north-central Colorado. The campaigns were carried out in December, January and February to observe significant changes in snowpack characteristics. In each campaign, the Jet Propulsion Laboratory's conically scanning Ku- band polarimetric scatterometer (POLSCAT) was flown on a Twin Otter aircraft to collect radar data over the study area. Multiple complete images of the entire study area were acquired during each campaign, enabling examination of short-term changes in radar response as well as long-term changes between campaigns. In each campaign, intensive in situ observations of snow depth, water equivalent, stratigraphy, and grain size were made in each of 16 target sites. All of the target sites shared similar backgrounds (flat terrain with a ground cover of grasses and sedges) but exhibited a wide range of snowpack characteristics. Preliminary analyses of the POLSCAT data acquired from the CLPX-II in winter 2006-2007 are described. The data showed response of the Ku-band radar echoes to snowpack changes for various types of background vegetation. There was about 0.4 dB increase in backscatter for every 1 cm SWE accumulation for sage brush and pasture fields. The data also showed the impact of freeze/thaw cycles, which appeared to create depth hoar and ice lenses with large

  6. Using ground penetrating radar for roof hazard detection in underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Molinda, G.M.; Monaghan, W.P.; Mowrey, G.L. [Dept. of Energy, Pittsburgh, PA (United States)

    1996-12-31

    Ground Penetrating Radar (GPR) is being investigated for the potential to determine roof hazards in underground mines. GPR surveys were conducted at four field sites with accompanying ground truth in order to determine the value of GPR for roof hazard detection. The resolution of the current system allows detection of gross roof fractures (>{1/4} in zone) or rider beds in coal measure roof. Data quality is not yet sufficient to detect small bed separations or subtle lithologic changes in the roof. Differences in data quality are discussed, as well as suggestions for collecting improved data.

  7. Using ground penetrating radar for roof hazard detection in underground mines

    Energy Technology Data Exchange (ETDEWEB)

    Molinda, G.M.; Monaghan, W.P.; Mowrey, G.L.; Persetic, G.F. [Department of Energy, Pittsburgh, PA (United States)

    1996-12-01

    Ground Penetrating Radar (GPR) is being investigated for the potential to determine roof hazards in underground mines. GPR surveys were conducted at four field sites with accompanying ground truth in order to determine the value of GPR for roof hazard detection. The resolution of the current system allows detection of gross roof fractures (>63 cm (>1/4 in) zone) or rider beds in coal measure roof. Data quality is not yet sufficient to detect small bed separations or subtle lithologic changes in the roof. Differences in data quality are discussed, as well as suggestions for collecting improved data.

  8. RADAR HRR PROFILING FOR GROUND MOVING TARGET USING PHASE-CODED AND HOPPED-FREQUENCY WAVEFORMS

    Institute of Scientific and Technical Information of China (English)

    Li Yan; Wang Changming

    2007-01-01

    To obtain the radar High Range Resolution (HRR) profile of the slowly moving ground target in strong clutter background, the Phase-Coded Hopped-Frequency (PCHF) waveform is proposed. By multiple-bursts coherent processing, the HRR profile synthesis, target velocity compensation and clutter compression can be accomplished simultaneously. The new waveform is shown to have good ability to suppress ground clutter and good Electronic Counter-CounterMeasures (ECCM) ability as well. The clutter compression performance of the proposed method is verified by the numerical results.

  9. Detection of Rockfall on a Tunnel Concrete Lining with Ground-Penetrating Radar (GPR)

    Science.gov (United States)

    Lalagüe, Anne; Lebens, Matthew A.; Hoff, Inge; Grøv, Eivind

    2016-07-01

    Experiments were conducted using Ground-Penetrating Radar (GPR). The performance of six GPR systems was assessed in terms of: (1) remotely mapping cavities behind concrete linings, (2) detecting rockfall from the tunnel roof onto an inner lining comprising, for example, precast concrete segments. Studies conducted in Norway and the United States demonstrate that the GPR technique is a simple and reliable method that can assist stability inspection in existing Norwegian tunnels. The ground-coupled GPR systems represent a step forward in the remote detection of rockfall on tunnel concrete linings, and are particularly suited to self-standing inner linings. The analysis of the data is relatively straightforward and reasonably accurate.

  10. On Recovering Missing Ground Penetrating Radar Traces by Statistical Interpolation Methods

    Directory of Open Access Journals (Sweden)

    Gonzalo Safont

    2014-08-01

    Full Text Available Missing traces in ground penetrating radar (GPR B-scans (radargrams may appear because of limited scanning resolution, failures during the acquisition process or the lack of accessibility to some areas under test. Four statistical interpolation methods for recovering these missing traces are compared in this paper: Kriging, Wiener structures, Splines and the expectation assuming an independent component analyzers mixture model (E-ICAMM. Kriging is an adaptation to the spatial context of the linear least mean squared error estimator. Wiener structures improve the linear estimator by including a nonlinear scalar function. Splines are a commonly used method to interpolate GPR traces. This consists of piecewise-defined polynomial curves that are smooth at the connections (or knots between pieces. E-ICAMM is a new method proposed in this paper. E-ICAMM consists of computing the optimum nonlinear estimator (the conditional mean assuming a non-Gaussian mixture model for the joint probability density in the observation space. The proposed methods were tested on a set of simulated data and a set of real data, and four performance indicators were computed. Real data were obtained by GPR inspection of two replicas of historical walls. Results show the superiority of E-ICAMM in comparison with the other three methods in the application of reconstructing incomplete B-scans.

  11. Application of ground-penetrating radar technique to evaluate the waterfront location in hardened concrete

    Science.gov (United States)

    Rodríguez-Abad, Isabel; Klysz, Gilles; Martínez-Sala, Rosa; Balayssac, Jean Paul; Mené-Aparicio, Jesús

    2016-12-01

    The long-term performance of concrete structures is directly tied to two factors: concrete durability and strength. When assessing the durability of concrete structures, the study of the water penetration is paramount, because almost all reactions like corrosion, alkali-silica, sulfate, etc., which produce their deterioration, require the presence of water. Ground-penetrating radar (GPR) has shown to be very sensitive to water variations. On this basis, the objective of this experimental study is, firstly, to analyze the correlation between the water penetration depth in concrete samples and the GPR wave parameters. To do this, the samples were immersed into water for different time intervals and the wave parameters were obtained from signals registered when the antenna was placed on the immersed surface of the samples. Secondly, a procedure has been developed to be able to determine, from those signals, the reliability in the detection and location of waterfront depths. The results have revealed that GPR may have an enormous potential in this field, because excellent agreements were found between the correlated variables. In addition, when comparing the waterfront depths calculated from GPR measurements and those visually registered after breaking the samples, we observed that they totally agreed when the waterfront was more than 4 cm depth.

  12. Radar observations of the asteroid 2011 UW158

    Science.gov (United States)

    Ipatov, A. V.; Bondarenko, Yu. S.; Medvedev, Yu. D.; Mishina, N. A.; Marshalov, D. A.; Benner, L. A.

    2016-12-01

    In July 2015 intercontinental bistatic radar observations of the potentially dangerous asteroid 2011 UW158 during its close approach to the Earth were carried out. The asteroid was illuminated at a frequency of 8.4 GHz with the 70-m DSS-14 antenna of the Goldstone Deep Space Communications Complex, while the signal reflected from the asteroid was received with the 32-m radio telescopes of the Quasar VLBI network at the Zelenchukskaya and Badary Observatories. The spectra of the reflected radio signals were obtained. The sizes and rotation period of the asteroid consistent with photometric observations and the ratio of the powers of the reflected signals with left- and right-hand circular polarizations were determined. The derived values suggest that the asteroid has an inhomogeneous surface and a prolate shape. The observations of the Doppler shift of the reflected signal frequency were obtained, which allowed the orbital parameters of the asteroid to be improved.

  13. Combining ground penetrating radar and electromagnetic induction for industrial site characterization

    Science.gov (United States)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Saey, Timothy; De Smedt, Philippe; Delefortrie, Samuël; Seuntjens, Piet

    2014-05-01

    Industrial sites pose specific challenges to the conventional way of characterizing soil and groundwater properties through borehole drilling and well monitoring. The subsurface of old industrial sites typically exhibits a large heterogeneity resulting from various anthropogenic interventions, such as the dumping of construction and demolition debris and industrial waste. Also larger buried structures such as foundations, utility infrastructure and underground storage tanks are frequently present. Spills and leaks from industrial activities and leaching of buried waste may have caused additional soil and groundwater contamination. Trying to characterize such a spatially heterogeneous medium with a limited number of localized observations is often problematic. The deployment of mobile proximal soil sensors may be a useful tool to fill up the gaps in between the conventional observations, as these enable measuring soil properties in a non-destructive way. However, because the output of most soil sensors is affected by more than one soil property, the application of only one sensor is generally insufficient to discriminate between all contributing factors. To test a multi-sensor approach, we selected a study area which was part of a former manufactured gas plant site located in one of the seaport areas of Belgium. It has a surface area of 3400 m² and was the location of a phosphate production unit that was demolished at the end of the 1980s. Considering the long and complex history of the site we expected to find a typical "industrial" soil. Furthermore, the studied area was located between buildings of the present industry, entailing additional practical challenges such as the presence of active utilities and aboveground obstacles. The area was surveyed using two proximal soil sensors based on two different geophysical methods: ground penetrating radar (GPR), to image contrasts in dielectric permittivity, and electromagnetic induction (EMI), to measure the apparent

  14. Estimating the Concentration of Large Raindrops from Polarimetric Radar and Disdrometer Observations

    Science.gov (United States)

    Carey, Lawrence D.; Petersen, Walter A; Gatlink, Patrick N.

    2013-01-01

    occurrence of large rain drops (D > 5 mm) in disdrometer observations, either stand alone or networked, generally representative and consistent with polarimetric radar observations? We first show from simulations that the concentration of large (D > 5 mm) rain drops (N(sub T5)) can be estimated from polarimetric observations of specific differential phase (K(sub dp)) and differential reflectivity (Z(sub dr)), N(sub T5)=F(K(sub dp),Z(sub dr)), or horizontal reflectivity (Z(sub h)) and Z(sub dr), N(sub T5)=(Z(sub h),Z(sub dr)). We assess the error associated with polarimetric retrieval of N(sub T5), including sensitivity to D(sub max) parameterization assumptions and measurement error in the radar simulations. Polarimetric measurements at S-band and C-band will then be used to retrieve estimates of N(sub T5) and compared to disdrometer estimates of N(sub T5). After careful consideration of retrieval error, we will check consistency between disdrometer and polarimetric radar estimates of N(sub T5) and the frequency of occurrence of large rain drops in a variety of precipitating regimes using data from NASA's Global Precipitation Measurement (GPM) Ground Validation (GV) program, including field campaigns such as MC3E (Oklahoma) and IFloodS (Iowa) and extended measurements over Huntsville, Alabama and NASA Wallops Flight Facility in coastal Virginia.

  15. Ground Radar and Guided Munitions: Increased Oversight and Cooperation Can Help Avoid Duplication among the Services’ Programs

    Science.gov (United States)

    2014-12-01

    mandatory . GAO believes the recommendation remains valid as discussed in its report. DOD agreed with the second recommendation. What GAO Found...designation mandatory for all new ground radar programs. Hence, we still believe without this designation for all new ground radar programs, the JROC and...Obtaining Copies of GAO Reports and Testimony Order by Phone Connect with GAO To Report Fraud, Waste, and Abuse in Federal Programs Congressional Relations Public Affairs Please Print on Recycled Paper.

  16. Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars

    Science.gov (United States)

    Miège, Clément; Forster, Richard R.; Brucker, Ludovic; Koenig, Lora S.; Solomon, D. Kip; Paden, John D.; Box, Jason E.; Burgess, Evan W.; Miller, Julie Z.; McNerney, Laura; Brautigam, Noah; Fausto, Robert S.; Gogineni, Sivaprasad

    2016-12-01

    We document the existence of widespread firn aquifers in an elevation range of 1200-2000 m, in the high snow-accumulation regions of the Greenland ice sheet. We use NASA Operation IceBridge accumulation radar data from five campaigns (2010-2014) to estimate a firn-aquifer total extent of 21,900 km2. We investigate two locations in Southeast Greenland, where repeated radar profiles allow mapping of aquifer-extent and water table variations. In the upper part of Helheim Glacier the water table rises in spring following above-average summer melt, showing the direct firn-aquifer response to surface meltwater production changes. After spring 2012, a drainage of the firn-aquifer lower margin (5 km) is inferred from both 750 MHz accumulation radar and 195 MHz multicoherent radar depth sounder data. For 2011-2014, we use a ground-penetrating radar profile located at our Ridgeline field site and find a spatially stable aquifer with a water table fluctuating less than 2.5 m vertically. When combining radar data with surface topography, we find that the upper elevation edge of firn aquifers is located directly downstream of locally high surface slopes. Using a steady state 2-D groundwater flow model, water is simulated to flow laterally in an unconfined aquifer, topographically driven by ice sheet surface undulations until the water encounters crevasses. Simulations suggest that local flow cells form within the Helheim aquifer, allowing water to discharge in the firn at the steep-to-flat transitions of surface topography. Supported by visible imagery, we infer that water drains into crevasses, but its volume and rate remain unconstrained.

  17. Geostatistical inference using crosshole ground-penetrating radar

    DEFF Research Database (Denmark)

    Looms, Majken C; Hansen, Thomas Mejer; Cordua, Knud Skou;

    2010-01-01

    of the subsurface are used to evaluate the uncertainty of the inversion estimate. We have explored the full potential of the geostatistical inference method using several synthetic models of varying correlation structures and have tested the influence of different assumptions concerning the choice of covariance...... function and data noise level. In addition, we have tested the methodology on traveltime data collected at a field site in Denmark. There, inferred correlation structures indicate that structural differences exist between two areas located approximately 10 m apart, an observation confirmed by a GPR...

  18. Scoria Cone and Tuff Ring Stratigraphy Interpreted from Ground Penetrating Radar, Rattlesnake Crater, Arizona

    Science.gov (United States)

    Kruse, S. E.; McNiff, C. M.; Marshall, A. M.; Courtland, L. M.; Connor, C.; Charbonnier, S. J.; Abdollahzadeh, M.; Connor, L.; Farrell, A. K.; Harburger, A.; Kiflu, H. G.; Malservisi, R.; Njoroge, M.; Nushart, N.; Richardson, J. A.; Rookey, K.

    2013-12-01

    Numerous recent studies have demonstrated that detailed investigation of scoria cone and maar morphology can reveal rich details the eruptive and erosion histories of these volcanoes. A suite of geophysical surveys were conducted to images Rattlesnake Crater in the San Francisco Volcanic Field, AZ, US. We report here the results of ~3.4 km of ground penetrating radar (GPR) surveys that target the processes of deposition and erosion on the pair of cinder cones that overprint the southeast edge of Rattlesnake crater and on the tuff ring that forms the crater rim. Data were collected with 500, 250, 100, and 50 MHz antennas. The profiles were run in a radial direction down the northeast flanks of the cones (~1 km diameter, ~120 meters height) , and on the inner and outer margins of the oblong maar rim (~20-80 meters height). A maximum depth of penetration of GPR signal of ~15m was achieved high on the flanks of scoria cones. A minimum depth of essentially zero penetration occurred in the central crater. We speculate that maximum penetration occurs near the peaks of the cones and crater rim because ongoing erosion limits new soil formation. Soil formation would tend to increase surface conductivity and hence decrease GPR penetration. Soil is probably better developed within the crater, precluding significant radar penetration there. On the northeast side of the gently flattened rim of the easternmost scoria cone, the GPR profile shows internal layering that dips ~20 degrees northeast relative to the current ground surface. This clearly indicates that the current gently dipping surface is not a stratigraphic horizon, but reflects instead an erosive surface into cone strata that formed close to the angle of repose. Along much of the cone flanks GPR profiles show strata dipping ~4-5 degrees more steeply than the current surface, suggesting erosion has occurred over most of the height of the cone. An abrupt change in strata attitude is observed at the gradual slope

  19. The ionosphere disturbances observation on the Kharkiv incoherent scatter radar

    Science.gov (United States)

    Cherniak, Iu.; Lysenko, V.

    2009-04-01

    he ionosphere plasma characteristics are responding on variations of solar and magnetic activity. The research of an ionosphere structure and dynamics is important as for understanding physics of processes and for radiophysical problems solution. The method incoherent scatter (IS) of radio waves allows determining experimentally both regular variations of the basic parameters ionosphere, and their behavior during perturbation. The equipment and measurement technique, developed by authors, are allows obtaining certain data about behavior of an ionosphere during various origin and intensity ionosphere perturbations. The Institute of Ionsphere IS radar located near Kharkiv, Ukraine (geographic coordinates: 49.6oN, 36.3oE, geomagnetic coordinates: 45.7oN, 117.8oE) was used to observe the processes in the ionosphere. The radar is operate with 100-m zenith parabolic antenna at 158 MHz with peak transmitted power of ~2.0 MW. The double-frequency measuring channel mode with compound sounding signal was employed for experiments. That provided ~ 20-km resolution in range ~100-400 km and ~100-km in range ~200-1100 km. Over a period of series of experiment are obtained data about variations of electron density simultaneous in the heights interval 100-1000 km, including three sun eclipses, two superstrong and a few moderate magnetic storms, as well as disturbance, is caused by powerful rockets starts. During strong geomagnetic storm on November 8-12, 2004 was observed night time increasing of electronic temperature up to 3000 Љ and ions temperature up to 2000K. Usually at this time temperature of ions is equal to temperature of electrons. During negative ionosphere storm was observed decreasing of electronic density at maximum F2 layer. The height of a F2 layer maximum was increased by 150 km and 70 km at daytime. The interesting phenomenon - high-power backscatter signal coherent backscatter was observed first time during geogeomagnetic storm 29-30 may 2003. A usually

  20. First observation of $^{13}$Li ground state

    CERN Document Server

    Kohley, Z; DeYoung, P A; Volya, A; Baumann, T; Bazin, D; Christian, G; Cooper, N L; Frank, N; Gade, A; Hall, C; Hinnefeld, J; Luther, B; Mosby, S; Peters, W A; Smith, J K; Snyder, J; Spyrou, A; Thoennessen, M

    2013-01-01

    The ground state of neutron-rich unbound $^{13}$Li was observed for the first time in a one-proton removal reaction from $^{14}$Be at a beam energy of 53.6 MeV/u. The $^{13}$Li ground state was reconstructed from $^{11}$Li and two neutrons giving a resonance energy of 120$^{+60}_{-80}$ keV. All events involving single and double neutron interactions in the Modular Neutron Array (MoNA) were analyzed, simulated, and fitted self-consistently. The three-body ($^{11}$Li+$n+n$) correlations within Jacobi coordinates showed strong dineutron characteristics. The decay energy spectrum of the intermediate $^{12}$Li system ($^{11}$Li+$n$) was described with an s-wave scattering length of greater than -4 fm, which is a smaller absolute value than reported in a previous measurement.

  1. Classification of ground moving targets using bicepstrum-based features extracted from Micro-Doppler radar signatures

    Science.gov (United States)

    Molchanov, Pavlo O.; Astola, Jaakko T.; Egiazarian, Karen O.; Totsky, Alexander V.

    2013-12-01

    In this article, a novel bicepstrum-based approach is suggested for ground moving radar target classification. Distinctive classification features were extracted from short-time backscattering bispectrum estimates of the micro-Doppler signature. Real radar data were obtained using surveillance Doppler microwave radar operating at 34 GHz. Classifier performance was studied in detail using the Gaussian Mixture Mode and Maximum Likelihood decision making rule, and the results were verified on a multilayer perceptron and Support Vector Machine. Experimental real radar measurements demonstrated that it is quite feasible to discern three classes of humans (single, two and three persons) walking in a vegetation cluttered environment using proposed bicepstrum-based classification features. Sophisticated bispectrum-based signal processing provides the extraction of new classification features in the form of phase relationships in the radar data. It provides a novel insight into moving radar target classification compared to the commonly used energy-based strategy.

  2. Simulation of Space-borne Radar Observation from High Resolution Cloud Model - for GPM Dual frequency Precipitation Radar -

    Science.gov (United States)

    Kim, H.; Meneghini, R.; Jones, J.; Liao, L.

    2011-12-01

    A comprehensive space-borne radar simulator has been developed to support active microwave sensor satellite missions. The two major objectives of this study are: 1) to develop a radar simulator optimized for the Dual-frequency Precipitation Radar (KuPR and KaPR) on the Global Precipitation Measurement Mission satellite (GPM-DPR) and 2) to generate the synthetic test datasets for DPR algorithm development. This simulator consists of two modules: a DPR scanning configuration module and a forward module that generates atmospheric and surface radar observations. To generate realistic DPR test data, the scanning configuration module specifies the technical characteristics of DPR sensor and emulates the scanning geometry of the DPR with a inner swath of about 120 km, which contains matched-beam data from both frequencies, and an outer swath from 120 to 245 km over which only Ku-band data will be acquired. The second module is a forward model used to compute radar observables (reflectivity, attenuation and polarimetric variables) from input model variables including temperature, pressure and water content (rain water, cloud water, cloud ice, snow, graupel and water vapor) over the radar resolution volume. Presently, the input data to the simulator come from the Goddard Cumulus Ensemble (GCE) and Weather Research and Forecast (WRF) models where a constant mass density is assumed for each species with a particle size distribution given by an exponential distribution with fixed intercept parameter (N0) and a slope parameter (Λ) determined from the equivalent water content. Although the model data do not presently contain mixed phase hydrometeors, the Yokoyama-Tanaka melting model is used along with the Bruggeman effective dielectric constant to replace rain and snow particles, where both are present, with mixed phase particles while preserving the snow/water fraction. For testing one of the DPR retrieval algorithms, the Surface Reference Technique (SRT), the simulator uses

  3. Observing convection with satellite, radar, and lightning measurements

    Science.gov (United States)

    Hamann, Ulrich; Nisi, Luca; Clementi, Lorenzo; Ventura, Jordi Figueras i.; Gabella, Marco; Hering, Alessandro M.; Sideris, Ioannis; Trefalt, Simona; Germann, Urs

    2015-04-01

    Heavy precipitation, hail, and wind gusts are the fundamental meteorological hazards associated with strong convection and thunderstorms. The thread is particularly severe in mountainous areas, e.g. it is estimated that on average between 50% and 80% of all weather-related damage in Switzerland is caused by strong thunderstorms (Hilker et al., 2010). Intense atmospheric convection is governed by processes that range from the synoptic to the microphysical scale and are considered to be one of the most challenging and difficult weather phenomena to predict. Even though numerical weather prediction models have some skills to predict convection, in general the exact location of the convective initialization and its propagation cannot be forecasted by these models with sufficient precision. Hence, there is a strong interest to improve the short-term forecast by using statistical, object oriented and/or heuristic nowcasting methods. MeteoSwiss has developed several operational nowcasting systems for this purpose such as TRT (Hering, 2008) and COALITION (Nisi, 2014). In this contribution we analyze the typical development of convection using measurements of the Swiss C-band Dual Polarization Doppler weather radar network, the MSG SEVIRI satellite, and the Météorage lighting network. The observations are complemented with the analysis and forecasts of the COSMO model. Special attention is given to the typical evolutionary stages like the pre-convective environment, convective initiation, cloud top glaciation, start, maximum, and end of precipitation and lightning activity. The pre-convective environment is examined using instability indices derived from SEVIRI observations and the COSMO forecasts. During the early development satellite observations are used to observe the rise of the cloud top, the growth of the cloud droplet or crystals, and the glaciation of the cloud top. SEVIRI brightness temperatures, channel differences, and temporal trends as suggested by

  4. A discussion on improving typhoon observation through radar by scanning the negative elevation angle

    Institute of Scientific and Technical Information of China (English)

    BaLin Xu; ShaoHui Miao; LiPing Liu; ChangDao Wu; GaiLi Wang

    2014-01-01

    Certain feasibilities and features were discussed in typhoon detection by radar with a negative elevation angle according to the relationship between the remote detecting range and the elevation angle of the new generation weather radar, in order to rectify the disadvantages of detecting capability for remote low-level echo with a lowest elevation angle of 0.5° in the common detecting mode. The data obtained from detecting the typhoon of Haitang and Changmi with radar for their negative elevation angles and the observed data for the common lowest elevation angle of 0.5° were compared to each other. The results showed that the detection of remote low level cloud system with radar could be improved by using the negative elevation angle, and the structure and the evolution trend of a typhoon could be better judged. The increasing degree of detection for negative elevation angles in the current volume scanning mode should be helpful for predicting the intensity and developing trend of windstorms, to further improve the capability of warning and nowcasting. The detection of negative elevation angle could also help reveal the development and change of typhoon’s low level cloud system. As far as the typhoons of Haitang and Changmi were concerned, the detecting area of Changmi was increased by 1.09 times with the negative elevation angle of 0.31°, compared with the elevation angle of 0.48° if the threshold value for the sea echo within 100 km was eliminated. Several volume scans of Haitang were increased by 2.1%-7.9%for the negative elevation angle of 0.36° compared with the elevation angle of 0.49°. Therefore, the radar detecting capability of typhoons could be improved by the detection of negative elevation angles to some extent. This could make up for the disadvantages of a low detecting capability for remote low-level echo in the common detecting mode. At the same time, a negative elevation angle could be easily influenced by the ground clutter and the close

  5. Attribute-driven transfer learning for detecting novel buried threats with ground-penetrating radar

    Science.gov (United States)

    Colwell, Kenneth A.; Collins, Leslie M.

    2016-05-01

    Ground-penetrating radar (GPR) technology is an effective method of detecting buried explosive threats. The system uses a binary classifier to distinguish "targets", or buried threats, from "nontargets" arising from system prescreener false alarms; this classifier is trained on a dataset of previously-observed buried threat types. However, the threat environment is not static, and new threat types that appear must be effectively detected even if they are not highly similar to every previously-observed type. Gathering a new dataset that includes a new threat type is expensive and time-consuming; minimizing the amount of new data required to effectively detect the new type is therefore valuable. This research aims to reduce the number of training examples needed to effectively detect new types using transfer learning, which leverages previous learning tasks to accelerate and improve new ones. Further, new types have attribute data, such as composition, components, construction, and size, which can be observed without GPR and typically are not explicitly included in the learning process. Since attribute tags for buried threats determine many aspects of their GPR representation, a new threat type's attributes can be highly relevant to the transfer-learning process. In this work, attribute data is used to drive transfer learning, both by using attributes to select relevant dataset examples for classifier fusion, and by extending a relevance vector machine (RVM) model to perform intelligent attribute clustering and selection. Classification performance results for both the attribute-only case and the low-data case are presented, using a dataset containing a variety of threat types.

  6. On safe ground? Analysis of European urban geohazards using satellite radar interferometry

    Science.gov (United States)

    Capes, Renalt; Teeuw, Richard

    2017-06-01

    Urban geological hazards involving ground instability can be costly, dangerous, and affect many people, yet there is little information about the extent or distribution of geohazards within Europe's urban areas. A reason for this is the impracticality of measuring ground instability associated with the many geohazard processes that are often hidden beneath buildings and are imperceptible to conventional geological survey detection techniques. Satellite radar interferometry, or InSAR, offers a remote sensing technique to map mm-scale ground deformation over wide areas given an archive of suitable multi-temporal data. The EC FP7 Space project named PanGeo (2011-2014), used InSAR to map areas of unstable ground in 52 of Europe's cities, representing ∼15% of the EU population. In partnership with Europe's national geological surveys, the PanGeo project developed a standardised geohazard-mapping methodology and recorded 1286 instances of 19 types of geohazard covering 18,000 km2. Presented here is an analysis of the results of the PanGeo-project output data, which provides insights into the distribution of European urban geohazards, their frequency and probability of occurrence. Merging PanGeo data with Eurostat's GeoStat data provides a systematic estimate of population exposures. Satellite radar interferometry is shown to be as a valuable tool for the systematic detection and mapping of urban geohazard phenomena.

  7. Comparison of algorithms for finding the air-ground interface in ground penetrating radar signals

    Science.gov (United States)

    Wood, Joshua; Bolton, Jeremy; Casella, George; Collins, Leslie; Gader, Paul; Glenn, Taylor; Ho, Jeffery; Lee, Wen; Mueller, Richard; Smock, Brandon; Torrione, Peter; Watford, Ken; Wilson, Joseph

    2011-06-01

    In using GPR images for landmine detection it is often useful to identify the air-ground interface in the GPR signal for alignment purposes. A number of algorithms have been proposed to solve the air-ground interface detection problem, including some which use only A-scan data, and others which track the ground in B-scans or C-scans. Here we develop a framework for comparing these algorithms relative to one another and we examine the results. The evaluations are performed on data that have been categorized in terms of features that make the air-ground interface difficult to find or track. The data also have associated human selected ground locations, from multiple evaluators, that can be used for determining correctness. A distribution is placed over each of the human selected ground locations, with the sum of these distributions at the algorithm selected location used as a measure of its correctness. Algorithms are also evaluated in terms of how they affect the false alarm and true positive rates of mine detection algorithms that use ground aligned data.

  8. Improving Weather Radar Precipitation Estimates by Combining two Types of Radars

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    the two radar types achieves a radar product with both long range and high temporal resolution. It is validated that the blended radar product performs better than the individual radars based on ground observations from laser disdrometers. However, the data combination is challenged by lower performance...

  9. Performance limits for exo-clutter Ground Moving Target Indicator (GMTI) radar.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2010-09-01

    The performance of a Ground Moving Target Indicator (GMTI) radar system depends on a variety of factors, many which are interdependent in some manner. It is often difficult to 'get your arms around' the problem of ascertaining achievable performance limits, and yet those limits exist and are dictated by physics. This report identifies and explores those limits, and how they depend on hardware system parameters and environmental conditions. Ultimately, this leads to a characterization of parameters that offer optimum performance for the overall GMTI radar system. While the information herein is not new to the literature, its collection into a single report hopes to offer some value in reducing the 'seek time'.

  10. Sequential feature selection for detecting buried objects using forward looking ground penetrating radar

    Science.gov (United States)

    Shaw, Darren; Stone, Kevin; Ho, K. C.; Keller, James M.; Luke, Robert H.; Burns, Brian P.

    2016-05-01

    Forward looking ground penetrating radar (FLGPR) has the benefit of detecting objects at a significant standoff distance. The FLGPR signal is radiated over a large surface area and the radar signal return is often weak. Improving detection, especially for buried in road targets, while maintaining an acceptable false alarm rate remains to be a challenging task. Various kinds of features have been developed over the years to increase the FLGPR detection performance. This paper focuses on investigating the use of as many features as possible for detecting buried targets and uses the sequential feature selection technique to automatically choose the features that contribute most for improving performance. Experimental results using data collected at a government test site are presented.

  11. Mine detection with a forward-looking ground-penetrating synthetic aperture radar

    Science.gov (United States)

    Bradley, Marshall R.; Witten, Thomas R.; Duncan, Michael; McCummins, Robert

    2003-09-01

    In order to detect buried land mines in clutter, Planning Systems Incorporated has adapted its Ground Penetrating Synthetic Aperture Radar (GPSAR) technology for forward-looking applications. The Forward Looking GPSAR (FLGPSAR), is a wide-band stepped-frequency radar operating over frequencies from 400 MHz to 4 GHz. The FLGPSAR system is based on a modified John Deere E-Gator turf vehicle that is capable of remote control. Custom Archimedean spiral antennas are used to populate the GPSAR array. These antennas are designed and built by PSI and have exceptional broad-band radiation characteristics. The FLGSPAR system has been used to detect plastic and metallic landmines at U.S. Army test facilities and at PSI's engineering center in Long Beach Mississippi. Multi-look SAR processing has been shown to significantly improve the quality of FLGPSAR imagery.

  12. Multi-Feature Based Multiple Landmine Detection Using Ground Penetration Radar

    Directory of Open Access Journals (Sweden)

    S. Park

    2014-06-01

    Full Text Available This paper presents a novel method for detection of multiple landmines using a ground penetrating radar (GPR. Conventional algorithms mainly focus on detection of a single landmine, which cannot linearly extend to the multiple landmine case. The proposed algorithm is composed of four steps; estimation of the number of multiple objects buried in the ground, isolation of each object, feature extraction and detection of landmines. The number of objects in the GPR signal is estimated by using the energy projection method. Then signals for the objects are extracted by using the symmetry filtering method. Each signal is then processed for features, which are given as input to the support vector machine (SVM for landmine detection. Three landmines buried in various ground conditions are considered for the test of the proposed method. They demonstrate that the proposed method can successfully detect multiple landmines.

  13. Ground-penetrating radar study of the Rahivere peat bog, eastern Estonia

    Directory of Open Access Journals (Sweden)

    Jüri Plado

    2011-03-01

    Full Text Available The current case study presents results of the ground-penetrating radar (GPR profiling at one of the Saadjärve drumlin field interstitial troughs, the Rahivere bog, eastern Estonia. The study was conducted in order to identify the bog morphology, and the thickness and geometry of the peat body. The method was also used to describe the applicability of GPR in the evaluation of the peat deposit reserve as the Rahivere bog belongs among the officially registered peat reserves. Fourteen GPR profiles, ~ 100 m apart and oriented perpendicular to the long axis of the depression, covering the bog and its surrounding areas, were acquired. In order to verify the radar image interpretation as well as to evaluate the velocity of electromagnetic waves in peat, a common source configuration was utilized and thirteen boreholes were drilled on the GPR profiles. A mean value of 0.036 m ns–1 corresponding to relative dielectric permittivity of 69.7 was used for the time–depth conversion. Radar images reveal major reflection from the peat–soil interface up to a depth of about 4 m, whereas drillings showed a maximum thickness of 4.5 m of peat. Minor reflections appear from the upper peat and mineral soil. According to the borehole data, undecomposed peat is underlain by decomposed one, but identifying them by GPR is complicated. Mineral soil consists of glaciolimnic silty sand in the peripheral areas of the trough, overlain by limnic clay in the central part. The calculated peat volumes (1 200 000 m3 were found to exceed the earlier estimation (979 000 m3 that was based solely on drilling data. Ground-penetrating radar, as a method that allows mapping horizontal continuity of the sub-peat interface in a non-destructive way, was found to provide detailed information for evaluating peat depth and extent.

  14. In situ characterization of forest litter using ground-penetrating radar

    Science.gov (United States)

    André, Frédéric; Jonard, François; Jonard, Mathieu; Lambot, Sébastien

    2016-03-01

    Decomposing litter accumulated on the soil surface in forests plays a major role in several ecosystem processes; its detailed characterization is therefore essential for thorough understanding of ecosystem functioning. In addition, litter is known to affect remote sensing radar data over forested areas and their proper processing requires accurate quantification of litter scattering properties. In the present study, ultrawideband (0.8-2.2 GHz) ground-penetrating radar (GPR) data were collected in situ for a wide range of litter types to investigate the potential of the technique to reconstruct litter horizons in undisturbed natural conditions. Radar data were processed resorting to full-wave inversion. Good agreement was generally found between estimated and measured litter layer thicknesses, with root-mean-square error values around 1 cm for recently fallen litter (OL layer) and around 2 cm for fragmented litter in partial decomposition (OF layer) and total litter (OL + OF). Nevertheless, significant correlations between estimated and measured thicknesses were found for total litter only. Inaccuracies in the reconstruction of the individual litter horizons were mainly attributed to weak dielectric contrasts amongst litter layers, with absolute differences in relative dielectric permittivity values often lower than 2 between humus horizons, and to uncertainties in the ground truth values. Radar signal inversions also provided reliable estimates of litter electromagnetic properties, with average relative dielectric permittivity values around 2.9 and 6.3 for OL and OF litters, respectively. These results are encouraging for the use of GPR for noninvasive characterization and mapping of forest litter. Perspectives for the application of the technique in biogeosciences are discussed.

  15. Radar Observations of Asteroids 64 Angelina and 69 Hesperia

    Science.gov (United States)

    Shepard, Michael K.; Clark, B. E.; Ockert-Bell, M.; Nolan, M. C.; Howell, E. S.; Magri, C.; Benner, L. A. M.; Giorgini, J. D.

    2010-10-01

    Using the S-band radar at Arecibo Observatory, we observed the E-class asteroid 64 Angelina and the M-class asteroid 69 Hesperia. We obtained a single run on Angelina on 31 Jan 2010 with a signal-to-noise (SNR) of 10. We find its circular polarization ratio (SC/OC) to be muc = 0.8 +/- 0.1, tied with 434 Hungaria for the highest value measured for any main-belt asteroid (Shepard et al. 195, 220-225, 2008). This is consistent with the high polarization ratios observed for the E-class asteroids in general (Benner et al. Icarus 198, 294-304, 2008). Our estimate of the echo's bandwidth is B = 35 +/- 5 Hz. This is inconsistent with a published diameter of 60 km (Morrison and Chapman, ApJ 204, 934-939, 1976) and published rotation pole (lambda/beta 138/+31 deg, uncertainties +/- 10 deg, Shevchenko et al. PSS 51, 525-532, 2003). Either the pole is significantly different, the diameter is smaller, or some combination of these. We obtained two runs on 69 Hesperia on 3 Feb 2010 with a total SNR of 24. We estimate a bandwidth of B = 440 +/- 40 Hz that is 75% of the expected value based on the published diameter (IRAS, 138 km) and pole direction (lambda/beta 73 / -45 deg, Torppa et al. Icarus 164, 346-383, 2003). We estimate a radar albedo of 0.4 for the first run, placing it in the high-metal M-class (Mm) class defined by Shepard et al. (Icarus, 208, 221-237, 2010). Acknowledgements: This work was funded by NSF grant AST-0908098 to MKS and AST-0908217 to BEC.

  16. Processing Doppler Lidar and Cloud Radar Observations for Analysis of Convective Mass Flux Parameterizations Using DYNAMO Direct Observations

    Science.gov (United States)

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Processing Doppler Lidar and Cloud Radar Observations...campaign the data gathered from the High Resolution Doppler Lidar (HRDL) and the 94-GHz cloud Doppler radar Report Documentation Page Form ApprovedOMB No...00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Processing Doppler Lidar and Cloud Radar Observations for Analysis of Convective Mass Flux

  17. Towards a radar- and observation-based hail climatology for Germany

    Directory of Open Access Journals (Sweden)

    Thomas Junghänel

    2016-09-01

    Full Text Available In the German Strategy for Adaptation to Climate Change hail is identified as one of the major subjects of concern regarding transport infrastructure. Moreover hailstorms are a major threat to e.g. agriculture and the automobile industry causing significant economical damages and losses. Despite these significant hail-related meteorological risks no comprehensive observation-based hail climatology for Germany exists. In this study we present a new approach to this task, combining radar data with different kinds of hail reports, such as ground observation and agricultural insurance data. Preprocessing ensures the applicability of the radar data for the presented climatological analysis. In this sense a number of detection methods are applied to filter artefacts, especially clutter pixels and spokes that disrupt radar measurements. To construct a reliable hail climatology for Germany we process all information into a 10‑year based annual average number of hail days on a 1km×1km$1\\,\\text{km}\\times1\\,\\text{km}$ grid using a two-path hail criterion. While the first path combines a threshold of 50 dBZ with a hail report, the second path is based on a 55 dBZ threshold only. By adding radar data we increase the spatial representativity of the ground based hail reports and gain additional information in regions which lack observational data. Overall, the results are mainly determined by events derived from the first path (68 %. A validation of our dataset at 65 stations of Deutscher Wetterdienst shows that the method slightly underestimates the number of hail days, especially for mountainous regions. This results in a better adaption of the hail criterion to lowlands. The resulting hail frequency map shows an increase in the average number of hail days per year from north to south. In particular, hailstorms occur less frequently in the Central North German Plain and the Mecklenburg Coastal Lowland, whereas the highest number of hail days

  18. Comprehensive Radar Observations of Clouds and Precipitation over the Tibetan Plateau and Preliminary Analysis of Cloud Properties

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Intensive fi eld experiment is an important approach to obtain microphysical information about clouds and precipitation. From 1 July to 31 August 2014, the third Tibetan Plateau Atmospheric Science Experiment was carried out and comprehensive measurements of water vapor, clouds, and precipitation were conducted at Naqu. The most advanced radars in China, such as Ka-band millimeter-wave cloud radar, Ku-band micro-rain radar, C-band continuous-wave radar and lidar, and microwave radiometer and disdrometer were deployed to observe high spatial-temporal vertical structures of clouds and precipitation. The C-band dual-linear polarization radar was coordinated with the China new generation weather radar to constitute a dual-Doppler radar system for the measurements of three-dimensional wind fi elds within convective precipitations and the structure and evolution of hydrometeors related to precipitation process. Based on the radar measurements in this experiment, the diurnal variations of several important cloud properties were analyzed, including cloud top and base, cloud depth, cloud cover, number of cloud layers, and their vertical structures during summertime over Naqu. The features of refl ectivity, velocity, and depolarization ratio for diff erent types of clouds observed by cloud radar are discussed. The results indicate that the cloud properties were successfully measured by using various radars in this fi eld experiment. During the summertime over Naqu, most of the clouds were located above 6 km and below 4 km above ground level. Statistical analysis shows that total amounts of clouds, the top of high-level clouds, and cloud depth, all demonstrated a distinct diurnal variation. Few clouds formed at 1000 LST (local standard time), whereas large amounts of clouds formed at 2000 LST. Newly formed cumulus and stratus clouds were often found at 3-km height, where there existed signifi cant updrafts. Deep convection reached up to 16.5 km (21 km above the mean sea level

  19. Giant aerosol observations with cloud radar: methodology and effects

    Science.gov (United States)

    Guma Claramunt, Pilar; Madonna, Fabio; Amodeo, Aldo; Bauer-Pfundstein, Matthias; Papagiannopoulos, Nikolaos; Pappalardo, Gelsomina

    2017-04-01

    Giant aerosol particles can act as Giant Cloud Condensation Nuclei (GCCN), and determine the droplet concentration at the cloud formation, the clouds albedo and lifetime, and the precipitation formation. In addition, depending on their composition, they can also act as IN. It is not yet clear if they can also expedite rain processes. The main techniques used nowadays in measuring aerosols, which are lidar and sun photometer, cannot retrieve aerosol microphysical properties for particles bigger than a few microns, which means that they do not account for giant aerosols. Therefore, the distribution and impact in the atmosphere and climate of these particles is not well known and the aerosol transport models largely underestimate them. Recent studies have demonstrated that cloud radars are able to detect ultragiant volcanic aerosols also at a large distance from the source. In this study, an innovative methodology for the observation of giant aerosols using the millimeter wavelength radar has been developed and applied to 6 years of measurements carried out at CNR-IMAA Atmospheric Observatory (CIAO), in Potenza, South Italy, finding more than 40 giant aerosol events per year and a good agreement with the aerosol climatologic data. Besides, the effects of giant aerosols in the local and regional meteorology have been studied by correlating several atmospheric variables in the time period following the observation of giant particles. The meteorological situation has been assessed through the data classification into cases characterized by different pressure vertical velocities at the upper atmosphere (400 hPa), Giant aerosols are correlated to lower values of the Cloud Optical Depth (COD) in presence of stable or unstable atmospheric conditions while higher values are found for an intermediate stability. The giant aerosols effects on the Liquid Water Path (LWP) are closely linked to those in the Aerosol Optical Thickness (AOD). The highest increases in the LWP occurs

  20. Through the looking glass: Applications of ground-penetrating radar in archaeology

    Science.gov (United States)

    Stamos, Antonia

    The focus of this dissertation is to present the results of four years' worth of geophysical surveying at four major archaeological sites in Greece and the benefits to the archaeological community. The ground penetrating radar offers an inexpensive, non-destructive solution to the problem of deciding how much of a site is worth excavating and which areas would yield the most promising results. An introduction to the ground penetrating radar, or GPR, the equipment necessary to conduct a geophysical survey in the field, and the methods of data collection and subsequent data processing are all addressed. The benefits to the archeological community are many, and future excavations will incorporate such an important tool for a greater understanding of the site. The history of GPR work in the archaeological field has grown at an astounding rate from its beginnings as a simple tool for petroleum and mining services in the beginning of the twentieth century. By mid-century, the GPR was first applied to archaeological sites rather than its common use by utility companies in locating pipes, cables, tunnels, and shafts. Although the preliminary surveys were little more than a search to locate buried walls, the success of these initial surveys paved the ground for future surveys at other archaeological sites, many testing the radar's efficacy with a myriad of soil conditions and properties. The four sites in which geophysical surveys with a ground penetrating radar were conducted are Azorias on the island of Crete, Kolonna on the island of Aegina, Mochlos Island and Coastal Mochlos on the island of Crete, and Mycenae in the Peloponnese on mainland Greece. These case studies are first presented in terms of their geographical location, their mythology and etymology, where applicable, along with a brief history of excavation and occupation of the site. Additional survey methods were used at Mycenae, including aerial photography and ERDAS Imagine, a silo locating program now

  1. Mapping of permafrost surface using ground-penetrating radar at Kangerlussuaq Airport, western Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Andreasen, Frank

    2007-01-01

    Kangerlussuaq Airport is located at 67°N and 51°W in the zone of continuous permafrost in western Greenland. Its proximity to the Greenlandic ice sheet results in a dry sub-arctic climate with a mean annual temperature of −5.7 °C. The airport is built on a river terrace mostly consisting of fluvial...... deposits overlying fine-grained marine melt-water sediments and bedrock. A ground-penetrating radar (GPR) survey was performed to study the frozen surface beneath the airfield. The measurements were carried out in late July 2005 on the southern parking area in Kangerlussuaq Airport. Five years earlier...

  2. Boost-Phase ballistic missile trajectory estimation with ground based radar

    Institute of Scientific and Technical Information of China (English)

    Tang Yuyan; Huang Peikang

    2006-01-01

    A conditional boost-phase trajectory estimation method based on ballistic missile (BM) information database and classification is developed to estimate and predict boos-phase BM trajectory. The main uncertain factors to describe BM dynamics equation are reduced to the control law of trajectory pitch angle in boost-phase. After the BM mass at the beginning of estimation, the BM attack angle and the modification of engine thrust denoting BM acceleration are modeled reasonably, the boost-phase BM trajectory estimation with ground based radar is well realized. The validity of this estimation method is testified by computer simulation with a typical example.

  3. Quantifying snow and vegetation interactions in the high arctic based on ground penetrating radar (GPR)

    DEFF Research Database (Denmark)

    Gacitúa, G.; Bay, C.; Tamstorf, M.

    2013-01-01

    The quantification of the relationship between accumulation of snow and vegetation is crucial for understanding the influence of vegetation dynamics. We here present an analysis of the thickness of the snow and hydrological availability in relation to the seven main vegetation types in the High...... Arctic in Northeast Greenland. We used ground penetrating radar (GPR) for snow thickness measurements across the Zackenberg valley. Measurements were integrated to the physical conditions that support the vegetation distribution. Descriptive statistics and correlations of the distribution of each...

  4. Embedding the multiple instance problem: applications to landmine detection with ground penetrating radar

    Science.gov (United States)

    Bolton, Jeremy; Gader, Paul; Frigui, Hichem

    2013-06-01

    Multiple Instance Learning is a recently researched learning paradigm in machine intelligence which operates under conditions of uncertainty with the cost of increased computational burden. This increase in computational burden can be avoided by embedding these so-called multiple instances using a kernel function or other embedding function. In the following, a family of fast multiple instance relevance vector machines are used to learn and classify landmine signatures in ground penetrating radar data. Results indicate a significant reduction in computational complexity without a loss in classification accuracy in operating conditions.

  5. The SIMCA algorithm for processing Ground Penetrating Radar data and its use in landmine detection

    OpenAIRE

    Sengodan, A.; Cockshott, W. P.

    2012-01-01

    The main challenge of ground penetrating radar (GPR)\\ud based land mine detection is to have an accurate image\\ud analysis method that is capable of reducing false alarms.\\ud However an accurate image relies on having sufficient spatial\\ud resolution in the received signal. But because the diameter\\ud of an AP mine can be as low as 2cm and many soils\\ud have very high attenuations at frequencies above 3GHz,\\ud the accurate detection of landmines is accomplished using\\ud advanced algorithms. U...

  6. Context-dependent feature selection for landmine detection with ground-penetrating radar

    Science.gov (United States)

    Ratto, Christopher R.; Torrione, Peter A.; Collins, Leslie M.

    2009-05-01

    We present a novel method for improving landmine detection with ground-penetrating radar (GPR) by utilizing a priori knowledge of environmental conditions to facilitate algorithm training. The goal of Context-Dependent Feature Selection (CDFS) is to mitigate performance degradation caused by environmental factors. CDFS operates on GPR data by first identifying its environmental context, and then fuses the decisions of several classifiers trained on context-dependent subsets of features. CDFS was evaluated on GPR data collected at several distinct sites under a variety of weather conditions. Results show that using prior environmental knowledge in this fashion has the potential to improve landmine detection.

  7. Low velocity target detection based on time-frequency image for high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    YAN Songhua; WU Shicai; WEN Biyang

    2007-01-01

    The Doppler spectral broadening resulted from non-stationary movement of target and radio-frequency interference will decrease the veracity of target detection by high frequency ground wave(HEGW)radar.By displaying the change of signal energy on two dimensional time-frequency images based on time-frequency analysis,a new mathematical morphology method to distinguish target from nonlinear time-frequency curves is presented.The analyzed results from the measured data verify that with this new method the target can be detected correctly from wide Doppler spectrum.

  8. Ground-penetrating radar signal processing for the detection of buried objects

    Science.gov (United States)

    Walters, Mitchell; Garcia, Ephrahim

    2011-06-01

    In this work the singular value decomposition (SVD) is used to analyze matrices of ground penetrating radar (GPR) data. The targets to be detected are Russian PMN antipersonnel landmines and improvised explosive devices constructed from 155mm artillery shells. Target responses are simulated with GPRmax 2D, a simulation package based on the Finite- Difference-Time-Domain method. First, the utility of the SVD for image enhancement and reconstruction is demonstrated. Then the singular values and singular vectors of the decomposed matrices are analyzed with the goal of finding properties that will aid in the development of automated underground detection algorithms.

  9. Simultaneous optical and radar observations of meteor head-echoes utilizing SAAMER

    Science.gov (United States)

    Michell, R. G.; Janches, D.; Samara, M.; Hormaechea, J. L.; Brunini, C.; Bibbo, I.

    2015-12-01

    We present simultaneous optical and radar observations of meteors observed with the Southern Argentine Agile MEteor Radar (SAAMER). Although such observations were performed in the past using High Power and Large Aperture radars, the focus here is on meteors that produced head echoes that can be detected by a significantly less sensitive but more accessible radar system. An observational campaign was conducted in August of 2011, where an optical imager was operated near the radar site in Rio Grande, Tierra del Fuego, Argentina. Six head echo events out of 150 total detections were identified where simultaneous optical meteors could also be clearly seen within the main radar beam. The location of the meteors derived from the radar interferometry agreed very well with the optical location, verifying the accuracy of the radar interferometry technique. The meteor speeds and origin directions calculated from the radar data were accurate-compared with the optics-for the 2 meteors that had radar signal-to-noise ratios above 2.5. The optical meteors that produced the head echoes had horizontal velocities in the range of 29-91 km/s. These comparisons with optical observations improve the accuracy of the radar detection and analysis techniques, such that, when applied over longer periods of time, will improve the statistics of southern hemisphere meteor observations. Mass estimates were derived using both the optical and radar data and the resulting masses agreed well with each other. All were within an order of magnitude and in most cases, the agreement was within a factor of two.

  10. Evaluation and Improvement of Spectral Features for the Detection of Buried Explosive Hazards Using Forward-Looking Ground-Penetrating Radar

    Science.gov (United States)

    2012-07-01

    for the NIITEK ground penetrating radar using order weighted averaging operators for landmine detection”, Proc. SPIE 5415, 953-962 (2004). [9] Sun, Y...and Li, J., "Plastic landmine detection using time-frequency analysis for forward-looking ground - penetrating radar ”, Proc. SPIE 5089, 851-862...REPORT Evaluation and Improvement of Spectral Features for the Detection of Buried Explosive Hazards Using Forward-Looking Ground - Penetrating Radar 14

  11. Ground penetrating radar detection of subsnow liquid overflow on ice-covered lakes in interior Alaska

    Directory of Open Access Journals (Sweden)

    A. Gusmeroli

    2012-07-01

    Full Text Available Lakes are abundant throughout the pan-Arctic region. For many of these lakes ice cover lasts for up to two thirds of the year. This frozen cover allows human access to these lakes, which are therefore used for many subsistence and recreational activities, including water harvesting, fishing, and skiing. Safe access to these lakes may be compromised, however, when, after significant snowfall, the weight of the snow acts on the ice and causes liquid water to spill through weak spots and overflow at the snow-ice interface. Since visual detection of subsnow liquid overflow (SLO is almost impossible our understanding on SLO processes is still very limited and geophysical methods that allow SLO detection are desirable. In this study we demonstrate that a commercially available, lightweight 1GHz, ground penetrating radar system can detect and map extent and intensity of SLO. Radar returns from wet snow-ice interfaces are at least twice as much in strength than returns from dry snow-ice interface. The presence of SLO also affects the quality of radar returns from the base of the lake ice. During dry conditions we were able to profile ice thickness of up to 1 m, conversely, we did not retrieve any ice-water returns in areas affected by SLO.

  12. Evaluation of Radar Vegetation Indices for Vegetation Water Content Estimation Using Data from a Ground-Based SMAP Simulator

    Science.gov (United States)

    Srivastava, Prashant K.; O'Neill, Peggy; Cosh, Michael; Lang, Roger; Joseph, Alicia

    2015-01-01

    Vegetation water content (VWC) is an important component of microwave soil moisture retrieval algorithms. This paper aims to estimate VWC using L band active and passive radar/radiometer datasets obtained from a NASA ground-based Soil Moisture Active Passive (SMAP) simulator known as ComRAD (Combined Radar/Radiometer). Several approaches to derive vegetation information from radar and radiometer data such as HH, HV, VV, Microwave Polarization Difference Index (MPDI), HH/VV ratio, HV/(HH+VV), HV/(HH+HV+VV) and Radar Vegetation Index (RVI) are tested for VWC estimation through a generalized linear model (GLM). The overall analysis indicates that HV radar backscattering could be used for VWC content estimation with highest performance followed by HH, VV, MPDI, RVI, and other ratios.

  13. High-resolution mapping of soil moisture at the field scale using ground-penetrating radar for improving remote sensing data products

    Science.gov (United States)

    Lambot, Sébastien; Mahmoudzadeh, Mohammad Reza; Phuong Tran, Anh; Nottebaere, Martijn; Leonard, Aline; Defourny, Pierre; Neyt, Xavier

    2014-05-01

    Characterizing the spatiotemporal distribution of soil moisture at various scales is essential in agricultural, hydrological, meteorological, and climatological research and applications. Soil moisture determines the boundary condition between the soil and the atmosphere and governs key processes of the hydrological cycle such as infiltration, runoff, root water uptake, evaporation, as well as energy exchanges between the Earth's surface and the atmosphere. In that respect, ground-penetrating radar (GPR) is of particular interest for field-scale soil moisture mapping as soil moisture is highly correlated to its permittivity, which controls radar wave propagation in the soil. Yet, accurate determination of the electrical properties of a medium using GPR requires full-wave inverse modeling, which has remained a major challenge in applied geophysics for many years. We present a new near-field radar modeling approach for wave propagation in layered media. Radar antennas are modeled using an equivalent set of infinitesimal electric dipoles and characteristic, frequency-dependent, global reflection and transmission coefficients. These coefficients determine wave propagation between the radar reference plane, point sources, and field points. The interactions between the antenna and the soil are inherently accounted for. The fields are calculated using three-dimensional Green's functions. We validated the model using both time and frequency domain radars. The radars were mounted on a quad and controlled by a computer for real-time radar and dGPS data acquisition. Several fields were investigated and time-lapse measurements were performed on some of them to analyze temporal stability in soil moisture patterns and the repeatability of the measurements. The results were compared to ground-truths. The proposed technique is presently being applied to improve space-borne remote sensing data products for soil moisture by providing high-resolution observational information that

  14. Saturated hydraulic conductivity determined by on ground mono-offset Ground-Penetrating Radar inside a single ring infiltrometer

    CERN Document Server

    Léger, Emmanuel; Coquet, Yves

    2013-01-01

    In this study we show how to use GPR data acquired along the infiltration of water inside a single ring infiltrometer to inverse the saturated hydraulic conductivity. We used Hydrus-1D to simulate the water infiltration. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity, knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the 1D time convolution between reflectivity and GPR signal at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relation ship to invert the saturated hydraulic conductivity for constant and fallin...

  15. Ground-penetrating radar research in Belgium: from developments to applications

    Science.gov (United States)

    Lambot, Sébastien; Van Meirvenne, Marc; Craeye, Christophe

    2014-05-01

    Ground-penetrating radar research in Belgium spans a series of developments and applications, including mainly ultra wideband radar antenna design and optimization, non-destructive testing for the characterization of the electrical properties of soils and materials, and high-resolution subsurface imaging in agricultural engineering, archeology and transport infrastructures (e.g., road inspection and pipe detection). Security applications have also been the topic of active research for several years (i.e., landmine detection) and developments in forestry have recently been initiated (i.e., for root zone and tree trunk imaging and characterization). In particular, longstanding research has been devoted to the intrinsic modeling of antenna-medium systems for full-wave inversion, thereby providing an effective way for retrieving the electrical properties of soils and materials. Full-wave modeling is a prerequisite for benefiting from the full information contained in the radar data and is necessary to provide robust and accurate estimates of the properties of interest. Nevertheless, this has remained a major challenge in geophysics and electromagnetics for many years, mainly due to the complex interactions between the antennas and the media as well as to the significant computing resources that are usually required. Efforts have also been dedicated to the development of specific inversion strategies to cope with the complexity of the inverse problems usually dealt with as well as ill-posedness issues that arise from a lack of information in the radar data. To circumvent this last limitation, antenna arrays have been developed and modeled in order to provide additional information. Moreover, data fusion ways have been investigated, by mainly combining GPR data with electromagnetic induction complementary information in joint interpretation analyses and inversion procedures. Finally, inversions have been regularized by combining electromagnetics models together with soil

  16. Two-Dimensional Variational Analysis of Near-Surface Moisture from Simulated Radar Refractivity-Related Phase Change Observations

    Institute of Scientific and Technical Information of China (English)

    Ken-ichi SHIMOSE; Ming XUE; Robert D.PALMER; Jidong GAO; Boon Leng CHEONG; David J.BODINE

    2013-01-01

    Because they are most sensitive to atmospheric moisture content,radar refractivity observations can provide high-resolution information about the highly variable low-level moisture field.In this study,simulated radar refractivity-related phase-change data were created using a radar simulator from realistic high-resolution model simulation data for a dryline case.These data were analyzed using the 2DVAR system developed specifically for the phase-change data.Two sets of experiments with the simulated observations were performed,one assuming a uniform target spacing of 250 m and one assuming nonuniform spacing between 250 m to 4 km.Several sources of observation error were considered,and their impacts were examined.They included errors due to ground target position uncertainty,typical random errors associated with radar measurements,and gross error due to phase wrapping.Without any additional information,the 2DVAR system was incapable of dealing with phase-wrapped data directly.When there was no phase wrapping in the data,the 2DVAR produced excellent analyses,even in the presence of both position uncertainty and random radar measurement errors.When a separate pre-processing step was applied to unwrap the phase-wrapped data,quality moisture analyses were again obtained,although the analyses were smoother due to the reduced effective resolution of the observations by interpolation and smoothing involved in the unwrapping procedure.The unwrapping procedure was effective even when significant differences existed between the analyzed state and the state at a reference time.The results affirm the promise of using radar refractivity phase-change measurements for near-surface moisture analysis.

  17. Merging Radar Quantitative Precipitation Estimates (QPEs) from the High-resolution NEXRAD Reanalysis over CONUS with Rain-gauge Observations

    Science.gov (United States)

    Prat, O. P.; Nelson, B. R.; Stevens, S. E.; Nickl, E.; Seo, D. J.; Kim, B.; Zhang, J.; Qi, Y.

    2015-12-01

    The processing of radar-only precipitation via the reanalysis from the National Mosaic and Multi-Sensor Quantitative (NMQ/Q2) based on the WSR-88D Next-generation Radar (Nexrad) network over the Continental United States (CONUS) is completed for the period covering from 2002 to 2011. While this constitutes a unique opportunity to study precipitation processes at higher resolution than conventionally possible (1-km, 5-min), the long-term radar-only product needs to be merged with in-situ information in order to be suitable for hydrological, meteorological and climatological applications. The radar-gauge merging is performed by using rain gauge information at daily (Global Historical Climatology Network-Daily: GHCN-D), hourly (Hydrometeorological Automated Data System: HADS), and 5-min (Automated Surface Observing Systems: ASOS; Climate Reference Network: CRN) resolution. The challenges related to incorporating differing resolution and quality networks to generate long-term large-scale gridded estimates of precipitation are enormous. In that perspective, we are implementing techniques for merging the rain gauge datasets and the radar-only estimates such as Inverse Distance Weighting (IDW), Simple Kriging (SK), Ordinary Kriging (OK), and Conditional Bias-Penalized Kriging (CBPK). An evaluation of the different radar-gauge merging techniques is presented and we provide an estimate of uncertainty for the gridded estimates. In addition, comparisons with a suite of lower resolution QPEs derived from ground based radar measurements (Stage IV) are provided in order to give a detailed picture of the improvements and remaining challenges.

  18. Support vector data description for detecting the air-ground interface in ground penetrating radar signals

    Science.gov (United States)

    Wood, Joshua; Wilson, Joseph

    2011-06-01

    In using GPR images for landmine detection it is often useful to identify the air-ground interface in the GRP signal for alignment purposes. A common simple technique for doing this is to assume that the highest return in an A-scan is from the reflection due to the ground and to use that as the location of the interface. However there are many situations, such as the presence of nose clutter or shallow sub-surface objects, that can cause the global maximum estimate to be incorrect. A Support Vector Data Description (SVDD) is a one-class classifier related to the SVM which encloses the class in a hyper-sphere as opposed to using a hyper-plane as a decision boundary. We apply SVDD to the problem of detection of the air-ground interface by treating each sample in an A-scan, with some number of leading and trailing samples, as a feature vector. Training is done using a set of feature vectors based on known interfaces and detection is done by creating feature vectors from each of the samples in an A-scan, applying the trained SVDD to them and selecting the one with the least distance from the center of the hyper-sphere. We compare this approach with the global maximum approach, examining both the performance on human truthed data and how each method affects false alarm and true positive rates when used as the alignment method in mine detection algorithms.

  19. VHF radar observations of gravity waves at a low latitude

    Directory of Open Access Journals (Sweden)

    G. Dutta

    Full Text Available Wind observations made at Gadanki (13.5°N by using Indian MST Radar for few days in September, October, December 1995 and January, 1996 have been analyzed to study gravity wave activity in the troposphere and lower stratosphere. Horizontal wind variances have been computed for gravity waves of period (2-6 h from the power spectral density (PSD spectrum. Exponential curves of the form eZ/H have been fitted by least squares technique to these variance values to obtain height variations of the irregular winds upto the height of about 15 km, where Z is the height in kilometers. The value of H, the scale height, as determined from curve fitting is found to be less than the theoretical value of scale height of neutral atmosphere in this region, implying that the waves are gaining energy during their passage in the troposphere. In other words, it indicates that the sources of gravity waves are present in the troposphere. The energy densities of gravity wave fluctuations have been computed. Polynomial fits to the observed values show that wave energy density increases in the troposphere, its source region, and then decreases in the lower stratosphere.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence; waves and tides

  20. Comparative analysis of clutter suppression techniques for landmine detection using ground-penetrating radar

    Science.gov (United States)

    Yoldemir, Ahmet Burak; Gürcan, Rıdvan; Kaplan, Gülay Büyükaksoy; Sezgin, Mehmet

    2011-06-01

    In this study, we provide an extensive comparison of different clutter suppression techniques that are proposed to enhance ground penetrating radar (GPR) data. Unlike previous studies, we directly measure and present the effect of these preprocessing algorithms on the detection performance. Basic linear prediction algorithm is selected as the detection scheme and it is applied to real GPR data after applying each of the available clutter suppression techniques. All methods are tested on an extensive data set of different surrogate mines and other objects that are commonly encountered under the ground. Among several algorithms, singular value decomposition based clutter suppression stands out with its superior performance and low computational cost, which makes it practical to use in real-time applications.

  1. Snow Mass Quantification and Avalanche Victim Search By Ground Penetrating Radar

    Science.gov (United States)

    Jaedicke, C.

    Ground penetrating radar (GPR) systems can be used in many applications of snow and ice research. The information from the GPR is interpreted to identify layers, ob- ject and different structures in the snow. A commercially available GPR system was further developed to work in the rough environment of snow and ice. The applied GPR is a 900 MHz system that easily reaches snow depths of ten meters. The system is cal- ibrated by several manual snow depth measurements during each survey. The depth resolution is depending on the snow type and ranges around +/- 0.1 m. The GPR sys- tem carried along a line of interest and is triggered by an odometer wheel at regular adjustable steps. All equipment is mounted in a sledge and is moved by a snow mo- bile over the surface. This setup allows the efficient coverage of several kilometers of profiles. The radar profiles give a real time two-dimensional impression of structures and objects and the interface between snow and underlying ground. The actual radar profile is shown on a screen on the sledge allowing the immediate marking of objects and structures. During the past three years the instrument was successfully used for the study of snow distributions, for the detection of glacier crevasses under the snow cover and for the search of avalanche victims in avalanche debris. The results show the capability of the instrument to detect persons and objects in the snow cover. In the future this could be new tool for avalanche rescue operations. Today the size and weight of the system prevents the access to very steep slopes and areas not accessible for snowmobile. Further development will decrease the size of the system and make it a valuable tool to quantify the snow mass in avalanche release zones and run out areas.

  2. Assimilation of Wave Imaging Radar Observations for Real-time Wave-by-Wave Forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Alexandra [Oregon State Univ., Corvallis, OR (United States); Haller, Merrick; Walker, David [SRI International, Menlo Park, CA (United States); Lynett, Pat [Univ. of Southern California, Los Angeles, CA (United States)

    2017-08-29

    forecasting in real-time, as the GPU-based wave model backbone was very computationally efficient. The data assimilation algorithm was developed on a polar grid domain in order to match the sampling characteristics of the observation system (wave imaging marine radar). For verification purposes, a substantial set of synthetic wave data (i.e. forward runs of the wave model) were generated to be used as ground truth for comparison to the reconstructions and forecasts produced by Wavecast. For these synthetic cases, Wavecast demonstrated very good accuracy, for example, typical forecast correlation coefficients were between 0.84-0.95 when compared to the input data. Dependencies on shadowing, observational noise, and forecast horizon were also identified. During the second year of the project, a short field deployment was conducted in order to assess forecast accuracy under field conditions. For this, a radar was installed on a fishing vessel and observations were collected at the South Energy Test Site (SETS) off the coast of Newport, OR. At the SETS site, simultaneous in situ wave observations were also available owing to an ongoing field project funded separately. Unfortunately, the position and heading information that was available for the fishing vessel were not of sufficient accuracy in order to validate the forecast in a phase-resolving sense. Instead, a spectral comparison was made between the Wavecast forecast and the data from the in situ wave buoy. Although the wave and wind conditions during the field test were complex, the comparison showed a promising reconstruction of the wave spectral shape, where both peaks in the bimodal spectrum were represented. However, the total reconstructed spectral energy (across all directions and frequencies) was limited to 44% of the observed spectrum. Overall, wave-by-wave forecasting using a data assimilation approach based on wave imaging radar observations and a physics-based wave model shows promise for short-term phase

  3. Curvelet filter based prescreener for explosive hazard detection in hand-held ground penetrating radar

    Science.gov (United States)

    White, Julie L.; Anderson, Derek T.; Ball, John E.; Parker, Brian

    2016-05-01

    Explosive hazards, above and below ground, are a serious threat to civilians and soldiers. In an attempt to mitigate these threats, different forms of explosive hazard detection (EHD) exist; e.g., multi-sensor hand-held platforms, downward looking and forward looking vehicle mounted platforms, etc. Robust detection of these threats resides in the processing and fusion of different data from multiple sensing modalities, e.g., radar, infrared, electromagnetic induction (EMI), etc. Herein, we focus on a new energy-based prescreener in hand-held ground penetrating radar (GPR). First, we Curvelet filter B-scan signal data using either Reverse-Reconstruction followed by Enhancement (RRE) or selectivity with respect to wedge information in the Curvelet transform. Next, we aggregate the result of a bank of matched filters and run a size contrast filter with Bhattacharyya distance. Alarms are then combined using weighted mean shift clustering. Results are demonstrated in the context of receiver operating characteristics (ROC) curve performance on data from a U. S. Army test site that contains multiple target and clutter types, burial depths and times of the day.

  4. Forward modeling of seepage of reservoir dam based on ground penetrating radar

    Directory of Open Access Journals (Sweden)

    Xueli WU

    2017-08-01

    Full Text Available The risk of the reservoir dam seepage will bring the waste of water resources and the loss of life and property. The ground penetrating radar (GPR is designed as a daily inspection system of dams to improve the existing technology which can't determine the actual situation of the dam seepage tunnel coordinates. The finite difference time domain (FDTD is used to solve the Yee's grids discreatization in two-dimensional space, and its electromagnetic distribution equation is obtained as well. Based on the actual structure of reservoir dam foundation, the ideal model of air layer, concrete layer, clay layer and two water seepage holes is described in detail, and the concrete layer interference model with limestone interference point is established. The system architecture is implemented by using MATLAB, and the forward modeling is performed. The results indicate that ground penetrating radar can be used for deep target detection. Through comparing the detection spectrum of three kinds of frequency electromagnetic wave by changing the center frequency of the GPR electromagnetic wave of 50 MHz, 100 MHz and 200 MHz, it is concluded that the scanning result is more accurate at 100 MHz. At the same time, the simulation results of the interference model show that this method can be used for the detection of complex terrain.

  5. Cross-validation Methodology between Ground and GPM Satellite-based Radar Rainfall Product over Dallas-Fort Worth (DFW) Metroplex

    Science.gov (United States)

    Chen, H.; Chandrasekar, V.; Biswas, S.

    2015-12-01

    Over the past two decades, a large number of rainfall products have been developed based on satellite, radar, and/or rain gauge observations. However, to produce optimal rainfall estimation for a given region is still challenging due to the space time variability of rainfall at many scales and the spatial and temporal sampling difference of different rainfall instruments. In order to produce high-resolution rainfall products for urban flash flood applications and improve the weather sensing capability in urban environment, the center for Collaborative Adaptive Sensing of the Atmosphere (CASA), in collaboration with National Weather Service (NWS) and North Central Texas Council of Governments (NCTCOG), has developed an urban radar remote sensing network in DFW Metroplex. DFW is the largest inland metropolitan area in the U.S., that experiences a wide range of natural weather hazards such as flash flood and hailstorms. The DFW urban remote sensing network, centered by the deployment of eight dual-polarization X-band radars and a NWS WSR-88DP radar, is expected to provide impacts-based warning and forecasts for benefit of the public safety and economy. High-resolution quantitative precipitation estimation (QPE) is one of the major goals of the development of this urban test bed. In addition to ground radar-based rainfall estimation, satellite-based rainfall products for this area are also of interest for this study. Typical example is the rainfall rate product produced by the Dual-frequency Precipitation Radar (DPR) onboard Global Precipitation Measurement (GPM) Core Observatory satellite. Therefore, cross-comparison between ground and space-based rainfall estimation is critical to building an optimal regional rainfall system, which can take advantages of the sampling differences of different sensors. This paper presents the real-time high-resolution QPE system developed for DFW urban radar network, which is based upon the combination of S-band WSR-88DP and X

  6. Towards a synthesis of substorm electrodynamics: HF radar and auroral observations

    Directory of Open Access Journals (Sweden)

    A. Grocott

    2006-12-01

    Full Text Available At 08:35 UT on 21 November 2004, the onset of an interval of substorm activity was captured in the southern hemisphere by the Far UltraViolet (FUV instrument on board the IMAGE spacecraft. This was accompanied by the onset of Pi2 activity and subsequent magnetic bays, evident in ground magnetic data from both hemispheres. Further intensifications were then observed in both the auroral and ground magnetic data over the following ~3 h. During this interval the fields-of-view of the two southern hemisphere Tasman International Geospace Enviroment Radars (TIGER moved through the evening sector towards midnight. Whilst initially low, the amount of backscatter from TIGER increased considerably during the early stages of the expansion phase such that by ~09:20 UT an enhanced dusk flow cell was clearly evident. During the expansion phase the equatorward portion of this flow cell developed into a narrow high-speed flow channel, indicative of the auroral and sub-auroral flows identified in previous studies (e.g. Freeman et al., 1992; Parkinson et al., 2003. At the same time, higher latitude transient flow features were observed and as the interval progressed the flow reversal region and Harang discontinuity became very well defined. Overall, this study has enabled the spatial and temporal development of many different elements of the substorm process to be resolved and placed within a simple conceptual framework of magnetospheric convection. Specifically, the detailed observations of ionospheric flows have illustrated the complex interplay between substorm electric fields and associated auroral dynamics. They have helped define the distinct nature of different substorm current systems such as the traditional substorm current wedge and the more equatorward currents associated with polarisation electric fields. Additionally, they have revealed a radar signature of nightside reconnection which provides the promise of quantifying nightside reconnection in a

  7. Remote sensing satellite formation for bistatic synthetic aperture radar observation

    Science.gov (United States)

    D'Errico, Marco; Moccia, Antonio

    2001-12-01

    In recent years the Italian Space Agency has been proceeding to the definition and launch of small missions. In this ambit, the BISSAT mission was proposed and selected along with five other missions for a competitive Phase A study. BISSAT mission concept consists in flying a passive SAR on board a small satellite, which observes the area illuminated by an active SAR, operating on an already existing large platform. Several scientific applications of bistatic measurements can be envisaged: improvement of image classification and pattern recognition, derivation of medium-resolution digital elevation models, velocity measurements, measurements of sea-wave spectra. BISSAT payload is developed on the basis of the X-band SAR of the COSMO/SkyMed mission, while BISSAT bus is based on an upgrade of MITA. Orbit design has been performed, leading to the same orbit parameters apart from the ascending node right ascension (5.24 degree(s) shift) and the time of the passage on the ascending node (1.17s shift). A minimum distance at the passage of the orbit crossing point of about 42 km (5.7s) is computed. To maintain adequate swath overlap along the orbit, attitude maneuver or antenna electronic steering must be envisaged and traded-off taking into account radar performance and cost of hardware upgrade.

  8. Detection capability of a pulsed Ground Penetrating Radar utilizing an oscilloscope and Radargram Fusion Approach for optimal signal quality

    Science.gov (United States)

    Seyfried, Daniel; Schoebel, Joerg

    2015-07-01

    In scientific research pulsed radars often employ a digital oscilloscope as sampling unit. The sensitivity of an oscilloscope is determined in general by means of the number of digits of its analog-to-digital converter and the selected full scale vertical setting, i.e., the maximal voltage range displayed. Furthermore oversampling or averaging of the input signal may increase the effective number of digits, hence the sensitivity. Especially for Ground Penetrating Radar applications high sensitivity of the radar system is demanded since reflection amplitudes of buried objects are strongly attenuated in ground. Hence, in order to achieve high detection capability this parameter is one of the most crucial ones. In this paper we analyze the detection capability of our pulsed radar system utilizing a Rohde & Schwarz RTO 1024 oscilloscope as sampling unit for Ground Penetrating Radar applications, such as detection of pipes and cables in the ground. Also effects of averaging and low-noise amplification of the received signal prior to sampling are investigated by means of an appropriate laboratory setup. To underline our findings we then present real-world radar measurements performed on our GPR test site, where we have buried pipes and cables of different types and materials in different depths. The results illustrate the requirement for proper choice of the settings of the oscilloscope for optimal data recording. However, as we show, displaying both strong signal contributions due to e.g., antenna cross-talk and direct ground bounce reflection as well as weak reflections from objects buried deeper in ground requires opposing trends for the oscilloscope's settings. We therefore present our Radargram Fusion Approach. By means of this approach multiple radargrams recorded in parallel, each with an individual optimized setting for a certain type of contribution, can be fused in an appropriate way in order to finally achieve a single radargram which displays all

  9. USING GROUND PENETRATING RADAR TO DETERMINE THE TUNNEL LOCATION BURIED UNDER THE GLACIER

    Directory of Open Access Journals (Sweden)

    Deryuga Andrey Mikhaylovich

    2013-09-01

    Full Text Available The works were carried out with the help of ground penetrating radar “Grot-10”. Doublet broadband antennas with the central frequency of 100 MHz were used. Georadar measures the speed of EM waves v in ice-saturated soil and then the value ε′ is calculated. The radargrams received as a result of georadar survey, which represents stacked data (the two-way time is indicated on vertical scale, were transformed into depth sections, which reflect the space structure located below ground. The distance between the bottom landing and buried mountain road near the north tunnel portal is 78,5 m (profile # 1, and the distance from the upper landing is 84,5 m (profile no. 2. Later, in the April 2003 during the hole boring with the diameter 1,2 m the vertical distance between the upper landing, where ground penetrating works were carried out, and the carpet road of the tunnel was calculated. This distance appeared to be 83 m, that means, the discrepancy between boring and georadar data (84,5 m was only 1,5 m. Thus, the results of ground penetrating investigations helped the workers of glacier to make the correct conclusion on time about the location and burial depth of the tunnel.

  10. COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar:" ongoing research activities and mid-term results

    Science.gov (United States)

    Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Slob, Evert; Tosti, Fabio

    2015-04-01

    -3-319-04812-3 (in press). [9] 'Proceedings of the 15th International Conference on Ground Penetrating Radar - GPR2014, June 30 - July 4, 2014, Bruxelles, Belgium,' S. Lambot, A. Giannopoulos, L. Pajewski, F. De André, E. Slob, and C. Craeye, Eds., IEEE Conference Record Number: 35163, ISBN: 978-1-4799-6789-6, IEEE Part Number: CFP14538-ART, October 2014. [10] 'Near Surface Geophysics' Special Issue on 'Civil and Environmental Engineering Applications of Ground Penetrating Radar,' A. Benedetto, A. Loizos, L. Pajewski, and F. Tosti, Guest Eds., publication planned for Spring 2015. [11] IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS) Special Issue on 'Ground Penetrating Radar', S. Lambot, A. Giannopoulos, L. Pajewski, E. Slob, Guest Eds., publication planned for December 2015.

  11. Application of Ground Penetrating Radar Surveys and GPS Surveys for Monitoring the Condition of Levees and Dykes

    Directory of Open Access Journals (Sweden)

    Tanajewski Dariusz

    2016-08-01

    Full Text Available This paper analyses the possibility of using integrated GPS (Global Positioning System surveys and ground penetrating radar surveys to precisely locate damages to levees, particularly due to the activity of small fossorial mammals. The technology of intercommunication between ground penetrating radar (GPR and an RTK (Real-Time Kinematic survey unit, and the method of data combination, are presented. The errors which may appear during the survey work are also characterized. The procedure for processing the data so that the final results have a spatial character and are ready to be implemented in digital maps and geographic information systems (GIS is also described.

  12. Application of Ground Penetrating Radar Surveys and GPS Surveys for Monitoring the Condition of Levees and Dykes

    Science.gov (United States)

    Tanajewski, Dariusz; Bakuła, Mieczysław

    2016-08-01

    This paper analyses the possibility of using integrated GPS (Global Positioning System) surveys and ground penetrating radar surveys to precisely locate damages to levees, particularly due to the activity of small fossorial mammals. The technology of intercommunication between ground penetrating radar (GPR) and an RTK (Real-Time Kinematic) survey unit, and the method of data combination, are presented. The errors which may appear during the survey work are also characterized. The procedure for processing the data so that the final results have a spatial character and are ready to be implemented in digital maps and geographic information systems (GIS) is also described.

  13. Observations and modeling of fog by cloud radar and optical sensors

    NARCIS (Netherlands)

    Li, Y.; Hoogeboom, P.; Russchenberg, H.

    2014-01-01

    Fog is a significant factor affecting the public traffic because visibility is reduced to a large extent. Therefore the determination of optical visibility in fog from radar instruments has received much interest. To observe fog with radar, high frequency bands (millimeter waves) have the best

  14. Observations and modeling of fog by cloud radar and optical sensors

    NARCIS (Netherlands)

    Li, Y.; Hoogeboom, P.; Russchenberg, H.

    2014-01-01

    Fog is a significant factor affecting the public traffic because visibility is reduced to a large extent. Therefore the determination of optical visibility in fog from radar instruments has received much interest. To observe fog with radar, high frequency bands (millimeter waves) have the best optio

  15. State-of-the-art and trends of Ground-Penetrating Radar antenna arrays

    Science.gov (United States)

    Vescovo, Roberto; Pajewski, Lara; Tosti, Fabio

    2016-04-01

    The aim of this contribution is to offer an overview on the antenna arrays for GPR systems, current trends and open issues. Antennas are a critical hardware component of a radar system, dictating its performance in terms of capability to detect targets. Nevertheless, most of the research efforts in the Ground-Penetrating Radar (GPR) area focus on the use of this imaging technique in a plethora of different applications and on the improvement of modelling/inversion/processing techniques, whereas a limited number of studies deal with technological issues related to the design of novel systems, including the synthesis, optimisation and characterisation of advanced antennas. Even fewer are the research activities carried out to develop innovative antenna arrays. GPR antennas operate in a strongly demanding environment and should satisfy a number of requirements, somehow unique and very different than those of conventional radar antennas. The same applies to GPR antenna arrays. The first requirement is an ultra-wide frequency band: the radar has to transmit and receive short-duration time-domain waveforms, in the order of a few nanoseconds, the time-duration of the emitted pulses being a trade-off between the desired radar resolution and penetration depth. Furthermore, GPR antennas should have a linear phase characteristic over the whole operational frequency range, predictable polarisation and gain. Due to the fact that a subsurface imaging system is essentially a short-range radar, the coupling between transmitting and receiving antennas has to be low and short in time. GPR antennas should have quick ring-down characteristics, in order to prevent masking of targets and guarantee a good resolution. The radiation patterns should ensure minimal interference with unwanted objects, usually present in the complex operational environment; to this aim, antennas should provide high directivity and concentrate the electromagnetic energy into a narrow solid angle. As GPR

  16. The relationship between aboveground biomass and radar backscatter as observed on airborne SAR imagery

    Science.gov (United States)

    Kasischke, Eric S.; Bourgeau-Chavez, Laura L.; Christensen, Norman L., Jr.; Dobson, M. Craig

    1991-01-01

    The initial results of an experiment to examine the dependence of radar image intensity on total above-ground biomass in a southern US pine forest ecosystem are presented. Two sets of data are discussed. First, we examine two L-band (VV-polarization) data sets which were collected 5 years apart. These data sets clearly illustrate the change in backscatter resulting from the growth of a young pine stand. Second, we examine the dependence between radar backscatter and biomass as a function of radar frequency using data from the JPL Airborne Synthetic Aperture Radar (AIRSAR) and ERIM/NADC P-3 SAR systems. These results show that there is a positive correlation between above-ground biomass and radar backscatter and at C-, L-, and P-bands, but very little correlation at C-band. The biomass level for which this positive correlation holds decreases as radar frequency increases. This positive correlation is stronger at HH and HV polarizations that VV polarization at L- and P-bands, but strongest at VV polarization for C-band.

  17. Interferometric meteor head echo observations using the Southern Argentina Agile Meteor Radar

    Science.gov (United States)

    Janches, D.; Hocking, W.; Pifko, S.; Hormaechea, J. L.; Fritts, D. C.; Brunini, C.; Michell, R.; Samara, M.

    2014-03-01

    A radar meteor echo is the radar scattering signature from the free electrons generated by the entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF all-sky meteor radars primarily detect the specular trails, while high-power, large-aperture (HPLA) radars efficiently detect meteor head echoes and, in some cases, nonspecular trails. The fact that head echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. Such systems would also permit simultaneous detection of all different scattering mechanisms using the same instrument, rather than requiring assorted different classes of radars, which can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER). The results presented here are derived from observations performed over a period of 12 days in August 2011 and include meteoroid dynamical parameter distributions, radiants, and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.

  18. MetaSensing's FastGBSAR: ground based radar for deformation monitoring

    Science.gov (United States)

    Rödelsperger, Sabine; Meta, Adriano

    2014-10-01

    The continuous monitoring of ground deformation and structural movement has become an important task in engineering. MetaSensing introduces a novel sensor system, the Fast Ground Based Synthetic Aperture Radar (FastGBSAR), based on innovative technologies that have already been successfully applied to airborne SAR applications. The FastGBSAR allows the remote sensing of deformations of a slope or infrastructure from up to a distance of 4 km. The FastGBSAR can be setup in two different configurations: in Real Aperture Radar (RAR) mode it is capable of accurately measuring displacements along a linear range profile, ideal for monitoring vibrations of structures like bridges and towers (displacement accuracy up to 0.01 mm). Modal parameters can be determined within half an hour. Alternatively, in Synthetic Aperture Radar (SAR) configuration it produces two-dimensional displacement images with an acquisition time of less than 5 seconds, ideal for monitoring areal structures like dams, landslides and open pit mines (displacement accuracy up to 0.1 mm). The MetaSensing FastGBSAR is the first ground based SAR instrument on the market able to produce two-dimensional deformation maps with this high acquisition rate. By that, deformation time series with a high temporal and spatial resolution can be generated, giving detailed information useful to determine the deformation mechanisms involved and eventually to predict an incoming failure. The system is fully portable and can be quickly installed on bedrock or a basement. The data acquisition and processing can be fully automated leading to a low effort in instrument operation and maintenance. Due to the short acquisition time of FastGBSAR, the coherence between two acquisitions is very high and the phase unwrapping is simplified enormously. This yields a high density of resolution cells with good quality and high reliability of the acquired deformations. The deformation maps can directly be used as input into an Early

  19. Delineation of a landfill leachate plume using shallow electromagnetic and ground-penetrating radar surveys

    Energy Technology Data Exchange (ETDEWEB)

    Nobes, D.C.; Armstrong, M.J. [Univ. of Canterbury, Christchurch (New Zealand); Broadbent, M. [Broadbent (Michael), Christchurch (New Zealand)

    1994-12-31

    Leachate plumes are often more electrically conductive than the surrounding host pore waters, and thus can be detected using shallow electromagnetic (EM) methods. The depth of penetration of ground penetrating radar (GPR) is controlled to a large extent by the electrical conductivity. Conductive leachate plumes will appear as ``blank`` areas in the radar profiles, because the radar energy is more severely attenuated in the region of the leachate plume. The authors present here the results of EM and GPR Surveys carried out in an area adjacent to a landfill site. Previous resistivity surveys indicated the presence of a leachate plume originating from an early stage of the landfill operation. The shallow EM and GPR surveys were carried out, in part, to confirm and refine the resistivity results, and to delineate the spatial extent of the plume. The surficial sediments are coastal sands, and the dune topography has an effect on the EM results, even though the variations in elevation are, in general, no more than 3 m. Besides the leachate plume, numerous conductivity highs and lows are present, which are at least coarsely correlated with topographic lows and highs. Following the empirical procedure outlined by Monier-Williams et al. (1990), the topographic effects have been removed, and the plume is better isolated and delineated. A possible second, weaker leachate plume has been identified, emanating from the current landfill operation. The second plume may follow a channel that was masked by the overlying dune sands. The leading edge of the primary leachate plume is moving to the south-southeast at a rate of 14 to 15 m/yr.

  20. Mapping Fractures in KAERI Underground Research Tunnel using Ground Penetrating Radar

    Science.gov (United States)

    Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon

    2016-04-01

    The proportion of nuclear power in the Republic of Korea occupies about 40 percent of the entire electricity production. Processing or disposing nuclear wastes, however, remains one of biggest social issues. Although low- and intermediate-level nuclear wastes are stored temporarily inside nuclear power plants, these temporary storages can last only up to 2020. Among various proposed methods for nuclear waste disposal, a long-term storage using geologic disposal facilities appears to be most highly feasible. Geological disposal of nuclear wastes requires a nuclear waste repository situated deep within a stable geologic environment. However, the presence of small-scale fractures in bedrocks can cause serious damage to durability of such disposal facilities because fractures can become efficient pathways for underground waters and radioactive wastes. Thus, it is important to find and characterize multi-scale fractures in bedrocks hosting geologic disposal facilities. In this study, we aim to map small-scale fractures inside the KAERI Underground Research Tunnel (KURT) using ground penetrating radar (GPR). The KURT is situated in the Korea Atomic Energy Research Institute (KAERI). The survey target is a section of wall cut by a diamond grinder, which preserves diverse geologic features such as dykes. We conducted grid surveys on the wall using 500 MHz and 1000 MHz pulseEKKO PRO sensors. The observed GPR signals in both frequencies show strong reflections, which are consistent to form sloping planes. We interpret such planar features as fractures present in the wall. Such fractures were also mapped visually during the development of the KURT. We confirmed their continuity into the wall from the 3D GPR images. In addition, the spatial distribution and connectivity of these fractures are identified from 3D subsurface images. Thus, we can utilize GPR to detect multi-scale fractures in bedrocks, during and after developing underground disposal facilities. This study was

  1. Landmine detection with ground penetrating radar using discrete hidden Markov models with symbol dependent features

    Science.gov (United States)

    Frigui, Hichem; Missaoui, Oualid; Gader, Paul

    2008-04-01

    In this paper, we propose an efficient Discrete Hidden Markov Models (DHMM) for landmine detection that rely on training data to learn the relevant features that characterize different signatures (mines and non-mines), and can adapt to different environments and different radar characteristics. Our work is motivated by the fact that mines and clutter objects have different characteristics depending on the mine type, soil and weather conditions, and burial depth. Thus, ideally different sets of specialized features may be needed to achieve high detection and low false alarm rates. The proposed approach includes three main components: feature extraction, clustering, and DHMM. First, since we do not assume that the relevant features for the different signatures are known a priori, we proceed by extracting several sets of features for each signature. Then, we apply a clustering and feature discrimination algorithm to the training data to quantize it into a set of symbols and learn feature relevance weights for each symbol. These symbols and their weights are then used in a DHMM framework to learn the parameters of the mine and the background models. Preliminary results on large and diverse ground penetrating radar data show that the proposed method outperforms the basic DHMM where all the features are treated equally important.

  2. An Iterative Approach to Ground Penetrating Radar at the Maya Site of Pacbitun, Belize

    Directory of Open Access Journals (Sweden)

    Sheldon Skaggs

    2016-09-01

    Full Text Available Ground penetrating radar (GPR surveys provide distinct advantages for archaeological prospection in ancient, complex, urban Maya sites, particularly where dense foliage or modern debris may preclude other remote sensing or geophysical techniques. Unidirectional GPR surveys using a 500 MHz shielded antenna were performed at the Middle Preclassic Maya site of Pacbitun, Belize. The survey in 2012 identified numerous linear and circular anomalies between 1 m and 2 m deep. Based on these anomalies, one 1 m × 4 m unit and three smaller units were excavated in 2013. These test units revealed a curved plaster surface not previously found at Pacbitun. Post-excavation, GPR data were reprocessed to best match the true nature of excavated features. Additional GPR surveys oriented perpendicular to the original survey confirmed previously detected anomalies and identified new anomalies. The excavations provided information on the sediment layers in the survey area, which allowed better identification of weak radar reflections of the surfaces of a burnt, Middle Preclassic temple in the northern end of the survey area. Additional excavations of the area in 2014 and 2015 revealed it to be a large square structure, which was named El Quemado.

  3. Recursive impedance inversion of ground-penetrating radar data in stochastic media

    Science.gov (United States)

    Zeng, Zhao-Fa; Chen, Xiong; Li, Jing; Chen, Ling-Na; Lu, Qi; Liu, Feng-Shan

    2015-12-01

    The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, which are mostly based on wave velocity, are not suitable for real complex media because of limited resolution. Impedance inversion uses the reflection coefficient of radar waves to directly calculate GPR impedance and other parameters of subsurface media. We construct a 3D multiscale stochastic medium model and use the mixed Gaussian and exponential autocorrelation function to describe the distribution of parameters in real subsurface media. We introduce an elliptical Gaussian function to describe local random anomalies. The tapering function is also introduced to reduce calculation errors caused by the numerical simulation of discrete grids. We derive the impedance inversion workflow and test the calculation precision in complex media. Finally, we use impedance inversion to process GPR field data in a polluted site in Mongolia. The inversion results were constrained using borehole data and validated by resistivity data.

  4. Digital Terrestrial Video Broadcast Interference Suppression in Forward-Looking Ground Penetrating Radar Systems

    Science.gov (United States)

    Rial, F. I.; Mendez-Rial, Roi; Lawadka, Lukasz; Gonzalez-Huici, Maria A.

    2014-11-01

    In this paper we show how radio frequency interference (RFI) generated by digital video broadcasting terrestrial and digital audio broadcasting transmitters can be an important noise source for forward-looking ground penetrating radar (FLGPR) systems. Even in remote locations the average interference power sometimes exceeds ultra-wideband signals by many dB, becoming the limiting factor in the system sensitivity. The overall problem of RFI and its impact in GPR systems is briefly described and several signal processing approaches to removal of RFI are discussed. These include spectral estimation and coherent subtraction algorithms and various filter approaches which have been developed and applied by the research community in similar contexts. We evaluate the performance of these methods by simulating two different scenarios submitted to real RFI acquired with a FLGPR system developed at the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR), (GER). The effectiveness of these algorithms in removing RFI is presented using some performance indices after suppression.

  5. 3D Monitoring under the Keciova Mosque (Casbah-Algier, Algeria) with Ground Penetrating Radar Method

    Science.gov (United States)

    Kadioglu, Selma; Kagan Kadioglu, Yusuf; Deniz, Kiymet; Akin Akyol, Ali

    2014-05-01

    Keciova (Ketchaoua) Mosque, in Casbah-Algiers, the capital of Algeria, is a UNESCO World Heritage Site. Keciova Mosque was originally built in 1612 by the Ottoman Empire. A RAMAC CU II GPR system and a 250 MHz shielded antenna have been employed inside of the Mosque including the Cathedral and inside of the burial chambers under the Cathedral Site on parallel profiles spaced approximately 0.30 m apart to measure data. After applying standard two-dimensional (2D) and three dimensional (3D) imaging techniques, transparent 3D imaging techniques have been used to photograph the foundational infrastructures, buried remains and safety problems of the Mosque. The results showed that we obtained 3D GPR visualization until 12.0 m in depth. Firstly we imaged the base floor including corridors. Then we monitored buried remains under the first ground level between 5.0-7.0 m in depths. Finally we indicated 3D GPR photographs a spectacular protected buried old mosque structures under the second ground level between 9.0-12.0 m in depths. This project has been supported by Republic of Turkey Prime Ministry Turkish Cooperation and Coordination Agency (TIKA). This study is a contribution to the EU funded COST action TU1208, "Civil Engineering Applications of Ground penetrating Radar".

  6. Detection of shallow buried objects using an autoregressive model on the ground penetrating radar signal

    Science.gov (United States)

    Nabelek, Daniel P.; Ho, K. C.

    2013-06-01

    The detection of shallow buried low-metal content objects using ground penetrating radar (GPR) is a challenging task. This is because these targets are right underneath the ground and the ground bounce reflection interferes with their detections. They do not create distinctive hyperbolic signatures as required by most existing GPR detection algorithms due to their special geometric shapes and low metal content. This paper proposes the use of the Autoregressive (AR) modeling method for the detection of these targets. We fit an A-scan of the GPR data to an AR model. It is found that the fitting error will be small when such a target is present and large when it is absent. The ratio of the energy in an Ascan before and after AR model fitting is used as the confidence value for detection. We also apply AR model fitting over scans and utilize the fitting residual energies over several scans to form a feature vector for improving the detections. Using the data collected from a government test site, the proposed method can improve the detection of this kind of targets by 30% compared to the pre-screener, at a false alarm rate of 0.002/m2.

  7. Disturbances in the soil: finding buried bodies and other evidence using ground penetrating radar.

    Science.gov (United States)

    Miller, P S

    1996-07-01

    Ground penetrating radar (GPR) is an efficient and effective means to search for buried evidence, whether it be a clandestine grave, formal burial, or certain missing articles from a crime scene. The procedures for GPR used by the U.S. Army Central Identification Laboratory, Hawaii (CILHI), are the result of several years of experimentation on a variety of ground surfaces in Hawaii, Southeast Asia and the mainland U.S. This remote sensing method does not usually provide direct information that there is a body or other specific object beneath the ground. Most of the time the GPR has been used to determine where a target object is not located. The key feature of GPR is that it can detect recent changes in shallow soil conditions caused by the disturbance of soil and the intrusion of different material. Using the methods described here, the investigator should be able to determine the precise metric grid coordinates for a subsurface disturbance, as well as the approximate size, the general shape, and the depth of the buried material. Success will vary with soil conditions. The conditions suitable or not practical for using GPR are summarized. This remote sensing technology can have wider use in crime scene investigations due to the recent introduction of more user-friendly software and more portable hardware.

  8. Fusion techniques for hybrid ground-penetrating radar: electromagnetic induction landmine detection systems

    Science.gov (United States)

    Laffin, Matt; Mohamed, Magdi A.; Etebari, Ali; Hibbard, Mark

    2010-04-01

    Hybrid ground penetrating radar (GPR) and electromagnetic induction (EMI) sensors have advanced landmine detection far beyond the capabilities of a single sensing modality. Both probability of detection (PD) and false alarm rate (FAR) are impacted by the algorithms utilized by each sensing mode and the manner in which the information is fused. Algorithm development and fusion will be discussed, with an aim at achieving a threshold probability of detection (PD) of 0.98 with a low false alarm rate (FAR) of less than 1 false alarm per 2 square meters. Stochastic evaluation of prescreeners and classifiers is presented with subdivisions determined based on mine type, metal content, and depth. Training and testing of an optimal prescreener on lanes that contain mostly low metal anti-personnel mines is presented. Several fusion operators for pre-screeners and classifiers, including confidence map multiplication, will be investigated and discussed for integration into the algorithm architecture.

  9. Finite difference time domain method forward simulation of complex geoelectricity ground penetrating radar model

    Institute of Scientific and Technical Information of China (English)

    DAI Qian-wei; FENG De-shan; HE Ji-shan

    2005-01-01

    The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or "v" figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell's vorticity equations as departure point, makes use of the principles of Yee's space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.

  10. Feature Extraction and Automatic Material Classification of Underground Objects from Ground Penetrating Radar Data

    Directory of Open Access Journals (Sweden)

    Qingqing Lu

    2014-01-01

    Full Text Available Ground penetrating radar (GPR is a powerful tool for detecting objects buried underground. However, the interpretation of the acquired signals remains a challenging task since an experienced user is required to manage the entire operation. Particularly difficult is the classification of the material type of underground objects in noisy environment. This paper proposes a new feature extraction method. First, discrete wavelet transform (DWT transforms A-Scan data and approximation coefficients are extracted. Then, fractional Fourier transform (FRFT is used to transform approximation coefficients into fractional domain and we extract features. The features are supplied to the support vector machine (SVM classifiers to automatically identify underground objects material. Experiment results show that the proposed feature-based SVM system has good performances in classification accuracy compared to statistical and frequency domain feature-based SVM system in noisy environment and the classification accuracy of features proposed in this paper has little relationship with the SVM models.

  11. Tomographic airborne ground penetrating radar imaging: Achievable spatial resolution and on-field assessment

    Science.gov (United States)

    Catapano, Ilaria; Crocco, Lorenzo; Krellmann, Yvonne; Triltzsch, Gunnar; Soldovieri, Francesco

    2014-06-01

    Ground Penetrating Radar (GPR) airborne systems are gaining an increasing attention as effective monitoring tools capable of underground investigation of wide areas. With respect to this frame, the paper deals with a reconstruction approach specifically designed to image buried targets from airborne gathered scattered field data. The role of the measurement configuration is investigated in order to address the practical problem of how multi-monostatic and multi-frequency data should be gathered, in terms of synthetic aperture length and frequency range, and how the available data affect the achievable reconstruction capabilities. Such an analysis allows us to evaluate the performance of the reconstruction approach in terms of transversal and depth resolution limits. Finally, an experimental validation of the approach is performed by processing real data.

  12. Urban soil exploration through multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar.

    Science.gov (United States)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Vandenhaute, Laura; Delefortrie, Samuël; De Smedt, Philippe; Saey, Timothy; Seuntjens, Piet

    2015-07-01

    In environmental assessments, the characterization of urban soils relies heavily on invasive investigation, which is often insufficient to capture their full spatial heterogeneity. Non-invasive geophysical techniques enable rapid collection of high-resolution data and provide a cost-effective alternative to investigate soil in a spatially comprehensive way. This paper presents the results of combining multi-receiver electromagnetic induction and stepped-frequency ground penetrating radar to characterize a former garage site contaminated with petroleum hydrocarbons. The sensor combination showed the ability to identify and accurately locate building remains and a high-density soil layer, thus demonstrating the high potential to investigate anthropogenic disturbances of physical nature. In addition, a correspondence was found between an area of lower electrical conductivity and elevated concentrations of petroleum hydrocarbons, suggesting the potential to detect specific chemical disturbances. We conclude that the sensor combination provides valuable information for preliminary assessment of urban soils.

  13. DATA PROCESSING AND ANALYSIS TOOLS BASED ON GROUND-BASED SYNTHETIC APERTURE RADAR IMAGERY

    Directory of Open Access Journals (Sweden)

    M. Crosetto

    2017-09-01

    Full Text Available The Ground-Based SAR (GBSAR is a terrestrial remote sensing technique used to measure and monitor deformation. In this paper we describe two complementary approaches to derive deformation measurements using GBSAR data. The first approach is based on radar interferometry, while the second one exploits the GBSAR amplitude. In this paper we consider the so-called discontinuous GBSAR acquisition mode. The interferometric process is not always straightforward: it requires appropriate data processing and analysis tools. One of the main critical steps is phase unwrapping, which can critically affect the deformation measurements. In this paper we describe the procedure used at the CTTC to process and analyse discontinuous GBSAR data. In the second part of the paper we describe the approach based on GBSAR amplitude images and an image-matching method.

  14. Estimation of detection threshold in multiple ship target situations with HF ground wave radar

    Institute of Scientific and Technical Information of China (English)

    Li Hongbo; Shen Yiying; Liu Yongtan

    2007-01-01

    A credible method of calculating the detection threshold is presented for the multiple target situations,which appear frequently in the lower Doppler velocity region during the surveillance of sea with HF ground wave radar. This method defines a whole-peak-outlier elimination (WPOE) criterion, which is based on in-peak-samples correlation of each target echo spectra, to trim off the target signals and abnormal disturbances with great amplitude from the complex spectra. Therefore, cleaned background noise samples are obtained to improve the accuracy and reliability of noise level estimation. When the background noise is nonhomogeneous, the detection samples are limited and often occupied heavily with outliers. In this case, the problem that the detection threshold is overvalued can be solved. In applications on experimental data, it is verified that this method can reduce the miss alarm rate of signal detection effectively in multiple target situations as well as make the adaptability of the detector better.

  15. Estimating Saturated Hydraulic Conductivity from Surface Ground-Penetrating Radar Monitoring of Infiltration

    CERN Document Server

    Léger, Emmanuel; Coquet, Yves

    2013-01-01

    In this study we used Hydrus-1D to simulate water infiltration from a ring infiltrometer. We generated water content profiles at each time step of infiltration, based on a particular value of the saturated hydraulic conductivity while knowing the other van Genuchten parameters. Water content profiles were converted to dielectric permittivity profiles using the Complex Refractive Index Method relation. We then used the GprMax suite of programs to generate radargrams and to follow the wetting front using arrival time of electromagnetic waves recorded by a Ground-Penetrating Radar (GPR). Theoretically, the depth of the inflection point of the water content profile simulated at any infiltration time step is related to the peak of the reflected amplitude recorded in the corresponding trace in the radargram. We used this relationship to invert the saturated hydraulic conductivity for constant and falling head infiltrations. We present our method on synthetic examples and on two experiments carried out on sand. We f...

  16. FDTD analysis of ground-penetrating radar antennas with shields and absorbers

    Institute of Scientific and Technical Information of China (English)

    Liye LIU; Yi SU; Junjie MAO

    2008-01-01

    One of the most critical hardware components of a ground-penetrating radar (GPR) is the antenna system. Important parameters of antennas, such as antenna bandwidth, radiation waveform and cross coupling determine the GPR system performance. The modified TEM horn antenna with distributed resistor load is presented in this paper, and the radiation properties of the antenna with the shields and absorbers are studied through the three-dimensional finite-differ-ence time-domain (FDTD) scheme. Simulations show that the direct signal coupled from the transmitter is decreased by means of the shields and absorbers. Therefore, using the antenna in the GPR system can improve the signal-to-clutter ratio and the dynamic range of the system.

  17. Detection of explosive hazards using spectrum features from forward-looking ground penetrating radar imagery

    Science.gov (United States)

    Farrell, Justin; Havens, Timothy C.; Ho, K. C.; Keller, James M.; Ton, Tuan T.; Wong, David C.; Soumekh, Mehrdad

    2011-06-01

    Buried explosives have proven to be a challenging problem for which ground penetrating radar (GPR) has shown to be effective. This paper discusses an explosive hazard detection algorithm for forward looking GPR (FLGPR). The proposed algorithm uses the fast Fourier transform (FFT) to obtain spectral features of anomalies in the FLGPR imagery. Results show that the spectral characteristics of explosive hazards differ from that of background clutter and are useful for rejecting false alarms (FAs). A genetic algorithm (GA) is developed in order to select a subset of spectral features to produce a more generalized classifier. Furthermore, a GA-based K-Nearest Neighbor probability density estimator is employed in which targets and false alarms are used as training data to produce a two-class classifier. The experimental results of this paper use data collected by the US Army and show the effectiveness of spectrum based features in the detection of explosive hazards.

  18. Explosive hazard detection using MIMO forward-looking ground penetrating radar

    Science.gov (United States)

    Shaw, Darren; Ho, K. C.; Stone, Kevin; Keller, James M.; Popescu, Mihail; Anderson, Derek T.; Luke, Robert H.; Burns, Brian

    2015-05-01

    This paper proposes a machine learning algorithm for subsurface object detection on multiple-input-multiple-output (MIMO) forward-looking ground-penetrating radar (FLGPR). By detecting hazards using FLGPR, standoff distances of up to tens of meters can be acquired, but this is at the degradation of performance due to high false alarm rates. The proposed system utilizes an anomaly detection prescreener to identify potential object locations. Alarm locations have multiple one-dimensional (ML) spectral features, two-dimensional (2D) spectral features, and log-Gabor statistic features extracted. The ability of these features to reduce the number of false alarms and increase the probability of detection is evaluated for both co-polarizations present in the Akela MIMO array. Classification is performed by a Support Vector Machine (SVM) with lane-based cross-validation for training and testing. Class imbalance and optimized SVM kernel parameters are considered during classifier training.

  19. Magnetometry and Ground-Penetrating Radar Studies in the Sihuas Valley, Peru

    Science.gov (United States)

    Wisnicki, E.; Papadimitrios, K.; Bank, C.

    2013-12-01

    The Quillcapampa la Antigua site in Peru's Sihuas Valley is a settlement from Peru's Middle Horizon (600-100 A.D.). Archaeological interest in the area stems from the question of whether ancient civilizations were able to have extensive state control of distant groups, or whether state influence occurred through less direct ties (e.g., marriage, religion, or trade). Our geophysical surveys are preliminary to archaeological digging in the area. Ground-penetrating radar and magnetometry attempt to locate areas of interest for focused archaeological excavation, characterize the design of architectural remains and burial mounds in the area, and allow archaeologists to interpret the amount of influence the Wari civilization had on the local residents.

  20. INVESTIGATION OF GROUND PENETRATING RADAR FOR DETECTION OF ROAD SUBSIDENCE NORTHCOAST OF JAKARTA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Kris Budiono

    2017-07-01

    Full Text Available A survey of Ground Penetrating Radar (GPR was conducted in the coastal zone of northern part of Jakarta, Indonesia. The purpose of this survey was to provide the subsurface of coastal Quaternary sedimentary features and stratigraphy disturbances associated with induce post road subsidence 2009. The possibility of subsurface lithology disturbance shown by the GPR record. This record resulted from GPR methods using SIR system 20 GSSI, 270 MHz and 400 MHz and MLF 3200 transducer. The method is a promising tool for resolving changes of physical properties in subsurface lithology condition at the natural scale due to composition changes of physical properties.The reflection data resulted that GPR can distinguish between image the basic geometry forms such as lithology , structure geology , soil and subsurface utilities condition

  1. Detection of underground voids in Tahura Japan Cave Bandung using ground penetrating radar

    Science.gov (United States)

    Azimmah, Azizatun; Widodo

    2017-07-01

    The detection of underground voids is important due to their effects on subsidence higher risk. Ground Penetrating Radar is one of geophysical electromagnetic methods that has been proven to be able to detect and locate any void beneath the surface effectively at a shallow depth. This method uses the contrasts of dielectric properties, resistivity and magnetic permeability to investigate and map what lies beneath the surface. Hence, this research focused on how GPR could be applied for detecting underground voids at the site of investigation, The Japan Cave in Taman Hutan Raya located in Dago, Bandung, Indonesia. A 100 MHz GPR shielded antenna frequency were used to measure three >80 meters long measurement lines. These three GPR profiles were positioned on the surface above the Japan Cave. The radargram results showed existences of different amplitude regions proven to be the air-filled cavities, at a depth of <10 meters, and interfaces between the underneath layers.

  2. Design of Wireless Automatic Synchronization for the Low-Frequency Coded Ground Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Zhenghuan Xia

    2015-01-01

    Full Text Available Low-frequency coded ground penetrating radar (GPR with a pair of wire dipole antennas has some advantages for deep detection. Due to the large distance between the two antennas, the synchronization design is a major challenge of implementing the GPR system. This paper proposes a simple and stable wireless automatic synchronization method based on our developed GPR system, which does not need any synchronization chips or modules and reduces the cost of the hardware system. The transmitter omits the synchronization preamble and pseudorandom binary sequence (PRBS at an appropriate time interval, while receiver automatically estimates the synchronization time and receives the returned signal from the underground targets. All the processes are performed in a single FPGA. The performance of the proposed synchronization method is validated with experiment.

  3. Ground penetrating detection using miniaturized radar system based on solid state microwave sensor.

    Science.gov (United States)

    Yao, B M; Fu, L; Chen, X S; Lu, W; Guo, H; Gui, Y S; Hu, C-M

    2013-12-01

    We propose a solid-state-sensor-based miniaturized microwave radar technique, which allows a rapid microwave phase detection for continuous wave operation using a lock-in amplifier rather than using expensive and complicated instruments such as vector network analyzers. To demonstrate the capability of this sensor-based imaging technique, the miniaturized system has been used to detect embedded targets in sand by measuring the reflection for broadband microwaves. Using the reconstruction algorithm, the imaging of the embedded target with a diameter less than 5 cm buried in the sands with a depth of 5 cm or greater is clearly detected. Therefore, the sensor-based approach emerges as an innovative and cost-effective way for ground penetrating detection.

  4. Radar Observations and Simulation of the Melting Layer of Precipitation

    NARCIS (Netherlands)

    Klaassen, Wim

    1988-01-01

    The melting layer in precipitation is physically modeled and compared with high resolution Doppler radar data. The model includes a new formulation of the dielectric properties and can handle all ice particles with densities ranging from pure snow to hail. The air temperature is calculated from the

  5. Radar Observations and Simulation of the Melting Layer of Precipitation

    NARCIS (Netherlands)

    Klaassen, Wim

    1988-01-01

    The melting layer in precipitation is physically modeled and compared with high resolution Doppler radar data. The model includes a new formulation of the dielectric properties and can handle all ice particles with densities ranging from pure snow to hail. The air temperature is calculated from the

  6. Assimilation of Dual-Polarimetric Radar Observations with WRF GSI

    Science.gov (United States)

    Li, Xuanli; Mecikalski, John; Fehnel, Traci; Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Dual-polarimetric (dual-pol) radar typically transmits both horizontally and vertically polarized radio wave pulses. From the two different reflected power returns, more accurate estimate of liquid and solid cloud and precipitation can be provided. The upgrade of the traditional NWS WSR-88D radar to include dual-pol capabilities will soon be completed for the entire NEXRAD network. Therefore, the use of dual-pol radar network will have a broad impact in both research and operational communities. The assimilation of dual-pol radar data is especially challenging as few guidelines have been provided by previous research. It is our goal to examine how to best use dual-pol radar data to improve forecast of severe storm and forecast initialization. In recent years, the Development Testbed Center (DTC) has released the community Gridpoint Statistical Interpolation (GSI) DA system for the Weather Research and Forecasting (WRF) model. The community GSI system runs in independently environment, yet works functionally equivalent to operational centers. With collaboration with the NASA Short-term Prediction Research and Transition (SPoRT) Center, this study explores regional assimilation of the dual-pol radar variables from the WSR-88D radars for real case storms. Our presentation will highlight our recent effort on incorporating the horizontal reflectivity (ZH), differential reflectivity (ZDR), specific differential phase (KDP), and radial velocity (VR) data for initializing convective storms, with a significant focus being on an improved representation of hydrometeor fields. In addition, discussion will be provided on the development of enhanced assimilation procedures in the GSI system with respect to dual-pol variables. Beyond the dual-pol variable assimilation procedure developing within a GSI framework, highresolution (=1 km) WRF model simulations and storm scale data assimilation experiments will be examined, emphasizing both model initialization and short-term forecast

  7. A feature learning approach for classifying buried threats in forward looking ground penetrating radar data

    Science.gov (United States)

    Camilo, Joseph A.; Malof, Jordan M.; Collins, Leslie M.

    2016-05-01

    The forward-looking ground penetrating radar (FLGPR) is a remote sensing modality that has recently been investigated for buried threat detection. The FLGPR considered in this work uses stepped frequency sensing followed by filtered backprojection to create images of the ground, where each image pixel corresponds to the radar energy reflected from the subsurface at that location. Typical target detection processing begins with a prescreening operation where a small subset of spatial locations are chosen to consider for further processing. Image statistics, or features, are then extracted around each selected location and used for training a machine learning classification algorithm. A variety of features have been proposed in the literature for use in classification. Thus far, however, predominantly hand-crafted or manually designed features from the computer vision literature have been employed (e.g., HOG, Gabor filtering, etc.). Recently, it has been shown that image features learned directly from data can obtain state-of-the-art performance on a variety of problems. In this work we employ a feature learning scheme using k-means and a bag-of-visual-words model to learn effective features for target and non-target discrimination in FLGPR data. Experiments are conducted using several lanes of FLGPR data and learned features are compared with several previously proposed static features. The results suggest that learned features perform comparably, or better, than existing static features. Similar to other feature learning results, the features consist of edges or texture primitives, revealing which structures in the data are most useful for discrimination.

  8. GROUND PENETRATING RADAR INVESTIGATIONS FOR ARCHITECTURAL HERITAGE PRESERVATION OF THE HABIB SAKAKINI PALACE, CAIRO, EGYPT

    Directory of Open Access Journals (Sweden)

    Sayed HEMEDA

    2012-09-01

    Full Text Available The modern architectural heritage of Egypt is both varied and vast. It covers all nonecclesiastical buildings, important monumental structures (mansions, municipal buildings in the history of architecture, as well as more common buildings. They include houses (from mansions to simple dwellings, public buildings (schools, administrative buildings, hospitals, industrial buildings (factories, warehouses, mills, bridges, monastic dependencies (drinking foundations, gardens and any other modern structures that fall within the category of monuments and comprise the Egyptian cultural heritage. We present herein a comprehensive Ground Penetration Radar (GPR investigation and hazard assessment for the rehabilitation and strengthening of Habib Sakakini’s Palace, in Cairo, considered one of the most significant architectural heritage sites in Egypt. The palace is located on an ancient water pond at the eastern side of the Egyptian gulf, beside the Sultan Bebris Al-Bondoqdary mosque, a place also called “Prince Qraja al-Turkumany pond”. That pond was drained by Habib Sakakini in 1892, to construct his famous palace in 1897. Eight hundred meters of Ground Penetration Radar (GPR profiling were conducted, to monitor the subsurface conditions. 600 meters were made in the surrounding area of the Palace and 200 m at the basement. The aim was to monitor the soil conditions beneath and around the Palace and to identify potential geological discontinuities, or the presence of faults and cavities. A suitable single and dual antenna were used (500-100 MHZ to penetrate to the desired depth of 7 meters (ASTM D6432. The GPR was also used to detect the underground water. At the building basement the GPR was used to identify the foundation thickness and the soil - basement interface, as well as for the inspection of cracks in some supporting columns, piers and masonry walls. All the results, together with the seismic hazard analysis, will be used for a complete

  9. Grounding line retreat of Pope, Smith, and Kohler Glaciers, West Antarctica, measured with Sentinel-1a radar interferometry data

    Science.gov (United States)

    Scheuchl, B.; Mouginot, J.; Rignot, E.; Morlighem, M.; Khazendar, A.

    2016-08-01

    We employ Sentinel-1a C band satellite radar interferometry data in Terrain Observation with Progressive Scans mode to map the grounding line and ice velocity of Pope, Smith, and Kohler glaciers, in West Antarctica, for the years 2014-2016 and compare the results with those obtained using Earth Remote Sensing Satellites (ERS-1/2) in 1992, 1996, and 2011. We observe an ongoing, rapid grounding line retreat of Smith at 2 km/yr (40 km since 1996), an 11 km retreat of Pope (0.5 km/yr), and a 2 km readvance of Kohler since 2011. The variability in glacier retreat is consistent with the distribution of basal slopes, i.e., fast along retrograde beds and slow along prograde beds. We find that several pinning points holding Dotson and Crosson ice shelves disappeared since 1996 due to ice shelf thinning, which signal the ongoing weakening of these ice shelves. Overall, the results indicate that ice shelf and glacier retreat in this sector remain unabated.

  10. Evaluating Frontal Precipitation with a Spectral Microphysics Mesoscale Model and a Satellite Simulator as Compared to Radar and Radiometer Observations

    Science.gov (United States)

    Han, M.; Braun, S. A.; Matsui, T.; Iguchi, T.; Williams, C. R.

    2013-12-01

    The Advanced Microwave Scanning Radiometer for EOS (AMSR-E) onboard NASA Aqua satellite and a ground-based precipitation profiling radar sampled a frontal precipitation event in the US west coast on 30 to 31 December 2005. Simulations with bulk microphysics schemes in the Weather Research and Forecast (WRF) model have been evaluated with those remote sensing data. In the current study, we continue similar work to evaluate a spectral bin microphysics (SBM) scheme, HUCM, in the WRF model. The Goddard-Satellite Data Simulation Unit (G-SDSU) is used to simulate quantities observed by the radar and radiometer. With advanced representation of cloud and precipitation microphysics processes, the HUCM scheme predicts distributions of 7 hydrometeor species as storms evolve. In this study, the simulation with HUCM well captured the structure of the precipitation and its microphysics characteristics. In addition, it improved total precipitation ice mass simulation and corrected, to a certain extent, the large low bias of ice scattering signature in the bulk scheme simulations. However, the radar reflectivity simulations with the HUCM scheme were not improved as compared to the bulk schemes. We conducted investigations to understand how microphysical processes and properties, such as snow break up parameter and particle fall velocities would influence precipitation size distribution and spectrum of water paths, and further modify radar and/or radiometer simulations. Influence by ice nuclei is going to be examined as well.

  11. Effect of elevated CO2 on coarse-root biomass in Florida scrub detected by ground-penetrating radar

    Science.gov (United States)

    Daniel B. Stover; Frank P. Day; John R Butnor; Bert G. Drake

    2007-01-01

    Growth and distribution of coarse roots in time and space represent a gap in our understanding of belowground ecology. Large roots may play a critical role in carbon sequestration belowground. Using ground-penetrating radar (GPR), we quantified coarseroot biomass from an open-top chamber experiment in a scrub-oak ecosystem at Kennedy Space Center, Florida, USA. GPR...

  12. The impact of light-colored pavements on active layer dynamics revealed by Ground-Penetrating Radar monitoring

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Ingeman-Nielsen, Thomas

    2008-01-01

    Ground-penetrating radar (GPR) has been used to study the variations in the depth of the frost table throughout a complete thaw-freeze season in Kangerlussuaq Airport, western Greenland. In autumn 2000, three test areas were painted white on the parking area of the airport in order to reduce...

  13. Full-wave modelling of ground-penetrating radars: antenna mutual coupling phenomena and sub-surface scattering processes

    NARCIS (Netherlands)

    Caratelli, D.; Yarovoy, A.

    2011-01-01

    Ground-penetrating radar (GPR) technology finds applications in many areas such as geophysical prospecting, archaeology, civil engineering, environmental engineering, and defence applications as a non-invasive sensing tool [3], [6], [18]. One key component in any GPR system is the receiver/transmitt

  14. A forward model for ground penetrating radar imaging of buried perfect electric conductors within the physical optics approximation

    DEFF Research Database (Denmark)

    Polat, Burak; Meincke, Peter

    2004-01-01

    A forward model for ground penetrating radar imaging of buried 3-D perfect electric conductors is addressed within the framework of diffraction tomography. The similarity of the present forward model derived within the physical optics approximation with that derived within the first Born...

  15. Detectability of underground electrical cables junction with a ground penetrating radar: electromagnetic simulation and experimental measurements

    Science.gov (United States)

    Liu, Xiang; serhir, mohammed; kameni, abelin; lambert, marc; pichon, lionel

    2016-04-01

    For a company like Electricity De France (EDF), being able to detect accurately using non-destructive methods the position of the buried junction between two underground cables is a crucial issue. The junction is the linking part where most maintenance operations are carried out. The challenge of this work is to conduct a feasibility study to confirm or deny the relevance of Ground Penetrating Radar (GPR) to detect these buried junctions in their actual environment against clutter. Indeed, the cables are buried in inhomogeneous medium at around 80cm deep. To do this, the study is conducted in a numerical environment. We use the 3D simulation software CST MWS to model a GPR scenario. In this simulation, we place the already optimized bowtie antennas operating in the frequency band [0.5 GHz - 3 GHz] in front of wet soil (dispersive) and dry soil where the underground cable is placed at 80cm deep. We collect the amplitude and phase of the reflected waves in order to detect the contrast provoked by the geometric dimensions variation of the cable [1] (diameter of the cable is 48mm and the diameter of the junction 74mm). The use of an ultra-wideband antenna is necessary to reconcile resolution and penetration of electromagnetic waves in the medium to be characterized. We focus on the performance of the GPR method according to the characteristics of the surrounding medium in which the electric cables are buried, the polarization of the Tx and Rx antennas. The experimental measurement collected in the EDF site will be presented. The measured data are processed using the clutter reduction method based on digital filtering [2]. We aim at showing that using the developed bowtie antennas that the GPR technique is well adapted for the cable junction localization even in cluttered environment. References [1] D. J. Daniels, "Surface-Penetrating Radar", London, IEE 1996. [2] Potin, D.; Duflos, E.; Vanheeghe, P., "Landmines Ground-Penetrating Radar Signal Enhancement by Digital

  16. The Geminid meteor shower during the ECOMA sounding rocket campaign: specular and head echo radar observations

    Directory of Open Access Journals (Sweden)

    G. Stober

    2013-03-01

    Full Text Available The ECOMA (Existence of Charge state Of meteoric smoke particles in the Middle Atmosphere sounding rocket campaign was conducted during the Geminid meteor shower in December 2010 in order to explore whether there is a change of the properties of meteoric smoke particles due to the stream. In parallel to the rocket flights, three radars monitored the Geminid activity located at the launch site in Northern Norway and in Northern Germany to gain information about the meteor flux into the atmosphere. The results presented here are based on specular meteor radar observations measuring the radiant position, the velocity and the meteor flux into the atmosphere during the Geminids. Further, the MAARSY (Middle Atmosphere Alomar Radar System radar was operated to conduct meteor head echo experiments. The interferometric capabilities of MAARSY permit measuring the meteor trajectories within the radar beam and to determine the source radiant and geocentric meteor velocity, as well as to compute the meteor orbit.

  17. Collection, processing, and interpretation of ground-penetrating radar data to determine sediment thickness at selected locations in Deep Creek Lake, Garrett County, Maryland, 2007

    Science.gov (United States)

    Banks, William S.L.; Johnson, Carole D.

    2011-01-01

    The U.S. Geological Survey collected geophysical data in Deep Creek Lake in Garrett County, Maryland, between September 17 through October 4, 2007 to assist the Maryland Department of Natural Resources to better manage resources of the Lake. The objectives of the geophysical surveys were to provide estimates of sediment thickness in shallow areas around the Lake and to test the usefulness of three geophysical methods in this setting. Ground-penetrating radar (GPR), continuous seismic-reflection profiling (CSP), and continuous resistivity profiling (CRP) were attempted. Nearly 90 miles of GPR radar data and over 70 miles of CSP data were collected throughout the study area. During field deployment and testing, CRP was determined not to be practical and was not used on a large scale. Sediment accumulation generally could be observed in the radar profiles in the shallow coves. In some seismic profiles, a thin layer of sediment could be observed at the water bottom. The radar profiles appeared to be better than the seismic profiles for the determination of sediment thickness. Although only selected data profiles were processed, all data were archived for future interpretation.

  18. A 35-GHz Polarimetric Doppler Radar and Its Application for Observing Clouds Associated with Typhoon Nuri

    Institute of Scientific and Technical Information of China (English)

    ZHONG Lingzhi; LIU Liping; FENG Sheng; GE Runsheng; ZHANG Zhe

    2011-01-01

    Millimeter-wavelength radar has proved to be an effective instrument for cloud observation and research.In this study, 8-mm-wavelength cloud radar (MMCR) with Doppler and polarization capabilities was used to investigate cloud dynamics in China for the first time. Its design, system specifications, calibration,and application in measuring clouds associated with typhoon are discussed in this article. The cloud radar measurements of radar refiectivity (Z), Doppler velocity (Vr), velocity spectrum width (Sw) and the depolarization ratio (LDR) at vertical incidence were used to analyze the microphysical and dynamic processes of the cloud system and precipitation associated with Typhoon Nuri, which occurred in southern China in August 2008. The results show the refiectivity observed using MMCR to be consistent with the echo height and the melting-layer location data obtained by the nearby China S-band new-generation weather radar (SA),but the Ka-band MMCR provided more detailed structural information about clouds and weak precipitation data than did the SA radar. The variation of radar refiectivity and LDR in vertical structure reveals the transformation of particle phase from ice to water. The vertical velocity and velocity spectrum width of MMCR observations indicate an updraft and strong turbulence in the stratiform cloud layer. MMCR provides a valuable new technology for meteorological research in China.

  19. Aspect sensitivity in the VHF radar backscatters studied using simultaneous observations of Gadanki MST radar and GPS sonde

    Directory of Open Access Journals (Sweden)

    A. K. Ghosh

    2004-11-01

    Full Text Available Simultaneous observations made on four days using the MST radar and GPS-sonde at Gadanki (13.5° N, 79.2° E, a tropical station in India, are presented to address the aspect sensitivity of radar backscatters observed at different heights. The observations show that wherever stability parameter N2 is high, vertical shear of horizontal wind is low and Richardson number (Ri is high, the aspect sensitivity is high indicating that the aspect sensitive radar backscatters are due to thermal structures in the atmosphere. Such a case can be seen very clearly in the upper troposphere and lower stratosphere. At some heights, where N2 is high, Ri is high, but shears are relatively weak, the aspect sensitivity is found to almost disappear, indicating that some amount of shear provides favorable conditions for causing aspect sensitivity. Aspect sensitivity does not occur at all where N2 is low or negative and Ri is low in spite of wind shear being either high or low, indicating that the regions are well mixed and hence turbulent. The study also shows a power difference in the symmetric beams. A case study on this aspect suggests that this asymmetry is due to the tilting of layers by the action of atmospheric waves. There is indication that these waves are generated through Kelvin-Helmholtz-instability (KHI.

  20. Electromagnetic energy deposition rate in the polar upper thermosphere derived from the EISCAT Svalbard radar and CUTLASS Finland radar observations

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2007-11-01

    Full Text Available From simultaneous observations of the European incoherent scatter Svalbard radar (ESR and the Cooperative UK Twin Located Auroral Sounding System (CUTLASS Finland radar on 9 March 1999, we have derived the height distributions of the thermospheric heating rate at the F region height in association with electromagnetic energy inputs into the dayside polar cap/cusp region. The ESR and CUTLASS radar observations provide the ionospheric parameters with fine time-resolutions of a few minutes. Although the geomagnetic activity was rather moderate (Kp=3+~4, the electric field obtained from the ESR data sometimes shows values exceeding 40 mV/m. The estimated passive energy deposition rates are also larger than 150 W/kg in the upper thermosphere over the ESR site during the period of the enhanced electric field. In addition, enhancements of the Pedersen conductivity also contribute to heating the upper thermosphere, while there is only a small contribution for thermospheric heating from the direct particle heating due to soft particle precipitation in the dayside polar cap/cusp region. In the same period, the CUTLASS observations of the ion drift show the signature of poleward moving pulsed ionospheric flows with a recurrence rate of about 10–20 min. The estimated electromagnetic energy deposition rate shows the existence of the strong heat source in the dayside polar cap/cusp region of the upper thermosphere in association with the dayside magnetospheric phenomena of reconnections and flux transfer events.

  1. Multi-offset ground-penetrating radar imaging of a lab-scale infiltration test

    Directory of Open Access Journals (Sweden)

    A. R. Mangel

    2012-11-01

    Full Text Available A lab scale infiltration experiment was conducted in a sand tank to evaluate the use of time-lapse multi-offset ground-penetrating radar (GPR data for monitoring dynamic hydrologic events in the vadose zone. Sets of 21 GPR traces at offsets between 0.44–0.9 m were recorded every 30 s during a 3 h infiltration experiment to produce a data cube that can be viewed as multi-offset gathers at unique times or common offset images, tracking changes in arrivals through time. Specifically, we investigated whether this data can be used to estimate changes in average soil water content during wetting and drying and to track the migration of the wetting front during an infiltration event. For the first problem we found that normal-moveout (NMO analysis of the GPR reflection from the bottom of the sand layer provided water content estimates ranging between 0.10–0.30 volumetric water content, which underestimated the value determined by depth averaging a vertical array of six moisture probes by 0.03–0.05 volumetric water content. Relative errors in the estimated depth to the bottom of the 0.6 m thick sand layer were typically on the order of 2%, though increased as high as 25% as the wetting front approached the bottom of the tank. NMO analysis of the wetting front reflection during the infiltration event generally underestimated the depth of the front with discrepancies between GPR and moisture probe estimates approaching 0.15 m. The analysis also resulted in underestimates of water content in the wetted zone on the order of 0.06 volumetric water content and a wetting front velocity equal to about half the rate inferred from the probe measurements. In a parallel modeling effort we found that HYDRUS-1D also underestimates the observed average tank water content determined from the probes by approximately 0.01–0.03 volumetric water content, despite the fact that the model was calibrated to the probe data. This error suggests that the assumed conceptual

  2. Electromagnetic simulators for Ground Penetrating Radar applications developed in COST Action TU1208

    Science.gov (United States)

    Pajewski, Lara; Giannopoulos, Antonios; Warren, Craig; Antonijevic, Sinisa; Doric, Vicko; Poljak, Dragan

    2017-04-01

    Founded in 1971, COST (European COoperation in Science and Technology) is the first and widest European framework for the transnational coordination of research activities. It operates through Actions, science and technology networks with a duration of four years. The main objective of the COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (4 April 2013 - 3 October 2017) is to exchange and increase knowledge and experience on Ground-Penetrating Radar (GPR) techniques in civil engineering, whilst promoting in Europe a wider use of this technique. Research activities carried out in TU1208 include all aspects of the GPR technology and methodology: design, realization and testing of radar systems and antennas; development and testing of surveying procedures for the monitoring and inspection of structures; integration of GPR with other non-destructive testing approaches; advancement of electromagnetic-modelling, inversion and data-processing techniques for radargram analysis and interpretation. GPR radargrams often have no resemblance to the subsurface or structures over which the profiles were recorded. Various factors, including the innate design of the survey equipment and the complexity of electromagnetic propagation in composite scenarios, can disguise complex structures recorded on reflection profiles. Electromagnetic simulators can help to understand how target structures get translated into radargrams. They can show the limitations of GPR technique, highlight its capabilities, and support the user in understanding where and in what environment GPR can be effectively used. Furthermore, electromagnetic modelling can aid the choice of the most proper GPR equipment for a survey, facilitate the interpretation of complex datasets and be used for the design of new antennas. Electromagnetic simulators can be employed to produce synthetic radargrams with the purposes of testing new data-processing, imaging and inversion algorithms, or assess

  3. Locust displacing winds in eastern Australia reassessed with observations from an insect monitoring radar

    Science.gov (United States)

    Hao, Zhenhua; Drake, V. Alistair; Sidhu, Leesa; Taylor, John R.

    2017-07-01

    Based on previous investigations, adult Australian plague locusts are believed to migrate on warm nights (with evening temperatures >25 °C), provided daytime flight is suppressed by surface winds greater than the locusts' flight speed, which has been shown to be 3.1 m s-1. Moreover, adult locusts are believed to undertake briefer `dispersal' flights on nights with evening temperature >20 °C. To reassess the utility of these conditions for forecasting locust flight, contingency tests were conducted comparing the nights selected on these bases (predicted nights) for the months of November, January, and March and the nights when locust migration were detected with an insect monitoring radar (actual nights) over a 7-year period. In addition, the wind direction distributions and mean wind directions on all predicted nights and actual nights were compared. Observations at around 395 m above ground level (AGL), the height at which radar observations have shown that the greatest number of locusts fly, were used to determine the actual nights. Tests and comparisons were also made for a second height, 990 m AGL, as this was used in the previous investigation. Our analysis shows that the proposed criteria are successful from predicting migratory flight only in March, when the surface temperature is effective as a predicting factor. Surface wind speed has no predicting power. It is suggested that a strong daytime surface wind speed requirement should not be considered and other meteorological variables need to be added to the requirement of a warm surface temperature around dusk for the predictions to have much utility.

  4. Image segmentation techniques for improved processing of landmine responses in ground-penetrating radar data

    Science.gov (United States)

    Torrione, Peter A.; Collins, Leslie

    2007-04-01

    As ground penetrating radar sensor phenomenology improves, more advanced statistical processing approaches become applicable to the problem of landmine detection in GPR data. Most previous studies on landmine detection in GPR data have focused on the application of statistics and physics based prescreening algorithms, new feature extraction approaches, and improved feature classification techniques. In the typical framework, prescreening algorithms provide spatial location information of anomalous responses in down-track / cross-track coordinates, and feature extraction algorithms are then tasked with generating low-dimensional information-bearing feature sets from these spatial locations. However in time-domain GPR, a significant portion of the data collected at prescreener flagged locations may be unrelated to the true anomaly responses - e.g. ground bounce response, responses either temporally "before" or "after" the anomalous response, etc. The ability to segment the information-bearing region of the GPR image from the background of the image may thus provide improved performance for feature-based processing of anomaly responses. In this work we will explore the application of Markov random fields (MRFs) to the problem of anomaly/background segmentation in GPR data. Preliminary results suggest the potential for improved feature extraction and overall performance gains via application of image segmentation approaches prior to feature extraction.

  5. Improving soil moisture profile reconstruction from ground-penetrating radar data: a maximum likelihood ensemble filter approach

    Directory of Open Access Journals (Sweden)

    A. P. Tran

    2013-07-01

    Full Text Available The vertical profile of shallow unsaturated zone soil moisture plays a key role in many hydro-meteorological and agricultural applications. We propose a closed-loop data assimilation procedure based on the maximum likelihood ensemble filter algorithm to update the vertical soil moisture profile from time-lapse ground-penetrating radar (GPR data. A hydrodynamic model is used to propagate the system state in time and a radar electromagnetic model and petrophysical relationships to link the state variable with the observation data, which enables us to directly assimilate the GPR data. Instead of using the surface soil moisture only, the approach allows to use the information of the whole soil moisture profile for the assimilation. We validated our approach through a synthetic study. We constructed a synthetic soil column with a depth of 80 cm and analyzed the effects of the soil type on the data assimilation by considering 3 soil types, namely, loamy sand, silt and clay. The assimilation of GPR data was performed to solve the problem of unknown initial conditions. The numerical soil moisture profiles generated by the Hydrus-1D model were used by the GPR model to produce the "observed" GPR data. The results show that the soil moisture profile obtained by assimilating the GPR data is much better than that of an open-loop forecast. Compared to the loamy sand and silt, the updated soil moisture profile of the clay soil converges to the true state much more slowly. Decreasing the update interval from 60 down to 10 h only slightly improves the effectiveness of the GPR data assimilation for the loamy sand but significantly for the clay soil. The proposed approach appears to be promising to improve real-time prediction of the soil moisture profiles as well as to provide effective estimates of the unsaturated hydraulic properties at the field scale from time-lapse GPR measurements.

  6. Sources and Characteristics of Medium Scale Traveling Ionospheric Disturbances Observed by SuperDARN Radars in the North American Sector

    Science.gov (United States)

    Frissell, N. A.; Baker, J. B.; Ruohoniemi, J. M.; Greenwald, R. A.; Gerrard, A. J.; Miller, E. S.; West, M. L.

    2015-12-01

    Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are wave-like perturbations of the F-region ionosphere with horizontal wavelengths on the order of several hundred kilometers, and periods between 15 - 60 min. In SuperDARN radar data, MSTID signatures are manifested as quasi-periodic enhancements of ground backscatter (i.e. skip focusing) which propagate through the radar field-of-view. At high latitudes, SuperDARN observations of MSTIDs have generally been attributed to atmospheric gravity waves (AGWs) launched by auroral sources (e.g. Joule heating). However, recent studies with newer mid-latitude radars have shown MSTIDs are routinely observed in the subauroral ionosphere as well. To develop a more complete picture of MSTID activity, we have surveyed observations from four high latitude and six mid latitude SuperDARN radars located in the North American sector collected between 2011 and 2015 during the months of November to May. Consistent with previous SuperDARN MSTID studies, all radars observed MSTIDs with horizontal wavelengths between ~250 - 500 km and horizontal velocities between ~100 - 250 m/s. The majority of the MSTIDs were observed to propagate in a predominantly southward direction, with bearings ranging from ~135 ̊ - 250 ̊ geographic azimuth. This is highly suggestive of high latitude auroral sources; however, no apparent correlation with geomagnetic or space weather activity could be identified. Rather, comparison of the SuperDARN MSTID time-series data with northern hemisphere geopotential data from the European Center for Medium Range Weather Forecasting (ECMWF) operational model reveals a strong correlation of MSTID activity with dynamics in the polar vortex structure on two primary time scales. First, a seasonal effect manifests as enhanced MSTID activity from November through January, followed by a depressed period from February to May. This appears to correspond with the seasonal development and later decay of the polar vortex. A

  7. Lunar crater ejecta: Physical properties revealed by radar and thermal infrared observations

    Science.gov (United States)

    Ghent, R. R.; Carter, L. M.; Bandfield, J. L.; Tai Udovicic, C. J.; Campbell, B. A.

    2016-07-01

    We investigate the physical properties, and changes through time, of lunar impact ejecta using radar and thermal infrared data. We use data from two instruments on the Lunar Reconnaissance Orbiter (LRO) - the Diviner thermal radiometer and the Miniature Radio Frequency (Mini-RF) radar instrument - together with Earth-based radar observations. We use this multiwavelength intercomparison to constrain block sizes and to distinguish surface from buried rocks in proximal ejecta deposits. We find that radar-detectable rocks buried within the upper meter of regolith can remain undisturbed by surface processes such as micrometeorite bombardment for >3 Gyr. We also investigate the thermophysical properties of radar-dark haloes, comprised of fine-grained, rock-poor ejecta distal to the blocky proximal ejecta. Using Diviner data, we confirm that the halo material is depleted in surface rocks, but show that it is otherwise thermophysically indistinct from background regolith. We also find that radar-dark haloes, like the blocky ejecta, remain visible in radar observations for craters with ages >3 Ga, indicating that regolith overturn processes cannot replenish their block populations on that timescale.

  8. Finland HF and Esrange MST radar observations of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    T. Ogawa

    Full Text Available Peculiar near range echoes observed in summer with the SuperDARN HF radar in Finland are presented. The echoes were detected at four frequencies of 9, 11, 13 and 15 MHz at slant ranges of 105–250 km for about 100 min. Interferometer measurements indicate that the echoes are returned from 80–100 km altitudes with elevation angles of 20°–60°. Echo power (< 16 dB, Doppler velocity (between –30 and + 30 ms-1 and spectral width (< 60 ms-1 fluctuate with periods of several to 20 min, perhaps due to short–period atmospheric gravity waves. When the HF radar detected the echoes, a vertical incidence MST radar, located at Esrange in Sweden (650 km north of the HF radar site, observed polar mesosphere summer echoes (PMSE at altitudes of 80–90 km. This fact suggests that the near range HF echoes are PMSE at HF band, although both radars did not probe a common volume. With increasing radar frequency, HF echo ranges are closer to the radar site and echo power becomes weaker. Possible mechanisms to explain these features are discussed.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; waves and tides; instruments and techniques

  9. Meteor radar measurements of MLT winds near the equatorial electro jet region over Thumba (8.5° N, 77° E: comparison with TIDI observations

    Directory of Open Access Journals (Sweden)

    S. R. John

    2011-07-01

    Full Text Available The All-Sky interferometric meteor (SKYiMET radar (MR derived winds in the vicinity of the equatorial electrojet (EEJ are discussed. As Thumba (8.5° N, 77° E; dip lat. 0.5° N is under the EEJ belt, there has been some debate on the reliability of the meteor radar derived winds near the EEJ height region. In this regard, the composite diurnal variations of zonal wind profiles in the mesosphere-lower thermosphere (MLT region derived from TIMED Doppler Interferometer (TIDI and ground based meteor radar at Thumba are compared. In this study, emphasis is given to verify the meteor radar observations at 98 km height region, especially during the EEJ peaking time (11:00 to 14:00 LT. The composite diurnal cycles of zonal winds over Thumba are constructed during four seasons of the year 2006 using TIDI and meteor radar observations, which showed good agreement especially during the peak EEJ hours, thus assuring the reliability of meteor radar measurements of neutral winds close to the EEJ height region. It is evident from the present study that on seasonal scales, the radar measurements are not biased by the EEJ. The day-time variations of HF radar measured E-region drifts at the EEJ region are also compared with MR measurements to show there are large differences between ionospheric drifts and MR measurements. The significance of the present study lies in validating the meteor radar technique over Thumba located at magnetic equator by comparing with other than the radio technique for the first time.

  10. Integrating ground-penetrating radar and borehole data from a Wadden Sea barrier island

    DEFF Research Database (Denmark)

    Nielsen, Lars; Møller, I.; Nielsen, L. H.

    2009-01-01

    Sea level rise may have large implications for low-gradient barrier coastal systems. This problem motivated an integrated ground-penetrating radar (GPR) and sedimentological study of the Rømø Wadden Sea barrier island. Crossing W-E and N-S-oriented 100 MHz GPR reflection profiles with a total...... signals varies between 7 and 15 m in the interior of the island where the shallow subsurface is not influenced by saltwater intrusion or fine-grained salt marsh sediments. Analysis of common midpoint reflection data constrains the radar wave velocity distribution in the subsurface and facilitates depth...

  11. Mars, accessing the third dimension: a software tool to exploit Mars ground penetrating radars data.

    Science.gov (United States)

    Cantini, Federico; Ivanov, Anton B.

    2016-04-01

    The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), on board the ESA's Mars Express and the SHAllow RADar (SHARAD), on board the NASA's Mars Reconnaissance Orbiter are two ground penetrating radars (GPRs) aimed to probe the crust of Mars to explore the subsurface structure of the planet. By now they are collecting data since about 10 years covering a large fraction of the Mars surface. On the Earth GPRs collect data by sending electromagnetic (EM) pulses toward the surface and listening to the return echoes occurring at the dielectric discontinuities on the planet's surface and subsurface. The wavelengths used allow MARSIS EM pulses to penetrate the crust for several kilometers. The data products (Radargrams) are matrices where the x-axis spans different sampling points on the planet surface and the y-axis is the power of the echoes over time in the listening window. No standard way to manage this kind of data is established in the planetary science community and data analysis and interpretation require very often some knowledge of radar signal processing. Our software tool is aimed to ease the access to this data in particular to scientists without a specific background in signal processing. MARSIS and SHARAD geometrical data such as probing point latitude and longitude and spacecraft altitude, are stored, together with relevant acquisition metadata, in a geo-enabled relational database implemented using PostgreSQL and PostGIS. Data are extracted from official ESA and NASA released data using self-developed python classes and scripts and inserted in the database using OGR utilities. This software is also aimed to be the core of a collection of classes and script to implement more complex GPR data analysis. Geometrical data and metadata are exposed as WFS layers using a QGIS server, which can be further integrated with other data, such as imaging, spectroscopy and topography. Radar geometry data will be available as a part of the iMars Web

  12. Observations of NEAs at Arecibo Observatory and NASA's IRTF: Combining Radar and Thermal Measurements to Better Understand NEA Physical Properties

    Science.gov (United States)

    Nolan, Michael C.; Vervack, R. J.; Howell, E. S.; Magri, C.; Fernandez, Y. R.; Taylor, P. A.; Mueller, M.; Rivkin, A. S.; Benner, L. A. M.

    2010-10-01

    As we sample ever-smaller sizes of near-Earth asteroids (NEAs), we see an increasing variation in the range of physical properties. Radar experiments show a diverse range of shapes, surface features, and rotation states among NEAs. Infrared observations of these objects are equally varied, illustrating a range of spectral types and thermal characteristics. While spacecraft missions will reveal details of a few NEAs, only ground-based observations will provide an overall understanding of the population of these small bodies, for which the size and albedo distributions are still poorly understood. The goal of our investigation is to use both radar images and near-IR spectra to better understand the regolith of different types and shapes of NEAs. The regolith on an asteroid surface controls its thermal properties and often its radar reflectance as well, and at smaller sizes the irregular shape plays an increasingly important role. To accomplish our goal, we have established a program in which we choose NEAs that will be observed well enough with radar to have high-quality shape models and also observe these objects with SpeX at the NASA IRTF (2-4 microns) at several different viewing geometries and rotation phases to see how the inferred thermal properties depend on the detailed shape. We then use this knowledge to quantify the systematic biases in existing thermal models that are based on simple assumptions such as spherical shape or zero thermal inertia. We will present a summary of our observations to date and preliminary results of the thermal modeling.

  13. Ground Penetrating Radar at Alcatraz Island: Imaging Civil-War Era Fortifications Beneath the Recreation Yard

    Science.gov (United States)

    Everett, M. E.; de Smet, T. S.; Warden, R.; Komas, T.; Hagin, J.

    2013-12-01

    As part of a cultural resources assessment and historical preservation project supported by the U.S. National Park Service, GPR surveys using 200 MHz antennas, with ~3.0 m depth of penetration and ~0.1 m lateral and vertical resolution, were conducted by our team in June 2012 over the recreation yard and parade ground at historic Alcatraz Island in order to image the underlying buried Civil War-era fortifications. The recreation yard at the Alcatraz high-security federal penitentiary served as a secure outdoor facility where the prisoners could take exercise. The facility, enclosed by a high perimeter wall and sentry walk, included basketball courts, a baseball diamond, and bleacher-style seating. The site previously consisted of coastal batteries built by the U.S. Army in the early to mid 1850's. As the need for harbor defense diminished, the island was converted into a military prison during the 1860's. In 1933, the military prison was transferred to federal control leading to the establishment of the high-security penitentiary. The rec yard was constructed in 1908-1913 directly over existing earthen fortifications, namely a trio of embankments known as 'traverses I, J, and K.' These mounds of earth, connected by tunnels, were in turn built over concrete and brick magazines. The processed GPR sections show good correlations between radar reflection events and the locations of the buried fortification structures derived from historical map analysis. A 3-D data cube was constructed and two of the cut-away perspective views show that traverse K, in particular, has a strong radar signature.

  14. Oil Detection In and Under Sea Ice Using Ground-Penetrating Radar

    Science.gov (United States)

    Steinbronn, L.; Bradford, J.; Liberty, L.; Dickins, D.; Brandvik, P. J.

    2007-12-01

    Marine oil spills can occur in the Arctic due to pipeline breaks or leaks and spills from storage or production facilities. Depending on the time of year and scenario, a portion or all of the spill may become trapped under and/or encapsulated within the sea ice sheet. The current methods for locating spilled oil include visually inspecting drilled ice cores or sending divers under the ice. Speed is a key issue in oil clean-up. A non-invasive method of detecting oil quickly and reliably would greatly facilitate the clean-up and lessen the impact on the environment. First-year ice thicknesses of 0.5-2.0 m, typical of the Arctic region, can be well-resolved using radar. Oil film thicknesses can range from a few mm to 20 cm depending on the ice-water interface topography. For typical conditions a frequency of 500 MHz gives a 1/4 wavelength limit of 7 cm; therefore a typical spill scenario is a thin-bed problem for ground-penetrating radar (GPR). Interference due to thin-beds may cause amplitude, phase and frequency anomalies in the reflected wavelet. In April 2006, SINTEF conducted a contained oil-spill under natural Arctic sea ice conditions in a fjord on Svalbard. Using data collected during that experiment from a 500 MHz antenna and complex trace analysis we computed the instantaneous frequency, instantaneous phase and the envelope function and found significant differences in the data before and after the oil was inserted. These results demonstrated the potential of GPR to be a practical system for oil in ice detection under certain conditions. As a follow-on to the 2006 project, we have undertaken a detailed modeling effort to estimate GPR response to specific variables, such as ice and oil thicknesses, ice salinity and temperature.

  15. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar

    Science.gov (United States)

    Maas, Christian; Schmalzl, Jörg

    2013-08-01

    Ground Penetrating Radar (GPR) is used for the localization of supply lines, land mines, pipes and many other buried objects. These objects can be recognized in the recorded data as reflection hyperbolas with a typical shape depending on depth and material of the object and the surrounding material. To obtain the parameters, the shape of the hyperbola has to be fitted. In the last years several methods were developed to automate this task during post-processing. In this paper we show another approach for the automated localization of reflection hyperbolas in GPR data by solving a pattern recognition problem in grayscale images. In contrast to other methods our detection program is also able to immediately mark potential objects in real-time. For this task we use a version of the Viola-Jones learning algorithm, which is part of the open source library "OpenCV". This algorithm was initially developed for face recognition, but can be adapted to any other simple shape. In our program it is used to narrow down the location of reflection hyperbolas to certain areas in the GPR data. In order to extract the exact location and the velocity of the hyperbolas we apply a simple Hough Transform for hyperbolas. Because the Viola-Jones Algorithm reduces the input for the computational expensive Hough Transform dramatically the detection system can also be implemented on normal field computers, so on-site application is possible. The developed detection system shows promising results and detection rates in unprocessed radargrams. In order to improve the detection results and apply the program to noisy radar images more data of different GPR systems as input for the learning algorithm is necessary.

  16. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    KAUST Repository

    Jadoon, Khan

    2015-09-18

    We tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  17. Temporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Khan Zaib Jadoon

    2015-09-01

    Full Text Available We tested an off-ground ground-penetrating radar (GPR system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.

  18. Arctic and Antarctic polar mesosphere summer echoes observed with oblique incidence HF radars: analysis using simultaneous MF and VHF radar data

    Directory of Open Access Journals (Sweden)

    T. Ogawa

    2004-12-01

    Full Text Available Polar mesosphere summer echoes (PMSEs have been well studied using vertical incidence VHF radars at northern high-latitudes. In this paper, two PMSE events detected with the oblique incidence SuperDARN HF radars at Hankasalmi, Finland (62.3° N and Syowa Station, Antarctica (69.0° S, are analyzed, together with simultaneous VHF and medium-frequency (MF radar data. Altitude resolutions of the HF radars in the mesosphere and the lower thermosphere are too poor to know exact PMSE altitudes. However, a comparison of Doppler velocity from the HF radar and neutral wind velocity from the MF radar shows that PMSEs at the HF band appeared at altitudes within 80-90km, which are consistent with those from previous vertical incidence HF-VHF radar results. The HF-VHF PMSE occurrences exhibit a semidiurnal behavior, as observed by other researchers. It is found that in one event, PMSEs occurred when westward semidiurnal winds with large amplitude at 85-88km altitudes attained a maximum. When the HF-VHF PMSEs were observed at distances beyond 180km from MF radar sites, the MF radars detected no appreciable signatures of echo enhancement.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; waves and tides

  19. The strong ground motion observation for the Wenchuan aftershock

    Institute of Scientific and Technical Information of China (English)

    Ruizhi Wen; Zhenghua Zhou; Xiaojun Li; Cheng Yang; Yuhuan Wang; Quan Liu; Xiaotao Yin; Mindu Zhou; Jianwen Cui

    2009-01-01

    In this paper, the mobile strong ground motion observation for the destructive earthquake is introduced. Considering the characteristics and its spatial distributions of aftershock, 59 strong ground motion instruments were installed along the Longmenshan fault area, and more than 2 000 records have been accumulated. It shows that it is necessary to perform the mobile strong ground motion observation after the destructive earthquake, and the precious collected data could be applied for further research.

  20. First results of European VLBI radar observations of space objects

    CERN Document Server

    Molotov, I; Nechaeva, M; Dugin, N; Konovalenko, A A; Falkovich, I; Gorshenkov, Yu N; Liu, X; Volvach, A; Agapov, V; Pushkarev, A B; Titenko, V; Buttacio, S; Rumyantsev, V; Shmeld, I

    2004-01-01

    Since 1999 we carried out seven trial VLBI radar experiments under LFVN project. The aim of this work is to adjust new research technique for investigating the Solar system bodies (planets, asteroids, space debris). It is planned to obtain the information on their movement parameters, proper rotation and structure of surface. The transmitter of Evpatoria RT-70 sounded the space objects. Array of Bear Lakes RT-64, Noto RT-32, Urumqi RT-25, Simeiz RT-22 received the echo-signals. The data were processed with NIRFI-3 Mk-2 correlator in N. Novgorod, Russia and NRTV processor in Noto, Italy. The first results of these experiments are presented.

  1. First results of European VLBI radar observations of space objects

    Science.gov (United States)

    Molotov, I.; Tuccari, G.; Nechaeva, M.; Dugin, N.; Konovalenko, A.; Falkovich, I.; Gorshenkov, Y.; Liu, X.; Volvach, A.; Agapov, V.; Pushkarev, A.; Titenko, V.; Buttacio, S.; Rumyantsev, V.; Shmeld, I.

    Since 1999 we carried out seven trial VLBI radar experiments under LFVN project. The aim of this work is to adjust new research technique for investigating the Solar system bodies (planets, asteroids, space debris). It is planned to obtain the information on their movement parameters, proper rotation and structure of surface. The transmitter of Evpatoria RT-70 sounded the space objects. Array of Bear Lakes RT-64, Noto RT-32, Urumqi RT-25, Simeiz RT-22 received the echo-signals. The data were processed with NIRFI-3 Mk-2 correlator in N. Novgorod, Russia and NRTV processor in Noto, Italy. The first results of these experiments are presented. (astro-ph/0412694)

  2. Civil Engineering Applications of Ground Penetrating Radar Recent Advances @ the ELEDIA Research Center

    Science.gov (United States)

    Salucci, Marco; Tenuti, Lorenza; Nardin, Cristina; Oliveri, Giacomo; Viani, Federico; Rocca, Paolo; Massa, Andrea

    2014-05-01

    The application of non-destructive testing and evaluation (NDT/NDE) methodologies in civil engineering has raised a growing interest during the last years because of its potential impact in several different scenarios. As a consequence, Ground Penetrating Radar (GPR) technologies have been widely adopted as an instrument for the inspection of the structural stability of buildings and for the detection of cracks and voids. In this framework, the development and validation of GPR algorithms and methodologies represents one of the most active research areas within the ELEDIA Research Center of the University of Trento. More in detail, great efforts have been devoted towards the development of inversion techniques based on the integration of deterministic and stochastic search algorithms with multi-focusing strategies. These approaches proved to be effective in mitigating the effects of both nonlinearity and ill-posedness of microwave imaging problems, which represent the well-known issues arising in GPR inverse scattering formulations. More in detail, a regularized multi-resolution approach based on the Inexact Newton Method (INM) has been recently applied to subsurface prospecting, showing a remarkable advantage over a single-resolution implementation [1]. Moreover, the use of multi-frequency or frequency-hopping strategies to exploit the information coming from GPR data collected in time domain and transformed into its frequency components has been proposed as well. In this framework, the effectiveness of the multi-resolution multi-frequency techniques has been proven on synthetic data generated with numerical models such as GprMax [2]. The application of inversion algorithms based on Bayesian Compressive Sampling (BCS) [3][4] to GPR is currently under investigation, as well, in order to exploit their capability to provide satisfactory reconstructions in presence of single and multiple sparse scatterers [3][4]. Furthermore, multi-scaling approaches exploiting level

  3. Ground penetrating radar data analyzed in frequency and time domain for engineering issues

    Science.gov (United States)

    Capozzoli, Luigi; Giampaolo, Valeria; Votta, Mario; Rizzo, Enzo

    2014-05-01

    Non-destructive testing (NDT) allows to analyze reinforced concrete and masonry structures, in order to identify gaps, defects, delaminations, and fracture. In the field of engineering, non-invasive diagnostic is used to test the processes of construction and maintenance of buildings and artifacts of the individual components, to reduce analysis time and costs of intervention (Proto et al., 2010). Ground penetrating radar (GPR) allows to evaluate with a good effectiveness the state of conservation of engineering construction (Mellet 1995)). But there are some uncertainties in GPR data due to the complexity of artificial objects. In this work we try to evaluate the capability of GPR for the characterization of building structures in the laboratory and in-situ. In particular the focus of this research consists in integrate spectral analysis to time domain data to enhance information obtained in a classical GPR processing approach. For this reason we have applied spectral analysis to localize and characterize the presence of extraneous bodies located in a test site rebuilt in laboratory to simulate a part of a typical concrete road. The test site is a segment of a road superimposed on two different layers of sand and gravel of varying thickness inside which were introduced steel rebar, PVC and aluminium pipes. This structure has also been cracked in a predetermined area and hidden internal fractures were investigated. The GPR has allowed to characterize the panel in a non-invasive mode and radargrams were acquired using two-dimensional and three-dimensional models from data obtained with the use of 400, 900, 1500 and 2000 Mhz antennas. We have also studied with 2 GHz antenna a beam of 'to years precast bridge characterized by a high state of decay. The last case study consisted in the characterization of a radiant floor analyzed with an integrated use of GPR and infrared thermography. In the frequency domain analysis has been possible to determine variations in the

  4. Analysis of Terminal Velocity and VHF Backscatter of Precipitation Particles Using Chung-Li VHF Radar Combined with Ground-Based Disdrometer

    Directory of Open Access Journals (Sweden)

    Ching-Lun Su and Yen-Hsyang Chu

    2007-01-01

    Full Text Available The backscatter from precipitation particles observed by the vertically pointed antenna beam of the Chung-Li VHF radar and the drop size distributions measured by a ground-based disdrometer co-located at the radar site are analyzed and studied in this article. We find that the disdrometermeasured drop size distribution can be well approximated to a Gamma distribution. On the basis of this property and a power law approximation to the fallspeed-diameter relation VD = ADB, we derive the theoretical relation between terminal velocity VD and range-corrected VHF backscatter P of the precipitation particles. We find that the VD - P relation follows a power law in the form of VD = _ where _ _ both the functions of the precipitation parameters. Chu et al. (1999 first found that the relation between _ _ be empirically approximated to an exponential form of _ _ where _ a function of B and _ a factor associated with precipitation. In this article, under the assumptions of the Gamma distribution of the drop size distribution and the power-law relation between VD and D, we theoretically show that the analytical relation between _ _ follows an exponential form of _ _ where _ a function of the drop size distribution. The experimental results obtained by the Chung-Li VHF radar combined with the ground-based disdrometer measurements validate the exponential approximation to the _ _ The uses of the _ _ for the investigations of the rainfall rate and properties of drop size distribution are presented and discussed.

  5. Distributions of Orbital Elements for Meteoroids on Near-Parabolic Orbits According to Radar Observational Data

    Science.gov (United States)

    Kolomiyets, S. V.

    2011-01-01

    Some results of the International Heliophysical Year (IHY) Coordinated Investigation Program (CIP) number 65 Meteors in the Earth Atmosphere and Meteoroids in the Solar System are presented. The problem of hyperbolic and near-parabolic orbits is discussed. Some possibilities for the solution of this problem can be obtained from the radar observation of faint meteors. The limiting magnitude of the Kharkov, Ukraine, radar observation program in the 1970 s was +12, resulting in a very large number of meteors being detected. 250,000 orbits down to even fainter limiting magnitude were determined in the 1972-78 period in Kharkov (out of them 7,000 are hyperbolic). The hypothesis of hyperbolic meteors was confirmed. In some radar meteor observations 1 10% of meteors are hyperbolic meteors. Though the Advanced Meteor Orbit Radar (AMOR, New Zealand) and Canadian Meteor Orbit Radar (CMOR, Canada) have accumulated millions of meteor orbits, there are difficulties in comparing the radar observational data obtained from these three sites (New Zealand, Canada, Kharkov). A new global program International Space Weather Initiative (ISWI) has begun in 2010 (http://www.iswi-secretariat.org). Today it is necessary to create the unified radar catalogue of nearparabolic and hyperbolic meteor orbits in the framework of the ISWI, or any other different way, in collaboration of Ukraine, Canada, New Zealand, the USA and, possibly, Japan. Involvement of the Virtual Meteor Observatory (Netherlands) and Meteor Data Centre (Slovakia) is desirable too. International unified radar catalogue of near-parabolic and hyperbolic meteor orbits will aid to a major advance in our understanding of the ecology of meteoroids within the Solar System and beyond.

  6. Joint observations of a traveling ionospheric disturbance with the Paratunka OMTI camera and the Hokkaido HF radar

    Directory of Open Access Journals (Sweden)

    A. Koustov

    2009-06-01

    Full Text Available On 10 September 2007 between 10:00 and 14:00 UT, the OMTI all-sky imager at Paratunka (Kamchatka, Russia, GLAT~52° observed the onset and south-western progression of a localized depletion region in the airglow intensity. The perturbation, while being stretched in the NW-SE direction, crossed the entire field of view of the camera. During the event, the Hokkaido SuperDARN HF radar was monitoring echoes in the Paratunka longitudinal sector. It was detecting a localized band of ground scatter echoes progressing equatorward synchronously with the motion of the optical perturbation. It is suggested that both features resulted from the onset and south-western progression of a localized region with enhanced electric field that influenced the distribution of the plasma density in the ionosphere. Modeling of the HF ground scatter dynamics based on numerical ray tracing demonstrated qualitative consistency with the observations.

  7. Large-scale, high-definition Ground Penetrating Radar prospection in archaeology

    Science.gov (United States)

    Trinks, I.; Kucera, M.; Hinterleitner, A.; Löcker, K.; Nau, E.; Neubauer, W.; Zitz, T.

    2012-04-01

    The future demands on professional archaeological prospection will be its ability to cover large areas in a time and cost efficient manner with very high spatial resolution and accuracy. The objective of the 2010 in Vienna established Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology (LBI ArchPro) in collaboration with its eight European partner organisations is the advancement of state-of-the-art archaeological sciences. The application and specific further development of remote sensing, geophysical prospection and virtual reality applications, as well as of novel integrated interpretation approaches dedicated to non-invasive spatial archaeology combining near-surface prospection methods with advanced computer science is crucial for modern archaeology. Within the institute's research programme different areas for distinct case studies in Austria, Germany, Norway, Sweden and the UK have been selected as basis for the development and testing of new concepts for efficient and universally applicable tools for spatial, non-invasive archaeology. In terms of geophysical prospection the investigation of entire archaeological landscapes for the exploration and protection of Europe's buried cultural heritage requires new measurement devices, which are fast, accurate and precise. Therefore the further development of motorized, multichannel survey systems and advanced navigation solutions is required. The use of motorized measurement devices for archaeological prospection implicates several technological and methodological challenges. Latest multichannel Ground Penetrating Radar (GPR) arrays mounted in front off, or towed behind motorized survey vehicles permit large-scale GPR prospection surveys with unprecedented spatial resolution. In particular the motorized 16 channel 400 MHz MALÅ Imaging Radar Array (MIRA) used by the LBI ArchPro in combination with latest automatic data positioning and navigation solutions permits the reliable high

  8. Improving Quantitative Precipitation Estimation via Data Fusion of High-Resolution Ground-based Radar Network and CMORPH Satellite-based Product

    Science.gov (United States)

    Cifelli, R.; Chen, H.; Chandrasekar, V.; Xie, P.

    2015-12-01

    A large number of precipitation products at multi-scales have been developed based upon satellite, radar, and/or rain gauge observations. However, how to produce optimal rainfall estimation for a given region is still challenging due to the spatial and temporal sampling difference of different sensors. In this study, we develop a data fusion mechanism to improve regional quantitative precipitation estimation (QPE) by utilizing satellite-based CMORPH product, ground radar measurements, as well as numerical model simulations. The CMORPH global precipitation product is essentially derived based on retrievals from passive microwave measurements and infrared observations onboard satellites (Joyce et al. 2004). The fine spatial-temporal resolution of 0.05o Lat/Lon and 30-min is appropriate for regional hydrologic and climate studies. However, it is inadequate for localized hydrometeorological applications such as urban flash flood forecasting. Via fusion of the Regional CMORPH product and local precipitation sensors, the high-resolution QPE performance can be improved. The area of interest is the Dallas-Fort Worth (DFW) Metroplex, which is the largest land-locked metropolitan area in the U.S. In addition to an NWS dual-polarization S-band WSR-88DP radar (i.e., KFWS radar), DFW hosts the high-resolution dual-polarization X-band radar network developed by the center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This talk will present a general framework of precipitation data fusion based on satellite and ground observations. The detailed prototype architecture of using regional rainfall instruments to improve regional CMORPH precipitation product via multi-scale fusion techniques will also be discussed. Particularly, the temporal and spatial fusion algorithms developed for the DFW Metroplex will be described, which utilizes CMORPH product, S-band WSR-88DP, and X-band CASA radar measurements. In order to investigate the uncertainties associated with each

  9. Ground penetration radar 3-D modelling using the finite difference technique; Modelagem tridimensional de dados de radar (GPR) usando a tecnica das diferencas finitas

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Rene Santos; Botelho, Marco Antonio Barsottelli [Bahia Univ., Salvador, BA (Brazil). Inst. de Geociencias. Programa de Pesquisa e Pos-graduacao em Geofisica

    1995-12-31

    The Ground Penetration Radar (GPR) is a surface-geophysical method that can produce continuous high-resolution profiles much better than seismic methods, but phenomena of propagation of the electromagnetic (EM) pulse can be of harder interpretation than seismic pulses. The phenomena of propagation of the EM waves in the air add more reflection on the GPR data gathers. In this work we illustrate this phenomena using 3-D models with structures above the ground. The 3-D synthetic common shot gathers are important tools to analyse the GPR response in order to improve the understanding of the geometry of overburden conditions for activities such as geotechnical investigations or factors controlling groundwater flow. Groups of 3-D synthetic common shot gathers of ground penetrating radar (GPR) data are simulated using the scalar wave equation in which the velocity is controlled by the dielectric permittivity distribution. The propagation velocity in which the EM pulses travel depends on the dielectric permittivity of the material. The algorithm uses the finite difference technique with operators of second order to solve the time and spatial derivatives and also fourth order to solve the spatial derivatives. The shot gathers in association with time slices and also with snapshots constitutes a powerful tool to predict the response of buried structures. (author). 14 refs., 4 figs

  10. Impact of ground mover motion and windowing on stationary and moving shadows in synthetic aperture radar imagery

    Science.gov (United States)

    Miller, J.; Bishop, E.; Doerry, A.; Raynal, A. M.

    2015-05-01

    This paper describes the impact of ground mover motion and windowing on stationary and moving shadows in Synthetic Aperture Radar (SAR) and video SAR mode imagery. The technique provides a foundation for optimizing algorithms that detect ground movers in SAR imagery. The video SAR mode provides a persistent view of a scene centered at the Motion Compensation Point (MCP). The radar platform follows a circular flight path. Detecting a stationary shadow in a SAR image is important because the shadow indicates a detection of an object with a height component near the shadow. Similarly, the detection of a shadow that moves from frame to frame indicates the detection of a ground mover at the location of the moving shadow. An approach analyzes the impact of windowing in calculating the brightness of a pixel in a stationary, finite-sized shadow region. An extension of the approach describes the pixel brightness for a moving shadow as a function of its velocity. The pixel brightness provides an upper bound on the Probability of Detection (PD) and a lower bound on the Probability of False Alarm (PFA) for a finite-sized, stationary or moving shadow in the presence of homogeneous, ideal clutter. Synthetic data provides shadow characteristics for a radar scenario that lend themselves for detecting a ground mover. The paper presents 2011-2014 flight data collected by General Atomics Aeronautical Systems, Inc. (GA-ASI).

  11. Ground penetrating radar study of a thickness of biogenic sediments in the vicinity of the Czechowskie Lake

    Science.gov (United States)

    Lamparski, Piotr

    2014-05-01

    The paper present results of investigations, which have made on a biogenic plain in the north-east part of the vicinity of the Czechowskie Lake. The basin of Lake Czechowskie occupies a deep depression located in the immediate hinterland of the maximum range of the Pomeranian Phase ice sheet in the northern part of Poland (Błaszkiewicz 2005). Drillings carried out within the peat plain in the western part of the lake basin indicate that there are relatively diversified lake sediments of up to 12 m in thickness. The ground penetrating radar profiling method (GPR) was used to determine a thickness of biogenic sediments. To tests was used GSS'I SIR SYSTEM-2000™ radar device with two antennae - the high resolution 400 MHz central frequency - for shallow prospecting of the subsurface layers and the low resolution 35 MHz - for determining the shape of the mineral bedrock. Overall, 33 GPR profiles was made all in all more than 3000 meters along and crosswise the longer axis of the biogenic plain. The range of radar penetration was set to 200 ns for 400 MHz antenna and 600 ns for the 35 MHz one, what is the equivalent respectively 4 m and 12,5 m in depth of biogenic sediments thickness. Horizontal scaling was made by GSSI survey wheel device. The thickness of biogenic sediments recognized by GPR reaches 10 meters only using 35 MHz antenna. In the case of the 400 MHz antenna, relatively high conductivity water-saturated peat and gyttia did not allow for the achievement of greater thickness than 3-4 meters testing. In a large part of the profiles was able to see the shape of the mineral bedrock in the form of a former lake basin. Also observed elevations and thresholds in the bedrock. Depth of the mineral deposits forming former lake bottom was confirmed by drillings. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association. References: Błaszkiewicz M, 2005. Późnoglacjalna i

  12. Radar Detectability Studies of Slow and Small Zodiacal Dust Cloud Particles: I. The Case of Arecibo 430 MHz Meteor Head Echo Observations

    Science.gov (United States)

    Janches, D.; Plane, J. M. C.; Nesvorny, D.; Feng, W.; Vokrouhlicky, D.; Nicolls, M. J.

    2014-01-01

    Recent model development of the Zodiacal Dust Cloud (ZDC) model (Nesvorny et al. 2010, 2011b) argue that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when: 1) we invoke the lower limit of the model predicted flux (approximately 16 t/d) and 2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones (1997) for low speeds meteors. However, even at this lower limit the model over predicts the slow portion of the Arecibo radial velocity distributions by a factor of 3, suggesting the model requires some revision.

  13. Radar detectability studies of slow and small zodiacal dust cloud particles. I. The case of Arecibo 430 MHz meteor head echo observations

    Energy Technology Data Exchange (ETDEWEB)

    Janches, D. [Space Weather Laboratory, Mail Code 674, GSFC/NASA, Greenbelt, MD 20771 (United States); Plane, J. M. C.; Feng, W. [School of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Nesvorný, D. [SouthWest Research Institute, Boulder, CO 80302 (United States); Vokrouhlický, D. [Institute of Astronomy, Charles University, Prague (Czech Republic); Nicolls, M. J., E-mail: diego.janches@nasa.gov, E-mail: j.m.c.plane@leeds.ac.uk, E-mail: w.feng@leeds.ac.uk, E-mail: davidn@boulder.swri.edu, E-mail: vokrouhl@cesnet.cz, E-mail: Michael.Nicolls@sri.com [SRI International, Menlo Park, CA 94025 (United States)

    2014-11-20

    Recent model development of the Zodiacal Dust Cloud (ZDC) argues that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper, we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization, and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when (1) we invoke the lower limit of the model predicted flux (∼16 t d{sup –1}) and (2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high-speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones for low-speed meteors. However, even at this lower limit, the model overpredicts the slow portion of the Arecibo radial velocity distributions by a factor of three, suggesting that the model requires some revision.

  14. Regional characteristics of sea ice thickness in Canadian shelf and Arctic Archipelago measured by Ground Penetrating Radar

    Institute of Scientific and Technical Information of China (English)

    LI Tao; ZHAO Jinping; JIAO Yutian; HOU Jiaqiang; MU Longjiang

    2015-01-01

    Ground Penetrating Radar (GPR) measurements of sea ice thickness including undeformed ice and ridged ice were carried out in the central north Canadian Archipelago in spring 2010. Results have shown a significant spatial heterogeneity of sea ice thickness across the shelf. The undeformed multi-year fast ice of (2.05±0.09) m thick was investigated southern inshore zone of Borden island located at middle of the observational section, which was the observed maximum thickness in the field work. The less thick sea ice was sampled across a flaw lead with the thicknesses of (1.05±0.11) m for the pack ice and (1.24±0.13) m for the fast ice. At the northernmost spot of the section, the undeformed multi-year pack ice was (1.54±0.22) m thick with a ridged ice of 2.5 to 3 m, comparing to the multi-year fast ice with the thickness of (1.67±0.16) m at the southernmost station in the Prince Gustaf Adolf Sea.

  15. Semi-automatic template matching based extraction of hyperbolic signatures in ground-penetrating radar images

    Science.gov (United States)

    Sagnard, Florence; Tarel, Jean-Philippe

    2015-04-01

    In civil engineering applications, ground-penetrating radar (GPR) is one of the main non destructive technique based on the refraction and reflection of electromagnetic waves to probe the underground and particularly detect damages (cracks, delaminations, texture changes…) and buried objects (utilities, rebars…). An UWB ground-coupled radar operating in the frequency band [0.46;4] GHz and made of bowtie slot antennas has been used because, comparing to a air-launched radar, it increases energy transfer of electromagnetic radiation in the sub-surface and penetration depth. This paper proposes an original adaptation of the generic template matching algorithm to GPR images to recognize, localize and characterize with parameters a specific pattern associated with a hyperbola signature in the two main polarizations. The processing of a radargram (Bscan) is based on four main steps. The first step consists in pre-processing and scaling. The second step uses template matching to isolate and localize individual hyperbola signatures in an environment containing unwanted reflections, noise and overlapping signatures. The algorithm supposes to generate and collect a set of reference hyperbola templates made of a small reflection pattern in the vicinity of the apex in order to further analyze multiple time signals of embedded targets in an image. The standard Euclidian distance between the template shifted and a local zone in the radargram allows to obtain a map of distances. A user-defined threshold allows to select a reduced number of zones having a high similarity measure. In a third step, each zone is analyzed to detect minimum or maximum discrete amplitudes belonging to the first arrival times of a hyperbola signature. In the fourth step, the extracted discrete data (i,j) are fitted by a parametric hyperbola modeling based on the straight ray path hypothesis and using a constraint least square criterion associated with parameter ranges, that are the position, the

  16. Mass discharge rate retrieval combining weather radar and thermal camera observations

    Science.gov (United States)

    Vulpiani, Gianfranco; Ripepe, Maurizio; Valade, Sebastien

    2016-08-01

    The mass discharge rate is a key parameter for initializing volcanic ash dispersal models. Commonly used empirical approaches derive the discharge rate by the plume height as estimated by remote sensors. A novel approach based on the combination of weather radar observations and thermal camera imagery is presented here. It is based on radar ash concentration estimation and the retrieval of the vertical exit velocities of the explosive cloud using thermal camera measurements. The applied radar retrieval methodology is taken from a revision of previously presented work. Based on the analysis of four eruption events of the Mount Etna volcano (Sicily, Italy) that occurred in December 2015, the proposed methodology is tested using observations collected by three radar systems (at C and X band) operated by the Italian Department of Civil Protection. The total erupted mass was estimated to be about 9·109 kg and 2.4·109 kg for the first and second events, respectively, while it was about 1.2·109 kg for both the last two episodes. The comparison with empirical approaches based on radar-retrieved plume height shows a reasonably good agreement. Additionally, the comparative analysis of the polarimetric radar measurements provides interesting information on the vertical structure of the ash plume, including the size of the eruption column and the height of the gas thrust region.

  17. Ground-penetrating radar insight into a coastal aquifer: the freshwater lens of Borkum Island

    Directory of Open Access Journals (Sweden)

    J. Igel

    2012-03-01

    Full Text Available Freshwater lenses within islands are an important resource for drinking water. The aim of the GPR investigation was to map the shape of the groundwater table and sedimentary structures on Borkum island as input parameters for hydrogeological simulation.

    In total, 20 km of constant offset (CO radar profiles were measured with centre frequencies of 80 and 200 MHz. Wave velocities were determined by common midpoint (CMP measurements and vertical radar profiling (VRP in a monitoring well. The 80 MHz CO data show a clear reflection at the groundwater table, whereas the reflection is blurry and shifted to lower frequencies for the 200 MHz data. This is caused by the gradual increase of water content above the capillary fringe. The GPR-derived water tables are in good accordance with the observation of the monitoring wells in the area. In the centre of the island, the groundwater table is found up to 3.5 m above sea level, however it is lower towards the coast line. Some local depressions are observed in the region of dune valleys and around pumping stations of the local water supplier. GPR also reveals details within the sediments and highly-permeable aeolian sands can be distinguished from less-permeable marine sediments. A sharp horizontal reflection below the water table can be seen on many profiles and is identified as a hydraulically-tight silt loam layer by hand-drilled boreholes. Moreover, GPR data indicate scattered erosion channels in this layer that cause it to be an aquitard with some leakage.

    GPR provides a high resolution map of the groundwater table and insight into the stratigraphy of the sediments that are a valuable complementary information to the observation of monitoring wells.

  18. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    Science.gov (United States)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-02-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  19. Urban archaeological investigations using surface 3D Ground Penetrating Radar and Electrical Resistivity Tomography methods

    Science.gov (United States)

    Papadopoulos, Nikos; Sarris, Apostolos; Yi, Myeong-Jong; Kim, Jung-Ho

    2009-02-01

    Ongoing and extensive urbanisation, which is frequently accompanied with careless construction works, may threaten important archaeological structures that are still buried in the urban areas. Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) methods are most promising alternatives for resolving buried archaeological structures in urban territories. In this work, three case studies are presented, each of which involves an integrated geophysical survey employing the surface three-dimensional (3D) ERT and GPR techniques, in order to archaeologically characterise the investigated areas. The test field sites are located at the historical centres of two of the most populated cities of the island of Crete, in Greece. The ERT and GPR data were collected along a dense network of parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way, applying specific filters to the data in order to enhance their information content. Finally, horizontal depth slices representing the 3D variation of the physical properties were created. The GPR and ERT images significantly contributed in reconstructing the complex subsurface properties in these urban areas. Strong GPR reflections and high-resistivity anomalies were correlated with possible archaeological structures. Subsequent excavations in specific places at both sites verified the geophysical results. The specific case studies demonstrated the applicability of ERT and GPR techniques during the design and construction stages of urban infrastructure works, indicating areas of archaeological significance and guiding archaeological excavations before construction work.

  20. Multiple instance learning framework for landmine detection using ground-penetrating radar

    Science.gov (United States)

    Manandhar, A.; Morton, K. D.; Collins, L. M.; Torrione, P. A.

    2011-06-01

    Ground Penetrating Radar (GPR) data provides a powerful technique to identify subsurface buried threats. Although GPR data contains a three-dimensional representation of the subsurface, object truth (i.e. labels and positions of true threat objects in training lanes) is often provided in only two dimensions (GPS coordinates along the earth's surface). To mitigate uncertainty in an object's location in depth, many successful feature extraction/ object recognition techniques in GPR extract feature vectors from several depth regions, and attempt to combine information across these feature vectors to make final decisions. However, many machine learning techniques are not well suited for learning under these conditions. Multiple Instance Learning (MIL) is a type of supervised learning method in which labels are available for sets of samples, but not for individual samples. The goal of learning in MIL is to classify new sets of samples as they become available. This set-based framework is useful in processing GPR responses since features are often extracted independently from multiple un-labeled depth bins, and thus a set of features is produced at each potential threat location. In this work, a comparison of several previous approaches to MlL applied to landmine detection in GPR data is presented. One recent algorithm, the p-Posterior Mixture Model approach (pPMM) is given special attention, and several slight modifications to the pPMM approach are presented and compared.

  1. Context-dependent fusion for landmine detection with ground-penetrating radar

    Science.gov (United States)

    Frigui, Hichem; Zhang, Lijun; Gader, Paul; Ho, Dominic

    2007-04-01

    We present a novel method for fusing the results of multiple landmine detection algorithms that use different types of features and different classification methods. The proposed fusion method, called Context-Dependent Fusion (CDF) is motivated by the fact that the relative performance of different detectors can vary significantly depending on the mine type, geographical site, soil and weather conditions, and burial depth. The training part of CDF has two components: context extraction and algorithm fusion. In context extraction, the features used by the different algorithms are combined and used to partition the feature space into groups of similar signatures, or contexts. The algorithm fusion component assigns an aggregation weight to each detector in each context based on its relative performance within the context. Results on large and diverse Ground Penetrating Radar data collections show that the proposed method can identify meaningful and coherent clusters and that different expert algorithms can be identified for the different contexts. Our initial experiments have also indicated that the context-dependent fusion outperforms all individual detectors.

  2. Contextual learning in ground-penetrating radar data using Dirichlet process priors

    Science.gov (United States)

    Ratto, Christopher R.; Morton, Kenneth D., Jr.; Collins, Leslie M.; Torrione, Peter A.

    2011-06-01

    In landmine detection applications, fluctuation of environmental and operating conditions can limit the performance of sensors based on ground-penetrating radar (GPR) technology. As these conditions vary, the classification and fusion rules necessary for achieving high detection and low false alarm rates may change. Therefore, context-dependent learning algorithms that exploit contextual variations of GPR data to alter decision rules have been considered for improving the performance of landmine detection systems. Past approaches to contextual learning have used both generative and discriminative methods to learn a probabilistic mixture of contexts, such as a Gaussian mixture, fuzzy c-means clustering, or a mixture of random sets. However, in these approaches the number of mixture components is pre-defined, which could be problematic if the number of contexts in a data collection is unknown a priori. In this work, a generative context model is proposed which requires no a priori knowledge in the number of mixture components. This was achieved through modeling the contextual distribution in a physics-based feature space with a Gaussian mixture, while also incorporating a Dirichlet process prior to model uncertainty in the number of mixture components. This Dirichlet process Gaussian mixture model (DPGMM) was then incorporated in the previously-developed Context-Dependent Feature Selection (CDFS) framework for fusion of multiple landmine detection algorithms. Experimental results suggest that when the DPGMM was incorporated into CDFS, the degree of performance improvement over conventional fusion was greater than when a conventional fixed-order context model was used.

  3. Physics-based features for identifying contextual factors affecting landmine detection with ground-penetrating radar

    Science.gov (United States)

    Ratto, Christopher R.; Morton, Kenneth D., Jr.; Collins, Leslie M.; Torrione, Peter A.

    2011-06-01

    It has been established throughout the ground-penetrating radar (GPR) literature that environmental factors can severely impact the performance of GPR sensors in landmine detection applications. Over the years, electromagnetic inversion techniques have been proposed for determining these factors with the goal of mitigating performance losses. However, these techniques are often computationally expensive and require models and responses from canonical targets, and therefore may not be appropriate for real-time route-clearance applications. An alternative technique for mitigating performance changes due to environmental factors is context-dependent classification, in which decision rules are adjusted based on contextual shifts identified from the GPR data. However, analysis of the performance of context-dependent learning has been limited to qualitative comparisons of contextually-similar GPR signatures and quantitative improvement to the ROC curve, while the actual information extracted regarding soils has not been investigated thoroughly. In this work, physics-based features of GPR data used in previous context-dependent approaches were extracted from simulated GPR data generated through Finite-Difference Time-Domain (FDTD) modeling. Statistical techniques where then used to predict several potential contextual factors, including soil dielectric constant, surface roughness, amount of subsurface clutter, and the existence of subsurface layering, based on the features. Results suggest that physics-based features of the GPR background may contain informatin regarding physical properties of the environment, and contextdependent classification based on these features can exploit information regarding these potentially-important environmental factors.

  4. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar

    Science.gov (United States)

    Warren, Craig; Giannopoulos, Antonios; Giannakis, Iraklis

    2016-12-01

    gprMax is open source software that simulates electromagnetic wave propagation, using the Finite-Difference Time-Domain (FDTD) method, for the numerical modelling of Ground Penetrating Radar (GPR). gprMax was originally developed in 1996 when numerical modelling using the FDTD method and, in general, the numerical modelling of GPR were in their infancy. Current computing resources offer the opportunity to build detailed and complex FDTD models of GPR to an extent that was not previously possible. To enable these types of simulations to be more easily realised, and also to facilitate the addition of more advanced features, gprMax has been redeveloped and significantly modernised. The original C-based code has been completely rewritten using a combination of Python and Cython programming languages. Standard and robust file formats have been chosen for geometry and field output files. New advanced modelling features have been added including: an unsplit implementation of higher order Perfectly Matched Layers (PMLs) using a recursive integration approach; diagonally anisotropic materials; dispersive media using multi-pole Debye, Drude or Lorenz expressions; soil modelling using a semi-empirical formulation for dielectric properties and fractals for geometric characteristics; rough surface generation; and the ability to embed complex transducers and targets.

  5. Electromagnetic Simulations of Ground-Penetrating Radar Propagation near Lunar Pits and Lava Tubes

    Science.gov (United States)

    Zimmerman, M. I.; Carter, L. M.; Farrell, W. M.; Bleacher, J. E.; Petro, N. E.

    2013-01-01

    Placing an Orion capsule at the Earth-Moon L2 point (EML2) would potentially enable telerobotic operation of a rover on the lunar surface. The Human Exploration Virtual Institute (HEVI) is proposing that rover operations be carried out near one of the recently discovered lunar pits, which may provide radiation shielding for long duration human stays as well as a cross-disciplinary, science-rich target for nearer-term telerobotic exploration. Ground penetrating radar (GPR) instrumentation included onboard a rover has the potential to reveal many details of underground geologic structures near a pit, as well as characteristics of the pit itself. In the present work we employ the full-wave electromagnetic code MEEP to simulate such GPR reflections from a lunar pit and other subsurface features including lava tubes. These simulations will feed forward to mission concepts requiring knowledge of where to hide from harmful radiation and other environmental hazards such as plama charging and extreme diurnal temperatures.

  6. THE APPLICATION OF GROUND PENETRATING RADAR IN THE HIGHWAY ROAD BED INVESTIGATION

    Institute of Scientific and Technical Information of China (English)

    ZENG Chong; CHEN Chao; XU Shun-fang

    2004-01-01

    Ground penetrating radar (GPR) is a new nondestructive geophysical method for road quality investigation. In this article, a section of the highway joints with the third Yangtze Bridge in Wuhan have been investigated using the RAMAC/GPR system developed by the MAL? GeoScience Company. Various antennas with different frequency were used in the exploration. And the data gathered by the unshielded antenna with frequency in 400 MHz is very well. Then the field data was processed using methods such as trace equalization, F-K filtering, deconvolution filtering and so on. Through the processing, the GPR profile shows the underground structure more clearly. From the processed GPR profile, the sinking and slipping condition of the roadbed can be easily found. Most parts of the roadbed are well, but several parts of the roadbed have sunken or slipped seriously. Contrasts to the shallow seismic section, the GPR profile accords with it very well. It indicates that the GPR method is available and has the high efficiency in the highway roadbed investigation.

  7. Ground-penetrating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro's Northern Ice Field

    Science.gov (United States)

    Bohleber, Pascal; Sold, Leo; Hardy, Douglas R.; Schwikowski, Margit; Klenk, Patrick; Fischer, Andrea; Sirguey, Pascal; Cullen, Nicolas J.; Potocki, Mariusz; Hoffmann, Helene; Mayewski, Paul

    2017-02-01

    Although its Holocene glacier history is still subject to debate, the ongoing iconic decline of Kilimanjaro's largest remaining ice body, the Northern Ice Field (NIF), has been documented extensively based on surface and photogrammetric measurements. The study presented here adds, for the first time, ground-penetrating radar (GPR) data at centre frequencies of 100 and 200 MHz to investigate bed topography, ice thickness and internal stratigraphy at NIF. The direct comparison of the GPR signal to the visible glacier stratigraphy at NIF's vertical walls is used to validate ice thickness and reveals that the major internal reflections seen by GPR can be associated with dust layers. Internal reflections can be traced consistently within our 200 MHz profiles, indicating an uninterrupted, spatially coherent internal layering within NIF's central flat area. We show that, at least for the upper 30 m, it is possible to follow isochrone layers between two former NIF ice core drilling sites and a sampling site on NIF's vertical wall. As a result, these isochrone layers provide constraints for future attempts at linking age-depth information obtained from multiple locations at NIF. The GPR profiles reveal an ice thickness ranging between (6.1 ± 0.5) and (53.5 ± 1.0) m. Combining these data with a very high resolution digital elevation model we spatially extrapolate ice thickness and give an estimate of the total ice volume remaining at NIF's southern portion as (12.0 ± 0.3) × 106 m3.

  8. A NOVEL SVM FOR GROUND PENETRATING SYNTHETIC APERTURE RADAR LANDMINE DETECTION

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The use of vehicle- or air-borne Ground Penetrating Synthetic Aperture Radar (GPSAR) to quickly detect landmines over large areas is becoming a trend. However, producing too many false alarms in GPSAR landmine detection is a major challenge in practical applications of GPSAR. Support Vector Machine (SVM), employing structural risk minimization theory, does not need large amounts of training data, which makes it suitable for solving the landmine detection problem. In this paper, a novel SVM with a hypersphere instead of a hyperplane classification boundary is proposed for landmine detection in GPSAR. The HyperSphere-SVM (HS-SVM) can be trained with both landmine and clutter data, or with landmine data only, which are called the two-class HS-SVM and the one-class HS-SVM, respectively. The HS-SVM has better generalization capability than the traditional HyperPlane-SVM (HP-SVM) with respect to varying operating conditions. Quantitative comparisons have been made using real data collected with the rail-GPSAR landmine detection system, which show that both the two-class and the one-class HS-SVMs have better detection performance than the HP-SVM.

  9. An Experimental and Numerical Study on Embedded Rebar Diameter in Concrete Using Ground Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Md Istiaque Hasan

    2016-01-01

    Full Text Available High frequency ground penetrating radar (GPR has been widely used to detect and locate rebars in concrete. In this paper, a method of estimating the diameter of steel rebars in concrete with GPR is investigated. The relationship between the maximum normalized positive GPR amplitude from embedded rebars and the rebar diameter was established. Concrete samples with rebars of different diameters were cast and the maximum normalized amplitudes were recorded using a 2.6 GHz GPR antenna. Numerical models using GPRMAX software were developed and verified with the experimental data. The numerical models were then used to investigate the effect of dielectric constant of concrete and concrete cover on the maximum normalized amplitude. The results showed that there is an approximate linear relationship between the rebar diameter and the maximum GPR normalized amplitude. The developed models can be conveniently used to estimate the embedded rebar diameters in existing concrete with GPR scanning; if the concrete is homogeneous, the cover depth is known and the concrete dielectric constant is also known. The models will be highly beneficial in forensic investigations of existing concrete structures with unknown rebar sizes and locations.

  10. A Review on Migration Methods in B-Scan Ground Penetrating Radar Imaging

    Directory of Open Access Journals (Sweden)

    Caner Özdemir

    2014-01-01

    Full Text Available Even though ground penetrating radar has been well studied and applied by many researchers for the last couple of decades, the focusing problem in the measured GPR images is still a challenging task. Although there are many methods offered by different scientists, there is not any complete migration/focusing method that works perfectly for all scenarios. This paper reviews the popular migration methods of the B-scan GPR imaging that have been widely accepted and applied by various researchers. The brief formulation and the algorithm steps for the hyperbolic summation, the Kirchhoff migration, the back-projection focusing, the phase-shift migration, and the ω-k migration are presented. The main aim of the paper is to evaluate and compare the migration algorithms over different focusing methods such that the reader can decide which algorithm to use for a particular application of GPR. Both the simulated and the measured examples that are used for the performance comparison of the presented algorithms are provided. Other emerging migration methods are also pointed out.

  11. Convolutional neural network based sensor fusion for forward looking ground penetrating radar

    Science.gov (United States)

    Sakaguchi, Rayn; Crosskey, Miles; Chen, David; Walenz, Brett; Morton, Kenneth

    2016-05-01

    Forward looking ground penetrating radar (FLGPR) is an alternative buried threat sensing technology designed to offer additional standoff compared to downward looking GPR systems. Due to additional flexibility in antenna configurations, FLGPR systems can accommodate multiple sensor modalities on the same platform that can provide complimentary information. The different sensor modalities present challenges in both developing informative feature extraction methods, and fusing sensor information in order to obtain the best discrimination performance. This work uses convolutional neural networks in order to jointly learn features across two sensor modalities and fuse the information in order to distinguish between target and non-target regions. This joint optimization is possible by modifying the traditional image-based convolutional neural network configuration to extract data from multiple sources. The filters generated by this process create a learned feature extraction method that is optimized to provide the best discrimination performance when fused. This paper presents the results of applying convolutional neural networks and compares these results to the use of fusion performed with a linear classifier. This paper also compares performance between convolutional neural networks architectures to show the benefit of fusing the sensor information in different ways.

  12. Multiple kernel learning for explosive hazard detection in forward-looking ground-penetrating radar

    Science.gov (United States)

    Havens, Timothy C.; Stone, Kevin; Anderson, Derek T.; Keller, James M.; Ho, K. C.; Ton, Tuan T.; Wong, David C.; Soumekh, Mehrdad

    2012-06-01

    This paper proposes an effective anomaly detection algorithm for forward-looking ground-penetrating radar (FLGPR). The challenges in detecting explosive hazards with FLGPR are that there are multiple types of targets buried at different depths in a highly-cluttered environment. A wide array of target and clutter signatures exist, which makes classifier design difficult. Recent work in this application has focused on fusing the classifier results from multiple frequency subband images. Each sub-band classifier is trained on suites of image features, such as histogram of oriented gradients (HOG) and local binary patterns (LBP). This prior work fused the sub-band classifiers by, first, choosing the top-ranked feature at each frequency sub-band in the training data and then accumulating the sub-band results in a confidence map. We extend this idea by employing multiple kernel learning (MKL) for feature-level fusion. MKL fuses multiple sources of information and/or kernels by learning the weights of a convex combination of kernel matrices. With this method, we are able to utilize an entire suite of features for anomaly detection, not just the top-ranked feature. Using FLGPR data collected at a US Army test site, we show that classifiers trained using MKL show better explosive hazard detection capabilities than single-kernel methods.

  13. An element-free Galerkin method for ground penetrating radar numerical simulation

    Institute of Scientific and Technical Information of China (English)

    冯德山; 郭荣文; 王洪华

    2015-01-01

    An element-free Galerkin method (EFGM) is used to solve the two-dimensional (2D) ground penetrating radar (GPR) modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different from element-based numerical methods, this approach makes nodes free from the elemental restraint and avoids the explicit mesh discretization. First, we derived the boundary value problem for the 2D GPR simulation problems. Second, a penalty function approach and a boundary condition truncated method were used to enforce the essential and the absorbing boundary conditions, respectively. A three-layered GPR model was used to verify our element-free approach. The numerical solutions show that our solutions have an excellent agreement with solutions of a finite element method (FEM). Then, we used the EFGM to simulate one more complex model to show its capability and limitations. Simulation results show that one obvious advantage of EFGM is the absence of element mesh, which makes the method very flexible. Due to the use of MLS fitting, a key feature of EFM, is that both the dependent variable and its gradient are continuous and have high precision.

  14. Nonsearching Doppler parameter and velocity estimation method for synthetic aperture radar ground moving target imaging

    Science.gov (United States)

    Li, Zhongyu; Wu, Junjie; Huang, Yunlin; Yang, Haiguang; Yang, Jianyu

    2016-07-01

    For synthetic aperture radar (SAR), ground moving target (GMT) imaging necessitates the compensation of the additional azimuth modulation contributed by the unknown movement of the GMT. That is to say, it is necessary to estimate the Doppler parameters of the GMT without a priori knowledge of the GMT's motion parameters. This paper presents a Doppler parameter and velocity estimation method to refocus the GMT from its smeared response in SAR image. The main idea of this method is that an azimuth reference function is constructed to do the correlation integral with the azimuth signal of the GMT. And in general, the Doppler parameters of the presumed azimuth reference function are different from those of the GMT's azimuth signal since the velocity parameters of the GMT are unknown. Therefore, the correlation operation referred to here is actually mismatched, and the processing result of is shifted and defocused. The shifted and defocused result is utilized to get the real Doppler parameters and the velocity parameters of the GMT. One advantage of this method is that it is a nonsearching method. Another advantage is that both the Doppler centroid and the Doppler frequency rate of the GMT can be simultaneously estimated according to the relationships between the Doppler parameters and the smeared response of the GMT. In addition, the velocity of the GMT can also be obtained based on the estimated Doppler parameters. Numerical simulations and experimental data processing verify the validity of the method proposed.

  15. Apparent apertures from ground penetrating radar data and their relation to heterogeneous aperture fields

    Science.gov (United States)

    Shakas, A.; Linde, N.

    2017-06-01

    Considering fractures with heterogeneous aperture distributions, we explore the reliability of constant-aperture estimates derived from ground penetrating radar (GPR) reflection data. We generate geostatistical fracture aperture realizations that are characterized by the same mean-aperture and variance, but different Hurst exponents and cut-off lengths. For each of the 16 classes of heterogeneity considered, we generate 1000 fracture realizations from which we compute GPR reflection data using our recent effective-dipole forward model. We then use each (noise-contaminated) data set individually to invert for a single 'apparent' aperture, that is, we assume that the fracture aperture is homogeneous. We find that the inferred 'apparent' apertures are only reliable when fracture heterogeneity is non-fractal (the Hurst exponent is close to 1) and the scale of the dominant aperture heterogeneities is larger than the first Fresnel zone. These results are a direct consequence of the nonlinear character of the thin-bed reflection coefficients. As fracture heterogeneity is ubiquitous and often fractal, our results suggest that robust field-based inference of fracture aperture can only be achieved by accounting for the nonlinear response of fracture heterogeneity on GPR data.

  16. Improving Indonesian peatland C stock estimates using ground penetrating radar (GPR) and electrical resistivity imaging (ERI)

    Science.gov (United States)

    Terry, N.; Comas, X.; Slater, L. D.; Warren, M.; Kolka, R. K.; Kristijono, A.; Sudiana, N.; Nurjaman, D.; Darusman, T.

    2014-12-01

    Tropical peatlands sequester an estimated 15% of the carbon pool from peatlands worldwide. Indonesian peatlands account for approximately 65% of all tropical peat, and are believed to be the largest global source of carbon dioxide emissions to the atmosphere from degrading peat. However, there is great uncertainty in these estimates due to insufficient data regarding the thickness of organic peat soils and their carbon content. Meanwhile, Indonesian peatlands are threatened by heightening pressure to drain and develop. Indirect geophysical methods have garnered interest for their potential to non-invasively estimate peat depth and gas content in boreal peatlands. Drawing from these techniques, we employed ground penetrating radar (GPR) and electrical resistivity imaging (ERI) in tandem with direct methods (core sampling) to evaluate the potential of these methods for tropical peatland mapping at 2 distinct study sites on West Kalimantan (Indonesia). We find that: [1] West Kalimantan peatland thicknesses estimated from GPR and ERI in intermediate/shallow peat can vary substantially over short distances (for example, > 2% over less than 0.02° surface topography gradient), [2] despite having less vertical resolution, ERI is able to better resolve peatland thickness in deep peat, and [3] GPR provides useful data regarding peat matrix attributes (such as the presence of wood layers). These results indicate GPR and ERI could help reduce uncertainty in carbon stocks and aid in responsible land management decisions in Indonesia.

  17. High-resolution geophysical profiling using a stepped-frequency ground penetrating radar

    Energy Technology Data Exchange (ETDEWEB)

    Noon, D.; Longstaff, D. [The University of Queensland, (Australia)

    1996-05-01

    This paper describes the results of a ground penetrating radar (GPR) system which uses stepped-frequency waveforms to obtain high-resolution geophysical profiles. The main application for this system is the high-resolution mapping of thin coal seam structures, in order to assist surface mining operations in open-cut coal mines. The required depth of penetration is one meter which represents the maximum thickness of coal seams that are designated `thin`. A resolution of five centimeters is required to resolve the minimum thickness of coal (or shale partings) which can be economically recovered in an open-cut coal mine. For this application, a stepped-frequency GPR system has been developed, because of its ultrawide bandwidth (1 to 2 GHz) and high external loop sensitivity (155 dB). The field test results of the stepped-frequency GPR system on a concrete pavement and at two Australian open-cut coal mines are also presented. 7 refs., 5 figs.

  18. Exploring Soil Layers and Water Tables with Ground-Penetrating Radar

    Institute of Scientific and Technical Information of China (English)

    K. ROTH; U. WOLLSCHLAGER; CHENG Zhu-Hua; ZHANG Jia-Bao

    2004-01-01

    Ground-penetrating radar (GPR) has been used predominantly for environments with low electrical conductivity like freshwater aquifers, glaciers, or dry sandy soils. The objective of the present study was to explore its application for mapping in subsurface agricultural soils to a depth of several meters. For a loamy sand and a clayey site on the North China Plain, clay inclusions in the sand were detected; the thickness, inclination, and continuity of the confining clay and silt layers was assessed; and a local water table was mapped. Direct sampling (soil coring and profiling) in the top meter and independent measurement of the water table were utilized to confirm the findings. Also, effective estimates of the dielectric number for the site with the dielectric number of moist clayey soils depending strongly on frequency were obtained. Thus, important properties of soils, like the arrangement and type of layers and in particular their continuity and inclination, could be explored with moderate efforts for rather large areas to help find optimal locations for the time-consuming and expensive measurements which would be necessary to detail a model of the subsurface.

  19. Advanced signal processing method for ground penetrating radar feature detection and enhancement

    Science.gov (United States)

    Zhang, Yu; Venkatachalam, Anbu Selvam; Huston, Dryver; Xia, Tian

    2014-03-01

    This paper focuses on new signal processing algorithms customized for an air coupled Ultra-Wideband (UWB) Ground Penetrating Radar (GPR) system targeting highway pavements and bridge deck inspections. The GPR hardware consists of a high-voltage pulse generator, a high speed 8 GSps real time data acquisition unit, and a customized field-programmable gate array (FPGA) control element. In comparison to most existing GPR system with low survey speeds, this system can survey at normal highway speed (60 mph) with a high horizontal resolution of up to 10 scans per centimeter. Due to the complexity and uncertainty of subsurface media, the GPR signal processing is important but challenging. In this GPR system, an adaptive GPR signal processing algorithm using Curvelet Transform, 2D high pass filtering and exponential scaling is proposed to alleviate noise and clutter while the subsurface features are preserved and enhanced. First, Curvelet Transform is used to remove the environmental and systematic noises while maintain the range resolution of the B-Scan image. Then, mathematical models for cylinder-shaped object and clutter are built. A two-dimension (2D) filter based on these models removes clutter and enhances the hyperbola feature in a B-Scan image. Finally, an exponential scaling method is applied to compensate the signal attenuation in subsurface materials and to improve the desired signal feature. For performance test and validation, rebar detection experiments and subsurface feature inspection in laboratory and field configurations are performed.

  20. Fault Detection Using Polarimetric Single-Input-Multi-Output Ground Penetrating Radar Technique in Mason, Texas

    Science.gov (United States)

    Amara, A.; Everett, M. E.

    2014-12-01

    At the Mason Mountain Wildlife Management Area (MMWMA) near Mason, Texas, we conducted a 2D ground penetrating radar (GPR) survey using single-input-multi-output (SIMO) acquisition technique to image a Pennsylvanian high-angle normal fault. At the MMWMA, the surface geology is mapped extensively but the subsurface remains largely unknown. The main objective of our study is to develop a detailed subsurface structural image of the fault and evaluate existing hypotheses on fault development. Also, to develop and apply a new methodology based on Polarimetric SIMO acquisition geometry. This new methodology allows the subsurface structures to be viewed simultaneously from different angles and can help reduce noise caused by the heterogeneities that affect the electromagnetic waves. We used a pulseEKKO pro 200 GPR with 200 MHz antennae to acquire 8 north-south lines across the fault. Each line is 30 meters long with the transmitter starting on the Town Mountain Granite, footwall, with the receiver stepping 40 cm until the end of the line crossing the fault on to the Hickory Sandstone, hanging wall. Each pass consisted of a stationary transmitter antenna and the moving receiver antenna. The data were initially processed with standard steps including low-cut dewow filter, background subtraction filter and gain control. Advanced processing techniques include migration, phased array processing, velocity analysis, and normal moveout. We will compare the GPR results with existing geophysical datasets at the same site, including electromagnetic (EM), seismic, and seismoelectric.

  1. Frozen: The Potential and Pitfalls of Ground-Penetrating Radar for Archaeology in the Alaskan Arctic

    Directory of Open Access Journals (Sweden)

    Thomas M. Urban

    2016-12-01

    Full Text Available Ground-penetrating radar (GPR offers many advantages for assessing archaeological potential in frozen and partially frozen contexts in high latitude and alpine regions. These settings pose several challenges for GPR, including extreme velocity changes at the interface of frozen and active layers, cryogenic patterns resulting in anomalies that can easily be mistaken for cultural features, and the difficulty in accessing sites and deploying equipment in remote settings. In this study we discuss some of these challenges while highlighting the potential for this method by describing recent successful investigations with GPR in the region. We draw on cases from Bering Land Bridge National Preserve, Cape Krusenstern National Monument, Kobuk Valley National Park, and Gates of the Arctic National Park and Preserve. The sites required small aircraft accessibility with light equipment loads and minimal personnel. The substrates we investigate include coastal saturated active layer over permafrost, interior well-drained active layer over permafrost, a frozen thermo-karst lake, and an alpine ice patch. These examples demonstrate that GPR is effective at mapping semi-subterranean house remains in several contexts, including houses with no surface manifestation. GPR is also shown to be effective at mapping anomalies from the skeletal remains of a late Pleistocene mammoth frozen in ice. The potential for using GPR in ice and snow patch archaeology, an area of increasing interest with global environmental change exposing new material each year, is also demonstrated.

  2. Circular polarized stepped frequency ground-penetrating radar for humanitarian demining

    Science.gov (United States)

    Thaysen, Jesper; Jakobsen, Kaj B.; Appel-Hansen, Joergen

    2001-10-01

    A cavity backed coplanar waveguide to coplanar strip - fed logarithmic uniplanar spiral antenna, which covers a 9 to 1 band-width with a return loss better than 10 dB from 0.4 to 3.8 GHz is presented. A wideband balun, with an insertion loss of less than 3 dB in the frequency band of operation, was developed for the balanced antenna feed. To aid the balun and antenna design, a method of moment computer program, was used to predict the performance of the spiral antenna. Measurements in an anechoic are made in order to verify the simulated far-field radiation pattern, the simulated polarisation, and the simulated input impedance. Additional advantage of the fabricated antenna is the low cost FR-4 substrate used for the antenna combined with the advantages of the uniplanar circuit, makes this configuration suitable as a low-cost wideband antenna. The constructed uniplanar spiral antenna is very well suited to be used in a stepped frequency ground penetrating radar for humanitarian demining due to the very wide bandwidth, relative small size. Successful detection of a small 5.4 cm non-metallic AP-mines in a pseudo minefield are presented.

  3. Possibilities of ground penetrating radar usage within acceptance tests of rigid pavements

    Science.gov (United States)

    Stryk, Josef; Matula, Radek; Pospisil, Karel

    2013-10-01

    Within the road pavement acceptance tests, destructive as well as non-destructive tests of individual road layers are performed to verify the standard requirements. The article describes a method for providing quick, effective and sufficiently accurate measurements of both dowel and tie bar positions in concrete pavements, using a two-channel ground penetrating radar (GPR). Measurements were carried out in laboratory and in-situ conditions. A special hand cart for field measurements, set for the testing requirements, was designed. It was verified that following the correct measuring and assessment method, it is possible to reach accuracy of determining the in-built rebar up to 1 cm in vertical direction and up to 1.5 cm per 11.5 m of measured length in horizontal direction. In the in-situ tests, GPR identification of possible anomalies due to the phase of concrete pavement laying was presented. In the conclusion, a measurement report is mentioned. The standard requirements for the position of dowels and tie bars cover maximum possible deviation of the rebar position from the project documentation in vertical and horizontal direction, maximum deflection of rebar ends to each other, and maximum translation of rebar in the direction of its longitudinal axis.

  4. Asteroid 1566 Icarus’s Size, Shape, Orbit, and Yarkovsky Drift from Radar Observations

    Science.gov (United States)

    Greenberg, Adam H.; Margot, Jean-Luc; Verma, Ashok K.; Taylor, Patrick A.; Naidu, Shantanu P.; Brozovic, Marina.; Benner, Lance A. M.

    2017-03-01

    Near-Earth asteroid (NEA) 1566 Icarus (a=1.08 {au}, e = 0.83, i=22\\buildrel{\\circ}\\over{.} 8) made a close approach to Earth in 2015 June at 22 lunar distances (LD). Its detection during the 1968 approach (16 LD) was the first in the history of asteroid radar astronomy. A subsequent approach in 1996 (40 LD) did not yield radar images. We describe analyses of our 2015 radar observations of Icarus obtained at the Arecibo Observatory and the DSS-14 antenna at Goldstone. These data show that the asteroid is a moderately flattened spheroid with an equivalent diameter of 1.44 km with 18% uncertainties, resolving long-standing questions about the asteroid size. We also solve for Icarus’s spin-axis orientation (λ =270^\\circ +/- 10^\\circ ,β =-81^\\circ +/- 10^\\circ ), which is not consistent with the estimates based on the 1968 light-curve observations. Icarus has a strongly specular scattering behavior, among the highest ever measured in asteroid radar observations, and a radar albedo of ˜2%, among the lowest ever measured in asteroid radar observations. The low cross section suggests a high-porosity surface, presumably related to Icarus’s cratering, spin, and thermal histories. Finally, we present the first use of our orbit-determination software for the generation of observational ephemerides, and we demonstrate its ability to determine subtle perturbations on NEA orbits by measuring Icarus’s orbit-averaged drift in semimajor axis ((-4.62+/- 0.48)× {10}-4 au My-1, or ˜60 m per revolution). Our Yarkovsky rate measurement resolves a discrepancy between two published rates that did not include the 2015 radar astrometry.

  5. High-frequency radar observations of PMSE modulation by radio heating

    Science.gov (United States)

    Senior, Andrew; Rietveld, Michael; Mahmoudian, Alireza; La Hoz, Cesar; Kosch, Michael; Scales, Wayne; Pinedo, Henry

    The first observations using high-frequency (8 MHz) radar of modulation of polar mesospheric summer echoes (PMSE) by radio heating of the ionosphere are presented. The experiment was performed at the EISCAT facility near Tromsø, Norway. The observations are compared with simultaneous radar measurements at 224 MHz and with a model of the dusty plasma response to electron heating. Agreement between the model and observations is good considering technical limitations on the 8 MHz radar measurements. Predictions made about the response of high-frequency PMSE to heating where dust charging dominates over diffusion, opposite to the situation at very high-frequencies are confirmed. Suggestions are made about improving the 8 MHz observations to overcome the current limitations.

  6. Passive Microwave Soil Moisture Retrieval through Combined Radar/Radiometer Ground Based Simulator with Special Reference to Dielectric Schemes

    Science.gov (United States)

    Srivastava, Prashant K., ,, Dr.; O'Neill, Peggy, ,, Dr.

    2014-05-01

    Soil moisture is an important element for weather and climate prediction, hydrological sciences, and applications. Hence, measurements of this hydrologic variable are required to improve our understanding of hydrological processes, ecosystem functions, and the linkages between the Earth's water, energy, and carbon cycles (Srivastava et al. 2013). The retrieval of soil moisture depends not only on parameterizations in the retrieval algorithm but also on the soil dielectric mixing models used (Behari 2005). Although a number of soil dielectric mixing models have been developed, testing these models for soil moisture retrieval has still not been fully explored, especially with SMAP-like simulators. The main objective of this work focuses on testing different dielectric models for soil moisture retrieval using the Combined Radar/Radiometer (ComRAD) ground-based L-band simulator developed jointly by NASA/GSFC and George Washington University (O'Neill et al., 2006). The ComRAD system was deployed during a field experiment in 2012 in order to provide long active/passive measurements of two crops under controlled conditions during an entire growing season. L-band passive data were acquired at a look angle of 40 degree from nadir at both horizontal & vertical polarization. Currently, there are many dielectric models available for soil moisture retrieval; however, four dielectric models (Mironov, Dobson, Wang & Schmugge and Hallikainen) were tested here and found to be promising for soil moisture retrieval (some with higher performances). All the above-mentioned dielectric models were integrated with Single Channel Algorithms using H (SCA-H) and V (SCA-V) polarizations for the soil moisture retrievals. All the ground-based observations were collected from test site-United States Department of Agriculture (USDA) OPE3, located a few miles away from NASA GSFC. Ground truth data were collected using a theta probe and in situ sensors which were then used for validation. Analysis

  7. Correlated lightning mapping array and radar observations of the initial stages of three sequentially triggered Florida lightning discharges

    Science.gov (United States)

    Hill, J. D.; Pilkey, J.; Uman, M. A.; Jordan, D. M.; Rison, W.; Krebhiel, P. R.; I Biggerstaff, M.; Hyland, P.; Blakeslee, R.

    2013-08-01

    Correlated Lightning Mapping Array and vertical-scan radar images are presented for three rocket-and-wire triggered lightning flashes that occurred sequentially within 17 min in the presence of a decaying multicellular convective storm system over north-central Florida. The initial stage (IS) of each flash propagated generally vertically to the altitude of the 0°C melting level, about 5 km, and then subsequently propagated for many kilometers horizontally along the melting level contour. Radar images suggest that the propagation paths of the IS channels below and above the melting level were heavily influenced by precipitation gradients. Flash UF 11-24 exhibited a 12.6 km unbranched IS channel, the longest unbranched channel observed in the study by a factor of three. During flash UF 11-25 (119 ms following the cessation of the measured IS current at ground and prior to the first return stroke), a natural cloud-to-ground discharge, perhaps induced by the IS, initiated between 2.5 and 4 km altitude and struck ground 5 to 7 km from the launching facility. The IS of flash UF 11-26 propagated upward through a descending precipitation packet and apparently induced a naturally appearing bi-level intracloud discharge via an upward-negative leader that initiated within the IS breakdown region 3.5 km from the launching facility. The upward-negative leader propagated from 5.6 to 9.3 km altitude in a time of 11 ms. The electrical current measured at ground during the IS of flash UF 11-26 exhibited a 57 ms polarity reversal, transferring 19 C of positive charge to ground.

  8. Stratiform and Convective Precipitation Observed by Multiple Radars during the DYNAMO/AMIE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Min; Kollias, Pavlos; Feng, Zhe; Zhang, Chidong; Long, Charles N.; Kalesse, Heike; Chandra, Arunchandra; Kumar, Vickal; Protat, Alain

    2014-11-01

    The motivation for this research is to develop a precipitation classification and rain rate estimation method using cloud radar-only measurements for Atmospheric Radiation Measurement (ARM) long-term cloud observation analysis, which are crucial and unique for studying cloud lifecycle and precipitation features under different weather and climate regimes. Based on simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two precipitation radars (NCAR S-PolKa and Texas A&M University SMART-R), and surface precipitation during the DYNAMO/AMIE field campaign, a new cloud radar-only based precipitation classification and rain rate estimation method has been developed and evaluated. The resulting precipitation classification is equivalent to those collocated SMART-R and S-PolKa observations. Both cloud and precipitation radars detected about 5% precipitation occurrence during this period. The convective (stratiform) precipitation fraction is about 18% (82%). The 2-day collocated disdrometer observations show an increased number concentration of large raindrops in convective rain compared to dominant concentration of small raindrops in stratiform rain. The composite distributions of KAZR reflectivity and Doppler velocity also show two distinct structures for convective and stratiform rain. These indicate that the method produces physically consistent results for two types of rain. The cloud radar-only rainfall estimation is developed based on the gradient of accumulative radar reflectivity below 1 km, near-surface Ze, and collocated surface rainfall (R) measurement. The parameterization is compared with the Z-R exponential relation. The relative difference between estimated and surface measured rainfall rate shows that the two-parameter relation can improve rainfall estimation.

  9. Radar observations of the seasonal migration of brown planthopper (Nilaparvata lugens Stål) in Southern China.

    Science.gov (United States)

    Qi, H; Jiang, C; Zhang, Y; Yang, X; Cheng, D

    2014-12-01

    The summer and autumn migrations of the brown planthopper (Nilaparvata lugens) were observed in Southern China with a millimetric scanning entomological radar and a searchlight trap supplemented with capture in field cages, field surveys, and dissections of females. Nilaparvata lugens took off at dusk and dawn in summer, but in autumn there was sometimes only a dusk take-off. The variation of the area density of the radar targets indicated that flight durations were about 9-10 h. In summer, planthopper-size targets generally flew below 1800 m above ground level (AGL), although some insects reached 2000 m AGL; in autumn, they flew lower, generally below 1100 m although some insects reached 1700 m AGL. Multiple layer concentrations were seen every night in both summer and autumn. The depths of these layers in autumn were less than in summer. Nilaparvata lugens flew in strong winds; wind shear may be the main factor causing them to accumulate and form dense layers at certain heights. Nilaparvata lugens emigrating in summer from the vicinity of the radar site in the Northeastern Guangxi Zhuang Autonomous Region, and carried by the prevailing southwesterly wind, would have travelled northeastwards and reached Northern Hunan Province. In autumn, with the prevailing northeasterly wind, emigrants would have reached overwintering areas (south of 21°N).

  10. Multifunction millimetre-wave radar for all-weather ground attack aircraft

    Science.gov (United States)

    Potter, K. E.

    1986-07-01

    Details of the millimeter wave radar performance are presented which show that with potentially available power sources an all weather capability can be realized. Performance is evaluated as a function of frequency and antenna size, and the use of polarimetry with wide bandwidth/coherent processing is shown to offer potential enhancement for target discrimination. The millimeter wave radar is shown to be potentially capable of satisfying the following functions: take off/landing, terrain following, area correlation, tercom, and acquisition of targets. The above roles can be achieved in an all weather environment making the millimeter wave radar a valuable multifunction airborne radar.

  11. Meteorite Falls Observed in U.S. Weather Radar Data in 2015 and 2016 (To Date)

    Science.gov (United States)

    Fries, Marc; Fries, Jeffrey; Hankey, Mike; Matson, Robert

    2016-01-01

    reports of sonic booms or electrophonic noise are recorded in the AMS eyewitness reports, but videos of the event show a relatively long-lasting fireball with fragmentation. Evidence of falling meteorites is seen in radar imagery from the KAMA and KLBB radars defining a roughly WNW to ESE trend with the dominant wind direction. This event featured favorable search ground composed mostly of farmland and ranchland and was extensively searched. Rather surprisingly, only a single L5 chondrite of 36.2g has been recovered to date.

  12. Radar activities of the DFVLR Institute for Radio Frequency Technology

    Science.gov (United States)

    Keydel, W.

    1983-01-01

    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  13. Radar activities of the DFVLR Institute for Radio Frequency Technology

    Science.gov (United States)

    Keydel, W.

    1983-01-01

    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  14. Imaging Buried Culverts Using Ground Penetrating Radar: Comparing 100 MHZ Through 1 GHZ Antennae

    Science.gov (United States)

    Abdul Aziz, A.; Stewart, R. R.; Green, S. L.

    2013-12-01

    *Aziz, A A aabdulaziz@uh.edu Allied Geophysical Lab, Department of Earth and Atmospheric Sciences, University of Houston, TX, USA Stewart, R R rrstewart@uh.edu Allied Geophysical Lab, Department of Earth and Atmospheric Sciences, University of Houston, TX, USA *Green, S L slgreen@yahoo.com Allied Geophysical Lab, Department of Earth and Atmospheric Sciences, University of Houston, TX, USA A 3D ground penetrating radar (GPR) survey, using three different frequency antennae, was undertaken to image buried steel culverts at the University of Houston's La Marque Geophysical Observatory 30 miles south of Houston, Texas. The four culverts, under study, support a road crossing one of the area's bayous. A 32 m by 4.5 m survey grid was designed on the road above the culverts and data were collected with 100 MHz, 250 MHz, and 1 GHz antennae. We used an orthogonal acquisition geometry for the three surveys. Inline sampling was from 1.0 cm to 10 cm (from 1 GHz to 100 MHz antenna) with inline and crossline spacings ranging from 0.2 m to 0.5 m. We used an initial velocity of 0.1 m/ns (from previous CMP work at the site) for the display purposes. The main objective of the study was to analyze the effect of different frequency antennae on the resultant GPR images. We are also interested in the accuracy and resolution of the various images, in addition to developing an optimal processing flow.The data were initially processed with standard steps that included gain enhancement, dewow and temporal-filtering, background suppression, and 2D migration. Various radar velocities were used in the 2D migration and ultimately 0.12 m/ns was used. The data are complicated by multipathing from the surface and between culverts (from modeling). Some of this is ameliorated via deconvolution. The top of each of the four culverts was evident in the GPR images acquired with the 250 MHz and 100 MHz antennas. For 1 GHz, the top of the culvert was not clear due to the signal's attenuation. The 250 MHz

  15. Ice thickness profile surveying with ground penetrating radar at Artesonraju Glacier, Peru

    Science.gov (United States)

    Chisolm, Rachel; Rabatel, Antoine; McKinney, Daene; Condom, Thomas; Cochacin, Alejo; Davila Roller, Luzmilla

    2014-05-01

    Tropical glaciers are an essential component of the water resource systems in the mountainous regions where they are located, and a warming climate has resulted in the accelerated retreat of Andean glaciers in recent decades. The shrinkage of Andean glaciers influences the flood risk for communities living downstream as new glacial lakes have begun to form at the termini of some glaciers. As these lakes continue to grow in area and volume, they pose an increasing risk of glacial lake outburst floods (GLOFs). Ice thickness measurements have been a key missing link in studying the tropical glaciers in Peru and how climate change is likely to impact glacial melt and the growth of glacial lakes. Ground penetrating radar (GPR) has rarely been applied to glaciers in Peru to measure ice thickness, and these measurements can tell us a lot about how a warming climate will affect glaciers in terms of thickness changes. In the upper Paron Valley (Cordillera Blanca, Peru), an emerging lake has begun to form at the terminus of the Artesonraju Glacier, and this lake has key features, including overhanging ice and loose rock likely to create slides, that could trigger a catastrophic GLOF if the lake continues to grow. Because the glacier mass balance and lake mass balance are closely linked, ice thickness measurements and measurements of the bed slope of the Artesonraju Glacier and underlying bedrock can give us an idea of how the lake is likely to evolve in the coming decades. This study presents GPR data taken in July 2013 at the Artesonraju Glacier as part of a collaboration between the Unidad de Glaciologia y Recursos Hidricos (UGRH) of Peru, the Institut de Recherche pour le Développement (IRD) of France and the University of Texas at Austin (UT) of the United States of America. Two different GPR units belonging to UGRH and UT were used for subsurface imaging to create ice thickness profiles and to characterize the total volume of ice in the glacier. A common midpoint

  16. Ground-based Radar Detection of Near-Earth Asteroids%近地小行星地基雷达探测研究现状

    Institute of Scientific and Technical Information of China (English)

    张翔; 季江徽

    2014-01-01

    Ground-based radar detection may act as a powerful means to determine the shape and physical properties of the asteroids in our Solar system. By measuring time delay and doppler frequency of the received echoes, radar systems provide information in ranging and radial velocity of the asteroids. Over the past few decades, more than 500 asteroids (mostly near-Earth ob jects) were detected using radar observations. There are two categories of radar detection: (1) The continuous wave detection, which is adopted to determine the roughness of an asteroid’s surface. (2) The delay-Doppler de-tection,which is likely to produce its three-dimensional model, and to define the rotational state. In the delay-Doppler detection, target asteroids are resolved in line-of-sight distance and line-of-sight velocity, providing two-dimensional images with spatial resolution as fine as meter-scale. Besides radar detection, several other techniques would also provide the shape model of the asteroids, among which the lightcurve inverse method is the most popular one to do that. In comparison with other methods, radar observation may have an advantage on spacial resolution. The lightcurves cannot reveal elaborate information on small features, and the intermediate-scale features of the inversed model are only suggestive. By contrast, radar detection produces resolved images. In this review, we present the radar observation technique and the method for recon-structing three-dimensional models of asteroids from radar measurements. In addition, we also provide several examples of asteroid models by radar detection, and then compare them with other observations for the shape reconstruction for the asteroids.%地基雷达探测是研究太阳系中小行星的重要方法。雷达探测主要有两种方式:(1)连续波探测,可得到小行星表面的粗糙度等参数;(2)延迟多普勒探测,用于反演小行星的三维形状模型并确定自转轴状态。与其他探测方法

  17. 77 FR 53962 - Technical Standard Order (TSO)-C65a, Airborne Doppler Radar Ground Speed and/or Drift Angle...

    Science.gov (United States)

    2012-09-04

    ... production of articles with an existing TSO authorization (TSOA). Articles produced under an existing TSOA... aids. The system employed radar signals to detect and measure ground speed and drift angle, using...

  18. CRRES/Ground-based multi-instrument observations of an interval of substorm activity

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    Full Text Available Observations are presented of data taken during a 3-h interval in which five clear substorm onsets/intensifications took place. During this interval ground-based data from the EISCAT incoherent scatter radar, a digital CCD all sky camera, and an extensive array of magnetometers were recorded. In addition data from the CRRES and DMSP spacecraft, whose footprints passed over Scandinavia very close to most of the ground-based instrumentation, are available. The locations and movements of the substorm current system in latitude and longitude, determined from ground and spacecraft magnetic field data, have been correlated with the locations and propagation of increased particle precipitation in the E-region at EISCAT, increased particle fluxes measured by CRRES and DMSP, with auroral luminosity and with ionospheric convection velocities. The onsets and propagation of the injection of magnetospheric particle populations and auroral luminosity have been compared. CRRES was within or very close to the substorm expansion phase onset sector during the interval. The onset region was observed at low latitudes on the ground, and has been confirmed to map back to within L=7 in the magnetotail. The active region was then observed to propagate tailward and poleward. Delays between the magnetic signature of the substorm field aligned currents and field dipolarisation have been measured. The observations support a near-Earth plasma instability mechanism for substorm expansion phase onset.

  19. Deriving ice thickness, glacier volume and bedrock morphology of the Austre Lov\\'enbreen (Svalbard) using Ground-penetrating Radar

    CERN Document Server

    Saintenoy, Albane; Booth, Adam D; Tolle, F; Bernard, E; Laffly, Dominique; Marlin, C; Griselin, M

    2013-01-01

    The Austre Lov\\'enbreen is a 4.6 km2 glacier on the Archipelago of Svalbard (79 degrees N) that has been surveyed over the last 47 years in order of monitoring in particular the glacier evolution and associated hydrological phenomena in the context of nowadays global warming. A three-week field survey over April 2010 allowed for the acquisition of a dense mesh of Ground-penetrating Radar (GPR) data with an average of 14683 points per km2 (67542 points total) on the glacier surface. The profiles were acquired using a Mala equipment with 100 MHz antennas, towed slowly enough to record on average every 0.3 m, a trace long enough to sound down to 189 m of ice. One profile was repeated with 50 MHz antenna to improve electromagnetic wave propagation depth in scattering media observed in the cirques closest to the slopes. The GPR was coupled to a GPS system to position traces. Each profile has been manually edited using standard GPR data processing including migration, to pick the reflection arrival time from the ic...

  20. Alpine ice cores and ground penetrating radar: combined investigations for glaciological and climatic interpretations of a cold Alpine ice body

    Energy Technology Data Exchange (ETDEWEB)

    Eisen, Olaf; Nixdorf, Uwe [Alfred-Wegener-Inst. fuer Polar- und Meeresforschung, Bremerhaven (Germany); Keck, Lothar; Wagenbach, Dietmar [Univ. Heidelberg (Germany). Inst. fuer Umweltphysik

    2003-11-01

    Accurate interpretation of ice cores as climate archives requires detailed knowledge of their past and present geophysical environment. Different techniques facilitate the determination and reconstruction of glaciological settings surrounding the drilling location. During the ALPCLIM1 project, two ice cores containing long-term climate information were retrieved from Colle Gnifetti, Swiss-Italian Alps. Here, we investigate the potential of ground penetrating radar (GPR) surveys, in conjunction with ice core data, to obtain information about the internal structure of the cold Alpine ice body to improve climatic interpretations. Three drill sites are connected by GPR profiles, running parallel and perpendicular to the flow line, thus yielding a three-dimensional picture of the subsurface and enabling the tracking of internal reflection horizons between the locations. As the observed reflections are of isochronic origin, they permit the transfer of age-depth relations between the ice cores. The accuracy of the GPR results is estimated by comparison of transferred timescales with original core datings, independent information from an older ice core, and, based on glaciological surface data, findings from flow modeling. Our study demonstrates that GPR is a mandatory tool for Alpine ice core studies, as it permits mapping of major transitions in physical-chemical properties, transfer of age-depth relations between sites, correlate signals in core records for interpretation, and establish a detailed picture of the flow regime surrounding the climate archive.

  1. Investigating fluvial features with electrical resistivity imaging and ground-penetrating radar: The Guadalquivir River terrace (Jaen, Southern Spain)

    Science.gov (United States)

    Rey, J.; Martínez, J.; Hidalgo, M. C.

    2013-09-01

    A geophysical survey has been conducted on the lowest terrace levels and the present day floodplain of the current course of the Guadalquivir River, passing through the province of Jaen (Spain), using two techniques: electrical resistivity imaging (ERI) and ground-penetrating radar (GPR). Three areas have been selected. In one of these sectors (Los Barrios) there is an old quarry where there are excellent outcrops that allow for the calibration of the survey techniques. Facies associations on these outcrops are typical of meandering rivers with sequences of channel fills, lateral accretion of point-bars and floodplain facies. The usefulness of the two methods is analysed and compared as a support for stratigraphic and sedimentological studies. The geometry and lithofacies of subsurface deposits were characterised using ERI and compared with field observations. A total of 5 electrical resistivity imaging profiles were obtained. The changes in electric resistivity highlight granulometric differences in terrace sediments. This technique can thus be used to identify the morphology of these bodies, the lithofacies (silt, sand or gravel) and buried channel pattern. In addition, 16 GPR profiles using 100 and 250 MHz antennas were acquired, indicating terrace morphology and the filling of the sedimentary bodies in a more detailed manner than in ERI. The study thus allows for inferring the existence of channel migration, the lateral accretion of point bars and the presence of vertical accretion deposits attributable to the floodplains.

  2. A comparison of field-line resonances observed at the Goose Bay and Wick radars

    Directory of Open Access Journals (Sweden)

    G. Provan

    Full Text Available Previous observations with the Goose Bay HF coherent-scatter radar have revealed structured spectral peaks at ultra-low frequencies. The frequencies of these spectral peaks have been demonstrated to be extremely consistent from day to day. The stability of these spectral peaks can be seen as evidence for the existence of global magnetospheric cavity modes whose resonant frequencies are independent of latitude. Field-line resonances occur when successive harmonics of the eigenfrequency of the magnetospheric cavity or waveguide match either the first harmonic eigenfrequency of the geomagnetic field lines or higher harmonics of this frequency. Power spectra observed at the SABRE VHF coherent-scatter radar at Wick, Scotland, during night and early morning are revealed to show similarly clearly structured spectral peaks. These spectral peaks are the result of local field-line resonances due to Alfvén waves standing on magnetospheric field lines. A comparison of the spectra observed by the Goose Bay and Wick radars demonstrate that the frequencies of the field-line resonances are, on average, almost identical, despite the different latitudinal ranges covered by the two radars. Possible explanations for the similarity of the signatures on the two radar systems are discussed.

  3. Investigating Hydrogeologic Controls on Sandhill Wetlands in Covered Karst with 2D Resistivity and Ground Penetrating Radar

    Science.gov (United States)

    Downs, C. M.; Nowicki, R. S.; Rains, M. C.; Kruse, S.

    2015-12-01

    In west-central Florida, wetland and lake distribution is strongly controlled by karst landforms. Sandhill wetlands and lakes are sand-filled upland basins whose water levels are groundwater driven. Lake dimensions only reach wetland edges during extreme precipitation events. Current wetland classification schemes are inappropriate for identifying sandhill wetlands due to their unique hydrologic regime and ecologic expression. As a result, it is difficult to determine whether or not a wetland is impacted by groundwater pumping, development, and climate change. A better understanding of subsurface structures and how they control the hydrologic regime is necessary for development of an identification and monitoring protocol. Long-term studies record vegetation diversity and distribution, shallow ground water levels and surface water levels. The overall goals are to determine the hydrologic controls (groundwater, seepage, surface water inputs). Most recently a series of geophysical surveys was conducted at select sites in Hernando and Pasco County, Florida. Electrical resistivity and ground penetrating radar were employed to image sand-filled basins and the top of the limestone bedrock and stratigraphy of wetland slopes, respectively. The deepest extent of these sand-filled basins is generally reflected in topography as shallow depressions. Resistivity along inundated wetlands suggests the pools are surface expressions of the surficial aquifer. However, possible breaches in confining clay layers beneath topographic highs between depressions are seen in resistivity profiles as conductive anomalies and in GPR as interruptions in otherwise continuous horizons. These data occur at sites where unconfined and confined water levels are in agreement, suggesting communication between shallow and deep groundwater. Wetland plants are observed outside the historic wetland boundary at many sites, GPR profiles show near-surface layers dipping towards the wetlands at a shallower

  4. Development of a ground signal processor for digital synthetic array radar data

    Science.gov (United States)

    Griffin, C. R.; Estes, J. M.

    1981-01-01

    A modified APQ-102 sidelooking array radar (SLAR) in a B-57 aircraft test bed is used, with other optical and infrared sensors, in remote sensing of Earth surface features for various users at NASA Johnson Space Center. The video from the radar is normally recorded on photographic film and subsequently processed photographically into high resolution radar images. Using a high speed sampling (digitizing) system, the two receiver channels of cross-and co-polarized video are recorded on wideband magnetic tape along with radar and platform parameters. These data are subsequently reformatted and processed into digital synthetic aperture radar images with the image data available on magnetic tape for subsequent analysis by investigators. The system design and results obtained are described.

  5. Effects of spatially variable snow cover on thermal regime and hydrology of an Arctic ice wedge polygon landscape identified using ground penetrating radar and LIDAR datasets

    Science.gov (United States)

    Gusmeroli, A.; Liljedahl, A. K.; Peterson, J. E.; Hubbard, S. S.; Hinzman, L. D.

    2012-12-01

    Ice wedge polygons are common in Arctic terrains underlain by permafrost. Permafrost degradation could transform low- into high centered polygons, causing profound changes in the hydrologic regime of Arctic lands, which in turn, could affect the energy balance and subsurface biodegradation of organic carbon responsible for greenhouse gas production. Understanding the linkages between microtopography, snow cover, thermal properties, and thaw depth is critical for developing a predictive understanding of terrestrial ecosystems and their feedbacks to climate. In this study, we use high frequency (500-1000 MHz) ground penetrating radar (GPR) data acquired in spring 2012 within the Next Generation Ecosystem Experiment (NGEE) study site in Barrow, AK to characterize the spatial variability of snow distribution. We compare it's distribution to microtopography, estimated using LIDAR data, and thaw depth, also estimated using ground penetrating radar collected at different times during the year and simulated over time using mechanistic thermal-hydrologic modeling. The high spatial resolution offered by LIDAR and ground penetrating radar permit detailed investigations of the control of microtopography on snow and thaw layer depth. Results suggest that microtopographical variations are responsible for substantial differences in snow accumulation. In low centered polygons, snow depth can be up to four times greater in the troughs than on the rims. Both modeling and observations suggest that the microtopography-governed snow thickness affects the thermal properties of the subsurface and thus the thaw layer thickness; regions with thicker snowpack generally correspond to regions of greater thaw depth. We conclude that a transition from low- to high centered polygons will not only impact watershed runoff but, since snow accumulation is sensitive to the microtopography, it will also impact snow distribution. In turn, snow distribution affects thaw depth thickness, and the

  6. Fusion of forward looking infrared and ground penetrating radar for improved stopping distances in landmine detection

    Science.gov (United States)

    Malof, Jordan M.; Morton, Kenneth D.; Collins, Leslie M.; Torrione, Peter A.

    2014-06-01

    Ground penetrating radar (GPR) is a popular sensing modality for buried threat detection that offers low false alarm rates (FARs), but suffers from a short detection stopping or standoff distance. This short stopping distance leaves little time for the system operator to react when a threat is detected, limiting the speed of advance. This problem arises, in part, because of the way GPR data is typically processed. GPR data is first prescreened to reduce the volume of data considered for higher level feature-processing. Although fast, prescreening introduces latency that delays the feature processing and lowers the stopping distance of the system. In this work we propose a novel sensor fusion framework where a forward looking infrared (FLIR) camera is used as a prescreener, providing suspicious locations to the GPRbased system with zero latency. The FLIR camera is another detection modality that typically yields a higher FAR than GPR while offering much larger stopping distances. This makes it well-suited in the role of a zero-latency prescreener. In this framework, GPR-based feature processing can begin without any latency, improving stopping distances. This framework was evaluated using well-known FLIR and GPR detection algorithms on a large dataset collected at a Western US test site. Experiments were conducted to investigate the tradeoff between early stopping distance and FAR. The results indicate that earlier stopping distances are achievable while maintaining effective FARs. However, because an earlier stopping distance yields less data for feature extraction, there is a general tradeoff between detection performance and stopping distance.

  7. Fusion of ground-penetrating radar and electromagnetic induction sensors for landmine detection and discrimination

    Science.gov (United States)

    Kolba, Mark P.; Torrione, Peter A.; Collins, Leslie M.

    2010-04-01

    Ground penetrating radar (GPR) and electromagnetic induction (EMI) sensors provide complementary capabilities in detecting buried targets such as landmines, suggesting that the fusion of GPR and EMI modalities may provide improved detection performance over that obtained using only a single modality. This paper considers both pre-screening and the discrimination of landmines from non-landmine objects using real landmine data collected from a U.S. government test site as part of the Autonomous Mine Detection System (AMDS) landmine program. GPR and EMI pre-screeners are first reviewed and then a fusion pre-screener is presented that combines the GPR and EMI prescreeners using a distance-based likelihood ratio test (DLRT) classifier to produce a fused confidence for each pre-screener alarm. The fused pre-screener is demonstrated to provide substantially improved performance over the individual GPR and EMI pre-screeners. The discrimination of landmines from non-landmine objects using feature-based classifiers is also considered. The GPR feature utilized is a pre-processed, spatially filtered normalized energy metric. Features used for the EMI sensor include model-based features generated from the AETC model and a dipole model as well as features from a matched subspace detector. The EMI and GPR features are then fused using a random forest classifier. The fused classifier performance is superior to the performance of classifiers using GPR or EMI features alone, again indicating that performance improvements may be obtained through the fusion of GPR and EMI sensors. The performance improvements obtained both for pre-screening and for discrimination have been verified by blind test results scored by an independent U.S. government contractor.

  8. Groundwater Surface Trends at Van Norden Meadow, California, from Ground Penetrating Radar Profiles

    Science.gov (United States)

    Tadrick, N. I.; Blacic, T. M.; Yarnell, S. M.

    2014-12-01

    Van Norden meadow in the Donner Summit area west of Lake Tahoe is one of the largest sub-alpine meadows in the Sierra Nevada mountain range. As natural water retention basins, meadows attenuate floods, improve water quality and support vegetation that stabilizes stream banks and promotes high biodiversity. Like most meadows in the Sierras however, over-grazing, road-building, and development has resulted in localized stream incision, degradation, and partial conversion from wet to dry conditions in Van Norden. Additionally, a small dam at the base of the meadow has partially flooded the lower meadow creating reservoir conditions. Privately owned since the late 1800s, Van Norden was recently purchased by a local land trust to prevent further development and return the area to public ownership. Restoration of the natural meadow conditions will involve notching the dam in 2016 to reduce currently impounded water volumes from 250 to less than 50 acre-feet. To monitor the effects of notching the dam on the upstream meadow conditions, better understanding of the surface and groundwater hydrology both pre- and post-restoration is required. We surveyed the meadow in summer 2014 with ground penetrating radar (GPR) to map the groundwater surface prior to restoration activities using a 270MHz antenna to obtain a suite of longitudinal and transverse transects. Groundwater level within the meadow was assessed using both piezometer readings and sweeps of the GPR antenna. Seventeen piezometers were added this year to the 13 already in place to monitor temporal changes in the groundwater surface, while the GPR profiles provided information about lateral variations. Our results provide an estimate of the groundwater depth variations across the upper portion of the meadow before notching. We plan to return in 2015 to collect GPR profiles during wetter conditions, which will provide a more complete assessment of the pre-notching groundwater hydrology.

  9. Time-lapse 3D ground-penetrating radar during plot-scale infiltration experiments

    Science.gov (United States)

    Allroggen, Niklas; Jackisch, Conrad; Tronicke, Jens

    2016-04-01

    In electrical resistive soils, surface-based ground-penetrating radar (GPR) is known as the geophysical tool providing the highest spatial resolution. Thus, 2D and 3D GPR surveys are commonly used for imaging subsurface structures or estimating soil moisture content. Due to its sensitivity to soil moisture and its non-invasive character, GPR provides a large potential to monitor soil moisture variation at high temporal and spatial resolution. As shown in previous experiments, the acquisition of time-lapse GPR data under field conditions requires a high data quality in terms of repeatability as well as spatial and temporal resolution. We present hydrogeophysical field experiments at the plot scale (1m x 1m), during which we record time-lapse 3D GPR. For GPR data acquisition, we use a pulseEKKO PRO GPR system equipped with a pair of 500 MHz antennas in combination with a specially designed metal-free measuring platform. Additionally, we collect tracer and soil moisture data, which are used to improve the interpretation of the GPR data with special focus on preferential flow paths and their structured advective flow field. After an accurate time-lapse GPR data processing, we compare 3D reflection events before and after infiltration and quantitatively interpret their relative time-shift in terms of soil moisture variations. Thereby, we are able to account for basically all of the infiltrated water. The first experiments demonstrate the general applicability of our experimental approach but are limited by the number of acquired time steps and measurement during the sprinkling period (the time of the highest temporal dynamics) are not possible at all. Based on this experience we redesign our experimental setup to continuously collect GPR data during irrigation and infiltration. Thereby, we strongly increase the temporal resolution of our measurements, improve the interpretability of the GPR data, and monitor the temporal and spatial dynamics of shallow subsurface

  10. Mapping Spatial Moisture Content of Unsaturated Agricultural Soils with Ground-Penetrating Radar

    Science.gov (United States)

    Shamir, O.; Goldshleger, N.; Basson, U.; Reshef, M.

    2016-06-01

    Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR) reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf), common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf), common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1-5% accuracy, making our method useful for the design of irrigation plans for different interfaces.

  11. MAPPING SPATIAL MOISTURE CONTENT OF UNSATURATED AGRICULTURAL SOILS WITH GROUND-PENETRATING RADAR

    Directory of Open Access Journals (Sweden)

    O. Shamir

    2016-06-01

    Full Text Available Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf, common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf, common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1–5% accuracy, making our method useful for the design of irrigation plans for different interfaces.

  12. Estimating Trapped Gas Concentrations as Bubbles Within Lake Ice Using Ground Penetrating Radar

    Science.gov (United States)

    Fantello, N.; Parsekian, A.; Walter Anthony, K. M.

    2015-12-01

    Climate warming is currently one of the most important issues that we are facing. The degradation of permafrost beneath thermokarst lakes has been associated with enhanced methane emissions and it presents a positive feedback to climate warming. Thermokarst lakes release methane to the atmosphere mainly by ebullition (bubbling) but there are a large number of uncertainties regarding the magnitude and variability of these emissions. Here we present a methodology to estimate the amount of gas released from thermokarst lakes through ebullition using ground-penetrating radar (GPR). This geophysical technique is well suited for this type of problem because it is non-invasive, continuous, and requires less effort and time than the direct visual inspection. We are studying GPR data collected using 1.2 GHz frequency antennas in Brooklyn Lake, Laramie, WY, in order to quantify the uncertainties in the method. Although this is not a thermokarst lake, gas bubbles are trapped in the ice and spatial variability in bubble concentration within the ice is evident. To assess the variability in bulk physical properties of the ice due to bubbles, we gathered GPR data from different types of ice. We compared the velocity of the groundwave and reflection obtained from radargrams, and found on each case a larger value for the groundwave velocity suggesting a non-homogeneous medium and that the concentration of bubbles is prone to be near the surface instead of at greater depths. We use a multi-phase dielectric-mixing model to estimate the amount of gas present in a sample of volume of ice and found an uncertainty in relative permittivity (estimated using reflection velocity) of 0.0294, which translates to an uncertainty of 1.1% in gas content; and employing groundwave velocity we found 0.0712 and 2.9%, respectively. If locations of gas seeps in lakes could be detected and quantified using GPR along with field measurements, this could help to constrain future lake-source carbon gas

  13. Condition assessment of concrete pavements using both ground penetrating radar and stress-wave based techniques

    Science.gov (United States)

    Li, Mengxing; Anderson, Neil; Sneed, Lesley; Torgashov, Evgeniy

    2016-12-01

    Two stress-wave based techniques, ultrasonic surface wave (USW) and impact echo (IE), as well as ground penetrating radar (GPR) were used to assess the condition of a segment of concrete pavement that includes a layer of concrete, a granular base and their interface. Core specimens retrieved at multiple locations were used to confirm the accuracy and reliability of each non-destructive testing (NDT) result. Results from this study demonstrate that the GPR method is accurate for estimating the pavement thickness and locating separations (air voids) between the concrete and granular base layers. The USW method is a rapid way to estimate the in-situ elastic modulus (dynamic elastic modulus) of the concrete, however, the existence of air voids at the interface could potentially affect the accuracy and reliability of the USW test results. The estimation of the dynamic modulus and the P-wave velocity of concrete was improved when a shorter wavelength range (3 in. to 8.5 in.) corresponding to the concrete layer thickness was applied instead of the full wavelength rage (3 in. to 11 in.) based on the standard spacing of the receiver transducers. The IE method is proved to be fairly accurate in estimating the thickness of concrete pavements. However, the flexural mode vibration could affect the accuracy and reliability of the test results. Furthermore, the existence of air voids between the concrete and granular base layers could affect the estimation of the compression wave velocity of concrete when the full wavelength range was applied (3 in. to 11 in.). Future work is needed in order to improve the accuracy and reliability of both USW and IE test results.

  14. Unlocking annual firn layer water equivalents from ground-penetrating radar data on an Alpine glacier

    Directory of Open Access Journals (Sweden)

    L. Sold

    2015-05-01

    Full Text Available The spatial representation of accumulation measurements is a major limitation for current glacier mass balance monitoring approaches. Here, we present a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons (IRHs in helicopter-borne ground-penetrating radar (GPR data. For each individual GPR measurement, the signal travel time is combined with a simple model for firn densification and refreezing of meltwater. The model is calibrated at locations where GPR repeat measurements are available in two subsequent years and the densification can be tracked over time. Two 10.5 m long firn cores provide a reference for the density and chronology of firn layers. Thereby, IRHs correspond to density maxima, but not exclusively to former summer glacier surfaces. Along GPR profile sections from across the accumulation area we obtain the water equivalent (w.e. of several annual firn layers. Because deeper IRHs could be tracked over shorter distances, the total length of analysed profile sections varies from 7.3 km for the uppermost accumulation layer (2011 to 0.1 km for the deepest (i.e. oldest layer (2006. According to model results, refreezing accounts for 10% of the density increase over time and depth, and for 2% of the water equivalent. The strongest limitation to our method is the dependence on layer chronology assumptions. We show that GPR can be used not only to complement existing mass balance monitoring programmes on temperate glaciers but also to retrospectively extend newly initiated time series.

  15. Vehicle-mounted ground penetrating radar (Mine Stalker III) field evaluation in Angola

    Science.gov (United States)

    Laudato, Stephen; Hart, Kerry; Nevard, Michael; Lauziere, Steven; Grant, Shaun

    2014-05-01

    The U.S. Department of Defense Humanitarian Demining Research and Development (HD R&D) Program, Non-Intrusive Inspection Technology (NIITEK), Inc. and The HALO Trust have over the last decade funded, developed and tested various prototype vehicle mounted ground penetrating radar (GPR) systems named the Mine Stalker. The HD R&D Program and NIITEK developed the Mine Stalker to detect low metal anti-tank (LM-AT) mines in roads. The country of Angola is severely affected by LM-AT mines in and off road, some of which are buried beyond the effective range of detection sensors current used in country. The threat from LM-AT mines such as the South African Number 8 (No. 8) and the Chinese Type 72 (72AT) still persist from Angola's 30 years of civil war. These LM-AT threats are undetectable at depths greater than 5 to 10 centimeters using metal detection technology. Clearing commerce routes are a critical requirement before Angola can rebuild its infrastructure and improve safety conditions for the local populace. The Halo Trust, a non-governmental demining organization (NGO) focused on demining and clearance of unexploded ordnance (UXO), has partnered with the HD R&D Program to conduct an operational field evaluation (OFE) of the Mine Stalker III (MS3) in Angola. Preliminary testing and training efforts yielded encouraging results. This paper presents a review of the data collected, testing results, system limitations and deficiencies while operating in a real world environment. Our goal is to demonstrate and validate this technology in live minefield environments, and to collect data to prompt future developments to the system.

  16. Ground penetrating radar examination of thin tsunami beds - A case study from Phra Thong Island, Thailand

    Science.gov (United States)

    Gouramanis, Chris; Switzer, Adam D.; Polivka, Peter M.; Bristow, Charles S.; Jankaew, Kruawun; Dat, Pham T.; Pile, Jeremy; Rubin, Charles M.; Yingsin, Lee; Ildefonso, Sorvigenaleon R.; Jol, Harry M.

    2015-11-01

    Coastal overwash deposits from tsunamis and storms have been identified and characterised from many coastal environments. To date, these investigations have utilised ad-hoc time, energy and cost intensive invasive techniques, such as, pits and trenches or taking core samples. Here, we present the application of high-frequency ground penetrating radar (GPR) to identify and characterise the 2004 Indian Ocean Tsunami (IOT) and palaeotsunami deposits from Phra Thong Island, Thailand. This site is one of the most intensively studied palaeotsunami sites globally and preserves a series of late-Holocene stacked sandy tsunami deposits within an organic, muddy low-energy backbeach environment. Using 100, 500 and 1000 MHz GPR antennas, 29 reflection profiles were collected from two swales (X and Y) inland of the modern beach, and two common mid-point (CMP) profiles using the 200 MHz antennas were collected from Swale Y. Detailed examination of the CMPs allowed accurate velocity estimates to be applied to each profile. The reflection profiles included across-swale profiles and a high-resolution grid in Swale X, and were collected to investigate the feasibility of GPR to image the palaeotsunami deposits, and two profiles from Swale Y where the tsunami deposits are poorly known. The 500 MHz antennas provided the best stratigraphic resolution which was independently validated from the stratigraphy and sedimentology recovered from 17 auger cores collected along the profiles. It is clear from the augers and GPR data, that the different dielectric properties of the individual layers allow the identification of the IOT and earlier tsunami deposits on Phra Thong Island. Although applied in a coastal setting here, this technique can be applied to other environments where thin sand beds are preserved, in order to prioritise sites for detailed examination.

  17. Correlation between Resistivity and Ground Penetrating Radar (GPR) Methods in Understanding the Signatures in Detecting Cavities

    Science.gov (United States)

    Afiq Saharudin, Muhamad; Maslinda, Umi; Hisham, Hazrul; Taqiuddin, Z. M.; Nur Amalina, M. K. A.; Nawawi, Nordiana Ahmad; Sulaiman, Nabila; Nordiana, M. M.; Azwin, I. N.

    2017-04-01

    The research was conducted using Resistivity and Ground Penetrating Radar (GPR) methods in detecting in-filled cavities and air-filled cavities. The importance of this study is to see the difference in conductivity value of the in-filled and air-filled cavity. The first study location in which the known target is air-cavity located at School of Language, Literacies, and Translation (SoLLAT). The next study location is at Desasiswa Bakti Permai, which the known target is a bunker with both were located at Universiti Sains Malaysia, Penang and the last location is at Gua Musang, Kelantan with suspected in-filled cavity. The result from Gua Musang is compared with both of the results that have been done at Universiti Sains Malaysia. The resistivity value of the first location that indicates the possible tunnel is about 500 Ωm to 800 Ωm and the conductivity value is about 0.0017 S/m. The resistivity value for the second location located at Desasiswa Bakti Permai that indicates the bunker is about 50 Ωm to 250 Ωm and the conductivity value is about 0.1104 S/m. The resistivity value from Gua Musang is about 50 Ωm to 100 Ωm and the conductivity value is about 0.0101 S/m. The velocity of the in-filled cavities is much lower compared with the velocity of the air-filled cavities. Based on the characteristics, Gua Musang area was dominated with in-filled cavities.

  18. Space time disaggregation of precipitation using daily precipitation and radar observations.

    Science.gov (United States)

    Bàrdossy, Andràs; Pegram, Geoffrey

    2016-04-01

    Radar measurements provide useful information on the spatial and temporal distribution of precipitation. Unfortunately the measurements are often erroneous and biased. Traditional raingauge based observations offer point values. The purpose of this contribution is to investigate the possibility of combining high frequency pluviometer rainfall observations, daily data and radar measurements to obtain sets of possible realizations of the "real" space-time distribution of precipitation. The stochastic model uses space-time copulas, and simulates realizations using a random mixing approach. The method does not intend to provide a single best estimate, but instead to generate many realizations of precipitation fields using the stochastic model. The realizations reflect the different sources of information and represent the corresponding uncertainty. Different levels of information derived from considering radar data are investigated starting with the use of (i) radar zeros only, then (ii) intensity classes and (iii) rank based combinations. The methods are tested and compared on selected events recorded by a dense radar network in South-West Germany, which has been carefully bias corrected.

  19. A Semiautomated Multilayer Picking Algorithm for Ice-sheet Radar Echograms Applied to Ground-Based Near-Surface Data

    Science.gov (United States)

    Onana, Vincent De Paul; Koenig, Lora Suzanne; Ruth, Julia; Studinger, Michael; Harbeck, Jeremy P.

    2014-01-01

    Snow accumulation over an ice sheet is the sole mass input, making it a primary measurement for understanding the past, present, and future mass balance. Near-surface frequency-modulated continuous-wave (FMCW) radars image isochronous firn layers recording accumulation histories. The Semiautomated Multilayer Picking Algorithm (SAMPA) was designed and developed to trace annual accumulation layers in polar firn from both airborne and ground-based radars. The SAMPA algorithm is based on the Radon transform (RT) computed by blocks and angular orientations over a radar echogram. For each echogram's block, the RT maps firn segmented-layer features into peaks, which are picked using amplitude and width threshold parameters of peaks. A backward RT is then computed for each corresponding block, mapping the peaks back into picked segmented-layers. The segmented layers are then connected and smoothed to achieve a final layer pick across the echogram. Once input parameters are trained, SAMPA operates autonomously and can process hundreds of kilometers of radar data picking more than 40 layers. SAMPA final pick results and layer numbering still require a cursory manual adjustment to correct noncontinuous picks, which are likely not annual, and to correct for inconsistency in layer numbering. Despite the manual effort to train and check SAMPA results, it is an efficient tool for picking multiple accumulation layers in polar firn, reducing time over manual digitizing efforts. The trackability of good detected layers is greater than 90%.

  20. On polarimetric radar signatures of deep convection for model evaluation: columns of specific differential phase observed during MC3E

    Energy Technology Data Exchange (ETDEWEB)

    van Lier-Walqui, Marcus; Fridlind, Ann; Ackerman, Andrew S; Collis, Scott; Helmus, Jonathan; MacGorman, Donald R; North, Kirk; Kollias, Pavlos; Posselt, Derek J

    2016-02-01

    The representation of deep convection in general circulation models is in part informed by cloud-resolving models (CRMs) that function at higher spatial and temporal resolution; however, recent studies have shown that CRMs often fail at capturing the details of deep convection updrafts. With the goal of providing constraint on CRM simulation of deep convection updrafts, ground-based remote sensing observations are analyzed and statistically correlated for four deep convection events observed during the Midlatitude Continental Convective Clouds Experiment (MC3E). Since positive values of specific differential phase observed above the melting level are associated with deep convection updraft cells, so-called columns are analyzed using two scanning polarimetric radars in Oklahoma: the National Weather Service Vance WSR-88D (KVNX) and the Department of Energy C-band Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (C-SAPR). KVNX and C-SAPR volumes and columns are then statistically correlated with vertical winds retrieved via multi-Doppler wind analysis, lightning flash activity derived from the Oklahoma Lightning Mapping Array, and KVNX differential reflectivity . Results indicate strong correlations of volume above the melting level with updraft mass flux, lightning flash activity, and intense rainfall. Analysis of columns reveals signatures of changing updraft properties from one storm event to another as well as during event evolution. Comparison of to shows commonalities in information content of each, as well as potential problems with associated with observational artifacts.

  1. Getting saturated hydraulic conductivity from surface Ground-Penetrating Radar measurements inside a ring infiltrometer

    Science.gov (United States)

    Leger, E.; Saintenoy, A.; Coquet, Y.

    2013-12-01

    Hydraulic properties of soils, described by the soil water retention and hydraulic conductivity functions, strongly influence water flow in the vadoze zone, as well as the partitioning of precipitation between infiltration into the soil and runoff along the ground surface. Their evaluation has important applications for modelling available water resources and for flood forecasting. It is also crucial to evaluate soil's capacity to retain chemical pollutants and to assess the potential of groundwater pollution. The determination of the parameters involved in soil water retention functions, 5 parameters when using the van Genuchten function, is usually done by laboratory experiments, such as the water hanging column. Hydraulic conductivity, on the other hand can be estimated either in laboratory, or in situ using infiltrometry tests. Among the large panel of existing tests, the single or double ring infiltrometers give the field saturated hydraulic conductivity by applying a positive charge on soils, whereas the disk infiltrometer allows to reconstruct the whole hydraulic conductivity curve, by applying different charges smaller than or equal to zero. In their classical use, volume of infiltrated water versus time are fitted to infer soil's hydraulic conductivity close to water saturation. Those tests are time-consuming and difficult to apply to landscape-scale forecasting of infiltration. Furthermore they involve many assumptions concerning the form of the infiltration bulb and its evolution. Ground-Penetrating Radar (GPR) is a geophysical method based on electromagnetic wave propagation. It is highly sensitive to water content variations directly related to the dielectric permittivity. In this study GPR was used to monitor water infiltration inside a ring infiltrometer and retrieve the saturated hydraulic conductivity. We carried out experiments in a quarry of Fontainebleau sand, using a Mala RAMAC system with antennae centered on 1600 MHz. We recorded traces at

  2. Characterization of VHF radar observations associated with equatorial Spread F by narrow-band optical measurements

    Directory of Open Access Journals (Sweden)

    R. Sekar

    2004-09-01

    Full Text Available The VHF radars have been extensively used to investigate the structures and dynamics of equatorial Spread F (ESF irregularities. However, unambiguous identification of the nature of the structures in terms of plasma depletion or enhancement requires another technique, as the return echo measured by VHF radar is proportional to the square of the electron density fluctuations. In order to address this issue, co-ordinated radar backscatter and thermospheric airglow intensity measurements were carried out during March 2003 from the MST radar site at Gadanki. Temporal variations of 630.0-nm and 777.4-nm emission intensities reveal small-scale ("micro" and large-scale ("macro" variations during the period of observation. The micro variations are absent on non-ESF nights while the macro variations are present on both ESF and non-ESF nights. In addition to the well-known anti-correlation between the base height of the F-region and the nocturnal variation of thermospheric airglow intensities, the variation of the base height of the F-layer, on occasion, is found to manifest as a bottomside wave-like structure, as seen by VHF radar on an ESF night. The micro variations in the airglow intensities are associated with large-scale irregular plasma structures and found to be in correspondence with the "plume" structures obtained by VHF radar. In addition to the commonly observed depletions with upward movement, the observation unequivocally reveals the presence of plasma enhancements which move downwards. The observation of enhancement in 777.4-nm airglow intensity, which is characterized as plasma enhancement, provides an experimental verification of the earlier prediction based on numerical modeling studies.

  3. Investigation of snow-firn thickness and ground in the East Antarctica by means of geophysical radar

    Directory of Open Access Journals (Sweden)

    S. V. Popov

    2014-01-01

    Full Text Available Results of field investigations of snow-and-firn thickness and ground structures performed with the use of geophysical radar GPR (Ground-Penetrating Radar are discussed in the paper. Industrial radar GSSI SIR10B (Geophysical Survey Systems, Inc., USA with «5106» antenna (pulses frequency of 200 MHz was used. Its mean wavelength is 1.57±0.18 km. The main purpose of this work was to test this new technique for solution of glaciological and geological problems. The works were done during the austral summer season of 2012–2013 (58th Russian Antarctic Expedition in the Eastern Antarctica and mainly concentrated in the vicinity of the Lake Vostok, between the Russian stations Vostok and Progress (the Larsemann Hills. The GPR sounding was carried out together with precise geodetic measurements. The electromagnetic wave propagation in the snow-firn layer was analyzed using the data on density obtained from the 5G borehole at the Vostok Station. Investigations near the Vostok Station focused on a huge snow ridge or so-called “megadune” located eastward from the station at a distance of 30 km. About 80 km of the GPR cross-sections were collected there. Eight internal layers were traced. They demonstrated wavy forms with amplitudes of about 10 m high which corresponded to the megadunes. Main result of GPR investigations in the Larsemann Hills was our understanding of the snow-firn and ground structures in this region. The GPR data collected on structures of crevasses near Progress-1, shallow glacier near the Progress-3, and ground not far from Progress-2 are also discussed. Methodological recommendations on using the GPR under conditions of the Eastern Antarctica were developed.

  4. Characterization of Near-Earth Asteroid 2009 KC3 from Radar and Thermal Infrared Observations

    Science.gov (United States)

    Taylor, Patrick A.; Howell, E. S.; Nolan, M. C.; Benner, L. A. M.; Brozovic, M.; Giorgini, J. D.; Vervack, R. J.; Fernandez, Y. R.; Magri, C.; Mueller, M.

    2010-10-01

    We will report on the size, shape, spin state, and reflective and thermal properties of C-type, Apollo-class, potentially hazardous, near-Earth asteroid 2009 KC3 (a = 3.2 AU, e = 0.7, i = 10 deg). This object was discovered by the Siding Spring Survey in May 2009 and subsequently observed in the late summer using the Goldstone (8560 MHz, 3.5 cm) and Arecibo (2380 MHz, 12.6 cm) radar systems from August 22-29 as well as with the SpeX instrument on the NASA IRTF on August 30 and September 21. Radar images reveal a roughly spheroidal body about 1.2 km in diameter that is slightly asymmetric and elongated. Tracking of surface features and the echo bandwidth suggest a period near 12 hours, which is in agreement with a period of 11.768 hours found from lightcurve observations (P. Pravec, pers. comm.). A consistent decrease in echo bandwidth during the radar observations implies the line of sight was moving away from the equator. Radar images with resolution as fine as 7.5 m per pixel show an indentation on the leading edge (possibly a crater) and radar-bright features beyond the leading edge. The S-band circular polarization ratio of 0.25 is near the median observed among near-Earth asteroids. Thermal emission between 2 and 4 microns is essentially unchanged in SpeX observations three weeks apart despite a change in phase angle from 98 deg to 49 degrees and an increase in heliocentric distance by 0.1 AU. Furthermore, the thermal parameters derived for 2009 KC3 during a single observation do not accurately predict the thermal emission at a later time in a different viewing geometry. Determination of the shape and spin pole will help us understand how much rotation phase and illumination effects affected the thermal observations.

  5. A new active array MST radar system with enhanced capabilities for high resolution atmospheric observations

    Science.gov (United States)

    Durga rao, Meka; Jayaraman, Achuthan; Patra, Amit; Venkat Ratnam, Madineni; Narayana Rao, T.; Kamaraj, Pandian; Jayaraj, Katta; Kmv, Prasad; Kamal Kumar, J.; Raghavendra, J.; Prasad, T. Rajendra; Thriveni, A.; Yasodha, Polisetti

    2016-07-01

    A new version of the 53-MHz MST Radar, using the 1024 solid state Transmit-Receive Modules (TRM), necessary feeder network, multi-channel receiver and a modified radar controller has been established using the existing antenna array of 1024 crossed Yagis. The new system has been configured for steering the beam on a pulse-to-pulse basis in all 360o azimuth and 20o zenith angle, providing enhanced capability to study the Mesosphere-Stratosphere-Troposphere and Ionosphere. The multi channel receiver system has been designed for Spaced Antenna (SA) and Interferometry/ Iamging applications. The new system has also been configured for radiating in circular polarization for its application in the Ionosphere Incoherent Scatter mode. The new active array MST radar at Very-High-Frequency (53-MHz) located at Gadanki (13.45°N, 79.18°E), a tropical station in India, will be used to enhance the observations of winds, turbulence during the passage of convective events over the radar site as deep convection occurs very often at tropical latitudes. The new configuration with enhanced average power, beam agility with multi-channel experiments will be a potential source for studying middle atmosphere and ionosphere. In this paper, we present the system configuration, new capabilities and the first results obtained using the new version of the MST Radar.

  6. Civil Engineering Applications of Ground Penetrating Radar: Research Perspectives in COST Action TU1208

    Science.gov (United States)

    Pajewski, Lara; Benedetto, Andrea; Loizos, Andreas; Slob, Evert; Tosti, Fabio

    2013-04-01

    Ground Penetrating Radar (GPR) is a safe, non-destructive and non-invasive imaging technique that can be effectively used for advanced inspection of composite structures and for diagnostics affecting the whole life-cycle of civil engineering works. GPR provides high resolution images of structures and subsurface through wide-band electromagnetic waves. It can be employed for the surveying of roads, pavements, bridges, tunnels, for detecting underground cavities and voids, for utility sensing, for the inspection of buildings, reinforced concrete and pre-cast concrete structures, for geotechnical investigation, in foundation design, as well as for several other purposes. Penetration and resolution of GPR depend primarily on the transmitting frequency of the equipment, the antenna characteristics, the electrical properties of the ground or of the surveyed material, and the contrasting electrical properties of the targets with respect to the surrounding medium. Generally there is a direct relationship between the transmitter frequency and the resolution that can be obtained; conversely there is an inverse relationship between frequency and penetration depth. GPR works best in dry ground environments, but can also give good results in wet, saturated materials; it does not work well in saline conditions, in high-conductivity media and through dense clays which limit signal penetration. Different approaches can be employed in the processing of collected GPR data. Once data have been processed, they still have to be analysed. This is a challenging problem, since interpretation of GPR radargrams is typically non-intuitive and considerable expertise is needed. In the presence of a complex scenario, an accurate electromagnetic forward solver is a fundamental tool for the validation of data interpretation. It can be employed for the characterization of scenarios, as a preliminary step that precedes a survey, or to gain a posteriori a better understanding of measured data. It

  7. Combined vertical-velocity observations with Doppler lidar, cloud radar and wind profiler

    Directory of Open Access Journals (Sweden)

    J. Bühl

    2015-01-01

    Full Text Available Case studies of combined vertical-velocity measurements of Doppler lidar, cloud radar and wind profiler are presented. The measurements were taken at the Meteorological Observatory Lindenberg, Germany. Synergistic products are presented that are derived from the vertical-velocity measurements of the three instruments: A comprehensive classification mask of vertically moving atmospheric targets and the terminal fall velocity of water droplets and ice crystals corrected for vertical air motion. It is shown that the measurements of the Doppler lidar can extent the view of the cloud radar and the wind profiler, especially when observing clouds.

  8. An Approach for Predicting the Shape and Size of a Buried Basic Object on Surface Ground Penetrating Radar System

    Directory of Open Access Journals (Sweden)

    Nana Rachmana Syambas

    2012-01-01

    Full Text Available Surface ground-penetrating radar (GPR is one of the radar technology that is widely used in many applications. It is nondestructive remote sensing method to detect underground buried objects. However, the output target is only hyperbolic representation. This research develops a system to identify a buried object on surface GPR based on decision tree method. GPR data of many basic objects (with circular, triangular, and rectangular cross-section are classified and extracted to generate data training model as a unique template for each type of basic object. The pattern of object under test will be known by comparing its data with the training data using a decision tree method. A simple powerful algorithm to extract feature parameters of object which is based on linear extrapolation is proposed. The result showed that tested buried basic objects can be correctly predicted and the developed system works properly.

  9. Ground-penetrating radar study of the Cena Bog, Latvia: linkage of reflections with peat moisture content

    Directory of Open Access Journals (Sweden)

    Karušs, J.

    2015-12-01

    Full Text Available Present work illustrates results of the ground-penetrating radar (GPR study of the Cena Bog, Latvia. Six sub-horizontal reflections that most probably correspond to boundaries between sediments with different electromagnetic properties were identified. One of the reflections corresponds to bog peat mineral bottom interface but the rest are linked to boundaries within the peat body. The radar profiles are incorporated with sediment cores and studies of peat moisture and ash content, and degree of decomposition. Most of the electromagnetic wave reflections are related to changes in peat moisture content. The obtained data show that peat moisture content changes of at least 3 % are required to cause GPR signal reflection. However, there exist reflections that do not correlate with peat moisture content. As a result, authors disagree with a dominant opinion that all reflections in bogs are solely due to changes in volumetric peat moisture content.

  10. Statistical characteristics of PMWE observations by the EISCAT VHF radar

    Directory of Open Access Journals (Sweden)

    I. Strelnikova

    2013-02-01

    Full Text Available In the present paper ~ 32.5 h of EISCAT VHF PMWE observations were analyzed with focus on spectral properties like spectral width, doppler shift and spectral shape. Examples from two days of observations with weak and strong polar mesosphere winter echo (PMWE signals are presented and discussed in detail. These examples reveal a large variability from one case to the other. That is, some features like an observed change of vertical wind direction and spectral broadening can be very prominent in one case, but unnoticeable in the other case. However, for all observations a change of spectral shape inside the layer relative to the incoherent background is noticed.

  11. Total Lightning Observations within Electrified Snowfall using Polarimetric Radar, LMA, and NLDN Measurements

    Science.gov (United States)

    Schultz, Christopher J.; Carey, Lawerence D.; Brunning, Eric C.; Blakeslee, Richard

    2013-01-01

    Four electrified snowfall cases are examined using total lightning measurements from lightning mapping arrays (LMAs), and the National Lightning Detection Network (NLDN) from Huntsville, AL and Washington D.C. In each of these events, electrical activity was in conjunction with heavy snowfall rates, sometimes exceeding 5-8 cm hr-1. A combination of LMA, and NLDN data also indicate that many of these flashes initiated from tall communications towers and traveled over large horizontal distances. During events near Huntsville, AL, the Advanced Radar for Meteorological and Operational Research (ARMOR) C-band polarimetric radar was collecting range height indicators (RHIs) through regions of heavy snowfall. The combination of ARMOR polarimetric radar and VHF LMA observations suggested contiguous layer changes in height between sloping aggregate-dominated layers and horizontally-oriented crystals. These layers may have provided ideal conditions for the development of extensive regions of charge and resultant horizontal propagation of the lightning flashes over large distances.

  12. Radar Shape Modeling Of 1996 HW1 Combined With Thermal Observations

    NARCIS (Netherlands)

    Howell, Ellen S.; Magri, C.; Nolan, M. C.; Taylor, P. A.; Vervack, R. J., Jr.; Fernandez, Y. R.; Mueller, M.; Benner, L. A. M.; Giorgini, J. D.; Scheeres, D. J.; Hicks, M. D.; Rhoades, H.; Somers, J. M.; Gaftonyuk, N. M.; Krugly, Y. N.; Kouprianov, V. V.; Molotov, I. E.; Benishek, V.; Protitch-Benishek, V.; Galad, A.; Higgins, D.; Kusnirak, P.; Pray, D.

    2010-01-01

    We observed near-Earth asteroid (8567) 1996 HW1 at the Arecibo Observatory on six dates in September 2008, obtaining radar images and spectra. By combining these data with an extensive set of new lightcurves taken during 2008-2009 and with previously published lightcurves from 2005, we were able to

  13. 46 CFR 11.305 - Radar-Observer certificates and qualifying courses.

    Science.gov (United States)

    2010-10-01

    ... maintaining situational awareness. (iv) Plotting (by any graphically-correct method): (A) Principles and methods of plotting relative and true motion. (B) Practical-plotting problems. (2) Radar Observer (Inland...) Plotting (by any graphically-correct method): (A) Principles and methods of plotting relative and...

  14. Ground settlement of Chek Lap Kok Airport, Hong Kong,detected by satellite synthetic aperture radar interferometry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Satellite synthetic aperture radar (SAR) interferometry is used to investigate the slowly accumulating ground settlement at the new Chek Lap Kok Airport in Hong Kong. Most of the land occupied by the airport was reclaimed from the sea and therefore certain ground settlement in the area has been expected. A pair of ERS-2 SAR images spanning nearly a year is used in the study. The high spatial resolution (20 m× 20 m) ground settlement map derived indicates that the settlement that occurred in the area over the time period is as large as 50 mm. The SAR measurement results agree with the levelling measurements at some benchmarks in the area to well within 1 cm(rms error),and the overall correlation between the two types of results is 0.89. The paper presents some brief background of interferometric SAR, and outlines the data processing methods and results.

  15. Delineating shallow Neogene deformation structures in northeastern Pará State using Ground Penetrating Radar

    Directory of Open Access Journals (Sweden)

    Dilce F. Rossetti

    2003-06-01

    Full Text Available The geological characterization of shallow subsurface Neogene deposits in northeastern Pará State using Ground Penetrating Radar (GPR revealed normal and reverse faults, as well as folds, not yet well documented by field studies. The faults are identified mostly by steeply-dipping reflections that sharply cut the nearby reflections causing bed offsets, drags and rollovers. The folds are recognized by reflections that are highly undulating, configuring broad concave and convex-up features that are up to 50 m wide and 80 to 90 ns deep. These deformation structures are mostly developed within deposits of Miocene age, though some of the faults might continue into younger deposits as well. Although the studied GPR sections show several diffractions caused by trees, differential degrees of moisture, and underground artifacts, the structures recorded here can not be explained by any of these ''noises''. The detailed analysis of the GPR sections reveals that they are attributed to bed distortion caused by brittle deformation and folding. The record of faults and folds are not widespread in the Neogene deposits of the Bragantina area. These GPR data are in agreement with structural models, which have proposed a complex evolution including strike-slip motion for this area from the Miocene to present.A caracterização geológica de depósitos neógenos ocorrentes em sub-superfície rasa no nordeste do Estado do Pará, usando Radar de Penetração no Solo (GPR, revelou a presença de falhas normais e reversas, bem como dobras, ainda não documentadas em estudos de campo prévios. As falhas são identificadas por reflexões inclinadas que cortam bruscamente reflexões vizinhas, causando freqüentes deslocamentos de camadas. As dobras são reconhecidas por reflexões fortemente ondulantes, configurando feições côncavas e convexas que medem até 50 m de amplitude e 80 a 90 m de profundidade. Estas estruturas deformacionais desenvolvem-se, principalmente

  16. Detection of Ground Clutter from Weather Radar Using a Dual-Polarization and Dual-Scan Method

    Directory of Open Access Journals (Sweden)

    Mohammad-Hossein Golbon-Haghighi

    2016-06-01

    Full Text Available A novel dual-polarization and dual-scan (DPDS classification algorithm is developed for clutter detection in weather radar observations. Two consecutive scans of dual-polarization radar echoes are jointly processed to estimate auto- and cross-correlation functions. Discriminants are then defined and estimated in order to separate clutter from weather based on their physical and statistical properties. An optimal Bayesian classifier is used to make a decision on clutter presence from the estimated discriminant functions. The DPDS algorithm is applied to the data collected with the KOUN polarimetric radar and compared with the existing detection methods. It is shown that the DPDS algorithm yields a higher probability of detection and lower false alarm rate in clutter detection.

  17. High-Resolution Mapping of Sea Ice, Icebergs and Growlers in Kongsfjorden, Svalbard, using Ground Based Radar, Satellite, and UAV

    Science.gov (United States)

    Lauknes, T. R.; Rouyet, L.; Solbø, S. A.; Sivertsen, A.; Storvold, R.; Akbari, V.; Negrel, J.; Gerland, S.

    2016-12-01

    The dynamics of sea ­ice has a well­ recognized role in the climate system and its extent and evolution is impacted by the global warming. In addition, calving of icebergs and growlers at the tidewater glacier fronts is a component of the mass loss in polar regions. Understanding of calving and ice ­ocean interaction, in particular at tidewater glacier front remains elusive, and a problematic uncertainty in climate change projections. Studying the distribution, volumetry and motion of sea ­ice, icebergs and growlers is thus essential to understand their interactions with the environment in order to be able to predict at short­term their drifts, e.g. to mitigate the risk for shipping, and at longer term the multiple relations with climate changes. Here, we present the results from an arctic fieldwork campaign conducted in Kongsfjorden, Svalbard in April 2016, where we used different remote sensing instruments to observe dynamics of sea ice, icebergs, and growlers. We used a terrestrial radar system, imaging the study area every second minute during the observation period. At the front of the Kronebreen glacier, calving events can be detected and the drift of the generated icebergs and growlers tracked with unprecedented spatial and temporal resolution. During the field campaign, we collected four Radarsat-2 quad-pol images, that will be used to classify the different types of sea ice. In addition, we used small unmanned aircraft (UAS) instrumented with high resolution cameras capturing HD video and still pictures. This allows to map and measure the size of icebergs and ice floes. Such information is essential to validate sensitivity and detection limits from the ground and satellite based measurements.

  18. Mobile Ground-Based Radar Sensor for Localization and Mapping: An Evaluation of two Approaches

    Directory of Open Access Journals (Sweden)

    Damien Vivet

    2013-08-01

    Full Text Available This paper is concerned with robotic applications using a ground‐based radar sensor for simultaneous localization and mapping problems. In mobile robotics, radar technology is interesting because of its long range and the robustness of radar waves to atmospheric conditions, making these sensors well‐suited for extended outdoor robotic applications. Two localization and mapping approaches using data obtained from a 360° field of view microwave radar sensor are presented and compared. The first method is a trajectory‐ oriented simultaneous localization and mapping technique, which makes no landmark assumptions and avoids the data association problem. The estimation of the ego‐motion makes use of the Fourier‐Mellin transform for registering radar images in a sequence, from which the rotation and translation of the sensor motion can be estimated. The second approach uses the consequence of using a rotating range sensor in high speed robotics. In such a situation, movement combinations create distortions in the collected data. Velocimetry is achieved here by explicitly analysing these measurement distortions. As a result, the trajectory of the vehicle and then the radar map of outdoor environments can be obtained. The evaluation of experimental results obtained by the two methods is presented on real‐world data from a vehicle moving at 30 km/h over a 2.5 km course.

  19. High Ice Water Content at Low Radar Reflectivity near Deep Convection. Part I ; Consistency of In Situ and Remote-Sensing Observations with Stratiform Rain Column Simulations

    Science.gov (United States)

    Fridlind, A. M.; Ackerman, A. S.; Grandin, A.; Dezitter, F.; Weber, M.; Strapp, J. W.; Korolev, A. V.; Williams, C. R.

    2015-01-01

    Occurrences of jet engine power loss and damage have been associated with flight through fully glaciated deep convection at -10 to -50 degrees Centigrade. Power loss events commonly occur during flight through radar reflectivity (Zeta (sub e)) less than 20-30 decibels relative to Zeta (dBZ - radar returns) and no more than moderate turbulence, often overlying moderate to heavy rain near the surface. During 2010-2012, Airbus carried out flight tests seeking to characterize the highest ice water content (IWC) in such low-radar-reflectivity regions of large, cold-topped storm systems in the vicinity of Cayenne, Darwin, and Santiago. Within the highest IWC regions encountered, at typical sampling elevations (circa 11 kilometers), the measured ice size distributions exhibit a notably narrow concentration of mass over area-equivalent diameters of 100-500 micrometers. Given substantial and poorly quantified measurement uncertainties, here we evaluate the consistency of the Airbus in situ measurements with ground-based profiling radar observations obtained under quasi-steady, heavy stratiform rain conditions in one of the Airbus-sampled locations. We find that profiler-observed radar reflectivities and mean Doppler velocities at Airbus sampling temperatures are generally consistent with those calculated from in situ size-distribution measurements. We also find that column simulations using the in situ size distributions as an upper boundary condition are generally consistent with observed profiles of radar reflectivity (Ze), mean Doppler velocity (MDV), and retrieved rain rate. The results of these consistency checks motivate an examination of the microphysical pathways that could be responsible for the observed size-distribution features in Ackerman et al. (2015).

  20. Basal conditions at the grounding zone of Whillans Ice Stream, West Antarctica, from ice-penetrating radar

    Science.gov (United States)

    Christianson, Knut; Jacobel, Robert W.; Horgan, Huw J.; Alley, Richard B.; Anandakrishnan, Sridhar; Holland, David M.; DallaSanta, Kevin J.

    2016-11-01

    We present a comprehensive ice-penetrating radar survey of a subglacial embayment and adjacent peninsula along the grounding zone of Whillans Ice Stream, West Antarctica. Through basal waveform and reflectivity analysis, we identify four distinct basal interfaces: (1) an ice-water-saturated till interface inland of grounding; (2) a complex interface in the grounding zone with variations in reflectivity and waveforms caused by reflections from fluting, sediment deposits, and crevasses; (3) an interface of anomalously low-reflectivity downstream of grounding in unambiguously floating areas of the embayment due to basal roughness and entrained debris; and (4) a high-reflectivity ice-seawater interface that occurs immediately seaward of grounding at the subglacial peninsula and several kilometers seaward of grounding in the embayment, occurring after basal debris and grounding zone flutes have melted off the ice bottom. Sediment deposition via basal debris melt-out occurs in both locations. The higher basal melt rate at the peninsula contributes to greater grounding line stability by enabling faster construction of a stabilizing sediment wedge. In the embayment, the low slopes of the ice bottom and bed prevent development of a strong thermohaline circulation leading to a lower basal melt rate and less rapid sediment deposition. Thus, grounding lines in subglacial embayments are more likely to lack stabilizing sediment deposits and are more prone to external forcing, whether from the ocean, the subglacial water system, or large-scale ice dynamics. Our conclusions indicate that subglacial peninsulas and embayments should be treated differently in ice sheet-ocean models if these models are to accurately simulate grounding line response to external forcing.

  1. Observation of Hyperfine Transitions in Trapped Ground-State Antihydrogen

    CERN Document Server

    Olin, Arthur

    2015-01-01

    This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4~parts~in~$10^3$. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.

  2. Polarimetric radar and aircraft observations of saggy bright bands during MC3E

    Science.gov (United States)

    Kumjian, Matthew R.; Mishra, Subashree; Giangrande, Scott E.; Toto, Tami; Ryzhkov, Alexander V.; Bansemer, Aaron

    2016-04-01

    Polarimetric radar observations increasingly are used to understand cloud microphysical processes, which is critical for improving their representation in cloud and climate models. In particular, there has been recent focus on improving representations of ice collection processes (e.g., aggregation and riming), as these influence precipitation rate, heating profiles, and ultimately cloud life cycles. However, distinguishing these processes using conventional polarimetric radar observations is difficult, as they produce similar fingerprints. This necessitates improved analysis techniques and integration of complementary data sources. The Midlatitude Continental Convective Clouds Experiment (MC3E) provided such an opportunity. Quasi-vertical profiles of polarimetric radar variables in two MC3E stratiform precipitation events reveal episodic melting layer sagging. Integrated analyses using scanning and vertically pointing radar and aircraft measurements reveal that saggy bright band signatures are produced when denser, faster-falling, more isometric hydrometeors (relative to adjacent times) descend into the melting layer. In one case, strong circumstantial evidence for riming is found during bright band sagging times. A bin microphysical melting layer model successfully reproduces many aspects of the signature, supporting the observational analysis. If found to be a reliable indicator of riming, saggy bright bands could be a proxy for the presence of supercooled liquid water in stratiform precipitation, which may provide important information for mitigating aircraft icing risks and for constraining microphysical models.

  3. Ground deformation detection of the greater area of Thessaloniki (Northern Greece using radar interferometry techniques

    Directory of Open Access Journals (Sweden)

    D. Raucoules

    2008-07-01

    Full Text Available In the present study SAR interferometric techniques (stacking of conventional interferograms and Permanent Scatterers, using images from satellites ERS-1 and 2, have been applied to the region of Thessaloniki (northern Greece. The period covered by the images is 1992–2000. Both techniques gave good quantitative and qualitative results. The interferometric products were used to study ground surface deformation phenomena that could be related to the local tectonic context, the exploitation of underground water and sediments compaction.

    The city of Thessaloniki shows relatively stable ground conditions. Subsidence in four locations, mainly in the area surrounding the city of Thessaloniki, has been detected and assessed. Two of the sites (Sindos-Kalochori and Langadhas were already known from previous studies as subsiding areas, using ground base measurements. On the contrary the other two sites in the northern suburbs of Thessaloniki (Oreokastro and in the south-east (airport area were unknown as areas of subsidence. A further investigation based on fieldwork is needed in these two areas. Finally, an attempt to interpret the observed deformation, according to the geological regime of the area and its anthropogenic activities, has been carried out.

  4. Characterization approaches using ground-penetrating radar and hydrological measurements in variably saturated porous media

    Science.gov (United States)

    Kowalsky, Michael Brendan

    Modeling the flow of water or the transport of contaminants through the subsurface requires the characterization of soil properties including permeability, porosity, and water retention. Such hydrological parameters are commonly heterogeneous, and uncertainty in their spatial distributions makes it difficult to construct hydrological models from only point measurements, which are commonly limited since their collection is expensive, time consuming and invasive. The application of geophysical methods offers a promising alternative for inferring hydrological properties in the subsurface. The focus of this dissertation is on a variety of applications of ground penetrating radar (GPR), a geophysical method that provides data non-invasively (or minimally invasively) with high spatial resolution and at low cost. While GPR data are increasingly used in shallow subsurface characterization, relations between such data and subsurface flow processes are poorly understood. The research presented in this dissertation stems from the need for (1) a better understanding of GPR data in relation to non-uniform and transient distributions of pore water, and (2) an approach relating GPR attributes, possibly in combination with additional data types, to hydrological parameters. An overview of GPR methods is given, including reviews of previous applications and of techniques for simulating GPR measurements, and is followed by a series of case studies. Comparison of real field data and simulations performed with an outcrop-derived model under various states of water saturation shows that the detectability of some sedimentary units depends on in-situ moisture conditions. Then, the simultaneous simulation of GPR surveys and transient flow shows that time-lapsed measurements offer information that might be useful for inferring hydrological parameter distributions in the vadose zone. An inverse technique is then presented which allows for the estimation of actual flow parameters using GPR

  5. The detectability of archaeological structures beneath the soil using the ground penetrating radar technique

    Science.gov (United States)

    Ferrara, C.; Barone, P. M.; Pajewski, L.; Pettinelli, E.; Rossi, G.

    2012-04-01

    The traditional excavation tools applied to Archaeology (i.e. trowels, shovels, bulldozers, etc.) produce, generally, a fast and invasive reconstruction of the ancient past. The geophysical instruments, instead, seem to go in the opposite direction giving, rapidly and non-destructively, geo-archaeological information. Moreover, the economic aspect should not be underestimated: where the former invest a lot of money in order to carry out an excavation or restoration, the latter spend much less to manage a geophysical survey, locating precisely the targets. Survey information gathered using non-invasive methods contributes to the creation of site strategies, conservation, preservation and, if necessary, accurate location of excavation and restoration units, without destructive testing methods, also in well-known archaeological sites [1]-[3]. In particular, Ground Penetrating Radar (GPR) has, recently, become the most important physical technique in archaeological investigations, allowing the detection of targets with both very high vertical and horizontal resolution, and has been successfully applied both to archaeological and diagnostic purposes in historical and monumental sites [4]. GPR configuration, antenna frequency and survey modality can be different, depending on the scope of the measurements, the nature of the site or the type of targets. Two-dimensional (2D) time/depth slices and radargrams should be generated and integrated with information obtained from other buried or similar artifacts to provide age, structure and context of the surveyed sites. In the present work, we present three case-histories on well-known Roman archaeological sites in Rome, in which GPR technique has been successfully used. To obtain 2D maps of the explored area, a bistatic GPR (250MHz and 500MHz antennas) was applied, acquiring data along several parallel profiles. The GPR results reveal the presence of similar circular anomalies in all the investigated archaeological sites. In

  6. Broadband Ground Penetrating Radar with conformal antennas for subsurface imaging from a rover

    Science.gov (United States)

    Stillman, D. E.; Oden, C. P.; Grimm, R. E.; Ragusa, M.

    2015-12-01

    Ground-Penetrating Radar (GPR) allows subsurface imaging to provide geologic context and will be flown on the next two martian rovers (WISDOM on ExoMars and RIMFAX on Mars 2020). The motivation of our research is to minimize the engineering challenges of mounting a GPR antenna to a spacecraft, while maximizing the scientific capabilities of the GPR. The scientific capabilities increase with the bandwidth as it controls the resolution. Furthermore, ultra-wide bandwidth surveys allow certain mineralogies and rock units to be discriminated based on their frequency-dependent EM or scattering properties. We have designed and field-tested a prototype GPR that utilizes bi-static circularly polarized spiral antennas. Each antenna has a physical size of 61 x 61 x 4 cm, therefore two antennas could be mounted to the underbelly of a MSL-class rover. Spiral antennas were chosen because they have an inherent broadband response and provide a better low frequency response compared with similarly sized linearly polarized antennas. A horizontal spiral radiator emits energy both upward and downward directions. After the radiator is mounted to a metal surface (i.e. the underside of a rover), a cavity is formed that causes the upward traveling energy to reverberate and cause unwanted interference. This interference is minimized by 1) using a high metallization ratio on the spiral to reduce cavity emissions, and 2) placing absorbing material inside the cavity. The resulting antennas provide high gain (0 to 8 dBi) from 200 to 1000 MHz. The low frequency response can be improved by increasing the antenna thickness (i.e., cavity depth). In an initial field test, the antennas were combined with impulse GPR electronics that had ~140 dB of dynamic range (not including antennas) and a sand/clay interface 7 feet deep was detected. To utilize the full bandwidth the antennas, a gated Frequency Modulated Continuous Waveform system will be developed - similar to RIMFAX. The goal is to reach a

  7. Detection of 3D tree root systems using high resolution ground penetration radar

    Science.gov (United States)

    Altdorff, D.; Honds, M.; Botschek, J.; Van Der Kruk, J.

    2014-12-01

    Knowledge of root systems and its distribution are important for biomass estimation as well as for the prevention of subsurface distribution network damages. Ground penetration radar (GPR) is a promising technique that enables a non-invasive imaging of tree roots. Due to the polarisation-dependent reflection coefficients and complicated three-dimensional root structure, accurate measurements with perpendicularly polarized antennas are needed. In this study, we show GPR data from two planes and one chestnut at two locations with different soil conditions. Perpendicular 10 x 10 cm grid measurements were made with a shielded 250 MHz antenna in combination with a high precision self-tracking laser theodolite that provides geo-referenced traces with a spatial resolution of ~ 2 cm. After selecting potential root hyperbolas within the perpendicular GPR profiles, the corresponding three-dimensional coordinates were extracted and visualized in planar view to reveal any linear structure that indicates a possible tree root. The coordinates of the selected linear structures were projected back to the surface by means of the laser-theodolite to indicate the locations for groundtruthing. Additionally, we interpolated the measured data into a 3D cube where time slices confirmed the locations of linear reflection events. We validated the indicated predictions by excavation of the soil with a suction dredge. Subsequent georeferencing of the true root distribution and comparison with the selected linear events showed that the approach was able to identify the precise position of roots with a diameter between 3 and 10 cm and a depth of up to 70 cm. However, not all linear events were roots; also mouse channels were found in these depths, since they also generate GPR hyperbolas aligned in linear structures. Roots at a second location at depths of 1 to 1.20 m did not generate identifiable hyperboles, which was probably due to an increased electrical conductivity below 86 cm depth. The

  8. E-region decameter-scale plasma waves observed by the dual TIGER HF radars

    Directory of Open Access Journals (Sweden)

    B. A. Carter

    2009-01-01

    Full Text Available The dual Tasman International Geospace Environment Radar (TIGER HF radars regularly observe E-region echoes at sub-auroral magnetic latitudes 58°–60° S including during geomagnetic storms. We present a statistical analysis of E-region backscatter observed in a period of ~2 years (late 2004–2006 by the TIGER Bruny Island and Unwin HF radars, with particular emphasis on storm-time backscatter. It is found that the HF echoes normally form a 300-km-wide band at ranges 225–540 km. In the evening sector during geomagnetic storms, however, the HF echoes form a curved band joining to the F-region band at ~700 km. The curved band lies close to the locations where the geometric aspect angle is zero, implying little to no refraction during geomagnetic storms, which is an opposite result to what has been reported in the past. The echo occurrence, Doppler velocity, and spectral width of the HF echoes are examined in order to determine whether new HF echo types are observed at sub-auroral latitudes, particularly during geomagnetic storms. The datasets of both TIGER radars are found to be dominated by low-velocity echoes. A separate population of storm-time echoes is also identified within the datasets of both radars with most of these echoes showing similar characteristics to the low-velocity echo population. The storm-time backscatter observed by the Bruny Island radar, on the other hand, includes near-range echoes (r<405 km that exhibit some characteristics of what has been previously termed the High Aspect angle Irregularity Region (HAIR echoes. We show that these echoes appear to be a storm-time phenomenon and further investigate this population by comparing their Doppler velocity with the simultaneously measured F- and E-region irregularity velocities. It is suggested that the HAIR-like echoes are observed only by HF radars with relatively poor geometric aspect angles when electron density is low and when the electric field is particularly