WorldWideScience

Sample records for ground power unit

  1. Ground test challenges in the development of the Space Shuttle orbiter auxiliary power unit

    Science.gov (United States)

    Chaffee, N. H.; Lance, R. J.; Weary, D. P.

    1984-01-01

    A conventional aircraft hydraulic system design approach was selected to provide fluid power for the Space Shuttle Orbiter. Developing the power unit, known as the Auxiliary Power Unit (APU), to drive the hydraulic pumps presented a major technological challenge. A small, high speed turbine drive unit powered by catalytically decomposed hydrazine and operating in the pulse mode was selected to meet the requirement. Because of limitations of vendor test facilities, significant portions of the development, flight qualification, and postflight anomaly testing of the Orbiter APU were accomplished at the Johnson Space Center (JSC) test facilities. This paper discusses the unique requirements of attitude, gravity forces, pressure profiles, and thermal environments which had to be satisfied by the APU, and presents the unique test facility and simulation techniques employed to meet the ground test requirements. In particular, the development of the zero-g lubrication system, the development of necessary APU thermal control techniques, the accomplishment of integrated systems tests, and the postflight investigation of the APU lube oil cooler behavior are discussed.

  2. Compensation of Cable Voltage Drops and Automatic Identification of Cable Parameters in 400 Hz Ground Power Units

    DEFF Research Database (Denmark)

    Borup, Uffe; Nielsen, Bo Vork; Blaabjerg, Frede

    2004-01-01

    In this paper a new cable voltage drop compensation scheme for ground power units (GPU) is presented. The scheme is able to predict and compensate the voltage drop in an output cable by measuring the current quantities at the source. The prediction is based on an advanced cable model that includes...

  3. Enhanced static ground power unit based on flying capacitor based h-bridge hybrid active-neutral-point-clamped converter

    DEFF Research Database (Denmark)

    Abarzadeh, Mostafa; Madadi Kojabadi, Hossein; Deng, Fujin

    2016-01-01

    Static power converters have various applications, such as static ground power units (GPUs) for airplanes. This study proposes a new configuration of a static GPU based on a novel nine-level flying capacitor h-bridge active-neutral-point-clamped (FCHB_ANPC) converter. The main advantages...... improvement in GPU dynamic performances. This progress is achieved by utilising the proposed FCHB converter to an ANPC converter and using the suggested modulation method. This leads to diminish the size and cost and enhance the feasibility and reliability of the converter. Applying the proposed modulation...

  4. Evaluation of System Architectures for the Army Aviation Ground Power Unit

    Science.gov (United States)

    2014-12-01

    for DC power ( Baldor Electric Company 2014; U.S. Army Aviation and Missile Command 2007). 14 C. CHAPTER SUMMARY This chapter examined... Baldor Electric Company. 2014. Performance Data: EJMM2334T [Pamphlet]. Fort Smith, AR: ABB Group. Balje, O. E. 1962. A Study on Design Criteria and

  5. Power Gating Based Ground Bounce Noise Reduction

    Directory of Open Access Journals (Sweden)

    M. Uma Maheswari

    2014-08-01

    Full Text Available As low power circuits are most popular the decrease in supply voltage leads to increase in leakage power with respect to the technology scaling. So for removing this kind of leakages and to provide a better power efficiency many power gating techniques are used. But the leakage due to ground connection to the active part of the circuit is very high rather than all other leakages. As it is mainly due to the back EMF of the ground connection it was called it as ground bounce noise. To reduce this noise different methodologies are designed. In this paper the design of such an efficient technique related to ground bounce noise reduction using power gating circuits and comparing the results using DSCH and Microwind low power tools. In this paper the analysis of adders such as full adders using different types of power gated circuits using low power VLSI design techniques and to present the comparison results between different power gating methods.

  6. Hovercraft auxiliary power units (APUs)

    Energy Technology Data Exchange (ETDEWEB)

    Russell, B.J.

    1983-08-01

    Auxiliary power units (APU) manufactured by British firms for use in hovercraft are characterized. Both diesel and gas-turbine APUs are found to be well suited to the demands of this application. The design features, dimensions, performance data, and installation requirements are discussed for the SS 90, SS 923, DA-1, BA-1, HM 5, and Gevaudan 9 APUs, as well as the TRS 18 gas-turbine smoke generator. The progress made in improving the fuel efficiency of gas turbines and reducing the weight of diesel engines is considered significant.

  7. Orbit-to-ground Wireless Power Transfer test mission

    Science.gov (United States)

    Bergsrud, C.; Noghanian, S.; Straub, J.; Whalen, D.; Fevig, R.

    Since the 1970s the concept of transferring power from orbit for use on Earth has had a great deal of consideration for future energy and environmental sustainability here on Earth. The cost, size and complexity of a production-grade system are extremely large, and have many environmental considerations. There has never been a publicly disclosed orbit-to-ground power transfer test mission. A proposed project provides an opportunity to test the conceptual operation of such a system, albeit at a much lower power level than the `grand' or `real scale' system. During this test, a small Solar Powered (SP) 6-U CubSat will be deployed into Low-Earth Orbit (LEO) (225 or 325 km) to collect and store 1 KW of power from solar energy as the satellite is orbiting. The goal is to transmit 1 KW of wireless power at a microwave frequency of 5.8 or 10 GHz to a ground antenna array system. This paper presents the architecture for the proposed mission and discusses the regulatory, legal, and environmental issues that such a mission poses. Furthermore, the gain of the transmitter is analyzed at 20 and 30 dB as well as the gain of the receiver is analyzed at 30, 40, and 50 dB. A SP 6-U CubeSat will have a Lithium Ion (LIon) battery capable of storing enough energy for 83.33 Whr charge to run the satellites controls, and 1 KW necessary for a 5-minute demonstration and test (in addition to power required for its own operational requirements). Once charged, the satellite will use highly accurate position and attitude knowledge provided by an onboard star-tracker, Global Positioning Satellite (GPS) and inertial measurement unit to determine the proper orientation for the power transfer test. The onboard Attitude Determination and Control (ADCS) will be utilized to achieve and maintain this orientation during the test period. A cold-gas propulsion system will be available to de-spin the reaction wheels to ensure that sufficient ADCS capabilities exist for attitude-stabilization use during

  8. Modeling and Simulation of an Unmanned Ground Vehicle Power System

    Science.gov (United States)

    2014-03-28

    Wilhelm, A. N., Surgenor, B. W., and Pharoah, J. G., “Design and evaluation of a micro-fuel-cell-based power system for a mobile robot ,” Mechatronics ...of Michigan, Ann Arbor, MI, USA bU.S. Army RDECOM-TARDEC, Warren, MI, USA ABSTRACT Long-duration missions challenge ground robot systems with respect...to energy storage and efficient conversion to power on demand. Ground robot systems can contain multiple power sources such as fuel cell, battery and

  9. Arsenic in Ground Water of the United States - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image shows national-scale patterns of naturally occurring arsenic in potable ground-water resources of the continental United States. The image was generated...

  10. Strong ground movement induced by mining activities and its effect on power transmission structures

    Institute of Scientific and Technical Information of China (English)

    DAI Kao-shan; CHEN Shen-en

    2009-01-01

    Surface mining activities may introduce damages to nearby infrastructure. Concerns are put forward by the power company about structural integrity of electric power transmission structures in areas where coal mining activities cause strong ground vibrations. Common practice in the power industry is to limit ground motion by specifying maximum Peak Particle Velocity. So far, there is a lack of industry-wide recognized guidelines on how ground vibration limits should be set for the transmission structures. In order to develop a defense strategy to protect power transmission lines against strong ground motions in mining areas, a systematic research work was conducted to establish strong ground vibration characteristics and to study impacts of ground excitations on transmission pole structures. Ground movements were recorded using geophones and wireless tri-axial sensing units. The process of generating ground motion response spectra via analyzing actual ground motion measurements is described in the paper. These spectra developed based on peak particle velocities were used as a basis for spectral analysis performed using validated Finite Element models to obtain structural displacements, reactions and stress states of the transmission pole structures in the mining sites. A quantitative ground motion limit was established by comparing structural responses with the corresponding design requirements.

  11. Space vehicle field unit and ground station system

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry; Proicou, Michael; Seitz, Daniel; Michel, John; Enemark, Donald

    2017-09-19

    A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.

  12. Space vehicle field unit and ground station system

    Science.gov (United States)

    Judd, Stephen; Dallmann, Nicholas; Delapp, Jerry; Proicou, Michael; Seitz, Daniel; Michel, John; Enemark, Donald

    2016-10-25

    A field unit and ground station may use commercial off-the-shelf (COTS) components and share a common architecture, where differences in functionality are governed by software. The field units and ground stations may be easy to deploy, relatively inexpensive, and be relatively easy to operate. A novel file system may be used where datagrams of a file may be stored across multiple drives and/or devices. The datagrams may be received out of order and reassembled at the receiving device.

  13. Portable Power And Digital-Communication Units

    Science.gov (United States)

    Levin, Richard R.; Henry, Paul K.; Rosenberg, Leigh S.

    1992-01-01

    Conceptual network of electronic-equipment modules provides electrical power and digital radio communications at multiple sites not served by cables. System includes central communication unit and portable units powered by solar photovoltaic arrays. Useful to serve equipment that must be set up quickly at remote sites or buildings that cannot be modified to provide cable connections.

  14. CRITICAL UNIT STREAM POWER FOR SEDIMENT TRANSPORT

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Yang's (1996) sediment transport theory based on unit stream power is one of the most accurate theories, but in his equations the use of product of slope and critical velocity instead for critical unit stream power is not suitable. Dimensionless critical unit stream power required at incipient motion can be derived from the principle of conservation of power as a function of dimensionless particle diameter and relative roughness. Based on a lot of data sets, this new criterion was developed. By use of this new criteria, Yang's (1973) sand transport formula and his 1984 gravel transport formula could be improved when sediment concentration is less than about 100 ppm by weight.

  15. Combustion Power Unit--400: CPU-400.

    Science.gov (United States)

    Combustion Power Co., Palo Alto, CA.

    Aerospace technology may have led to a unique basic unit for processing solid wastes and controlling pollution. The Combustion Power Unit--400 (CPU-400) is designed as a turboelectric generator plant that will use municipal solid wastes as fuel. The baseline configuration is a modular unit that is designed to utilize 400 tons of refuse per day…

  16. Geothermal power generation in United States

    Science.gov (United States)

    Braun, Gerald W.; McCluer, H. K.

    1993-03-01

    Geothermal energy is an indigenous environmentally benign heat source with the potential for 5000-10,000 GWe of power generation in the United States. Approximately 2535 MWe of installed capacity is currently operating in the U.S. with contracted power costs down to 4.6 cents/kWh. This paper summarizes: 1) types of geothermal resources; 2) power conversion systems used for geothermal power generation; 3) environmental aspects; 4) geothermal resource locations, potential, and current power plant development; 5) hurdles, bottlenecks, and risks of geothermal power production; 6) lessons learned; and 7) ongoing and future geothermal research programs.

  17. Power productivity of the ground surface

    Directory of Open Access Journals (Sweden)

    Gutu A.I.

    2008-12-01

    Full Text Available Here there is presented an attempt to estimate the efficiency degree when working with soil surface through the different methods of valorization incident solar radiation. Such technical methods are being analyzed as (solar collectors, photovoltaic cells, solar thermal power plants, power cultures field (bushes, wheat, sunflower, maize, rape, sorghum as well as microalgae crops. Here is the description of advantages and disadvantages for each group in part out of these three. The technical methods are up to date from the efficiency utilization view-point of industrial area. Microalgae crops are similar to technical methods from this point of view.

  18. Generating units performances: power system requirements

    Energy Technology Data Exchange (ETDEWEB)

    Fourment, C.; Girard, N.; Lefebvre, H.

    1994-08-01

    The part of generating units within the power system is more than providing power and energy. Their performance are not only measured by their energy efficiency and availability. Namely, there is a strong interaction between the generating units and the power system. The units are essential components of the system: for a given load profile the frequency variation follows directly from the behaviour of the units and their ability to adapt their power output. In the same way, the voltage at the units terminals are the key points to which the voltage profile at each node of the network is linked through the active and especially the reactive power flows. Therefore, the customer will experience the frequency and voltage variations induced by the units behaviour. Moreover, in case of adverse conditions, if the units do not operate as well as expected or trip, a portion of the system, may be the whole system, may collapse. The limitation of the performance of a unit has two kinds of consequences. Firstly, it may result in an increased amount of not supplied energy or loss of load probability: for example if the primary reserve is not sufficient, a generator tripping may lead to an abnormal frequency deviation, and load may have to be shed to restore the balance. Secondly, the limitation of a unit performance results in an economic over-cost for the system: for instance, if not enough `cheap` units are able to load-following, other units with higher operating costs have to be started up. We would like to stress the interest for the operators and design teams of the units on the one hand, and the operators and design teams of the system on the other hand, of dialog and information exchange, in operation but also at the conception stage, in order to find a satisfactory compromise between the system requirements and the consequences for the generating units. (authors). 11 refs., 4 figs.

  19. Power quality considerations for nuclear spectroscopy applications: Grounding

    Energy Technology Data Exchange (ETDEWEB)

    García-Hernández, J.M., E-mail: josemanuel.garcia@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); Instituto Tecnológico de Toluca, Departamento de Estudios de Posgrado e Investigación, Av. Tecnológico S/N, ExRancho La Virgen, 52140 Metepec, México (Mexico); Ramírez-Jiménez, F.J., E-mail: fjr@ieee.org [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); Instituto Tecnológico de Toluca, Departamento de Estudios de Posgrado e Investigación, Av. Tecnológico S/N, ExRancho La Virgen, 52140 Metepec, México (Mexico); Mondragón-Contreras, L.; López-Callejas, R. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); Instituto Tecnológico de Toluca, Departamento de Estudios de Posgrado e Investigación, Av. Tecnológico S/N, ExRancho La Virgen, 52140 Metepec, México (Mexico); Torres-Bribiesca, M.A. [Instituto Nacional de Investigaciones Nucleares, ININ, Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 52750 Estado de México, México (Mexico); and others

    2013-11-21

    Traditionally the electrical installations are designed for supplying power and to assure the personnel safety. In nuclear analysis laboratories, additional issues about grounding also must be considered for proper operation of high resolution nuclear spectroscopy systems. This paper shows the traditional ways of grounding nuclear spectroscopy systems and through different scenarios, it shows the effects on the more sensitive parameter of these systems: the energy resolution, it also proposes the constant monitoring of a power quality parameter as a way to preserve or to improve the resolution of the systems, avoiding the influence of excessive extrinsic noise. -- Highlights: •We analyze the performance of nuclear spectroscopy systems with different configurations of the grounding system. •The neutral to ground voltage is an indicator of the ground conditions, a high value may contribute to the increase of the FWHM in nuclear spectroscopy systems. •The use of an isolated ground system is the best option to preserve the best FWHM value. •The application of power quality concepts can help to guaranty the best configuration of the grounding system.

  20. Impact of grounding and filtering on power insulation monitoring in insulated terrestrial power networks

    NARCIS (Netherlands)

    van Vugt, Pieter Karel Anton; Bijman, Rob; Timens, R.B.; Leferink, Frank Bernardus Johannes

    2013-01-01

    Insulated terrestrial power networks are used for reliable systems such as large production plants, hospital operating rooms and naval ships. The system is isolated from ground and a first fault, such as a short circuit between a phase and ground, will not result in disconnection of the power via

  1. Solar power water distillation unit

    Science.gov (United States)

    Hameed, Kamran; Muzammil Khan, Muhammad; Shahrukh Ateeq, Ijlal; Omair, Syed Muhammad; Ahmer, Muhammad; Wajid, Abdul

    2013-06-01

    Clean drinking water is the basic necessity for every human being, but about 1.1 billion people in the world lacked proper drinking water. There are many different types of water purification processes such as filtration, reverse osmosis, ultraviolet radiation, carbon absorption, but the most reliable processes are distillation and boiling. Water purification, such as distillation, is especially important in regions where water resources or tap water is not suitable for ingesting without boiling or chemical treatment. In design project It treats the water by combining different methods such as Filtration, Distillation and a technique called concentrated solar power (CSP). Distillation is literally the method seen in nature, whereby: the sun heats the water on the earth's surface, the water is turned into a vapor (evaporation) and rises, leaving contaminants behind, to form clouds. As the upper atmosphere drops in temperature the vapors cool and convert back to water to form water. In this project distillation is achieved by using a parabolic mirror which boils water at high temperature. Filtration is done by sand filter and carbon filter. First sand filter catches the sand particles and the carbon filter which has granules of active carbon is used to remove odor dissolved gases from water. This is the Pre-treatment of water. The filtered water is then collected in a water container at a focus of parabolic mirror where distillation process is done. Another important feature of designed project is the solar tracking of a parabolic mirror which increases the efficiency of a parabolic mirror [1],[2].

  2. Space Shuttle Orbiter auxiliary power unit status

    Science.gov (United States)

    Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.

    An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.

  3. Power Efficient Division and Square Root Unit

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2012-01-01

    shows that division and square root units based on the digit-recurrence algorithm offer the best tradeoff delay-area-power. Moreover, the two operations can be combined in a single unit. Here, we present a radix-16 combined division and square root unit obtained by overlapping two radix-4 stages......Although division and square root are not frequent operations, most processors implement them in hardware to not compromise the overall performance. Two classes of algorithms implement division or square root: digit-recurrence and multiplicative (e.g., Newton-Raphson) algorithms. Previous work...

  4. Spatial Power Combining Amplifier for Ground and Flight Applications

    Science.gov (United States)

    Velazco, J. E.; Taylor, M.

    2016-11-01

    Vacuum-tube amplifiers such as klystrons and traveling-wave tubes are the workhorses of high-power microwave radiation generation. At JPL, vacuum tubes are extensively used in ground and flight missions for radar and communications. Vacuum tubes use electron beams as the source of energy to achieve microwave power amplification. Such electron beams operate at high kinetic energies and thus require high voltages to function. In addition, vacuum tubes use compact cavity and waveguide structures that hold very intense radio frequency (RF) fields inside. As the operational frequency is increased, the dimensions of these RF structures become increasingly smaller. As power levels and operational frequencies are increased, the highly intense RF fields inside of the tubes' structures tend to arc and create RF breakdown. In the case of very high-power klystrons, electron interception - also known as body current - can produce thermal runaway of the cavities that could lead to the destruction of the tube. The high voltages needed to power vacuum tubes tend to require complicated and cumbersome power supplies. Consequently, although vacuum tubes provide unmatched high-power microwaves, they tend to arc, suffer from thermal issues, and require failure-prone high-voltage power supplies. In this article, we present a new concept for generating high-power microwaves that we refer to as the Spatial Power Combining Amplifier (SPCA). The SPCA is very compact, requires simpler, lower-voltage power supplies, and uses a unique power-combining scheme wherein power from solid-state amplifiers is coherently combined. It is a two-port amplifier and can be used inline as any conventional two-port amplifier. It can deliver its output power to a coaxial line, a waveguide, a feed, or to any microwave load. A key feature of this new scheme is the use of higher-order-mode microwave structures to spatially divide and combine power. Such higher-order-mode structures have considerably larger cross

  5. 14 CFR 23.1142 - Auxiliary power unit controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 23.1142... Powerplant Controls and Accessories § 23.1142 Auxiliary power unit controls. Means must be provided on the... power unit....

  6. 21 CFR 890.5950 - Powered heating unit.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered heating unit. 890.5950 Section 890.5950...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5950 Powered heating unit. (a) Identification. A powered heating unit is a device intended for medical purposes...

  7. Ground state energies from converging and diverging power series expansions

    Science.gov (United States)

    Lisowski, C.; Norris, S.; Pelphrey, R.; Stefanovich, E.; Su, Q.; Grobe, R.

    2016-10-01

    It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh-Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state's spatial extension is comparable to L. Once the binding strength is so strong that the ground state's extension is less than L, the power expansion becomes divergent, consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.

  8. 75 FR 77919 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental...

    Science.gov (United States)

    2010-12-14

    ... COMMISSION Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental... Progress Energy Carolinas, Inc., for operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1...: Regarding Shearon Harris Nuclear Power Plant, Unit 1--Final Report (NUREG-1437, Supplement 33).''...

  9. Auxiliary power unit for moving a vehicle

    Science.gov (United States)

    Akasam, Sivaprasad; Johnson, Kris W.; Johnson, Matthew D.; Slone, Larry M.; Welter, James Milton

    2009-02-03

    A power system is provided having at least one traction device and a primary power source configured to power the at least one traction device. In addition, the power system includes an auxiliary power source also configured to power the at least one traction device.

  10. Orbiter Auxiliary Power Unit Flight Support Plan

    Science.gov (United States)

    Guirl, Robert; Munroe, James; Scott, Walter

    1990-01-01

    This paper discussed the development of an integrated Orbiter Auxiliary Power Unit (APU) and Improved APU (IAPU) Flight Suuport Plan. The plan identifies hardware requirements for continued support of flight activities for the Space Shuttle Orbiter fleet. Each Orbiter vehicle has three APUs that provide power to the hydraulic system for flight control surface actuation, engine gimbaling, landing gear deployment, braking, and steering. The APUs contain hardware that has been found over the course of development and flight history to have operating time and on-vehicle exposure time limits. These APUs will be replaced by IAPUs with enhanced operating lives on a vehicle-by-vehicle basis during scheduled Orbiter modification periods. This Flight Support Plan is used by program management, engineering, logistics, contracts, and procurement groups to establish optimum use of available hardware and replacement quantities and delivery requirements for APUs until vehicle modifications and incorporation of IAPUs. Changes to the flight manifest and program delays are evaluated relative to their impact on hardware availability.

  11. Battery-free power for unattended ground sensors

    Science.gov (United States)

    Moldt, Vera A.

    2003-09-01

    In our current military environment, many operations are fought with small, highly mobile reconnaissance and strike forces that must move in and out of hostile terrain, setting up temporary bases and perimeters. As such, today's warfighter has to be well equipped to insure independent operation and survival of small, deployed groups. The use of unattended ground sensors in reconfigurable sensor networks can provide portable perimeter security for such special operations. Since all of the equipment for the missions must be carried by the warfighter, weight is a critical issue. Currently, batteries constitute much of that weight, as batteries are short-lived and unreliable. An alternative power source is required to eliminate the need for carrying multiple replacement batteries to support special operations. Such a battery-free, replenishable, energy management technology has been developed by Ambient Control Systems. Ambient has developed an advanced mid-door photovoltaic technology, which converts light to energy over a wide range of lighting conditions. The energy is then stored in supercapacitors, a highly robust, long-term storage medium. Ambient's advanced energy management technology will power remote sensor and control systems 24 hours/day, 7 days/week for over 20 years, without batteries, providing for ongoing detection, surveillance and other remote operations.

  12. Indirect combustion noise of auxiliary power units

    Science.gov (United States)

    Tam, Christopher K. W.; Parrish, Sarah A.; Xu, Jun; Schuster, Bill

    2013-08-01

    Recent advances in noise suppression technology have significantly reduced jet and fan noise from commercial jet engines. This leads many investigators in the aeroacoustics community to suggest that core noise could well be the next aircraft noise barrier. Core noise consists of turbine noise and combustion noise. There is direct combustion noise generated by the combustion processes, and there is indirect combustion noise generated by the passage of combustion hot spots, or entropy waves, through constrictions in an engine. The present work focuses on indirect combustion noise. Indirect combustion noise has now been found in laboratory experiments. The primary objective of this work is to investigate whether indirect combustion noise is also generated in jet and other engines. In a jet engine, there are numerous noise sources. This makes the identification of indirect combustion noise a formidable task. Here, our effort concentrates exclusively on auxiliary power units (APUs). This choice is motivated by the fact that APUs are relatively simple engines with only a few noise sources. It is, therefore, expected that the chance of success is higher. Accordingly, a theoretical model study of the generation of indirect combustion noise in an Auxiliary Power Unit (APU) is carried out. The cross-sectional areas of an APU from the combustor to the turbine exit are scaled off to form an equivalent nozzle. A principal function of a turbine in an APU is to extract mechanical energy from the flow stream through the exertion of a resistive force. Therefore, the turbine is modeled by adding a negative body force to the momentum equation. This model is used to predict the ranges of frequencies over which there is a high probability for indirect combustion noise generation. Experimental spectra of internal pressure fluctuations and far-field noise of an RE220 APU are examined to identify anomalous peaks. These peaks are possible indirection combustion noise. In the case of the

  13. Measurement of Required Power with Human-Powered Aircraft in Take-off Ground Running

    Science.gov (United States)

    Yoshikawa, Toshiaki; Sakamoto, Shinsuke; Hori, Kotono; Kusumoto, Hiroshi; Yamamoto, Yasushi; Hattori, Takashi; Sata, Kouta

    In this paper, we propose the method for the measurement of required power and the adjustment of optimum gear ratio in take-off ground running. To get the values of required power and speed, we measured torque of the left side and the right side of pedals, RPM of pedals, and speed of the cockpit frame. In order to improve the take-off speed, some drums were applied, and the optimum gear ratio of the front drum to the rear drum was determined.

  14. System design specification Brayton Isotope Power System (BIPS) Flight System (FS), and Ground Demonstration System (GDS)

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-14

    The system design specification for ground demonstration, development, and flight qualification of a Brayton Isotope Power System (BIPS) is presented. The requirements for both a BIPS conceptual Flight System (FS) and a Ground Demonstration System (GDS) are defined.

  15. 30 CFR 75.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Science.gov (United States)

    2010-07-01

    ... conduits enclosing power conductors. 75.700 Section 75.700 Mineral Resources MINE SAFETY AND HEALTH... Grounding § 75.700 Grounding metallic sheaths, armors, and conduits enclosing power conductors. All metallic sheaths, armors, and conduits enclosing power conductors shall be electrically continuous throughout...

  16. 75 FR 80547 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption

    Science.gov (United States)

    2010-12-22

    ... COMMISSION Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption 1.0... License No. NPF-63, which authorizes operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1... request to generically extend the rule's compliance date for all operating nuclear power plants, but...

  17. 75 FR 9958 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Science.gov (United States)

    2010-03-04

    ... COMMISSION Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0... of the Shearon Harris Nuclear Power Plant, Unit 1 (HNP). The license provides, among other things... operating nuclear power plants, but noted that the Commission's regulations provide mechanisms...

  18. Models of ionospheric VLF absorption of powerful ground based transmitters

    Science.gov (United States)

    Cohen, M. B.; Lehtinen, N. G.; Inan, U. S.

    2012-12-01

    Ground based Very Low Frequency (VLF, 3-30 kHz) radio transmitters play a role in precipitation of energetic Van Allen electrons. Initial analyses of the contribution of VLF transmitters to radiation belt losses were based on early models of trans-ionospheric propagation known as the Helliwell absorption curves, but some recent studies have found that the model overestimates (by 20-100 dB) the VLF energy reaching the magnetosphere. It was subsequently suggested that conversion of wave energy into electrostatic modes may be responsible for the error. We utilize a newly available extensive record of VLF transmitter energy reaching the magnetosphere, taken from the DEMETER satellite, and perform a direct comparison with a sophisticated full wave model of trans-ionospheric propagation. Although the model does not include the effect of ionospheric irregularities, it correctly predicts the average total power injected into the magnetosphere within several dB. The results, particularly at nighttime, appear to be robust against the variability of the ionospheric electron density. We conclude that the global effect of irregularity scattering on whistler mode conversion to quasi-electrostatic may be no larger than 6 dB.

  19. 14 CFR 29.1142 - Auxiliary power unit controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 29.1142... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1142 Auxiliary power unit controls. Means must be provided on the flight deck for...

  20. 14 CFR 25.1142 - Auxiliary power unit controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Auxiliary power unit controls. 25.1142... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1142 Auxiliary power unit controls. Means must be provided on the flight deck for...

  1. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  2. Energy efficiency of computer power supply units - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aebischer, B. [cepe - Centre for Energy Policy and Economics, Swiss Federal Institute of Technology Zuerich, Zuerich (Switzerland); Huser, H. [Encontrol GmbH, Niederrohrdorf (Switzerland)

    2002-11-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the efficiency of computer power supply units, which decreases rapidly during average computer use. The background and the purpose of the project are examined. The power supplies for personal computers are discussed and the testing arrangement used is described. Efficiency, power-factor and operating points of the units are examined. Potentials for improvement and measures to be taken are discussed. Also, action to be taken by those involved in the design and operation of such power units is proposed. Finally, recommendations for further work are made.

  3. On units combination and commitment optimization for electric power production

    Institute of Scientific and Technical Information of China (English)

    谭忠富; 何永秀

    2004-01-01

    Electric power system is one of the most important and complex engineering in modern society, supplying main and general power for social production and social life. Meanwhile, since it is a productive system with both high input and output, it has an obvious economic significance to improve its operating efficiency. For an example, an unit is 10 GW year. It will be discussed mainly that how to establish optimization model and its numerical algorithm for operating management of the electric power system. The idea on establishing optimization model is how to dispatch work state of units or power plants, so that total cost of fuel consumption for generation is reduced to the minimum. Here the dispatch is to decide which unit or plant to operate, which unit or plant to stop running, how much power should be generated for those operating units or plants at each given time interval.

  4. 75 FR 3942 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental...

    Science.gov (United States)

    2010-01-25

    ... COMMISSION Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental Assessment...), for operation of the Shearon Harris Nuclear Power Plant, Unit 1 (HNP), located in New Hill, North... Environmental Impact Statement for License Renewal of Nuclear Plants: Regarding Shearon Harris Nuclear......

  5. 77 FR 13156 - Carolina Power & Light Company; Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Science.gov (United States)

    2012-03-05

    ... COMMISSION Carolina Power & Light Company; Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0... Harris Nuclear Power Plant (HNP), Unit 1. The license provides, among other things, that the facility is...) 50.46, ``Acceptance criteria for emergency core cooling systems for light- water nuclear...

  6. Reliability of Power Units in Poland and the World

    Directory of Open Access Journals (Sweden)

    Józef Paska

    2015-09-01

    Full Text Available One of a power system’s subsystems is the generation subsystem consisting of power units, the reliability of which to a large extent determines the reliability of the power system and electricity supply to consumers. This paper presents definitions of the basic indices of power unit reliability used in Poland and in the world. They are compared and analysed on the basis of data published by the Energy Market Agency (Poland, NERC (North American Electric Reliability Corporation – USA, and WEC (World Energy Council. Deficiencies and the lack of a unified national system for collecting and processing electric power equipment unavailability data are also indicated.

  7. Contribution of UHV Grid to United National Power Market

    Institute of Scientific and Technical Information of China (English)

    Guo Lei; Wei Bin; Ma Li; Cheng Wen

    2010-01-01

    @@ Power market construction is an important part of the marketization reform in China's electric power industry and an essential part of the economic system reform in China. With the social and economic development, the contradiction between distribution of energy resources and development of regional economies gets increasingly noticeable, and a united national power market is consequentially required to optimize the allocation of energy resources over the whole country. Analyses indicate that the development of UHV grid will provide a strong material support for the united national power market by expanding market coverage, lowering load fluctuation and promoting diversification of power resources.

  8. Construction prospects of new power units at Khmelnitskij NPP site

    Energy Technology Data Exchange (ETDEWEB)

    Zenyuk, Denys [NNEGC ' Energoatom' , 01032 Vetrova, 3, Kiev (Ukraine)

    2008-07-01

    According to the Energy Strategy of Ukraine for a period up to 2030 it is planned to put into operation power units 3 and 4 of Khmelnitskij NPP by year 2016. In this work considerations are presented on the possible options while selecting reactor unit type for Khmelnitskij NPP power units 3 and 4, which is the main determinant of the cost, construction and commissioning time, and utilization of the existent civil structures. To optimize Khmelnitskij-3 and 4 construction, a survey of the data has been conducted with regard to the possibility of construction of new power units of PWR/VVER type at Khmelnitskij NPP site. The multivariable analysis has been performed based on the projects technical and cost data, construction time and conditions, as well as their compliance with the IAEA and EUR safety requirements for new power units. (author)

  9. Life cycle assessment analysis of supercritical coal power units

    Science.gov (United States)

    Ziębik, Andrzej; Hoinka, Krzysztof; Liszka, Marcin

    2010-09-01

    This paper presents the Life Cycle Assessment (LCA) analysis concerning the selected options of supercritical coal power units. The investigation covers a pulverized power unit without a CCS (Carbon Capture and Storage) installation, a pulverized unit with a "post-combustion" installation (MEA type) and a pulverized power unit working in the "oxy-combustion" mode. For each variant the net electric power amounts to 600 MW. The energy component of the LCA analysis has been determined. It describes the depletion of non-renewable natural resources. The energy component is determined by the coefficient of cumulative energy consumption in the life cycle. For the calculation of the ecological component of the LCA analysis the cumulative CO2 emission has been applied. At present it is the basic emission factor for the LCA analysis of power plants. The work also presents the sensitivity analysis of calculated energy and ecological factors.

  10. Development and operation of 1 MW wind power unit

    Energy Technology Data Exchange (ETDEWEB)

    Seleznev, I.; Lavrov, V. [Machine-building Design Bureau, (Russian Federation)

    1996-12-31

    Development of wind power units (WPUs), which operate on renewable wind power, as well as combined power sources including WPUs, have an important national economic significance in the Russian Federation, particularly in the areas of construction and operation of nuclear power plants, hydro-electric stations and other traditional power plants. Development of WPUs of high power level is a complicated task, and the solution requires investigations in the areas of experimental design, technology, and the organization of industrial production. Initially, the problem of the development of large diameter propellers, power electric equipment, reducers and drive mechanisms, automatic control devices, and control and diagnostic system need to be solved. This report covers the basic results and directions of the work of the Machine-building Design Bureau `Raduga` in the field of wind power engineering as well as the basic performance of the units. (author). 7 figs.

  11. Optimizing Power Heterogeneous Functional Units for Dynamic and Static Power Reduction

    Directory of Open Access Journals (Sweden)

    Toshinori Sato

    2014-12-01

    Full Text Available Power consumption is the major constraint for modern microprocessor designs. In particular, static power consumption becomes a serious problem as the transistor size shrinks via semiconductor technology improvement. This paper proposes a technique that reduces the static power consumed by functional units. It exploits the activity rate of functional units and utilizes the power heterogeneous functional units. From detailed simulations, we investigate the conditions in which the proposed technique works effectively for simultaneous dynamic and static power reduction and find that we can reduce the total power by 11.2% if two out of four leaky functional units are replaced by leakless ones in the situation where the static power occupies half of the total power.

  12. Improved Power Quality Monitoring through Phasor Measurement Unit Data Interpretation

    DEFF Research Database (Denmark)

    Pertl, Michael; Marinelli, Mattia; Bindner, Henrik W.

    2015-01-01

    the correct actions for operating the system. In future power systems more measuring sensors including phasor measurement units will be available distributed all over the power system. They can and should be utilized to increase the observability of the power system. In this paper the impact of photovoltaic....... The voltage unbalance factor (VUF) could be a ‘new’ observable for a particular power system condition. Information about the actual injected wind power for a certain grid area could be derived without knowing/measuring the real wind power injection....

  13. EnviroAtlas - Above Ground Live Biomass Carbon Storage for the Conterminous United States- Forested

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes the average above ground live dry biomass estimate for the Watershed Boundary Dataset (WBD) 12-digit Hydrologic Unit (HUC) in kg/m...

  14. EnviroAtlas - Below Ground Live Tree Biomass Carbon Storage for the Conterminous United States- Forested

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes the average below ground live tree root dry biomass estimate for the Watershed Boundary Dataset (WBD) 12-digit Hydrologic Unit...

  15. A review of ground penetrating radar research and practice in the United Kingdom

    Science.gov (United States)

    Giannopoulos, Antonios; Alani, Amir

    2014-05-01

    Ground penetrating radar has been playing an important role for many years in assisting in the non-destructive evaluation of UK's built environment as well as being employed in more general shallow depth geophysical investigations. Ground penetrating radar, in the United Kingdom, has a long history of original work both in developing original research ideas on fundamental aspects of the technique, both in hardware and in software, and in exploring innovative ideas relating to the practical implementation of ground penetrating radar in a number of interesting projects. For example, the base of one of the biggest organisations that connects ground penetrating radar practitioners is in the United Kingdom. This paper will endeavour to review the current status of ground penetrating radar research - primarily carried out in UK Universities - and present some key areas and work that is carried out at a practical level - primarily by private enterprises. Although, the main effort is to concentrate on ground penetrating radar applications relating to civil engineering problems other related areas of ground penetrating radar application will also be reviewed. The aim is to create a current picture of ground penetrating radar use with a view to inform and potentially enhance the possibility of new developments and collaborations that could lead to the advancement of ground penetrating radar as a geophysical investigative method. This work is a contribution to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar.

  16. 30 CFR 77.700 - Grounding metallic sheaths, armors, and conduits enclosing power conductors.

    Science.gov (United States)

    2010-07-01

    ... conduits enclosing power conductors. 77.700 Section 77.700 Mineral Resources MINE SAFETY AND HEALTH..., and conduits enclosing power conductors. Metallic sheaths, armors, and conduits enclosing power conductors shall be electrically continuous throughout and shall be grounded by methods approved by...

  17. Logistics and Capability Implications of a Bradley Fighting Vehicle with a Fuel Cell Auxiliary Power Unit

    Science.gov (United States)

    2003-10-13

    Husted, John MacBain Delphi Corporation Heather McKee US Army TACOM Copyright © 2003 SAE International ABSTRACT Modern military ground vehicles are...WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Delphi Corporation,5725 Delphi Drive,Troy,Mi,48098 8. PERFORMING ORGANIZATION... injector hardware change. A single, 28V, 400A permanent-magnet direct current (DC) generator is driven by a power take off (PTO) directly connected to

  18. Power quality improvement of unbalanced power system with distributed generation units

    DEFF Research Database (Denmark)

    Hu, Y.; Chen, Zhe; Excell, P.

    2011-01-01

    This paper presents a power electronic system for improving the power quality of the unbalanced distributed generation units in three-phase four-wire system. In the system, small renewable power generation units, such as small PV generator, small wind turbines may be configured as single phase...... generation units. The random nature of renewable power sources may result in significant unbalance in the power network and affect the power quality. An electronic converter system is proposed to correct the system unbalance and harmonics so as to deal with the power quality problems. The operation...... and control of the converter are described. Simulation results have demonstrated that the system can effectively correct the unbalance and enhance the system power quality....

  19. Advantages of ground-to-space laser power beaming

    Science.gov (United States)

    Rather, John D. G.

    1992-01-01

    NASA's current research activities to evaluate laser power beaming systems are reviewed. Applications of such systems are considered, including communications satellites, radar and direct broadcast satellites, space transfer vehicles lunar base operations and exploration, and optical technologies. The current laser power beaming program within the NASA Headquarters Office of Aeronautics and Space Technology is addressed.

  20. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power

  1. Dedicated auxiliary power units for Hybrid Electric Vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de

    1998-01-01

    The use of a dedicated auxiliary power unit is essential to utilize the potential that hybrid vehicles offer for efficient and ultra-clean transportation. An example of a hybrid project at the TNO Road-Vehicles Research Institute shows the development and the results of a dedicated auxiliary power u

  2. Contribution of UHV Grid to United National Power Market

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Power market construction is an important part of the marketization reform in China's electric power industry and an essential part of the economic system reform in China. With the social and economic development, the contradiction between distribution of energy resources and development of regional economies gets increasingly noticeable, and a united national power market is consequentially required to optimize the allocation of energy resources over the whole country. Analyses indicate that the developmen...

  3. Power Dissipation Challenges in Multicore Floating-Point Units

    DEFF Research Database (Denmark)

    Liu, Wei; Nannarelli, Alberto

    2010-01-01

    With increased densities on chips and the growing popularity of multicore processors and general-purpose graphics processing units (GPGPUs) power dissipation and energy consumption pose a serious challenge in the design of system-on-chips (SoCs) and a rise in costs for heat removal. In this work......, we analyze the impact of power dissipation in floating-point (FP) units and we consider different alternatives in the implementation of FP-division that lead to substantial energy savings. We compare the implementation of division in a Fused Multiply-Add (FMA) unit based on the Newton...

  4. Unit-sizing of hydro power plant

    Science.gov (United States)

    Maruzewski, P.; Rogeaux, C.; Laurier, P.

    2012-11-01

    In developing countries with great and unexploited renewable energy potential, Governments can exploit local resources for electricity supply, substantial energy savings and sustainable socio-economic development of these own countries. The decision-making process regarding the choice of renewable energy sources for energy supply in these countries is multidimensional, made up of a number of aspects at different levels such as economic, technical, environmental, and social. Therefore, reaching clear and unambiguous solutions may be very difficult. It is from this difficulty that the need arises to develop a tool for the design of hydro energy sources for electricity. The work involved in seeking a compromise solution requires an adequate technical assessment based on multiple criteria methods. One of the criteria is the assessment of the appropriate size of the hydropower plant. This paper presents the state-of-art of preliminary sizing of hydropower plant for the given renewable energy potential. The main step consists of carefully selecting and sizing the innovative hydraulic units based upon the suitability of the flow and head range. Since the flow and head data have now been confirmed, the potential annual energy generation can be properly assessed.

  5. Polymer electrolyte fuel cell mini power unit for portable application

    Science.gov (United States)

    Urbani, F.; Squadrito, G.; Barbera, O.; Giacoppo, G.; Passalacqua, E.; Zerbinati, O.

    This paper describes the design, realisation and test of a power unit based on a polymer electrolyte fuel cell, operating at room temperature, for portable application. The device is composed of an home made air breathing fuel cell stack, a metal hydride tank for H 2 supply, a dc-dc converter for power output control and a fan for stack cooling. The stack is composed by 10 cells with an active surface of 25 cm 2 and produces a rated power of 15 W at 6 V and 2 A. The stack successfully runs with end-off fed hydrogen without appreciable performance degradation during the time. The final assembled system is able to generate 12 W at 9.5 V, and power a portable DVD player for 3 h in continuous. The power unit has collected about 100 h of operation without maintenance.

  6. Polymer electrolyte fuel cell mini power unit for portable application

    Energy Technology Data Exchange (ETDEWEB)

    Urbani, F.; Squadrito, G.; Barbera, O.; Giacoppo, G.; Passalacqua, E. [CNR-ITAE, via Salita S. Lucia sopra Contesse n. 5, 98126 S. Lucia, Messina (Italy); Zerbinati, O. [Universita del Piemonte Orientale, Dip. di Scienze dell' Ambiente e della Vita, via Bellini 25/g, 15100 Alessandria (Italy)

    2007-06-20

    This paper describes the design, realisation and test of a power unit based on a polymer electrolyte fuel cell, operating at room temperature, for portable application. The device is composed of an home made air breathing fuel cell stack, a metal hydride tank for H{sub 2} supply, a dc-dc converter for power output control and a fan for stack cooling. The stack is composed by 10 cells with an active surface of 25 cm{sup 2} and produces a rated power of 15 W at 6 V and 2 A. The stack successfully runs with end-off fed hydrogen without appreciable performance degradation during the time. The final assembled system is able to generate 12 W at 9.5 V, and power a portable DVD player for 3 h in continuous. The power unit has collected about 100 h of operation without maintenance. (author)

  7. Feature Extraction Method for High Impedance Ground Fault Localization in Radial Power Distribution Networks

    DEFF Research Database (Denmark)

    Jensen, Kåre Jean; Munk, Steen M.; Sørensen, John Aasted

    1998-01-01

    processes and communication systems lead to demands for improved monitoring of power distribution networks so that the quality of power delivery can be kept at a controlled level. The ground fault localization method for each feeder in a network is based on the centralized frequency broadband measurement...... of three phase voltages and currents. The method consists of a feature extractor, based on a grid description of the feeder by impulse responses, and a neural network for ground fault localization. The emphasis of this paper is the feature extractor, and the detection of the time instance of a ground fault...

  8. Improving Size and Power in Unit Root Testing

    DEFF Research Database (Denmark)

    Haldrup, Niels; Jansson, Michael

    of recent contributions to improve upon both size and power of unit root tests and in so doing the approach of using rigorous statistical optimality criteria in the development of such tests is stressed. In addition to presenting tests where improved size can be achieved by modifying the standard Dickey......A frequent criticism of unit root tests concerns the poor power and size properties that many of such testsexhibit. However, the past decade or so intensive research has been conducted to alleviate these problems and great advances have been made. The present paper provides a selective survey......-Fuller class of tests, the paper presents theory of optimal testing and the construction of power envelopes for unit root tests underdifferent conditions allowing for serial correlation, deterministic components, assumptions regarding the initial condition, non-Gaussian errors, and the use of covariates....

  9. Development of Electric Power Units Driven by Waste Heat

    Science.gov (United States)

    Inoue, Naoyuki; Takeuchi, Takao; Kaneko, Atsushi; Uchimura, Tomoyuki; Irie, Kiichi; Watanabe, Hiroyoshi

    For the development of a simple and compact power generator driven by waste heat, working fluids and an expander were studied, then a practical electric power unit was put to test. Many working fluids were calculated with the low temperature power cycle (evaporated at 77°C, condensed at 42°C),and TFE,R123,R245fa were selected to be suitable for the cycle. TFE(Trifluoroethanol CF3CH2OH) was adopted to the actual power generator which was tested. A radial turbine was adopted as an expander, and was newly designed and manufactured for working fluid TFE. The equipment was driven by hot water as heat source and cooling water as cooling source, and generated power was connected with electric utility. Characteristics of the power generating cycle and characteristics of the turbine were obtained experimentally.

  10. Comparing the Efficacy of Airpower and Heavy Ground Power

    Science.gov (United States)

    2011-12-01

    conflicts have weakened American power on the global stage over the last decade. Second, the lethality of modern weapons, as first seen during the Arab...airpower typically places top targeting priority on air defense systems during the opening stages of air operations. Therefore, most of an...would smash “the material and moral resources of a people caught up in a frightful cataclysm which haunts them everywhere without cease until the final

  11. Contingency-Constrained Unit Commitmentin Meshed Isolated Power Systems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Vinter, Peter; Bærentsen, Runi

    2015-01-01

    is kept above a predefined limit in the event of a contingency. The minimum frequency constraints are formulated using novel sufficient conditions that take into account the system inertia and the dynamics of the power generators. The proposed sufficient conditions are attractive from both a computational......This paper presents a mixed-integer linear optimization problem for unit commitment and economic dispatch of power generators in a meshed isolated power system. The optimization problem is referred to as the optimal reserve planning problem (ORPP). The ORPP guarantees that the system frequency...... and a modelling point of view. We compare the ORPP to a unit commitment problem that only considers the stationary behavior of the frequency. Simulations based on a Faroe Islands case study show that, without being overly conservative, potential blackouts and power outages can be avoided using the ORPP...

  12. Methods and Indicators for Assessment of Regional Ground-Water Conditions in the Southwestern United States

    Science.gov (United States)

    Tillman, Fred D; Leake, Stanley A.; Flynn, Marilyn E.; Cordova, Jeffrey T.; Schonauer, Kurt T.; Dickinson, Jesse E.

    2008-01-01

    Monitoring the status and trends in the availability of the Nation's ground-water supplies is important to scientists, planners, water managers, and the general public. This is especially true in the semiarid to arid southwestern United States where rapid population growth and limited surface-water resources have led to increased use of ground-water supplies and water-level declines of several hundred feet in many aquifers. Individual well observations may only represent aquifer conditions in a limited area, and wells may be screened over single or multiple aquifers, further complicating single-well interpretations. Additionally, changes in ground-water conditions may involve time scales ranging from days to many decades, depending on the timing of recharge, soil and aquifer properties, and depth to the water table. The lack of an easily identifiable ground-water property indicative of current conditions, combined with differing time scales of water-level changes, makes the presentation of ground-water conditions a difficult task, particularly on a regional basis. One approach is to spatially present several indicators of ground-water conditions that address different time scales and attributes of the aquifer systems. This report describes several methods and indicators for presenting differing aspects of ground-water conditions using water-level observations in existing data-sets. The indicators of ground-water conditions developed in this study include areas experiencing water-level decline and water-level rise, recent trends in ground-water levels, and current depth to ground water. The computer programs written to create these indicators of ground-water conditions and display them in an interactive geographic information systems (GIS) format are explained and results illustrated through analyses of ground-water conditions for selected alluvial basins in the Lower Colorado River Basin in Arizona.

  13. High Power Silicon Carbide (SiC) Power Processing Unit Development

    Science.gov (United States)

    Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.

  14. Synchronous Study of Ferroresonance and Inrush Current Phenomena and their Related Reasons in Ground Power Networks

    Science.gov (United States)

    Akrami, Amin; Ghaderi, Mohammad; Ghadi, Saeed

    2010-01-01

    Energizing the power transformers usually results in flowing very high inrush currents. This harmful current can be minimized using controlled switching and considering the value of residual flux. But nowadays, developing the ground power networks results in high increment of ferroresonance phenomenon occurrence due to the line' capacitance reactance and nonlinear inductive reactance of power transformer's core. In this study, these transient phenomena and their cause have studied synchronously.

  15. Low Power Ground-Based Laser Illumination for Electric Propulsion Applications

    Science.gov (United States)

    Lapointe, Michael R.; Oleson, Steven R.

    1994-01-01

    A preliminary evaluation of low power, ground-based laser powered electric propulsion systems is presented. A review of available and near-term laser, photovoltaic, and adaptive optic systems indicates that approximately 5-kW of ground-based laser power can be delivered at an equivalent one-sun intensity to an orbit of approximately 2000 km. Laser illumination at the proper wavelength can double photovoltaic array conversion efficiencies compared to efficiencies obtained with solar illumination at the same intensity, allowing a reduction in array mass. The reduced array mass allows extra propellant to be carried with no penalty in total spacecraft mass. The extra propellant mass can extend the satellite life in orbit, allowing additional revenue to be generated. A trade study using realistic cost estimates and conservative ground station viewing capability was performed to estimate the number of communication satellites which must be illuminated to make a proliferated system of laser ground stations economically attractive. The required number of satellites is typically below that of proposed communication satellite constellations, indicating that low power ground-based laser beaming may be commercially viable. However, near-term advances in low specific mass solar arrays and high energy density batteries for LEO applications would render the ground-based laser system impracticable.

  16. Criteria for selecting optimum blower drives. Integrated power electronics is gaining ground in the market; Kriterien zur Auswahl des optimalen Ventilatorantriebs. Die integrierte Leistungselektronik gewinnt Marktanteile

    Energy Technology Data Exchange (ETDEWEB)

    Albig, J. [Ziehl-Abegg AG, Kuenzelsau (Germany). Fachbereich Produktmanagement

    2008-05-15

    In the field of speed controllers, systems with power electronics are gaining ground. Thes compact, matched units simplify the installation of refrigeration systems and enable reliable and efficient operation. Design concepts vary between the various producers, and blower design and technology may be quite different. (orig.)

  17. Work and Risk: Perceptions of Nuclear-Power Personnel. a Study in Grounded Theory.

    Science.gov (United States)

    Fields, Claire Dewitt

    1992-01-01

    The utility industry has devoted time and money to assure personnel within nuclear power plants are informed about occupational risks. Radiation-protection training programs are designed to present information to employees about occupational radiation and protective procedures. Work -related concerns are known to create stress, affect the morale of the workforce, influence collective bargaining, and increase compensation claims. This study was designed to determine perceptions of risk among employees of nuclear power plants and identify variables that influence these perceptions. Four power plants were included in the study, one in Canada and three in the United States. Data were generated through participant observations and interviews of 350 participants during a period of 3 weeks at each plant. Data were gathered and analyzed following procedures advanced by Grounded Theory, a naturalistic methodology used in this study. Training content, information, and communication materials were additional sources of data. Findings indicated employees believed health and safety risks existed within the work environment. Perceptions of risk were influenced by training quality, the work environment, nuclear myths and images of the general public, and fears of family members. Among the three groups of workers, administration personnel, security personnel, and radiation workers, the latter identified a larger number of risks. Workers perceived radiation risks, shift work, and steam pipe ruptures as high-level concerns. Experiencing stress, making mistakes, and fear of sabotage were concerns shared among all employee groups at various levels of concern. Strategies developed by employees were used to control risk. Strategies included teamwork, humor, monitoring, avoidance, reframing, and activism. When risks were perceived as uncontrollable, the employee left the plant. A coping strategy of transferring concerns about radiological risks to nonradiological risks were uncovered in

  18. Ground-Water Recharge in Humid Areas of the United States--A Summary of Ground-Water Resources Program Studies, 2003-2006

    Science.gov (United States)

    Delin, Geoffrey N.; Risser, Dennis W.

    2007-01-01

    Increased demands on water resources by a growing population and recent droughts have raised awareness about the adequacy of ground-water resources in humid areas of the United States. The spatial and temporal variability of ground-water recharge are key factors that need to be quantified to determine the sustainability of ground-water resources. Ground-water recharge is defined herein as the entry into the saturated zone of water made available at the water-table surface, together with the associated flow away from the water table within the saturated zone (Freeze and Cherry, 1979). In response to the need for better estimates of ground-water recharge, the Ground-Water Resources Program (GWRP) of the U.S. Geological Survey (USGS) began an initiative in 2003 to estimate ground-water recharge rates in the relatively humid areas of the United States.

  19. Stochastic Electric Power Generation Unit Commitment in Deregulated Power Market Environment

    Directory of Open Access Journals (Sweden)

    F. Gharehdaghi

    2012-03-01

    Full Text Available Utilities participating in deregulated markets observe increasing uncertainty in load (i.e., demand for electric power and prices for fuel and electricity on spot and contract markets. This study proposes a new formulation of the unit commitment problem of electric power generators in a restructured electricity market. Under these conditions, an electric power generation company will have the option to buy or sell from a power pool in addition to producing electricity on its own. The unit commitment problem is expressed as a stochastic optimization problem in which the objective is to maximize expected profits and the decisions are required to meet the standard operating constraints. Under the assumption of competitive market and price taking, it is depicted that the unit commitment schedule for a collection of N generation units can be solved by considering each unit separately. The volatility of the spot market price of electricity is represented by a stochastic model. This paper uses probabilistic dynamic programming to solve the stochastic optimization problem pertaining to unit commitment. It is shown that for a market of 150 units the proposed unit commitment can be accurately solved in a reasonable time by using the normal, Edgeworth, or Monte Carlo approximation methods.

  20. 40 CFR 1033.510 - Auxiliary power units.

    Science.gov (United States)

    2010-07-01

    ... locomotive is equipped with an auxiliary power unit (APU) that operates during an idle shutdown mode, you must account for the APU's emissions rates as specified in this section, unless the APU is part of an... emission rate (g/hr) as specified in § 1033.530. Add the APU emission rate (g/hr) that you determine...

  1. ADОPTIVE CONTROL OF THE HYBRID VEHICLE POWER UNIT

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2014-10-01

    Full Text Available The problem of adaptive control of the hybrid vehicle power unit, which makes it possible to minimize the quality criterion under constraints on the state parameters and the control vector is considered. A formal statement of the optimization problem is given. The solution of this problem by the method of neural network control based on the adaptive criticism is considered.

  2. Unit stream power, minimum energy dissipation rate, and river engineering

    Institute of Scientific and Technical Information of China (English)

    Chih Ted Yang

    2010-01-01

    Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel, and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory, or its simplified minimum unit stream power and minimum stream power theories,can provide engineers the needed theoretical basis for river morphology and river engineering studies.The Generalized Sediment Transport model for Alluvial River Simulation computer mode series have been developed based on the above theories.The computer model series have been successfully applied in many countries.Examples will be used to illustrate the applications of the computer models to solving a wide range of river morphology and river engineering problems.

  3. Phasor Measurement Units in the Eastern Danish power system

    DEFF Research Database (Denmark)

    Nielsen, Arne Hejde; Pedersen, Knud Ole Helgesen; Jørgensen, Preben;

    2006-01-01

    Technology. After power system events data can be extracted and analyzed offline. The purpose of the project is to do research within various utilizations of PMU data. On 8 January 2005 a severe storm passed Denmark, and wind speeds were so high, that wind turbines disconnected from the transmission grid......In the Eastern Danish transmission system four Phasor Measurement Units (PMU’s) are installed at 400 kV and 132 kV voltage level. The PMU’s continuously record voltage and current phasors each 20 ms. Data are stored locally on the PMU’s and are also transferred to a database at Centre for Electric...... because of their self protection. Nysted offshore wind farm was among the wind power units that disconnected from the grid, and PMU data from that event are analyzed. The case illustrates the close relation between voltages, power flows and voltage phase angles over a wide area. The voltage phase angle...

  4. Phasor Measurement Units in the Eastern Danish power system

    DEFF Research Database (Denmark)

    Nielsen, Arne Hejde; Pedersen, Knud Ole Helgesen; Jørgensen, Preben

    2006-01-01

    In the Eastern Danish transmission system four Phasor Measurement Units (PMU’s) are installed at 400 kV and 132 kV voltage level. The PMU’s continuously record voltage and current phasors each 20 ms. Data are stored locally on the PMU’s and are also transferred to a database at Centre for Electric...... because of their self protection. Nysted offshore wind farm was among the wind power units that disconnected from the grid, and PMU data from that event are analyzed. The case illustrates the close relation between voltages, power flows and voltage phase angles over a wide area. The voltage phase angle...... measurements complements the traditional voltage and power flow measurements....

  5. The Future of Solar Power in the United Kingdom

    Directory of Open Access Journals (Sweden)

    Gerard Reid

    2015-07-01

    Full Text Available We used detailed industry data to analyse the impacts of expected further cost reductions on the competitiveness of solar power in Britain, and assess whether the solar market can survive without support in the near future. We investigated three solar power markets: large-scale, ground-mounted “solar farms” (defined in our analysis as larger than a 5000 kilowatt system; commercial roof-top (250 kW; and residential rooftop (3 kW. We found that all three would be economic without support in the next decade. Such an outcome assumes progressively falling support under a stable policy regime. We found that unsubsidised residential solar power may be cheaper with battery storage within the next five to 10 years. Unsupported domestic solar battery packs achieve payback periods of less than 10 years by 2025. That could create an inflexion point driving adoption of domestic solar systems. The variability of solar power will involve some grid integration costs at higher penetration levels, such as more frequent power market scheduling; more interconnector capacity; storage; and backup power. These costs and responses could be weighed against non-market benefits including the potential for grid balancing; lower carbon and particulate emissions; and energy security.

  6. Cost based reactive power participation for voltage control in multi units based isolated hybrid power system

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Saxena

    2016-12-01

    Full Text Available Multi units of wind and diesel based generators in isolated hybrid power system have technical and operational advantages over single units system. They require dynamic reactive power compensation for fast recovery of voltage under load and input changes. In developing countries like India, investors’ prime concern is to provide continuous electricity at low rate while quality degradation can be permitted within pre defined acceptable range. The use of static compensator along with dynamic compensator may give cost effective reactive power participation for system. This paper presented pricing of reactive power compensation under steady state and transient conditions of system with fixed capacitor and STATCOM. The main contributions of the paper are; (i evaluating reactive power balance equation for generalized multi units of wind and diesel based isolated hybrid power system, (ii reactive power compensation using fixed capacitor and STATCOM in presence of composite load model, (ii fast recovery of voltage response using genetic algorithm based tuning of STATCOM controller, (iii evaluation of reactive power compensation cost for steady and dynamic conditions due to probabilistic change in load and/or input demand and (iv comparison of results with existing reference compensation method.

  7. Estimation of ground reaction force and zero moment point on a powered ankle-foot prosthesis.

    Science.gov (United States)

    Martinez-Villalpando, Ernesto C; Herr, Hugh; Farrell, Matthew

    2007-01-01

    The ground reaction force (GRF) and the zero moment point (ZMP) are important parameters for the advancement of biomimetic control of robotic lower-limb prosthetic devices. In this document a method to estimate GRF and ZMP on a motorized ankle-foot prosthesis (MIT Powered Ankle-Foot Prosthesis) is presented. The method proposed is based on the analysis of data collected from a sensory system embedded in the prosthetic device using a custom designed wearable computing unit. In order to evaluate the performance of the estimation methods described, standing and walking clinical studies were conducted on a transtibial amputee. The results were statistically compared to standard analysis methodologies employed in a gait laboratory. The average RMS error and correlation factor were calculated for all experimental sessions. By using a static analysis procedure, the estimation of the vertical component of GRF had an averaged correlation coefficient higher than 0.94. The estimated ZMP location had a distance error of less than 1 cm, equal to 4% of the anterior-posterior foot length or 12% of the medio-lateral foot width.

  8. Inventory of power plants in the United States, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), U.S. Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  9. The Integrated Solar Upper Stage engine ground demonstration power management and distribution subsystem design

    Science.gov (United States)

    Baez, Anastacio N.; Kimnach, Greg L.

    1997-01-01

    The National Aeronautics and Space Administration (NASA), the Air Force Phillips Laboratory (PL), and the Defense Special Weapons Agency (DSWA) in a joint effort are developing technologies for a solar bimodal system. A solar bimodal system combines thermal propulsion and electric power generation in a single integrated system. A spacecraft Integrated Solar Upper Stage (ISUS) bimodal system combines orbital transfer propulsion, electric power generation, and on-board propulsion into one overall system. A key benefit of such integrated system is the augmentation of payload to spacecraft mass ratio thus resulting in lower launch vehicle requirements. Scaling down to smaller launch vehicles increases space access by reducing overall mission cost. The NASA/PL/DSWA ISUS program is concentrating efforts on a near-term ground test demonstration of the bimodal concept. A successful ground demonstration of the ISUS various technologies will enable a full system flight demonstration of the bimodal concept. NASA Lewis Research Center in Cleveland Ohio will be the site for the engine ground demonstrator (EGD). The ISUS bimodal system uses solar concentrators to focus solar energy into an integrated receiver, absorber, and converter (RAC) power plant. The power plant main body is a graphite blackbody that stores thermal energy within a cavity in its main core. During the propulsion phase of the bimodal system a propellant flows into the graphite main core and is distributed uniformly through axial flow channels in the heated cavity. The blackbody core heats the propellant that is then discharged into an output tube thus creating thrust. An array of thermionic generators encircles the graphite core cavity and provides electrical energy conversion functions during the power generation phase. The power management and distribution subsystem's main functions are to condition raw electrical power generated by the RAC power plant and deliver it to the spacecraft payloads. This paper

  10. Fault tree modeling of AAC power source in multi-unit nuclear power plants PSA

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Hoon; Lim, Ho-Gon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Dependencies between units are important to estimate a risk of a multi-unit site. One of dependencies is a shared system such as an alternating AC (AAC) power source. Because one AAC can support a single unit, it is necessary to appropriately treat such behavior of the AAC in multi-unit probabilistic safety assessment (PSA). The behavior of AAC in multi-unit site would show dynamic characteristics. For example, several units require the AAC at the same time. It is hard to decide which unit the AAC is connected to. It can vary depending on timing of station blackout (SBO), with time delay when emergency diesel generators fail while running. It is not easy to handle dynamic behavior using the static fault tree methodology. Typical way of estimating risk for multi-unit regarding to AAC is to assume that only one unit has AAC and the others does not. KIM calculates the risk for each unit and uses the average value from the results. Jung derives an equation to calculate the SBO frequency by considering all the combination of loss of offsite power and failure of emergency diesel generators in multi-unit site. It is also assumed that the AAC is connected to a pre-decided unit. We are developing a PSA model for multi-unit site for internal and external events. An extreme external hazard may result in loss of all offsite power in a site, where the appropriate modeling of an AAC becomes important. The static fault tree methodology is not good for dynamic situation. But, it can turn into a simple problem if an assumption is made: - The connecting order of AAC is pre-decided. This study provides an idea how to model AAC for each unit in the form of a fault tree, assuming the connecting order of AAC is given. This study illustrates how to model a fault tree for AAC in a multi-unit site. It provides an idea how to handle a shared system in multi-unit PSA, for such a case as loss of all offsite power in a site due to an extreme external hazard.

  11. Research on unit commitment with large-scale wind power connected power system

    Science.gov (United States)

    Jiao, Ran; Zhang, Baoqun; Chi, Zhongjun; Gong, Cheng; Ma, Longfei; Yang, Bing

    2017-01-01

    Large-scale integration of wind power generators into power grid brings severe challenges to power system economic dispatch due to its stochastic volatility. Unit commitment including wind farm is analyzed from the two parts of modeling and solving methods. The structures and characteristics can be summarized after classification has been done according to different objective function and constraints. Finally, the issues to be solved and possible directions of research and development in the future are discussed, which can adapt to the requirements of the electricity market, energy-saving power generation dispatching and smart grid, even providing reference for research and practice of researchers and workers in this field.

  12. Inventory of Power Plants in the United States, October 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-27

    The Inventory of Power Plants in the United States is prepared annually by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). The publication also provides a 10-year outlook of future generating unit additions. Data summarized in this report are useful to a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Year in Review, Operable Electric Generating Units, and Projected Electric Generating Unit Additions. Statistics presented in these chapters reflect the status of electric generating units as of December 31, 1992.

  13. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2010-10-29

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Regulatory Commission (the Commission) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC... Operating License Nos. DPR-53 and DPR-69 for the Calvert Cliffs Nuclear Power Plant, Unit......

  14. 76 FR 39908 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-07-07

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2.... DPR-53 and DPR-69, for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 (CCNPP), respectively... (ISFSI), currently held by Calvert Cliffs Nuclear Power Plant, LLC as owner and licensed......

  15. Using Loop Heat Pipes to Minimize Survival Heater Power for NASA's Evolutionary Xenon Thruster Power Processing Units

    Science.gov (United States)

    Choi, Michael K.

    2017-01-01

    A thermal design concept of using propylene loop heat pipes to minimize survival heater power for NASA's Evolutionary Xenon Thruster power processing units is presented. It reduces the survival heater power from 183 W to 35 W per power processing unit. The reduction is 81%.

  16. Dynamic Analysis & Characterization of Conventional Hydraulic Power Supply Units

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Liedhegener, Michael; Bech, Michael Møller

    2016-01-01

    Hydraulic power units operated as constant supply pres-sure systems remain to be widely used in the industry, to supply valve controlled hydraulic drives etc., where the hydraulic power units are constituted by variable pumps with mechanical outlet pressure control, driven by induction motors...... and drives will reduce the flow-to-pressure gain of the supply system, and hence increase the time constant of the sup-ply pressure dynamics. A consequence of this may be large vari-ations in the supply pressure, hence large variations in the pump shaft torque, and thereby the induction motor load torque......, with possible excitation of the induction motor dynamics as a result. In such cases, the coupled dynamics of the pressure controlled pump and induction motor may influence the supply pressure sig-nificantly, possibly affecting the dynamics of the supplied drives, especially in cases where pilot operated valves...

  17. AN AIRPLANE WITH UNCONVENTIONALLY PLACED PROPELLER POWER UNIT

    Directory of Open Access Journals (Sweden)

    Jan Červinka

    2017-02-01

    Full Text Available The significance of the influence of operating propellers on the aircraft aerodynamic characteristics is well-known. Wind tunnel testing of an airplane model with operating propellers is a complex task regarding the required similarity of the full-scale and the model case. Matching sufficient similarity in axial and rotational velocities in the propeller slipstream is the primordial condition for the global aerodynamic similarity of the windtunnel testing. An example of the model power units with related devices is presented. Examples of the wind tunnel testing results illustrate the extent of the propeller influence on aerodynamic characteristics of an aircraft of unconventional configuration with power units positioned at the fuselage afterbody.

  18. The Power of Unit Root Tests Against Nonlinear Local Alternatives

    DEFF Research Database (Denmark)

    Demetrescu, Matei; Kruse, Robinson

    of Econometrics 112, 359-379) in comparison to the linear Dickey-Fuller test. To this end, we consider different adjustment schemes for deterministic terms. We provide asymptotic results which imply that the error variance has a severe impact on the behavior of the tests in the nonlinear case; the reason...... by simulation. Furthermore, our own simulation results suggest that the user-specied adjustment scheme for deterministic components (e.g. OLS, GLS, or recursive adjustment) has a much higher impact on the power of unit root tests than accounting for nonlinearity, at least under local (linear or nonlinear......This article extends the analysis of local power of unit root tests in a nonlinear direction by considering local nonlinear alternatives and tests built specically against stationary nonlinear models. In particular, we focus on the popular test proposed by Kapetanios et al. (2003, Journal...

  19. QUALITY EVALUATION OF THE TPP POWER GENERATING UNITS WEAR RECONDITIONING

    Directory of Open Access Journals (Sweden)

    E. M. Farhadzadeh

    2016-01-01

    Full Text Available Reconditioning of the power generating unit worn equipment and devices is conducted during the scheduled repair period. Quality of wear reconditioning is evaluated by technical state and repair work implementation. Quality of the repair work execution characterizes logistical activities of the power station and the repair services and is rated by a five-grade scale. There are three technical conditions: adequate, subject to reservations, falling short of the technical standard documentation requirements. In practical work these constraints give place to essential ambiguity of the decision. Further to regulating techniques by way of informational support, the authors propose conducting the wear-reconditioning quality evaluation (repair quality accordingly the technical-and-economic indexes pattern of change. The paper recommends applying similarly the fivegrade system in evaluating the power generating unit technical state and distinguishes intolerable, dissatisfactory, fair, good and model estimates. The study demonstrates the assessment criteria dependence on the character of reliability and economical efficiency of performance variation after the repair with increase or decrease of the technical-and-economic indexes in reference to their mean, minimum and maximum values before the repair. The cases ascribed to intolerable quality of the wear reconditioning are those with one or more technical-and-economic indexes that not only failed to improve their values but deteriorated, and at that they became the worst amongst observable values. The model quality estimate of the wear reconditioning is allotted under condition that the power unit technical-and-economic index valuations after the repair not merely improved but also exceeded the best among those under observation. The developed method and algorithm for quality evaluation of the scheduled repair implementation contribute to practical realization of the independent monitoring. This monitoring

  20. The Power Unit Coordinated Control via Uniform Differential Evolution

    OpenAIRE

    Zain Abdalla Zahran; Rui Feng Shi; Xiang Jie Liu

    2013-01-01

    This paper modified the differential evolution (DE) algorithm adaptively to solve the power unit coordinated control (PUCC) problem. It was modified in two aspects: 1) a uniform initialization, which was controlled and regulated by a zone factor (m), 2) a regular mutation process, to develop an effective searching process and improve the convergence of the basic DE algorithm. A numerical case study was employed to verify the performance of our proposed uniform differential evolution (UDE) a...

  1. AN AIRPLANE WITH UNCONVENTIONALLY PLACED PROPELLER POWER UNIT

    OpenAIRE

    Jan Červinka; Robert Kulhánek; Zdeněk Pátek

    2017-01-01

    The significance of the influence of operating propellers on the aircraft aerodynamic characteristics is well-known. Wind tunnel testing of an airplane model with operating propellers is a complex task regarding the required similarity of the full-scale and the model case. Matching sufficient similarity in axial and rotational velocities in the propeller slipstream is the primordial condition for the global aerodynamic similarity of the windtunnel testing. An example of the model power units ...

  2. Power regulating range broadening of the WWER-type reactor power units

    Energy Technology Data Exchange (ETDEWEB)

    Dement' ev, B.A.; Petrov, V.A.; Proskuryakov, A.G.; Puchkov, V.V. (Moskovskij Ehnergeticheskij Inst. (USSR))

    1984-02-01

    Calculational studies on the use of sliding pressure (SP) regime to expand the regulating range of the WWER-440 reactor power units are presented. Two operation regimes of a power unit have been considered: according to weekly and daily load swings in electrical grids. The conclusion is made that the use of SP regime in the secondary circuit improves manoeuvable characterstics of the power unit in the second half of operating cycle. T of the reactor (0.6 power regulating range broadening of the reactor. Besides, the use of SP regime during power unit operation with decreased loadings is the more efficient the smaller is the load. The range of operating cycle 0.8 <= T <= 1 makes the greatest contribution to regulating range broadening as a result of SP regime use. Conclusions of the calculational studies can be also applied to WWER reactors of other types as well as to RBMK reactors.

  3. Counter-rotating type pump-turbine unit cooperating with wind power unit

    Science.gov (United States)

    Murakami, Tengen; Kanemoto, Toshiaki

    2013-02-01

    This serial research proposes the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit, to provide the constant output for the grid system, even at the suddenly fluctuating/turbulent wind. In this paper, the tandem impellers of the counter-rotating type pumping unit was operated at the turbine mode, and the performances and the flow conditions were investigated numerically and experimentally. The 3-D turbulent flows in the runners were simulated at the steady state condition by using the commercial CFD code of ANSYS-CFX ver.12 with the SST turbulence model. While providing the pump unit for the turbine mode, the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. Besides, the runner/impeller of the unit works evidently so as to coincide the angular momentum change through the front runners/impellers with that through the rear runners/impellers, namely to take the axial flow at not only the inlet but also the outlet without the guide vanes. These results show that this type of unit is effective to work at not only the pumping but also the turbine modes.

  4. Inventory of power plants in the United States 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-18

    The Inventory of Power Plants in the US provides year-end statistics on generating units operated by electric utilities in the US (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of December 31, 1994. The publication also provides a 10-year outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress, Federal, and State agencies; the electric utility industry; and the general public. This is a report of electric utility data; in cases where summary data of nonutility capacity are presented, it is specifically noted as such.

  5. Counter rotating type hydroelectric unit suitable for tidal power station

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, T [Faculty of Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu 804-8550 (Japan); Suzuki, T, E-mail: turbo@tobata.isc.kyutech.ac.j [Graduate School of Engineering, Kyushu Institute of Technology, Sensui 1-1, Tobata, Kitakyushu 804-8550 (Japan)

    2010-08-15

    The counter rotating type hydroelectric unit, which is composed of the axial flow type tandem runners and the peculiar generator with double rotational armatures,was proposed to utilize effectively the tidal power. In the unit, the front and the rear runners counter drive the inner and the outer armatures of the generator, respectively. Besides, the flow direction at the rear runner outlet must coincide with the flow direction at the front runner inlet, because the angular momentum through the rear runner must coincides with that through the front runner. That is, the flow runs in the axial direction at the rear runner outlet while the axial inflow at the front runner inlet. Such operations are suitable for working at the seashore with rising and falling tidal flows, and the unit may be able to take place of the traditional bulb type turbines. The tandem runners were operated at the on-cam conditions, in keeping the induced frequency constant. The output and the hydraulic efficiency are affected by the adjustment of the front and the blade setting angles. The both optimum angles giving the maximum output and/or efficiency were presented at the various discharges/heads. To promote more the tidal power generation by this type unit, the runners were also modified so as to be suitable for both rising and falling flows. The hydraulic performances are acceptable while the output is determined mainly by the trailing edge profiles of the runner blades.

  6. Floating type ocean wave power station equipped with hydroelectric unit

    Science.gov (United States)

    Okamoto, Shun; Kanemoto, Toshiaki; Umekage, Toshihiko

    2013-10-01

    The authors have invented the unique ocean wave power station, which is composed of the floating type platform with a pair of the floats lining up at the interval of one wave pitch and the counter-rotating type wave power unit, its runners are submerged in the seawater at the middle position of the platform. Such profiles make the flow velocity at the runner is twice faster than that of the traditional fixed/caisson type OWC, on the ideal flow conditions. Besides, the runners counter-rotate the inner and the outer armatures of the peculiar generator, respectively, and the relative rotational speed is also twice faster than the speed of the single runner/armature. Such characteristics make the runner diameter large, namely the output higher, as requested, because the torque of the power unit never act on the floating type platform. At the preliminary reseach, this paper verifies to get the power using a Wells type single runner installed in the model station. The runner takes the output which is affected by the oscillating amplitude of the platform, the rotational speed and the inertia force of the runner, etc.

  7. Pipe rupture incident of Hamaoka Nuclear Power Station Unit-1

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Yushi; Nakagami, Motonori; Hayashi, Haruhisa; Ichikawa, Yoshihiro [Chubu Electric Power Co. Inc., Nagoya (Japan)

    2002-11-01

    At the Hamaoka Nuclear Power Station Unit-1 (540 MWe of electric output; BWR-4 type) of the Chubu Electric Power Co., Ltd., an incident of pipe rupture of residual heat removal system on steam condenser system occurred on November, 2001. This incident gave no effects on outer parts of the station, because safety system apparatuses in the station worked adequately from a standpoint of accidental phenomenon. On the other hand, on its forming processes, as it is no similar case at the nuclear power stations in and out of Japan, to securely carry out countermeasures for preventing a recurrence of the incidence, its cause was striven to elucidate thoroughly. This paper was introduced about contents and results on site surveys, and surveys such as tests, analysis, and so on performed for about a half year after the incident, for preventing a recurrence of similar incidents. (G.K.)

  8. Topping the 300-MW power unit at the GRES-24 district power station with a GTE-110 gas turbine unit. Technical solutions on the thermal circuit

    Science.gov (United States)

    Berezinets, P. A.; Tereshina, G. E.; Kryuchkova, T. I.

    2010-02-01

    We describe the outcomes from the development of a gas-turbine topping for the 300-MW power unit that was initially constructed as an attachment to an MHD-generator, which, however, has not been constructed. A 110-MW GTE-110 gas-turbine unit was used as a topping for this power unit. The topped power unit allows more than 9% of fuel to be saved as compared with the original one.

  9. Power unit impedance and distance protection functions during faults in the external power grid

    Directory of Open Access Journals (Sweden)

    Marcin Lizer

    2012-12-01

    Full Text Available This paper presents the problem of the risk of an unnecessary tripping of a generation unit’s underimpedance protection functions in circumstances of generator power swings following elimination of long-lasting fault in the external power grid. The fi rst part describes typical solutions of a generator impedance protection function (21e and unit distance protection function (21s. Starting characteristics of these protection functions are shown, as well as their typical operating logics and ways of calculating their settings. Then exemplary (the most common solutions of unit under-impedance relays power swing blocking functions are described. Following this introduction, the issues of the threat of unnecessary operation of fast-tripping protection zones of 21e and 21s protection functions are described, which arises in the circumstances of generator asynchronous power swings occurring after elimination of long-lasting faults in the grid supplied by the power unit. The paper also shows that the available power swing blocking functions may not be able to correctly detect the described conditions, thus allowing the unnecessary operation of under-impedance relays. How an impedance calculation algorithm affects the impedance trajectory seen by a protection relay is also resented.

  10. Study on Site Specific Design Earthquake Ground Motion of Nuclear Power Plants in China1

    Institute of Scientific and Technical Information of China (English)

    Zhou Bochang; Li Xiaojun; Li Yaqi

    2008-01-01

    The main technical backgrounds and requirements are introduced with regard to earthquake ground motion design parameters in several domestic and American standards,codes and guides involved in the seismic analysis and design activities of nuclear power plants in China.Based on the research results from site seismic safety evaluation of domestic nuclear power plant projects in the last years,characteristics and differences of site specific design spectra are analyzed in comparison with standard response spectra,and the suitability of standard response spectra for domestic nuclear power plant projects is discussed.

  11. Direct power generation from waste coffee grounds in a biomass fuel cell

    Science.gov (United States)

    Jang, Hansaem; Ocon, Joey D.; Lee, Seunghwa; Lee, Jae Kwang; Lee, Jaeyoung

    2015-11-01

    We demonstrate the possibility of direct power generation from waste coffee grounds (WCG) via high-temperature carbon fuel cell technology. At 900 °C, the WCG-powered fuel cell exhibits a maximum power density that is twice than carbon black. Our results suggest that the heteroatoms and hydrogen contained in WCG are crucial in providing good cell performance due to its in-situ gasification, without any need for pre-reforming. As a first report on the use of coffee as a carbon-neutral fuel, this study shows the potential of waste biomass (e.g. WCG) in sustainable electricity generation in fuel cells.

  12. Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State

    Science.gov (United States)

    Stoop, Ruedi; Gomez, Florian

    2016-07-01

    The cochlea provides a biological information-processing paradigm that we are only beginning to understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-law size statistics ("avalanches"). From dynamical systems theory, power-law size distributions relate to a fundamental ground state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information.

  13. A simple approach to calculate active power of electrosurgical units

    Directory of Open Access Journals (Sweden)

    André Luiz Regis Monteiro

    Full Text Available Abstract Introduction: Despite of more than a hundred years of electrosurgery, only a few electrosurgical equipment manufacturers have developed methods to regulate the active power delivered to the patient, usually around an arbitrary setpoint. In fact, no manufacturer has a method to measure the active power actually delivered to the load. Measuring the delivered power and computing it fast enough so as to avoid injury to the organic tissue is challenging. If voltage and current signals can be sampled in time and discretized in the frequency domain, a simple and very fast multiplication process can be used to determine the active power. Methods This paper presents an approach for measuring active power at the output power stage of electrosurgical units with mathematical shortcuts based on a simple multiplication procedure of discretized variables – frequency domain vectors – obtained through Discrete Fourier Transform (DFT applied on time-sampled voltage and current vectors. Results Comparative results between simulations and a practical experiment are presented – all being in accordance with the requirements of the applicable industry standards. Conclusion An analysis is presented comparing the active power analytically obtained through well-known voltage and current signals against a computational methodology based on vector manipulation using DFT only for time-to-frequency domain transformation. The greatest advantage of this method is to determine the active power of noisy and phased out signals with neither complex DFT or ordinary transform methodologies nor sophisticated computing techniques such as convolution. All results presented errors substantially lower than the thresholds defined by the applicable standards.

  14. Analysis of overvoltages in overhead ground wires of extra high voltage (EHV) power transmission line under single-phase-to-ground faults

    NARCIS (Netherlands)

    Dudurych, [No Value; Rosolowski, E

    2000-01-01

    Overhead ground wires (GW) of extra high voltage (EHV) power transmission lines, apart from lightning-induced overvoltage protection are frequently used for carrier-current communication. In this case the ground wires are suspended on insulators, the dielectric strength of which should be sufficient

  15. Development of High-Power Hall Thruster Power Processing Units at NASA GRC

    Science.gov (United States)

    Pinero, Luis R.; Bozak, Karin E.; Santiago, Walter; Scheidegger, Robert J.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested four different power processor concepts for high power Hall thrusters. Each design satisfies unique goals including the evaluation of a novel silicon carbide semiconductor technology, validation of innovative circuits to overcome the problems with high input voltage converter design, development of a direct-drive unit to demonstrate potential benefits, or simply identification of lessonslearned from the development of a PPU using a conventional design approach. Any of these designs could be developed further to satisfy NASA's needs for high power electric propulsion in the near future.

  16. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  17. Auxiliary power unit noise of Boeing B737 and B747 aircraft

    Science.gov (United States)

    Kwan, Jimmy S. W.; Yang, S. J. Eric

    Most modern civil aircraft have an Auxiliary Power Unit (APU) which provides compressed air for engine starting and the air-conditioning system on ground and electrical power for aircraft use both on-ground and in-fligth. It is basically a gas turbine engine and it consists of a compressor section, a turbine section, and an accessory drive section. For Boeing B737 and B747 aircraft, the APU is located inside a compartment in the tail section of the aircraft and is completely enclosed by a sound-reduction fire-proof titanium shroud. APU noise is one of the major noise sources at many airports and is extremely important for a densely populated city such as Hong Kong. The noise from APU can affect many people, including ground crew aircraft maintenance staff, and people living in the vicinity of the airport. However, there is very little information available in the literature about APU noise. This paper describes the noise measurement method and presents the measurement results for APUs of one B747 and two B737 aircraft under both 'loaded' and 'no-load' conditions.

  18. Securing the United States' power infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Happenny, Sean F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    The United States’ power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power distribution networks utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the networks protecting them are becoming easier to breach. Providing a virtual power substation network to each student team at the National Collegiate Cyber Defense Competition, thereby supporting the education of future cyber security professionals, is another way PNNL is helping to strengthen the security of the nation’s power infrastructure.

  19. Largest fluidized bed power plant unit for power and district heat supply for Berlin (Part 1)

    Energy Technology Data Exchange (ETDEWEB)

    Abroell, G.; Bade, H.; Bietz, K.H.; Jahn, P. (ABB Kraftwerke AG, Mannheim (Germany))

    1991-11-01

    The Berlin Power and Light Company (Bewag) has decided to install, on the inner city site of Moabit, for the supply of electricity and district heating, a new unit with circulating atmospheric fluidized bed combustion. The plant will be designed for a thermal capacity of 240 MW. The basis for this decision, and also the technical implementation, will be made public.

  20. Ground Water Atlas of the United States: Segment 8, Montana, North Dakota, South Dakota, Wyoming

    Science.gov (United States)

    Whitehead, R.L.

    1996-01-01

    The States of Montana, North Dakota, South Dakota, and Wyoming compose the 392,764-square-mile area of Segment 8, which is in the north-central part of the continental United States. The area varies topographically from the high rugged mountain ranges of the Rocky Mountains in western Montana and Wyoming to the gently undulating surface of the Central Lowland in eastern North Dakota and South Dakota (fig. 1). The Black Hills in southwestern South Dakota and northeastern Wyoming interrupt the uniformity of the intervening Great Plains. Segment 8 spans the Continental Divide, which is the drainage divide that separates streams that generally flow westward from those that generally flow eastward. The area of Segment 8 is drained by the following major rivers or river systems: the Green River drains southward to join the Colorado River, which ultimately discharges to the Gulf of California; the Clark Fork and the Kootenai Rivers drain generally westward by way of the Columbia River to discharge to the Pacific Ocean; the Missouri River system and the North Platte River drain eastward and southeastward to the Mississippi River, which discharges to the Gulf of Mexico; and the Red River of the North and the Souris River drain northward through Lake Winnipeg to ultimately discharge to Hudson Bay in Canada. These rivers and their tributaries are an important source of water for public-supply, domestic and commercial, agricultural, and industrial uses. Much of the surface water has long been appropriated for agricultural use, primarily irrigation, and for compliance with downstream water pacts. Reservoirs store some of the surface water for flood control, irrigation, power generation, and recreational purposes. Surface water is not always available when and where it is needed, and ground water is the only other source of supply. Ground water is obtained primarily from wells completed in unconsolidated-deposit aquifers that consist mostly of sand and gravel, and from wells

  1. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Cliffs Nuclear Power Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant..., Calvert Cliffs Nuclear Power Plant (NUREG-1437, Supplement 1), dated......

  2. Fission Surface Power Technology Demonstration Unit Test Results

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.

  3. Ground state atomic oxygen in high-power impulse magnetron sputtering: a quantitative study

    Science.gov (United States)

    Britun, Nikolay; Belosludtsev, Alexandr; Silva, Tiago; Snyders, Rony

    2017-02-01

    The ground state density of oxygen atoms in reactive high-power impulse magnetron sputtering discharges has been studied quantitatively. Both time-resolved and space-resolved measurements were conducted. The measurements were performed using two-photon absorption laser-induced fluorescence (TALIF), and calibrated by optical emission actinometry with multiple Ar emission lines. The results clarify the dynamics of the O ground state atoms in the discharge afterglow significantly, including their propagation and fast decay after the plasma pulse, as well as the influence of gas pressure, O2 admixture, etc.

  4. Green Propulsion Auxiliary Power Unit Demonstration at MSFC

    Science.gov (United States)

    Robinson, Joel W.

    2014-01-01

    In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01)1 for Launch Propulsion Systems is one of fourteen TAs that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within TA-01 was the need for a green propulsion auxiliary power unit (APU) for hydraulic power by 2015. Engineers led by the author at the Marshall Space Flight Center (MSFC) have been evaluating green propellant alternatives and have begun the development of an APU test bed to demonstrate the feasibility of use. NASA has residual APU assets remaining from the retired Space Shuttle Program. Likewise, the F-16 Falcon fighter jet also uses an Emergency Power Unit (EPU) that has similar characteristics to the NASA hardware. Both EPU and APU components have been acquired for testing at MSFC. This paper will summarize the status of the testing efforts of green propellant from the Air Force Research Laboratory (AFRL) propellant AFM315E based on hydroxyl ammonium nitrate (HAN) with these test assets.

  5. Analysis of test results of a ground demonstration of a Pluto/Express power generator

    Energy Technology Data Exchange (ETDEWEB)

    Tournier, J.-M.; El-Genk, M.S. [University of New Mexico, Dept. of Chemical and Nuclear Engineering, Albuquerque, NM (United States)

    1999-07-01

    Results of recent tests of a Pluto/Express electric power generator ground demonstration were analysed. The performance parameters of each of the eight ground demonstrations vapour anode, multitube alkali-metal thermal-to-electric conversion (AMTEC) cells, designated PX-3G, were analysed and compared. The ground demonstration cells produced a total peak electric power of 27 W{sub e} at a load voltage of 16 V when tested at hot and cold side temperatures of 1123 K and 553 K, respectively. The electric power output and terminal voltage of the individual cells, however, differed by as much as 25%, from 2.94 to 3.76 W{sub e}, and from 1.73 to 2.21 V, respectively. These variations were attributed to differences among the cells in the values of: (a) the contact resistance of the BASE/electrode and of the electrode/current collector; (b) the leakage current between the anode and cathode electrodes through the metal-ceramic braze joint between the BASE tubes and the metal support plate; and (c) the charge-exchange polarisation losses. Analysis of results suggested the existence of large electrical leakage currents in some of the PX-3G cells. The performance of the PX-3G cells was below that needed for meeting the Pluto/Express mission's electric power requirement. (Author)

  6. Ground heat flux and power sources of low-enthalpy geothermal systems

    Science.gov (United States)

    Bayer, Peter; Blum, Philipp; Rivera, Jaime A.

    2015-04-01

    Geothermal heat pumps commonly extract energy from the shallow ground at depths as low as approximately 400 m. Vertical borehole heat exchangers are often applied, which are seasonally operated for decades. During this lifetime, thermal anomalies are induced in the ground and surface-near aquifers, which often grow over the years and which alleviate the overall performance of the geothermal system. As basis for prediction and control of the evolving energy imbalance in the ground, focus is typically set on the ground temperatures. This is reflected in regulative temperature thresholds, and in temperature trends, which serve as indicators for renewability and sustainability. In our work, we examine the fundamental heat flux and power sources, as well as their temporal and spatial variability during geothermal heat pump operation. The underlying rationale is that for control of ground temperature evolution, knowledge of the primary heat sources is fundamental. This insight is also important to judge the validity of simplified modelling frameworks. For instance, we reveal that vertical heat flux from the surface dominates the basal heat flux towards a borehole. Both fluxes need to be accounted for as proper vertical boundary conditions in the model. Additionally, the role of horizontal groundwater advection is inspected. Moreover, by adopting the ground energy deficit and long-term replenishment as criteria for system sustainability, an uncommon perspective is adopted that is based on the primary parameter rather than induced local temperatures. In our synthetic study and dimensionless analysis, we demonstrate that time of ground energy recovery after system shutdown may be longer than what is expected from local temperature trends. In contrast, unrealistically long recovery periods and extreme thermal anomalies are predicted without account for vertical ground heat fluxes and only when the energy content of the geothermal reservoir is considered.

  7. Development of a method to evaluate shared alternate AC power source effects in multi-unit nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Woo Sik; Yang, Joon Eun

    2003-07-01

    In order to evaluate accurately a Station BlackOut (SBO) event frequency of a multi-unit nuclear power plant that has a shared Alternate AC (AAC) power source, an approach has been developed which accommodates the complex inter-unit behavior of the shared AAC power source under multi-unit Loss Of Offsite Power (LOOP) conditions. The approach is illustrated for two cases, 2 units and 4 units at a single site, and generalized for a multi-unit site. Furthermore, the SBO frequency of the first unit of the 2-unit site is quantified. The SBO frequency at a target unit of Probabilistic Safety Assessment (PSA) could be underestimated if the inter-unit dependency of the shared AAC power source is not properly modeled. The effect of the inter-unit behavior of the shared AAC power source on the SBO frequency is not negligible depending on the Common Cause Failure (CCF) characteristics among AC power sources. The methodology suggested in the present report is believed to be very useful in evaluating the SBO frequency and the core damage frequency resulting from the SBO event. This approach is also applicable to the probabilistic evaluation of the other shared systems in a multi-unit nuclear power plant.

  8. DESIGNING FEATURES OF POWER OPTICAL UNITS FOR TECHNOLOGICAL EQUIPMENT

    Directory of Open Access Journals (Sweden)

    M. Y. Afanasiev

    2016-03-01

    Full Text Available This paper considers the question of an optical unit designing for transmitting power laser radiation through an optical fiber. The aim of this work is designing a simple construction unit with minimized reflection losses. The source of radiation in the optical unit described below is an ultraviolet laser with diode pumping. We present the general functioning scheme and designing features for the three main parts: laser beam deflecting system, laser beam dump and optical unit control system. The described laser beam deflection system is composed of a moving flat mirror and a spherical scattering mirror. Comparative analysis of the production technology for such mirrors was carried out, and, as a result, the decision was made to produce both mirrors of 99.99 % pure molybdenum without coating. A moving mirror deflects laser emission from a source through a fiber or deflects it on a spherical mirror and into the laser beam dump, moreover, switching from one position to another occurs almost immediately. It is shown that a scattering mirror is necessary, otherwise, the absorbing surface of the beam dump is being worn out irregularly. The laser beam dump is an open conical cavity, in which the conical element with its spire turned to the emission source is placed. Special microgeometry of the internal surface of the beam dump is suggested for the better absorption effect. An optical unit control system consists of a laser beam deflection system, laser temperature sensor, deflection system solenoid temperature sensor, and deflection mirror position sensor. The signal processing algorithm for signals coming from the sensors to the controller is described. The optical unit will be used in special technological equipment.

  9. A high power, Coated Particle Fuel Compact Radioisotope Heat Unit

    Science.gov (United States)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2001-02-01

    A Coated Particle Fuel Compact, Radioisotope Heater Unit (CPFC-RHU) is proposed, which is capable of generating thermal power in excess of 27 W. This power output is more than four times that of a Hexa-RHU, which generates only six watts of thermal power. The design of the CPFC-RHU is identical to that of the Hexa-RHU, except that the six Pt-30Rh clad fuel pellets and the POCO graphite support in the latter are replaced with single-sized, ZrC coated, 238PuO2 fuel particles ~500 μm in diameter. In addition to fully retaining the helium gas generated by the radioactive decay of the fuel, the CPFC offers promise for enhanced safety. Thermal analyses of the CPFC-RHU show that while the Hexa-RHU is suitable for use in a radioisotope power system (RPS) operating at a converter hot-side temperature of 473 K, the CPFC-RHU could also be used at higher temperatures of 773 K and 973 K with a thermal efficiency >60%. Even at a 473 K converter hot-side temperature, the CPFC-RHU offers higher thermal efficiency (>90%) than the Hexa-RHU (~75%). The CPFC-RHU final design provides constant temperature, with almost uniform radial heat flux to the converter, for enhanced performance, better integration, and higher overall efficiency of the RPS. The present CPFC-RHU fills a gap in the power needs for future space missions requiring electric power of 1-15 W, from a single RPS. .

  10. Zero loss magnetic metamaterials using powered active unit cells.

    Science.gov (United States)

    Yuan, Yu; Popa, Bogdan-Ioan; Cummer, Steven A

    2009-08-31

    We report the design and experimental measurement of a powered active magnetic metamaterial with tunable permeability. The unit cell is based on the combination of an embedded radiofrequency amplifier and a tunable phase shifter, which together control the response of the medium. The measurements show that a negative permeability metamaterial with zero loss or even gain can be achieved through an array of such metamaterial cells. This kind of active metamaterial can find use in applications that are performance limited due to material losses.

  11. Performance/Power Space Exploration for Binary64 Division Units

    DEFF Research Database (Denmark)

    Nannarelli, Alberto

    2016-01-01

    The digit-recurrence division algorithm is used in several high-performance processors because it provides good tradeoffs in terms of latency, area and power dissipation. In this work we develop a minimally redundant radix-8 divider for binary64 (double-precision) aiming at obtaining better energ...... efficiency in the performance-per-watt space. The results show that the radix-8 divider, when compared to radix-4 and radix-16 units, requires less energy to complete a division for high clock rates....

  12. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.

    Science.gov (United States)

    Au, Samuel; Berniker, Max; Herr, Hugh

    2008-05-01

    The human ankle varies impedance and delivers net positive work during the stance period of walking. In contrast, commercially available ankle-foot prostheses are passive during stance, causing many clinical problems for transtibial amputees, including non-symmetric gait patterns, higher gait metabolism, and poorer shock absorption. In this investigation, we develop and evaluate a myoelectric-driven, finite state controller for a powered ankle-foot prosthesis that modulates both impedance and power output during stance. The system employs both sensory inputs measured local to the external prosthesis, and myoelectric inputs measured from residual limb muscles. Using local prosthetic sensing, we first develop two finite state controllers to produce biomimetic movement patterns for level-ground and stair-descent gaits. We then employ myoelectric signals as control commands to manage the transition between these finite state controllers. To transition from level-ground to stairs, the amputee flexes the gastrocnemius muscle, triggering the prosthetic ankle to plantar flex at terminal swing, and initiating the stair-descent state machine algorithm. To transition back to level-ground walking, the amputee flexes the tibialis anterior muscle, triggering the ankle to remain dorsiflexed at terminal swing, and initiating the level-ground state machine algorithm. As a preliminary evaluation of clinical efficacy, we test the device on a transtibial amputee with both the proposed controller and a conventional passive-elastic control. We find that the amputee can robustly transition between the finite state controllers through direct muscle activation, allowing rapid transitioning from level-ground to stair walking patterns. Additionally, we find that the proposed finite state controllers result in a more biomimetic ankle response, producing net propulsive work during level-ground walking and greater shock absorption during stair descent. The results of this study highlight the

  13. NASA solar dynamic ground test demonstration (GTD) program and its application to space nuclear power

    Science.gov (United States)

    Harper, William B.; Shaltens, Richard K.

    1993-01-01

    Closed Brayton cycle power conversion systems are readily adaptable to any heat source contemplated for space application. The inert gas working fluid can be used directly in gas-cooled reactors and coupled to a variety of heat sources (reactor, isotope or solar) by a heat exchanger. This point is demonstrated by the incorporation in the NASA 2 kWe Solar Dynamic (SD) Space Power Ground Test Demonstration (GTD) Program of the turboalternator-compressor and recuperator from the Brayton Isotope Power System (BIPS) program. This paper will review the goals and status of the SD GTD Program, initiated in April 1992. The performance of the BIPS isotope-heated system will be compared to the solar-heated GTD system incorporating the BIPS components and the applicability of the GTD test bed to dynamics space nuclear power R&D will be discussed.

  14. 'Intensive care unit survivorship' - a constructivist grounded theory of surviving critical illness.

    Science.gov (United States)

    Kean, Susanne; Salisbury, Lisa G; Rattray, Janice; Walsh, Timothy S; Huby, Guro; Ramsay, Pamela

    2017-10-01

    To theorise intensive care unit survivorship after a critical illness based on longitudinal qualitative data. Increasingly, patients survive episodes of critical illness. However, the short- and long-term impact of critical illness includes physical, psychological, social and economic challenges long after hospital discharge. An appreciation is emerging that care needs to extend beyond critical illness to enable patients to reclaim their lives postdischarge with the term 'survivorship' being increasingly used in this context. What constitutes critical illness survivorship has, to date, not been theoretically explored. Longitudinal qualitative and constructivist grounded theory. Interviews (n = 46) with 17 participants were conducted at four time points: (1) before discharge from hospital, (2) four to six weeks postdischarge, (3) six months and (4) 12 months postdischarge across two adult intensive care unit setting. Individual face-to-face interviews. Data analysis followed the principles of Charmaz's constructivist grounded theory. 'Intensive care unit survivorship' emerged as the core category and was theorised using concepts such as status passages, liminality and temporality to understand the various transitions participants made postcritical illness. Intensive care unit survivorship describes the unscheduled status passage of falling critically ill and being taken to the threshold of life and the journey to a life postcritical illness. Surviving critical illness goes beyond recovery; surviving means 'moving on' to life postcritical illness. 'Moving on' incorporates a redefinition of self that incorporates any lingering intensive care unit legacies and being in control of one's life again. For healthcare professionals and policymakers, it is important to realise that recovery and transitioning through to survivorship happen within an individual's time frame, not a schedule imposed by the healthcare system. Currently, there are no care pathways or policies in

  15. Ground return effect on wave propagation parameters of overhead power cables

    Energy Technology Data Exchange (ETDEWEB)

    Malo Machado, V.M.; Brandao Faria, J.A.; Borges da Silva, J.F. (Centro de Electrotecnia da Univ. Tecnia de Lisboa, Inst. Superior Tecnico, Dept. of Electrical Engineering, 1096 Lisboa Codex (PT))

    1990-04-01

    The propagation properties of overhead three-phase cables are usually analyzed assuming that the pipe conductor establishes a perfect shielding between the inner conductor set and any outer conductor, i.e., the power cable is assumed as an isolated system. The influence of a lossy ground plane in the neighborhood of the cable is examined in this paper. The propagation parameters for both approaches are compared---significative differences being found to exist, in the zero mode, at low working frequencies.

  16. 618-10 Burial Ground Trench Remediation and 618-10 and 618-11 Burial Ground Nonintrusive Characterization of Vertical Pipe Units Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Darby, J. W.

    2012-06-28

    A “lessons learned” is a noteworthy practice or innovative approach that is captured and shared to promote repeat application, or an adverse work practice/experience that is captured and shared to avoid reoccurrence. This document provides the lessons learned identified by the 618-10 Burial Ground trench remediation and the 618-10 and 618-11 Burial Ground nonintrusive characterization of the vertical pipe units (VPUs).

  17. Nationwide outbreak of multidrug-resistant Salmonella Heidelberg infections associated with ground turkey: United States, 2011.

    Science.gov (United States)

    Routh, J A; Pringle, J; Mohr, M; Bidol, S; Arends, K; Adams-Cameron, M; Hancock, W T; Kissler, B; Rickert, R; Folster, J; Tolar, B; Bosch, S; Barton Behravesh, C; Williams, I T; Gieraltowski, L

    2015-11-01

    On 23 May 2011, CDC identified a multistate cluster of Salmonella Heidelberg infections and two multidrug-resistant (MDR) isolates from ground turkey retail samples with indistinguishable pulsed-field gel electrophoresis patterns. We defined cases as isolation of outbreak strains in persons with illness onset between 27 February 2011 and 10 November 2011. Investigators collected hypothesis-generating questionnaires and shopper-card information. Food samples from homes and retail outlets were collected and cultured. We identified 136 cases of S. Heidelberg infection in 34 states. Shopper-card information, leftover ground turkey from a patient's home containing the outbreak strain and identical antimicrobial resistance profiles of clinical and retail samples pointed to plant A as the source. On 3 August, plant A recalled 36 million pounds of ground turkey. This outbreak increased consumer interest in MDR Salmonella infections acquired through United States-produced poultry and played a vital role in strengthening food safety policies related to Salmonella and raw ground poultry.

  18. Modeling Small Scale Solar Powered ORC Unit for Standalone Application

    Directory of Open Access Journals (Sweden)

    Enrico Bocci

    2012-01-01

    Full Text Available When the electricity from the grid is not available, the generation of electricity in remote areas is an essential challenge to satisfy important needs. In many developing countries the power generation from Diesel engines is the applied technical solution. However the cost and supply of fuel make a strong dependency of the communities on the external support. Alternatives to fuel combustion can be found in photovoltaic generators, and, with suitable conditions, small wind turbines or microhydroplants. The aim of the paper is to simulate the power generation of a generating unit using the Rankine Cycle and using refrigerant R245fa as a working fluid. The generation unit has thermal solar panels as heat source and photovoltaic modules for the needs of the auxiliary items (pumps, electronics, etc.. The paper illustrates the modeling of the system using TRNSYS platform, highlighting standard and “ad hoc” developed components as well as the global system efficiency. In the future the results of the simulation will be compared with the data collected from the 3 kW prototype under construction in the Tuscia University in Italy.

  19. Development Status of the Fission Power System Technology Demonstration Unit

    Science.gov (United States)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Pearson, Jon Boise; Godfoy, Thomas

    2012-01-01

    This paper summarizes the progress that has been made in the development of the Fission Power System Technology Demonstration Unit (TDU). The reactor simulator core and Annular Linear Induction Pump have been fabricated and assembled into a test loop at the NASA Marshall Space Flight Center. A 12 kWe Power Conversion Unit (PCU) is being developed consisting of two 6 kWe free-piston Stirling engines. The two 6 kWe engines have been fabricated by Sunpower Inc. and are currently being tested separately prior to integration into the PCU. The Facility Cooling System (FCS) used to reject convertor waste heat has been assembled and tested at the NASA Glenn Research Center (GRC). The structural elements, including a Buildup Assembly Platform (BAP) and Upper Truss Structure (UTS) have been fabricated, and will be used to test cold-end components in thermal vacuum prior to TDU testing. Once all components have been fully tested at the subsystem level, they will be assembled into an end-to-end system and tested in thermal vacuum at GRC.

  20. Estimating overland flow erosion capacity using unit stream power

    Institute of Scientific and Technical Information of China (English)

    Hui-Ming SHIH; Chih Ted YANG

    2009-01-01

    Soil erosion caused by water flow is a complex problem.Both empirical and physically based approaches were used for the estimation of surface erosion rates.Their applications are mainly limited to experimental areas or laboratory studies.The maximum sediment concentration overland flow can carry is not considered in most of the existing surface erosion models.The lack of erosion capacity limitation may cause over estimations of sediment concentration.A correlation analysis is used in this study to determine significant factors that impact surface erosion capacity.The result shows that the unit stream power is the most dominant factor for overland flow erosion which is consistent with experimental data.A bounded regression formula is used to reflect the limits that sediment concentration cannot be less than zero nor greater than a maximum value.The coefficients used in the model are calibrated using published laboratory data.The computed results agree with laboratory data very well.A one dimensional overland flow diffusive wave model is used in conjunction with the developed soil erosion equation to simulate field experimental results.This study concludes that the non-linear regression method using unit stream power as the dominant factor performs well for estimating overland flow erosion capacity.

  1. Ground moving target signal model and power calculation in forward scattering micro radar

    Institute of Scientific and Technical Information of China (English)

    LONG Teng; HU Cheng; MIKHAIL Cherniakov

    2009-01-01

    Forward scattering micro radar is used for situation awareness;its operational range is relatively short because of the battery power and local horizon,the free space propagation model is not appropriate.The ground moving targets,such as humans,cars and tanks,have only comparable size with the transmitted signal wavelength;the point target model and the linear change of observation angle are not applicable.In this paper,the signal model of ground moving target is developed based on the case of forward scattering micro radar,considering the two-ray propagation model and area target model,and nonlinear change of observation angle as well as high order phase error.Furthermore,the analytical form of the received power from moving target has been obtained.Using the simulated forward scattering radar cross section,the received power of theoretical calculation is near to that of measured data.In addition,the simulated signal model of ground moving target is perfectly matched with the experimented data.All these results show the correctness of analytical calculation completely.

  2. Ground-Water Recharge in the Arid and Semiarid Southwestern United States

    Science.gov (United States)

    Stonestrom, David A.; Constantz, Jim; Ferre, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Ground-water recharge in the arid and semiarid southwestern United States results from the complex interplay of climate, geology, and vegetation across widely ranging spatial and temporal scales. Present-day recharge tends to be narrowly focused in time and space. Widespread water-table declines accompanied agricultural development during the twentieth century, demonstrating that sustainable ground-water supplies are not guaranteed when part of the extracted resource represents paleorecharge. Climatic controls on ground-water recharge range from seasonal cycles of summer monsoonal and winter frontal storms to multimillennial cycles of glacial and interglacial periods. Precipitation patterns reflect global-scale interactions among the oceans, atmosphere, and continents. Large-scale climatic influences associated with El Ni?o and Pacific Decadal Oscillations strongly, but irregularly, control weather in the study area, so that year-to-year variations in precipitation and ground-water recharge are large and difficult to predict. Proxy data indicate geologically recent periods of naturally occurring multidecadal droughts unlike any in the modern instrumental record. Any anthropogenically induced climate change will likely reduce ground-water recharge through diminished snowpack at higher elevations. Future changes in El Ni?o and monsoonal patterns, both crucial to precipitation in the study area, are highly uncertain in current models. Current land-use modifications influence ground-water recharge through vegetation, irrigation, and impermeable area. High mountain ranges bounding the study area?the San Bernadino Mountains and Sierra Nevada to the west, and the Wasatch and southern Colorado Rocky Mountains to the east?provide external geologic controls on ground-water recharge. Internal geologic controls stem from tectonic processes that led to numerous, variably connected alluvial-filled basins, exposure of extensive Paleozoic aquifers in mountainous recharge areas

  3. 14 CFR 33.96 - Engine tests in auxiliary power unit (APU) mode.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine tests in auxiliary power unit (APU... Engine tests in auxiliary power unit (APU) mode. If the engine is designed with a propeller brake which... in operation, and remain stopped during operation of the engine as an auxiliary power unit (“APU...

  4. 14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.

    Science.gov (United States)

    2010-01-01

    ... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Side load on engine and auxiliary...

  5. Maps showing ground-water units and withdrawal, Basin and Range Province, Texas

    Science.gov (United States)

    Brady, B.T.; Bedinger, M.S.; Mikels, John

    1984-01-01

    This report on ground-water units and withdrawal in the Basin and Range province of Texas (see index map) was prepared as part of a program of the U.S. Geological Survey to identify prospective regions for further study relative to isolation of high-level nuclear waste (Bedinger, Sargent, and Reed, 1984), utilizing program guidelines defined in Sargent and Bedinger (1984). Also included in this report are selected references on pertinent geologic and hydrologic studies of the region. Other map reports in this series contain detailed data on ground-water quality, surface distribution of selected rock types, tectonic conditions, areal geophysics, Pleistocene lakes and marshes, and mineral and energy resources.

  6. Measures of coherence-generating power for quantum unital operations

    Science.gov (United States)

    Zanardi, Paolo; Styliaris, Georgios; Campos Venuti, Lorenzo

    2017-05-01

    Given an orthonormal basis B in a d -dimensional Hilbert space and a unital quantum operation E acting on it, one can define a nonlinear mapping that associates with E a d ×d real-valued matrix that we call the coherence matrix of E with respect to B . This is the Gram matrix of the coherent part of the basis projections of B under E . We show that one can use this coherence matrix to define vast families of measures of the coherence-generating power (CGP) of the operation. These measures have a natural geometrical interpretation as separation of E from the set of incoherent unital operations. The probabilistic approach to CGP discussed in P. Zanardi et al. [Phys. Rev. A 95, 052306 (2017)., 10.1103/PhysRevA.95.052306] can be reformulated and generalized, introducing, alongside the coherence matrix, another d ×d real-valued matrix, the simplex correlation matrix. This matrix describes the relevant statistical correlations in the input ensemble of incoherent states. Contracting these two matrices, one finds CGP measures associated with the process of preparing the given incoherent ensemble and processing it with the chosen unital operation. Finally, in the unitary case, we discuss how these concepts can be made compatible with an underlying tensor product structure by defining families of CGP measures that are additive.

  7. 77 FR 47121 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and 2...

    Science.gov (United States)

    2012-08-07

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC (the licensee) is the holder of Renewed..., ``Fatigue Management for Nuclear Power Plant Personnel,'' endorses the Nuclear Energy......

  8. Construction of two 1000-MW units launched in Laizhou Power Plant

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    On March 10, the f irst construction phase of Huadian International Laizhou Power Plant with two 1 000-MW class generating units was formally started. This power plant is a key power source project of Shandong Province

  9. POWER OPTIMIZED DATAPATH UNITS OF HYBRID EMBEDDED CORE ARCHITECTURE USING CLOCK GATING TECHNIQUE

    National Research Council Canada - National Science Library

    T.Subhashini; M.Kamaraju

    2015-01-01

    ...% of the total power dissipation. The main goal of this work is to implement a prototype power optimized datapath unit and ALU of Hybrid Embedded Controller Architecture targeted on to the FPGA chip and analyze the power consumption...

  10. Schemed Power-augmented Flow for Wing-in-ground Effect Craft in Cruise

    Institute of Scientific and Technical Information of China (English)

    YANG Wei; YANG Zhigang

    2011-01-01

    To provide detailed insight into schemed power-angmented flow for wing-in-ground effect (WIG) craft in view of the concept of cruising with power assistance, this paper presents a numerical study.The engine installed before the wing for power-augmented flow is replaced by a simplified engine model in the simulations, and is considered to be equipped with a thrust vector nozzle.Flow features with different deflected nozzle angles are studied.Comparisons are made on aerodynamics to evaluate performance of power-augmented ram (PAR) modes in cruise.Considerable schemes of power-augmented flow in cruise are described.The air blown from the PAR engine accelerates the flow around wing and a high-speed attached flow near the trailing edge is recorded for certain deflected nozzle angles.This effect takes place and therefore the separation is prevented not only at the trailing edge but also on the whole upper side.The realization of suction varies with PAR modes.It is also found that scheme of blowing air under the wing for PAR engine is aerodynamically not efficient in cruise.The power-augmented flow is extremely complicated.The numerical results give clear depiction of the flow.Optimal scheme of power-augmented flow with respect to the craft in cruise depends on the specific engines and the flight regimes.

  11. Ground Water Atlas of the United States: Segment 1, California, Nevada

    Science.gov (United States)

    Planert, Michael; Williams, John S.

    1995-01-01

    California and Nevada compose Segment 1 of the Ground Water Atlas of the United States. Segment 1 is a region of pronounced physiographic and climatic contrasts. From the Cascade Mountains and the Sierra Nevada of northern California, where precipitation is abundant, to the Great Basin in Nevada and the deserts of southern California, which have the most arid environments in the United States, few regions exhibit such a diversity of topography or environment. Since the discovery of gold in the mid-1800's, California has experienced a population, industrial, and agricultural boom unrivaled by that of any other State. Water needs in California are very large, and the State leads the United States in agricultural and municipal water use. The demand for water exceeds the natural water supply in many agricultural and nearly all urban areas. As a result, water is impounded by reservoirs in areas of surplus and transported to areas of scarcity by an extensive network of aqueducts. Unlike California, which has a relative abundance of water, development in Nevada has been limited by a scarcity of recoverable freshwater. The Truckee, the Carson, the Walker, the Humboldt, and the Colorado Rivers are the only perennial streams of significance in the State. The individual basin-fill aquifers, which together compose the largest known ground-water reserves, receive little annual recharge and are easily depleted. Nevada is sparsely populated, except for the Las Vegas, the Reno-Sparks, and the Carson City areas, which rely heavily on imported water for public supplies. Although important to the economy of Nevada, agriculture has not been developed to the same degree as in California due, in large part, to a scarcity of water. Some additional ground-water development might be possible in Nevada through prudent management of the basin-fill aquifers and increased utilization of ground water in the little-developed carbonate-rock aquifers that underlie the eastern one-half of the State

  12. Gravity Monitoring of Ground-Water Storage Change in the Southwestern United States

    Science.gov (United States)

    Winester, D.; Pool, D. R.; Schmerge, D. L.; Hoffmann, J. P.; Keller, G. R.

    2004-12-01

    Repeat measurements of absolute gravity have been made since 1998 to estimate changes in ground-water mass as part of ground-water budget estimates in arid and semiarid regions of the Southwestern United States. The absolute acceleration of gravity is measured twice each year at 16 stations to an accuracy of about plus or minus 2 microGal, or about 5 cm of water. Observations are normally done for the purpose of providing gravity control for relative gravity surveys of networks of stations across wider areas. Other data incorporated into the ground-water budget estimates include precipitation, water levels, moisture content in the unsaturated zone, surface water runoff, and ellipsoid heights using the Global Positioning System (GPS). Gravity and water-level changes are correlated for stations measured in the Basin and Range Physiographic Province near Tucson, Phoenix, Casa Grande, and Sierra Vista, Arizona. Decreasing gravity and water levels in the Tucson area since the summer of 1998 are likely related to predominant drought conditions and decreases in ground-water storage following above average winter precipitation and recharge during the El Nino of 1998. Increases in gravity at stations in the upper and middle Verde Valley Watershed in central Arizona since the fall of 2000 do not correlate well with declining streamflows and water levels and may be caused by temporary increases in soil moisture following wet winters. There have been no significant observed gravity changes at two stations in the El Paso, Texas, area since the initial observations during the summer of 2003, even though ground-water pumping in the area has been heavy.

  13. Combined cycle power unit with a binary system based on waste geothermal brine at Mutnovsk geothermal power plant

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.; Nikol'skii, A. I.; Semenov, V. N.

    2016-06-01

    The Russian geothermal power systems developed in the last few decades outperform their counterparts around the world in many respects. However, all Russian geothermal power stations employ steam as the geothermal fluid and discard the accompanying geothermal brine. In reality, the power of the existing Russian geothermal power stations may be increased without drilling more wells, if the waste brine is employed in combined cycle systems with steam and binary turbine units. For the example of the 50 MW Mutnovsk geothermal power plant, the optimal combined cycle power unit based on the waste geothermal brine is considered. It is of great interest to determine how the thermodynamic parameters of the secondary steam in the expansion unit and the pressure in the condenser affect the performance of the equipment in the combined cycle power unit at Mutnovsk geothermal power plant. For the utilization of the waste geothermal brine at Mutnovsk geothermal power plant, the optimal air temperature in the condensers of the combined cycle power unit is +5°C. The use of secondary steam obtained by flashing of the geothermal brine at Mutnovsk geothermal power plant 1 at a pressure of 0.2 MPa permits the generation of up to 8 MW of electric power in steam turbines and additional power of 5 MW in the turbines of the binary cycle.

  14. Ground acceleration in a nuclear power plant; Aceleracion del suelo en una central nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Pena G, P.; Balcazar, M.; Vega R, E., E-mail: pablo.pena@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    A methodology that adopts the recommendations of international organizations for determining the ground acceleration at a nuclear power plant is outlined. Systematic presented here emphasizes the type of geological, geophysical and geotechnical studies in different areas of influence, culminating in assessments of Design Basis earthquake and the earthquake Operating Base. The methodology indicates that in regional areas where the site of the nuclear power plant is located, failures are identified in geological structures, and seismic histories of the region are documented. In the area of detail geophysical tools to generate effects to determine subsurface propagation velocities and spectra of the induced seismic waves are used. The mechanical analysis of drill cores allows estimating the efforts that generate and earthquake postulate. Studies show that the magnitude of the Fukushima earthquake, did not affect the integrity of nuclear power plants due to the rocky settlement found. (Author)

  15. Flight validation of ground-based assessment for control power requirements at high angles of attack

    Science.gov (United States)

    Ogburn, Marilyn E.; Ross, Holly M.; Foster, John V.; Pahle, Joseph W.; Sternberg, Charles A.; Traven, Ricardo; Lackey, James B.; Abbott, Troy D.

    1994-01-01

    A review is presented in viewgraph format of an ongoing NASA/U.S. Navy study to determine control power requirements at high angles of attack for the next generation high-performance aircraft. This paper focuses on recent flight test activities using the NASA High Alpha Research Vehicle (HARV), which are intended to validate results of previous ground-based simulation studies. The purpose of this study is discussed, and the overall program structure, approach, and objectives are described. Results from two areas of investigation are presented: (1) nose-down control power requirements and (2) lateral-directional control power requirements. Selected results which illustrate issues and challenges that are being addressed in the study are discussed including test methodology, comparisons between simulation and flight, and general lessons learned.

  16. Losses Analysis of Different Grounding Schemes for Transformer-less Wind Turbine with Full-Scale Power Converter

    DEFF Research Database (Denmark)

    Sztykiel, Michal; Teodorescu, Remus; Munk-Nielsen, Stig;

    2013-01-01

    Following work examines IGBT power loss and temperature distribution with regard to specific grounding method for the future concept of transformer-less offshore wind turbine. Analysis is performed via steady-state IGBT power loss estimator, which is made based on averaging of repetitive pulse...... cycles. Obtained results are validated with the experimental test set-up consisting of high power IGBTs....

  17. Estimation of lifespan and economy parameters of steam-turbine power units in thermal power plants using varying regimes

    Science.gov (United States)

    Aminov, R. Z.; Shkret, A. F.; Garievskii, M. V.

    2016-08-01

    The use of potent power units in thermal and nuclear power plants in order to regulate the loads results in intense wear of power generating equipment and reduction in cost efficiency of their operation. We review the methodology of a quantitative assessment of the lifespan and wear of steam-turbine power units and estimate the effect of various operation regimes upon their efficiency. To assess the power units' equipment wear, we suggest using the concept of a turbine's equivalent lifespan. We give calculation formulae and an example of calculation of the lifespan of a steam-turbine power unit for supercritical parameters of steam for different options of its loading. The equivalent lifespan exceeds the turbine's assigned lifespan only provided daily shutdown of the power unit during the night off-peak time. We obtained the engineering and economical indices of the power unit operation for different loading regulation options in daily and weekly diagrams. We proved the change in the prime cost of electric power depending on the operation regimes and annual daily number of unloading (non-use) of the power unit's installed capacity. According to the calculation results, the prime cost of electric power for the assumed initial data varies from 11.3 cents/(kW h) in the basic regime of power unit operation (with an equivalent operation time of 166700 hours) to 15.5 cents/(kW h) in the regime with night and holiday shutdowns. The reduction of using the installed capacity of power unit at varying regimes from 3.5 to 11.9 hours per day can increase the prime cost of energy from 4.2 to 37.4%. Furthermore, repair and maintenance costs grow by 4.5% and by 3 times, respectively, in comparison with the basic regime. These results indicate the need to create special maneuverable equipment for working in the varying section of the electric load diagram.

  18. Seismic Response of Power Transmission Tower-Line System Subjected to Spatially Varying Ground Motions

    Directory of Open Access Journals (Sweden)

    Li Tian

    2010-01-01

    Full Text Available The behavior of power transmission tower-line system subjected to spatially varying base excitations is studied in this paper. The transmission towers are modeled by beam elements while the transmission lines are modeled by cable elements that account for the nonlinear geometry of the cables. The real multistation data from SMART-1 are used to analyze the system response subjected to spatially varying ground motions. The seismic input waves for vertical and horizontal ground motions are also generated based on the Code for Design of Seismic of Electrical Installations. Both the incoherency of seismic waves and wave travel effects are accounted for. The nonlinear time history analytical method is used in the analysis. The effects of boundary conditions, ground motion spatial variations, the incident angle of the seismic wave, coherency loss, and wave travel on the system are investigated. The results show that the uniform ground motion at all supports of system does not provide the most critical case for the response calculations.

  19. Decadal-scale changes of pesticides in ground water of the United States, 1993-2003

    Science.gov (United States)

    Bexfield, L.M.

    2008-01-01

    Pesticide data for ground water sampled across the United States between 1993-1995 and 2001-2003 by the U.S. Geological Survey National Water-Quality Assessment Program were evaluated for trends in detection frequency and concentration. The data analysis evaluated samples collected from a total of 362 wells located in 12 local well networks characterizing shallow ground water in agricultural areas and six local well networks characterizing the drinking water resource in areas of variable land use. Each well network was sampled once during 1993-1995 and once during 2001-2003. The networks provide an overview of conditions across a wide range of hydrogeologic settings and in major agricultural areas that vary in dominant crop type and pesticide use. Of about 80 pesticide compounds analyzed, only six compounds were detected in ground water from at least 10 wells during both sampling events. These compounds were the triazine herbicides atrazine, simazine, and prometon; the acetanilide herbicide metolachlor; the urea herbicide tebuthiuron; and an atrazine degradate, deethylatrazine (DEA). Observed concentrations of these compounds generally were Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  20. Integration issues of a plasma contactor Power Electronics Unit

    Science.gov (United States)

    Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.

    1995-06-01

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  1. Integration issues of a plasma contactor Power Electronics Unit

    Science.gov (United States)

    Pinero, Luis R.; York, Kenneth W.; Bowers, Glen E.

    1995-01-01

    A hollow cathode-based plasma contactor is baselined on International Space Station Alpha (ISSA) for spacecraft charge control. The plasma contactor system consists of a hollow cathode assembly (HCA), a power electronics unit (PEU), and an expellant management unit (EMU). The plasma contactor has recently been required to operate in a cyclic mode to conserve xenon expellant and extend system life. Originally, a DC cathode heater converter was baselined for a continuous operation mode because only a few ignitions of the hollow cathode were expected. However, for cyclic operation, a DC heater supply can potentially result in hollow cathode heater component failure due to the DC electrostatic field. This can prevent the heater from attaining the proper cathode tip temperature for reliable ignition of the hollow cathode. To mitigate this problem, an AC cathode heater supply was therefore designed, fabricated, and installed into a modified PEU. The PEU was tested using resistive loads and then integrated with an engineering model hollow cathode to demonstrate stable steady-state operation. Integration issues such as the effect of line and load impedance on the output of the AC cathode heater supply and the characterization of the temperature profile of the heater under AC excitation were investigated.

  2. Protection Method of Biological Lightning Safety around Power Grid Based on Grounding Electrode Structure

    Science.gov (United States)

    Sixiang, Chen; Daopin, Chen; Ming, Zhang; Xiao, Huang; Jian, He; Zhijie, He

    2017-05-01

    Aimed at the actual situation of fish death in fish ponds near the power transmission line towers after the thunderstorm happened in Guangdong Province in China, this paper studied the influence of the ground current on fish in the pond. Firstly, This paper studied the current density of the fish without protection. On this basis, paper studied the horizontal pole with full-shielded, the vertical pole with half-shielded, the horizontal pole with extension three kinds of protective measures and effects. Finally an effective protection scheme was put forward according to the engineering practice. The results can provide some engineering guidance and quantitative basis for the design and modification of grounding devices when the tower is adjacent to the fish ponds in southern China.

  3. Climate-driven ground-level ozone extreme in the fall over the Southeast United States.

    Science.gov (United States)

    Zhang, Yuzhong; Wang, Yuhang

    2016-09-06

    Ground-level ozone is adverse to human and vegetation health. High ground-level ozone concentrations usually occur over the United States in the summer, often referred to as the ozone season. However, observed monthly mean ozone concentrations in the southeastern United States were higher in October than July in 2010. The October ozone average in 2010 reached that of July in the past three decades (1980-2010). Our analysis shows that this extreme October ozone in 2010 over the Southeast is due in part to a dry and warm weather condition, which enhances photochemical production, air stagnation, and fire emissions. Observational evidence and modeling analysis also indicate that another significant contributor is enhanced emissions of biogenic isoprene, a major ozone precursor, from water-stressed plants under a dry and warm condition. The latter finding is corroborated by recent laboratory and field studies. This climate-induced biogenic control also explains the puzzling fact that the two extremes of high October ozone both occurred in the 2000s when anthropogenic emissions were lower than the 1980s and 1990s, in contrast to the observed decreasing trend of July ozone in the region. The occurrences of a drying and warming fall, projected by climate models, will likely lead to more active photochemistry, enhanced biogenic isoprene and fire emissions, an extension of the ozone season from summer to fall, and an increase of secondary organic aerosols in the Southeast, posing challenges to regional air quality management.

  4. Factors influencing ground-water recharge in the eastern United States

    Science.gov (United States)

    Nolan, B.T.; Healy, R.W.; Taber, P.E.; Perkins, K.; Hitt, K.J.; Wolock, D.M.

    2007-01-01

    Ground-water recharge estimates for selected locations in the eastern half of the United States were obtained by Darcian and chloride-tracer methods and compared using statistical analyses. Recharge estimates derived from unsaturated-zone (RUZC) and saturated-zone (RSZC) chloride mass balance methods are less variable (interquartile ranges or IQRs are 9.5 and 16.1 cm/yr, respectively) and more strongly correlated with climatic, hydrologic, land use, and sediment variables than Darcian estimates (IQR = 22.8 cm/yr). The unit-gradient Darcian estimates are a nonlinear function of moisture content and also reflect the uncertainty of pedotransfer functions used to estimate hydraulic parameters. Significance level is 0.3. Estimates of RSZC were evaluated using analysis of variance, multiple comparison tests, and an exploratory nonlinear regression (NLR) model. Recharge generally is greater in coastal plain surficial aquifers, fractured crystalline rocks, and carbonate rocks, or in areas with high sand content. Westernmost portions of the study area have low recharge, receive somewhat less precipitation, and contain fine-grained sediment. The NLR model simulates water input to the land surface followed by transport to ground water, depending on factors that either promote or inhibit water infiltration. The model explains a moderate amount of variation in the data set (coefficient of determination = 0.61). Model sensitivity analysis indicates that mean annual runoff, air temperature, and precipitation, and an index of ground-water exfiltration potential most influence estimates of recharge at sampled sites in the region. Soil characteristics and land use have less influence on the recharge estimates, but nonetheless are significant in the NLR model. ?? 2006 Elsevier B.V. All rights reserved.

  5. Low-speed aerodynamic characteristics of a powered NASP-like configuration in ground effect

    Science.gov (United States)

    Gatlin, Gregory M.

    1989-01-01

    Results are presented on the low-speed aerodynamic characteristics of a simplified NASP (for National Aerospace Plane Program)-like configuration, obtained in the NASA-Langley 14-by-22-foot subsonic tunnel. The model consisted of a triangular wedge forebody, a rectangular midsection housing the propulsion simulation system, and a rectangular wedge aftbody; it also included a delta wing, exhaust flow deflectors, and aftbody fences. Flow visualization was obtained by injecting water into the engine simulator inlets and using a laser light sheet to illuminate the resulting exhaust flow. It was found that power-on ground effects for NASP-like configuration can be substantial; these effects can be reduced by increasing the angle-of-attack to the value of the aftbody ramp angle. Power-on lift losses in ground effect increased with increasing thrust, but could be reduced by the addition of a delta wing to the configuration. Power-on lift losses also increased with use of aftbody fences.

  6. Inferring Muscle-Tendon Unit Power from Ankle Joint Power during the Push-Off Phase of Human Walking: Insights from a Multiarticular EMG-Driven Model

    Science.gov (United States)

    2016-01-01

    Introduction Inverse dynamics joint kinetics are often used to infer contributions from underlying groups of muscle-tendon units (MTUs). However, such interpretations are confounded by multiarticular (multi-joint) musculature, which can cause inverse dynamics to over- or under-estimate net MTU power. Misestimation of MTU power could lead to incorrect scientific conclusions, or to empirical estimates that misguide musculoskeletal simulations, assistive device designs, or clinical interventions. The objective of this study was to investigate the degree to which ankle joint power overestimates net plantarflexor MTU power during the Push-off phase of walking, due to the behavior of the flexor digitorum and hallucis longus (FDHL)–multiarticular MTUs crossing the ankle and metatarsophalangeal (toe) joints. Methods We performed a gait analysis study on six healthy participants, recording ground reaction forces, kinematics, and electromyography (EMG). Empirical data were input into an EMG-driven musculoskeletal model to estimate ankle power. This model enabled us to parse contributions from mono- and multi-articular MTUs, and required only one scaling and one time delay factor for each subject and speed, which were solved for based on empirical data. Net plantarflexing MTU power was computed by the model and quantitatively compared to inverse dynamics ankle power. Results The EMG-driven model was able to reproduce inverse dynamics ankle power across a range of gait speeds (R2 ≥ 0.97), while also providing MTU-specific power estimates. We found that FDHL dynamics caused ankle power to slightly overestimate net plantarflexor MTU power, but only by ~2–7%. Conclusions During Push-off, FDHL MTU dynamics do not substantially confound the inference of net plantarflexor MTU power from inverse dynamics ankle power. However, other methodological limitations may cause inverse dynamics to overestimate net MTU power; for instance, due to rigid-body foot assumptions. Moving

  7. Land-Use Requirements for Solar Power Plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Ong, S.; Campbell, C.; Denholm, P.; Margolis, R.; Heath, G.

    2013-06-01

    This report provides data and analysis of the land use associated with utility-scale ground-mounted solar facilities, defined as installations greater than 1 MW. We begin by discussing standard land-use metrics as established in the life-cycle assessment literature and then discuss their applicability to solar power plants. We present total and direct land-use results for various solar technologies and system configurations, on both a capacity and an electricity-generation basis. The total area corresponds to all land enclosed by the site boundary. The direct area comprises land directly occupied by solar arrays, access roads, substations, service buildings, and other infrastructure. As of the third quarter of 2012, the solar projects we analyze represent 72% of installed and under-construction utility-scale PV and CSP capacity in the United States.

  8. Modification of technological control units for superheated steam temperature at 210-MW power units of the Primor'ye Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    V.V. Slesarenko; A.A. Belousov; V.V. Milush [Far East State Engineering University, Vladivostok (Russian Federation)

    2008-06-15

    The results of analysis of operation of the temperature control system for superheated steam at the BKZ-670-140F boilers of the Primor'ye Power Plant (GRES) are presented. The possibility of updating of the injection system to improve the reliability and economic efficiency of power units of electric power plants is considered.

  9. Modification of technological control units for superheated steam temperature at 210-MW power units of the Primor'ye Power Plant

    Science.gov (United States)

    Slesarenko, V. V.; Belousov, A. A.; Milush, V. V.

    2008-06-01

    The results of analysis of operation of the temperature control system for superheated steam at the BKZ-670-140F boilers of the Primor’ye Power Plant (GRES) are presented. The possibility of updating of the injection system to improve the reliability and economic efficiency of power units of electric power plants is considered.

  10. Ground States for the Schrödinger Systems with Harmonic Potential and Combined Power-Type Nonlinearities

    Directory of Open Access Journals (Sweden)

    Baiyu Liu

    2014-01-01

    Full Text Available We consider a class of coupled nonlinear Schrödinger systems with potential terms and combined power-type nonlinearities. We establish the existence of ground states, by using a variational method. As an application, some symmetry results for ground states of Schrödinger systems with harmonic potential terms are obtained.

  11. Market power in the United States red meatpacking industry.

    Science.gov (United States)

    Koontz, Stephen R

    2003-07-01

    infer conduct from spatial price linkages rather than from concentration as do SCP studies or estimation of conduct parameters as do NEIO studies. Second, to study the dynamics of the competitive process, making use of data describing changes at the firm and plant level, to better understand the effect of market and technologic forces on the evolution of firm behavior and industry structure. After discussing existing research quality and future research needs, two practical things remain to do. The first centers on the following question: How important are the relatively small measures of market power? Most believable price distortions are found to be 3% or less. These distortions are below the 5% regulatory standards related to mergers used by the US Department of Justice and US Federal Trade Commission [70]. These standards, however, are guidelines and not law. Antitrust laws state that the exercise of market power is illegal. Courts and regulatory agencies also have not defined how much market power is significant and for how long a firm or firms must maintain significant market power [71]. From the viewpoint of public welfare, small impacts on price make a substantial difference to livestock producers and rival meatpacking firms. In relatively low-profit commodity businesses, small degrees of market power have significant profit implications. Small price or percentage impacts represent large total dollar amounts, especially over long time periods. To some, the evidence of market power provides clear reasons for antitrust lawsuits, conclusive evidence of weak and disinterested antitrust enforcement, and undeniable grounds for corrective legislation. If we conclude that action is needed, then the second issue emerges: What should be done and will our actions result in a net improvement? The research reviewed in the article by MacDonald elsewhere in this issue clearly shows the economic benefits of large meat processing firms. Likewise, some of the research reviewed

  12. 76 FR 4391 - Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-25

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC, the licensee, is the holder of Facility Operating License Nos. DPR-53 and DPR-69 which authorizes operation of the Calvert Cliffs Nuclear...

  13. 77 FR 52765 - Dominion Nuclear Connecticut, Inc. Millstone Power Station, Unit 3; Exemption

    Science.gov (United States)

    2012-08-30

    ... Millstone Power Station Unit 1, a permanently defueled boiling water reactor nuclear unit, and Millstone...-water nuclear power reactors,'' requires that each power reactor meet the acceptance criteria for ECCS... Reactions at High Temperatures, III. Experimental and Theoretical Studies of the Zirconium-Water...

  14. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Aircraft hydraulic power unit fuel tank. 173.172 Section 173.172 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power...

  15. Autonomous Inspection Robot for Power Transmission Lines Maintenance While Operating on the Overhead Ground Wires

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2011-01-01

    Full Text Available This paper describes the development of a mobile robot capable of clearing such obstacles as counterweights, anchor clamps, and torsion tower. The mobile robot walks on overhead ground wires in 500KV power tower. Its ultimate purpose is to automate to inspect the defect of power transmission line. The robot with 13 motors is composed of two arms, two wheels, two claws, two wrists, etc. Each arm has 4 degree of freedom. Claws are also mounted on the arms. An embedded computer based on PC/104 is chosen as the core of control system. Visible light and thermal infrared cameras are installed to obtain the video and temperature information, and the communication system is based on wireless LAN TCP/IP protocol. A prototype robot was developed with careful considerations of mobility. The new sensor configuration is used for the claw to grasp the overhead ground wires. The bridge is installed in the torsion tower for the robot easy to cross obstacles. The new posture plan is proposed for obstacles cleaning in the torsion tower. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  16. Autonomous Inspection Robot for Power Transmission Lines Maintenance While Operating on the Overhead Ground Wires

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2010-12-01

    Full Text Available This paper describes the development of a mobile robot capable of clearing such obstacles as counterweights, anchor clamps, and torsion tower. The mobile robot walks on overhead ground wires in 500KV power tower. Its ultimate purpose is to automate to inspect the defect of power transmission line. The robot with 13 motors is composed of two arms, two wheels, two claws, two wrists, etc. Each arm has 4 degree of freedom. Claws are also mounted on the arms. An embedded computer based on PC/104 is chosen as the core of control system. Visible light and thermal infrared cameras are installed to obtain the video and temperature information, and the communication system is based on wireless LAN TCP/IP protocol. A prototype robot was developed with careful considerations of mobility. The new sensor configuration is used for the claw to grasp the overhead ground wires. The bridge is installed in the torsion tower for the robot easy to cross obstacles. The new posture plan is proposed for obstacles cleaning in the torsion tower. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  17. NASA Boeing 757 HIRF test series low power on-the-ground tests

    Energy Technology Data Exchange (ETDEWEB)

    Poggio, A.J.; Pennock, S.T.; Zacharias, R.A.; Avalle, C.A.; Carney, H.L. [National Aeronautics and Space Administration, Langley AFB, VA (United States). Langley Research Center

    1996-08-01

    The data acquisition phase of a program intended to provide data for the validation of computational, analytical, and experimental techniques for the assessment of electromagnetic effects in commercial transports; for the checkout of instrumentation for following test programs; and for the support of protection engineering of airborne systems has been completed. Funded by the NASA Fly-By-Light/ Power-By-Wire Program, the initial phase involved on-the-ground electromagnetic measurements using the NASA Boeing 757 and was executed in the LESLI Facility at the USAF Phillips Laboratory. The major participants in this project were LLNL, NASA Langley Research Center, Phillips Laboratory, and UIE, Inc. The tests were performed over a five week period during September through November, 1994. Measurements were made of the fields coupled into the aircraft interior and signals induced in select structures and equipment under controlled illumination by RF fields. A characterization of the ground was also performed to permit ground effects to be included in forthcoming validation exercises. This report and the associated test plan that is included as an appendix represent a definition of the overall on-the-ground test program. They include descriptions of the test rationale, test layout, and samples of the data. In this report, a detailed description of each executed test is provided, as is the data identification (data id) relating the specific test with its relevant data files. Samples of some inferences from the data that will be useful in protection engineering and EM effects mitigation are also presented. The test plan which guided the execution of the tests, a test report by UIE Inc., and the report describing the concrete pad characterization are included as appendices.

  18. Characterization of wind power resource in the United States

    Directory of Open Access Journals (Sweden)

    U. B. Gunturu

    2012-10-01

    Full Text Available Wind resource in the continental and offshore United States has been reconstructed and characterized using metrics that describe, apart from abundance, its availability, persistence and intermittency. The Modern Era Retrospective-Analysis for Research and Applications (MERRA boundary layer flux data has been used to construct wind profile at 50 m, 80 m, 100 m, 120 m turbine hub heights. The wind power density (WPD estimates at 50 m are qualitatively similar to those in the US wind atlas developed by the National Renewable Energy Laboratory (NREL, but quantitatively a class less in some regions, but are within the limits of uncertainty. The wind speeds at 80 m were quantitatively and qualitatively close to the NREL wind map. The possible reasons for overestimation by NREL have been discussed. For long tailed distributions like those of the WPD, the mean is an overestimation and median is suggested for summary representation of the wind resource.

    The impact of raising the wind turbine hub height on metrics of abundance, persistence, variability and intermittency is analyzed. There is a general increase in availability and abundance of wind resource but there is an increase in intermittency in terms of level crossing rate in low resource regions.

  19. Thermo-physical performance prediction of the KSC Ground Operation Demonstration Unit for liquid hydrogen

    Science.gov (United States)

    Baik, J. H.; Notardonato, W. U.; Karng, S. W.; Oh, I.

    2015-12-01

    NASA Kennedy Space Center (KSC) researchers have been working on enhanced and modernized cryogenic liquid propellant handling techniques to reduce life cycle costs of propellant management system for the unique KSC application. The KSC Ground Operation Demonstration Unit (GODU) for liquid hydrogen (LH2) plans to demonstrate integrated refrigeration, zero-loss flexible term storage of LH2, and densified hydrogen handling techniques. The Florida Solar Energy Center (FSEC) has partnered with the KSC researchers to develop thermal performance prediction model of the GODU for LH2. The model includes integrated refrigeration cooling performance, thermal losses in the tank and distribution lines, transient system characteristics during chilling and loading, and long term steady-state propellant storage. This paper will discuss recent experimental data of the GODU for LH2 system and modeling results.

  20. A United Allocation Method of Spare Parts and Ground Maintenance Equipment for Civil Aircraft

    Directory of Open Access Journals (Sweden)

    Li Yongkai

    2017-01-01

    Full Text Available Aimed at multi-echelon inventory allocation problem with finite repair capacity for civil aircraft,a united planning method based on queuing theory and Vari-Metric model is presented to deploy the aircraft spare parts and ground maintenance equipment. Through the analysis of actual engineering, the effect of repair time is quantified by the number of maintenance equipment. On this basis, the available of fleet and the cost expense are selected as the objective and constraint respectively, marginal analysis method is set as the optimization, a new allocation scheme which was suit to civil aircraft’s maintenance resources is put forward. By applied examples analysis, it is shows that this method is reasonable and feasible.

  1. Ground Motion Prediction Equations for the Central and Eastern United States

    Science.gov (United States)

    Seber, D.; Graizer, V.

    2015-12-01

    New ground motion prediction equations (GMPE) G15 model for the Central and Eastern United States (CEUS) is presented. It is based on the modular filter based approach developed by Graizer and Kalkan (2007, 2009) for active tectonic environment in the Western US (WUS). The G15 model is based on the NGA-East database for the horizontal peak ground acceleration and 5%-damped pseudo spectral acceleration RotD50 component (Goulet et al., 2014). In contrast to active tectonic environment the database for the CEUS is not sufficient for creating purely empirical GMPE covering the range of magnitudes and distances required for seismic hazard assessments. Recordings in NGA-East database are sparse and cover mostly range of Mindustry (Vs=2800 m/s). The number of model predictors is limited to a few measurable parameters: moment magnitude M, closest distance to fault rupture plane R, average shear-wave velocity in the upper 30 m of the geological profile VS30, and anelastic attenuation factor Q0. Incorporating anelastic attenuation Q0 as an input parameter allows adjustments based on the regional crustal properties. The model covers the range of magnitudes 4.010 Hz) and is within the range of other models for frequencies lower than 2.5 Hz

  2. New power plant units in Russia; Neue Kraftwerksbloecke fuer Russland

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Horst; Kraemer, Ralph [TETRA ENERGIE GmbH, Berlin (Germany); Bull, Thomas; Sperling, Dietmar [EON Russian Power (Russian Federation)

    2008-07-01

    In the context of the privatisation of the Russian electricity industry, the power stations were liberated from the power supply company RAO EES ROSSII. Six power station combinations and ten power station federations were created. In order to ensure a fair competition between the power station combinations, special attention was given to a comparable priority with respect to age, fuel fundamentals and efficiency. This principle resulted in a technical differentiation and in a territorially scattered situation of the individual power stations. The individual power stations are described in the contribution under consideration.

  3. Developing the concept of maintenance and repairs in projects of power units for new-generation nuclear power stations

    Science.gov (United States)

    Gurinovich, V. D.; Yanchenko, Yu. A.

    2012-05-01

    Results from conceptual elaboration of individual requirements for the system of maintenance and repairs that must be implemented in the projects of new-generation nuclear power stations are presented taking as an example the power unit project for a nuclear power station equipped with a standard optimized VVER reactor with enhanced information support (the so-called VVER TOI reactor). Implementation of these concepts will help to achieve competitiveness of such nuclear power stations in the domestic and international markets.

  4. Solar Power Constellations Implications for the United States Air Force

    Science.gov (United States)

    2000-04-01

    Ralph Nansen, who worked on the first government sponsored solar power satellite studies, and is the author of Sun Power : The Global Solution for the...Ad Astra (Jan/Feb 1998). 36. 7 Nansen, Ralph. Sun Power : The Global Solution for the Coming Energy Crisis. (Canada: Ocean Press, 1995) 206. 8...Lasers that Beam Power to Earth.” Aerospace America (July 1999): 50. 18 Nansen, Ralph. Sun Power : The Global Solution for the Coming Energy Crisis

  5. 76 FR 32237 - Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Notice of Availability...

    Science.gov (United States)

    2011-06-03

    ... COMMISSION Florida Power Corporation, Crystal River Unit 3 Nuclear Generating Plant; Notice of Availability... Plants and Public Meetings for the License Renewal of Crystal River Unit 3 Nuclear Generating Plant... operation for Crystal River Unit 3 Nuclear Generating Plant. Crystal River Unit 3 Nuclear Generating Plant...

  6. Green Power Marketing in the United States: A Status Report (11th Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L.; Kreycik, C.; Friedman, B.

    2008-10-01

    This report documents green power marketing activities and trends in the United States. It presents aggregate green power sales data for all voluntary purchase markets across the United States. It also provides summary data on utility green pricing programs offered in regulated electricity markets and green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of renewable energy certificates. Key market trends and issues are also discussed.

  7. Green Power Marketing in the United States. A Status Report (11th Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kreycik, Claire [National Renewable Energy Lab. (NREL), Golden, CO (United States); Friedman, Barry [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2008-10-01

    This report documents green power marketing activities and trends in the United States. It presents aggregate green power sales data for all voluntary purchase markets across the United States. It also provides summary data on utility green pricing programs offered in regulated electricity markets and green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of renewable energy certificates. Key market trends and issues are also discussed.

  8. Distribution of major herbicides in ground water of the United States

    Science.gov (United States)

    Barbash, Jack E.; Thelin, Gail P.; Kolpin, Dana W.; Gilliom, Robert J.

    1999-01-01

    Information on the concentrations and spatial distributions of pesticides and their transformation products, or degradates, in the hydrologic system is essential for managing pesticide use in both agricultural and nonagricultural settings to protect water resources. This report examines the occurrence of selected herbicides and their degradates in ground water, primarily on the basis of results from two large-scale, multistate investigations by the U.S. Geological Survey—the National Water-Quality Assessment (NAWQA) Program and the Midwest Pesticide Study (MWPS). The NAWQA pesticide data were derived from 2,227 sites (wells and springs) sampled in 20 major hydrologic basins across the United States from 1993 to 1995; the MWPS data were obtained from the sampling of 303 wells in a 12-state area of the northern midcontinent from 1991 to 1994. Data are presented for seven high-use herbicides: five of current interest to the U.S. Environmental Protection Agency for designing Pesticide Management Plans (atrazine, cyanazine, simazine, alachlor and metolachlor), a largely nonagricultural herbicide (prometon), and an agricultural herbicide first registered in 1994 for use in the United States (acetochlor).

  9. Wide Output Range Power Processing Unit for Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A power supply concept capable of operation over 25:1 and 64:1 impedance ranges at full power has been successfully demonstrated in our Phase I effort at...

  10. Low power data acquisition unit for autonomous geophysical instrumentation

    Science.gov (United States)

    Prystai, Andrii

    2017-04-01

    The development of an autonomous instrumentation for field research is always a challenge which needs knowledge and application of recent advances in technology and components production. Using this information a super-low power, low-cost, stand-alone GPS time synchronized data acquisition unit was created. It comprises an extended utilization of the microcontroller modules and peripherals and special firmware with flexible PLL parameters. The present report is devoted to a discussion of synchronization mode of data sampling in autonomous field instruments with possibility of GPS random breaks. In the result the achieved sampling timing accuracy is better than ± 60 ns without phase jumps and distortion plus fixed shift depending on the sample rate. The main application of the system is for simultaneous measurement of several channels from magnetic and electric sensors in field conditions for magneto-telluric instruments. First utilization of this system was in the new developed versions of LEMI-026 magnetometer and LEMI-423 field station, where it was applied for digitizing of up to 6 analogue channels with 32-bit resolution in the range ± 2.5V, digital filtration (LPF) and maximum sample rate 4kS/s. It is ready for record in 5 minutes after being turned on. Recently, this system was successfully utilized with the drone-portable magnetometers destined for the search of metallic objects, like UXO, in rural areas, research of engineering underground structure and for mapping ore bodies. The successful tests of drone-portable system were made and tests results are also discussed.

  11. 77 FR 29701 - Impact of Construction (Under a Combined License) of New Nuclear Power Plant Units on Operating...

    Science.gov (United States)

    2012-05-18

    ... a Combined License) of New Nuclear Power Plant Units on Operating Units at Multi-Unit Sites AGENCY... a COL intending to construct and operate new nuclear power plants (NPPs) on multi-unit sites to... Impacts of Construction (under a Combined License) of New Nuclear Power Plants on Operating Units at...

  12. A preliminary design and BOP cost analysis of M-C Power`s MCFC commerical unit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.P. [Bechtel Corp, San Francisco, CA (United States)

    1996-12-31

    M-C Power Corporation plans to introduce its molten carbonate fuel cell (MCFC) market entry unit in the year 2000 for distributed and on-site power generation. Extensive efforts have been made to analyze the cell stack manufacturing costs. The major objective of this study is to conduct a detailed analysis of BOP costs based on an initial design of the market entry unit.

  13. Balancing power: A grounded theory study on partnership of academic service institutes.

    Science.gov (United States)

    Heshmati Nabavi, Fatemeh; Vanaki, Zohreh; Mohammadi, Eesa; Yazdani, Shahram

    2017-07-01

    Governments and professional organizations have called for new partnerships between health care providers and academics to improve clinical education for the benefit of both students and patients. To develop a substantive grounded theory on the process of forming academic-service partnerships in implementing clinical education, from the perspective of academic and clinical nursing staff members and managers working in Iranian settings. The participants included 15 hospital nurses, nurse managers, nurse educators, and educational managers from two central universities and clinical settings from 2009 to 2012. Data were collected through 30 in-depth, semi-structure interviews with the individual participants and then analyzed using the methodology of Strauss and Corbin's grounded theory. Utilizing "balancing power" as the core variable enabled us to integrate the concepts concerning the partnership processes between clinical and educational institutes. Three distinct and significant categories emerged to explain the process of partnership: 1) divergence, 2) conflict between educational and caring functions, and 3) creation of balance between educational and caring functions. In implementing clinical education, partnerships have been formed within a challenging context in Iran. Conflict between clinical and educational functions was the main concern of both sides of the partnership in forming a collaborative relationship, with our findings emphasizing the importance of nursing educators' role in the establishment of partnership programs.

  14. Design and Application of a Power Unit to Use Plug-In Electric Vehicles as an Uninterruptible Power Supply

    Directory of Open Access Journals (Sweden)

    Gorkem Sen

    2016-03-01

    Full Text Available Grid-enabled vehicles (GEVs such as plug-in electric vehicles present environmental and energy sustainability advantages compared to conventional vehicles. GEV runs solely on power generated by its own battery group, which supplies power to its electric motor. This battery group can be charged from external electric sources. Nowadays, the interaction of GEV with the power grid is unidirectional by the charging process. However, GEV can be operated bi-directionally by modifying its power unit. In such operating conditions, GEV can operate as an uninterruptible power supply (UPS and satisfy a portion or the total energy demand of the consumption center independent from utility grid, which is known as vehicle-to-home (V2H. In this paper, a power unit is developed for GEVs in the laboratory to conduct simulation and experimental studies to test the performance of GEVs as a UPS unit in V2H mode at the time of need. The activation and deactivation of the power unit and islanding protection unit are examined when energy is interrupted.

  15. Use of Local Dynamic Electricity Prices for Indirect Control of DER Power Units

    DEFF Research Database (Denmark)

    Nørgård, Per Bromand; Isleifsson, Fridrik Rafn

    2013-01-01

    The regulation capability that may be provided by the individual small-scale distributed energy resources (DER power units) may be insignificant. However, the aggregated response from a large number of DER power units can be significant and thereby provide valuable system services to the power...... wind power, solar power, flexible load and electrical storage. The local power price generation is based on the actual Nord Pool DK2 Spot prices on hourly basis as the quasi-stationary global electricity price, and the local SYSLAB's power exchange with the national grid as basis for the dynamic price...... electricity prices for indirect control of active power. The local, dynamic electricity prices are realised as dynamic adjustments of the quasi-stationary global power price. The aims of the dynamic price adjustments are to prevent overloading of the grid, to reduce the grid power losses and to regulate...

  16. HYDROGEOLOGICAL VARIATIONS OF GROUND WATER IN DIFFERENT GEOMARPHIC UNITS OF KRISHNA EASTERN DELTA, ANDHRA PRADESH

    Directory of Open Access Journals (Sweden)

    SITARAMA PRASAD KUDARAVALLI,

    2010-09-01

    Full Text Available The Krishna Eastern delta is located South of Vijayawada City in Andhra Pradesh. The area of the Krishna Eastern delta enclosed between Latitude 15042’N – 16042’ N and Longitude 80042’ E – 81036’ E. The present study is done on Krishna Eastern delta separately because the physiographic and lithological configuration of this part of the delta varies widely with that of the Western part. Moreover, the aquifer of this region has unique hydrochemical characteristics. In recent years the ground water in this region has been subjected to intensive exploitation for both irrigation and domestic purposes and accordingly high seasonal hydrochemical modulations were noticed in this part of the delta region. Kulakarni KM et.al. (1998 have studied drinking water salinity problem in Coastal Orissa. In this context a detailed study has been made to update the hydrogeochemical information of the aquifer system of this region. In addition to the earlier works carried out by Nageswara Rao, K. et.al. in the year 1979 and 1985. The details viz., land form locations in the delta region were taken from the study. The seasonal variation of groundwater quality in different geological units in Krishna Eastern Delta has been subjected to study by collecting water samples in different open wells in the study area and subjecting them to detailed chemical analysis. This data has been utilized to draw contour diagrams of different water quality parameters for different seasons. The present study is an attempt to visualize the spatial water quality variations in different geomorphic units present in the deltaic environment. The chemical parameter of Electrical Conductivity was taken as the prime parameter to focus the seasonal spatial variations of different geomorphic forms and the data was used to draw contours for different seasons. The detailed studies of Ground Water Department, District Office were also studied in many unpublished reports for understanding

  17. New fault location system for power transmission lines using composite fiber-optic overhead ground wire (OPGW)

    Energy Technology Data Exchange (ETDEWEB)

    Urasawa, K. (Tokyo Electric Power Co., Inc. (Japan)); Kanemaru, K.; Toyota, S.; Sugiyama, K. (Hitachi Cable, Ltd., Tokyo (Japan))

    1989-10-01

    A new fault location (FL) method using composite fiber-optic overhead ground wires (OPGWs) is developed to find out where electrical faults occur on overhead power transmission lines. This method locates the fault section by detecting the current induced in the ground wire (GW), i.e. OPGW in this system. Since detected fault information is essentially uncertain, the new FL method treats the fault information oas a current distribution pattern throughout the power line, and applies Fuzzy Theory to realize the human-like manner of fault location used by electrical power engineers. It was confirmed by computer simulations that the fault section can be accurately located using this method under various conditions. This FL system has already been applied to several commercial power transmission lines and successfully located the sections where electrical faults occurred on actual power transmission lines.

  18. 78 FR 37592 - Omaha Public Power District, Fort Calhoun Station, Unit 1; Exemption

    Science.gov (United States)

    2013-06-21

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Omaha Public Power District, Fort Calhoun Station, Unit 1; Exemption 1.0 Background Omaha Public Power District (OPPD, the licensee) is the holder of Facility Operating License, which authorizes operation of Fort Calhoun Station (FCS), Unit 1....

  19. Modeling and Analysis of Mesh Tree Hybrid Power/Ground Networks with Multiple Voltage Supply in Time Domain

    Institute of Scientific and Technical Information of China (English)

    Yi-Ci Cai; Jin Shi; Zu-Ying Luo; Xian-Long Hong

    2005-01-01

    This paper proposes a novel algorithm, which can be used to model and analyze mesh tree hybrid power/ground distribution networks with multiple voltage supply in time domain. Not only this algorithm enhances common method's ability on analysis of power/ground network with irregular topology, but also very high accuracy it keeps. The accuracy and stability of this algorithm is proved using strict math method in this paper. Also, the usage of both precondition technique based on Incomplete Choleskey Decomposition and fast variable elimination technique has improved the algorithm's efficiency a lot. Experimental results show that it can finish the analysis of power/ground network with enormous size within very short time. Also, this algorithm can be applied to analyze the clock network, bus network, and signal network without buffer under high working frequency because of the independence of the topology.

  20. A New Method of Ground Fault Location in 2 × 25 kV Railway Power Supply Systems

    Directory of Open Access Journals (Sweden)

    Jesús Serrano

    2017-03-01

    Full Text Available Owing to the installation of autotransformers at regular intervals along the line, distance protection relays cannot be used with the aim of locating ground faults in 2 × 25 kV railway power supply systems. The reason is that the ratio between impedance and distance to the fault point is not linear in these electrification systems, unlike in 1 × 25 kV power systems. Therefore, the location of ground faults represents a complicated task in 2 × 25 kV railway power supply systems. Various methods have been used to localize the ground fault position in 2 × 25 kV systems. The method described here allows the location of a ground fault to be economically found in an accurate way in real time, using the modules of the circulating currents in different autotransformers when the ground fault occurs. This method first needs to know the subsection and the conductor (catenary or feeder with the defect, then localizes the ground fault’s position.

  1. Green Power Marketing in the United States. A Status Report (2009 Data)

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sumner, Jenny [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-09-01

    This report documents green power marketing activities and trends in the United States. First, aggregate green power sales data for all voluntary purchase markets across the United States are presented. Next, we summarize data on utility green pricing programs offered in regulated electricity markets; green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of RECs; and renewable energy sold as greenhouse gas offsets in the United States. Finally, this is followed by a discussion of key market trends and issues. The data presented in this report are based primarily on figures provided to NREL by utilities and independent renewable energy marketers.

  2. Green Power Marketing in the United States: A Status Report (2009 Data)

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L.; Sumner, J.

    2010-09-01

    This report documents green power marketing activities and trends in the United States. First, aggregate green power sales data for all voluntary purchase markets across the United States are presented. Next, we summarize data on utility green pricing programs offered in regulated electricity markets; green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of RECs; and renewable energy sold as greenhouse gas offsets in the United States. Finally, this is followed by a discussion of key market trends and issues. The data presented in this report are based primarily on figures provided to NREL by utilities and independent renewable energy marketers.

  3. Efficient statistical analysis method of power/ground (P/G) network

    Institute of Scientific and Technical Information of China (English)

    Zuying Luo; Sheldon X.D. Tan

    2008-01-01

    In this paper, we propose an incremental statistical analysis method with complexity reduction as a pre-process for on-chip power/ground (P/G) networks. The new method exploits locality of P/G network analyses and aims at P/G networks with a large number of strongly connected subcircuits (called strong connects) such as trees and chains. The method consists of three steps. First it compresses P/G circuits by removing strong connects. As a result, current variations (CVs) of nodes in strong connects are transferred to some remain-ing nodes. Then based on the locality of power grid voltage responses to its current inputs, it efficiently calculates the correlative resistor (CR) matrix in a local way to directly compute the voltage variations by using small parts of the remaining circuit. Last it statistically recovers voltage variations of the suppressed nodes inside strong connects. This new method for statistically compressing and expanding strong connects in terms of current or voltage variations in a closed form is very efficient owning to its property of incremental analysis. Experimental results demonstrate that the method can efficiently compute low-bounds of voltage variations for P/G networks and it has two or three orders of magnitudes speedup over the traditional Monte-Carlo-based simulation method, with only 2.0% accuracy loss.

  4. Diplomacy as National Power: United States Policy on South Africa.

    Science.gov (United States)

    Hilliker, Grant

    Power in general theory is defined as having three forms: coercive, utilitarian, and normative. In international relations, emphasis is placed on the first two to the neglect of the third. In this paper, the term "diplomacy" is used for normative power in international relations. Diplomacy is related to three policy making stages and to five…

  5. Diplomacy as National Power: United States Policy on South Africa.

    Science.gov (United States)

    Hilliker, Grant

    Power in general theory is defined as having three forms: coercive, utilitarian, and normative. In international relations, emphasis is placed on the first two to the neglect of the third. In this paper, the term "diplomacy" is used for normative power in international relations. Diplomacy is related to three policy making stages and to…

  6. Balancing intertwined responsibilities: A grounded theory study of teamwork in everyday intensive care unit practice.

    Science.gov (United States)

    Bjurling-Sjöberg, Petronella; Wadensten, Barbro; Pöder, Ulrika; Jansson, Inger; Nordgren, Lena

    2017-03-01

    This study aimed to describe and explain teamwork and factors that influence team processes in everyday practice in an intensive care unit (ICU) from a staff perspective. The setting was a Swedish ICU. Data were collected from 38 ICU staff in focus groups with registered nurses, assistant nurses, and anaesthetists, and in one individual interview with a physiotherapist. Constant comparative analysis according to grounded theory was conducted, and to identify the relations between the emerged categories, the paradigm model was applied. The core category to emerge from the data was "balancing intertwined responsibilities." In addition, eleven categories that related to the core category emerged. These categories described and explained the phenomenon's contextual conditions, causal conditions, and intervening conditions, as well as the staff actions/interactions and the consequences that arose. The findings indicated that the type of teamwork fluctuated due to circumstantial factors. Based on the findings and on current literature, strategies that can optimise interprofessional teamwork are presented. The analysis generated a conceptual model, which aims to contribute to existing frameworks by adding new dimensions about perceptions of team processes within an ICU related to staff actions/interactions. This model may be utilised to enhance the understanding of existing contexts and processes when designing and implementing interventions to facilitate teamwork in the pursuit of improving healthcare quality and patient safety.

  7. Technology used to operate the 300-MW power unit topped with a GTE-110 gas turbine

    Science.gov (United States)

    Berezinets, P. A.; Doverman, G. I.

    2010-09-01

    Results obtained from mathematical simulation of operations for starting the 300-MW power unit topped with a GTE-110 gas turbine installed at the GRES-24 district power station of OAO OGK-6 wholesale power-generating company are described. It is shown that operations on speeding up the steam turbine from a cold state to its idle running mode can be carried out solely by using the heat of exhaust gases from the gas turbine unit without supplying fuel to the boiler.

  8. Shadow Radiation Shield Required Thickness Estimation for Space Nuclear Power Units

    Science.gov (United States)

    Voevodina, E. V.; Martishin, V. M.; Ivanovsky, V. A.; Prasolova, N. O.

    The paper concerns theoretical possibility of visiting orbital transport vehicles based on nuclear power unit and electric propulsion system on the Earth's orbit by astronauts to maintain work with payload from the perspective of radiation safety. There has been done estimation of possible time of the crew's staying in the area of payload of orbital transport vehicles for different reactor powers, which is a consistent part of nuclear power unit.

  9. Tight MIP formulations of the power-based unit commitment problem

    NARCIS (Netherlands)

    Morales-Espana, G.A.; Gentile, C.; Ramos, A.

    2015-01-01

    This paper provides the convex hull description for the basic operation of slow- and quick-start units in power-based unit commitment (UC) problems. The basic operating constraints that are modeled for both types of units are (1) generation limits and (2) minimum up and down times. Apart from this,

  10. Green Power Marketing in the United States: A Status Report (Tenth Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L.; Dagher, L.; Swezey, B.

    2007-12-01

    This report documents green power marketing activities and trends in the United States, focusing on consumer decisions to purchase electricity supplied from renewable energy sources and how this choice represents a powerful market support mechanism for renewable energy development. The report presents aggregate green power sales data for all voluntary purchase markets across the United States. It also provides summary data on utility green pricing programs offered in regulated electricity markets, on green power marketing activity in competitive electricity markets, and green power sold to voluntary purchasers in the form of renewable energy certificates. It also includes a discussion of key market trends and issues.

  11. Green Power Marketing in the United States. A Status Report (Tenth Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dagher, Leila [National Renewable Energy Lab. (NREL), Golden, CO (United States); Swezey, Blair [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2007-12-01

    This report documents green power marketing activities and trends in the United States, focusing on consumer decisions to purchase electricity supplied from renewable energy sources and how this choice represents a powerful market support mechanism for renewable energy development. The report presents aggregate green power sales data for all voluntary purchase markets across the United States. It also provides summary data on utility green pricing programs offered in regulated electricity markets, on green power marketing activity in competitive electricity markets, and green power sold to voluntary purchasers in the form of renewable energy certificates. It also includes a discussion of key market trends and issues.

  12. Discontinuous Galerkin Time-Domain Analysis of Power-Ground Planes Taking Into Account Decoupling Capacitors

    KAUST Repository

    Li, Ping

    2017-03-22

    In this paper, a discontinuous Galerkin time-domain (DGTD) method is developed to analyze the power-ground planes taking into account the decoupling capacitors. In the presence of decoupling capacitors, the whole physical system can be split into two subsystems: 1) the field subsystem that is governed by Maxwell\\'s equations that will be solved by the DGTD method, and 2) the circuit subsystem including the capacitor and its parasitic inductor and resistor, which is going to be characterized by the modified nodal analysis algorithm constructed circuit equations. With the aim to couple the two subsystems together, a lumped port is defined over a coaxial surface between the via barrel and the ground plane. To reach the coupling from the field to the circuit subsystem, a lumped voltage source calculated by the integration of electric field along the radial direction is introduced. On the other hand, to facilitate the coupling from the circuit to field subsystem, a lumped port current source calculated from the circuit equation is introduced, which serves as an impressed current source for the field subsystem. With these two auxiliary terms, a hybrid field-circuit matrix equation is established, which enables the field and circuit subsystems are solved in a synchronous scheme. Furthermore, the arbitrarily shaped antipads are considered by enforcing the proper wave port excitation using the magnetic surface current source derived from the antipads supported electric eigenmodes. In this way, the S-parameters corresponding to different modes can be conveniently extracted. To further improve the efficiency of the proposed algorithm in handling multiscale meshes, the local time-stepping marching scheme is applied. The proposed algorithm is verified by several representative examples.

  13. Wide Output Range Power Processing Unit for Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hall thrusters can be operated over a wide range of specific impulse while maintaining high efficiency. However S/C power system constraints on electric propulsion...

  14. United States/European workshop on power system related research

    Energy Technology Data Exchange (ETDEWEB)

    Fink, L. H.; Carlsen, K. [eds.

    1977-01-01

    The objective of the workshop was to strengthen U.S. and European power system related research programs by encouraging increased direct interaction between research investigators working on related problems. The agenda included brief reviews of ongoing and planned research programs; a discussion on research program planning and management; discussion of high priority problems in power system planning, operation, and control; discussion of the adequacy of existing programs addressing those areas. The final session summed the results of the two previous sessions. (MCW)

  15. Ground Water Atlas of the United States: Segment 3, Kansas, Missouri, Nebraska

    Science.gov (United States)

    Miller, James A.; Appel, Cynthia L.

    1997-01-01

    The three States-Kansas, Missouri, and Nebraska-that comprise Segment 3 of this Atlas are in the central part of the United States. The major rivers that drain these States are the Niobrara, the Platte, the Kansas, the Arkansas, and the Missouri; the Mississippi River is the eastern boundary of the area. These rivers supply water for many uses but ground water is the source of slightly more than one-half of the total water withdrawn for all uses within the three-State area. The aquifers that contain the water consist of consolidated sedimentary rocks and unconsolidated deposits that range in age from Cambrian through Quaternary. This chapter describes the geology and hydrology of each of the principal aquifers throughout the three-State area. Some water enters Segment 3 as inflow from rivers and aquifers that cross the segment boundaries, but precipitation, as rain and snow, is the primary source of water within the area. Average annual precipitation (1951-80) increases from west to east and ranges from about 16 to 48 inches (fig. 1). The climate of the western one-third of Kansas and Nebraska, where the average annual precipitation generally is less than 20 inches per year, is considered to be semiarid. This area receives little precipitation chiefly because it is distant from the Gulf of Mexico, which is the principal source of moisture-laden air for the entire segment, but partly because it is located in the rain shadow of the Rocky Mountains. Average annual precipitation is greatest in southeastern Missouri. Much of the precipitation is returned to the atmosphere by evapotranspiration, which is the combination of evaporation from the land surface and surface-water bodies, and transpiration from plants. Some of the precipitation either flows directly into streams as overland runoff or percolates into the soil and then moves downward into aquifers where it is stored for a time and subsequently released as base flow to streams. Average annual runoff, which is the

  16. Comparisons of peak ground reaction force and rate of force development during variations of the power clean.

    Science.gov (United States)

    Comfort, Paul; Allen, Mark; Graham-Smith, Phillip

    2011-05-01

    The aim of this investigation was to determine the differences in vertical ground reaction forces and rate of force development (RFD) during variations of the power clean. Elite rugby league players (n = 11; age 21 ± 1.63 years; height 181.56 ± 2.61 cm; body mass 93.65 ± 6.84 kg) performed 1 set of 3 repetitions of the power clean, hang-power clean, midthigh power clean, or midthigh clean pull, using 60% of 1-repetition maximum power clean, in a randomized order, while standing on a force platform. Differences in peak vertical ground reaction forces (F(z)) and instantaneous RFD between lifts were analyzed via 1-way analysis of variance and Bonferroni post hoc analysis. Statistical analysis revealed a significantly (p < 0.001) greater peak F(z) during the midthigh power clean (2,801.7 ± 195.4 N) and the midthigh clean pull (2,880.2 ± 236.2 N) compared to both the power clean (2,306.24 ± 240.47 N) and the hang-power clean (2,442.9 ± 293.2 N). The midthigh power clean (14,655.8 ± 4,535.1 N·s⁻¹) and the midthigh clean pull (15,320.6 ± 3,533.3 N·s⁻¹) also demonstrated significantly (p < 0.001) greater instantaneous RFD when compared to both the power clean (8,839.7 ± 2,940.4 N·s⁻¹) and the hang-power clean (9,768.9 ± 4,012.4 N·s⁻¹). From the findings of this study, when training to maximize peak F(z) and RFD the midthigh power clean and midthigh clean pull appear to be the most advantageous variations of the power clean to perform.

  17. Ground motion-simulations of 1811-1812 New Madrid earthquakes, central United States

    Science.gov (United States)

    Ramirez-Guzman, L.; Graves, Robert; Olsen, Kim B.; Boyd, Oliver; Cramer, Chris H.; Hartzell, Stephen; Ni, Sidao; Somerville, Paul G.; Williams, Robert; Zhong, Jinquan

    2015-01-01

    We performed a suite of numerical simulations based on the 1811–1812 New Madrid seismic zone (NMSZ) earthquakes, which demonstrate the importance of 3D geologic structure and rupture directivity on the ground‐motion response throughout a broad region of the central United States (CUS) for these events. Our simulation set consists of 20 hypothetical earthquakes located along two faults associated with the current seismicity trends in the NMSZ. The hypothetical scenarios range in magnitude from M 7.0 to 7.7 and consider various epicenters, slip distributions, and rupture characterization approaches. The low‐frequency component of our simulations was computed deterministically up to a frequency of 1 Hz using a regional 3D seismic velocity model and was combined with higher‐frequency motions calculated for a 1D medium to generate broadband synthetics (0–40 Hz in some cases). For strike‐slip earthquakes located on the southwest–northeast‐striking NMSZ axial arm of seismicity, our simulations show 2–10 s period energy channeling along the trend of the Reelfoot rift and focusing strong shaking northeast toward Paducah, Kentucky, and Evansville, Indiana, and southwest toward Little Rock, Arkansas. These waveguide effects are further accentuated by rupture directivity such that an event with a western epicenter creates strong amplification toward the northeast, whereas an eastern epicenter creates strong amplification toward the southwest. These effects are not as prevalent for simulations on the reverse‐mechanism Reelfoot fault, and large peak ground velocities (>40  cm/s) are typically confined to the near‐source region along the up‐dip projection of the fault. Nonetheless, these basin response and rupture directivity effects have a significant impact on the pattern and level of the estimated intensities, which leads to additional uncertainty not previously considered in magnitude estimates of the 1811–1812 sequence based only on historical

  18. Environmental Impact Assessment for Olkiluoto 4 Nuclear Power Plant Unit in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Dersten, Riitta; Gahmberg, Sini; Takala, Jenni [Teollisuuden Voima Oyj, Olkiluoto, FI-27160 Eurajoki (Finland)

    2008-07-01

    In order to improve its readiness for constructing additional production capacity, Teollisuuden Voima Oyj (TVO) initiated in spring 2007 the environmental impact assessment procedure (EIA procedure) concerning a new nuclear power plant unit that would possibly be located at Olkiluoto. When assessing the environmental impacts of the Olkiluoto nuclear power plant extension project, the present state of the environment was first examined, and after that, the changes caused by the projects as well as their significance were assessed, taking into account the combined impacts of the operations at Olkiluoto. The environmental impact assessment for the planned nuclear power plant unit covers the entire life cycle of the plant unit. (authors)

  19. Reduction of Static Power with Minimized Ground Bounce Noise Using Sleep Signal Slew Rate Modulation In 45nm Technology

    Directory of Open Access Journals (Sweden)

    M. Naga Pramod Reddy

    2014-06-01

    Full Text Available In MTCMOS Integrated Circuit design there exists a significant trade-off between static power consumption and technology scaling. In Modern circuits increase in power dissipation is significant due to combination of higher clock speeds, greater functional integration and smaller process geometries resulting in dominant static power consumption component. This is a big challenge for the circuit designer. However, the designers do have few methods like sleep transistor approach, sleepy stack approach to reduce this static power consumption. However all of these methods do have their own drawbacks. In order to achieve lower static power consumptions one has to sacrifice area and circuit performance metrics. In this paper we propose a new enhancement to available static power reduction techniques by modulating the sleep signal slew rate. We have designed the basic CMOS circuits in MTCMOS to achieve significant reduction in Static power consumption. For Sleep signal slew rate modulation we have proposed a modulator called triple phase sleep signal slew rate modulator. By using this Triple Phase Sleep signal modulator(TPS we can control the noise at ground distribution network (ground bounce noise produced during sleep to active state transition. By using TPS we can decrease the reactivation time to a recognizable extent, along with reduced power (static and dynamic dissipation.

  20. Negotiated reorienting: a grounded theory of nurses' end-of-life decision-making in the intensive care unit.

    Science.gov (United States)

    Gallagher, Ann; Bousso, Regina Szylit; McCarthy, Joan; Kohlen, Helen; Andrews, Tom; Paganini, Maria Cristina; Abu-El-Noor, Nasser Ibrahim; Cox, Anna; Haas, Margit; Arber, Anne; Abu-El-Noor, Mysoon Khalil; Baliza, Michelle Freire; Padilha, Katia Grillo

    2015-04-01

    Intensive care units (ICUs) focus on treatment for those who are critically ill and interventions to prolong life. Ethical issues arise when decisions have to be made regarding the withdrawal and withholding of life-sustaining treatment and the shift to comfort and palliative care. These issues are particularly challenging for nurses when there are varying degrees of uncertainty regarding prognosis. Little is known about nurses' end-of-life (EoL) decision-making practice across cultures. To understand nurses' EoL decision-making practices in ICUs in different cultural contexts. We collected and analysed qualitative data using Grounded Theory. Interviews were conducted with experienced ICU nurses in university or hospital premises in five countries: Brazil, England, Germany, Ireland and Palestine. Semi-structured interviews were conducted with 51 nurses (10 in Brazil, 9 in England, 10 in Germany, 10 in Ireland and 12 nurses in Palestine). They were purposefully and theoretically selected to include nurses having a variety of characteristics and experiences concerning end-of-life (EoL) decision-making. The study used grounded theory to inform data collection and analysis. Interviews were facilitated by using key questions. The comparative analysis of the data within and across data generated by the different research teams enabled researchers to develop a deeper understanding of EoL decision-making practices in the ICU. Ethical approval was granted in each of the participating countries and voluntary informed consent obtained from each participant. The core category that emerged was 'negotiated reorienting'. Whilst nurses do not make the 'ultimate' EoL decisions, they engage in two core practices: consensus seeking (involving coaxing, information cuing and voice enabling); and emotional holding (creating time-space and comfort giving). There was consensus regarding the core concept and core practices employed by nurses in the ICUs in the five countries. However

  1. Design Analysis of Power Extracting Unit of an Onshore OWC Based Wave Energy Power Plant using Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Zahid Suleman

    2011-07-01

    Full Text Available This research paper describes design and analysis of power extracting unit of an onshore OWC (Oscillating Water Column based wave energy power plant of capacity about 100 kilowatts. The OWC is modeled as solid piston of a reciprocating pump. The power extracting unit is designed analytically by using the theory of reciprocating pumps and principles of fluid mechanics. Pro-E and ANSYS workbench softwares are used to verify the analytical design. The analytical results of the flow velocity in the turbine duct are compared with the simulation results. The results are found to be in good agreement with each other. The results achieved by this research would finally assist in the overall design of the power plant which is the ultimate goal of this research work.

  2. Power Processing Unit For Micro Satellite Electric Propulsion System

    Directory of Open Access Journals (Sweden)

    Savvas Spiridon

    2017-01-01

    Full Text Available The Micro Satellite Electric Propulsion System (MEPS program has been originated by the increasing need to provide a low-cost and low-power Electric Propulsion System (EPS for small satellites ( 92%, small size and weight and high reliability. Its functional modules and preliminary results obtained at breadboard level are also presented.

  3. Dynamics and design of a power unit with a hydraulic piston actuator

    Science.gov (United States)

    Misyurin, S. Yu.; Kreinin, G. V.

    2016-07-01

    The problem of the preselection of parameters of a power unit of a mechatronic complex on the basis of the condition for providing a required control energy has been discussed. The design of the unit is based on analysis of its dynamics under the effect of a special-type test conditional control signal. The specific features of the approach used are a reasonably simplified normalized dynamic model of the unit and the formation of basic similarity criteria. Methods of designing a power unit with a hydraulic piston actuator that operates in point-to-point and oscillatory modes have been considered.

  4. The concept of extending the service life of the VVER-440-based power units at the Novovoronezh nuclear power plant

    Science.gov (United States)

    Asmolov, V. G.; Povarov, V. P.; Vitkovskii, S. L.; Berkovich, V. Ya.; Chetverikov, A. E.; Mozul', I. A.; Semchenkov, Yu. M.; Suslov, A. I.

    2014-02-01

    Basic statements of the Concept of Extending the Service Life of the VVER-440-Based Power Units at the Novovoronezh NPP beyond 45 years are considered. This topic is raised in connection with the fact that that in December 2016 and in December 2017 the extended service lives of Units 3 and 4 at this NPP will expire. The adopted concept of repeatedly extending the service life of the Novovoronezh NPP Unit 4 implies fitting the power unit with additional reactor core cooling systems with a view to extend the (ultimate) design-basis accidents (which have hitherto been adopted to be a loss of coolant accident involving a leak of reactor coolant through a break with a nominal diameter of 100 mm) to a reactor coolant leak equivalent to rupture of the main reactor coolant pipeline. The modified Unit 4 will also use the safety systems of Unit 3 that is going to be decommissioned. Preliminary calculated assessments of the new design-basis accident scenario involving rupture of the reactor coolant pipeline in Unit 4 fitted with a new configuration of safety systems confirmed the correctness of the adopted concept of repeatedly extending the service life of Unit 4.

  5. Long-term dust climatology in the western United States reconstructed from routine aerosol ground monitoring

    Directory of Open Access Journals (Sweden)

    D. Q. Tong

    2012-06-01

    Full Text Available This study introduces an observation-based dust identification approach and applies it to reconstruct long-term dust climatology in the western United States. Long-term dust climatology is important for quantifying the effects of atmospheric aerosols on regional and global climate. Although many routine aerosol monitoring networks exist, it is often difficult to obtain dust records from these networks, because these monitors are either deployed far away from dust active regions (most likely collocated with dense population or contaminated by anthropogenic sources and other natural sources, such as wildfires and vegetation detritus. Here we propose an approach to identify local dust events relying solely on aerosol mass and composition from general-purpose aerosol measurements. Through analyzing the chemical and physical characteristics of aerosol observations during satellite-detected dust episodes, we select five indicators to be used to identify local dust records: (1 high PM10 concentrations; (2 low PM2.5/PM10 ratio; (3 higher concentrations and percentage of crustal elements; (4 lower percentage of anthropogenic pollutants; and (5 low enrichment factors of anthropogenic elements. After establishing these identification criteria, we conduct hierarchical cluster analysis for all validated aerosol measurement data over 68 IMPROVE sites in the western United States. A total of 182 local dust events were identified over 30 of the 68 locations from 2000 to 2007. These locations are either close to the four US Deserts, namely the Great Basin Desert, the Mojave Desert, the Sonoran Desert, and the Chihuahuan Desert, or in the high wind power region (Colorado. During the eight-year study period, the total number of dust events displays an interesting four-year activity cycle (one in 2000–2003 and the other in 2004–2007. The years of 2003, 2002 and 2007 are the three most active dust periods, with 46, 31 and 24

  6. Mathematical model of a FAZOS-17/27-POp powered support unit

    Energy Technology Data Exchange (ETDEWEB)

    Krauze, K.; Losiak, S.; Ptak, J.

    1987-01-01

    Discusses a mathematical model of the FAZOS-17/27-POp powered support for strata control at longwall faces 1.7-2.7 m high mined with caving or hydraulic stowing. A powered support unit consists of a base, 4 hydraulic legs in 2 rows, a canopy, a telescopic canopy for increasing canopy length, and a rear lemniscate shield. The mathematical models developed by the authors describe operation of the powered support unit with extended telescopic canopy and with a closed telescopic canopy. Factors which decisively influence powered support operation and methods for increasing support stability are discussed. 3 refs.

  7. Residential green power demand in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Dagher, Leila; Bird, Lori; Heeter, Jenny

    2017-12-01

    This paper investigates the demand determinants of green power in the U.S. residential sector. The data employed were collected by the National Renewable Energy Laboratory and consist of a cross-section of seven utilities observed over 13 years. A series of tests are performed that resulted in estimating a demand equation using the one-way cross-section random effects model. As expected, we find that demand is highly price inelastic. More interestingly though, is that elasticity with respect to number of customers is 0.52 leading to the conclusion that new subscribers tend to purchase less green power on average than the existing customers. Another compelling finding is that obtaining accreditation will have a 28.5% positive impact on consumption. Knowing that gaining green accreditation is important to the success of programs, utilities may want to seek certification and highlight it in their advertising campaigns.

  8. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Ludowise

    2006-12-12

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

  9. Ground-Water Quality Data in the Middle Sacramento Valley Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Schmitt, Stephen J.; Fram, Miranda S.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,340 square mile Middle Sacramento Valley study unit (MSACV) was investigated from June through September, 2006, as part of the California Groundwater Ambient Monitoring and Assessment (GAMA) program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Middle Sacramento Valley study was designed to provide a spatially unbiased assessment of raw ground-water quality within MSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 108 wells in Butte, Colusa, Glenn, Sutter, Tehama, Yolo, and Yuba Counties. Seventy-one wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells), 15 wells were selected to evaluate changes in water chemistry along ground-water flow paths (flow-path wells), and 22 were shallow monitoring wells selected to assess the effects of rice agriculture, a major land use in the study unit, on ground-water chemistry (RICE wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. Quality-control samples (blanks

  10. Advanced In-Space Propulsion (AISP): High Temperature Boost Power Processing Unit (PPU) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The task is to investigate the technology path to develop a 10kW modular Silicon Carbide (SiC) based power processing unit (PPU). The PPU utilizes the high...

  11. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard 3.8 kW silicon carbide (SiC) Power Processing Unit (PPU) for Hall Effect...

  12. NEURAL NETWORKS CONTROL OF THE HYBRID POWER UNIT BASED ON THE METHOD OF ADAPTIVE CRITICS

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2012-01-01

    Full Text Available The formal statement of the optimization problem of hybrid vehicle power unit control is given. Its solving by neural networks method application on the basis of adaptive critic is considered.

  13. Control of an afterburner in a diesel fuel cell power unit under variable load

    Science.gov (United States)

    Dolanc, Gregor; Pregelj, Boštjan; Petrovčič, Janko; Samsun, Remzi Can

    2017-01-01

    In this paper, the control system for a catalytic afterburner in a diesel fuel cell auxiliary power unit is presented. The catalytic afterburner is used to burn the non-utilised hydrogen and other possible combustible components of the fuel cell anode off-gas. To increase the energy efficiency of the auxiliary power unit, the thermal energy released in the catalytic afterburner is utilised to generate the steam for the fuel processor. For optimal operation of the power unit in all modes of operation including load change, stable steam generation is required and overall energy balance must be kept within design range. To achieve this, the reaction temperature of the catalytic afterburner must be stable in all modes of operation. Therefore, we propose the afterburner temperature control based on mass and thermal balances. Finally, we demonstrate the control system using the existing prototype of the diesel fuel cell auxiliary power unit.

  14. A Comprehensive Design Approach of Power Electronic-Based Distributed Generation Units Focused on Power Quality Improvement

    DEFF Research Database (Denmark)

    Esparza, Miguel; Segundo-Ramirez, Juan; Nunez, Ciro

    2017-01-01

    The undesirable harmonic distortion produced by distributed generation units (DGUs) based on power electronic inverters presents operating and power quality challenges in electric systems. ‡e level of distortion depends on the internal elements of the DGUs as well as on the characteristics...... of the grid, loads, controls, among others. ‡is paper presents a comprehensive method, focused on power quality indexes and e�ciency for the design of micro-grids with multiple DGUs interconnected to the AC grid through three phase multi-Megawatt medium-voltage PWM voltage source inverters (PWM-VSI). ‡e...

  15. Assessment of Economic Efficiency Pertaining to Application of Energy Storage Units in Power System

    Directory of Open Access Journals (Sweden)

    A. Chernetsky

    2013-01-01

    Full Text Available The paper considers some aspects pertaining to an application of technologies for energy storage in electric power. Review of technical and cost characteristics of energy storage units has been given in the paper. The review reflects data of the energy storage units which are available and which are under development. The paper proposes an approach that permits to assess boundaries of economically reasonable application of energy storage systems in order to balance daily load curve of a power system.

  16. Calculation of Electric Field at Ground Surface and ADSS Cable Prepared Hanging Point near EHV Power Transmission Tower

    Directory of Open Access Journals (Sweden)

    Xu Bao-Qing

    2016-01-01

    Full Text Available A simplified model of the 750kV tower is established by CDEGS software which is based on the Method Of Moment. The power frequency electric field distribution on the ground is achieved by software calculation and field-measuring. The validity of the calculation is proved when compare the calculation and experiment results. The model also can be used to calculate the electric field in prepared hanging points on the tower. Results show that the electric field distribution on the ground surface around the tower and prepared hanging points are meet the standard by calculation and experiment.

  17. Lightning current test of power ground wires with optical fibres (OPGW); Blitzstromfestigkeitspruefung von Erdseilen mit integrierten Lichtwellenleitern

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, M. [VEW EuroTest GmbH, Dortmund (Germany); Moeller, K. [Technische Hochschule Aachen (Germany). Inst. fuer Allgemeine Elektrotechnik und Hochspannungstechnik; Nolden, W. [Felten und Guilleaume Energietechnik AG, Koeln (Germany)

    1998-09-21

    The area-wide application of ground wires with integrated optical fibers establishes a basis to use the existing overhead lines in addition to power supply also as communication networks. Taking in account the particular lightning stroke endangering of overhead lines a basic study of the thermal stress and damage progression of this ground wire type during a lightning stroke is necessary. (orig.) [Deutsch] Der Einsatz von Erdseilen mit integrierten Lichtwellenleitern schafft die Voraussetzung, bestehende Freileitungstrassen nicht nur zur Energieversorgung zu nutzen, sondern auch als Kommunikationsnetze zu betreiben. Unter Beruecksichtigung der besonderen Blitzeinschlagsgefaehrdung von Freileitungstrassen ist eine grundlegende Untersuchung der thermischen Beanspruchung und der Schadensentwicklung dieses Erdseiltyps waehrend eines Blitzeinschlags notwendig. (orig.)

  18. Estimated mean annual natural ground-water recharge in the conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This 1-kilometer resolution raster (grid) dataset is an index of mean annual natural ground-water recharge. The dataset was created by multiplying a grid of...

  19. Probability of nitrate contamination of recently recharged ground waters in the conterminous United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set is a national map of predicted probability of nitrate contamination of shallow ground waters based on a logistic regression (LR) model. The LR model...

  20. Fuel flexibility in power generation onboard offshore floating units

    Energy Technology Data Exchange (ETDEWEB)

    Keep, Jeroen van [Waertsilae Corporation, Helsinki (Finland)

    2012-07-01

    Power Plants for offshore oil and gas installations utilizing dual fuel (DF) reciprocating engines are by many owners seen as an interesting alternative to conventional solutions due to the apparent advantages in fuel flexibility, fuel efficiency and lower emission. The paper summarizes the dual fuel technology, typical solutions for FPSO's and operational. Items that are discussed: DF operation and how it works; fuel flexibility, including transfer between fuel modes; fuel efficiency, also in production an important cost saver; emissions of the different fuel modes; size and weights, constraints; experiences of the P-63 project. With the above it is safe to conclude that the DF-technology is mature with important benefits for the offshore production market in certain specific applications, most notably the FPSO's for fields in low gas to oil ratios, bringing important fuel cost savings and also for new-built F-LNG/FSO/FPSO's where the power plant can be accommodated below decks, freeing up valuable deck space for the process plant. (author)

  1. Ground-Water Quality Data in the Coachella Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 820 square-mile Coachella Valley Study Unit (COA) was investigated during February and March 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of raw ground water used for public-water supplies within the Coachella Valley, and to facilitate statistically consistent comparisons of ground-water quality throughout California. Samples were collected from 35 wells in Riverside County. Nineteen of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Sixteen additional wells were sampled to evaluate changes in water chemistry along selected ground-water flow paths, examine land use effects on ground-water quality, and to collect water-quality data in areas where little exists. These wells were referred to as 'understanding wells'. The ground-water samples were analyzed for a large number of organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (uranium, tritium, carbon-14, and stable isotopes of hydrogen, oxygen, and boron), and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory) also were measured to help identify the source and age of the sampled

  2. 76 FR 53972 - Florida Power Corporation, Crystal River Unit No. 3 Nuclear Generating Plant; Notice of...

    Science.gov (United States)

    2011-08-30

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Florida Power Corporation, Crystal River Unit No. 3 Nuclear Generating Plant; Notice of... Facility Operating License No. DPR-72 for Crystal River Unit 3 Nuclear generating Plant (CR-3), currently...

  3. VECTOR-VALUED RANDOM POWER SERIES ON THE UNIT BALL OF Cn

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this article, the authors study the vector-valued random power series on the unit ball of Cn and get vector-valued Salem-Zygmund theorem for them by using martingale technique. Further, the relationships between vector-valued random power series and several function spaces are also studied.

  4. Construction and preoperational test of Kashiwasaki-Kariwa Nuclear Power Station Unit No. 6

    Energy Technology Data Exchange (ETDEWEB)

    Natsume, Nobuo; Noda, Hiroshi [Tokyo Electric Power Co. (Japan)

    1996-12-31

    Unit 6 of the Kashiwazaki-Kariwa nuclear power station of Tokyo Electric Power Company, the world`s first advanced boiling water reactor (ABWR), is progressing ahead of the originally established schedule since the start of its construction in September 1991, and commercial operation is scheduled to start before the end of 1996.

  5. 78 FR 66385 - Omaha Public Power District Fort Calhoun Station, Unit 1; Exemption

    Science.gov (United States)

    2013-11-05

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Omaha Public Power District Fort Calhoun Station, Unit 1; Exemption 1.0 Background Omaha Public Power District (OPPD, the licensee) is the holder of Renewed Facility Operating License No. DPR-40, which authorizes operation of Fort Calhoun Station...

  6. 75 FR 15744 - Omaha Public Power District; Fort Calhoun Station, Unit 1; Exemption

    Science.gov (United States)

    2010-03-30

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Omaha Public Power District; Fort Calhoun Station, Unit 1; Exemption 1.0 Background Omaha Public Power District (OPPD, the licensee) is the holder of Renewed Facility Operating License No. DPR-40 which authorizes operation of the Fort...

  7. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard 3.8 kW silicon carbide (SiC) power supply for the Power Processing Unit (PPU) of...

  8. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Gail E. [Delphi Automotive Systems, LLC., Gillingham (United Kingdom)

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  9. Semiconductor laser diodes and the design of a D.C. powered laser diode drive unit

    OpenAIRE

    Cappuccio, Joseph C., Jr.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis addresses the design, development and operational analysis of a D.C. powered semiconductor laser diode drive unit. A laser diode requires an extremely stable power supply since a picosecond spike of current or power supply switching transient could result in permanent damage. The design offers stability and various features for operational protection of the laser diode. The ability to intensity modulate (analog) and pulse m...

  10. Isolated battery charger with unit power factor; Carregador de baterias isolado com fator de potencia unitario

    Energy Technology Data Exchange (ETDEWEB)

    Co, Marcio Almeida

    1993-05-01

    This work presents a single phase, isolated AC/DC converter (Battery Charger) with active power factor correction in a single stage of power processing. the topology studied is the fed-current full-bridge, in boost mode operation, at fixed switching frequency. After a complete design of converter and simulations, the results of a 1.500 W e 50 kHz prototype are shown. a Unit Power Factor and Total Harmonic Distortion less than 5% were obtained. (author)

  11. Semiconductor laser diodes and the design of a D.C. powered laser diode drive unit

    OpenAIRE

    Cappuccio, Joseph C., Jr.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis addresses the design, development and operational analysis of a D.C. powered semiconductor laser diode drive unit. A laser diode requires an extremely stable power supply since a picosecond spike of current or power supply switching transient could result in permanent damage. The design offers stability and various features for operational protection of the laser diode. The ability to intensity modulate (analog) and pulse m...

  12. Ground-Water Quality Data in the Coastal Los Angeles Basin Study Unit, 2006: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Land, Michael; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 860 square-mile Coastal Los Angeles Basin study unit (CLAB) was investigated from June to November of 2006 as part of the Statewide Basin Assessment Project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment was developed in response to the Ground-Water Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Coastal Los Angeles Basin study was designed to provide a spatially unbiased assessment of raw ground-water quality within CLAB, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 69 wells in Los Angeles and Orange Counties. Fifty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (?grid wells?). Fourteen additional wells were selected to evaluate changes in ground-water chemistry or to gain a greater understanding of the ground-water quality within a specific portion of the Coastal Los Angeles Basin study unit ('understanding wells'). Ground-water samples were analyzed for: a large number of synthetic organic constituents [volatile organic compounds (VOCs), gasoline oxygenates and their degradates, pesticides, polar pesticides, and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicators]; constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), 1,4-dioxane, and 1,2,3-trichloropropane (1,2,3-TCP)]; inorganic constituents that can occur naturally [nutrients, major and minor ions, and trace elements]; radioactive constituents [gross-alpha and gross-beta radiation, radium isotopes, and radon-222]; and microbial indicators. Naturally occurring isotopes [stable isotopic ratios of hydrogen and oxygen, and activities of tritium and carbon-14

  13. Vulnerability of shallow ground water and drinking-water wells to nitrate in the United States: Model of predicted nitrate concentration in shallow, recently recharged ground water -- Model output data set (gwava-s_out)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents predicted nitrate concentration in shallow, recently recharged ground water, in milligrams per liter, in the conterminous United States, and...

  14. Overview of commercialization of stationary fuel cell power plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Hooie, D.T.; Williams, M.C.

    1995-07-01

    In this paper, DOE`s efforts to assist private sector organizations to develop and commercialize stationary fuel cell power plants in the United States are discussed. The paper also provides a snapshot of the status of stationary power fuel cell development occurring in the US, addressing all fuel cell types. This paper discusses general characteristics, system configurations, and status of test units and demonstration projects. The US DOE, Morgantown Energy Technology Center is the lead center for implementing DOE`s program for fuel cells for stationary power.

  15. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Saur, Genevieve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sprik, Sam [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-03-01

    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuel cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.

  16. Power developed by motor units of the peroneus tertius muscle of the cat.

    Science.gov (United States)

    Petit, Julien; Giroux-Metges, Marie-Agnes; Gioux, Maxime

    2003-11-01

    The mechanical properties of motor units have been extensively studied under isometric conditions. Under dynamic conditions, the relationship between the force developed by single motor units and the muscle shortening velocity was determined for relatively high frequencies of activation. However, the interaction between the force-shortening velocity relation and the force-rate of activation relation was still unknown. We studied the power (which is the product of force and velocity) developed by single or groups of motor units during sinusoidal muscle stretches of 1-, 2-, 4-, 6-, and 8-Hz frequency. Motor units were stimulated with frequencies of 20, 40, 60, 80, 100, and 120 Hz during the shortening phase of the muscle stretch. The relationships, for different shortening velocities, between the power developed by single or groups of motor units and the frequency of stimulation were sigmoidal. However, these relations were not proportional to the shortening velocity. The relationships, for different frequencies of stimulation, between the power and the shortening velocity exhibited a maximum. The shortening velocity at which this maximum occurred increased with the frequency of stimulation. Slow motor units showed the lowest of those shortening velocities, whereas the fast fatigable motor units showed the highest. Groups of slow (or fast fatigue resistant) motor units had similar shortening velocities to those of single slow (or fast fatigue resistant) motor units. A mathematical function was fitted, using regression analysis, for all single and groups of motor units to the relationship among the power, the shortening velocity, and the frequency of activation. This function allowed examination, for different shortening velocity-frequency of activation combinations, of the relationship between the power developed by single and groups of motor units and the maximal isometric tetanic force they developed. These relationships were usually not monotonic but a monotonic

  17. The Future Potential of Waver Power in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Mirko Previsic; Jeff Epler; Maureen Hand; Donna Heimiller; Walter Short; Kelly Eurek

    2012-09-20

    The theoretical ocean wave energy resource potential exceeds 50% of the annual domestic energy demand of the United States, is located close to coastal population centers, and, although variable in nature, may be more consistent and predictable than some other renewable generation technologies. As a renewable electricity generation technology, ocean wave energy offers a low air pollutant option for diversifying the U.S. electricity generation portfolio. Furthermore, the output characteristics of these technologies may complement other renewable technologies. This study addresses the following: (1) The theoretical, technical and practical potential for electricity generation from wave energy (2) The present lifecycle cost profile (Capex, Opex, and Cost of Electricity) of wave energy conversion technology at a reference site in Northern California at different plant scales (3) Cost of electricity variations as a function of deployment site, considering technical, geo-spatial and and electric grid constraints (4) Technology cost reduction pathways (5) Cost reduction targets at which the technology will see significant deployment within US markets, explored through a series of deployment scenarios RE Vision Consulting, LLC (RE Vision), engaged in various analyses to establish current and future cost profiles for marine hydrokinetic (MHK) technologies, quantified the theoretical, technical and practical resource potential, performed electricity market assessments and developed deployment scenarios. RE Vision was supported in this effort by NREL analysts, who compiled resource information, performed analysis using the ReEDSa model to develop deployment scenarios, and developed a simplified assessment of the Alaska and Hawaii electricity markets.

  18. Ground-Water Quality Data in the Kern County Subbasin Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Shelton, Jennifer L.; Pimentel, Isabel; Fram, Miranda S.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,000 square-mile Kern County Subbasin study unit (KERN) was investigated from January to March, 2006, as part of the Priority Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The Kern County Subbasin study was designed to provide a spatially unbiased assessment of raw (untreated) ground-water quality within KERN, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 50 wells within the San Joaquin Valley portion of Kern County. Forty-seven of the wells were selected using a randomized grid-based method to provide a statistical representation of the ground-water resources within the study unit. Three additional wells were sampled to aid in the evaluation of changes in water chemistry along regional ground-water flow paths. The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides, and pesticide degradates), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon) and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, and laboratory matrix spikes) were collected and analyzed at approximately 10 percent of

  19. Environmental measures for Escuintla No. 3 unit thermal power project

    Energy Technology Data Exchange (ETDEWEB)

    Quisquinay, Carlos; Fabian Rosales, Alejandro [Instituto Nacional de Electrificacion, (Guatemala)

    1996-12-31

    The environmental measures in relation to the project implementation was studied with reference to the Japanese Standards and incorporated in the Implementation Program. This report is prepared however, to review the environmental measures for the project in more detail as to the allowable standards and regulations concerning the measures for the environmental pollution. The authors present the environmental conditions around the Escuintla Power Station in Guatemala; the measures for environmental pollution and evaluation; the measures for prevention of air pollution and diffusion calculations (estimation and assessment of environmental impacts) [Espanol] Las medidas ambientales con relacion a la consolidacion del proyecto, se estudiaron con referencia a los Estandares Japoneses e incorporados en el Programa de Consolidacion. Sin embargo, este reporte ha sido preparado para revisar las medidas ambientales para el proyecto mas detalladamente, con relacion a los estandares y reglamentaciones admisibles concernientes a las medidas de contaminacion ambiental. Los autores presentan las condiciones ambientales en los alrededores de la Central Termoelectrica de Escuintla de Guatemala; las medidas para la prevencion de la contaminacion del aire y los calculos de difusion (estimacion y evaluacion del impacto ambiental)

  20. Testing of ground fault relay response during the energisation of megawatt range electric boilers in thermal power plants

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Bak, Claus Leth; Davidsen, Troels

    2015-01-01

    , during the energisation of a boiler. A special case for concern was the presence of an electric arc between the electrodes of the boiler and the water in the boiler during approximately 2s at the energisation, which can in theory be seen as a ground fault by the relay. The voltage and current transient......Large controllable loads may support power systems with an increased penetration of fluctuating renewable energy, by providing a rapid response to a change in the power production. Megawatt range electric boilers are an example of such controllable loads, capable of change rapidly...

  1. Nutrients in ground water and surface water of the United States; an analysis of data through 1992

    Science.gov (United States)

    Mueller, D.K.; Hamilton, P.A.; Helsel, D.R.; Hitt, K.J.; Ruddy, B.C.

    1995-01-01

    Historical data on nutrient (nitrogen and phosphorus species) concentrations in ground-and surface-water samples were compiled from 20 study units of the National Water-Quality Assessment (NAWQA) Program and 5 supplemental study areas. The resultant national retrospective data sets contained analyses of about 12,000 Found-water and more than 22,000 surface-water samples. These data were interpreted on regional and national scales by relating the distributions of nutrient concentrations to ancillary data, such as land use, soil characteristics, and hydrogeology, provided by local study-unit personnel. The information provided in this report on environmental factors that affect nutrient concentrations in ground and surface water can be used to identify areas of the Nation where the vulnerability to nutrient contamination is greatest. Nitrate was the nutrient of greatest concern in the historical ground-water data. It is the only nutrient that is regulated by a national drinking-water standard. Nitrate concentrations were significantly different in ground water affected by various land uses. Concentrations in about 16 percent of the samples collected in agricultural areas exceeded the drinking-water standard. However, the standard was exceeded in only about 1 percent of samples collected from public-supply wells. A variety of ancillary factors had significant relations to nitrate concentrations in ground water beneath agricultural areas. Concentrations generally were highest within 100 feet of the land surface. They were also higher in areas where soil and geologic characteristics promoted rapid movement of water to the aquifer. Elevated concentrations commonly occurred in areas underlain by permeable materials, such as carbonate bedrock or unconsolidated sand and gravel, and where soils are generally well drained. In areas where water movement is impeded, denitrification might lead to low concentrations of nitrate in the ground water. Low concentrations were also

  2. Development of the Self-Powered Extravehicular Mobility Unit Extravehicular Activity Data Recorder

    Science.gov (United States)

    Bernard, Craig; Hill, Terry R.; Murray, Sean; Wichowski, Robert; Rosenbush, David

    2012-01-01

    The Self-Powered Extravehicular Mobility Unit (EMU) Extravehicular Activity (EVA) Data Recorder (SPEEDR) is a field-programmable gate array (FPGA)-based device designed to collect high-rate EMU Primary Life Support Subsystem (PLSS) data for download at a later time. During EVA, the existing EMU PLSS data downlink capability is one data packet every 2 minutes and is subject to bad packets or loss of signal. Higher-rate PLSS data is generated by the Enhanced Caution and Warning System but is not normally captured or distributed. Access to higher-rate data will increase the capability of EMU anomaly resolution team to pinpoint issues remotely, saving crew time by reducing required call-down Q&A and on-orbit diagnostic activities. With no Space Shuttle flights post Fiscal Year 2011 (FY11), and potentially limited down-mass capability, the ISS crew and ground support personnel will have to be capable of on-orbit operations to maintain, diagnose, repair, and return to service EMU hardware, possibly through 2028. Collecting high-rate EMU PLSS data during both intravehicular activity (IVA) and EVA operations will provide trending analysis for life extension and/or predictive performance. The SPEEDR concept has generated interest as a tool/technology that could be used for other International Space Station subsystems or future exploration-class space suits where hardware reliability/availability is critical and low/variable bandwidth may require store then forward methodology. Preliminary work in FY11 produced a functional prototype consisting of an FPGA evaluation board, custom memory/interface circuit board, and custom software. The SPEEDR concept includes a stand-alone battery that is recharged by a computer Universal Serial Bus (USB) port while data are being downloaded.

  3. From spouse to caregiver and back: a grounded theory study of post-intensive care unit spousal caregiving.

    Science.gov (United States)

    Ågård, Anne Sophie; Egerod, Ingrid; Tønnesen, Else; Lomborg, Kirsten

    2015-08-01

    To explore the challenges and caring activities of spouses of intensive care unit survivors during the first year of patient recovery. Every year, millions of people globally are discharged from an intensive care unit after critical illness to continue treatment, care and rehabilitation in general hospital wards, rehabilitation facilities and at home. Consequently, millions of spouses become informal caregivers. Little is known, however, about the concrete challenges spouses face in post-intensive care unit everyday life. Explorative, qualitative grounded theory study. Participants were spouses of intensive care unit survivors. The study was undertaken in Denmark in 2009-2010. Data consisted of 35 semi-structured dyad interviews at 3 and 12 months post-intensive care unit discharge, two group interviews with patients and two with spouses. 'Shifting their role from spouse to caregiver and back' was identified as the core category of the study. The role shifts progressed in a dynamic process involving four elements: (1) committing to caregiving; (2) acquiring caregiving skills; (3) negotiating level of caregiving and (4) gradually leaving the caregiver role. Post-ICU caregiving comprised five patient dimensions: observing, assisting, coaching, advocating and managing activities. Spouses play a vital and multifaceted role in post-intensive care unit recovery. The findings can inform healthcare professionals in their efforts to prepare intensive care unit patients' families for the time following intensive care unit and hospital discharge. Hospital staff, rehabilitation experts and primary care professionals must acknowledge spouses' important contribution from intensive care unit admission throughout recovery. © 2015 John Wiley & Sons Ltd.

  4. Decadal-scale changes of nitrate in ground water of the United States, 1988-2004

    Science.gov (United States)

    Rupert, Michael G.

    2008-01-01

    This study evaluated decadal-scale changes of nitrate concentrations in groundwater samples collected by the USGS National Water-Quality Assessment Program from 495 wells in 24 well networks across the USA in predominantly agricultural areas. Each well network was sampled once during 1988-1995 and resampled once during 2000-2004. Statistical tests of decadal-scale changes of nitrate concentrations in water from all 495 wells combined indicate there is a significant increase in nitrate concentrations in the data set as a whole. Eight out of the 24 well networks, or about 33%, had significant changes of nitrate concentrations. Of the eight well networks with significant decadal-scale changes of nitrate, all except one, the Willamette Valley of Oregon, had increasing nitrate concentrations. Median nitrate concentrations of three of those eight well networks increased above the USEPA maximum contaminant level of 10 mg L-1. Nitrate in water from wells with reduced conditions had significantly smaller decadal-scale changes in nitrate concentrations than oxidized and mixed waters. A subset of wells had data on ground water recharge date; nitrate concentrations increased in response to the increase of N fertilizer use since about 1950. Determining ground water recharge dates is an important component of a ground water trends investigation because recharge dates provide a link between changes in ground water quality and changes in land-use practices. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  5. A variant of the dynamic programming algorithm for unit commitment of combined heat and power systems

    DEFF Research Database (Denmark)

    Rong, Aiying; Hakonen, Henri; Lahdelma, Risto

    2008-01-01

    in the system, the number of periods over the planning horizon and the time for solving a single-period economic dispatch problem. We have compared the DP-RSC1 algorithm with realistic power plants against the unit decommitment algorithm and the traditional priority listing method. The results show that the DP...... introduce in this paper the DP-RSC1 algorithm, which is a variant of the dynamic programming (DP) algorithm based on linear relaxation of the ON/OFF states of the units and sequential commitment of units one by one. The time complexity of DP-RSC1 is proportional to the number of generating units...

  6. Ground-Water Quality Data in the Santa Clara River Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Montrella, Joseph; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 460-square-mile Santa Clara River Valley study unit (SCRV) was investigated from April to June 2007 as part of the statewide Priority Basin project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw ground water used for public water supplies within SCRV, and to facilitate a statistically consistent basis for comparing water quality throughout California. Fifty-seven ground-water samples were collected from 53 wells in Ventura and Los Angeles Counties. Forty-two wells were selected using a randomized grid-based method to provide statistical representation of the study area (grid wells). Eleven wells (understanding wells) were selected to further evaluate water chemistry in particular parts of the study area, and four depth-dependent ground-water samples were collected from one of the eleven understanding wells to help understand the relation between water chemistry and depth. The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, potential wastewater-indicator compounds, and pharmaceutical compounds), a constituent of special interest (perchlorate), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial constituents. Naturally occurring isotopes (tritium, carbon-13, carbon-14 [abundance], stable isotopes of hydrogen and oxygen in water, stable isotopes of nitrogen and oxygen in nitrate, chlorine-37, and bromine-81), and dissolved noble gases also were measured to help identify the source

  7. A novel arc welding inverter with unit power factor based on DSP control

    Institute of Scientific and Technical Information of China (English)

    Chen Shujun; Zeng Hua; Du Li; Yin Shuyan; Chen Yonggang

    2006-01-01

    A novel inverter power source is developed characterized with constant output current and unit power factor input.Digital signal processor (DSP) is used to realize power factor correction and control of back-stage inverter bridge of the arc welding inverter. The fore-stage adopts double closed loop proportion and integration (PI) rectifier technique and the backstage adopts digital pulse width modulation (PWM) technique. Simulated waves can be obtained in Matlab/Simulink and validated by experiments. Experiments of the prototype showed that the total harmonic distortion (THD) can be controlled within 10% and the power factor is approximate to 1.

  8. Ground-water resources of the Bengasi area, Cyrenaica, United Kingdom of Libya

    Science.gov (United States)

    Doyel, William Watson; Maguire, Frank J.

    1964-01-01

    The Benpsi area of Libya, in the northwestern part of the Province of Cyrenaica (Wilayat Barqah), is semiarid, and available ground-water supplies in the area are relatively small. Potable ground water from known sources is reserved for the present and future needs of the city, and no surface-water supplies are available in the area. This investigation to evaluate known, as well as potential, water supplies in the area was undertaken as part of a larger program of ground-water investigations in Libya under the auspices of the U. S. Operations Mission to Libya and the Government of Libya. A ground-water reservoir underlies the Bengasi area, in which the water occurs in solution channels, cavities, and other openings in Miocene limestone. The reservoir is recharged directly by rainfall on the area and by infiltration from ephemeral streams (wadis) rising in Al Jabal al Akhar to the east. In the Baninah and Al Fuwayhit areas the ground-water reservoir yields water of fair quality and in sufficient quantity for the current (1959) needs. of the Bengasi city supply. The test-drilling program in the area south and southeast of Bengasi indicates that water in sufficient quantity for additional public supply probably can be obtained in some localities from wells. The water, however, is moderately to highly mineralized and would require treatment or demineralization before it could be used for additional public supply. Much of the water could be used directly for irrigation, but careful attention would have to be given to cultivation, drainage, and cropping practices. The hazard of saltwater encroachment also exists if large-scale withdrawals are undertaken in the coastal zones.

  9. ASP - Grid connections of large power generating units; ASP - Anslutning av stoerre produktionsanlaeggningar till elnaetet

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Aake; Larsson, Richard [Vattenfall Power Consultants, Stockholm (Sweden)

    2006-12-15

    Grid connections of large power generating units normally require more detailed studies compared to small single units. The required R and D-level depends on the specific characteristics of the production units and the connecting grid. An inquiry for a grid connection will raise questions for the grid owner regarding transmission capability, losses, fault currents, relay protection, dynamic stability etc. Then only a few larger wind farms have been built, the experiences from these types of grid connections are limited and for that reason it can be difficult to identify issues appropriate for further studies. To ensure that electric power generating units do not have unacceptable impact on the grid, directions from the Swedish TSO (Svenska Kraftnaet) have been stated. The directions deal, for example, with power generation in specific ranges of voltage level and frequency and the possibility to remain connected to the grid when different faults occur. The requirements and the consequences of these directions are illustrated. There are three main issues that should be considered: Influence on the power flow from generating units regarding voltage level, currents, losses etc.; Different types of electric systems in generating units contribute to different levels of fault currents. For that reason the resulting fault current levels have to be studied; It is required that generating units should remain connected to the grid at different modes of operation and faults. These modes have to be verified. Load flow and dynamic studies normally demand computer models. Comprehensive models, for instance of wind farms, can bee difficult to design and normally large computer capacity is required. Therefore simplified methods to perform relevant studies are described. How to model an electric power generating unit regarding fault currents and dynamic stability is described. An inquiry for a grid connection normally brings about a discussion concerning administration. To make it

  10. Reactor units for power supply to the Russian Arctic regions: Priority assessment of nuclear energy sources

    Directory of Open Access Journals (Sweden)

    Mel'nikov N. N.

    2017-03-01

    Full Text Available Under conditions of competitiveness of small nuclear power plants (SNPP and feasibility of their use to supply power to remote and inaccessible regions the competition occurs between nuclear energy sources, which is caused by a wide range of proposals for solving the problem of power supply to different consumers in the decentralized area of the Russian Arctic power complex. The paper suggests a methodological approach for expert assessment of the priority of small power reactor units based on the application of the point system. The priority types of the reactor units have been determined based on evaluation of the unit's conformity to the following criteria: the level of referentiality and readiness degree of reactor units to implementation; duration of the fuel cycle, which largely determines an autonomy level of the nuclear energy source; the possibility of creating a modular block structure of SNPP; the maximum weight of a transported single equipment for the reactor unit; service life of the main equipment. Within the proposed methodological approach the authors have performed a preliminary ranking of the reactor units according to various criteria, which allows quantitatively determining relative difference and priority of the small nuclear power plants projects aimed at energy supply to the Russian Arctic. To assess the sensitivity of the ranking results to the parameters of the point system the authors have observed the five-point and ten-point scales under variations of importance (weights of different criteria. The paper presents the results of preliminary ranking, which have allowed distinguishing the following types of the reactor units in order of their priority: ABV-6E (ABV-6M, "Uniterm" and SVBR-10 in the energy range up to 20 MW; RITM-200 (RITM-200M, KLT-40S and SVBR-100 in the energy range above 20 MW.

  11. Influence of nuclear power unit on decreasing emissions of greenhouse gases

    Directory of Open Access Journals (Sweden)

    Stanek Wojciech

    2015-03-01

    Full Text Available The paper presents a comparison of selected power technologies from the point of view of emissions of greenhouse gases. Such evaluation is most often based only on analysis of direct emissions from combustion. However, the direct analysis does not show full picture of the problem as significant emissions of GHG appear also in the process of mining and transportation of fuel. It is demonstrated in the paper that comparison of power technologies from the GHG point of view has to be done using the cumulative calculus covering the whole cycle of fuel mining, processing, transportation and end-use. From this point of view coal technologies are in comparable level as gas technologies while nuclear power units are characterised with lowest GHG emissions. Mentioned technologies are compared from the point of view of GHG emissions in full cycle. Specific GHG cumulative emission factors per unit of generated electricity are determined. These factors have been applied to simulation of the influence of introduction of nuclear power units on decrease of GHG emissions in domestic scale. Within the presented simulations the prognosis of domestic power sector development according to the Polish energy policy till 2030 has been taken into account. The profitability of introduction of nuclear power units from the point of view of decreasing GHG emissions has been proved.

  12. Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia.

    Science.gov (United States)

    Fineberg, Drew B; Asselin, Pierre; Harel, Noam Y; Agranova-Breyter, Irina; Kornfeld, Stephen D; Bauman, William A; Spungen, Ann M

    2013-07-01

    To use vertical ground reaction force (vGRF) to show the magnitude and pattern of mechanical loading in persons with spinal cord injury (SCI) during powered exoskeleton-assisted walking. A cross-sectional study was performed to analyze vGRF during powered exoskeleton-assisted walking (ReWalk™: Argo Medical Technologies, Inc, Marlborough, MA, USA) compared with vGRF of able-bodied gait. Veterans Affairs Medical Center. Six persons with thoracic motor-complete SCI (T1-T11 AIS A/B) and three age-, height-, weight- and gender-matched able-bodied volunteers participated. SCI participants were trained to ambulate over ground using a ReWalk™. vGRF was recorded using the F-Scan™ system (TekScan, Boston, MA, USA). Peak stance average (PSA) was computed from vGRF and normalized across all participants by percent body weight. Peak vGRF was determined for heel strike, mid-stance, and toe-off. Relative linear impulse and harmonic analysis provided quantitative support for analysis of powered exoskeletal gait. Participants with motor-complete SCI, ambulating independently with a ReWalk™, demonstrated mechanical loading magnitudes and patterns similar to able-bodied gait. Harmonic analysis of PSA profile by Fourier transform contrasted frequency of stance phase gait components between able-bodied and powered exoskeleton-assisted walking. Powered exoskeleton-assisted walking in persons with motor-complete SCI generated vGRF similar in magnitude and pattern to that of able-bodied walking. This suggests the potential for powered exoskeleton-assisted walking to provide a mechanism for mechanical loading to the lower extremities. vGRF profile can be used to examine both magnitude of loading and gait mechanics of powered exoskeleton-assisted walking among participants of different weight, gait speed, and level of assist.

  13. Ground-Water Quality Data in the Central Sierra Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Ferrari, Matthew J.; Fram, Miranda S.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 950 square kilometer (370 square mile) Central Sierra study unit (CENSIE) was investigated in May 2006 as part of the Priority Basin Assessment project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). This study was designed to provide a spatially unbiased assessment of the quality of raw ground water used for drinking-water supplies within CENSIE, and to facilitate statistically consistent comparisons of ground-water quality throughout California. Samples were collected from thirty wells in Madera County. Twenty-seven of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and three were selected to aid in evaluation of specific water-quality issues (understanding wells). Ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates), constituents of special interest (N-nitrosodimethylamine, perchlorate, and 1,2,3-trichloropropane), naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon], and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. In total, over 250 constituents and water-quality indicators were investigated. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected at approximately one-sixth of the wells, and

  14. Ground-Water Quality Data in the San Francisco Bay Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Ray, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 620-square-mile San Francisco Bay study unit (SFBAY) was investigated from April through June 2007 as part of the Priority Basin project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of raw ground-water quality, as well as a statistically consistent basis for comparing water quality throughout California. Samples in SFBAY were collected from 79 wells in San Francisco, San Mateo, Santa Clara, Alameda, and Contra Costa Counties. Forty-three of the wells sampled were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Thirty-six wells were sampled to aid in evaluation of specific water-quality issues (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, trace elements, chloride and bromide isotopes, and uranium and strontium isotopes), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14 isotopes, and stable isotopes of hydrogen, oxygen, nitrogen, boron, and carbon), and dissolved noble gases (noble gases were analyzed in collaboration with Lawrence Livermore National Laboratory) also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blank samples

  15. A Single Phase Doubly Grounded Semi-Z-Source Inverter for Photovoltaic (PV Systems with Maximum Power Point Tracking (MPPT

    Directory of Open Access Journals (Sweden)

    Tofael Ahmed

    2014-06-01

    Full Text Available In this paper, a single phase doubly grounded semi-Z-source inverter with maximum power point tracking (MPPT is proposed for photovoltaic (PV systems. This proposed system utilizes a single-ended primary inductor (SEPIC converter as DC-DC converter to implement the MPPT algorithm for tracking the maximum power from a PV array and a single phase semi-Z-source inverter for integrating the PV with AC power utilities. The MPPT controller utilizes a fast-converging algorithm to track the maximum power point (MPP and the semi-Z-source inverter utilizes a nonlinear SPWM to produce sinusoidal voltage at the output. The proposed system is able to track the MPP of PV arrays and produce an AC voltage at its output by utilizing only three switches. Experimental results show that the fast-converging MPPT algorithm has fast tracking response with appreciable MPP efficiency. In addition, the inverter shows the minimization of common mode leakage current with its ground sharing feature and reduction of the THD as well as DC current components at the output during DC-AC conversion.

  16. Finite Element Optimization for Nondestructive Evaluation on a Graphics Processing Unit for Ground Vehicle Hull Inspection

    Science.gov (United States)

    2013-08-22

    GPU ,GA, genetic algorithm, FE, optimization, CUDA , Damage, Evaluation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF... GPU with CUDA architecture [4]). There is however a severe memory limit – 4 GB at present. This would limit large problems as well as optimization...August 2013 UNCLASSIFIED UNCLASSIFIED Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 FE Optimization for NDE on GPUs for Ground

  17. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking.

    Science.gov (United States)

    Grabowski, Alena M; D'Andrea, Susan

    2013-06-07

    People with a lower-extremity amputation that use conventional passive-elastic ankle-foot prostheses encounter a series of stress-related challenges during walking such as greater forces on their unaffected leg, and may thus be predisposed to secondary musculoskeletal injuries such as chronic joint disorders. Specifically, people with a unilateral transtibial amputation have an increased susceptibility to knee osteoarthritis, especially in their unaffected leg. Previous studies have hypothesized that the development of this disorder is linked to the abnormally high peak knee external adduction moments encountered during walking. An ankle-foot prosthesis that supplies biomimetic power could potentially mitigate the forces and knee adduction moments applied to the unaffected leg of a person with a transtibial amputation, which could, in turn, reduce the risk of knee osteoarthritis. We hypothesized that compared to using a passive-elastic prosthesis, people with a transtibial amputation using a powered ankle-foot prosthesis would have lower peak resultant ground reaction forces, peak external knee adduction moments, and corresponding loading rates applied to their unaffected leg during walking over a wide range of speeds. We analyzed ground reaction forces and knee joint kinetics of the unaffected leg of seven participants with a unilateral transtibial amputation and seven age-, height- and weight-matched non-amputees during level-ground walking at 0.75, 1.00, 1.25, 1.50, and 1.75 m/s. Subjects with an amputation walked while using their own passive-elastic prosthesis and a powered ankle-foot prosthesis capable of providing net positive mechanical work and powered ankle plantar flexion during late stance. Use of the powered prosthesis significantly decreased unaffected leg peak resultant forces by 2-11% at 0.75-1.50 m/s, and first peak knee external adduction moments by 21 and 12% at 1.50 and 1.75 m/s, respectively. Loading rates were not significantly different

  18. Long-Term Reliability of a Hard-Switched Boost Power Processing Unit Utilizing SiC Power MOSFETs

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Iannello, Christopher J.; Del Castillo, Linda Y.; Fitzpatrick, Fred D.; Mojarradi, Mohammad M.; Chen, Yuan

    2016-01-01

    Silicon carbide (SiC) power devices have demonstrated many performance advantages over their silicon (Si) counterparts. As the inherent material limitations of Si devices are being swiftly realized, wide-band-gap (WBG) materials such as SiC have become increasingly attractive for high power applications. In particular, SiC power metal oxide semiconductor field effect transistors' (MOSFETs) high breakdown field tolerance, superior thermal conductivity and low-resistivity drift regions make these devices an excellent candidate for power dense, low loss, high frequency switching applications in extreme environment conditions. In this paper, a novel power processing unit (PPU) architecture is proposed utilizing commercially available 4H-SiC power MOSFETs from CREE Inc. A multiphase straight boost converter topology is implemented to supply up to 10 kilowatts full-scale. High Temperature Gate Bias (HTGB) and High Temperature Reverse Bias (HTRB) characterization is performed to evaluate the long-term reliability of both the gate oxide and the body diode of the SiC components. Finally, susceptibility of the CREE SiC MOSFETs to damaging effects from heavy-ion radiation representative of the on-orbit galactic cosmic ray environment are explored. The results provide the baseline performance metrics of operation as well as demonstrate the feasibility of a hard-switched PPU in harsh environments.

  19. The effects of electric power industry restructuring on the safety of nuclear power plants in the United States

    Science.gov (United States)

    Butler, Thomas S.

    Throughout the United States the electric utility industry is restructuring in response to federal legislation mandating deregulation. The electric utility industry has embarked upon an extraordinary experiment by restructuring in response to deregulation that has been advocated on the premise of improving economic efficiency by encouraging competition in as many sectors of the industry as possible. However, unlike the telephone, trucking, and airline industries, the potential effects of electric deregulation reach far beyond simple energy economics. This dissertation presents the potential safety risks involved with the deregulation of the electric power industry in the United States and abroad. The pressures of a competitive environment on utilities with nuclear power plants in their portfolio to lower operation and maintenance costs could squeeze them to resort to some risky cost-cutting measures. These include deferring maintenance, reducing training, downsizing staff, excessive reductions in refueling down time, and increasing the use of on-line maintenance. The results of this study indicate statistically significant differences at the .01 level between the safety of pressurized water reactor nuclear power plants and boiling water reactor nuclear power plants. Boiling water reactors exhibited significantly more problems than did pressurized water reactors.

  20. Testing of the Engineering Model Electrical Power Control Unit for the Fluids and Combustion Facility

    Science.gov (United States)

    Kimnach, Greg L.; Lebron, Ramon C.; Fox, David A.

    1999-01-01

    The John H. Glenn Research Center at Lewis Field (GRC) in Cleveland, OH and the Sundstrand Corporation in Rockford, IL have designed and developed an Engineering Model (EM) Electrical Power Control Unit (EPCU) for the Fluids Combustion Facility, (FCF) experiments to be flown on the International Space Station (ISS). The EPCU will be used as the power interface to the ISS power distribution system for the FCF's space experiments'test and telemetry hardware. Furthermore. it is proposed to be the common power interface for all experiments. The EPCU is a three kilowatt 12OVdc-to-28Vdc converter utilizing three independent Power Converter Units (PCUs), each rated at 1kWe (36Adc @ 28Vdc) which are paralleled and synchronized. Each converter may be fed from one of two ISS power channels. The 28Vdc loads are connected to the EPCU output via 48 solid-state and current-limiting switches, rated at 4Adc each. These switches may be paralleled to supply any given load up to the 108Adc normal operational limit of the paralleled converters. The EPCU was designed in this manner to maximize allocated-power utilization. to shed loads autonomously, to provide fault tolerance. and to provide a flexible power converter and control module to meet various ISS load demands. Tests of the EPCU in the Power Systems Facility testbed at GRC reveal that the overall converted-power efficiency, is approximately 89% with a nominal-input voltage of 12OVdc and a total load in the range of 4O% to 110% rated 28Vdc load. (The PCUs alone have an efficiency of approximately 94.5%). Furthermore, the EM unit passed all flight-qualification level (and beyond) vibration tests, passed ISS EMI (conducted, radiated. and susceptibility) requirements. successfully operated for extended periods in a thermal/vacuum chamber, was integrated with a proto-flight experiment and passed all stability and functional requirements.

  1. Power conversion unit for linear motor drive for electric railcar; Linear motor kudo denshayo shuhenkan sochi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Power conversion units have been delivered, designed for use aboard linear motor-driven electric railcars to connect JFK Airport, New York City, and its outskirts. Using this system, 750VDC power is collected from a third rail, and AC power is supplied from two power conversion units installed on each railcar to linear motors mounted on two sets of bogies, one for each bogie set. The railcar may be operated singly, and its maximum speed is 110km/h. This is the first linear motor-driven railcar ever to run by vector control. It is found that the railcar is highly responsive to control across the whole speed range including sudden changes in load. The railcars will come into service operation upon completion of the railroads now being constructed. (translated by NEDO)

  2. AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

    2001-06-30

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

  3. Dynamic Placement of Wind Power Distributed Generation Units in Distribution Power Systems

    DEFF Research Database (Denmark)

    Hajizadeh, Amin; Baghayipour, Mohammad Reza

    2017-01-01

    process. Thereby, an accurate dynamic model of the active and reactive powers injected by Wind DG to the system is employed in which the interactions between the Wind DG and the distribution network are well regarded. Finally, simulation results are given to show the capability of proposed approach......The placement problem of Distributed Generators (DGs) in distribution networks becomes much more complicated in the case of using the DGs with renewable energy resources, due to several causes like their intermittent output powers, the interactions between DGs and the rest of distribution network......, and other involved uncertainties. This paper develops a new approach for optimal placement of Wind DGs in which all of such influences are perfectly handled. This method simultaneously considers the time variations of dynamic nodal demands, nodal voltage magnitudes, and wind speed in the Wind DG placement...

  4. Optimization models of the supply of power structures’ organizational units with centralized procurement

    Directory of Open Access Journals (Sweden)

    Sysoiev Volodymyr

    2013-01-01

    Full Text Available Management of the state power structures’ organizational units for materiel and technical support requires the use of effective tools for supporting decisions, due to the complexity, interdependence, and dynamism of supply in the market economy. The corporate nature of power structures is of particular interest to centralized procurement management, as it provides significant advantages through coordination, eliminating duplication, and economy of scale. This article presents optimization models of the supply of state power structures’ organizational units with centralized procurement, for different levels of simulated materiel and technical support processes. The models allow us to find the most profitable options for state power structures’ organizational supply units in a centre-oriented logistics system in conditions of the changing needs, volume of allocated funds, and logistics costs that accompany the process of supply, by maximizing the provision level of organizational units with necessary material and technical resources for the entire planning period of supply by minimizing the total logistical costs, taking into account the diverse nature and the different priorities of organizational units and material and technical resources.

  5. Shortening start-up and an extension of the power unit load range

    Directory of Open Access Journals (Sweden)

    Taler Jan

    2017-01-01

    Full Text Available A power plant with additional water pressure tanks was proposed. The maximum rise in the block electric power resulting from the shut-off of low-pressure regenerative heaters was determined. At that time, the boiler is fed with hot water from water pressure tanks acting as heat accumulators. Accumulation of hot water in water tanks is also proposed in the periods of the power unit small load. In order to lower the plant electric power in the off-peak night hours, water heated to the nominal temperature in low-pressure regenerative heaters is directed from the feed water tank to pressure tanks. The water accumulated during the night is used to feed the boiler during the period of peak demand for electricity. Pressure accumulators are proposed to be used for the rapid start-up of the boiler from a cold state. The evaporator of the boiler is filled at the beginning of start-up with hot water from the accumulators. Drops in the power block electric power were determined for different capacities of the tanks and periods when they are charged. The tanks may also be used to ensure a sudden increase in the electric power of the unit that is operating in the automatic system of frequency and power control (in Polish: ARCM.

  6. A Reliability Improvement Program Planning Report for the SNAP 10A Space Nuclear Power Unit

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, M. G.; Smith, C. K.; Wilson, L. A.

    1961-03-14

    The estimated achieved reliability of SNAP 10A space nuclear power units will be relatively low at the timeof the first SNAPSHOT flight test in April 1963 and the existing R&D program does not provide a significant reliabiity growth thereafter. The total costs of an 8-satellite network using SNAP 10A units over a 5-year period has been approximated for the case where the total cost of a single satellite launched is 8 million dollars.

  7. Optimal placement of Phasor Measurement Units to Improve Parallel Power System Restoration

    OpenAIRE

    2011-01-01

    This paper proposes a new method for optimal placement of Phasor Measurement Units (PMUs) across the weak areas of the power system to monitor the status of the boundary buses during Parallel Power System Restoration (PPSR). The proposed PMU placement method is based on an Integer Linear Programming (ILP) methodology. For validation purposes, the proposed method is implemented across the weak areas of the following two test systems: New England 39-bus test system and IEEE 118-bus test system.

  8. 75 FR 14634 - Dominion Nuclear Connecticut, Inc.; Millstone Power Station, Unit Nos. 1, 2, and 3; Environmental...

    Science.gov (United States)

    2010-03-26

    ... part 73, for certain uninterruptible power supply requirements. The proposed action, an extension of... COMMISSION Dominion Nuclear Connecticut, Inc.; Millstone Power Station, Unit Nos. 1, 2, and 3; Environmental... Power Station, Unit Nos. 1, 2, and 3 (MPS1, MPS2, and MPS3, respectively), located in New London...

  9. Action Learning and Constructivist Grounded Theory: Powerfully Overlapping Fields of Practice

    Science.gov (United States)

    Rand, Jane

    2013-01-01

    This paper considers the shared characteristics between action learning (AL) and the research methodology constructivist grounded theory (CGT). Mirroring Edmonstone's [2011. "Action Learning and Organisation Development: Overlapping Fields of Practice." "Action Learning: Research and Practice" 8 (2): 93-102] article, which…

  10. Power amplification in an isolated muscle–tendon unit is load dependent

    Science.gov (United States)

    Sawicki, Gregory S.; Sheppard, Peter; Roberts, Thomas J.

    2015-01-01

    ABSTRACT During rapid movements, tendons can act like springs, temporarily storing work done by muscles and then releasing it to power body movements. For some activities, such as frog jumping, energy is released from tendon much more rapidly than it is stored, thus amplifying muscle power output. The period during which energy is loaded into a tendon by muscle work may be aided by a catch mechanism that restricts motion, but theoretical studies indicate that power can be amplified in a muscle–tendon load system even in the absence of a catch. To explore the limits of power amplification with and without a catch, we studied the bullfrog plantaris muscle–tendon during in vitro contractions. A novel servomotor controller allowed us to measure muscle–tendon unit (MTU) mechanical behavior during contractions against a variety of simulated inertial-gravitational loads, ranging from zero to 1× the peak isometric force of the muscle. Power output of the MTU system was load dependent and power amplification occurred only at intermediate loads, reaching ∼1.3× the peak isotonic power output of the muscle. With a simulated anatomical catch mechanism in place, the highest power amplification occurred at the lowest loads, with a maximum amplification of more than 4× peak isotonic muscle power. At higher loads, the benefits of a catch for MTU performance diminished sharply, suggesting that power amplification >2.5× may come at the expense of net mechanical work delivered to the load. PMID:26449973

  11. Water energy resources of the United States with emphasis on low head/low power resources

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Douglas G. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Cherry, Shane J. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Reeves, Kelly S. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Lee, Randy D. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Carroll, Gregory R. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Sommers, Garold L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL); Verdin, Kristine L. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL)

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for each of the 20 hydrologic regions are presented in Appendix A, and similar presentations for each of the 50 states are made in Appendix B.

  12. Development of High Power Amplifiers for Space and Ground-based Applications

    DEFF Research Database (Denmark)

    Hernández, Carlos Cilla

    and the Monolithic Microwave Integrated Circuits. The research work presented here focuses on practical realization and demonstration of these two types of amplifiers. The design and experimental performance assessment of 50W Solid State C-band High Power Amplifier using European Monolithic Microwave Integrated......-based amplifiers. They are efficient and provide very high power levels operating at low duty cycles. But they have a questionable longterm reliability, large footprints and they are not suitable for modern equipment with a decentralized transmitter, like a phase array system. Solid State Power Amplifier......D dissertation lies in the development of nonlinear design methodologies, manufacturing, and efficient testing of Solid State High Power Amplifier modules, with special focus on GaN state of the art technology. It is possible to identify two types of GaN Solid State High Power Amplifiers: the Hybrids...

  13. Ground-Water Quality Data in the Southern Sierra Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2007-01-01

    Ground-water quality in the approximately 1,800 square-mile Southern Sierra study unit (SOSA) was investigated in June 2006 as part of the Statewide Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Southern Sierra study was designed to provide a spatially unbiased assessment of raw ground-water quality within SOSA, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from fifty wells in Kern and Tulare Counties. Thirty-five of the wells were selected using a randomized grid-based method to provide statistical representation of the study area, and fifteen were selected to evaluate changes in water chemistry along ground-water flow paths. The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator compounds], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3-trichloropropane (1,2,3-TCP)], naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water], and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected for approximately one-eighth of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the

  14. Effect of Fly Ash Disposal on Ground Water Quality Near Parichha Thermal Power Plant, Jhansi – A Case Study

    Directory of Open Access Journals (Sweden)

    Shubham Kanchan

    2015-08-01

    Full Text Available Thermal power plant generates a huge amount of fly ash on combustion of coal which is becoming a major environmental issue. Thermal power plants are greatly facing a fly ash management problem. Open dumping of fly ash can deteriorate the groundwater quality by runoff. In the present investigation, the ground water samples were collected from nearby areas of Parichha Thermal Power Plant at six locations during the period of Jan 2014 to May 2014. The samples were taken to the laboratory and analyzed for physico-chemical properties and heavy metal content. The physico-chemical analysis was done for the parameters like pH, Turbidity, Temperature, Electrical Conductivity, Alkalinity, Total Dissolved Solids, Total Hardness, Calcium Hardness and Magnesium Hardness. The concentration of Turbidity, EC and Alkalinity was exceeding the standard at all locations and shows that the groundwater of the area is not fit for drinking. The ground water samples were also analyzed for the presence of lead and cadmium and it was found that lead was exceeding the limit although cadmium was found within the limit.

  15. Determination of technical and economic parameters of an ionic transport membrane air separation unit working in a supercritical power plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2016-09-01

    Full Text Available In this paper an air separation unit was analyzed. The unit consisted of: an ionic transport membrane contained in a four-end type module, an air compressor, an expander fed by gas that remains after oxygen separation and heat exchangers which heat the air and recirculated flue gas to the membrane operating temperature (850 °C. The air separation unit works in a power plant with electrical power equal to 600 MW. This power plant additionally consists of: an oxy-type pulverized-fuel boiler, a steam turbine unit and a carbon dioxide capture unit. Life steam parameters are 30 MPa/650 °C and reheated steam parameters are 6 MPa/670 °C. The listed units were analyzed. For constant electrical power of the power plant technical parameters of the air separation unit for two oxygen recovery rate (65% and 95% were determined. One of such parameters is ionic membrane surface area. In this paper the formulated equation is presented. The remaining technical parameters of the air separation unit are, among others: heat exchange surface area, power of the air compressor, power of the expander and auxiliary power. Using the listed quantities, the economic parameters, such as costs of air separation unit and of individual components were determined. These quantities allowed to determine investment costs of construction of the air separation unit. In addition, they were compared with investment costs for the entire oxy-type power plant.

  16. California GAMA Program: Ground-Water Quality Data in the Northern San Joaquin Basin Study Unit, 2005

    Science.gov (United States)

    Bennett, George L.; Belitz, Kenneth; Milby Dawson, Barbara J.

    2006-01-01

    Growing concern over the closure of public-supply wells because of ground-water contamination has led the State Water Board to establish the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. With the aid of the U.S. Geological Survey (USGS) and Lawrence Livermore National Laboratory, the program goals are to enhance understanding and provide a current assessment of ground-water quality in areas where ground water is an important source of drinking water. The Northern San Joaquin Basin GAMA study unit covers an area of approximately 2,079 square miles (mi2) across four hydrologic study areas in the San Joaquin Valley. The four study areas are the California Department of Water Resources (CADWR) defined Tracy subbasin, the CADWR-defined Eastern San Joaquin subbasin, the CADWR-defined Cosumnes subbasin, and the sedimentologically distinct USGS-defined Uplands study area, which includes portions of both the Cosumnes and Eastern San Joaquin subbasins. Seventy ground-water samples were collected from 64 public-supply, irrigation, domestic, and monitoring wells within the Northern San Joaquin Basin GAMA study unit. Thirty-two of these samples were collected in the Eastern San Joaquin Basin study area, 17 in the Tracy Basin study area, 10 in the Cosumnes Basin study area, and 11 in the Uplands Basin study area. Of the 32 samples collected in the Eastern San Joaquin Basin, 6 were collected using a depth-dependent sampling pump. This pump allows for the collection of samples from discrete depths within the pumping well. Two wells were chosen for depth-dependent sampling and three samples were collected at varying depths within each well. Over 350 water-quality field parameters, chemical constituents, and microbial constituents were analyzed and are reported as concentrations and as detection frequencies, by compound classification as well as for individual constituents, for the Northern San Joaquin Basin study unit as a whole and for each individual study area

  17. Power in the National Health Service: a case study of a unit considering NHS Trust status.

    Science.gov (United States)

    Peck, E

    1991-07-01

    There are a number of theoretical frameworks which aim to provide a language for understanding and discussing the nature of power and influence in organisational decision making. One of the most recent and comprehensive frameworks is that developed by Mintzberg. Following a resumé of the most pertinent sections of Mintzberg's framework, this paper uses it to investigate the power relationships in an NHS Mental Health Unit (MHU) considering NHS Trust status. This investigation reveals some important conclusions about the nature of power in the NHS but also explores some of the limitations of the framework as a descriptive and predictive tool.

  18. United Nations deliberations of the use of nuclear power sources in space: 1978-1987

    Science.gov (United States)

    Bennett, Gary L.; Sholtis, Joseph A., Jr.; Rashkow, Bruce C.

    1988-01-01

    The United Nations (U.N.) is continuing its deliberations on the use of nuclear power sources (NPS) in space. Although no complete set of legal principles has yet been agreed upon, certain scientific and technical criteria for the safe design and use of NPS have been accepted. In this respect, it should be noted that in its 1981 report, the Working Group on the Use of Power Sources in Outer Space concluded that power sources can be used safely in outer space, provided that all necessary safety requirements are met. This is also a succinct statement of the U.S. position.

  19. Analysis of selected herbicide metabolites in surface and ground water of the United States

    Science.gov (United States)

    Scribner, E.A.; Thurman, E.M.; Zimmerman, L.R.

    2000-01-01

    One of the primary goals of the US Geological Survey (USGS) Laboratory in Lawrence, Kansas, is to develop analytical methods for the analysis of herbicide metabolites in surface and ground water that are vital to the study of herbicide fate and degradation pathways in the environment. Methods to measure metabolite concentrations from three major classes of herbicides - triazine, chloroacetanilide and phenyl-urea - have been developed. Methods for triazine metabolite detection cover nine compounds: six compounds are detected by gas chromatography/mass spectrometry; one is detected by high-performance liquid chromatography with diode-array detection; and eight are detected by liquid chromatography/mass spectrometry. Two metabolites of the chloroacetanilide herbicides - ethane sulfonic acid and oxanilic acid - are detected by high-performance liquid chromatography with diode-array detection and liquid chromatography/mass spectrometry. Alachlor ethane sulfonic acid also has been detected by solid-phase extraction and enzyme-linked immunosorbent assay. Six phenylurea metabolites are all detected by liquid chromatography/mass spectrometry; four of the six metabolites also are detected by gas chromatography/mass spectrometry. Additionally, surveys of herbicides and their metabolites in surface water, ground water, lakes, reservoirs, and rainfall have been conducted through the USGS laboratory in Lawrence. These surveys have been useful in determining herbicide and metabolite occurrence and temporal distribution and have shown that metabolites may be useful in evaluation of non-point-source contamination. Copyright (C) 2000 Elsevier Science B.V.

  20. The stratigraphy of Oxfordian-Kimmeridgian (Late Jurassic) reservoir sandstones in the Witch Ground Graben, United Kingdom North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Harker, S.D. (Elf Enterprise Caledonia Ltd., Aberdeen (United Kingdom)); Mantel, K.A. (Narwhal, London (United Kingdom)); Morton, D.J. (Deminex UK Oil Gas Ltd., London (United Kingdom)); Riley, L.A. (Paleo Services, Hertfordshire (United Kingdom))

    1993-10-01

    Oil-bearing Upper Jurassic Oxfordian-Kimmeridgian sandstones of the Sgiath and Piper formations are of major economic importance in the Witch Ground Gaben, United Kingdom North Sea. They form the reservoirs in 14 fields that originally contained 2 billion bbl of oil reserves, including Scott Field, which in 1993 will be the largest producing United Kingdom North Sea oil field to come on stream in more than a decade. The Sgiath and Piper formations represent Late Jurassic transgressive and regressive phases that began with paralic deposition and culminated in a wave-dominated delta system. These phases preceded the major grabel rifting episode (late Kimmeridgian to early Ryazanian) and deposition of the Kimmeridge Clay Formation, the principal source rock of the Witch Ground Graben oil fields. A threefold subdivision of the middle to upper Oxfordian Sgiath Formation is formally proposed, with Scott field well 15/21a-15 as the designated reference well. The basal Skene Member consists of thinly interbedded paralic carbonaceous shales, coals, and sandstones. This is overlain by transgressive marine shales of the Saltire Member. The upper-most Oxfordian Scott Member consists of shallow marine sandstones that prograded to the southwest. The contact of the Sgiath and Piper formations is a basinwide transgressive marine shale (I shale), which can act as an effective barrier to fluid communication between the Sgiath and Piper reservoir sandstones.

  1. Factors That Influence Human Behavior And Negatively Affect Energy Consumption In USMC Ground Units During Operations

    Science.gov (United States)

    2016-09-01

    Boston: Prentice Hall Bulanow, Peter, Paul Tabler, and Shawn Charchan. 2011. Expeditionary Energy Assessment: Environmental Control Unit Alternatives...U.S. ARMY Rapid Equipping Force. Kotter, John P., and Leonard Schlesinger. 2008. “Choosing Strategies for Change.” Harvard Business Review 86.7

  2. Investigation of Ground-Water Contamination at Solid Waste Management Unit 12, Naval Weapons Station Charleston, North Charleston, South Carolina

    Science.gov (United States)

    Vroblesky, Don A.; Casey, Clifton C.; Petkewich, Matthew D.; Lowery, Mark A.; Conlon, Kevin J.; Harrelson, Larry G.

    2007-01-01

    The U.S. Geological Survey and the Naval Facilities Engineering Command Southeast investigated natural and engineered remediation of chlorinated volatile organic compound ground-water contamination at Solid Waste Management Unit 12 at the Naval Weapons Station Charleston, North Charleston, South Carolina. The primary contaminants of interest are tetrachloroethene, 1,1,1-trichloroethane, trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,1-dichloroethane, and 1,1-dichloroethene. In general, the hydrogeology of Solid Waste Management Unit 12 consists of a surficial aquifer, composed of sand to clayey sand, overlain by dense clay that extends from about land surface to a depth of about 8 to 10 feet and substantially limits local recharge. During some months in the summer, evapotranspiration and limited local recharge result in ground-water level depressions in the forested area near wells 12MW-12S and 12MW-17S, seasonally reflecting the effects of evapotranspiration. Changes in surface-water levels following Hurricane Gaston in 2004 resulted in a substantial change in the ground-water levels at the site that, in turn, may have caused lateral shifting of the contaminant plume. Hydraulic conductivity, determined by slug tests, is higher along the axis of the plume in the downgradient part of the forests than adjacent to the plume, implying that there is some degree of lithologic control on the plume location. Hydraulic conductivity, hydraulic gradient, sulfur-hexafluoride measurements, and historical data indicate that ground-water flow rates are substantially slower in the forested area relative to upgradient areas. The ground-water contamination, consisting of chlorinated volatile organic compounds, extends eastward in the surficial aquifer from the probable source area near a former underground storage tank. Engineered remediation approaches include a permeable reactive barrier and phytoremediation. The central part of the permeable reactive barrier along the

  3. Inventory of power plants in the United States as of January 1, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the US (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1998. The publication also provides a 10-year outlook for generating unit additions and generating unit changes. This report is prepared annually by the Energy Information Administration (EIA). Data summarized in this report are useful to a wide audience. This is a report of electric utility data; in cases where summary data or nonconfidential data of nonutilities are presented, it is specifically noted as nonutility data. 19 figs., 36 tabs.

  4. Inventory of power plants in the United States as of January 1, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1996. The publication also provides a 10-year outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress; Federal and State agencies; the electric utility industry; and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 as amended.

  5. Inventory of power plants in the United States as of January 1, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The Inventory of Power Plants in the United States provides annual statistics on generating units operated by electric utilities in the United States (the 50 States and the District of Columbia). Statistics presented in this report reflect the status of generating units as of January 1, 1997. The publication also provides a 10-yr outlook for generating unit additions. This report is prepared annually by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy (DOE). Data summarized in this report are useful to a wide audience including Congress; Federal and State agencies; the electric utility industry; and the general public. Data presented in this report were assembled and published by the EIA to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended.

  6. Inventory of power plants in the United States 1989. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-21

    This document is prepared annually by the Electric Power Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), US Department of Energy (DOE). The purpose of this publication is to provide year-end statistics about electric generating units in operation and to provide a 10-year outlook of future generating unit additions by electric utilities in the United States (the 50 states and the District of Columbia). Data summarized in this report are useful to a wide audience including Congress, federal and state agencies, the electric utility industry, and the general public. The data presented in this report were assembled and published by the EIA, to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275) as amended. The report is organized into the following chapters: Summary Statistics; Operable Electric Generating Units; and Projected Electric Generating Unit Additions.

  7. Increasing the Mobility of Dismounted Marines. Small Unit Mobility Enhancement Technologies: Unmanned Ground Vehicles Market Survey

    Science.gov (United States)

    2009-10-01

    a large dog or small mule, BigDog is about 3 feet long and 2.5 feet tall. It is powered by a small engine (a Leopard one-cylinder, two- stroke , water...DSTO http://www.dsto.defence.gov.au Austria Crayler BM Portable Forklift PALFINGER CRAYLER STAPLERTECHNIK GMBH www.palfinger.com Austria FMR

  8. Incorporating Wind Power Forecast Uncertainties Into Stochastic Unit Commitment Using Neural Network-Based Prediction Intervals.

    Science.gov (United States)

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2015-09-01

    Penetration of renewable energy resources, such as wind and solar power, into power systems significantly increases the uncertainties on system operation, stability, and reliability in smart grids. In this paper, the nonparametric neural network-based prediction intervals (PIs) are implemented for forecast uncertainty quantification. Instead of a single level PI, wind power forecast uncertainties are represented in a list of PIs. These PIs are then decomposed into quantiles of wind power. A new scenario generation method is proposed to handle wind power forecast uncertainties. For each hour, an empirical cumulative distribution function (ECDF) is fitted to these quantile points. The Monte Carlo simulation method is used to generate scenarios from the ECDF. Then the wind power scenarios are incorporated into a stochastic security-constrained unit commitment (SCUC) model. The heuristic genetic algorithm is utilized to solve the stochastic SCUC problem. Five deterministic and four stochastic case studies incorporated with interval forecasts of wind power are implemented. The results of these cases are presented and discussed together. Generation costs, and the scheduled and real-time economic dispatch reserves of different unit commitment strategies are compared. The experimental results show that the stochastic model is more robust than deterministic ones and, thus, decreases the risk in system operations of smart grids.

  9. Results from tests of the system for automatically controlling frequency and power of the PGU-450 power unit at the kaliningrad TETs-2 cogeneration station

    Science.gov (United States)

    Bilenko, V. A.; Manevskaya, O. A.; Melamed, A. D.

    2008-10-01

    The structure of the system and the results of tests for checking the preparedness of the power unit for common primary control of the network frequency are described. An analysis of the results is presented, and an assessment is made of whether the PGU-450 unit can participate in selective primary and automatic secondary control of frequency and power.

  10. Ground-water exploration in Al Marj area, Cyrenaica, United Kingdom of Libya

    Science.gov (United States)

    Newport, T.G.; Haddor, Yousef

    1963-01-01

    The present report, based largely on fieldwork during 1959-61, describes the results of reconnaissance hydrogeologic studies and exploratory drilling to evaluate the general water-bearing properties of the rocks and the availability of groundwater supplies for irrigation, stock, and village uses in Al Marj area. These studies and the drilling were conducted under the auspices of the U.S. Operations Mission of the International Cooperation Administration. Al Marj area, located in the Province of Cyrenaica on the southern coast of the Mediterranean Sea, contains a land area of about 6,770 square kilometers. Along the Mediterranean shore is a narrow coastal plain that rises evenly to the base of an escarpment that forms the seaward front of an undulating plateau known as. Al Jabal al Akhgiar. The climate is semiarid; seasonal rainfall occurs during the winter months. Owing to orographic effects, the rainfall is somewhat higher in the Jabal than in the coastal plain. The average annual rainfall ranges from about 250 millimeters in the coastal plain to 450 millimeters on the Jabal. All the streams (wadis) of the area are ephemeral and flow only in response to heavy rains of the winter season. From a drainage divide on the Jabal some streams flow north and northwest toward the sea and the others, south and southeast to the interior desert. Solution features, such as limestone sink holes, are common in the coastal plain and a large solution depression occurs near Al Marj. The rocks of A1 Marj area consist predominantly of limestone and some sandstone and shale; they range from Cretaceous to Miocene age. On the coastal plain Miocene limestone is locally mantled by Quaternary alluvial, beach and lagoonal deposits. The Miocene and older beds have a regional southerly dip. These rocks are broken by northeast-trending normal faults in the coastal and inland escarpments. The ground-water reservoir is contained chiefly in fractures, bedding planes, and solution openings in the

  11. Ground water in the Sirte area, Tripolitania, United Kingdom of Libya

    Science.gov (United States)

    Ogilbee, William

    1964-01-01

    The present study of the ground-water conditions in the Sirte area was made during December 1961 and March-April 1962 at the request of officials of the Government of Libya. Particular attention was given to the potential of the fresh-water aquifer near Qasr Bu Itadi as a source of water for Sirte. The Sirte area lies on the southern coast of the Mediterranean Sea about 450 kilometers east-southeast of Tripoli, cocapital of Libya. Although the area receives some winter precipitation, the climate is arid. The surface rocks of the area are chiefly Miocene limestone containing marl, clay, and some sandstone, though Quaternary deposits occur along the wadis and mantle the Miocene rocks in the coastal plain. Fresh ground water occurs locally in Recent sand dunes near Zaafran and in Miocene limestone near Qasr Bu Hadi, south of a probable fault. Elsewhere in the Sirte area, ground water occurs generally in Tertiary rocks but contains 3,000 or more parts per million of dissolved solids. To establish the hydraulic characteristics of the fresh-water aquifer in the Qasr Bu Itadi area, two test wells were drilled and a controlled pumping test was made. The coefficient of transmissibility was found to be about 25,000 gallons per day per foot (13.68 cubic meters per hour per meter), and the coefficient of storage, about 0.00055. The pumping test also established the presence of two barrier-type hydraulic boundaries for the aquifer, one about 250 meters westward and another about 535 meters northward from well 9a. The first boundary is probably the small anticline on which stands the fort of Qasr Bu Itadi; the second boundary is probably a northwest trending fault. Using the transmissibility and storage coefficients derived from the pumping test, the writer concludes that (1) the total draft from the fresh-water aquifer should not exceed 13.5 cubic meters per hour and (2) production wells should be at least 3 kilometers south of well 9a.

  12. Techno­-Choreographies: Aerial and grounded bodies in the early years of powered flight

    DEFF Research Database (Denmark)

    Simonsen, Dorthe Gert

    of aviation from the ground. By exploring how the early airplane ‘choreographed’ and reconfigured aerial as well as earthbound bodies, this paper tries to grasp the transformative and non-representational interactions between technology and the human embodiment of aerial mobility. As an introduction...... of flight points us to a body in transition; a body choreographed by aviation, as transformative for the few who flew, as for the many who remained below....

  13. STS-45 ATLAS-1 pallet and Igloo power unit mating in KSC O and C Bldg

    Science.gov (United States)

    1992-01-01

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, Atmosphere Laboratory for Applications and Science (ATLAS) 1 pallet and Igloo power unit mating completed in Kennedy Space Center (KSC) Operations and Checkout (O and C) Bldg test stand 3. View provided by KSC with alternate number KSC-91PC-1704.

  14. Validation of Fuqing Nuclear Power Plant Unit 1 Cycle 2 Refueling Design

    Institute of Scientific and Technical Information of China (English)

    PAN; Cui-jie; XIA; Zhao-dong; ZHU; Qing-fu

    2015-01-01

    Fuqing Nuclear Power Plant Unit 1Cycle 2refueling design was validated with the PWR core fuel management package CMS(CASMO5,CMSLINK5and SIMULATE5),including validating fuel management report,validating reload safety evaluation report,validating nuclear design report and validating physics tests report.

  15. Development of a power electronics unit for the Space Station plasma contactor

    Science.gov (United States)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-02-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  16. United Kingdom's experience. [Power system transmission open access

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, S.M.

    1994-12-01

    This is a presentation of the United Kingdom's experience with power transmission open access. The topics of the presentation include the objectives of changing, commercial arrangements and economic drivers, long term effects, the effects of moving to a more competitive environment, and factors affecting open access such as political climate and market regulation.

  17. 77 FR 59679 - Central Vermont Public Service Corporation (Millstone Power Station, Unit 3); Order Approving...

    Science.gov (United States)

    2012-09-28

    .... (DNC), Central Vermont Public Service Corporation (CVPS) and Massachusetts Municipal Wholesale Electric Company (MMWE) (collectively ``the licensees'' or ``DNC, Inc., et al.'') are the co-holders of the Renewed... Power Station, Unit 3 (MPS3). CVPS is a non-operating owner of a 1.7303% interest in MPS3. DNC is...

  18. Using domain specific languages to improve the development of a power control unit

    NARCIS (Netherlands)

    Schuts, M.; Hooman, J.

    2015-01-01

    To improve the design of a power control unit at Philips, two Domain Specific Languages (DSLs) have been used. The first DSL provides a concise and readable notation for the essential state transitions. It is used to generate both configuration files and analysis models. In addition, we also generat

  19. 76 FR 48184 - Exelon Nuclear, Peach Bottom Atomic Power Station, Unit 1; Exemption From Certain Security...

    Science.gov (United States)

    2011-08-08

    ... a permanently shut down nuclear reactor facility. PBAPS Unit 1 was a high-temperature, gas-cooled... nuclear power reactors against radiological sabotage,'' paragraph (b)(1) states, ``The licensee shall... its objective to provide high assurance that activities involving special nuclear material are...

  20. Development of a Power Electronics Unit for the Space Station Plasma Contactor

    Science.gov (United States)

    Hamley, John A.; Hill, Gerald M.; Patterson, Michael J.; Saggio, Joseph, Jr.; Terdan, Fred; Mansell, Justin D.

    1994-01-01

    A hollow cathode plasma contactor has been baselined as a charge control device for the Space Station (SS) to prevent deleterious interactions of coated structural components with the ambient plasma. NASA LeRC Work Package 4 initiated the development of a plasma contactor system comprised of a Power Electronics Unit (PEU), an Expellant Management Unit (EMU), a command and data interface, and a Plasma Contactor Unit (PCU). A breadboard PEU was designed and fabricated. The breadboard PEU contains a cathode heater and discharge power supply, which were required to operate the PCU, a control and auxiliary power converter, an EMU interface, a command and telemetry interface, and a controller. The cathode heater and discharge supplies utilized a push-pull topology with a switching frequency of 20 kHz and pulse-width-modulated (PWM) control. A pulse ignition circuit derived from that used in arcjet power processors was incorporated in the discharge supply for discharge ignition. An 8088 based microcontroller was utilized in the breadboard model to provide a flexible platform for controller development with a simple command/data interface incorporating a direct connection to SS Mulitplexer/Demultiplexer (MDM) analog and digital I/O cards. Incorporating this in the flight model would eliminate the hardware and software overhead associated with a 1553 serial interface. The PEU autonomously operated the plasma contactor based on command inputs and was successfully integrated with a prototype plasma contactor unit demonstrating reliable ignition of the discharge and steady-state operation.

  1. 77 FR 51071 - Indiana Michigan Power Company, Donald C. Cook Nuclear Plant, Unit 2, Environmental Assessment...

    Science.gov (United States)

    2012-08-23

    ..., operational, or storing processes). The fuel storage and handling, radioactive waste, and other systems which... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Indiana Michigan Power Company, Donald C. Cook Nuclear Plant, Unit 2, Environmental Assessment and...

  2. North Germany is gaining ground in solar power generation; Der Norden holt beim Sonnenstrom auf

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2011-10-15

    In 2010, the North German states of Brandenburg and Schleswig-Holstein took second and third place in the construction of new solar systems. Bavaria is still leading. The capacity increase in the solar sector substitutes one nuclear power station.

  3. Assessing air quality and climate impacts of future ground freight choice in United States

    Science.gov (United States)

    Liu, L.; Bond, T. C.; Smith, S.; Lee, B.; Ouyang, Y.; Hwang, T.; Barkan, C.; Lee, S.; Daenzer, K.

    2013-12-01

    The demand for freight transportation has continued to increase due to the growth of domestic and international trade. Emissions from ground freight (truck and railways) account for around 7% of the greenhouse gas emissions, 4% of the primary particulate matter emission and 25% of the NOx emissions in the U.S. Freight railways are generally more fuel efficient than trucks and cause less congestion. Freight demand and emissions are affected by many factors, including economic activity, the spatial distribution of demand, freight modal choice and routing decision, and the technology used in each modal type. This work links these four critical aspects of freight emission system to project the spatial distribution of emissions and pollutant concentration from ground freight transport in the U.S. between 2010 and 2050. Macroeconomic scenarios are used to forecast economic activities. Future spatial structure of employment and commodity demand in major metropolitan areas are estimated using spatial models and a shift-share model, respectively. Freight flow concentration and congestion patterns in inter-regional transportation networks are predicted from a four-step freight demand forecasting model. An asymptotic vehicle routing model is also developed to estimate delivery ton-miles for intra-regional freight shipment in metropolitan areas. Projected freight activities are then converted into impacts on air quality and climate. CO2 emissions are determined using a simple model of freight activity and fuel efficiency, and compared with the projected CO2 emissions from the Second Generation Model. Emissions of air pollutants including PM, NOx and CO are calculated with a vehicle fleet model SPEW-Trend, which incorporates the dynamic change of technologies. Emissions are projected under three economic scenarios to represent different plausible futures. Pollutant concentrations are then estimated using tagged chemical tracers in an atmospheric model with the emissions serving

  4. Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M. (Mathematics and Computer Science); (Univ. of Chicago); (New York Univ.)

    2009-10-09

    We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

  5. The virtual digital nuclear power plant: A modern tool for supporting the lifecycle of VVER-based nuclear power units

    Science.gov (United States)

    Arkadov, G. V.; Zhukavin, A. P.; Kroshilin, A. E.; Parshikov, I. A.; Solov'ev, S. L.; Shishov, A. V.

    2014-10-01

    The article describes the "Virtual Digital VVER-Based Nuclear Power Plant" computerized system comprising a totality of verified initial data (sets of input data for a model intended for describing the behavior of nuclear power plant (NPP) systems in design and emergency modes of their operation) and a unified system of new-generation computation codes intended for carrying out coordinated computation of the variety of physical processes in the reactor core and NPP equipment. Experiments with the demonstration version of the "Virtual Digital VVER-Based NPP" computerized system has shown that it is in principle possible to set up a unified system of computation codes in a common software environment for carrying out interconnected calculations of various physical phenomena at NPPs constructed according to the standard AES-2006 project. With the full-scale version of the "Virtual Digital VVER-Based NPP" computerized system put in operation, the concerned engineering, design, construction, and operating organizations will have access to all necessary information relating to the NPP power unit project throughout its entire lifecycle. The domestically developed commercial-grade software product set to operate as an independently operating application to the project will bring about additional competitive advantages in the modern market of nuclear power technologies.

  6. Green Power Marketing in the United States: A Status Report (2008 Data)

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L.; Kreycik, C.; Friedman, B.

    2009-09-01

    Voluntary consumer decisions to buy electricity supplied from renewable energy sources represent a powerful market support mechanism for renewable energy development. In the early 1990s, a small number of U.S. utilities began offering 'green power' options to their customers. Since then, these products have become more prevalent, both from traditional utilities and from renewable energy marketers operating in states that have introduced competition into their retail electricity markets or offering renewable energy certificates (RECs) online. Today, more than half of all U.S. electricity customers have an option to purchase some type of green power product directly from a retail electricity provider, while all consumers have the option to purchase RECs. This report documents green power marketing activities and trends in the United States including utility green pricing programs offered in regulated electricity markets; green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of RECs; and renewable energy sold as greenhouse gas offsets in the United States. These sections are followed by a discussion of key market trends and issues. The final section offers conclusions and observations.

  7. Green Power Marketing in the United States. A Status Report (2008 Data)

    Energy Technology Data Exchange (ETDEWEB)

    Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kreycik, Claire [National Renewable Energy Lab. (NREL), Golden, CO (United States); Friedman, Barry [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-09-01

    Voluntary consumer decisions to buy electricity supplied from renewable energy sources represent a powerful market support mechanism for renewable energy development. In the early 1990s, a small number of U.S. utilities began offering 'green power' options to their customers. Since then, these products have become more prevalent, both from traditional utilities and from renewable energy marketers operating in states that have introduced competition into their retail electricity markets or offering renewable energy certificates (RECs) online. Today, more than half of all U.S. electricity customers have an option to purchase some type of green power product directly from a retail electricity provider, while all consumers have the option to purchase RECs. This report documents green power marketing activities and trends in the United States including utility green pricing programs offered in regulated electricity markets; green power marketing activity in competitive electricity markets, as well as green power sold to voluntary purchasers in the form of RECs; and renewable energy sold as greenhouse gas offsets in the United States. These sections are followed by a discussion of key market trends and issues. The final section offers conclusions and observations.

  8. A Closed Brayton Power Conversion Unit Concept for Nuclear Electric Propulsion for Deep Space Missions

    Science.gov (United States)

    Joyner, Claude Russell; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt & Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level.

  9. Ground Water Atlas of the United States: Segment 4, Oklahoma, Texas

    Science.gov (United States)

    Ryder, Paul D.

    1996-01-01

    The two States, Oklahoma and Texas, that compose Segment 4 of this Atlas are located in the south-central part of the Nation. These States are drained by numerous rivers and streams, the largest being the Arkansas, the Canadian, the Red, the Sabine, the Trinity, the Brazos, the Colorado, and the Pecos Rivers and the Rio Grande. Many of these rivers and their tributaries supply large amounts of water for human use, mostly in the eastern parts of the two States. The large perennial streams in the east with their many associated impoundments coincide with areas that have dense populations. Large metropolitan areas such as Oklahoma City and Tulsa, Okla., and Dallas, Fort Worth, Houston, and Austin, Tex., are supplied largely or entirely by surface water. However, in 1985 more than 7.5 million people, or about 42 percent of the population of the two States, depended on ground water as a source of water supply. The metropolitan areas of San Antonio and El Paso, Tex., and numerous smaller communities depend largely or entirely on ground water for their source of supply. The ground water is contained in aquifers that consist of unconsolidated deposits and consolidated sedimentary rocks. This chapter describes the geology and hydrology of each of the principal aquifers throughout the two-State area. Precipitation is the source of all the water in Oklahoma and Texas. Average annual precipitation ranges from about 8 inches per year in southwestern Texas to about 56 inches per year in southeastern Texas (fig. 1). In general, precipitation increases rather uniformly from west to east in the two States. Much of the precipitation either flows directly into rivers and streams as overland runoff or indirectly as base flow that discharges from aquifers where the water has been stored for some time. Accordingly, the areal distribution of average annual runoff from 1951 to 1980 (fig. 2) reflects that of average annual precipitation. Average annual runoff in the two-State area ranges

  10. Strong Magnetic Units for a Wind Power Tower Inspection and Maintenance Robot

    Directory of Open Access Journals (Sweden)

    Xueshan Gao

    2012-11-01

    Full Text Available For developing a climbing robot which is used to inspect and maintain a wind power tower, the magnetic unit is one of the key components. Based on analysis of the working conditions of the robot, the approach in this paper is to use four common kinds of magnetic units for adapting to the conical surface. The magnetic circuit of these units is given by theory analysis and is simulated using ANSYS. Moreover, the magnetic force is analysed in detail and the results prove that the magnetic force is greatly influenced by the gap between the unit and the wall surface. In this paper, the design procedures and selection criteria based on the analytical results are given. Meanwhile, these units are compared with each other with the aid of ANSYS. From the results of this comparison, it can be ascertained that the unit using Installation C has the better performance. Furthermore, the effectiveness of the magnetic unit using Installation C is verified by a prototype. The simulations and experiments show that the magnetic unit can allow the robot to keep in contact with the conical wall surface as well as the plane wall surface.

  11. Overview of the Habitat Demonstration Unit Power System Integration and Operation at Desert RATS 2010

    Science.gov (United States)

    Colozza, Anthony J.; George, Pat; Gambrell, Ronnie; Chapman, Chris

    2013-01-01

    A habitat demonstration unit (HDU) was constructed at NASA Johnson Space Center (JSC) and designed by a multicenter NASA team led out of NASA Kennedy Space Center (KSC). The HDU was subsequently utilized at the 2010 Desert Research and Technology Studies (RATS) program held at the Black Point Lava Flow in Arizona. This report describes the power system design, installation and operation for the HDU. The requirements for the power system were to provide 120 VAC, 28 VDC, and 120 VDC power to the various loads within the HDU. It also needed to be capable of providing power control and real-time operational data on the load's power consumption. The power system had to be capable of operating off of a 3 phase 480 VAC generator as well as 2 solar photovoltaic (PV) power systems. The system operated well during the 2 week Desert RATS campaign and met all of the main goals of the system. The power system is being further developed to meet the future needs of the HDU and options for this further development are discussed.

  12. Design and Testing of a Breadboard Electrical Power Control Unit for the Fluid Combustion Facility Experiment

    Science.gov (United States)

    Kimnach, Greg L.; Lebron, Ramon C.

    1999-01-01

    The Fluid Combustion Facility (FCF) Project and the Power Technology Division at the NASA Glenn Research Center (GRC) at Lewis Field in Cleveland, OH along with the Sundstrand Corporation in Rockford, IL are jointly developing an Electrical Power Converter Unit (EPCU) for the Fluid Combustion Facility to be flown on the International Space Station (ISS). The FCF facility experiment contains three racks: A core rack, a combustion rack, and a fluids rack. The EPCU will be used as the power interface to the ISS 120V(sub dc) power distribution system by each FCF experiment rack which requires 28V(sub dc). The EPCU is a modular design which contains three 120V(sub dc)-to-28V(sub dc) full-bridge, power converters rated at 1 kW(sub e) each bus transferring input relays and solid-state, current-limiting input switches, 48 current-limiting, solid-state, output switches; and control and telemetry hardware. The EPCU has all controls required to autonomously share load demand between the power feeds and--if absolutely necessary--shed loads. The EPCU, which maximizes the usage of allocated ISS power and minimizes loss of power to loads, can be paralleled with other EPCUs. This paper overviews the electrical design and operating characteristics of the EPCU and presents test data from the breadboard design.

  13. A short note on ground-motion recordings from the M 7.9 Wenchuan, China, earthquake and ground-motion prediction equations in the Central and Eastern United States

    Science.gov (United States)

    Wang, Z.; Lu, M.

    2011-01-01

    The 12 May 2008 Wenchuan earthquake (M 7.9) occurred along the western edge of the eastern China SCR and was well recorded by modern strong-motion instruments: 93 strong-motion stations within 1.4 to 300 km rupture distance recorded the main event. Preliminary comparisons show some similarities between ground-motion attenuation in the Wenchuan region and the central and eastern United States, suggesting that ground motions from the Wenchuan earthquake could be used as a database providing constraints for developing GMPEs for large earthquakes in the central and eastern United States.

  14. Kinematic comparison of walking on uneven ground using powered and unpowered prostheses.

    Science.gov (United States)

    Gates, Deanna H; Aldridge, Jennifer M; Wilken, Jason M

    2013-04-01

    Recent research has focused on the design of intelligent prosthetic ankle devices with the goal of adapting behavior of the device to accommodate all walking surfaces that an individual encounters in daily life. To date, no studies have looked at how such devices perform on uneven terrain. 11 young adults with unilateral transtibial amputation participated in two data collection sessions spaced approximately 3 weeks apart. In each session they walked across a loose rock surface at three controlled speeds. In the first session, they wore a passive, energy storage and return prosthesis and in the second, they wore a powered prosthesis (BiOM, iWalk, Bedford, MA, USA). Subjects had a 10% faster self-selected walking speed when wearing the powered (1.16 m/s) compared to unpowered prosthesis (1.05 m/s; p=0.031). They walked with increased ankle plantarflexion on their prosthetic limb throughout the gait cycle when wearing the powered compared to unpowered prosthesis. This was especially evident in the increased plantarflexion during push-off (p<0.001). There was a small (<3°), but statistically significant decrease in knee flexion during early stance when wearing the powered device (p=0.045). Otherwise, the kinematics of the knee and hip were nearly identical when wearing the different devices. Subjects had decreased medial-lateral motion of their center of mass when wearing the powered prosthesis (p=0.020), but there were no differences in medial-lateral margins of stability between the devices (p=0.662). Subjects did not significantly alter their proximal joint kinematics on this irregular surface as a result of the addition of power. Published by Elsevier Ltd.

  15. Managing United States public lands in response to climate change: a view from the ground up.

    Science.gov (United States)

    Ellenwood, Mikaela S; Dilling, Lisa; Milford, Jana B

    2012-05-01

    Federal land managers are faced with the task of balancing multiple uses and goals when making decisions about land use and the activities that occur on public lands. Though climate change is now well recognized by federal agencies and their local land and resource managers, it is not yet clear how issues related to climate change will be incorporated into on-the-ground decision making within the framework of multiple use objectives. We conducted a case study of a federal land management agency field office, the San Juan Public Lands Center in Durango, CO, U.S.A., to understand from their perspective how decisions are currently made, and how climate change and carbon management are being factored into decision making. We evaluated three major management sectors in which climate change or carbon management may intersect other use goals: forests, biofuels, and grazing. While land managers are aware of climate change and eager to understand more about how it might affect land resources, the incorporation of climate change considerations into everyday decision making is currently quite limited. Climate change is therefore on the radar screen, but remains a lower priority than other issues. To assist the office in making decisions that are based on sound scientific information, further research is needed into how management activities influence carbon storage and resilience of the landscape under climate change.

  16. Woodcock singing-ground counts and habitat changes in the northeastern United States

    Science.gov (United States)

    Dwyer, T.J.; McAuley, D.G.; Derleth, E.L.

    1983-01-01

    Aerial photography from the late 1960's and the late 1970's was used to study habitat changes along 78 American woodcock (Scolopax minor) singing-ground routes in 9 northeastern states. The most noticeable changes were declines in the amount of abandoned field, cropland, shrubland, and field/pasture. The amount of land in the urban/industrial type increased 33.4% from the late 1960's to the late 1970's. We examined relationships between the woodcock call-count index and habitat variables using multiple-regression techniques. The abundance of calling male woodcock was positively correlated with the amount of abandoned field and alder (Alnus sp.) and negatively correlated with the amount of urban/industrial type. However, only the change in the urban/industrial type was significantly (P < 0.05) related to the change in the call-count index. Urban/industrial area increased, whereas the call-count index declined on average in our sample of routes by 1.4 birds/route (40.5%).

  17. Physical fitness and nutritional status of polish ground force unit recruits.

    Science.gov (United States)

    Tomczak, A; Bertrandt, J; Kłos, A

    2012-12-01

    The purpose of the work was to conduct an examination of the physical fitness and nutritional status of recruits (221 men beginning military service in the infantry unit). Soldiers' physical efficiency was estimated using 4 tests: standing long jump, pull-ups on bar, 30-second sit-ups and 1000-metre run. The nutritional status assessment was done based on anthropometric measurements including measurements of body height, body mass and selected skin fold thickness. The study group of soldiers were the best at sit-ups (46.33 points). They got over 40 points for the 1000-metre run (43.68 points) and for pull-ups on bar (41.69 points). They obtained the lowest scores for standing long jumps (30.77 points). About 14% of recruits were overweight and 4.1% underweight. Recruits enrolling in the infantry unit present a low physical fitness level. Overweight and obesity occurrence, and particularly underweight, in recruits testify to improper nutrition before beginning military service.

  18. Ground-water quality in Bannock, Bear Lake, Caribou, and part of Power counties, southeastern Idaho

    Science.gov (United States)

    Seitz, H.R.; Norvitch, R.F.

    1979-01-01

    The 103 wells sampled during the study establish a quasi-network that could be resampled in the future to document and analyze changes in ground-water quality in the southeastern Idaho study area. The main aquifers are categorized as alluvium of Quaternary age, basalt of Quaternary and (or) Tertiary age, rocks of the Salt Lake Formation of Tertiary age, and undifferentiated bedrock of pre-Tertiary age. Dissolved solids, hardness, nitrite plus nitrate as nitrogen, and chloride concentrations in the ground waters ranged from 165 to 1,690; 78 to 1,700; 0 to 29; and 1.9 to 360 milligrams per liter, respectively. The areal distributions of these constituents are shown on maps. The range and median values of these same constituents are tabulated by aquifer occurrence. Some of the most mineralized and hardest waters occur in the basalt aquifer near travertine deposits (or terraces), which are composed of calcium carbonate precipitates from mineral springs. For irrigation purposes, all the waters are classified as having low-sodium hazard. Most have medium- to high-salinity hazard. (Woodard-USGS)

  19. Balancing power: A grounded theory study on partnership of academic service institutes

    Directory of Open Access Journals (Sweden)

    FATEMEH HESHMATI NABAVI

    2017-07-01

    Full Text Available Introduction: Governments and professional organizations have called for new partnerships between health care providers and academics to improve clinical education for the benefit of both students and patients. To develop a substantive grounded theory on the process of forming academic-service partnerships in implementing clinical education, from the perspective of academic and clinical nursing staff members and managers working in Iranian settings. Methods: The participants included 15 hospital nurses, nurse managers, nurse educators, and educational managers from two central universities and clinical settings from 2009 to 2012. Data were collected through 30 in-depth, semi-structure interviews with the individual participants and then analyzed using the methodology of Strauss and Corbin’s grounded theory. Results: Utilizing “balancing power” as the core variable enabled us to integrate the concepts concerning the partnership processes between clinical and educational institutes. Three distinct and significant categories emerged to explain the process of partnership: 1 divergence, 2 conflict between educational and caring functions, and 3 creation of balance between educational and caring functions. Conclusions: In implementing clinical education, partnerships have been formed within a challenging context in Iran. Conflict between clinical and educational functions was the main concern of both sides of the partnership in forming a collaborative relationship, with our findings emphasizing the importance of nursing educators’ role in the establishment of partnership programs.

  20. Design of RF energy harvesting platforms for power management unit with start-up circuits

    Science.gov (United States)

    Costanzo, Alessandra; Masotti, Diego

    2013-12-01

    In this contribution we discuss an unconventional rectifier design dedicated to RF energy harvesting from ultra-low sources, such as ambient RF sources which are typically of the order of few to few tens of μW. In such conditions unsuccessful results may occur if the rectenna is directly connected to its actual load since either the minimum power or the minimum activation voltage may not be simultaneously available. For this reason a double-branch rectifier topology is considered for the power management unit (PMU), instead of traditional single-branch one. The new PMU, interposed between the rectenna and application circuits, allows the system to operate with significantly lower input power with respect to the traditional solution, while preserving efficiency during steady-state power conversion.

  1. Major design issues of molten carbonate fuel cell power generation unit

    Energy Technology Data Exchange (ETDEWEB)

    Chen, T.P.

    1996-04-01

    In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to comply with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.

  2. Energy Optimization Modeling of Geothermal Power Plant (Case Study: Darajat Geothermal Field Unit III)

    Science.gov (United States)

    Sinaga, R. H. M.; Darmanto, P. S.

    2016-09-01

    Darajat unit III geothermal power plant is developed by PT. Chevron Geothermal Indonesia (CGI). The plant capacity is 121 MW and load 110%. The greatest utilization power is consumed by Hot Well Pump (HWP) and Cooling Tower Fan (CTF). Reducing the utility power can be attempted by utilizing the wet bulb temperature fluctuation. In this study, a modelling process is developed by using Engineering Equation Solver (EES) software version 9.430.The possibility of energy saving is indicated by Specific Steam Consumption (SSC) net in relation to wet bulb temperature fluctuation from 9°C up to 20.5°C. Result shows that the existing daily operation reaches its optimum condition. The installation of Variable Frequency Drive (VFD) could be applied to optimize both utility power of HWP and CTF. The highest gain is obtained by VFD HWP installation as much as 0.80% when wet bulb temperature 18.5 °C.

  3. Increasing the resilience and security of the United States' power infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Happenny, Sean F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    The United States' power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power infrastructure control and distribution paradigms by utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Understanding how these systems behave in real-world conditions will lead to new ways to make our power infrastructure more resilient and secure. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the aging networks protecting them are becoming easier to attack.

  4. Free-Piston Stirling Power Conversion Unit for Fission Power System, Phase II Final Report

    Science.gov (United States)

    Wood, J. Gary; Stanley, John

    2016-01-01

    In Phase II, the manufacture and testing of two 6-kW(sub e)Stirling engines was completed. The engines were delivered in an opposed 12-kW(sub e) arrangement with a common expansion space heater head. As described in the Phase I report, the engines were designed to be sealed both hermetically and with a bolted O-ring seal. The completed Phase II convertor is in the bolted configuration to allow future disassembly. By the end of Phase II, the convertor had passed all of the final testing requirements in preparation for delivery to the NASA Glenn Research Center. The electronic controller also was fabricated and tested during Phase II. The controller sets both piston amplitudes and maintains the phasing between them. It also sets the operating frequency of the machine. Details of the controller are described in the Phase I final report. Fabrication of the direct-current to direct-current (DC-DC) output stage, which would have stepped down the main controller output voltage from 700 to 120 V(sub DC), was omitted from this phase of the project for budgetary reasons. However, the main controller was successfully built, tested with the engines, and delivered. We experienced very few development issues with this high-power controller. The project extended significantly longer than originally planned because of yearly funding delays. The team also experienced several hardware difficulties along the development path. Most of these were related to the different thermal expansions of adjacent parts constructed of different materials. This issue was made worse by the large size of the machine. Thermal expansion problems also caused difficulties in the brazing of the opposed stainless steel sodium-potassium (NaK) heater head. Despite repeated attempts Sunpower was not able to successfully braze the opposed head under this project. Near the end of the project, Glenn fabricated an opposed Inconel NaK head, which was installed prior to delivery for testing at Glenn. Engine

  5. Bidirectional Power Performance of a Tidal Unit with Unilateral and Double Guide Vanes

    Directory of Open Access Journals (Sweden)

    Chunxia Yang

    2013-01-01

    Full Text Available To improve the bidirectional power performance of a tidal unit, two designs were investigated. The use of unilateral or double guide vanes in a tubular tidal unit influences the performance of the hydraulic unit. Based on the N-S equations and the RNG k-ε turbulence model, the SIMPLEC algorithm was used for 3D steady-state numerical simulation of the entire turbine flow passage with unilateral and double guide vanes. The internal flow condition under positive and reverse power generation conditions was also analyzed. At the same time, the turbine, with a runner 1.6 m in diameter, was scaled down to 0.35 m diameter for model tests. The model tests were based on a multifunction hydromechanical test bench at Hohai University. The water head, discharge, and torque of the tubular turbine were, respectively, tested using a pressure difference sensor, electromagnetic flow meter, and torque meter under different guide-vane openings. The results show that turbine efficiency in the model test is slightly lower than that predicted by numerical simulation under the same conditions. However, the difference is not large. With double side guide vanes, although the efficiency of positive power generation decreased, the efficiency of reverse power generation is greatly improved.

  6. Specification requirements summary for the Brayton Isotope Power System (BIPS) Ground Demonstration System (GDS)

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, E.E.

    1976-02-10

    This document provides a summary of the required program specifications and procedures for the ERDA Phase I Brayton Isotope Power System (BIPS) Program. Also included are document definitions, descriptions, and formats, and a listing of commonly used abbreviations. This document is intended to be used as a guide in document preparation and control.

  7. Generator, mechanical, smoke: For dual-purpose unit, XM56, Yuma Proving Ground, Yuma, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Driver, C.J.; Ligotke, M.W.; Moore, E.B. Jr. (Pacific Northwest Lab., Richland, WA (United States)); Bowers, J.F. (Dugway Proving Ground, UT (United States))

    1991-10-01

    The US Army Chemical Research, Development and Engineering Center (CRDEC) is planning to perform a field test of the XM56 smoke generator at the US Army Yuma Proving Ground (YPG), Arizona. The XM56, enabling the use of fog oil in combination with other materials, such as graphite flakes, is part of an effort to improve the efficiency of smoke generation and to extend the effectiveness of the resulting obscurant cloud to include the infrared spectrum. The plan field operation includes a road test and concurrent smoke- generation trials. Three M1037 vehicles with operation XM56 generators will be road-tested for 100 h. Smoke will be generated for 30 min from a single stationary XM56 four times during the road test, resulting in a total of 120 min of smoke generation. The total aerial release of obscurant materials during this test is expected to be 556 kg (1,220 lb) of fog oil and 547 kg (1,200 lb) of graphite flakes. This environmental assessment has evaluated the consequences of the proposed action. Air concentrations and surface deposition levels were estimated using an atmospheric dispersion model. Degradation of fog oil and incorporation of graphite in the soil column will limit the residual impacts of the planned action. No significant impacts to air, water, and soil quality are anticipated. risks to the environment posed by the proposed action were determined to be minimal or below levels previously found to pose measurable impacts. Cultural resources are present on YPG and have been identified in adjacent areas; therefore, off-road activities should be preceded by a cultural resource survey. A Finding of No Significant Impact is recommended. 61 refs., 1 fig.

  8. Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the Midwestern United States, 1998

    Science.gov (United States)

    Battaglin, W.A.; Furlong, E.T.; Burkhardt, M.R.; Peter, C.J.

    2000-01-01

    Sulfonylurea (SU), sulfonamide (SA), and imidazolinone (IMI) herbicides are relatively new classes of chemical compounds that function by inhibiting the action of a plant enzyme, stopping plant growth, and eventually killing the plant. These compounds generally have low mammalian toxicity, but plants demonstrate a wide range in sensitivity to SUs, SAs, and IMIs with over a 10000-fold difference in observed toxicity levels for some compounds. SUs, SAs, and IMIs are applied either pre- or post-emergence to crops commonly at 1/50th or less of the rate of other herbicides. Little is known about their occurrence, fate, or transport in surface water or ground water in the USA. To obtain information on the occurrence of SU, SA, and IMI herbicides in the Midwestern United States, 212 water samples were collected from 75 surface-water and 25 ground-water sites in 1998. These samples were analyzed for 16 SU, SA and IMI herbicides by USGS Methods Research and Development Program staff using high-performance liquid chromatography/mass spectrometry. Samples were also analyzed for 47 pesticides or pesticide degradation products. At least one of the 16 SUs, SAs or IMIs was detected above the method reporting limit (MRL) of 0.01 ??g/l in 83% of 130 stream samples. Imazethapyr was detected most frequently (71% of samples) followed by flumetsulam (63% of samples) and nicosulfuron (52% of samples). The sum of SU, SA and IMI concentrations exceeded 0.5 ??g/l in less than 10% of stream samples. Acetochlor, alachlor, atrazine, cyanazine and metolachlor were all detected in 90% or more of 129 stream samples. The sum of the concentration of these five herbicides exceeded 50 ??g/l in approximately 10% of stream samples. At least one SU, SA, or IMI herbicide was detected above the MRL in 24% of 25 ground-water samples and 86% of seven reservoir samples. Copyright (C) 2000 Elsevier Science B.V.

  9. A detection-level hazardous waste ground-water monitoring compliance plan for the 200 areas low-level burial grounds and retrievable storage units

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-01

    This plan defines the actions needed to achieve detection-level monitoring compliance at the Hanford Site 200 Areas Low-Level Burial Grounds (LLBG) in accordance with the Resource Conservation and Recovery Act (RCRA). Compliance will be achieved through characterization of the hydrogeology and monitoring of the ground water beneath the LLBG located in the Hanford Site 200 Areas. 13 refs., 20 figs.

  10. Second periodic safety review of Angra Nuclear Power Station, unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Carlos F.O.; Crepaldi, Roberto; Freire, Enio M., E-mail: ottoncf@tecnatom.com.br, E-mail: emfreire46@gmail.com, E-mail: robcrepaldi@hotmail.com [Tecnatom do Brasil Engenharia e Servicos Ltda, Rio de Janeiro, RJ (Brazil); Campello, Sergio A., E-mail: sacampe@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    This paper describes the second Periodic Safety Review (PSR2-A1) of Angra Nuclear Power Station, Unit 1, prepared by Eletrobras Eletronuclear S.A. and Tecnatom do Brasil Engenharia e Servicos Ltda., during Jul.2013-Aug.2014, covering the period of 2004-2013. The site, in Angra dos Reis-RJ, Brazil, comprises: Unit 1, (640 MWe, Westinghouse PWR, operating), Unit 2 (1300 MWe, KWU/Areva, operating) and Unit 3 (1405 MWe, KWU/Areva, construction). The PSR2-A1 attends the Standards 1.26-Safety in Operation of Nuclear Power Plants, Brazilian Nuclear Regulatory Commission (CNEN), and IAEA.SSG.25-Periodic Safety Review of Nuclear Power Plants. Within 18 months after each 10 years operation, the operating organization shall perform a plant safety review, to investigate the evolution consequences of safety code and standards, regarding: Plant design; structure, systems and components behavior; equipment qualification; plant ageing management; deterministic and probabilistic safety analysis; risk analysis; safety performance; operating experience; organization and administration; procedures; human factors; emergency planning; radiation protection and environmental radiological impacts. The Review included 6 Areas and 14 Safety Parameters, covered by 33 Evaluations.After document evaluations and discussions with plant staff, it was generated one General and 33 Specific Guide Procedures, 33 Specific and one Final Report, including: Description, Strengths, Deficiencies, Areas for Improvement and Conclusions. An Action Plan was prepared by Electronuclear for the recommendations. It was concluded that the Unit was operated within safety standards and will attend its designed operational lifetime, including possible life extensions. The Final Report was submitted to CNEN, as one requisite for renewal of the Unit Permanent Operation License. (author)

  11. Oscillations in the power spectra of motor unit signals caused by refractoriness variations

    Science.gov (United States)

    Hu, X. L.; Tong, K. Y.; Hung, L. K.

    2004-09-01

    The refractory period of a motor unit is an important mechanism that regulates the motor unit firing, and its variation has been found in many physiological cases. In this study, a new observation that an increase in the motor unit refractoriness results in an enhancement of oscillations, or ripple effects, in the motor unit output power density spectra (PDS) has been identified and studied. The effects of the refractoriness variation on the PDS of motor unit firing were investigated on three levels: theoretical modeling, simulation and electromyographic (EMG) experimentation on human subjects. Both theoretical modeling and simulation showed the enhanced oscillations, ripple effects, in MUAPT PDS, given the increase in the refractoriness. It was also found that the extent of the increment in output PDS oscillation could be related to the motor unit size and the mean firing rate of the stimulation. A needle EMG experiment on biceps brachii muscles of five healthy human subjects was carried out during isometric contraction at 20% maximum voluntary contraction (MVC) for 20 s with a fatigue effort proceeded by MVC. The increased oscillations in the PDS of the real MUAPTs were observed with the rising of the motor unit refractoriness due to fatigue. The study gives new information for EMG spectra interpretation, and also provides a potential method for accessing neuromuscular transmission failure (NTF) due to fatigue during voluntary contraction.

  12. PENGARUH POWER SYSTEM STABILIZER PADA SISTEM TENAGA LISTRIK DENGAN UNIT PEMBANGKIT TERSEBAR

    Directory of Open Access Journals (Sweden)

    Agung Budi Muljono

    2010-07-01

    Full Text Available Deregulasi pada sistem tenaga saat ini membawa kecenderungan untuk membangun unit-unit pembangkit yang letaknya tersebar dekat dengan pusat-pusat beban. Beroperasinya unit pembangkit tersebar membawa kecenderungan transfer daya inter dan antar area menjadi berkembang yang mengakibatkan perubahan titik operasi pembangkitan dan masalah pada stabilitas dinamis sistem. Perbaikan stabilitas dinamis sistem tenaga dapat ditingkatkan dengan pemasangan Power System Stabilizer (PSS. Penelitian ini bertujuan mengetahui pengaruh pemasangan PSS pada satu pusat pembangkit terhadap perbaikan stabilitas dinamis keseluruhan unit/pusat pembangkit lain termasuk unit pembangkit tersebar yang terkoneksi ke jaringan. Penelitian dilakukan secara simulasi dengan program aplikasi MatPower 3.0 dan MATLAB 7.0.4. Pembangkit tersebar (DG yang diteliti adalah PLTMH yang masuk ke salah satu bus pada sistem 14 bus dan 3 pusat pembangkit. Hasil penelitian menunjukkan PSS yang dipasang di Pembangkit Ampenan memberikan perbaikan nilai eigen (AVR+PSS Pembangkit Ampenan, koefisien redaman dan koefisien sinkronisasi rata-rata berturut-turut sebesar 65.90%, 49.84% dan 78.04 % untuk berbagai operasi pembebaban. Perbaikan ini juga mempengaruhi unjuk kerja keseluruhan pembangkit termasuk DG, kecuali waktu steady state perubahan kecepatan sudut DG tetap (tidak mengalami perbaikan sebesar 1.80 detik.

  13. Outlooks for Wind Power in the United States: Drivers and Trends under a 2016 Policy Environment

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ho, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stehly, Tyler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    Over the past decade, wind power has become one of the fastest growing electricity generation sources in the United States. Despite this growth, the U.S. wind industry continues to experience year-to-year fluctuations across the manufacturing and supply chain as a result of dynamic market conditions and changing policy landscapes. Moreover, with advancing wind technologies, ever-changing fossil fuel prices, and evolving energy policies, the long-term future for wind power is highly uncertain. In this report, we present multiple outlooks for wind power in the United States, to explore the possibilities of future wind deployment. The future wind power outlooks presented rely on high-resolution wind resource data and advanced electric sector modeling capabilities to evaluate an array of potential scenarios of the U.S. electricity system. Scenario analysis is used to explore drivers, trends, and implications for wind power deployment over multiple periods through 2050. Specifically, we model 16 scenarios of wind deployment in the contiguous United States. These scenarios span a wide range of wind technology costs, natural gas prices, and future transmission expansion. We identify conditions with more consistent wind deployment after the production tax credit expires as well as drivers for more robust wind growth in the long run. Conversely, we highlight challenges to future wind deployment. We find that the degree to which wind technology costs decline can play an important role in future wind deployment, electric sector CO2 emissions, and lowering allowance prices for the Clean Power Plan.

  14. Main Power Distribution Unit for the Jupiter Icy Moons Orbiter (JIMO)

    Science.gov (United States)

    Papa, Melissa R.

    2004-01-01

    Around the year 2011, the Jupiter Icy Moons Orbiter (JIMO) will be launched and on its way to orbit three of Jupiter s planet-sized moons. The mission goals for the JIMO project revolve heavily around gathering scientific data concerning ingredients we, as humans, consider essential: water, energy and necessary chemical elements. The JIM0 is an ambitious mission which will implore propulsion from an ION thruster powered by a nuclear fission reactor. Glenn Research Center is responsible for the development of the dynamic power conversion, power management and distribution, heat rejection and ION thrusters. The first test phase for the JIM0 program concerns the High Power AC Power Management and Distribution (PMAD) Test Bed. The goal of this testing is to support electrical performance verification of the power systems. The test bed will incorporate a 2kW Brayton Rotating Unit (BRU) to simulate the nuclear reactor as well as two ION thrusters. The first module of the PMAD Test Bed to be designed is the Main Power Distribution Unit (MPDU) which relays the power input to the various propulsion systems and scientific instruments. The MPDU involves circuitry design as well as mechanical design to determine the placement of the components. The MPDU consists of fourteen relays of four different variations used to convert the input power into the appropriate power output. The three phase system uses 400 Vo1ts(sub L-L) rms at 1000 Hertz. The power is relayed through the circuit and distributed to the scientific instruments, the ION thrusters and other controlled systems. The mechanical design requires the components to be positioned for easy electrical wiring as well as allowing adequate room for the main buss bars, individual circuit boards connected to each component and power supplies. To accomplish creating a suitable design, AutoCAD was used as a drafting tool. By showing a visual layout of the components, it is easy to see where there is extra room or where the

  15. Job creation due to nuclear power resurgence in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Kenley, C.R.; Klingler, R.D.; Plowman, C.M.; Soto, R.; Turk, R.J. [R and D Support Services, Idaho National Laboratory, 2525 N. Fremont Avenue, Idaho Falls, ID 83415-3419 (United States); Baker, R.L.; Close, S.A.; McDonnell, V.L.; Paul, S.W.; Rabideau, L.R.; Rao, S.S.; Reilly, B.P. [Bechtel Power Corporation, Frederick, MD 21703 (United States)

    2009-11-15

    The recent revival of global interest in the next generation of nuclear power reactors is causing a re-examination of the role of nuclear power in the United States. This renewed interest has led to questions regarding the capability and capacity of current US industries to support a renewal of nuclear power plant deployment. Key among the many questions currently being asked is what potential exists for the creation of new jobs as a result of developing and operating these new plants? Idaho National Laboratory and Bechtel Power Corporation collaborated to perform a Department of Energy-sponsored study that evaluated the potential for job creation in the United States should these new next generation nuclear power plants be built. The study focused primarily on providing an initial estimate of the numbers of new manufacturing jobs that could be created, including those that could be repatriated from overseas, resulting from the construction of these new reactors. In addition to the growth in the manufacturing sector, the study attempted to estimate the potential increase in construction trades necessary to accomplish the new construction. (author)

  16. Comparison of Standards and Technical Requirements of Grid-Connected Wind Power Plants in China and the United States

    Energy Technology Data Exchange (ETDEWEB)

    Gao, David Wenzhong [Alternative Power Innovations, LLC; Muljadi, Eduard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Mackay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wang, Weisheng [China Electric Power Research Inst. (China)

    2016-09-01

    The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPPs) is crucial to ensuring the reliable and stable operation of the electric power grid. This report compares the standards for grid-connected WPPs in China to those in the United States to facilitate further improvements in wind power standards and enhance the development of wind power equipment. Detailed analyses of power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhance the understanding of grid codes in the two largest markets of wind power. This study compares WPP interconnection standards and technical requirements in China to those in the United States.

  17. Climate Change Impacts on the Electric Power System in the Western United States

    Science.gov (United States)

    Veselka, T. D.; Botterud, A.; Conzelmann, G.; Koritarov, V.; Poch, L. A.; Wang, J.

    2007-12-01

    Future climate change is projected to vary substantially across regions. Changes in regional temperature and precipitation patterns may have significant implications on our existing and future power system infrastructure. In this paper, we use results from regional climate models to examine the impacts of projected changes in temperature and precipitation on the development and operations of the power system in the Western United States. We study three scenarios to evaluate potential effects of climate change on the electricity demand as well as on the power supply side. Impacts are measured in terms of changes in investment requirements, fuel and generation mix, emissions of greenhouse gases and criteria pollutants, and thermal power water withdrawals and consumption. We also identify potential issues regarding the western transmission grid. Our methodology includes a long-term investment algorithm that takes into account interdependencies between hydroelectric, thermal power, and non-dispatchable resources, such as wind turbines. We also include temporal aspects associated with hydropower energy constraints, wind variability, thermal power plant availability, and hourly load profiles. Thermal power plant availability and resulting generation and fuel consumption are based on maintenance outage schedules and a probabilistic dispatch algorithm that accounts for random forced outages. We conclude with some observations regarding the vulnerability of our electricity infrastructure to projected regional climate changes.

  18. Green Power Marketing in the United States: A Status Report (Eighth Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L.; Swezey, B.

    2005-10-01

    Voluntary consumer decisions to purchase electricity supplied by renewable energy sources represent a powerful market support mechanism for renewable energy development. Beginning in the early 1990s, a small number of U.S. utilities began offering "green power" options to their customers. Since then, these products have become more prevalent, both from utilities and in states that have introduced competition into their retail electricity markets. Today, more than 50% of all U.S. consumers have an option to purchase some type of green power product from a retail electricity provider. This report provides an overview of green power marketing activity in the United States. The first section provides an overview of green power markets, consumer response, and recent industry trends. The second section provides brief descriptions of utility green pricing programs. The third section describes companies that actively market green power in competitive markets and those that market renewable energy certificates nationally or regionally. The final section provides information on a select number of large, nonresidential green power purchasers, including businesses, universities, and government agencies.

  19. Power amplification in an isolated muscle-tendon unit is load dependent.

    Science.gov (United States)

    Sawicki, Gregory S; Sheppard, Peter; Roberts, Thomas J

    2015-11-01

    During rapid movements, tendons can act like springs, temporarily storing work done by muscles and then releasing it to power body movements. For some activities, such as frog jumping, energy is released from tendon much more rapidly than it is stored, thus amplifying muscle power output. The period during which energy is loaded into a tendon by muscle work may be aided by a catch mechanism that restricts motion, but theoretical studies indicate that power can be amplified in a muscle-tendon load system even in the absence of a catch. To explore the limits of power amplification with and without a catch, we studied the bullfrog plantaris muscle-tendon during in vitro contractions. A novel servomotor controller allowed us to measure muscle-tendon unit (MTU) mechanical behavior during contractions against a variety of simulated inertial-gravitational loads, ranging from zero to 1× the peak isometric force of the muscle. Power output of the MTU system was load dependent and power amplification occurred only at intermediate loads, reaching ∼1.3× the peak isotonic power output of the muscle. With a simulated anatomical catch mechanism in place, the highest power amplification occurred at the lowest loads, with a maximum amplification of more than 4× peak isotonic muscle power. At higher loads, the benefits of a catch for MTU performance diminished sharply, suggesting that power amplification >2.5× may come at the expense of net mechanical work delivered to the load. © 2015. Published by The Company of Biologists Ltd.

  20. CTS United States experiments - A progress report. [Communications Technology Satellite for high power broadcasting

    Science.gov (United States)

    Robbins, W. H.; Donoughe, P. L.

    1976-01-01

    The Communications Technology Satellite (CTS) is a high-power broadcast satellite launched by NASA on January 17, 1976. CTS is the first satellite to operate at a frequency of 12 gigahertz and incorporates technology making possible new satellite telecommunications services. CTS is a cooperative program of the United States and Canada. This paper presents the results of the United States experimental activity to date. Wide segments of the population are involved in the Experiments Program, including the scientific community, other government agencies, industry, and the education and health entities. The experiments are associated with both technological objectives and the demonstration of new community and social services via satellite.

  1. Coalition of distributed generation units to virtual power players - a game theory approach

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago M; Santos, Gabriel

    2015-01-01

    of the classifications that were attributed by each VPP to the distributed generation units, as well as in the analysis of the previous established contracts by each player. The proposed classification model is based in fourteen parameters including technical, economical and behavioural ones. Depending of the VPP...... and the existence of new management players such as several types of aggregators. This paper proposes a methodology to facilitate the coalition between distributed generation units originating Virtual Power Players (VPP) considering a game theory approach. The proposed approach consists in the analysis...

  2. On Death Ground: Why Weak States Resist Great Powers Explaining Coercion Failure in Asymmetric Interstate Conflict

    Science.gov (United States)

    2010-09-01

    1998) Republic of Fear Univ of California: Berkeley, King , Ralph (1987) The Iran-Iraq War: The Political Implications Int Inst for Strat Studies, Adephi...to cross into Bosnia over the Una river at Dubica. 570 565 Holbrooke, Richard (1998) To End A War New York: Modem 152, Sciolino, Elaine (15 September...the encouragement of the United Nations, Libya was granted its independence in 1951 with the establishment of the monarchy of King Idris al-Sanusi.72

  3. Development of a full-scale training simulator for an 800-MW power unit

    Science.gov (United States)

    Zhuravlev, S. K.; Andreev, A. M.

    2013-07-01

    Stages of work involving preparation of requirements specification, development, and subsequent implementation of a project for constructing a full-scale training simulator of an 800-MW power unit are considered. The training simulator is constructed using the Kosmotronika-Venets computerized automation system developed by PIK Progress (Moscow). The entire personnel training system, the arrangement of drills, and the concept of structuring the entire personnel education system at the Surgut GRES-2 district power station, a branch of E.ON Rossiya, had to be touched in drawing up the requirements specification for elaborating the training simulator. The article describes how these problems were solved.

  4. Social Acceptance of Wind Power in the United States: Evaluating Stakeholder Perspectives (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, S.; Lantz, E.

    2009-05-01

    As the wind industry strives to achieve 20% wind energy by 2030, maintaining high levels of social acceptance for wind energy will become increasingly important. Wind Powering America is currently researching stakeholder perspectives in the U.S. market and reviewing findings from wind energy projects around the world to better understand social acceptance barriers. Results from European studies show that acceptance varies widely depending on local community values. A preliminary survey shows similar results in the United States. Further research will be conducted to refine our understanding of key social acceptance barriers and evaluate the best ways to mitigate negative perspectives on wind power.

  5. Power Beaming, Orbital Debris Removal, and Other Space Applications of a Ground Based Free Electron Laser

    Science.gov (United States)

    2010-03-01

    successful interstellar propagation of a laser communications signal. A casual survey of the night’s sky indicates that light can travel across...laser illumination of objects within the solar system for scientific study, and interstellar laser illumination for communications. Power beaming...these ranges. FEL illumination at interstellar ranges is modeled and discussed to determine our ability to communicate or detect laser communications

  6. Analysis of the grounding system for a mobile communication site placed on HV power line mast

    Science.gov (United States)

    Bîrsan, I.; Munteanu, C.; Horgoș, M.; Ilut, T.

    2016-08-01

    This paper aims to analyze the potential distribution on the soil surface or potential variation on the main directions inside computing mobile site. I want to study a system made the earth a mobile communications site, antennas operator and the system of which the earth is placed on a High Voltage Power Line Mast (LEA 110 KV). I made direct measurements and I use a 3D software for analyze the results and simulating some possible solutions.

  7. Some evidence of ground power enhancements at frequencies of global magnetospheric modes at low latitude

    Directory of Open Access Journals (Sweden)

    P. Francia

    Full Text Available A statistical analysis of the power spectra of the geomagnetic field components H and D for periods ranging between 3 min and 1 h was conducted at a low-latitude observatory (L'Aquila, L=1.6 at the minimum and maximum of the solar cycle. For both components, during daytime intervals, we found evidence of power enhancements at frequencies predicted for global modes of the Earth's magnetosphere and occasionally observed at auroral latitudes in the F-region drift velocities (approximately at 1.3, 1.9, 2.6, and 3.4 mHz. Nighttime observations reveal a relative low frequency H enhancement associated with the bay occurrence together with a peak in the H/D power ratio which sharply emerges at 1.2 mHz in the premidnight sector. The strong similarity between solar minimum and maximum suggests that these modes can be considered permanent magnetospheric features. A separate analysis on a two-month interval shows that the observed spectral characteristics are amplified by conditions of high-velocity solar wind.

  8. 75 FR 34347 - Airworthiness Directives; Honeywell International Inc. Auxiliary Power Unit Models GTCP36-150(R...

    Science.gov (United States)

    2010-06-17

    ... International Inc. Auxiliary Power Unit Models GTCP36-150(R) and GTCP36-150(RR) AGENCY: Federal Aviation...) for Honeywell International Inc. auxiliary power unit (APU) models GTCP36- 150(R) and GTCP36-150(RR... proposed AD applies to Honeywell International Inc. APU models GTCP36-150(R) and GTCP36-150(RR)....

  9. 78 FR 49305 - Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2013-08-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2; Application... Nuclear Power Plant, Unit Nos. 1 and 2, respectively, located in Somervell County, Texas. The...

  10. 78 FR 14361 - In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units 1 and...

    Science.gov (United States)

    2013-03-05

    ... Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units 1 and 2; Order Approving the... authorizes the possession, use, and operation of the Comanche Peak Nuclear Power Plant, Units 1 and 2 (CPNPP... From the Federal Register Online via the Government Publishing Office NUCLEAR...

  11. 78 FR 47011 - Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Science.gov (United States)

    2013-08-02

    ... COMMISSION Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants..., ``Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants.'' This... software elements if those systems include software. This RG is one of six RG revisions addressing...

  12. Ground Water Atlas of the United States: Segment 13, Alaska, Hawaii, Puerto Rico, and the U.S. Virgin Islands

    Science.gov (United States)

    Miller, James A.; Whitehead, R.L.; Oki, Delwyn S.; Gingerich, Stephen B.; Olcott, Perry G.

    1997-01-01

    Alaska is the largest State in the Nation and has an area of about 586,400 square miles, or about one-fifth the area of the conterminous United States. The State is geologically and topographically diverse and is characterized by wild, scenic beauty. Alaska contains abundant natural resources, including ground water and surface water of chemical quality that is generally suitable for most uses.The central part of Alaska is drained by the Yukon River and its tributaries, the largest of which are the Porcupine, the Tanana, and the Koyukuk Rivers. The Yukon River originates in northwestern Canada and, like the Kuskokwim River, which drains a large part of southwestern Alaska , discharges into the Bering Sea. The Noatak River in northwestern Alaska discharges into the Chukchi Sea. Major rivers in southern Alaska include the Susitna and the Matanuska Rivers, which discharge into Cook Inlet, and the Copper River, which discharges into the Gulf of Alaska . North of the Brooks Range, the Colville and the Sagavanirktok Rivers and numerous smaller streams discharge into the Arctic Ocean.In 1990, Alaska had a population of about 552,000 and, thus , is one of the least populated States in the Nation. Most of the population is concentrated in the cities of Anchorage, Fairbanks, and Juneau, all of which are located in lowland areas. The mountains, the frozen Arctic desert, the interior plateaus, and the areas covered with glaciers lack major population centers. Large parts of Alaska are uninhabited and much of the State is public land. Ground-water development has not occurred over most of these remote areas.The Hawaiian islands are the exposed parts of the Hawaiian Ridge, which is a large volcanic mountain range on the sea floor. Most of the Hawaiian Ridge is below sea level (fig. 31) . The State of Hawaii consists of a group of 132 islands, reefs, and shoals that extend for more than 1 ,500 miles from southeast to northwest across the central Pacific Ocean between about 155

  13. Energy and Economic Efficiency of Gas Turbine Units and Heat Pumps in Power-supply Systems in the Arctic Regions of Russia

    Directory of Open Access Journals (Sweden)

    Suvorov D.M.

    2017-04-01

    Full Text Available Currently, in publications, there is some controversy about the efficiency of various power-supply systems operating in extreme climatic conditions. The need to dispel this controversy explains this study's relevance. The purpose of this study is to evaluate the feasibility of the use of cogeneration gas turbine and microturbine units as the heat-and-power source for a camp-like residential facility in the Arctic regions of Russia. A boiler plant and a heat pump system are analyzed as heat sources for the afore-mentioned camp. The authors used their own mathematical models of the units to do the study. The estimates were based on the annual facility-specific power and heat consumption data, additionally climatic conditions and fuel kind (natural gas were taken into consideration. The study resulted in defining the plants' limits of equal fuel consumption, depending on the substituted power output efficiency and the power/heat production cost to the price of gas correlation. Another result was the evaluation of the power efficiency (by the natural gas consumption and economic feasibility, as well as the payback term. We concluded that in case the natural gas was the only fuel available the ground source vapor-compressing heat pump systems were power-wise and economically unsound, provided they were operated under environmental conditions typical for the Russian North and according to the region-specific heat-supply schedule. The outcome of this study can be used when planning/designing the power-supply facilities in extreme climatic conditions, as well as in evaluating/estimating the power-supply systems' efficiency.

  14. Testing for purchasing power parity in 21 African countries using several unit root tests

    Science.gov (United States)

    Choji, Niri Martha; Sek, Siok Kun

    2017-04-01

    Purchasing power parity is used as a basis for international income and expenditure comparison through the exchange rate theory. However, empirical studies show disagreement on the validity of PPP. In this paper, we conduct the testing on the validity of PPP using panel data approach. We apply seven different panel unit root tests to test the validity of the purchasing power parity (PPP) hypothesis based on the quarterly data on real effective exchange rate for 21 African countries from the period 1971: Q1-2012: Q4. All the results of the seven tests rejected the hypothesis of stationarity meaning that absolute PPP does not hold in those African Countries. This result confirmed the claim from previous studies that standard panel unit tests fail to support the PPP hypothesis.

  15. Making european-style community wind power development work in theUnited States

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark A.

    2004-04-26

    Once primarily a European phenomenon, community wind power development--defined here as one or more locally owned, utility-scale wind turbines interconnected on either the customer or utility side of the meter--is gaining a foothold in an increasing number of states throughout the United States. This article describes the various policies and incentives that Minnesota, Wisconsin, Iowa, and Massachusetts are using to support community wind power development, and how state and federal support influences the types of projects and ownership structures that are being developed. Experience in these states demonstrates that, with an array of incentives and creative financing schemes targeted at community-scale projects, there are opportunities to make community wind work in the United States.

  16. Test Results From a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    Science.gov (United States)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.

    2009-01-01

    The Brayton Power Conversion Unit (BPCU) located at NASA Glenn Research Center (GRC) in Cleveland, OH is a closed cycle system incorporating a turboaltemator, recuperator, and gas cooler connected by gas ducts to an external gas heater. For this series of tests, the BPCU was modified by replacing the gas heater with the Direct Drive Gas heater or DOG. The DOG uses electric resistance heaters to simulate a fast spectrum nuclear reactor similar to those proposed for space power applications. The combined system thermal transient behavior was the focus of these tests. The BPCU was operated at various steady state points. At each point it was subjected to transient changes involving shaft rotational speed or DOG electrical input. This paper outlines the changes made to the test unit and describes the testing that took place along with the test results.

  17. The use of propeller turbines in low head stand alone micro hydro electric power generation units

    Energy Technology Data Exchange (ETDEWEB)

    Demetriades, G.M.; Williams, A.A.; Smith, N.P.A. [Nottingham Trent Univ. (United Kingdom). Dept. of Electrical Engineering

    1995-07-01

    The mountainous regions of developing countries offer a great potential for small scale hydroelectric schemes, running as stand alone units. Such schemes with power output less than 100 kW are usually referred to as micro-hydro power generation units. For low - head sites (available head less than 10 m), there is a vast number of suitable sites in countries with less mountainous areas and high rainfall, or extensive irrigation canals. The present paper introduces the design features of an appropriate propeller turbine design. The turbine will be directly coupled to an induction generator. The design requirements, materials selection and manufacturing processes are analysed with respect to experiences from pilot projects within the UK and abroad. (author)

  18. Cooling unit for a superconducting power cable. Two years successful operation

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Friedhelm [Messer Group GmbH, Krefeld (Germany); Kutz, Thomas [Messer Industriegase GmbH, Bad Soden (Germany); Stemmle, Mark [Nexans Deutschland GmbH, Hannover (Germany); Kugel, Torsten [Westnetz GmbH, Essen (Germany)

    2016-07-01

    High temperature super conductors (HTS) can efficiently be cooled with liquid nitrogen down to a temperature of 64 K (-209 C). Lower temperatures are not practical, because nitrogen becomes solid at 63 K (-210 C). To achieve this temperature level the coolant has to be vaporized below atmospheric pressure. Messer has developed a cooling unit with an adequate vacuum subcooler, a liquid nitrogen circulation system, and a storage vessel for cooling an HTS power cable. The cooling unit was delivered in 2013 for the German AmpaCity project of RWE Deutschland AG, Nexans and Karlsruhe Institute of Technology. Within this project RWE and Nexans installed the worldwide longest superconducting power cable in the city of Essen, Germany. The cable is in operation since March 10th, 2014.

  19. Performance and Qualification of the Power Supply and Control Unit for the HEMP Thruster

    Science.gov (United States)

    Brag, R.; Herty, F.

    2014-08-01

    In 2013, Astrium GmbH delivered several flight model electronics for Electric Propulsion (EP) systems or corresponding components. One of the elements is a Power Supply and Control Unit (PSCU) for the Thales development "High Efficiency Multistage Plasma Thruster" (HEMP-T) (see Figure 1). This paper presents the PSCU specification and results of the qualification and acceptance phase of the EQM and the PFM.

  20. Effects of the Hot Alignment of a Power Unit on Oil-Whip Instability Phenomena

    OpenAIRE

    2010-01-01

    This paper shows the results of the analysis of the dynamic behaviour of a power unit, whose shaft-train alignment was significantly influenced by the machine thermal state, that was affected in operating condition by high subsynchronous vibrations caused by oil-whip instability phenomena. The dynamic stiffness coefficients of the oil-film journal bearings of the generator were evaluated considering the critical average journal positions that caused the instability onsets. By including these ...

  1. Some evidence of ground power enhancements at frequencies of global magnetospheric modes at low latitude

    Science.gov (United States)

    Francia, P.; Villante, U.

    1997-01-01

    A statistical analysis of the power spectra of the geomagnetic field components H and D for periods ranging between 3 min and 1 h was conducted at a low-latitude observatory (LÁquila, L=1.6) at the minimum and maximum of the solar cycle. For both components, during daytime intervals, we found evidence of power enhancements at frequencies predicted for global modes of the Earthś magnetosphere and occasionally observed at auroral latitudes in the F-region drift velocities (approximately at 1.3, 1.9, 2.6, and 3.4 mHz). Nighttime observations reveal a relative low frequency H enhancement associated with the bay occurrence together with a peak in the H/D power ratio which sharply emerges at 1.2 mHz in the premidnight sector. The strong similarity between solar minimum and maximum suggests that these modes can be considered permanent magnetospheric features. A separate analysis on a two-month interval shows that the observed spectral characteristics are amplified by conditions of high-velocity solar wind. Acknowledgements. The authors are grateful to Prof. D. J. Southwood (Imperial College, London), J. C. Samson (University of Alberta, Edmonton), L. J. Lanzerotti (AT&T Bell Laboratories), A. Wolfe (New York City Technical College) and to Dr. M. Vellante (University of LÁquila) for helpful discussions. They also thank Dr. A. Meloni (Istituto Nazionale di Geofisica, Roma) who made available geomagnetic field observations from LÁquila Geomagnetic Observatory. This research activity at LÁquila is supported by MURST (40% and 60% contracts) and by GIFCO/CNR. Topical Editor K.-H. Glaßmeier thanks C. Waters and S. Fujita for their help in evaluating this paper.-> Francia->

  2. Aerobic and anaerobic power characteristics of competitive cyclists in the United States Cycling Federation.

    Science.gov (United States)

    Tanaka, H; Bassett, D R; Swensen, T C; Sampedro, R M

    1993-08-01

    The purpose of this study was to characterize the aerobic and anaerobic capabilities of United States Cycling Federation cyclists in different categories. To determine aerobic and anaerobic power, 38 competitive road cyclists (32 males, 6 females) performed a VO2max test and a Wingate anaerobic test, respectively. Male cyclists in category II had the highest VO2max, both in absolute and relative terms. Their VO2max was 6% and 10% higher than category III and IV cyclists, respectively (4.98 +/- 0.14 vs 4.72 +/- 0.15 vs 4.54 +/- 0.12 l/min). A significant difference existed between category II and IV male cyclists (p < 0.05). VO2max for female cyclists (3.37 +/- 0.13 l/min) was significantly (p < 0.05) lower than those for males. The Wingate anaerobic test revealed that male cyclists in category II also had the highest anaerobic power output. The peak power output in category II, III and IV was 13.86 +/- 0.23, 13.55 +/- 0.25, and 12.80 +/- 0.41 W/kg, respectively. The mean power output in category II, III, and IV was 11.22 +/- 0.18, 11.06 +/- 0.15, and 10.40 +/- 0.30 W/kg, respectively. The difference in the mean power output between category II and IV was significant (p < 0.05). Female cyclists recorded significantly less peak and mean power output than their male counterparts (p < 0.05). However, when expressed relative to lean body mass, anaerobic power was similar for both sexes. No inter-correlation was found in any measurement between the aerobic and anaerobic power values. On the whole, category II male cyclists were characterized by higher aerobic and anaerobic power outputs.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Studies of Plasma Instability Process Excited by Ground Based High Power HF (Heating) Facilities

    Science.gov (United States)

    2007-11-02

    the altitude z = 285 km. Night time plasma line intensities were observed to be enhanced by a factor 10 ÷ 100 extended to altitude below 250 km. When HF...waves, whose wave vector is directed toward the radar, and the phase velocity vph is equal to the velocity of suprathermal electrons v vph =(1/2) λr...averaged and in final form depends on two scalar factors only: full power density P absorbed by fast electrons in the acceleration layer, and characteristic

  4. A VCO with Harmonic Suppressed and Output Power Improved Using Defected Ground Structure

    Directory of Open Access Journals (Sweden)

    Haiwen Liu

    2003-01-01

    microstrip line with DGS has a wide low-pass band for the fundamental frequency and a stopband for the second harmonic with good performance. To evaluate the effects of DGS on microwave VCOs, two GaAs field-effect transistor (FET VCOs have been designed and fabricated. One of them has a 50Ω microstrip line with DGS at the output section, while the other has only a 50Ω straight line. Measured results show that DGS suppresses the second harmonic more than −20 dBm at the output and yields improved output power by 3−5%.

  5. A Three-Stage Birandom Program for Unit Commitment with Wind Power Uncertainty

    Science.gov (United States)

    Zhang, Na; Li, Weidong; Liu, Rao; Lv, Quan; Sun, Liang

    2014-01-01

    The integration of large-scale wind power adds a significant uncertainty to power system planning and operating. The wind forecast error is decreased with the forecast horizon, particularly when it is from one day to several hours ahead. Integrating intraday unit commitment (UC) adjustment process based on updated ultra-short term wind forecast information is one way to improve the dispatching results. A novel three-stage UC decision method, in which the day-ahead UC decisions are determined in the first stage, the intraday UC adjustment decisions of subfast start units are determined in the second stage, and the UC decisions of fast-start units and dispatching decisions are determined in the third stage is presented. Accordingly, a three-stage birandom UC model is presented, in which the intraday hours-ahead forecasted wind power is formulated as a birandom variable, and the intraday UC adjustment event is formulated as a birandom event. The equilibrium chance constraint is employed to ensure the reliability requirement. A birandom simulation based hybrid genetic algorithm is designed to solve the proposed model. Some computational results indicate that the proposed model provides UC decisions with lower expected total costs. PMID:24987739

  6. An immune-tabu hybrid algorithm for thermal unit commitment of electric power systems

    Institute of Scientific and Technical Information of China (English)

    Wei LI; Hao-yu PENG; Wei-hang ZHU; De-ren SHENG; Jian-hong CHEN

    2009-01-01

    This paper presents a new method based on an immune-tabu hybrid algorithm to solve the thermal unit commitment (TUC) problem in power plant optimization. The mathematical model of the TUC problem is established by analyzing the generating units in modern power plants. A novel immune-tabu hybrid algorithm is proposed to solve this complex problem. In the algorithm, the objective function of the TUC problem is considered as an antigen and the solutions are considered as antibodies,which are determined by the affinity computation. The code length of an antibody is shortened by encoding the continuous operating time, and the optimum searching speed is improved. Each feasible individual in the immune algorithm (IA) is used as the initial solution of the tabu search (TS) algorithm after certain generations of IA iteration. As examples, the proposed method has been applied to several thermal unit systems for a period of 24 h. The computation results demonstrate the good global optimum searching performance of the proposed immune-tabu hybrid algorithm. The presented algorithm can also be used to solve other optimization problems in fields such as the chemical industry and the power industry.

  7. Radioisotope Heater Unit-Based Stirling Power Convertor Development at NASA Glenn Research Center

    Science.gov (United States)

    Wilson, Scott D.; Geng, Steven M.; Penswick, Lawrence; Schmitz, Paul C.

    2017-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A variety of mission concepts have been studied by NASA and the U. S. Department of Energy that would utilize RPS for landers, probes, and rovers and only require milliwatts to tens of watts of power. These missions would contain science measuring instruments that could be distributed across planetary surfaces or near objects of interest in space solar flux insufficient for using solar cells. A low power Stirling convertor is being developed to provide an RPS option for future low power applications. Initial concepts convert heat available from several Radioisotope Heater Units to electrical power for spacecraft instruments and communication. Initial development activity includes defining and evaluating a variety of Stirling configurations and selecting one for detailed design, research of advanced manufacturing methods that could simplify fabrication, evaluating thermal interfaces, characterizing components and subassemblies to validate design codes, and preparing for an upcoming demonstration of proof of concept in a laboratory environment.

  8. Green Power Marketing in the United States: A Status Report (Ninth Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L.; Swezey, B.

    2006-11-01

    Voluntary consumer decisions to purchase electricity supplied by renewable energy sources represent a powerful market support mechanism for renewable energy development. Beginning in the early 1990s, a small number of U.S. utilities began offering ''green power'' options to their customers. Since then, these products have become more prevalent, both from traditional utilities and from marketers operating in states that have introduced competition into their retail electricity markets. Today, more than half of all U.S. consumers have an option to purchase some type of green power product from a retail electricity provider. Currently, more than 600 utilities, or about 20% of utilities nationally, offer green power programs to customers. These programs allow customers to purchase some portion of their power supply as renewable energy--almost always at a higher price--or to contribute funds for the utility to invest in renewable energy development. The term ''green pricing'' is typically used to refer to these utility programs offered in regulated or noncompetitive electricity markets. This report documents green power marketing activities and trends in the United States.

  9. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, L [ed.

    1985-09-01

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures.

  10. Annual preventive maintenance scheduling for thermal units in an electric power system

    Directory of Open Access Journals (Sweden)

    Tonić Rodoljub

    2010-01-01

    Full Text Available The system approach to the problem of preventive maintenance scheduling for thermal units in a large scale electric power system is considered in this paper. The maintenance scheduling program determines a set of thermal units maintenance switch off for a time period of one year. This paper considers the application of dynamic programming and successive approximations method in determination of annual thermal unit maintenance schedules. The objective function is multiple component and consists of system operation costs and system reliability indices (loss-of-load-probability and expected unserved energy. The evaluation of these costs is performed through a simulation method which uses a cumulant load model. The software package, developed in FORTRAN and integrated with an ORACLE data base, produces many useful outputs.

  11. Multi-model Predictive Control of Ultra-supercritical Coal-fired Power Unit

    Institute of Scientific and Technical Information of China (English)

    Guoliang Wang; Weiwu Yan; Shihe Chen; Xi Zhang; Huihe Shao

    2014-01-01

    The control of ultra-supercritical (USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control (MPC) based on multi-model and double layered optimization is introduced for coordinated control of USC unit. The linear programming (LP) com-bined with quadratic programming (QP) is used in steady optimization for computation of the ideal value of dynamic optimization. Three inputs (i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs (i.e. load, main steam temperature and main steam pressure). The step response models for the dynamic matrix control (DMC) are constructed using the three inputs and the three outputs. Piecewise models are built at selected operation points. Double-layered multi-model predictive controller is implemented in sim-ulation with satisfactory performance.

  12. Specific ways to improve quality of control system for power unit

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, V.D.; Garbuzov, V.G.; Zhidkov, A.A.; Senyagin, Yu.V.

    1984-08-01

    Only a part of all automation equipment which has been designed for control of power units in power generating plants is actually used and must, moreover, be continuously inspected by station personnel. The two main reasons for this are an inadequate level of preparedness for automation and insufficiently high quality of the control system, characterized by steadily increasing complexity and decreasing reliability as well as high cost and poor accessibility. In order to remedy this situation, experimental studies on a correct approach to the problem in the planning and design stage already had begun in the Soviet Union in the early nineteen sixties and have continued ever since. The basic structure of a control system in a power plant consist of five subsystems: automatic control, logic control, protective shielding, remote control and data display. This structure has been modified by utilization of computer technology. With redundancy regarded as a tradeoff between cost of shutdown and cost of control hardware, a two-tier structure is so far found to be optimum. Here decentralized simple special-purpose equipment executes simple algorithms at the lower level, while the process control computer aids execution of complex algorithms at the upper level. Memory elements interface the two levels, for reducing the adverse economic consequences of computer failure. In a typical case of maneuvering with a process control computer, a 200 MW power unit under variable load conditions will reduce the total unpreparedness time over a 7500 hours operating period from 30 h to 2 h. 6 references, 4 figures.

  13. Automated chemical monitoring in new projects of nuclear power plant units

    Science.gov (United States)

    Lobanok, O. I.; Fedoseev, M. V.

    2013-07-01

    The development of automated chemical monitoring systems in nuclear power plant units for the past 30 years is briefly described. The modern level of facilities used to support the operation of automated chemical monitoring systems in Russia and abroad is shown. Hardware solutions suggested by the All-Russia Institute for Nuclear Power Plant Operation (which is the General Designer of automated process control systems for power units used in the AES-2006 and VVER-TOI Projects) are presented, including the structure of additional equipment for monitoring water chemistry (taking the Novovoronezh 2 nuclear power plant as an example). It is shown that the solutions proposed with respect to receiving and processing of input measurement signals and subsequent construction of standard control loops are unified in nature. Simultaneous receipt of information from different sources for ensuring that water chemistry is monitored in sufficient scope and with required promptness is one of the problems that have been solved successfully. It is pointed out that improved quality of automated chemical monitoring can be supported by organizing full engineering follow-up of the automated chemical monitoring system's equipment throughout its entire service life.

  14. A simplified propeller turbine runner design for stand alone micro-hydro power generation units

    Energy Technology Data Exchange (ETDEWEB)

    Demetriades, G.M.; Williams, A.A.; Smith, N.P.A. [Nottingham Trent University (United Kingdom). Micro-Hydro Research Group

    1996-07-01

    In most developing countries, the vast majority of potential micro-hydro power generation sites, i.e. with power outputs up to 100 kW, are found in areas with high rainfall or extensive irrigation works with small canal drops. These sites, where the available head does not exceed 5 m, are usually referred to as low head sites. The present paper introduces a simplified design of a propeller turbine suitable for direct coupling to an induction generator. The use of such a unit is a promising technology for setting up low-head power generation schemes for village electrification in developing countries. Emphasis is given to the hydraulic design of the runner blades which are made of constant thickness sheets of metal. The use of such a shape is ideal for low cost manufacturing in developing countries as it enables local skills and materials to be used. (author)

  15. Optimizing energy management of decentralized photovoltaic. Fuel cell - direct storage - power supply units

    Energy Technology Data Exchange (ETDEWEB)

    Bocklisch, Thilo; Schufft, Wolfgang; Bocklisch, Steffen [Chemnitz Univ. of Technology (TUC) (Germany)

    2010-07-01

    This paper presents a new optimizing energy management concept for decentralized power supply units. Main goal is the coordinated utilization of dynamically controllable combined-heat-and-power-plants (e.g. fuel cell cogeneration plants) and electrochemical direct storages (e.g. future electric car batteries) for the active balancing of fluctuating renewable energy generation (e.g. building integrated photovoltaics) and fluctuation electricity consumption. The self-utilization and partial storage of renewable energy helps to stabilize the grid in a ''bottom-up'' approach. The new energy mangement concept features a three-layer control structure, which aims for the optimization of the power flows, minimizing the fuel consumption and the dynamic stress imposed onto the fuel cell. (orig.)

  16. Geothermal power plants of the United States: a technical survey of existing and planned installations

    Energy Technology Data Exchange (ETDEWEB)

    DiPippo, R.

    1978-04-01

    The development of geothermal energy as a source of electric power in the United States is reviewed. A thorough description is given of The Geysers geothermal power project in northern California. The recent efforts to exploit the hot-water resources of the Mexicali-Imperial Rift Valley are described. Details are given concerning the geology of the several sites now being used and for those at which power plants will soon be built. Attention is paid to the technical particulars of all existing plants, including wells, gathering systems, energy conversion devices, materials, environmental impacts, economics and operating characteristics. Specifically, plants which either exist or are planned for the following locations are covered: The Geysers, CA; East Mesa, CA; Heber, CA; Roosevelt Hot Springs, UT; Valles Caldera, NM; Salton Sea, CA; Westmorland, CA; Brawley, CA; Desert Peak, NV; and Raft River, ID. The growth of installed geothermal electric generating capacity is traced from the beginning in 1960 and is projected to 1984.

  17. 77 FR 50722 - Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants

    Science.gov (United States)

    2012-08-22

    ... COMMISSION Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear Power Plants... regulatory guide (DG), DG-1208, ``Software Unit Testing for Digital Computer Software used in Safety Systems... entitled ``Software Unit Testing for Digital Computer Software Used in Safety Systems of Nuclear...

  18. 75 FR 16517 - Dominion Nuclear Connecticut, Inc.; Millstone Power Station, Unit Nos 1, 2, and 3; Exemption

    Science.gov (United States)

    2010-04-01

    ... alarm station requirements by September 30, 2010, and certain uninterruptible power supply requirements... certain uninterruptible power requirements and September 30, 2010, for certain alarm station requirements... COMMISSION Dominion Nuclear Connecticut, Inc.; Millstone Power Station, Unit Nos 1, 2, and 3; Exemption...

  19. Aerial Survey Results for 131I Deposition on the Ground after the Fukushima Daiichi Nuclear Power Plant Accident

    Energy Technology Data Exchange (ETDEWEB)

    Torii, Tatsuo [JAEA; Sugita, Takeshi [JAEA; Okada, Colin E. [NSTec; Reed, Michael S. [NSTec; Blumenthal, Daniel J. [NNSA

    2013-08-01

    In March 2011 the second largest accidental release of radioactivity in history occurred at the Fukushima Daiichi nuclear power plant following a magnitude 9.0 earthquake and subsequent tsunami. Teams from the U.S. Department of Energy, National Nuclear Security Administration Office of Emergency Response performed aerial surveys to provide initial maps of the dispersal of radioactive material in Japan. The initial results from the surveys did not report the concentration of 131I. This work reports on analyses performed on the initial survey data by a joint Japan-US collaboration to determine 131I ground concentration. This information is potentially useful in reconstruction of the inhalation and external exposure doses from this short-lived radionuclide. The deposited concentration of 134Cs is also reported.

  20. Day-Ahead Coordination of Vehicle-to-Grid Operation and Wind Power in Security Constraints Unit Commitment (SCUC

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Abdollahi

    2015-08-01

    Full Text Available In this paper security constraints unit commitment (SCUC in the presence of wind power resources and electrical vehicles to grid is presented. SCUC operation prepare an optimal time table for generation unit commitment in order to maximize security, minimize operation cost and satisfy the constraints of networks and units in a period of time, as one of the most important research interest in power systems. Today, the relationship between power network and energy storage systems is interested for many researchers and network operators. Using Electrical Vehicles (PEVs and wind power for energy production is one of the newest proposed methods for replacing fossil fuels.One of the effective strategies for analyzing of the effects of Vehicle 2 Grid (V2G and wind power in optimal operation of generation is running of SCUC for power systems that are equipped with V2G and wind power resources. In this paper, game theory method is employed for deterministic solution of day-ahead unit commitment with considering security constraints in the simultaneous presence of V2G and wind power units. This problem for two scenarios of grid-controlled mode and consumer-controlled mode in three different days with light, medium and heavy load profiles is analyzed. Simulation results show the effectiveness of the presence of V2G and wind power for decreasing of generation cost and improving operation indices of power systems.

  1. Study of regeneration system of 300 MW power unit based on nondeaerating heat balance diagram at reduced load

    Science.gov (United States)

    Esin, S. B.; Trifonov, N. N.; Sukhorukov, Yu. G.; Yurchenko, A. Yu.; Grigor'eva, E. B.; Snegin, I. P.; Zhivykh, D. A.; Medvedkin, A. V.; Ryabich, V. A.

    2015-09-01

    More than 30 power units of thermal power stations, based on the nondeaerating heat balance diagram, successfully operate in the former Soviet Union. Most of them are power units with a power of 300 MW, equipped with HTGZ and LMZ turbines. They operate according to a variable electric load curve characterized by deep reductions when undergoing night minimums. Additional extension of the range of power unit adjustment makes it possible to maintain the dispatch load curve and obtain profit for the electric power plant. The objective of this research is to carry out estimated and experimental processing of the operating regimes of the regeneration system of steam-turbine plants within the extended adjustment range and under the conditions when the constraints on the regeneration system and its equipment are removed. Constraints concerning the heat balance diagram that reduce the power unit efficiency when extending the adjustment range have been considered. Test results are presented for the nondeaerating heat balance diagram with the HTGZ turbine. Turbine pump and feed electric pump operation was studied at a power unit load of 120-300 MW. The reliability of feed pump operation is confirmed by a stable vibratory condition and the absence of cavitation noise and vibration at a frequency that characterizes the cavitation condition, as well as by oil temperature maintenance after bearings within normal limits. Cavitation performance of pumps in the studied range of their operation has been determined. Technical solutions are proposed on providing a profitable and stable operation of regeneration systems when extending the range of adjustment of power unit load. A nondeaerating diagram of high-pressure preheater (HPP) condensate discharge to the mixer. A regeneration system has been developed and studied on the operating power unit fitted with a deaeratorless thermal circuit of the system for removing the high-pressure preheater heating steam condensate to the mixer

  2. Design of high-pressure direct contact heater for promising power supply units: Experimental substantiation

    Science.gov (United States)

    Somova, E. V.; Shvarts, A. L.; Turkin, A. V.

    2016-11-01

    The results of experimental studies of superheated steam condensation on feed water jets in a highpressure, direct-contact heat exchanger are presented. Direct contact feed water heater (DCFWH) can be used in a dual-flow diagram of a steam-power unit with ultrasupercritical steam parameters (35 MPa, 700/720°C). The direct contact feed water heater is included in the flow diagram of the II circuit in a promising power unit; it provides feed water heating to 340°C in all maintenance and emergency operation modes of the unit. The reliability of the high-pressure direct contact heater operation in this flow diagram is of major importance in relation to the danger of lead solidification in the tube space of the steam generator. Technical requirements to the design of the high-pressure direct contact heater for increasing the heat exchange efficiency are formulated based on the results of earlier studies with steam-water mixture as the heating medium. The results of studies of superheated steam condensation on jets presented in this study testify that feed water is additionally heated to the required temperature at the output of the installation. The influence of initial feed water parameters (outflow velocity and temperature) on the jet heating length is elucidated. The numerical approximation of the experimental data for determination of the jet heating length in the nominal and partial power unit loads is obtained. The results of the calculations are used to simplify the design of the water-supplying element for the direct contact feed water heater. The proposed design of direct contact feed water heater is characterized by simplicity and low metal intensity, which provides the installation reliability at the considered pressure level due to the minimum number of structural elements.

  3. Thermal performance of direct illumination high-power LED backlight units with different assembling structures

    Science.gov (United States)

    Wang, Yiwei; Cen, Jiwen; Cao, Wenjiong; Jiang, Fangming

    2016-10-01

    This work presents a detailed study about the heat dissipation performance of direct illumination high-power light emitting diode (LED) backlight units with two different assembling structures, one of which is traditional and the other is new. The traditional structure, referred to by structure-1, consists of multiple LEDs being directly welded to the printed circuit board (PCB), where the PCB is used as a physical support, an electrical connector and also as a heat dissipation medium. The new structure, referred to by structure-2, places the LEDs directly on the cooling boss; in this case the PCB plays mainly the role of an electrical connector. Thermal characteristics related to the two backlight units are analyzed in terms of thermal resistance network, numerically simulated and experimentally tested. The obtained results by different methods accord with each other reasonably well and all indicate that both structures can meet the requirements of heat dissipation for backlight units at an ambient temperature of 30 °C. Among the two structures, the LED junction temperature of structure-1 backlight unit is 7-8 °C higher and the temperature distribution in the back plane of the backlight unit is also more uniform.

  4. Dynamic input to determine hip joint moments, power and work on the prosthetic limb of transfemoral amputees: ground reaction vs knee reaction

    OpenAIRE

    FROSSARD, Laurent; Cheze, Laurence; Dumas, Raphaël

    2011-01-01

    Background: Calculation of lower limb kinetics is limited by floor-mounted force-plates. Objectives: Comparison of hip joint moments, power and mechanical work on the prosthetic limb of a transfemoral amputee calculated by inverse dynamics using either the ground reactions (force-plates) or knee reactions (transducer). Study design: Comparative analysis. Methods: Kinematics, ground reaction and knee reaction data were collected using a motion analysis system, two forceplates, and a multi-axia...

  5. Economic and safety analysis of unconventional peak regulation on power unit of peak shifting start-stop

    Science.gov (United States)

    Cao, X.; Zhao, J. F.; Duan, X. Q.; Jin, Y. A.

    2017-01-01

    Tthe capacity difference of peak regulation between the power gird and the actual demand has become a serious problem considering the growth in the difference between electricity supply and demand. Therefore, peak regulation of power grid needs to be deeply studied. Unconventional peak regulation on unit of peak shifting start-stop is a way that can broaden the range of power regulation, as well as benefit safe operation of the power grid. However, it requires frequent and fast unit start-stop, complex operation, and more staff labor. By carrying out unconventional thermal power unit load test, the start-stop mode of peak auxiliary equipment is studied in this paper, indicating that it has a positive effect on safety and economic of load-peaking operation. The best working conditions of the peak units is found by analysing consumption cost, safety specifications, and life lost of the start-stop peak regulation mode.

  6. Tampa Electric Company, Polk Power Station Unit No. 1. Annual report, January--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-10-01

    As part of the Tampa Electric Polk Power Unit No. 1, a Texaco pressurized, oxygen-blown entrained-flow coal gasifier will convert approximately 2300 tons per day of coal (dry basis) into a medium-BTU fuel gas with a heat content of about 250 BTU/scf (LHV). Syngas produced in the gasifier flows through a high-temperature heat recovery unit which cools the gases prior to entering two parallel clean-up areas. A portion (up to 50%) of the hot syngas is cooled to 1000{degrees}F and passed through a moving bed of zinc titanate sorbent which removed sulfur containing components of the fuel gas. The project will be the first in the world to demonstrate this advanced metal oxide hot gas desulfurization technology at a commercial scale. The remaining portion of the syngas is cooled to 400{degrees}F for conventional acid gas removal. This portion of the plant is capable of processing between 50% and 100% of the dirty syngas. The cleaned low-BTU syngas is then routed to the combined cycle power generation system where it is mixed with air and burned in the gas turbine combustor. Heat is extracted from the expanded exhaust gases by a heat recovery steam generator to produce high pressure steam. This steam, along with the steam generated in the gasification process, drives a steam turbine to generate an additional 132MW of power. Internal process power consumption is approximately 62MW, and includes power for coal grinding, air separation, and feed pumps. Net output from the IGCC demonstration plant will be 260MW.

  7. Overall intelligent hybrid control system for a fossil-fuel power unit

    Science.gov (United States)

    Garduno-Ramirez, Raul

    2000-10-01

    In response to the multiple and tighter operation requirements already placed on power plants, and anticipating everyday variations on their quantity and relevance due to competition on deregulated energy markets, this dissertation contributes the Intelligent Coordinated Control System (ICCS) paradigm that establishes a reference framework for the design of overall control systems for fossil-fuel power units, and develops a minimum prototype (ICCS-MP) to show its feasibility. The ICCS consists of a multiagent system organization structured as an open set of functionally grouped agent clusters in a two-level hierarchy. The upper level performs the supervisory functions needed to produce self-governing system behavior, while the lower level performs the fast reactive functions necessary for real-time control and protection. The ICCS-MP greatly extends the concept of current coordinated control schemes and embraces a minimum set of ICCS functions for the power unit to participate in load-frequency control in deregulated power systems; provides the means to achieve optimal wide-range load-tracking in multiobjective operating scenarios. The ICCS-MP preserves the ICCS structure. Supervisory functions include optimization and command generation, learning and control tuning, and performance and state monitoring. Direct level control functions realize a nonlinear multivariable feedforward-feedback scheme. These functions are implemented in three modules: reference governor, feedforward control processor (FFCP), and feedback control processor (FBCP). The reference governor provides set-point trajectories for the control loops by solving a multiobjective optimization problem that accommodates the operating scenario at hand. The FFCP facilitates achievement of wide-range operation; it is implemented as a fuzzy system that emulates the inverse static behavior of the power unit, and it is designed using neural networks. The FBCP provides disturbance and uncertainty compensation

  8. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and

  9. Conceptual design of free-piston Stirling conversion system for solar power units

    Science.gov (United States)

    Loktionov, Iu. V.

    A conversion system has been conceptually designed for solar power units of the dish-Stirling type. The main design objectives were to demonstrate the possibility of attaining such performance characteristics as low manufacturing and life cycle costs, high reliability, long life, high efficiency, power output stability, self-balance, automatic (or self-) start-up, and easy maintenance. The system design includes a heat transfer and utilization subsystem with a solar receiver, a free-piston engine, an electric power generation subsystem, and a control subsystem. The working fluid is helium. The structural material is stainless steel for hot elements, aluminum alloys and plastics for others. The electric generation subunit can be fabricated in three options: with an induction linear alternator, with a permanent magnet linear alternator, and with a serial rotated induction generator and a hydraulic drive subsystem. The heat transfer system is based on heat pipes or the reflux boiler principle. Several models of heat transfer units using a liquid metal (Na or Na-K) have been created and demonstrated.

  10. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    Science.gov (United States)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  11. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico

    Science.gov (United States)

    Pool, D.R.; Dickinson, Jesse E.

    2007-01-01

    A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.

  12. The operating performance tests of power unit A1 in HPP 'Zvornik' in load-frequency control

    Directory of Open Access Journals (Sweden)

    Stanojčić Vladimir

    2012-01-01

    Full Text Available The turbine-governing system characteristics derived from testing hydropower unit A1 in HPP 'Zvornik' are presented. These tests give insights into the setup state and parameters of the governing system, as well as the qualitative analysis of load-frequency control response of the case study power unit within the power system of Serbia. Verification of relevant turbine-governing parameters was performed by direct application of appropriate standards and policies. The presented results can be used as a basis for the derivation of a turbine governor mathematical model and for a complete mathematical model of a hydropower unit as an element embedded in the power system.

  13. Spatial distributions of radionuclides deposited onto ground soil around the Fukushima Dai-ichi Nuclear Power Plant and their temporal change until December 2012.

    Science.gov (United States)

    Mikami, Satoshi; Maeyama, Takeshi; Hoshide, Yoshifumi; Sakamoto, Ryuichi; Sato, Shoji; Okuda, Naotoshi; Demongeot, Stéphanie; Gurriaran, Rodolfo; Uwamino, Yoshitomo; Kato, Hiroaki; Fujiwara, Mamoru; Sato, Tetsuro; Takemiya, Hiroshi; Saito, Kimiaki

    2015-01-01

    Spatial distributions and temporal changes of radioactive fallout released by the Fukushima Dai-ichi Nuclear Power Plant accident have been investigated by two campaigns with three measurement schedules. The inventories (activities per unit area) of the radionuclides deposited onto ground soil were measured using portable gamma-ray spectrometers at nearly 1000 locations (at most) per measurement campaign. Distribution maps of the inventories of (134)Cs, (137)Cs, and (110m)Ag as of March, September, and December 2012 were constructed. No apparent temporal change of the radionuclide inventories was observed from March to December 2012. Weathering effects (e.g., horizontal mobility) were not noticeable during this period. Spatial dependence in the ratios of (134)Cs/(137)Cs and (110m)Ag/(137)Cs were observed in the Tohoku and Kanto regions. The detailed maps of (134)Cs and (137)Cs as of September 2012 and December 2012 were constructed using the relationship between the air dose rate and the inventory.

  14. Ground-based remote sensing profiling and numerical weather prediction model to manage nuclear power plants meteorological surveillance in Switzerland

    Directory of Open Access Journals (Sweden)

    B. Calpini

    2011-08-01

    Full Text Available The meteorological surveillance of the four nuclear power plants in Switzerland is of first importance in a densely populated area such as the Swiss Plateau. The project "Centrales Nucléaires et Météorologie" CN-MET aimed at providing a new security tool based on one hand on the development of a high resolution numerical weather prediction (NWP model. The latter is providing essential nowcasting information in case of a radioactive release from a nuclear power plant in Switzerland. On the other hand, the model input over the Swiss Plateau is generated by a dedicated network of surface and upper air observations including remote sensing instruments (wind profilers and temperature/humidity passive microwave radiometers. This network is built upon three main sites ideally located for measuring the inflow/outflow and central conditions of the main wind field in the planetary boundary layer over the Swiss Plateau, as well as a number of surface automatic weather stations (AWS. The network data are assimilated in real-time into the fine grid NWP model using a rapid update cycle of eight runs per day (one forecast every three hours. This high resolution NWP model has replaced the former security tool based on in situ observations (in particular one meteorological mast at each of the power plants and a local dispersion model. It is used to forecast the dynamics of the atmosphere in the planetary boundary layer (typically the first 4 km above ground layer and over a time scale of 24 h. This tool provides at any time (e.g. starting at the initial time of a nuclear power plant release the best picture of the 24-h evolution of the air mass over the Swiss Plateau and furthermore generates the input data (in the form of simulated values substituting in situ observations required for the local dispersion model used at each of the nuclear power plants locations. This paper is presenting the concept and two validation studies as well as the results of an

  15. Ground-Based Measurement Experiment and First Results with Geosynchronous-Imaging Fourier Transform Spectrometer Engineering Demonstration Unit

    Science.gov (United States)

    Zhou, Daniel K.; Smith, William L.; Bingham, Gail E.; Huppi, Ronald J.; Revercomb, Henry E.; Zollinger, Lori J.; Larar, Allen M.; Liu, Xu; Tansock, Joseph J.; Reisse, Robert A.; Hooker, Ronald

    2007-01-01

    The geosynchronous-imaging Fourier transform spectrometer (GIFTS) engineering demonstration unit (EDU) is an imaging infrared spectrometer designed for atmospheric soundings. It measures the infrared spectrum in two spectral bands (14.6 to 8.8 microns, 6.0 to 4.4 microns) using two 128 x 128 detector arrays with a spectral resolution of 0.57 cm(exp -1) with a scan duration of approximately 11 seconds. From a geosynchronous orbit, the instrument will have the capability of taking successive measurements of such data to scan desired regions of the globe, from which atmospheric status, cloud parameters, wind field profiles, and other derived products can be retrieved. The GIFTS EDU provides a flexible and accurate testbed for the new challenges of the emerging hyperspectral era. The EDU ground-based measurement experiment, held in Logan, Utah during September 2006, demonstrated its extensive capabilities and potential for geosynchronous and other applications (e.g., Earth observing environmental measurements). This paper addresses the experiment objectives and overall performance of the sensor system with a focus on the GIFTS EDU imaging capability and proof of the GIFTS measurement concept.

  16. Water balance-based actual evapotranspiration reconstruction from ground and satellite observations over the conterminous United States

    Science.gov (United States)

    Wan, Zhanming; Zhang, Ke; Xue, Xianwu; Hong, Zhen; Hong, Yang; Gourley, Jonathan J.

    2015-08-01

    The objective of this study is to produce an observationally based monthly evapotranspiration (ET) product using the simple water balance equation across the conterminous United States (CONUS). We adopted the best quality ground and satellite-based observations of the water budget components, i.e., precipitation, runoff, and water storage change, while ET is computed as the residual. Precipitation data are provided by the bias-corrected PRISM observation-based precipitation data set, while runoff comes from observed monthly streamflow values at 592 USGS stream gauging stations that have been screened by strict quality controls. We developed a land surface model-based downscaling approach to disaggregate the monthly GRACE equivalent water thickness data to daily, 0.125° values. The derived ET computed as the residual from the water balance equation is evaluated against three sets of existing ET products. The similar spatial patterns and small differences between the reconstructed ET in this study and the other three products show the reliability of the observationally based approach. The new ET product and the disaggregated GRACE data provide a unique, important hydro-meteorological data set that can be used to evaluate the other ET products as a benchmark data set, assess recent hydrological and climatological changes, and terrestrial water and energy cycle dynamics across the CONUS. These products will also be valuable for studies and applications in drought assessment, water resources management, and climate change evaluation.

  17. Intense generation of respirable metal nanoparticles from a low-power soldering unit

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Virginia [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), 50018 Zaragoza (Spain); Irusta, Silvia [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), 50018 Zaragoza (Spain); Networking Biomedical Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza (Spain); Balas, Francisco [Networking Biomedical Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza (Spain); Instituto de Carboquímica – Consejo Superior de Investigaciones Científicas (ICB-CSIC), 50018 Zaragoza (Spain); Santamaria, Jesus, E-mail: Jesus.Santamaria@unizar.es [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), 50018 Zaragoza (Spain); Networking Biomedical Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018 Zaragoza (Spain)

    2013-07-15

    Highlights: • Intense generation of nanoparticles in the breathing range from a flux-soldering unit is detected. • Coagulation in the aerosol phase leads to 200-nm respirable nanoparticles up to 30 min after operation. • Nanoparticle concentration in the working environment depends on the presence of ambient air. • Metal-containing nanoparticles are collected in TEM grids and filters in the hundreds of nanometer range. -- Abstract: Evidence of intense nanoparticle generation from a low power (45 W) flux soldering unit is presented. This is a familiar device often used in daily life, including home repairs and school electronic laboratories. We demonstrate that metal-containing nanoparticles may reach high concentrations (ca. 10{sup 6} particles/cm{sup 3}) within the breathing range of the operator, with initial size distributions centered at 35–60 nm The morphological and chemical analysis of nanoparticle agglomerates collected on TEM grids and filters confirms their multiparticle structure and the presence of metals.

  18. Commitment and dispatch of heat and power units via affinely adjustable robust optimization

    DEFF Research Database (Denmark)

    Zugno, Marco; Morales González, Juan Miguel; Madsen, Henrik

    2016-01-01

    The joint management of heat and power systems is believed to be key to the integration of renewables into energy systems with a large penetration of district heating. Determining the day-ahead unit commitment and production schedules for these systems is an optimization problem subject...... to uncertainty stemming from the unpredictability of demand and prices for heat and electricity. Furthermore, owing to the dynamic features of production and heat storage units as well as to the length and granularity of the optimization horizon (e.g., one whole day with hourly resolution), this problem...... approach. Secondly, we appraise the gain obtained by switching from linear to piecewise-linear decision rules within robust optimization. Furthermore, we give directions for selecting the parameters defining the uncertainty set (size, budget) and assess the resulting trade-off between average profit...

  19. OPTIMAL SIZING OF DG UNITS USING EXACT LOSS FORMULA AT OPTIMAL POWER FACTOR

    Directory of Open Access Journals (Sweden)

    P.Sobha Rani

    2012-09-01

    Full Text Available Distributed generators are beneficial in reducing the losses effectively compared to other methods of loss reduction. The challenge of identifying the optimal locations and sizes of DG has generated research interests all over the world and many efforts have been made in this direction. Studies have indicated that inappropriatelocations and sizes of DG may lead to higher system losses than the ones in the existing network. In this paper IEEE 33-bus system is selected for locating and sizing of optimal distributed generation source. The DG unit size is calculated using exact loss formula. With the optimal size of DG unit at a suitable location and at optimalpower factor, it resulted in reduction in power losses and improvement in voltage profile.

  20. Summary of inspection findings of licensee inservice testing programs at United States commercial nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, A.; Colaccino, J.

    1996-12-01

    Periodic inspections of pump and valve inservice testing (IST) programs in United States commercial nuclear power plants are performed by Nuclear Regulatory Commission (NRC) Regional Inspectors to verify licensee regulatory compliance and licensee commitments. IST inspections are conducted using NRC Inspection Procedure 73756, {open_quotes}Inservice Testing of Pumps and Valves{close_quotes} (IP 73756), which was updated on July 27, 1995. A large number of IST inspections have also been conducted using Temporary Instruction 2515/114, {open_quotes}Inspection Requirements for Generic Letter 89-04, Acceptable Inservice Testing Programs{close_quotes} (TI-2515/114), which was issued January 15, 1992. A majority of U.S. commercial nuclear power plants have had an IST inspection to either IP 73756 or TI 2515/114. This paper is intended to summarize the significant and recurring findings from a number of these inspections since January of 1990.

  1. Auxiliary power unit based on a solid oxide fuel cell and fuelled with diesel

    Science.gov (United States)

    Lawrence, Jeremy; Boltze, Matthias

    An auxiliary power unit (APU) is presented that is fuelled with diesel, thermally self-sustaining, and based on a solid oxide fuel cell (SOFC). The APU is rated at 1 kW electrical, and can generate electrical power after a 3 h warm-up phase. System features include a "dry" catalytic partial oxidation (CPOX) diesel reformer, a 30 cell SOFC stack with an open cathode, and a porous-media afterburner. The APU does not require a supply of external water. The SOFC stack is an outcome of a development partnership with H.C. Starck GmbH and Fraunhofer IKTS, and is discussed in detail in an accompanying paper.

  2. Extreme Environment Capable, Modular and Scalable Power Processing Unit for Solar Electric Propulsion

    Science.gov (United States)

    Carr, Gregory A.; Iannello, Christopher J.; Chen, Yuan; Hunter, Don J.; Del Castillo, Linda; Bradley, Arthur T.; Stell, Christopher; Mojarradi, Mohammad M.

    2013-01-01

    This paper is to present a concept of a modular and scalable High Temperature Boost (HTB) Power Processing Unit (PPU) capable of operating at temperatures beyond the standard military temperature range. The various extreme environments technologies are also described as the fundamental technology path to this concept. The proposed HTB PPU is intended for power processing in the area of space solar electric propulsion, where the reduction of in-space mass and volume are desired, and sometimes even critical, to achieve the goals of future space flight missions. The concept of the HTB PPU can also be applied to other extreme environment applications, such as geothermal and petroleum deep-well drilling, where higher temperature operation is required.

  3. Free and open source simulation tools for the design of power processing units for photovoltaic systems

    Directory of Open Access Journals (Sweden)

    Sergio Morales-Hernández

    2015-06-01

    Full Text Available Renewable energy sources, including solar photovoltaic, require electronic circuits that serve as interface between the transducer device and the device or system that uses energy. Moreover, the energy efficiency and the cost of the system can be compromised if such electronic circuit is not designed properly. Given that the electrical characteristics of the photovoltaic devices are nonlinear and that the most efficient electronic circuits for power processing are naturally discontinuous, a detailed dynamic analysis to optimize the design is required. This analysis should be supported by computer simulation tools. In this paper a comparison between two software tools for dynamic system simulation is performed to determinate its usefulness in the design process of photovoltaic systems, mainly in what corresponds to the power processing units. Using as a case of study a photovoltaic system for battery charging it was determined that Scicoslab tool was the most suitable.

  4. Refining estimates of bird collision and electrocution mortality at power lines in the United States.

    Science.gov (United States)

    Loss, Scott R; Will, Tom; Marra, Peter P

    2014-01-01

    Collisions and electrocutions at power lines are thought to kill large numbers of birds in the United States annually. However, existing estimates of mortality are either speculative (for electrocution) or based on extrapolation of results from one study to all U.S. power lines (for collision). Because national-scale estimates of mortality and comparisons among threats are likely to be used for prioritizing policy and management strategies and for identifying major research needs, these estimates should be based on systematic and transparent assessment of rigorously collected data. We conducted a quantitative review that incorporated data from 14 studies meeting our inclusion criteria to estimate that between 12 and 64 million birds are killed each year at U.S. power lines, with between 8 and 57 million birds killed by collision and between 0.9 and 11.6 million birds killed by electrocution. Sensitivity analyses indicate that the majority of uncertainty in our estimates arises from variation in mortality rates across studies; this variation is due in part to the small sample of rigorously conducted studies that can be used to estimate mortality. Little information is available to quantify species-specific vulnerability to mortality at power lines; the available literature over-represents particular bird groups and habitats, and most studies only sample and present data for one or a few species. Furthermore, additional research is needed to clarify whether, to what degree, and in what regions populations of different bird species are affected by power line-related mortality. Nonetheless, our data-driven analysis suggests that the amount of bird mortality at U.S. power lines is substantial and that conservation management and policy is necessary to reduce this mortality.

  5. Refining Estimates of Bird Collision and Electrocution Mortality at Power Lines in the United States

    Science.gov (United States)

    Loss, Scott R.; Will, Tom; Marra, Peter P.

    2014-01-01

    Collisions and electrocutions at power lines are thought to kill large numbers of birds in the United States annually. However, existing estimates of mortality are either speculative (for electrocution) or based on extrapolation of results from one study to all U.S. power lines (for collision). Because national-scale estimates of mortality and comparisons among threats are likely to be used for prioritizing policy and management strategies and for identifying major research needs, these estimates should be based on systematic and transparent assessment of rigorously collected data. We conducted a quantitative review that incorporated data from 14 studies meeting our inclusion criteria to estimate that between 12 and 64 million birds are killed each year at U.S. power lines, with between 8 and 57 million birds killed by collision and between 0.9 and 11.6 million birds killed by electrocution. Sensitivity analyses indicate that the majority of uncertainty in our estimates arises from variation in mortality rates across studies; this variation is due in part to the small sample of rigorously conducted studies that can be used to estimate mortality. Little information is available to quantify species-specific vulnerability to mortality at power lines; the available literature over-represents particular bird groups and habitats, and most studies only sample and present data for one or a few species. Furthermore, additional research is needed to clarify whether, to what degree, and in what regions populations of different bird species are affected by power line-related mortality. Nonetheless, our data-driven analysis suggests that the amount of bird mortality at U.S. power lines is substantial and that conservation management and policy is necessary to reduce this mortality. PMID:24991997

  6. Use of a turboexpander in steam power units for heat energy recovery in heat supply systems

    Science.gov (United States)

    Sadykov, R. A.; Daminov, A. Z.; Solomin, I. N.; Futin, V. A.

    2016-05-01

    A method for raising the efficiency of a boiler plant by installing a unit operating by the organic Rankine cycle is presented. Such units allow one to generate electricity to cover the auxiliaries of a heat source at a heat-transfer fluid temperature of no more than 130°C. The results of commissioning tests of boilers revealed that their efficiency is maximized under a load that is close or corresponds to the nominal one. If this load is maintained constantly, excess heat energy is produced. This excess may be used to generate electric energy in a steam power unit with a turboexpander. A way to insert this unit into the flow diagram of a boiler plant is proposed. The results of analysis of turbine types (turboexpanders included) with various capacities are presented, and the optimum type for the proposed flow diagram is chosen. The methodology for the design of turboexpanders and compressors used in the oil and gas industry and their operational data were applied in the analysis of a turboexpander. The results of the thermogasdynamic analysis of a turboexpander and the engineered shape of an axial-radial impeller are presented. Halocarbon R245fa is chosen as the working medium based on its calorimetric properties.

  7. A critical examination of the investment proposals for Unit 6 of the Sostanj Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    De Bruyn, S.; Warringa, G.; Afman, M.; Croezen, H.

    2011-11-15

    The Holding Slovenske Elektrarne (HSE), owner of the Termoelektrarna Sostanj power plant (STPP) in Slovenia, has commissioned a plan to construct a new unit at this plant. The proposed Unit 6 will replace Units 4 and 5 and be fired using lignite from the nearby Velenje mine. The first investment plan was submitted in 2005 and subsequently adapted in 2006 and 2009 to qualify for loans from the European Investment Bank (EIB) and European Bank for Reconstruction and Development (EBRD). In 2011 a fourth revision of the investment plan was drafted, which was required as the EIB requested a state guarantee. The Slovenian 'Decree on the uniform methodology for the preparation and treatment of investment documentation in the field of public finance' requires certain rules to be followed for a state guarantee of this nature. One of these specific rules concerns the expected rate of return on investments, which must exceed 7%. As with any investment plan, calculations crucially depend on the assumptions made with respect to the future development of costs and benefits. The CEE Bankwatch Network and Focus, association for sustainable development, asked CE Delft to review the investment plan for the new lignite-fired unit of the Sostanj plant and investigate whether the crucial variables have been correctly assessed. This report analyses the investment plan and evaluates the assumptions regarding the future which underpin it.

  8. Voith power transmission systems in diesel multiple units and railcars. A review on recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, W. [Voith Turbo GmbH und Co. KG, Heidenheim (Germany). Rail Div.

    1999-04-01

    Voith today offers complete transmission systems consisting of hydrodynamic and hydromechanical transmissions with integrated retarders, cardan shafts, final drives and cooling units. For DMUs with underfloor powerpacks, the hydrodynamic power transmission system currently is the pre-eminent drive system worldwide and meets the established standards for rail service, i.e. high availability, low operating costs and a reasonable purchasing price. In this article, the author describes Voith`s contribution to the further development of these transmission systems in several modern dieselhydraulic railcars and DMUs for regional and main-line operations. (orig.)

  9. STS-31 Discovery, OV-103, auxiliary power unit 1 (APU-1) controller

    Science.gov (United States)

    1990-01-01

    The controller for Discovery's, Orbiter Vehicle (OV) 103's, auxiliary power unit 1 (APU-1) is documented before removal following the launch scrub on 04-10-90. The controller weighs about 15 pounds and controls the speed of the APU. It was flown to the vendor, Sundstrand Corp., Rockford, Illinois, for analysis and testing. Launch of OV-103 on mission STS-31 has been rescheduled for 04-24-90 following the successful replacement of the APU-1 and the recharging of the Hubble Space Telescope's (HST's) nickel-hydrogen batteries. View provided by the Kennedy Space Center (KSC) with alternate KSC number KSC-90PC-663.

  10. High temperature microbial corrosion in the condenser of a geothermal electric power unit

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Sanchez, R.; Magana-Vazquez, A.; Sanchez-Yanez, J.M. [Univ. Michoacana, Morelia, Michoacan (Mexico); Gomez, L.M. [Univ. Autonoma de Campeche, Cuernavaca, Morelos (Mexico). Programa de Corrosion del Golfo de Mexico]|[Univ. Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico). Inst. de Fisica

    1997-03-01

    Field and experimental growth of microbiologically influenced corrosion at high temperatures in a geothermal electric power unit condenser is discussed. Four chambers containing polished and disinfected 304L stainless steel tubes were exposed for two, four, six, and eight months to the condenser environment at temperatures ranging from 150 C at the inlet to 40 C at the outlet. The tubes developed pitting where Desulfotomaculum Nigrificans and Desulfotomaculum Acetoxidans colonies were clearly identified by biochemical tests. There were also some indications of the presence of genus Desulfovibrio and genus Thermodesulfobacterium. The characteristics of pitting were studied employing SEM-EDS techniques and optical microscopy.

  11. Development Status of Power Processing Unit for 250mN-Class Hall Thruster

    Science.gov (United States)

    Osuga, H.; Suzuki, K.; Ozaki, T.; Nakagawa, T.; Suga, I.; Tamida, T.; Akuzawa, Y.; Suzuki, H.; Soga, Y.; Furuichi, T.; Maki, S.; Matui, K.

    2008-09-01

    Institute for Unmanned Space Experiment Free Flyer (USEF) and Mitsubishi Electric Corporation (MELCO) are developing the next generation ion engine system under the sponsorship of Ministry of Economy, Trade and Industry (METI) within six years. The system requirement specifications are a thrust level of over 250mN and specific impulse of over 1500 sec with a less than 5kW electric power supply, and a lifetime of over 3,000 hours. These target specifications required the development of both a Hall Thruster and a Power Processing Unit (PPU). In the 2007 fiscal year, the PPU called Second Engineering Model (EM2) consist of all power supplies was a model for the Hall Thruster system. The EM2 PPU showed the discharge efficiency was over 96.2% for 250V and 350V at output power between 1.8kW to 4.5kW. And also the Hall Thruster could start up quickly and smoothly to control the discharge voltage, the inner magnet current, the outer magnet current and the xenon flow rate. This paper reports on the design and test results of the EM2 PPU.

  12. Wind power development in the United States: Effects of policies and electricity transmission congestion

    Science.gov (United States)

    Hitaj, Claudia

    In this dissertation, I analyze the drivers of wind power development in the United States as well as the relationship between renewable power plant location and transmission congestion and emissions levels. I first examine the role of government renewable energy incentives and access to the electricity grid on investment in wind power plants across counties from 1998-2007. The results indicate that the federal production tax credit, state-level sales tax credit and production incentives play an important role in promoting wind power. In addition, higher wind power penetration levels can be achieved by bringing more parts of the electricity transmission grid under independent system operator regulation. I conclude that state and federal government policies play a significant role in wind power development both by providing financial support and by improving physical and procedural access to the electricity grid. Second, I examine the effect of renewable power plant location on electricity transmission congestion levels and system-wide emissions levels in a theoretical model and a simulation study. A new renewable plant takes the effect of congestion on its own output into account, but ignores the effect of its marginal contribution to congestion on output from existing plants, which results in curtailment of renewable power. Though pricing congestion removes the externality and reduces curtailment, I find that in the absence of a price on emissions, pricing congestion may in some cases actually increase system-wide emissions. The final part of my dissertation deals with an econometric issue that emerged from the empirical analysis of the drivers of wind power. I study the effect of the degree of censoring on random-effects Tobit estimates in finite sample with a particular focus on severe censoring, when the percentage of uncensored observations reaches 1 to 5 percent. The results show that the Tobit model performs well even at 5 percent uncensored observations

  13. Design of area and power efficient Radix-4 DIT FFT butterfly unit using floating point fused arithmetic

    Institute of Scientific and Technical Information of China (English)

    Prabhu E; Mangalam H; Karthick S

    2016-01-01

    In this work, power efficient butterfly unit based FFT architecture is presented. The butterfly unit is designed using floating-point fused arithmetic units. The fused arithmetic units include two-term dot product unit and add-subtract unit. In these arithmetic units, operations are performed over complex data values. A modified fused floating-point two-term dot product and an enhanced model for the Radix-4 FFT butterfly unit are proposed. The modified fused two-term dot product is designed using Radix-16 booth multiplier. Radix-16 booth multiplier will reduce the switching activities compared to Radix-8 booth multiplier in existing system and also will reduce the area required. The proposed architecture is implemented efficiently for Radix-4 decimation in time (DIT) FFT butterfly with the two floating-point fused arithmetic units. The proposed enhanced architecture is synthesized, implemented, placed and routed on a FPGA device using Xilinx ISE tool. It is observed that the Radix-4 DIT fused floating-point FFT butterfly requires 50.17% less space and 12.16% reduced power compared to the existing methods and the proposed enhanced model requires 49.82% less space on the FPGA device compared to the proposed design. Also, reduced power consumption is addressed by utilizing the reusability technique, which results in 11.42% of power reduction of the enhanced model compared to the proposed design.

  14. Startup of Pumping Units in Process Water Supplies with Cooling Towers at Thermal and Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, V. V., E-mail: vberlin@rinet.ru; Murav’ev, O. A., E-mail: muraviov1954@mail.ru; Golubev, A. V., E-mail: electronik@inbox.ru [National Research University “Moscow State University of Civil Engineering,” (Russian Federation)

    2017-03-15

    Aspects of the startup of pumping units in the cooling and process water supply systems for thermal and nuclear power plants with cooling towers, the startup stages, and the limits imposed on the extreme parameters during transients are discussed.

  15. 78 FR 11904 - Zion Nuclear Power Station, Units 1 and 2; ZionSolutions, LLC; Consideration of Indirect Transfer

    Science.gov (United States)

    2013-02-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Zion Nuclear Power Station, Units 1 and 2; ZionSolutions, LLC; Consideration of Indirect Transfer AGENCY: Nuclear Regulatory Commission. ACTION: Request for license transfer; opportunity to...

  16. Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D. (Environmental Science Division)

    2011-05-09

    Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and

  17. Substantiation of the cogeneration turbine unit selection for reconstruction of power units with a T-250/300-23.5 turbine

    Science.gov (United States)

    Valamin, A. E.; Kultyshev, A. Yu.; Shibaev, T. L.; Gol'dberg, A. A.; Sakhnin, Yu. A.; Stepanov, M. Yu.; Bilan, V. N.; Kadkina, I. V.

    2016-11-01

    The selection of a cogeneration steam turbine unit (STU) for the reconstruction of power units with a T-250/300-23.5 turbine is substantiated by the example of power unit no. 9 at the cogeneration power station no. 22 (TETs-22) of Mosenergo Company. Series T-250 steam turbines have been developed for combined heat and power generation. A total of 31 turbines were manufactured. By the end of 2015, the total operation time of prototype power units with the T-250/300-23.5 turbine exceeded 290000 hours. Considering the expiry of the service life, the decision was made that the reconstruction of the power unit at st. no. 9 of TETs-22 should be the first priority. The main issues that arose in developing this project—the customer's requirements and the request for the reconstruction, the view on certain problems of Ural Turbine Works (UTZ) as the manufacturer of the main power unit equipment, and the opinions of other project parties—are examined. The decisions were made with account taken of the experience in operation of all Series T-250 turbines and the results of long-term discussions of pressing problems at scientific and technical councils, meetings, and negotiations. For the new power unit, the following parameters have been set: a live steam pressure of 23.5 MPa and live steam/reheat temperature of 565/565°C. Considering that the boiler equipment will be upgraded, the live steam flow is increased up to 1030 t/h. The reconstruction activities involving the replacement of the existing turbine with a new one will yield a service life of 250000 hours for turbine parts exposed to a temperature of 450°C or higher and 200000 hours for pipeline components. Hence, the decision has been made to reuse the arrangement of the existing turbine: a four-cylinder turbine unit comprising a high-pressure cylinder (HPC), two intermediate pressure cylinders (IPC-1 & 2), and a low-pressure cylinder (LPC). The flow path in the new turbine will have active blading in LPC and IPC-1

  18. Methods of the aerodynamical experiments with simulation of massflow-traction ratio of the power unit

    Science.gov (United States)

    Lokotko, A. V.

    2016-10-01

    Modeling massflow-traction characteristics of the power unit (PU) may be of interest in the study of aerodynamic characteristics (ADC) aircraft models with full dynamic likeness, and in the study of the effect of interference PU. These studies require the use of a number of processing methods. These include: 1) The method of delivery of the high-pressure body of jets model engines on the sensitive part of the aerodynamic balance. 2) The method of estimate accuracy and reliability of measurement thrust generated by the jet device. 3) The method of implementation of the simulator SU in modeling the external contours of the nacelle, and the conditions at the inlet and outlet. 4) The method of determining the traction simulator PU. 5) The method of determining the interference effect from the work of power unit on the ADC of model. 6) The method of producing hot jets of jet engines. The paper examines implemented in ITAM methodology applied to testing in a supersonic wind tunnel T-313.

  19. Analysis of thermodynamics of two-fuel power unit integrated with a carbon dioxide separation plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2014-12-01

    Full Text Available The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2 separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2 separation plant were compared with the results of the analysis of the block where the separation is not conducted.

  20. United States nuclear regulatory commission program for inspection of decommissioning nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Harris, P.W. [U.S. Nuclear Regulatory Commission, Washington, DC (United States)

    2001-07-01

    The United States Nuclear Regulatory Commission (USNRC or Commission) has been inspecting decommissioning commercial nuclear power plants in the United States (U.S.) since the first such facility permanently shutdown in September 1967. Decommissioning inspections have principally focused on the safe storage and maintenance of spent reactor fuel; occupational radiation exposure; environmental radiological releases; the dismantlement and decontamination of structures, systems, and components identified to contain or potentially contain licensed radioactive material; and the performance of final radiological survey of the site and remaining structures to support termination of the USNRC-issued operating license. Over the last 5 years, USNRC inspection effort in these areas has been assessed and found to provide reasonable confidence that decommissioning can be conducted safely and in accordance with Commission rules and regulations. Recently, the staff has achieved a better understanding of the risks associated with particular decommissioning accidents 1 and plans to apply these insights to amendments proposed to enhance decommissioning rules and regulations. The probabilities, scenarios, and conclusions resulting from this effort are being assessed as to their applicability to the inspection of decommissioning commercial power reactors. (author)

  1. Analysis of thermodynamics of two-fuel power unit integrated with a carbon dioxide separation plant

    Science.gov (United States)

    Kotowicz, Janusz; Bartela, Łukasz; Mikosz, Dorota

    2014-12-01

    The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2 separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2 separation plant were compared with the results of the analysis of the block where the separation is not conducted.

  2. Cold-end Subsystem Testing for the Fission Power System Technology Demonstration Unit

    Science.gov (United States)

    Briggs, Maxwell; Gibson, Marc; Ellis, David; Sanzi, James

    2013-01-01

    The Fission Power System (FPS) Technology Demonstration Unit (TDU) consists of a pumped sodium-potassium (NaK) loop that provides heat to a Stirling Power Conversion Unit (PCU), which converts some of that heat into electricity and rejects the waste heat to a pumped water loop. Each of the TDU subsystems is being tested independently prior to full system testing at the NASA Glenn Research Center. The pumped NaK loop is being tested at NASA Marshall Space Flight Center; the Stirling PCU and electrical controller are being tested by Sunpower Inc.; and the pumped water loop is being tested at Glenn. This paper describes cold-end subsystem setup and testing at Glenn. The TDU cold end has been assembled in Vacuum Facility 6 (VF 6) at Glenn, the same chamber that will be used for TDU testing. Cold-end testing in VF 6 will demonstrate functionality; validated cold-end fill, drain, and emergency backup systems; and generated pump performance and system pressure drop data used to validate models. In addition, a low-cost proof-of concept radiator has been built and tested at Glenn, validating the design and demonstrating the feasibility of using low-cost metal radiators as an alternative to high-cost composite radiators in an end-to-end TDU test.

  3. A diesel fuel processor for fuel-cell-based auxiliary power unit applications

    Science.gov (United States)

    Samsun, Remzi Can; Krekel, Daniel; Pasel, Joachim; Prawitz, Matthias; Peters, Ralf; Stolten, Detlef

    2017-07-01

    Producing a hydrogen-rich gas from diesel fuel enables the efficient generation of electricity in a fuel-cell-based auxiliary power unit. In recent years, significant progress has been achieved in diesel reforming. One issue encountered is the stable operation of water-gas shift reactors with real reformates. A new fuel processor is developed using a commercial shift catalyst. The system is operated using optimized start-up and shut-down strategies. Experiments with diesel and kerosene fuels show slight performance drops in the shift reactor during continuous operation for 100 h. CO concentrations much lower than the target value are achieved during system operation in auxiliary power unit mode at partial loads of up to 60%. The regeneration leads to full recovery of the shift activity. Finally, a new operation strategy is developed whereby the gas hourly space velocity of the shift stages is re-designed. This strategy is validated using different diesel and kerosene fuels, showing a maximum CO concentration of 1.5% at the fuel processor outlet under extreme conditions, which can be tolerated by a high-temperature PEFC. The proposed operation strategy solves the issue of strong performance drop in the shift reactor and makes this technology available for reducing emissions in the transportation sector.

  4. RCGVS design improvement and depressurization capability tests for Ulchin nuclear power plant units 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Kang Sik; Seong, Ho Je; Jeong, Won Sang; Seo, Jong Tae; Lee, Sang Keun [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Lim, Keun Hyo; Choi, Kwon Sik; Oh, Chul Sung [Korea Electric Power Cooperation, Taejon (Korea, Republic of)

    1998-12-31

    The Reactor Coolant Gas Vent System(RCGVS) design for Ulchin Nuclear Power Plant Units 3 and 4 (UCN 3 and 4) has been improved from the Yonggwang Nuclear Power Plant Units 3 and 4 (YGN 3 and 4) based on the evaluation results for depressurization capability tests performed at YGN 3 and 4. There has been a series of plant safety analyses for Natural Circulation Cooldown(NCC) event and thermo-dynamic analyses with RELAP5 code for the steam blowdown phenomena in order to optimize the orifice size of UCN 3 and 4 RCGVS. Based on these analyses results, the RCGVS orifics size for UCN 3 and 4 has been reduced to 9/32 inch from the 11/32 inch for YGN 3 and 4. The depressurization capability tests, which were performed at UCN 3 in order to verify the FSAR NCC analysis results, show that the RCGVS depressurization rates are being within the acceptable ranges. Therefore, it is concluded that the orificed flow path of UCN 3 and 4 RCGVS is adequately designed, and can provide the safety-grade depressurization capability required for a safe plant operation. 6 refs., 5 figs., 1 tab. (Author)

  5. Inventory of power plants in the United States. [By state within standard Federal Regions, using county codes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    The purpose of this inventory of power plants is to provide a ready reference for planners whose focus is on the state, standard Federal region, and/or national level. Thus the inventory is compiled alphabetically by state within standard Federal regions. The units are listed alphabetically within electric utility systems which in turn are listed alphabetically within states. The locations are identified to county level according to the Federal Information Processing Standards Publication Counties and County Equivalents of the States of the United States. Data compiled include existing and projected electrical generation units, jointly owned units, and projected construction units.

  6. Detecting the single line to ground short circuit fault in the submarine’s power system using the artificial neural network

    Directory of Open Access Journals (Sweden)

    Behniafar Ali

    2013-01-01

    Full Text Available The electric marine instruments are newly inserted in the trade and industry, for which the existence of an equipped and reliable power system is necessitated. One of the features of such a power system is that it cannot have an earth system causing the protection relays not to be able to detect the single line to ground short circuit fault. While on the other hand, the occurrence of another similar fault at the same time can lead to the double line fault and thereby the tripping of relays and shortening of vital loads. This in turn endangers the personals' security and causes the loss of military plans. From the above considerations, it is inferred that detecting the single line to ground fault in the marine instruments is of a special importance. In this way, this paper intends to detect the single line to ground fault in the power systems of the marine instruments using the wavelet transform and Multi-Layer Perceptron (MLP neural network. In the numerical analysis, several different types of short circuit faults are simulated on several marine power systems and the proposed approach is applied to detect the single line to ground fault. The results are of a high quality and preciseness and perfectly demonstrate the effectiveness of the proposed approach.

  7. A fuzzy chance-constrained program for unit commitment problem considering demand response, electric vehicle and wind power

    DEFF Research Database (Denmark)

    Zhang, Ning; Hu, Zhaoguang; Han, Xue

    2015-01-01

    commitment model is proposed in this paper considering demand response and electric vehicles, which can promote the exploitation of wind power. On the one hand, demand response and electric vehicles have the feasi- bility to change the load demand curve to solve the mismatch problem. On the other hand......, they can serve as reserve for wind power. To deal with the unit commitment problem, authors use a fuzzy chance- constrained program that takes into account the wind power forecasting errors. The numerical study shows that the model can promote the utilization of wind power evidently, making the power...

  8. Low-power and Low-cost Design of Survival Memory Unit for 1000Base-T Gigabit Ethernet Transceiver

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Types of hybrid architectures survivor memory unit (SMU) is presented,which are applicable to IEEE 802.3 ab 1000 Base-T Gigabit Ethernet (GbE) transceiver. Area, power and decoder latency were taken into account and most efficient architectures were compared to optimize area/power tradeoff in different kinds of applications. Suitable SMU architectures are given out respectively in area-restrict, power-restrict and latency-restrict designs. A power-efficient architecture was selected in our GbE project. It provides 48% improvement in area and 71% amelioration in power, compared to classical register exchange architecture (REA) SMU.

  9. 75 FR 4426 - Florida Power and Light Company; Turkey Point Nuclear Generating Units 3 and 4; Environmental...

    Science.gov (United States)

    2010-01-27

    ... the beltline region of the Turkey Point Units 3 and 4 reactor pressure vessels. Environmental Impacts... COMMISSION Florida Power and Light Company; Turkey Point Nuclear Generating Units 3 and 4; Environmental..., located in Miami, Florida. In accordance with 10 CFR 51.21, the NRC prepared an environmental assessment...

  10. Development of hydraulic power unit and accumulator charging circuit for electricity generation, storage and distribution

    Institute of Scientific and Technical Information of China (English)

    C.N.Okoye; JIANG Ji-hai; LIU Hai-chang

    2008-01-01

    It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to induction motor to drive cylinder loads. During upstroke operation, the variable pump/motor (P/M) driven by both electric motor and the second (P/M) works as hydraulic pump and output flow to the cylinders which drive the load. During load deceleration, the cylinders work as pump while the operation of the two secondary units are reversed, the variable (P/M) works as a motor generating a torque with the electric motor to drive the other(P/M) which transforms mechanical energy to hydraulic energy that is saved in the accumulator. When the en-ergy storage capacity of the accumulator is attained as the operation continues, energy storage to the accumulator is thermostatically stopped while the induction motor begins to work as a generator and generates electricity that is stored in the power distribution unit. Simulations were performed using a limited PT2 Block, I.e. 2nd-ordertransfer function with limitation of slope and signal output to determine suitable velocity of the cylinder which will match high performance and system stability. A mathematical model suited to the simulation of the hydrau-lic accumulator both in an open-or close-loop system is presented. The quest for improvement of lower energy capacity storage, saving and re-utilization of the conventional accumulator resulting in the short cycle time usage of hydraulic accumulators both in domestic and industrial purposes necessitates this research. The outcome of the research appears to be very efficient for generating fluctuation free electricity, power quality and reliability, energy saving/reutilization and system noise reduction.

  11. The modeling of a standalone solid-oxide fuel cell auxiliary power unit

    Science.gov (United States)

    Lu, N.; Li, Q.; Sun, X.; Khaleel, M. A.

    In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module, two heat exchanger modules, and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components, as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will help design engineers to adjust design parameters to optimize the performance. The modeling results of the SOFC APU heat-up stage and the output voltage response to a sudden load change are presented in this paper. The fuel flow regulation based on fuel utilization is also briefly discussed.

  12. Survey of technology for hybrid vehicle auxiliary power units. Interim report, April 1994-June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Widener, S.K.

    1995-10-01

    The state-of-the-art of heat engines for use as auxiliary power units in hybrid vehicles is surveyed. The study considers reciprocating or rotary heat engines, excluding gas turbines and fuel cells. The relative merits of various engine-generator concepts are compared. The concepts are ranked according to criteria tailored for a series-type hybrid drive. The two top APU concepts were the free-piston engine/linear generator (FPELG) and the Wankel rotary` engine. The FPELG is highly ranked primarily because of thermal efficiency cost, producibility. reliability, and transient response advantages; it is a high risk concept because of unproven technology. The Wankel engine is proven. with high power density, low cost and low noise. Four additional competitive concepts include two-stroke spark-ignition engine. two-stroke gas generator with turboalternator, free-piston engine gas generator with turboalternator, and homogeneous charge compression ignition engine. This study recommends additional work, including cycle simulation development and preliminary design to better quantify thermal efficiency and power density. Auxiliary concepts were also considered, including two which warrant further study: electrically actuated valves, and lean turndown of a normally stoichiometric engine. These concepts should be evaluated by retrofitting to existing engines.

  13. Sizing Combined Heat and Power Units and Domestic Building Energy Cost Optimisation

    Directory of Open Access Journals (Sweden)

    Dongmin Yu

    2017-06-01

    Full Text Available Many combined heat and power (CHP units have been installed in domestic buildings to increase energy efficiency and reduce energy costs. However, inappropriate sizing of a CHP may actually increase energy costs and reduce energy efficiency. Moreover, the high manufacturing cost of batteries makes batteries less affordable. Therefore, this paper will attempt to size the capacity of CHP and optimise daily energy costs for a domestic building with only CHP installed. In this paper, electricity and heat loads are firstly used as sizing criteria in finding the best capacities of different types of CHP with the help of the maximum rectangle (MR method. Subsequently, the genetic algorithm (GA will be used to optimise the daily energy costs of the different cases. Then, heat and electricity loads are jointly considered for sizing different types of CHP and for optimising the daily energy costs through the GA method. The optimisation results show that the GA sizing method gives a higher average daily energy cost saving, which is 13% reduction compared to a building without installing CHP. However, to achieve this, there will be about 3% energy efficiency reduction and 7% input power to rated power ratio reduction compared to using the MR method and heat demand in sizing CHP.

  14. A Novel Nanosecond Pulsed Power Unit for the Formation of-OH in Water

    Institute of Scientific and Technical Information of China (English)

    李胜利; 胡胜; 张晗

    2012-01-01

    A novel nanosecond pulsed power unit was developed for plasma treatment of wastewater, based on the theory of magnetic pulse compression and semiconductor opening switch (SOS). The peak value, rise time and pulse duration of the output voltage were observed to be -51 kV, 60 ns and 120 ns, respectively. The concentrations of .OH generated by the novel nanosecond pulsed plasma power were determined using the method of high-performance liquid chromatography (HPLC). The results showed that the concentrations of .OH increased with the increase in peak voltage, and the generation rates of .OH were 4.1 ×10^-10 mol/s, 5.7× 10^-10 mol/s, and 7.7× 10^-10 mol/s at 30 kV, 35 kV, and 40 kV, respectively. The efficiency of OH generation was found to be independent of the input parameters for applied power, with an average value of 3.23×10^-12 mol/J obtained.

  15. Maximal loads acting on legs of powered roof support unit in longwalls with bumping hazards

    Institute of Scientific and Technical Information of China (English)

    StanislawSzweda

    2001-01-01

    In the article the results of measurements of the resultant force in the legs of a powered roof support unit, caused by a dynamic interaction bf the rock mass, are discussed. The measurements have been taken in the Iongwalls mined with a roof fall, characterized by the highest degree of bumping hazard. It has been stated that the maximal force in the legs Fro, recorded during a dynamic interaction of the rock mass, is proportional to the initial static force in the legs Fst.p Therefore a need for a careful selection of the initial load of the powered roof support, according to the local mining and geological conditions, results from such a statement. Setting the legs with the supporting load exceeding the indispensable value for keeping the direct roof solids in balance, deteriorating the operational parameters of a Iongwall system also has a disadvantageous influence on the value of the force in the legs and the rate of its increase, caused by a dynamic interaction of the rock mass. A correct selection of the initial load causes a decrease in the intensity of a dynamic interaction of the rock mass on powered roof supports, which also has an advanta igeous influence on their life, Simultaneously with the measurements of the resultant force in the legs, the vertical acceleration of the canopy was also recorded. It has enabled to prove that the external dynamic forces may act on the unit both from the roof as well as from the floor. The changes of the force in the legs caused by dynamic phenomena intrinsically created in the roof and changes of the force in the legs caused by blasting explosives in the roof of the working, have been analyzed separately. It has been stated that an increase in the loads of legs, caused by intrinsic phenomena is significantly higher than a force increase in the legs caused by blasting. It means that powered roof supports, to be operated in the workings, where the bumping hazard occurs, will also transmit the loads acting on a unit

  16. An annular-furnace boiler for the 660-MW power unit for ultrasupercritical parameters intended for firing brown slagging coals

    Science.gov (United States)

    Serant, F. A.; Belorutskii, I. Yu.; Ershov, Yu. A.; Gordeev, V. V.; Stavskaya, O. I.; Katsel, T. V.

    2013-12-01

    We present the main technical solutions adopted in designing annular-furnace boilers intended for operation on brown coals of the prospective Maikubensk open-cast mine in Kazakhstan as part of 660-MW power units for ultrasupercritical steam conditions. Results from 3D modeling of combustion processes are presented, which clearly show the advantages furnaces of this kind have over a traditional furnace in burning heavily slagging brown coals. The layout of the main and boiler auxiliary equipment in the existing boiler cell of the 500-MW power unit at the Ekibastuz GRES-1 district power station is shown. Appropriate attention is paid to matters concerned with decreasing harmful emissions.

  17. Role of design complexity in forecasting reliability and availability for electric-power-generating units. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Berkey, D.M.; Balaban, H.S.

    1982-10-01

    This report examines the relationship between design complexity and reliability and availability performance for fossil-fueled electric-power-generating units. Multivariate regression analysis was applied to design complexity and reliability and availability performance data gathered from a representative sample of electric-power-generating units. Twelve predictive relationships or equations were developed as a result of employing this statistical procedure. Each equation was verified and assessed. Guidelines for applying the predictive relationships, including confidence limits, were also developed and are presented in this report. A major result of this examination is a quantitative predictive tool that should be useful to the electric-power industry.

  18. Evaluation of electromagnetic interference environment of the instrumentation and control systems in nuclear power units

    Energy Technology Data Exchange (ETDEWEB)

    Min, Moon-Gi; Lee, Jae-Ki; Ji, Yeong-Haw; Jo, Sung-Han [Korea Hydro & Nuclear Power Co., Ltd., 1312-70 Yuesong-daero, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Hee-Je, E-mail: heeje@pusan.ac.kr [Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2015-04-15

    Highlights: • We surveyed the electromagnetic emissions at the location of I&C systems. • We assessed the electromagnetic levels on reactor types from thirteen nuclear plants. • We evaluated the margin between plant emission limits and the highest composite levels. • We presented the formula of radiated susceptibility test levels to non-safety-related I&C systems. - Abstract: The electromagnetic interference (EMI) generated from sources in power units can interfere with digital Instrument and Control (I&C) systems. When EMI is emitted with conducted and radiated noise, it interferes with the signals of the I&C systems. Since the digital I&C systems are efficient and competitively priced, the analogue I&C systems have been upgraded and replaced with digital I&C systems, but these systems have less EMI immunity. When safety-related I&C systems are installed in the units, the verification of equipment EMI should not be done in site-specific tests but in test facilities. There are needs to do the overall site-specific EMI assessment of I&C systems depending on the reactor types from thirteen operating units. This study evaluated the margin between plant emission limits and the highest composite plant emissions of the EMI. When the non-safety-related I&C equipment or systems are placed in the units, there are no individual test levels of the radiated electrical field. If need be, the level should comply with the test levels of the radiated electrical field on the safety-related I&C systems. This paper presents the test levels of radiated electrical fields to non-safety-related I&C equipment or systems.

  19. Characteristics of organizational culture at the maintenance units of two Nordic nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, Teemu [VTT Industrial Systems, P.O. Box 1301, FIN-02044 VTT (Finland)]. E-mail: teemu.reiman@vtt.fi; Oedewald, Pia [VTT Industrial Systems, P.O. Box 1301, FIN-02044 VTT (Finland); Rollenhagen, Carl [Maelardalen University, P.O. Box 325, SE-631 05 Eskilstuna (Sweden)

    2005-09-01

    This study aims to characterize and assess the organizational cultures of two Nordic nuclear power plant (NPP) maintenance units. The research consisted of NPP maintenance units of Forsmark (Sweden) and Olkiluoto (Finland). The study strives to anticipate the consequences of the current practices, conceptions and assumptions in the given organizations to their ability and willingness to fulfill the organizational core task. The methods utilized in the study were organizational culture and core task questionnaire (CULTURE02) and semi-structured interviews. Similarities and differences in the perceived organizational values, conceptions of one's own work, conceptions of the demands of the maintenance task and organizational practices at the maintenance units were explored. The maintenance units at Olkiluoto and Forsmark had quite different organizational cultures, but they also shared a set of dimensions such as strong personal emphasis placed on safety. The authors propose that different cultural features and organizational practices may be equally effective from the perspective of the core task. The results show that due to the complexity of the maintenance work, the case organizations tend to emphasize some aspects of the maintenance task more than others. The reliability consequences of these cultural solutions to the maintenance task are discussed. The authors propose that the organizational core task, in this case the maintenance task, should be clear for all the workers. The results give implications that this has been a challenge recently as the maintenance work has been changing. The concepts of organizational core task and organizational culture could be useful as management tools to anticipate the consequences of organizational changes.

  20. Tampa Electric Company Polk Power Station Unit Number 1. Annual report, January--December, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This report satisfies the requirements of Cooperative Agreement DE-FC21-91MC27363, novated as of March 5, 1992, to provide an annual update report on the year`s activities associated with Tampa Electric Company`s 250 MW IGCC demonstration project for the year 1993. Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Approximately 50% of the raw, hot syngas is cooled to 900 F and passed through a moving bed of zinc-based sorbent which removes sulfur containing compounds from the syngas. The remaining portion of the raw, hot syngas is cooled to 400 F for conventional acid gas removal. Sulfur-bearing compounds from both cleanup systems are sent to a conventional sulfuric acid plant to produce a marketable, high-purity sulfuric acid by-product. The cleaned medium-BTU syngas from these processes is routed to the combined cycle power generation system where it is mixed with air and burned in the combustion section of the combustion turbine. Heat is extracted from the expanded exhaust gases in a heat recovery steam generator (HRSG) to produce steam at three pressure levels for use throughout the integrated process. A highly modular, microprocessor-based distributed control system (DCS) is being developed to provide continuous and sequential control for most of the equipment on PPS-1.

  1. Coated particle fuel for radioisotope power systems and heater units: status and future research needs

    Science.gov (United States)

    El-Genk, Mohamed S.; Tournier, Jean-Michel; Sholtis, Joseph A.; Lipinski, Ronald J.

    2000-01-01

    Coated particle fuel has been proposed recently for use in Radioisotope Power Systems (RPSs) and Radioisotope Heater Units (RHUs) for a variety of space missions requiring power levels from mWs to 10's or even hundreds of Watts. It can be made into different shapes and sizes of solid compacts, heating tapes, or paints. Using a conservative design approach, this fuel form could increase by 2.3-2.4 times the thermal power output of a LWRHU, while offering promise of enhanced safety. These performance figures are based on using single-size (500 μm) compacts of ZrC coated 238PuO2 kernels and assuming 10% and 5% He release, respectively, at 1723 K, following 10 years of storage. Using binary-size (300 and 1200 μm) fuel kernels in the compact increases the thermal power output by an additional 15%. 238PuO2 fuel kernels are intentionally sized (>=300 μm in diameter) to prevent any adverse radiological effects. They are non-respirable and non-inhalable and, if ingested, would simply be excreted with no radiological effects. The 238PuO2 fuel kernels are contained within a strong ZrC coating, which is designed to fully retain the fuel and the helium gas. Helium retention in large grain (>=300 μm) granular and polycrystalline fuel kernels is possible even at high temperatures (>1700 K). The former could be fabricated using binderless agglomeration or similar processes, while the latter could be fabricated using Sol-Gel or thermal plasma processes, with potentially less radioactive waste and fabrication contamination. In addition to summarizing the results of a recent effort investigating the performance of coated fuel particle compact (CPFC) and helium gas release, this paper identifies and discusses future research and testing needs. .

  2. A dynamic regrouping based sequential dynamic programming algorithm for unit commitment of combined heat and power systems

    DEFF Research Database (Denmark)

    Rong, Aiying; Hakonen, Henri; Lahdelma, Risto

    2009-01-01

    This paper addresses the unit commitment (UC) in multi-period combined heat and power (CHP) production planning under the deregulated power market. In CHP plants (units), generation of heat and power follows joint characteristics, which implies that it is difficult to determine the relative cost...... efficiency of the plants. We introduce in this paper the DRDP-RSC algorithm, which is a dynamic regrouping based dynamic programming (DP) algorithm based on linear relaxation of the ON/OFF states of the units, sequential commitment of units in small groups. Relaxed states of the plants are used to reduce...... the dimension of the UC problem and dynamic regrouping is used to improve the solution quality. Numerical results based on real-life data sets show that this algorithm is efficient and optimal or near-optimal solutions with very small optimality gap are obtained....

  3. Integrated Gasification Combined Cycle (IGCC) demonstration project, Polk Power Station -- Unit No. 1. Annual report, October 1993--September 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This describes the Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project which will use a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,300 tons per day of coal (dry basis) coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 Btu/scf (LHV). The syngas then flows through a high temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product.

  4. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    Science.gov (United States)

    Wijmans, Johannes G.; Merkel, Timothy C; Baker, Richard W.

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  5. Testing of an Annular Linear Induction Pump for the Fission Surface Power Technology Demonstration Unit

    Science.gov (United States)

    Polzin, K. A.; Pearson, J. B.; Webster, K.; Godfoy, T. J.; Bossard, J. A.

    2013-01-01

    Results of performance testing of an annular linear induction pump that has been designed for integration into a fission surface power technology demonstration unit are presented. The pump electromagnetically pushes liquid metal (NaK) through a specially-designed apparatus that permits quantification of pump performance over a range of operating conditions. Testing was conducted for frequencies of 40, 55, and 70 Hz, liquid metal temperatures of 125, 325, and 525 C, and input voltages from 30 to 120 V. Pump performance spanned a range of flow rates from roughly 0.3 to 3.1 L/s (4.8 to 49 gpm), and pressure heads of <1 to 104 kPa (<0.15 to 15 psi). The maximum efficiency measured during testing was 5.4%. At the technology demonstration unit operating temperature of 525 C the pump operated over a narrower envelope, with flow rates from 0.3 to 2.75 L/s (4.8 to 43.6 gpm), developed pressure heads from <1 to 55 kPa (<0.15 to 8 psi), and a maximum efficiency of 3.5%. The pump was supplied with three-phase power at 40 and 55 Hz using a variable-frequency motor drive, while power at 55 and 70 Hz was supplied using a variable-frequency power supply. Measured performance of the pump at 55 Hz using either supply exhibited good quantitative agreement. For a given temperature, the peak in efficiency occurred at different flow rates as the frequency was changed, but the maximum value of efficiency was relative insensitive within 0.3% over the frequency range tested, including a scan from 45 to 78 Hz. The objectives of the FSP technology project are as follows:5 • Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. • Establish a nonnuclear hardware-based technical foundation for FSP design concepts to reduce overall development risk. • Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. • Generate the key nonnuclear products to allow Agency

  6. Nuclear design report for Ulchin nuclear power plant unit 1, cycle 7

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Rae; Park, Yong soo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-04-01

    This report presents nuclear design calculations for Cycle 7 of Ulchin Unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 56 KOFA`s enriched by nominally 4.00 w/o U{sub 235}. Among the KOFA`s 36 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 7 amounts to 355 EFPD corresponding to a cycle burnup of 14280 MWD/MTU. (Author) 8 refs., 55 figs., 21 tabs.

  7. Nuclear design report for Ulchin nuclear power plant unit 2 cycle 5

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ha; Park, Yong Soo; Cho, Byeong Ho; Zee, Sung Kyun; Lee, Sang Keun; Ahn, Dawk Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-09-01

    This report presents nuclear design calculations for cycle 5 of Ulchin unit it 2. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 48 KOFA`s enriched by nominally 3.50 w/o U{sub 235}. Among the KOFA`s, 20 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 5 amounts to 293 EFPD corresponding to a cycle burnup of 11780 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs.

  8. Nuclear design report for Yonggwang nuclear power plant unit 1 cycle 9

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young chul; Kim, Jae Hak; Song, Jae Woong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-03-01

    This report presents nuclear design calculations for Cycle 6 of Yonggwng Unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA`s enriched by nominally 4.00 w/o U{sub 235}. Among the KOFA`s, 60 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 9 amounts to 434 EFPD corresponding to a cycle burnup of 17470 MWD/MTU. (Author) 8 refs., 55 figs., 19 tabs.

  9. Nuclear design report for Kori nuclear power plant unit 4 cycle 8

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyoon; Jung, Yil Sub; Kim, Si Yung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-07-01

    This report presents nuclear design calculations for cycle 8 of Kori unit 4. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s 48 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 8 amounts to 421 EFPD corresponding to a cycle burnup of 16950 MWD/MTU. (Author) 8 refs., 55 figs., 17 tabs.

  10. Nuclear design report for Ulchin nuclear power plant unit 2, cycle 6

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Oh; Park, Jin Ha; Kim, Yong Rae; Park, Sang Yoon; Lee, Jong Chul; Baik, Joo Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-08-01

    This report presents nuclear design calculations for cycle 6 of Ulchin unit 2. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 64 KOFA`s enriched by nominally 3.80 w/o U{sub 235}. Among the KOFA`s, 36 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 6 amounts to 388 EFPD corresponding to a cycle burnup of 15610 MWD/MTU. (Author) 8 refs., 55 figs., 17 tabs.

  11. Nuclear design report for Kori nuclear power plant unit 1, cycle 13

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Moon, Bok Ja; Cho, Byeong Ho; Jung, Yil Sup [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-04-01

    This report presents nuclear design calculations for cycle 13 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 44 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 16 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 13 amounts to 355 EFPD corresponding to a cycle burnup of 13240 MWD/MTU. (Author) 8 refs., 55 figs., 16 tabs.

  12. Nuclear design report for Yonggwang nuclear power plant unit 1, cycle 8

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Chul; Kim, Jae Hak; Park, Sang Yoon; Zee, Sung Kyun; Lee, Sang Keun; Ahn, Dawk Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-10-01

    This report presents nuclear design calculations for cycle 8 of Kori unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 56 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 8 amounts to 447 EFPD corresponding to a cycle burnup of 18020 MWD/MTU. (Author) 8 refs., 39 figs., 17 tabs.

  13. Nuclear design report for Ulchin nuclear power plant unit 1, cycle 6

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Kim, Yong Rae; Park, Yong Soo; Cho, Byeong Ho; Lee, Sang Keun; Ahn, Dawk Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-12-01

    This report presents nuclear design calculations for cycle 6 of Ulchin unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 64 KOFA`s enriched by nominally 3.70 w/o U{sub 235}. Among the KOFA`s, 32 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of cycle 6 amounts to 369 EFPD corresponding to a cycle burnup of 14850 MWD/MTU. (Author) 8 refs., 55 figs., 17 tabs.

  14. Effects of the Hot Alignment of a Power Unit on Oil-Whip Instability Phenomena

    Directory of Open Access Journals (Sweden)

    A. Vania

    2010-01-01

    Full Text Available This paper shows the results of the analysis of the dynamic behaviour of a power unit, whose shaft-train alignment was significantly influenced by the machine thermal state, that was affected in operating condition by high subsynchronous vibrations caused by oil-whip instability phenomena. The dynamic stiffness coefficients of the oil-film journal bearings of the generator were evaluated considering the critical average journal positions that caused the instability onsets. By including these bearing coefficients in a mathematical model of the fully assembled machine, the real part of the eigenvalue associated with the first balance resonance of the generator rotor became positive. This paper shows the successful results obtained by combining diagnostic techniques based on mathematical models of journal bearings and shaft train with detailed analyses of monitoring data aimed to investigate the effects of the hot alignment of rotating machines on the occurrence of oil-whip instability onsets.

  15. Nuclear design report for Yonggwang nuclear power plant unit 1 cycle 9

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young chul; Kim, Jae Hak; Song, Jae Woong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-03-01

    This report presents nuclear design calculations for Cycle 6 of Yonggwng Unit 1. Information is given on fuel loading, power density distributions, reactivity coefficients, control rod worths and operational limits. In addition, the report contains all necessary data for the startup tests including predicted values for the comparison with the measured data. The reload consists of 76 KOFA`s enriched by nominally 4.00 w/o U{sub 235}. Among the KOFA`s, 60 fuel assemblies contain gadolinia rods. The fuel assemblies in the core are arranged in a low leakage loading pattern. The cycle length of Cycle 9 amounts to 434 EFPD corresponding to a cycle burnup of 17470 MWD/MTU. (Author) 8 refs., 55 figs., 19 tabs.

  16. Parasitic Effects of Grounding Paths on Common-Mode EMI Filter's Performance in Power Electronics Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuo [ORNL; Maillet, Yoann [Virginia Polytechnic Institute and State University (Virginia Tech); Wang, Fei [ORNL; Lai, Rixin [General Electric; Luo, Fang [Virginia Polytechnic Institute and State University (Virginia Tech); Boroyevich, Dushan [Virginia Polytechnic Institute and State University (Virginia Tech)

    2010-01-01

    High-frequency common-mode (CM) electromagnetic-interference (EMI) noise is difficult to suppress in electronics systems. EMI filters are used to suppress CM noise, but their performance is greatly affected by the parasitic effects of the grounding paths. In this paper, the parasitic effects of the grounding paths on an EMI filter's performance are investigated in a motor-drive system. The effects of the mutual inductance between two grounding paths are explored. Guidelines for the grounding of CM EMI filters are derived. Simulations and experiments are finally carried out to verify the theoretical analysis.

  17. Experimental Research and Control Strategy of Pumped Storage Units Dispatching in the Taiwan Power System Considering Transmission Line Limits

    Directory of Open Access Journals (Sweden)

    Ming-Tse Kuo

    2013-07-01

    Full Text Available Taiwan’s power system is isolated and not supported by other interconnected systems. Consequently, the system frequency immediately reflects changes in the system loads. Pumped storage units are crucial for controlling power frequency. These units provide main or auxiliary capacities, reducing the allocation of frequency-regulating reserve (FRR and further reducing generation costs in system operations. Taiwan’s Longmen Nuclear Power Plant is set to be converted for commercial operations, which will significantly alter the spinning reserves in the power system. Thus, this study proposes a safe and economic pumped storage unit dispatch strategy. This strategy is used to determine the optimal FRR capacity and 1-min recovery frequency in a generator failure occurrence at the Longmen Power Plant. In addition, this study considered transmission capacity constraints and conducted power flow analysis of the power systems in Northern, Central, and Southern Taiwan. The results indicated that, in the event of a failure at Longmen Power Plant, the proposed strategy can not only recover the system frequency to an acceptable range to prevent underfrequency load-shedding, but can also mitigate transmission line overloading.

  18. Developing project portfolio management model for innovation projects using grounded theory: a case of Iran’s power industry

    Directory of Open Access Journals (Sweden)

    A. Khameneh

    2016-09-01

    Full Text Available The aim of the article. Survival in a dynamic competitive environment often requires consistent produce of successful new product and services; therefore, implementing an effective Project Portfolio Management (PPM in the organization can improve innovation decisions and outcomes of new products, thereby lead to higher competitive advantage. This Paper aims at discovering the causal relationship of Innovation Project Portfolio Management (IPPM performance. The results of the analysis. Qualitative research design was chosen for this study and through using semi-structured and in-depth interviews with 24 experts in five Iranian organizations producing equipment of the power industry, we use a grounded theory approach to develop a general model of what drives IPPM in detail and how these causes are related to effects on both project performance and business performance. According to the findings from these qualitative data, effective IPPM is the result of three areas of capabilities: IPPM Process, IPPM structure, IPPM people. These causal relationships are moderated by project context. Also the findings show that performance of IPPM consist of an integrated elements of Strategic alignment, portfolio balance, resource fit and value maximization. In the other hand, IPPM performance has influences on project performance and business performance. Finally, a set of propositions regarding the key performance drivers of IPPM were developed. Conclusions and directions of further researches. In conclusion, this study contributes new insights to the emerging research on IPPM. While most IPPM literature is still a theoretical, this paper develops IPPM in the context of the Iran's power industry. The qualitative research design used in this paper was appropriate for gaining an in-depth understanding how the IPPM capabilities and project context, and certain performance constructs are linked to each other. Our interviews revealed the importance of integrating

  19. Water Treatment Unit Breadboard: Ground test facility for the recycling of urine and shower water for one astronaut

    Science.gov (United States)

    Lindeboom, Ralph E. F.; Lamaze, Brigitte; Clauwaert, Peter; Christiaens, Marlies E. R.; Rabaey, Korneel; Vlaeminck, Siegfried; Vanoppen, Marjolein; Demey, Dries; Farinas, Bernabé Alonso; Coessens, Wout; De Paepe, Jolien; Dotremont, Chris; Beckers, Herman; Verliefde, Arne

    2016-07-01

    One of the major challenges for long-term manned Space missions is the requirement of a regenerative life support system. Average water consumption in Western Countries is >100 L d-1. Even when minimizing the amount of water available per astronauts to 13 L d-1, a mission of 6 crew members requires almost 30 ton of fresh water supplies per year. Note that the International Space Station (ISS) weighs approximately 400 ton. Therefore the development of an efficient water recovery system is essential to future Space exploration. The ISS currently uses a Vapor Compression Distillation (VCD) unit following the addition of chromic and sulphuric acid for the microbial stabilization of urine (Carter, Tobias et al. 2012), yielding a water recovery percentage of only 70% due to scaling control. Additionally, Vapor Compression Distillation of 1.5 L urine cap 1 d-1 has a significantly higher power demand with 6.5 W cap-1 compared to a combination of electrodialysis (ED) and reverse osmosis (RO) with 1.9 and 0.6 W cap-1 respectively (Udert and Wächter 2012). A Water Treatment Unit Breadboard (WTUB) has been developed which combines a physicochemical and biological treatment. The aim was to recover 90% of the water in urine, condensate and shower water produced by one crew member and this life support testbed facility was inspired by the MELiSSA loop concept, ESA's Life Support System. Our experimental results showed that: 1) using a crystallisation reactor prior to the nitrification reduced scaling risks by Ca2+- and Mg2+ removal 2) the stabilization of urine diluted with condensate resulted in the biological conversion of 99% of Total Kjeldahl nitrogen into nitrate in the biological nitrification reactor 3) salinity and nitrate produced could be removed by 60-80% by electrodialysis, 4) shower water contaminated with skin microbiota and Neutrogena soap ® could be mixed with electrodialysis diluate and filtered directly over a ceramic nanofiltration at 93% water recovery and 5

  20. Impacts from Deployment Barriers on the United States Wind Power Industry: Overview & Preliminary Findings (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.; Tegen, S.; Hand, M.; Heimiller, D.

    2012-09-01

    Regardless of cost and performance some wind projects are unable to proceed to commissioning as a result of deployment barriers. Principal deployment barriers in the industry today include: wildlife, public acceptance, access to transmission, and radar. To date, methods for understanding these non-technical barriers have failed to accurately characterize the costs imposed by deployment barriers and the degree of impact to the industry. Analytical challenges include limited data and modeling capabilities. Changes in policy and regulation, among other factors, also add complexity to analysis of impacts from deployment barriers. This presentation details preliminary results from new NREL analysis focused on quantifying the impact of deployment barriers on the wind resource of the United States, the installed cost of wind projects, and the total electric power system cost of a 20% wind energy future. In terms of impacts to wind project costs and developable land, preliminary findings suggest that deployment barriers are secondary to market drivers such as demand. Nevertheless, impacts to wind project costs are on the order of $100/kW and a substantial share of the potentially developable windy land in the United States is indeed affected by deployment barriers.

  1. LVP modeling and dynamic characteristics prediction of a hydraulic power unit in deep-sea

    Science.gov (United States)

    Cao, Xue-peng; Ye, Min; Deng, Bin; Zhang, Cui-hong; Yu, Zu-ying

    2013-03-01

    A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tests by simulating deep-sea environment have many disadvantages, such as expensive cost, long test cycles, and difficult to achieve low-temperature simulation, which is only used as a supplementary means for confirmatory experiment. This paper proposes a novel theoretical approach based on the linear varying parameters (LVP) modeling to foresee the dynamic performances of the driving unit. Firstly, based on the varying environment features, dynamic expressions of the compressibility and viscosity of hydraulic oil are derived to reveal the fluid performances changing. Secondly, models of hydraulic system and electrical system are accomplished respectively through studying the control process and energy transfer, and then LVP models of the pressure and flow rate control is obtained through the electro-hydraulic models integration. Thirdly, dynamic characteristics of HPU are obtained by the model simulating within bounded closed sets of varying parameters. Finally, the developed HPU is tested in a deep-sea imitating hull, and the experimental results are well consistent with the theoretical analysis outcomes, which clearly declare that the LVP modeling is a rational way to foresee dynamic performances of HPU. The research approach and model analysis results can be applied to the predictions of working properties and product designs for other deep-sea hydraulic pump.

  2. An improved unit decommitment algorithm for combined heat and power systems

    DEFF Research Database (Denmark)

    Rong, Aiying; Lahdelma, R.; Grunow, Martin

    2009-01-01

    heat and power must be done in coordination. We present an improved unit decommitment (IUD) algorithm that starts with an improved initial solution with less heat surplus so that the relative cost-efficiency of the plants can be determined more accurately. Then the subsequent decommitment procedures...... and a linear relaxation of the ON/OFF states of the plants. We compare the IUD algorithm with realistic test data against a generic unit decommitment (UD) algorithm. Numerical results show that IUD is an overall improvement of UD. The solution quality of IUD is better than that of UD for almost all of tested...... cases. The maximum improvement is 11.3% and the maximum degradation is only 0.04% (only two sub-cases out of 216 sub-cases) with an average improvement of 0.3-0.5%, for different planning horizons. Moreover, IUD is more efficient (1.1-3 times faster on average) than UD. (C) 2008 Elsevier B.V. All rights...

  3. Triboelectric Nanogenerator as a Self-Powered Communication Unit for Processing and Transmitting Information.

    Science.gov (United States)

    Yu, Aifang; Chen, Xiangyu; Wang, Rui; Liu, Jingyu; Luo, Jianjun; Chen, Libo; Zhang, Yang; Wu, Wei; Liu, Caihong; Yuan, Hongtao; Peng, Mingzeng; Hu, Weiguo; Zhai, Junyi; Wang, Zhong Lin

    2016-04-26

    In this paper, we demonstrate an application of a triboelectric nanogenerator (TENG) as a self-powered communication unit. An elaborately designed TENG is used to translate a series of environmental triggering signals into binary digital signals and drives an electronic-optical device to transmit binary digital data in real-time without an external power supply. The elaborately designed TENG is built in a membrane structure that can effectively drive the electronic-optical device in a bandwidth from 1.30 to 1.65 kHz. Two typical communication modes (amplitude-shift keying and frequency-shift keying) are realized through the resonant response of TENG to different frequencies, and two digital signals, i.e., "1001" and "0110", are successfully transmitted and received through this system, respectively. Hence, in this study, a simple but efficient method for directly transmitting ambient vibration to the receiver as a digital signal is established using an elaborately designed TENG and an optical communication technique. This type of the communication system, as well as the implementation method presented, exhibits great potential for applications in the smart city, smart home, password authentication, and so on.

  4. Stochastic Multicriteria Acceptability Analysis for Evaluation of Combined Heat and Power Units

    Directory of Open Access Journals (Sweden)

    Haichao Wang

    2014-12-01

    Full Text Available Combined heat and power (CHP is a promising technology that can contribute to energy efficiency and environmental protection. More CHP-based energy systems are planned for the future. This makes the evaluation and selection of CHP systems very important. In this paper, 16 CHP units representing different technologies are taken into account for multicriteria evaluation with respect to the end users’ requirements. These CHP technologies cover a wide range of power outputs and fuel types. They are evaluated from the energy, economy and environment (3E points of view, specifically including the criteria of efficiency, investment cost, electricity cost, heat cost, CO2 production and footprint. Uncertainties and imprecision are common both in criteria measurements and weights, therefore the stochastic multicriteria acceptability analysis (SMAA model is used in aiding this decision making problem. These uncertainties are treated better using a probability distribution function and Monte Carlo simulation in the model. Moreover, the idea of “feasible weight space (FWS” which represents the union of all preference information from decision makers (DMs is proposed. A complementary judgment matrix (CJM is introduced to determine the FWS. It can be found that the idea of FWS plus CJM is well compatible with SMAA and thus make the evaluation reliable.

  5. Development and implementation of thermal signature testing protocol of auxiliary power unit (APU) and diesel tractor

    Science.gov (United States)

    Jenkins, Chelsea L.; Bourne, Stefanie M.; Rowley, Matthew J.; Miles, Jonathan J.

    2004-04-01

    Thermal signature may be one of the defining factors in determining the applicability of fuel cell auxiliary power unit (APU) technology in military applications. Thermal characterization is important for military applications given that identification and detection may be accomplished through observation of its thermal signature. The operating modes and power takeoff operations of a vehicle will likely determine the thermal profile. The objective of our study was to develop and implement a protocol for quantifying the thermal characteristics of a methanol fuel cell and an idling tractor engine under representative characteristic operations. APU thermal characteristics are a special case for which standardized testing procedures do not presently exist. A customized testing protocol was developed and applied that is specific to an APU-equipped vehicle. Initial testing was conducted on the methanol APU-equipped Freightliner tractor using a high-performance radiometric infrared system. The APU profile calls for a series of infrared images to be collected at three different viewing angles and two different elevations under various loads. The diesel engine was studied in a similar fashion using seven different viewing angles and two different elevations. Raw data collected according to the newly developed methodology provided the opportunity for computer analysis and thermal profiling of both the fuel cell and the diesel engine.

  6. The System Power Control Unit Based on the On-Chip Wireless Communication System

    Directory of Open Access Journals (Sweden)

    Tiefeng Li

    2013-01-01

    Full Text Available Currently, the on-chip wireless communication system (OWCS includes 2nd-generation (2G, 3rd-generation (3G, and long-term evolution (LTE communication subsystems. To improve the power consumption of OWCS, a typical architecture design of system power control unit (SPCU is given in this paper, which can not only make a 2G, a 3G, and an LTE subsystems enter sleep mode, but it can also wake them up from sleep mode via the interrupt. During the sleep mode period, either the real-time sleep timer or the global system for mobile (GSM communication sleep timer can be used individually to arouse the corresponding subsystem. Compared to previous sole voltage supplies on the OWCS, a 2G, a 3G, or an LTE subsystem can be independently configured with three different voltages and frequencies in normal work mode. In the meantime, the voltage supply monitor, which is an important part in the SPCU, can significantly guard the voltage of OWCS in real time. Finally, the SPCU may implement dynamic voltage and frequency scaling (DVFS for a 2G, a 3G, or an LTE subsystem, which is automatically accomplished by the hardware.

  7. The System Power Control Unit Based on the On-Chip Wireless Communication System

    Science.gov (United States)

    Li, Tiefeng; Ma, Caiwen; Li, WenHua

    2013-01-01

    Currently, the on-chip wireless communication system (OWCS) includes 2nd-generation (2G), 3rd-generation (3G), and long-term evolution (LTE) communication subsystems. To improve the power consumption of OWCS, a typical architecture design of system power control unit (SPCU) is given in this paper, which can not only make a 2G, a 3G, and an LTE subsystems enter sleep mode, but it can also wake them up from sleep mode via the interrupt. During the sleep mode period, either the real-time sleep timer or the global system for mobile (GSM) communication sleep timer can be used individually to arouse the corresponding subsystem. Compared to previous sole voltage supplies on the OWCS, a 2G, a 3G, or an LTE subsystem can be independently configured with three different voltages and frequencies in normal work mode. In the meantime, the voltage supply monitor, which is an important part in the SPCU, can significantly guard the voltage of OWCS in real time. Finally, the SPCU may implement dynamic voltage and frequency scaling (DVFS) for a 2G, a 3G, or an LTE subsystem, which is automatically accomplished by the hardware. PMID:23818835

  8. Abortion in the United States' Bible Belt: organizing for power and empowerment.

    Science.gov (United States)

    Castle, Mary Ann

    2011-01-05

    Over the last 30 years, conservative power in the United States, financed and organized by Christian fundamentalist sects, the Catholic Church, and conservative corporate and political leadership, has become more threatening and potentially destabilizing of progressive democratic principles and practices. Powerful interlocking political, financial and social forces are arrayed against women in many Southern and Western states. They are having destructive effects on women's ability to control their fertility and maintain bodily integrity and health. Poor women and women of color are disproportionately affected by restrictions on abortion services. Strategically developed interventions must be initiated and managed at every level in these localities. It is urgent to coordinate and empower individuals, multiple organizations and communities to engender effective changes in attitudes, norms, behavior and policies that will enable women to obtain reproductive health services, including abortion care. This paper describes contextual factors that continue to decimate U.S. women's right to health and, then, describes a community organizing-social action project in a number of US' states aimed at reversing the erosion of women's right to have or not to have children.

  9. The US business cycle: power law scaling for interacting units with complex internal structure

    Science.gov (United States)

    Ormerod, Paul

    2002-11-01

    In the social sciences, there is increasing evidence of the existence of power law distributions. The distribution of recessions in capitalist economies has recently been shown to follow such a distribution. The preferred explanation for this is self-organised criticality. Gene Stanley and colleagues propose an alternative, namely that power law scaling can arise from the interplay between random multiplicative growth and the complex structure of the units composing the system. This paper offers a parsimonious model of the US business cycle based on similar principles. The business cycle, along with long-term growth, is one of the two features which distinguishes capitalism from all previously existing societies. Yet, economics lacks a satisfactory theory of the cycle. The source of cycles is posited in economic theory to be a series of random shocks which are external to the system. In this model, the cycle is an internal feature of the system, arising from the level of industrial concentration of the agents and the interactions between them. The model-in contrast to existing economic theories of the cycle-accounts for the key features of output growth in the US business cycle in the 20th century.

  10. The system power control unit based on the on-chip wireless communication system.

    Science.gov (United States)

    Li, Tiefeng; Ma, Caiwen; Li, WenHua

    2013-01-01

    Currently, the on-chip wireless communication system (OWCS) includes 2nd-generation (2G), 3rd-generation (3G), and long-term evolution (LTE) communication subsystems. To improve the power consumption of OWCS, a typical architecture design of system power control unit (SPCU) is given in this paper, which can not only make a 2G, a 3G, and an LTE subsystems enter sleep mode, but it can also wake them up from sleep mode via the interrupt. During the sleep mode period, either the real-time sleep timer or the global system for mobile (GSM) communication sleep timer can be used individually to arouse the corresponding subsystem. Compared to previous sole voltage supplies on the OWCS, a 2G, a 3G, or an LTE subsystem can be independently configured with three different voltages and frequencies in normal work mode. In the meantime, the voltage supply monitor, which is an important part in the SPCU, can significantly guard the voltage of OWCS in real time. Finally, the SPCU may implement dynamic voltage and frequency scaling (DVFS) for a 2G, a 3G, or an LTE subsystem, which is automatically accomplished by the hardware.

  11. Selection of organic Rankine cycle working fluid based on unit-heat-exchange-area net power

    Institute of Scientific and Technical Information of China (English)

    郭美茹; 朱启的; 孙志强; 周天; 周孑民

    2015-01-01

    To improve energy conversion efficiency, optimization of the working fluids in organic Rankine cycles (ORCs) was explored in the range of low-temperature heat sources. The concept of unit-heat-exchange-area (UHEA) net power, embodying the cost/performance ratio of an ORC system, was proposed as a new indicator to judge the suitability of ORC working fluids on a given condition. The heat exchange area was computed by an improved evaporator model without fixing the minimum temperature difference between working fluid and hot fluid, and the flow pattern transition during heat exchange was also taken into account. The maximum UHEA net powers obtained show that dry organic fluids are more suitable for ORCs than wet organic fluids to recover low-temperature heat. The organic fluid 1-butene is recommended if the inlet temperature of hot fluid is 353.15−363.15 K or 443.15−453.15 K, heptane is more suitable at 373.15−423.15 K, and R245ca is a good option at 483.15−503.15 K.

  12. Identification of unmeasured variables in the set of model constraints of the data reconciliation in a power unit

    Science.gov (United States)

    Szega, Marcin; Nowak, Grzegorz Tadeusz

    2013-12-01

    In generalized method of data reconciliation as equations of conditions beside substance and energy balances can be used equations which don't have precisely the status of conservation lows. Empirical coefficients in these equations are traded as unknowns' values. To this kind of equations, in application of the generalized method of data reconciliation in supercritical power unit, can be classified: steam flow capacity of a turbine for a group of stages, adiabatic internal efficiency of group of stages, equations for pressure drop in pipelines and equations for heat transfer in regeneration heat exchangers. Mathematical model of a power unit was developed in the code Thermoflex. Using this model the off-design calculation has been made in several points of loads for the power unit. Using these calculations identification of unknown values and empirical coefficients for generalized method of data reconciliation used in power unit has been made. Additional equations of conditions will be used in the generalized method of data reconciliation which will be used in optimization of measurement placement in redundant measurement system in power unit for new control systems

  13. Curricular Units: Powerful Tools to Connect the Syllabus with Students’ Needs and Interests

    Directory of Open Access Journals (Sweden)

    Ariza Ariza Aleida

    2004-08-01

    Full Text Available A basic component of any language program is the construction of the curriculum. There is a variety of approaches to curriculum planning and implementation from the technical production perspective to the critical view. The current article emerged from the analysis of the syllabus in a Basic English course in the undergraduate program at Universidad Nacional de Colombia and the design and implementation of a curricular unit. Such unit proved to be a powerful tool to connect what was set in the program, what students needed in terms of language and what they were interested in terms of culture. Key words: Curriculum, Curricular Unit Platform, Constructivism, Teaching- Communicative Language, Task-Based Approach Un componente esencial en un programa de idiomas es la construcción del currículo. Existe una gran variedad de enfoques en términos del diseño y la implementación del currículo; desde una perspectiva reducida a la producción técnica, hasta una visión crítica y transformadora. El presente artículo se gesta a partir tanto del análisis de un programa correspondiente al curso Inglés Básico I en la licenciatura ofrecida por la Universidad Nacional de Colombia, como del diseño y la implementación de una unidad curricular. Dicha unidad curricular se caracterizó por convertirse en una herramienta de conexión entre los contenidos y procedimientos planteados en un programa y las necesidades comunicativas e intereses culturales de los estudiantes. Palabras claves: Currículo, Plataforma Curricular, Unidad Curricular, Constructivismo, Lenguas Extranjeras-Enseñanza Comunicativa, Enfoque basado en Tareas

  14. Report of examination of the ruptured pipe at the Hamaoka Nuclear Power Station Unit-1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    In order to investigate root cause of the pipe rupture, which took place at the Hamaoka Nuclear Power Station Unit-1 of Chubu Electric Power Company on November 7, 2001, a task force was established within the Nuclear and Industrial Safety Agency (NISA) and initiated a detailed investigation of the ruptured pipe. The Japan Atomic Energy Research Institute (JAERI) was asked from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in response to the request from NISA to cooperate as an independent neutral organization with NISA and perform an examination of the ruptured pipe independently from Chubu Electric Power Company. JAERI accepted the request by considering the fact that JAERI is an integrated research institution for nuclear research and development, a prime research institution for nuclear safety research, a research institution with experience of root-cause investigation of various nuclear incidents and accidents of domestic as well as overseas, and a research institution provided with advanced examination facilities necessary for examination of the ruptured pipe. The JAERI examination group was formed at the Tokai Research Establishment and conducted detailed and thorough examination of the pieces taken from the ruptured pipe primarily in the Reactor Fuel Examination Facility (RFEF) with the use of tools such as scanning electron microscopes and other equipments. Purpose of examination was to provide technical information in order to identify causes of the pipe rupture through examination of the pieces taken from the ruptured region of the pipe. The following findings and conclusion were made as the result of the present examination. (1) Wall thickness of the pipe was significantly reduced in the ruptured region. (2) Dimple pattern resulting from ductile fracture by shearing was observed in the fracture surfaces of nearly all of the pieces and no indication of fatigue crack growth was found. (3) Microstructure showed a typical carbon

  15. Analysing the Possible Ways for Short-Term Forcing Gas Turbine Engines in Auxiliary Power Unit

    Directory of Open Access Journals (Sweden)

    N. I. Trotskii

    2016-01-01

    Full Text Available Using a gas turbine energy unit as an example, the article discusses possible ways for forcing the short-term gas turbine engines (GTE. The introduction explains the need for forcing the air transport and marine GTE in specific driving conditions and offers the main methods. Then it analyzes the three main short-term forcing methods according to GTE power, namely: precompressor water injection, a short-term rise in temperature after the combustion chamber, and feeding an additional compressed air into combustion chamber from the reserve cylinders.The analysis of the water injection method to force a GTE presents the main provisions and calculation results of the cycle, as a function of engine power on the amount of water injected into compressor inlet. It is shown that with water injection into compressor inlet in an amount of 1% of the total airflow there is a 17% power increase in the compressor. It also lists the main implementation problems of this method and makes a comparison with the results of other studies on the water injection into compressor.Next, the article concerns the GTE short-term forcing method through the pre-turbine short-term increase in the gas temperature. The article presents the calculation results of the cycle as a function of the power and the fuel-flow rate on the gas temperature at the turbine inlet. It is shown that with increasing temperature by 80 degrees the engine power increases by 11.2% and requires 11% more fuel. In the analysis of this method arises an issue of thermal barrier coating on the blade surface. The article discusses the most common types of coatings and their main shortcomings. It lists the main challenges and some ways of their solving when using this method to implement the short-term forcing.The last method under consideration is GTE short-term forcing by feeding the compressed air into the combustion chamber from the additional reserve cylinders. It should be noted that this method is

  16. Assessment of the feasibility of an improvement programme enabling operation of units 3 and 4 of Kozloduy nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Amri, A.; Aronov, J.; Bonino, F.; Cortes, P.; Gorbatchev, A.; Kanev, K.; Mattei, J.M.; Milhem, J.L.; Rollinger, F.; Sabotinov, L.; Samier, L. [Commissariat a l' Energie Atomique, 92 - Fontenay-aux-Roses (FR). Inst. de Protection et de Securete Nucleaire (IPSN)

    2001-07-01

    Since ten years, different western assessments have been made of the safety of VVER 440/230 units, including those of the KOZLODUY Nuclear Power Plant located in Bulgaria. Concerning the latter, reference can be made to the work of an European Consortium (GRS/Germany, IPSN/France, AEA/England, AVN/ Belgium), in 1992 and 1993, during examination of restart conditions for Units 1 and 2. The objective of these assessments was the improvement of the overall level of safety with a view to maintain these units in service with satisfactory safety level for a limited period. The work identified their main deficiencies. At the present time, all the modifications decided upon for Units 1 and 2 of the KOZLODUY Nuclear Power Plant in 1992 and 1993 have been adopted and implemented for Units 3 and 4. In 1999, considering that these units would probably not be definitively shutdown before about ten years, IPSN decided to perform an internal assessment of the feasibility of an improvement programme enabling continued operation of units 3 and 4 of KOZLODUY Nuclear Power Plant during this delay. (orig.)

  17. Operation of the counter-rotating type pump-turbine unit installed in the power stabilizing system

    Science.gov (United States)

    Kanemoto, T.; Honda, H.; Kasahara, R.; Miyaji, T.

    2014-03-01

    This serial research intends to put a unique power stabilization system with a pumped storage into practical use. The pumped storage is equipped with a counter-rotating type pump-turbine unit whose operating mode can be shifted instantaneously in response to the fluctuation of power from renewable resources. This paper verifies that the system is reasonably effective to stabilize the fluctuating power. It is necessary to quickly increase the rotational speed when the operation is shifted from the turbine to the pumping modes, because the unit cannot pump-up water from a lower reservoir at a slow rotational speed while keeping gross/geodetic head constant. The maximum hydraulic efficiency at the turbine mode is close to the efficiency of the counter-rotating type hydroelectric unit designed exclusively for the turbine mode. The system is also provided for a pilot plant to be operated in the field.

  18. Shutdown and low-power operation at commercial nuclear power plants in the United States. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The report contains the results of the NRC Staff`s evaluation of shutdown and low-power operations at US commercial nuclear power plants. The report describes studies conducted by the staff in the following areas: Operating experience related to shutdown and low-power operations, probabilistic risk assessment of shutdown and low-power conditions and utility programs for planning and conducting activities during periods the plant is shut down. The report also documents evaluations of a number of technical issues regarding shutdown and low-power operations performed by the staff, including the principal findings and conclusions. Potential new regulatory requirements are discussed, as well as potential changes in NRC programs. A draft report was issued for comment in February 1992. This report is the final version and includes the responses to the comments along with the staff regulatory analysis of potential new requirements.

  19. 78 FR 69367 - Golden Valley Electric Association: Healy Power Plant Unit #2 Restart

    Science.gov (United States)

    2013-11-19

    ... the restart of Unit 2 and for improvements to the Healy Plant, which include installing additional emissions control to both Unit 1 and Unit 2. Unit 1 is a 25 MW coal-fired boiler and Unit 2 is a 50 MW coal-fired boiler that was constructed in the late 1990s with funding from DOE and AIDEA. The...

  20. The As400 Power Control and Distribution Unit - A Modular and Flexible Unit With B2r Solar Array Regulation For High Power Leo Missions

    Directory of Open Access Journals (Sweden)

    Ruf Daniel

    2017-01-01

    Next to an outline of other power control and distribution functions this paper also includes a summary of the novel High Rate Diagnostics Mode that allows monitoring telemetry signals with a time resolution up to 200μs.