WorldWideScience

Sample records for ground potential energy

  1. Potential Energy Surfaces of Nitrogen Dioxide for the Ground State

    Institute of Scientific and Technical Information of China (English)

    SHAO Ju-Xiang; ZHU Zheng-He; CHENG Xin-Lu; YANG Xiang-Dong

    2007-01-01

    The potential energy function of nitrogen dioxide with the C2v symmetry in the ground state is represented using the simplified Sorbie-Murrell many-body expansion function in terms of the symmetry of NO2. Using the potential energy function, some potential energy surfaces of NO2(C2v, X2A1), such as the bond stretching contour plot for a fixed equilibrium geometry angle θ and contour for O moving around N-O (R1), in which R1 is fixed at the equilibrium bond length, are depicted. The potential energy surfaces are analysed. Moreover, the equilibrium parameters for NO2 with the C2v, Cs and D8h symmetries, such as equilibrium geometry structures and energies, are calculated by the ab initio (CBS-Q) method.

  2. A Simple Volcano Potential with an Analytic, Zero-Energy, Ground State

    CERN Document Server

    Nieto, Michael Martin

    2000-01-01

    We describe a simple volcano potential, which is supersymmetric and has an analytic, zero-energy, ground state. (The KK modes are also analytic.) It is an interior harmonic oscillator potential properly matched to an exterior angular momentum-like tail. Special cases are given to elucidate the physics, which may be intuitively useful in studies of higher-dimensional gravity.

  3. Van der Waals potential and vibrational energy levels of the ground state radon dimer

    Science.gov (United States)

    Sheng, Xiaowei; Qian, Shifeng; Hu, Fengfei

    2017-08-01

    In the present paper, the ground state van der Waals potential of the Radon dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the two dispersion coefficients C6 and C8 are estimated from the well determined dispersion coefficients C6 and C8 of Xe2. C10 is estimated by using the approximation equation that C6C10 / C82 has an average value of 1.221 for all the rare gas dimers. With these estimated dispersion coefficients and the well determined well depth De and Re the Born-Mayer parameters A and b are derived. Then the vibrational energy levels of the ground state radon dimer are calculated. 40 vibrational energy levels are observed in the ground state of Rn2 dimer. The last vibrational energy level is bound by only 0.0012 cm-1.

  4. Structure and analytical potential energy function for the ground state of the BCx (x=0, -1)

    Institute of Scientific and Technical Information of China (English)

    Geng Zhen-Duo; Zhang Yan-Song; Fan Xiao-Wei; Lu Zhan-Sheng; Luo Gai-Xia

    2006-01-01

    In this paper, the electronic states of the ground states and dissociation limits of BC and BC- are correctly determined based on group theory and atomic and molecular reaction statics. The equilibrium geometries, harmonic frequencies and dissociation energies of the ground state of BC and BC- are calculated by using density function theory and quadratic CI method including single and double substitutions. The analytical potential energy functions of these states have been fitted with Murrell-Sorbie potential energy function from our ab initio calculation results. The spectroscopic data (αe, ωe and ωeXe) of each state is calculated via the relation between analytical potential energy function and spectroscopic data. All the calculations are in good agreement with the experimental data.

  5. A New Method for the Atomic Ground-State Energy in the Screened Coulomb Potential

    Institute of Scientific and Technical Information of China (English)

    YU Peng-Peng; GUO Hua

    2001-01-01

    The new method proposed recently by Friedberg,Lee and Zhao is applied to the derivation of the atomic ground-state energy with the inclusion of the screening effect.The present results are compared with those obtained in the pure Coulomb potential and by the variational approach.The overall good results are obtained with this new method.``

  6. Analytical Potential Energy Function for the Ground State X1∑+ of Lanthanum Monofluoride

    Institute of Scientific and Technical Information of China (English)

    CHEN Lin-Hong; SHANG Ren-Cheng

    2003-01-01

    The equilibrium geometry, harmonic frequency and bond dissociation energy of lanthanum monofluoride have been calculated using Density-Functional Theory (DFT), post-HF methods MP2 and CCSD(T) with the energyconsistent relativistic effective core potentials. The possible electronic state and reasonable dissociation limit of the ground state of LaF are determined based on atomic and molecular reaction statics. Potential energy curve scans for the ground state X 1∑+ have been performed at B3LYP and CCSD(T) levels, due to their better results of harmonic frequency and bond dissociation energy. We find that the potential energy calculated with CCSD(T) is about 0.6 eV larger than the bond dissociation energy, when the internuclear distance is as large as 0.8 nm. The problem that single-reference ab initio methods do not meet dissociation limit during calculations of lanthanide heavy-metal elements is analyzed. We propose the calculation scheme to derive the analytical Murrell-Sorbie potential energy function. Vibrotational spectroscopic constants Be, ωe, ωeχe, αe, βe, De and He obtained by the standard Dunham treatment coincide well with the results of rotational analyses on spectroscopic experiments.

  7. The Potential Energy Surface for the Electronic Ground State of H 2Se Derived from Experiment

    Science.gov (United States)

    Jensen, P.; Kozin, I. N.

    1993-07-01

    The present paper reports a determination of the potential energy surface for the electronic ground state of the hydrogen selenide molecule through a direct least-squares fitting to experimental data using the MORBID (Morse oscillator rigid bender internal dynamics) approach developed by P. Jensen [ J. Mol. Spectrosc.128, 478-501 (1988); J. Chem. Soc. Faraday Trans. 284, 1315-1340 (1988)]. We have fitted a selection of 303 rotation-vibration energy spacings of H 280Se, D 280Se, and HD 80Se involving J ≤ 5 with a root-mean-square deviation of 0.0975 cm -1 for the rotational energy spacings and 0.268 cm -1 for the vibrational spacings. In the fitting, 14 parameters were varied. On the basis of the fitted potential surface we have studied the cluster effect in the vibrational ground state of H 2Se, i.e., the formation of nearly degenerate, four-member groups of rotational energy levels [see I. N. Kozin, S. Klee, P. Jensen, O. L. Polyansky, and I. M. Pavlichenkov. J. Mol. Spectrosc., 158, 409-422 (1993), and references therein]. The cluster formation becomes more pronounced with increasing J. For example, four-fold clusters formed in the vibrational ground state of H 280Se at J = 40 are degenerate to within a few MHz. Our predictions of the D 280Se energy spectrum show that for this molecule, the cluster formation is displaced towards higher J values than arc found for H 280Se. In the vibrational ground state, the qualitative deviation from the usual rigid rotor picture starts at J = 12 for H 280Se and at J = 18 for D 280Se, in full agreement with predictions from semiclassical theory. An interpretation of the cluster eigenstates is discussed.

  8. Spectroscopic determination of ground and excited state vibrational potential energy surfaces

    Science.gov (United States)

    Laane, Jaan

    Far-infrared spectra, mid-infrared combination band spectra, Raman spectra, and dispersed fluorescence spectra of non-rigid molecules can be used to determine the energies of many of the quantum states of conformationally important vibrations such as out-of-plane ring modes, internal rotations, and molecular inversions in their ground electronic states. Similarly, the fluorescence excitation spectra of jet-cooled molecules, together with electronic absorption spectra, provide the information for determining the vibronic energy levels of electronic excited states. One- or two-dimensional potential energy functions, which govern the conformational changes along the vibrational coordinates, can be determined from these types of data for selected molecules. From these functions the molecular structures, the relative energies between different conformations, the barriers to molecular interconversions, and the forces responsible for the structures can be ascertained. This review describes the experimental and theoretical methodology for carrying out the potential energy determinations and presents a summary of work that has been carried out for both electronic ground and excited states. The results for the out-of-plane ring motions of four-, five-, and six-membered rings will be presented, and results for several molecules with unusual properties will be cited. Potential energy functions for the carbonyl wagging and ring modes for several cyclic ketones in their S1(n,pi*) states will also be discussed. Potential energy surfaces for the three internal rotations, including the one governing the photoisomerization process, will be examined for trans-stilbene in both its S0 and S1(pi,pi*) states. For the bicyclic molecules in the indan family, the two-dimensional potential energy surfaces for the highly interacting ring-puckering and ring-flapping motions in both the S0 and S1(pi,pi*) states have also been determined using all of the spectroscopic methods mentioned above

  9. Ground-state potential energy curves of LiHg, NaHg, and KHg revisited

    Science.gov (United States)

    Thiel, Linda; Hotop, Hartmut; Meyer, Wilfried

    2003-11-01

    We present the results of large-scale CCSD(T) calculations on the potential energy curves for the ground states of LiHg, NaHg, and KHg. In these calculations, the Hg20+ core is simulated by a pseudopotential which has been adjusted to reproduce experimental excitation and ionization energies of the Hg atom at the coupled-cluster level. Moreover, we apply a weighted multiproperty fitting procedure to determine reliable potentials for LiHg, NaHg, and KHg which reproduce the available experimental results. In the case of LiHg, this best-fit potential is based solely on experimental data and its agreement with our calculated potential supports our computational procedure. For NaHg and KHg the experimental data had to be complemented by theoretical results in order to fix a best-fit potential. Our potentials and those proposed previously are evaluated by comparing calculated scattering cross sections and vibrational energy levels with the available experimental data.

  10. Many-body Expanded Analytical Potential Energy Function for Ground State PuOH Molecule

    Institute of Scientific and Technical Information of China (English)

    LI Yue-Xun; GAO Tao; ZHU Zheng-He

    2006-01-01

    Using the density functional method B3LYP with relativistic effective core potential (RECP) for Pu atom, the low-lying excited states (4∑+, 6∑+, 8∑+) for three structures of PuOH molecule were optimized. The results show that the ground state is X6∑+of the linear Pu-O-H (C∞v), its corresponding equilibrium geometry and dissociation energy are RPu-O=0.20595 nm, RO-H=0.09581 nm and -8.68 eV, respectively. At the same time, two other metastable structures [PuOH (Cs) and H-Pu-O (C∞v)] were found. The analytical potential energy function has also been derived for whole range using the many-body expansion method. This potential energy function represents the considerable topographical features of PuOH molecule in detail, which is adequately accurate in the whole potential surface and can be used for the molecular reaction dynamics research.

  11. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  12. Ground State Energy of the One-Dimensional Discrete Random Schr\\"{o}dinger Operator with Bernoulli Potential

    CERN Document Server

    Bishop, Michael

    2011-01-01

    In this paper, we show the that the ground state energy of the one-dimensional Discrete Random Schr\\"{o}dinger Operator with Bernoulli Potential is controlled asymptotically as the system size N goes to infinity by the random variable, $\\ell_N$ the length the longest consecutive sequence of sites on the lattice with potential equal to zero. Specifically, we will show that with probability one the limit as the system size goes to infinity the ratio of the ground state energy with the energy of a half-sine wave converges to one.

  13. Potential energy curves for the ground and low-lying excited states of CuAg

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Davood; Shayesteh, Alireza, E-mail: jamshidi@ccerci.ac.ir, E-mail: ashayesteh@ut.ac.ir [School of Chemistry, College of Science, University of Tehran, 14176 Tehran (Iran, Islamic Republic of); Jamshidi, Zahra, E-mail: jamshidi@ccerci.ac.ir, E-mail: ashayesteh@ut.ac.ir [Chemistry and Chemical Engineering Research Center of Iran, 14335-186 Tehran (Iran, Islamic Republic of)

    2014-10-21

    The ground and low-lying excited states of heteronuclear diatomic CuAg are examined by multi-reference configuration interaction (MRCI) method. Relativistic effects were treated and probed in two steps. Scalar terms were considered using the spin-free DKH Hamiltonian as a priori and spin-orbit coupling was calculated perturbatively via the spin-orbit terms of the Breit-Pauli Hamiltonian based on MRCI wavefunctions. Potential energy curves of the spin-free states and their corresponding Ω components correlating with the separated atom limits {sup 2}S(Cu) + {sup 2}S(Ag) and {sup 2}D(Cu) + {sup 2}S(Ag) are obtained. The results are in fine agreement with the experimental measurements and tentative conclusions for the ion-pair B0{sup +} state are confirmed by our theoretical calculations. Illustrative results are presented to reveal the relative importance and magnitude of the scalar and spin-orbit effects on the spectroscopic properties of this molecule. Time dependent density functional theory calculations, using the LDA, BLYP, B3LYP, and SAOP functionals have been carried out for CuAg and the accuracy of TD-DFT has been compared with ab initio results.

  14. A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels

    Energy Technology Data Exchange (ETDEWEB)

    Delahaye, Thibault, E-mail: thibault.delahaye@univ-reims.fr; Rey, Michaël, E-mail: michael.rey@univ-reims.fr; Tyuterev, Vladimir G. [Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, BP 1039, F-51687, Reims Cedex 2 (France); Nikitin, Andrei [Laboratory of Theoretical Spectroscopy, Institute of Atmospheric Optics, Russian Academy of Sciences, 634055 Tomsk, Russia and Quamer, State University of Tomsk (Russian Federation); Szalay, Péter G. [Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest (Hungary)

    2014-09-14

    In this paper we report a new ground state potential energy surface for ethylene (ethene) C{sub 2}H{sub 4} obtained from extended ab initio calculations. The coupled-cluster approach with the perturbative inclusion of the connected triple excitations CCSD(T) and correlation consistent polarized valence basis set cc-pVQZ was employed for computations of electronic ground state energies. The fit of the surface included 82 542 nuclear configurations using sixth order expansion in curvilinear symmetry-adapted coordinates involving 2236 parameters. A good convergence for variationally computed vibrational levels of the C{sub 2}H{sub 4} molecule was obtained with a RMS(Obs.–Calc.) deviation of 2.7 cm{sup −1} for fundamental bands centers and 5.9 cm{sup −1} for vibrational bands up to 7800 cm{sup −1}. Large scale vibrational and rotational calculations for {sup 12}C{sub 2}H{sub 4}, {sup 13}C{sub 2}H{sub 4}, and {sup 12}C{sub 2}D{sub 4} isotopologues were performed using this new surface. Energy levels for J = 20 up to 6000 cm{sup −1} are in a good agreement with observations. This represents a considerable improvement with respect to available global predictions of vibrational levels of {sup 13}C{sub 2}H{sub 4} and {sup 12}C{sub 2}D{sub 4} and rovibrational levels of {sup 12}C{sub 2}H{sub 4}.

  15. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    DEFF Research Database (Denmark)

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian

    2012-01-01

    We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set ...

  16. Theoreticalstudy of the structure and analytic potential energy function for the ground state of the PO2 molecule

    Institute of Scientific and Technical Information of China (English)

    Zeng Hui; Zhao Jun

    2012-01-01

    In this paper,the energy,equilibrium geometry,and harmonic frequency of the ground electronic state of PO2 are computed using the B3LYP,B3P86,CCSD(T),and QCISD(T) methods in conjunction with the 6-311++G(3df,3pd) and cc-pVTZ basis sets.A comparison between the computational results and the experimental values indicates that the B3P86/6-311++G(3df,3pd) method can give better energy calculation results for the PO2 molecule.It is shown that the ground state of the PO2 molecule has C2v symmetry and its ground electronic state is X2A1.The equilibrium parameters of the structure are Rp-O =0.1465 nm,∠OPO =134.96°,and the dissociation energy is Ed =19.218 eV.The bent vibrational frequency v1 =386 cm-1,symmetric stretching frequency v2 =1095 cm-1,and asymmetric stretching frequency v3 =1333 cm-1 are obtained.On the basis of atomic and molecular reaction statics,a reasonable dissociation limit for the ground state of the PO2 molecule is determined.Then the analytic potential energy function of the PO2 molecule is derived using many-body expansion theory.The potential curves correctly reproduce the configurations and the dissociation energy for the PO2 molecule.

  17. Vibrational Spectra and Potential Energy Surface for Electronic Ground State of Jet-Cooled Molecule S2O

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Yan; DING Shi-Liang

    2004-01-01

    The vibration states of transition molecule S2O, including both bending and stretching vibrations, are studied in the framework of dynamical symmetry groups U1(4) U2(4). We get all the vibration spectra of S2O by fitting 22 spectra data with 10 parameters. The fitting rms of the Hamiltonian is 2.12 cm-1. With the parameters and Lie algebraic theory, we give the analytical expression of the potential energy surface, which helps us to calculate the dissociation energy and force constants of S2O in the electronic ground state.

  18. Ground-State Energy as a Simple Sum of Orbital Energies in Kohn-Sham Theory: A Shift in Perspective through a Shift in Potential

    CERN Document Server

    Levy, Mel

    2016-01-01

    It is observed that the exact interacting ground-state electronic energy of interest may be obtained directly, in principle, as a simple sum of orbital energies when a universal density-dependent term is added to $w\\left(\\left[ \\rho \\right];\\mathbf{r} \\right)$, the familiar Hartree plus exchange-correlation component in the Kohn-Sham effective potential. The resultant shifted potential, $\\bar{w}\\left(\\left[ \\rho \\right];\\mathbf{r} \\right)$, actually changes less on average than $w\\left(\\left[ \\rho \\right];\\mathbf{r} \\right)$ when the density changes, including the fact that $\\bar{w}\\left(\\left[ \\rho \\right];\\mathbf{r} \\right)$ does not undergo a discontinuity when the number of electrons increases through an integer. Thus the approximation of $\\bar{w}\\left(\\left[ \\rho \\right];\\mathbf{r} \\right)$ represents an alternative direct approach for the approximation of the ground-state energy and density.

  19. Accurate internuclear potential energy functions for the ground electronic states of NeH+ and ArH+

    Science.gov (United States)

    Coxon, John A.; Hajigeorgiou, Photos G.

    2016-12-01

    All pure rotational and vibrational-rotational spectroscopic line positions available on the ground X1Σ+ electronic states of the rare gas hydride cations NeH+ and ArH+ have been employed in weighted least-squares direct fits to the potential energy functions, together with auxiliary functions describing breakdown of the Born-Oppenheimer approximation. All radial functions are represented by compact analytical models, and the spectroscopic line positions are reproduced to within the associated experimental uncertainties by the quantum-mechanical eigenvalues of the derived Hamiltonians. The potential energy functions are constrained to approach the theoretical radial behavior at long-range. Accurate vibrational term values and rotational and centrifugal distortion constants are provided for all stable isotopologues of NeH+ and ArH+ included in the least-squares fits.

  20. Multireference configuration interaction potential curve and analytical potential energy function of the ground and low-lying excited states of CdSe

    Institute of Scientific and Technical Information of China (English)

    Gao Feng; Yang Chuan-Lu; Hu Zhen-Yan; Wang Mei-Shan

    2007-01-01

    The potential energy curves (PECs) of the ground state (3Π) and three low-lying excited states (1∑, 3∑,1Π) of CdSe dimer have been studied by emploging quasirelativistic effective core potentials on the basis of the complete active space self-consistent field method followed by multireference configuration interaction calculation. The four PECs are fitted to analytical potential energy functions using the Murrel-Sorbie potential function. Based on the PECs,the vibrational levels of the four states are determined by solving the Schr(o)dinger equation of nuclear motion, and corresponding spectroscopic contants are accurately calculated. The equilibrium positions as well as the spectroscopic constants and the vibrational levels are reported. By our analysis, the 3Π state, of which the dissociation asymptote is Cd(1S) + Se(3p), is identified as a ground state of CdSe dimer, and the corresponding dissociation energy is estimated to be 0.39eV. However, the first excited state is only 1132.49cm-1 above the ground state and the 3∑ state is the highest in the four calculated states.

  1. A semiempirical study of the optimized ground and excited state potential energy surfaces of retinal and its protonated Schiff base

    Science.gov (United States)

    Parusel, A. B.; Pohorille, A.

    2001-01-01

    The electronic ground and first excited states of retinal and its Schiff base are optimized for the first time using the semiempirical AM1 Hamiltonian. The barrier for rotation about the C(11)-C(12) double bond is characterized by variation of both the twist angle delta(C(10)-C(11)-C(12)-C(13)) and the bond length d(C(11)-C(12)). The potential energy surface is obtained by varying these two parameters. The calculated ground state rotational barrier is equal to 15.6 kcal/mol for retinal and 20.5 kcal/mol for its Schiff base. The all-trans conformation is more stable by 3.7 kcal/mol than the 11-cis geometry. For the first excited state, S(1,) the 90 degrees twisted geometry represents a saddle point for retinal with the rotational barrier of 14.6 kcal/mol. In contrast, this conformation is an energy minimum for the Schiff base. It can be easily reached at room temperature from the planar minima since it is separated from them by a barrier of only 0.6 kcal/mol. The 90 degrees minimum conformation is more stable than the all-trans by 8.6 kcal/mol. We are thus able to present a reaction path on the S(1) surface of the retinal Schiff base with an almost barrier-less geometrical relaxation into a twisted minimum geometry, as observed experimentally. The character of the ground and first excited singlet states underscores the need for the inclusion of double excitations in the calculations.

  2. EOMCC over excited state Hartree-Fock solutions (ESHF-EOMCC: An efficient approach for the entire ground state potential energy curves of higher-order bonds

    Directory of Open Access Journals (Sweden)

    Y. Sajeev

    2015-08-01

    Full Text Available The equation-of-motion coupled cluster (EOMCC method based on the excited state Hartree-Fock (ESHF solutions is shown to be appropriate for computing the entire ground state potential energy curves of strongly correlated higher-order bonds. The new approach is best illustrated for the homolytic dissociation of higher-order bonds in molecules. The required multireference character of the true ground state wavefunction is introduced through the linear excitation operator of the EOMCC method. Even at the singles and doubles level of cluster excitation truncation, the nonparallelity error of the ground state potential energy curve from the ESHF based EOMCC method is small.

  3. Ab initio potential energy surface and excited vibrational states for the electronic ground state of Li2H

    Institute of Scientific and Technical Information of China (English)

    鄢国森; 先晖; 谢代前

    1997-01-01

    A 285-pomt multi-reference configuration-interaction involving single and double excitations ( MRS DCI) potential energy surface for the electronic ground state of L12H is determined by using 6-311G (2df,2pd)basis set.A Simons-Parr-Finlan polynomial expansion is used to fit the discrete surface with a x2 of 4.64×106 The equn librium geometry occurs at Rc=0.172 nm and,LiHL1=94.10°.The dissociation energy for reaction I2H(2A)→L12(1∑g)+H(2S) is 243.910 kJ/mol,and that for reaction L12H(2A’)→HL1(1∑) + L1(2S) is 106.445 kl/mol The inversion barrier height is 50.388 kj/mol.The vibrational energy levels are calculated using the discrete variable representation (DVR) method.

  4. Numerical simulation of the process of geothermal low-potential ground energy extraction in Perm region (Russia

    Directory of Open Access Journals (Sweden)

    Ponomaryov Andrey

    2016-01-01

    Full Text Available The aim of our research is to study the interaction of energy foundations with the ground mass and to develop methods for their construction on the example of the city of Perm. Field studies of ground were carried out in a specially chosen pilot site to determine temperature distribution in the ground mass, change of ground-water level and physical-mechanical and thermal-physical characteristics of the ground mass. The diagrams of depth temperature distribution in the ground and its seasonal variations were obtained on the results of monitoring, and also the average groundwater level. To carry out numerical simulation, software-complex “GeoStudio” was selected. Its basic differential equation is the fundamental heat conduction equation with an internal heat source. The purpose of the numerical simulation was quantitative evaluation of the thermal energy extracted from different energy foundations under soil conditions in the city of Perm. By results of the spent numerical experiments the equations of regress and nomographs dependences of size of received thermal energy on geometrical parameters of the projected power bases to hydro-geological and climatic conditions of the Perm region are constructed.

  5. Ground energy coupling

    Science.gov (United States)

    Metz, P. D.

    The feasibility of ground coupling for various heat pump systems was investigated. Analytical heat flow models were developed to approximate design ground coupling devices for use in solar heat pump space conditioning systems. A digital computer program called GROCS (GRound Coupled Systems) was written to model 3-dimensional underground heat flow in order to simulate the behavior of ground coupling experiments and to provide performance predictions which have been compared to experimental results. GROCS also has been integrated with TRNSYS. Soil thermal property and ground coupling device experiments are described. Buried tanks, serpentine earth coils in various configurations, lengths and depths, and sealed vertical wells are being investigated. An earth coil used to heat a house without use of resistance heating is described.

  6. Theoretical study on potential energy curves and spectroscopy properties of ground and low-lying excited electronic states of BrCl~+

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The calculations on the potential energy curves and spectroscopic constants of the ground and low-lying excited states of BrCl+,one of the important molecular ions in environment science,have been performed by using the multireference configuration interaction method at high level of theory in quantum chemistry.Through analyses of the effects of the spin-orbit coupling interaction on the elec-tronic structures and spectroscopic properties,the multiconfiguration characteristic of the X2Π ground state and low-lying excited states was established.The spin-orbit coupling splitting energy of the X2 Π ground state was calculated to be 1814 cm-1,close to the experimental value 2070 cm-1.The spin-orbit coupling splitting energy of the 2Π(Ⅱ) exited state was predicted to be 766 cm-1.The transition dipole moments and Frank-Condon factors of the 3/2(Ⅲ)-X3/2 and 1/2(Ⅲ)-1/2(I) transitions were estimated,and the radiative lifetimes of the two transitions were briefly discussed.

  7. Theoretical study on potential energy curves and spectroscopy properties of ground and low-lying excited electronic states of BrCl+

    Institute of Scientific and Technical Information of China (English)

    WANG MingWei; WANG BingWu; CHEN ZhiDa

    2008-01-01

    The calculations on the potential energy curves and spectroscopic constants of the ground and low-lying excited states of BrCl+, one of the important molecular ions in environment science, have been performed by using the multireference configuration interaction method at high level of theory in quantum chemistry. Through analyses of the effects of the spin-orbit coupling interaction on the electronic structures and spectroscopic properties, the multiconfiguration characteristic of the X2∏ ground state and low-lying excited states was established. The spin-orbit coupling splitting energy of the X2∏ ground state was calculated to be 1814 cm-1, close to the experimental value 2070 cm-1. The spin-orbit coupling splitting energy of the 2∏(Ⅱ) exited state was predicted to be 766 cm-1. The transition dipole moments and Frank-Condon factors of the 3/2(Ⅲ)-X3/2 and 1/2(Ⅲ)-1/2(Ⅰ) transitions were estimated, and the radiative lifetimes of the two transitions were briefly discussed.

  8. An ab initio potential energy surface for the formic acid dimer: zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling splitting calculated in relaxed 1-4-mode subspaces.

    Science.gov (United States)

    Qu, Chen; Bowman, Joel M

    2016-09-14

    We report a full-dimensional, permutationally invariant potential energy surface (PES) for the cyclic formic acid dimer. This PES is a least-squares fit to 13475 CCSD(T)-F12a/haTZ (VTZ for H and aVTZ for C and O) energies. The energy-weighted, root-mean-square fitting error is 11 cm(-1) and the barrier for the double-proton transfer on the PES is 2848 cm(-1), in good agreement with the directly-calculated ab initio value of 2853 cm(-1). The zero-point vibrational energy of 15 337 ± 7 cm(-1) is obtained from diffusion Monte Carlo calculations. Energies of fundamentals of fifteen modes are calculated using the vibrational self-consistent field and virtual-state configuration interaction method. The ground-state tunneling splitting is computed using a reduced-dimensional Hamiltonian with relaxed potentials. The highest-level, four-mode coupled calculation gives a tunneling splitting of 0.037 cm(-1), which is roughly twice the experimental value. The tunneling splittings of (DCOOH)2 and (DCOOD)2 from one to three mode calculations are, as expected, smaller than that for (HCOOH)2 and consistent with experiment.

  9. Ab initio ground and excited state potential energy surfaces for NO-Kr complex and dynamics of Kr solids with NO impurity.

    Science.gov (United States)

    Castro-Palacios, Juan Carlos; Rubayo-Soneira, Jesús; Ishii, Keisaku; Yamashita, Koichi

    2007-04-01

    The intermolecular potentials for the NO(X 2Pi)-Kr and NO(A 2Sigma+)-Kr systems have been calculated using highly accurate ab initio calculations. The spin-restricted coupled cluster method for the ground 1 2A' state [NO(X 2Pi)-Kr] and the multireference singles and doubles configuration interaction method for the excited 2 2A' state [NO(A 2Sigma+)-Kr], respectively, were used. The potential energy surfaces (PESs) show two linear wells and one that is almost in the perpendicular position. An analytical representation of the PESs has been constructed for the triatomic systems and used to carry out molecular dynamics (MD) simulations of the NO-doped krypton matrix response after excitation of NO. MD results are shown comparatively for three sets of potentials: (1) anisotropic ab initio potentials [NO molecule direction fixed during the dynamics and considered as a point (its center of mass)], (2) isotropic ab initio potentials (isotropic part in a Legendre polynomial expansion of the PESs), and (3) fitted Kr-NO potentials to the spectroscopic data. An important finding of this work is that the anisotropic and isotropic ab initio potentials calculated for the Kr-NO triatomic system are not suitable for describing the dynamics of structural relaxation upon Rydberg excitation of a NO impurity in the crystal. However, the isotropic ab initio potential in the ground state almost overlaps the published experimental potential, being almost independent of the angle asymmetry. This fact is also manifested in the radial distribution function around NO. However, in the case of the excited state the isotropic ab initio potential differs from the fitted potentials, which indicates that the Kr-NO interaction in the matrix is quite different because of the presence of the surrounding Kr atoms acting on the NO molecule. MD simulations for isotropic potentials reasonably reproduce the experimental observables for the femtosecond response and the bubble size but do not match

  10. Mapping the HO3 ground state potential energy surface with DFT: Can we reproduce the MRCI+Q/CBS data?

    Science.gov (United States)

    Viegas, Luís P.; Carolina, Diana; Varandas, António J. C.

    2015-01-01

    We report a theoretical investigation of the minimum energy path for isomerization of HO3 with density functional theory (DFT). Specifically, we search for a functional that can reproduce the energy difference between the cis- and trans-isomers of HO3 which has been accurately determined in previous work. By envisaging a full-dimensional map of the isomerization path, the calculations are restricted to a cost-effective model chemistry with a medium-sized cc-pVTZ basis, with the fraction of exact exchange in one-parameter hybrids used to minimize the differences between the ab initio and DFT calculations.

  11. Ground State Energy Calculations of Isoelectronic Series of He in Double-Zeta Approximation Using Coulomb Potential with Noninteger Indices

    Institute of Scientific and Technical Information of China (English)

    GUSEINOV I.Israfil; AKSU Hüseyin

    2008-01-01

    @@ Using formulae for one-and two-electron integrals of Coulomb interaction potential fk(r)=r-k with non-integer indices k established by one of the authors with the help of complete orthonormal sets of Ψa-exponential-type orbitals(a=1,0,-1,-2,…),we perform the calculations for isoelectronic series of the He atom containing nuclear charges from 2 to 10,where k=1-μ(-1<μ<0).For this purpose we have used the dogble-zeta approximation,the configuration interaction and coupled-cluster methods employing the integer-n Slater-type orbitals as basis sets.It is demonstrated that the results of calculations obtained are better than the numerical Hartree-Fock values.

  12. Potential energy savings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    1996-01-01

    This chapter describes the chosen methods for estimating the potential energy savings if ordinary window glazing is exchanged with aerogel glazing as well as commercial low-energy glazings.......This chapter describes the chosen methods for estimating the potential energy savings if ordinary window glazing is exchanged with aerogel glazing as well as commercial low-energy glazings....

  13. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Dezhi; Kuang, Xiaoyu, E-mail: scu-kuang@163.com; Gao, Yufeng; Huo, Dongming [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China)

    2015-01-21

    In this paper, we systematically investigate the electronic structure for the {sup 2}Σ{sup +} ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  14. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    Science.gov (United States)

    Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming

    2015-01-01

    In this paper, we systematically investigate the electronic structure for the 2Σ+ ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained.

  15. MCSCF/CI ground state potential energy surface, dipole moment function, and gas phase vibrational frequencies for the nitrogen dioxide positive ion

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, D.G.

    1980-05-01

    The ground state potential energy surface for the nitrogen dioxide positive ion, NO/sup +//sub 2/X /sup 1/..sigma../sup +//sub g/(..sigma../sup +/,A/sub 1/,A'), has been scanned with a correlated wave function to obtain directly, for the first time, the gas phase equilibrium geometry, force constants, vibrational frequencies, and dipole moment function. The wave function for this scan was constructed from a double-zeta plus polarization one-electron basis with a 12 configuration MCSCF determination of the orbital basis for a full valence /sup 1/..sigma../sup +//sub g/ configuration interaction expansion. The calculated equilibrium bond length is 1.12 A. The vibrational frequencies are computed to be ..nu../sub 1/=1514, ..nu../sub 2/=679, and ..nu../sub 3/=2614 cm/sup -1/ The present ab initio results differ significantly from crystalline spectroscopic studies and are, thus, the best values available for the gas phase vibrational frequencies. The dipole moment function is nonzero at the ..sigma../sup +/, A/sub 1/, and A' geometries included in the potential surface scan, and is obtained here to provide for the future a priori calculation of the infrared band intensities.

  16. Evaluating transmission towers potentials during ground faults

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    During ground faults on transmission lines, a number of towers near the fault are likely to acquire high potentials to ground. These tower voltages, if excessive, may present a hazard to humans and animals. This paper presents analytical methods in order to determine the transmission towers potentials during ground faults, for long and short lines. The author developed a global systematic approach to calculate these voltages, which are dependent of a number of factors. Some of the most important factors are: magnitudes of fault currents, fault location with respect to the line terminals, conductor arrangement on the tower and the location of the faulted phase, the ground resistance of the faulted tower, soil resistivity, number, material and size of ground wires. The effects of these factors on the faulted tower voltages have been also examined for different types of power lines.

  17. The Nonrelativistic Ground State Energy Spectra of Potential Counting Coulomb and Quad-ratic Terms in Non-commutative Two Dimensional Real Spaces and Phases

    OpenAIRE

    Abdelmadjid Maireche

    2016-01-01

    A novel theoretical study for the exact solvability of nonrelativistic quantum spectrum systems for potential containing coulomb and quadratic terms is discussed used both Boopp’s shift method and standard perturbation theory in both noncommutativity two dimensional real space and phase (NC-2D: RSP), it has been observed that the exact corrections for the ground states spectrum of studied potential was depended on two infinitesimals parameters and which plays an opposite rolls, and we ha...

  18. Experimental cross-sections energy dependence and an ab initio electronic structure survey of the ground singlet potential surface for reactive Li(+) + n-C(3)H(7)Cl collisions at low energies.

    Science.gov (United States)

    Lucas, José María; de Andrés, Jaime; Albertí, Margarita; Bofill, Josep Maria; Bassi, Davide; Aguilar, Antonio

    2010-11-07

    Reactive collisions between n-C(3)H(7)Cl molecules and lithium ions both in their ground electronic state have been studied in the 0.05-7.00 eV center of mass energy range using an octopole radio frequency guided-ion beam apparatus developed in our laboratory and recently modified. At low collision energies, dehydrohalogenation reactions leading to Li(C(3)H(6))(+) and Li(HCl)(+) are the main reaction channels, while on increasing energies C(3)H(7)(+) and C(2)H(3)(+) formation become dominant. Cross section energy dependences in arbitrary units for all these reactions have been measured. Also, ab initio electronic structure calculations at the MP2 level have been performed to obtain information about the potential energy surface on which the reactive processes take place. The reactants' entrance channel leads to the formation of a stable [Li-n-C(3)H(7)Cl](+) ion-molecule adduct that, following an intrinsic-reaction-coordinate pathway and surmounting a transition state, isomerizes to [Li-i-C(3)H(7)Cl](+). From this second minimum, dehydrohalogenation reactions for both n-C(3)H(7)Cl and i-C(3)H(7)Cl share a common reaction pathway leading to the same products. All potential barriers explored by reactions always lie below the reactants' energy. The entrance reaction channel [Li-n-C(3)H(7)Cl](+) adduct also leads adiabatically to C(3)H(7)(+) formation which, on increasing collision energy generates C(2)H(3)(+)via a unimolecular decomposition. A qualitative interpretation of the experimental results based on our ab initio calculations is also given.

  19. 地源热泵系统节能潜力分析%Analysis of energy saving potential of ground source heat pump system

    Institute of Scientific and Technical Information of China (English)

    李新付

    2015-01-01

    在三星级绿色公共建筑中采用地源热泵系统供冷供热,可以在建筑全寿命期内最大限度地节约能源、保护环境减少污染。本文通过对安阳市民之家(三星绿建)采用的地下室地源热泵进行定性定量分析,阐明地源热泵系统的巨大节能空间。%The use of ground source heat pump system for cold heating in the three star green building, can save energy and protect the environment to reduce pollution in the whole life period. In this paper, a qualitative and quantitative analysis of the ground source heat pump is carried out, and the great energy saving space of the ground source heat pump system is expounded.

  20. Geothermal Energy: Tapping the Potential

    Science.gov (United States)

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  1. Analytical potential energy function for the ground state(1A1) of hydrogen isotopic D2O molecule

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The present work is to construct the potential energy function of isotopic molecules. The so-called molecular potential energy function is the electronic energy function under Born-Oppenheimer approximation,in which the nuclear motions(translational,rotational and vibration motions) are not included,therefore,its nuclear vibration motion and isotopic effect need to be considered. Based on group theory and atomic and molecular reactive statics(AMRS),the reasonable dissociation limits of D2O(1A1)are determined,its equilibrium geometry and dissociation energy are calculated by density-functional theory(DFT) B3lyp,and then,using the many-body expansion method the potential energy function of D2O(1A1) is obtained for the first time. The potential contours are drawn,in which it is found that the reactive channel D + OD→D2O has no threshold energy,so it is a free radical reaction. But the reactive channel O + DD→D2O has a saddle point. The study of collision for D2O(1A1) is under way.

  2. Analytical potential energy function for the ground state (~X1A1) of hydrogen isotopic D2O molecule

    Institute of Scientific and Technical Information of China (English)

    RUAN Wen; LUO WenLang; ZHANG Li; ZHU ZhengHe

    2009-01-01

    The present work is to construct the potential energy function of Isotopic molecules. The so-called molecular potential energy function is the electronic energy function under Born-Oppenheimer ap-proximation, in which the nuclear motions (translational, rotational and vibration motions) are not in-cluded, therefore, its nuclear vibration motion and isotopic effect need to be considered. Based on group theory and atomic and molecular reactive statics (AMRS), the reasonable dissociation limits of D2O(~X1A1) are determined, its equilibrium geometry and dissociation energy are calculated by den-sity-functional theory (DFT) B3lyp, and then, using the many-body expansion method the potential en-ergy function of D2O (~X1A1) Is obtained for the first time. The potential contours are drawn, in which It is found that the reactive channel D + OD→D2O has no threshold energy, so it is a free radical reaction. But the reactive channel O + DD→D2P has a saddle point. The study of collision for D2O (~X1A1) is under way.

  3. Renewable Energy Opportunties at Dugway Proving Ground, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Orrell, Alice C.; Kora, Angela R.; Russo, Bryan J.; Horner, Jacob A.; Williamson, Jennifer L.; Weimar, Mark R.; Gorrissen, Willy J.; Nesse, Ronald J.; Dixon, Douglas R.

    2010-05-31

    This document provides an overview of renewable resource potential at Dugway Proving Ground, based primarily upon analysis of secondary data sources supplemented with limited on-site evaluations. This effort focuses on grid-connected generation of electricity from renewable energy sources and ground source heat pumps (GSHPs). The effort was funded by the U.S. Army Installation Management Command (IMCOM) as follow-on to the 2005 Department of Defense (DoD) Renewables Assessment.

  4. Absorbed Energy in Ship Collisions and Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    is that the absorbed energy does not depend on the arrangement of the structure, the material properties, and the damage mode.The purpose of the present paper is to establish a new simple relation between the absorbed energy and the destroyed material volume, which can be used as a design tool for analysis of ship......Minorsky's well-known empirical formula, which relates the absorbed energy to the destroyed material volume, has been widely used in analyses of high energy collision and grounding accidents for nearly 40 years. The advantage of the method is its apparent simplcity. Obviously, its drawback...

  5. Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate

    Energy Technology Data Exchange (ETDEWEB)

    Yong X. Tao; Yimin Zhu

    2012-04-26

    It has been widely recognized that the energy saving benefits of GSHP systems are best realized in the northern and central regions where heating needs are dominant or both heating and cooling loads are comparable. For hot and humid climate such as in the states of FL, LA, TX, southern AL, MS, GA, NC and SC, buildings have much larger cooling needs than heating needs. The Hybrid GSHP (HGSHP) systems therefore have been developed and installed in some locations of those states, which use additional heat sinks (such as cooling tower, domestic water heating systems) to reject excess heat. Despite the development of HGSHP the comprehensive analysis of their benefits and barriers for wide application has been limited and often yields non-conclusive results. In general, GSHP/HGSHP systems often have higher initial costs than conventional systems making short-term economics unattractive. Addressing these technical and financial barriers call for additional evaluation of innovative utility programs, incentives and delivery approaches. From scientific and technical point of view, the potential for wide applications of GSHP especially HGSHP in hot and humid climate is significant, especially towards building zero energy homes where the combined energy efficient GSHP and abundant solar energy production in hot climate can be an optimal solution. To address these challenges, this report presents gathering and analyzing data on the costs and benefits of GSHP/HGSHP systems utilized in southern states using a representative sample of building applications. The report outlines the detailed analysis to conclude that the application of GSHP in Florida (and hot and humid climate in general) shows a good potential.

  6. Ground Levels and Ionization Energies for the Neutral Atoms

    Science.gov (United States)

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  7. Potential energy savings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    1996-01-01

    The background for the simulations of annual energy consumption and indoor temperature level is described.......The background for the simulations of annual energy consumption and indoor temperature level is described....

  8. Radical ions with nearly degenerate ground state: correlation between the rate of spin-lattice relaxation and the structure of adiabatic potential energy surface.

    Science.gov (United States)

    Borovkov, V I; Beregovaya, I V; Shchegoleva, L N; Potashov, P A; Bagryansky, V A; Molin, Y N

    2012-09-14

    Paramagnetic spin-lattice relaxation (SLR) in radical cations (RCs) of the cycloalkane series in liquid solution was studied and analyzed from the point of view of the correlation between the relaxation rate and the structure of the adiabatic potential energy surface (PES) of the RCs. SLR rates in the RCs formed in x-ray irradiated n-hexane solutions of the cycloalkanes studied were measured with the method of time-resolved magnetic field effect in the recombination fluorescence of spin-correlated radical ion pairs. Temperature and, for some cycloalkanes, magnetic field dependences of the relaxation rate were determined. It was found that the conventional Redfield theory of the paramagnetic relaxation as applied to the results on cyclohexane RC, gave a value of about 0.2 ps for the correlation time of the perturbation together with an unrealistically high value of 0.1 T in field units for the matrix element of the relaxation transition. The PES structure was obtained with the DFT quantum-chemical calculations. It was found that for all of the cycloalkanes RCs considered, including low symmetric alkyl-substituted ones, the adiabatic PESes were surfaces of pseudorotation due to avoided crossing. In the RCs studied, a correlation between the SLR rate and the calculated barrier height to the pseudorotation was revealed. For RCs with a higher relaxation rate, the apparent activation energies for the SLR were similar to the calculated heights of the barrier. To rationalize the data obtained it was assumed that the vibronic states degeneracy, which is specific for Jahn-Teller active cyclohexane RC, was approximately kept in the RCs of substituted cycloalkanes for the vibronic states with the energies above and close to the barrier height to the pseudorotation. It was proposed that the effective spin-lattice relaxation in a radical with nearly degenerate low-lying vibronic states originated from stochastic crossings of the vibronic levels that occur due to fluctuations of

  9. Ground state properties of a Bose-Einstein condensate confined in an anharmonic external potential

    Institute of Scientific and Technical Information of China (English)

    Wang Deng-Long; Yan Xiao-Hong; Tang Yi

    2004-01-01

    In light of the interference experiment of Bose-Einstein condensates, we present an anharmonic external potential model to study ground state properties of Bose-Einstein condensates. The ground state energy and the chemical potential have been analytically obtained, which are lower than those in harmonic trap. Additionally, it is found that the anharmonic strength of the external potential has an important effect on density and velocity distributions of the ground state for the Thomas-Fermi model.

  10. GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION

    Science.gov (United States)

    Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...

  11. Refined ab initio intermolecular ground-state potential energy surface for the He-C2H2 van der Waals complex

    DEFF Research Database (Denmark)

    Fernández, Berta; Henriksen, Christian; Farrelly, David

    2013-01-01

    , are fitted to a 15-parameter analytic function. The potential is characterised by minima of-24.21 cm-1 at distances between the rare gas atom and the C2H2 centre of mass of 4.3453 Å, and with the complex in a linear configuration. At intermediate distances the surface is rather similar to that developed...

  12. Ground state energies from converging and diverging power series expansions

    Science.gov (United States)

    Lisowski, C.; Norris, S.; Pelphrey, R.; Stefanovich, E.; Su, Q.; Grobe, R.

    2016-10-01

    It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh-Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state's spatial extension is comparable to L. Once the binding strength is so strong that the ground state's extension is less than L, the power expansion becomes divergent, consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.

  13. LHC Physics Potential versus Energy

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab

    2009-08-01

    Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u{bar d}, and qq interactions over the energy range relevant to the Large Hadron Collider, along with example analyses for specific processes.

  14. World potential of renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Dessus, B.; Devin, B.; Pharabod, F.

    1991-07-01

    A comprehensive analysis, region by region, of the actually accessible renewable energies at a given horizon, is presented. The same methodology as the one employed to derive ``proven fossil energy reserves`` from ``energy resources`` is adopted, in which resources are defined by quantitative information on physical potential, while reserves take into account technical and economical accessibility. As renewable resources are fluctuating with time and are diluted in space and not readily transportable or storeable, it is necessary to consider the presence of populations or activities near enough to be able to profit by these diluted and volatile energies.

  15. Relativity, potential energy, and mass

    Science.gov (United States)

    Hecht, Eugene

    2016-11-01

    This paper is an exploration of the concept of energy, illuminated by the transformative insights of the special theory of relativity. Focusing on potential energy (PE), it will be shown that PE as presently defined is in conflict with the tenets of special relativity. Even though PE remains an indispensable theoretical device its actual physicality is questionable. Moreover its ontological status is quite different from that of both kinetic energy and mass, a significant point that is not widely appreciated. We will establish that PE is a theoretical concept as opposed to an empirical one; it is a descriptor of mass-energy without a detectable physical presence of its own. PE is a measure of energy stored, it is not the energy stored.

  16. Assessment of triton potential energy

    CERN Document Server

    Friar, J L

    1996-01-01

    An assessment is made of the dominant features contributing to the triton potential energy, with the objective of understanding qualitatively their origins and sensitivities. Relativistic effects, short-range repulsion, and OPEP dominance are discussed. A determination of the importance of various regions of nucleon-nucleon separation is made numerically.

  17. Assessment of Triton Potential Energy

    Science.gov (United States)

    Friar, J. L.; Payne, G. L.

    1995-12-01

    An assessment is made of the dominant features contributing to the triton potential energy, with the objective of understanding qualitatively their origins and sensitivities. Relativistic effects, short-range repulsion, and OPEP dominance are discussed. A determination of the importance of various regions of nucleon-nucleon separation is made numerically.

  18. Ground state energy of the modified Nambu-Goto string

    CERN Document Server

    Hadasz, L

    1998-01-01

    We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.

  19. WIND SPEED AND ENERGY POTENTIAL ANALYSES

    Directory of Open Access Journals (Sweden)

    A. TOKGÖZLÜ

    2013-01-01

    Full Text Available This paper provides a case study on application of wavelet techniques to analyze wind speed and energy (renewable and environmental friendly energy. Solar and wind are main sources of energy that allows farmers to have the potential for transferring kinetic energy captured by the wind mill for pumping water, drying crops, heating systems of green houses, rural electrification's or cooking. Larger wind turbines (over 1 MW can pump enough water for small-scale irrigation. This study tried to initiate data gathering process for wavelet analyses, different scale effects and their role on wind speed and direction variations. The wind data gathering system is mounted at latitudes: 37° 50" N; longitude 30° 33" E and height: 1200 m above mean sea level at a hill near Süleyman Demirel University campus. 10 minutes average values of two levels wind speed and direction (10m and 30m above ground level have been recorded by a data logger between July 2001 and February 2002. Wind speed values changed between the range of 0 m/s and 54 m/s. Annual mean speed value is 4.5 m/s at 10 m ground level. Prevalent wind

  20. Corrections to the Nonrelativistic Ground Energy of a Helium Atom

    Institute of Scientific and Technical Information of China (English)

    段一士; 刘玉孝; 张丽杰

    2004-01-01

    Considering the nuclear motion, we present the nonrelativistic ground energy of a helium atom by using a simple effective variational wavefunction with a flexible parameter k. Based on the result, the relativistic and radiative corrections to the nonrelativistic Hamiltonian are discussed. The high precision value of the helium ground energy is evaluated to be -2.90338 a.u. With the relative error 0.00034%.

  1. California Industrial Energy Efficiency Potential

    Energy Technology Data Exchange (ETDEWEB)

    Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike

    2005-06-01

    This paper presents an overview of the modeling approach andhighlights key findings of a California industrial energy efficiencypotential study. In addition to providing estimates of technical andeconomic potential, the study examines achievable program potential undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, theEnergy Information Association (EIA) Manufacturing Energy ConsumptionSurvey (MECS), state-sponsored avoided cost studies, energy efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable potential over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of energy savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable potential estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.

  2. California Industrial Energy Efficiency Potential

    Energy Technology Data Exchange (ETDEWEB)

    Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike

    2005-06-01

    This paper presents an overview of the modeling approach andhighlights key findings of a California industrial energy efficiencypotential study. In addition to providing estimates of technical andeconomic potential, the study examines achievable program potential undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, theEnergy Information Association (EIA) Manufacturing Energy ConsumptionSurvey (MECS), state-sponsored avoided cost studies, energy efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable potential over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of energy savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable potential estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.

  3. The potential of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    On June 27 and 28, 1989, the US Department of Energy (DOE) national laboratories were convened to discuss plans for the development of a National Energy Strategy (NES) and, in particular, the analytic needs in support of NES that could be addressed by the laboratories. As a result of that meeting, interlaboratory teams were formed to produce analytic white papers on key topics, and a lead laboratory was designated for each core laboratory team. The broad-ranging renewables assignment is summarized by the following issue statement from the Office of Policy, Planning and Analysis: to what extent can renewable energy technologies contribute to diversifying sources of energy supply What are the major barriers to greater renewable energy use and what is the potential timing of widespread commercialization for various categories of applications This report presents the results of the intensive activity initiated by the June 1989 meeting to produce a white paper on renewable energy. Scores of scientists, analysts, and engineers in the five core laboratories gave generously of their time over the past eight months to produce this document. Their generous, constructive efforts are hereby gratefully acknowledged. 126 refs., 44 figs., 32 tabs.

  4. Wind Energy Potential in Bangladesh

    Directory of Open Access Journals (Sweden)

    A.Z.A. Saifullah

    2016-07-01

    Full Text Available Bangladesh is encountering difficulties in supplying energy to maintain its economic growth. Government of Bangladesh is looking for renewable energy sources to meet up the total power demand in this country. The present study aims to assess wind energy potential in Bangladesh as a sustainable solution to overcome the energy crisis. Wind speed at six coastal zones Patenga, Cox’s Bazar, Teknaf, Char Fassion, Kuakata and Kutubdia at Bay of Bengal of Bangladesh have been analyzed. A near shore wind farm has been considered at these locations having a coastal line of 574 km. The turbines are spaced 7D apart in the prevailing wind direction, and 3D apart in the perpendicular direction, where D is rotor diameter. This near shore wind farm with an array of 5104 horizontal axis wind turbines with hub height of 100 m and rotor diameter of 75 m with a wind speed of 7 m/sec is capable to generate 1855.25 MW of electrical power. This can mitigate 55.93 per cent of energy shortage in 2016. By developing renewable energy sources it is possible to compensate 11.25 per cent of total power demand by 2020.

  5. Using Ground Source Heat Pumps for Renewable Energy

    OpenAIRE

    Xhevat BERISHA

    2017-01-01

    This paper provides background information on the current energy supply, energy demand, and energy sources in Kosovo. Moreover, it presents the country‟s current level of applying alternative energy sources. Additionally, this paper focuses on geothermal energy as a renewable energy resource with the potential to contribute to a sustainable use of resources to meet renewable energy and energy efficiency requirements of the European Union (EU), “EU 20 20 by 2020” policy. Hence, a careful analy...

  6. Estimation of beryllium ground state energy by Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, K. M. Ariful [Department of Physical Sciences, School of Engineering and Computer Science, Independent University, Bangladesh (IUB) Dhaka (Bangladesh); Halder, Amal [Department of Mathematics, University of Dhaka Dhaka (Bangladesh)

    2015-05-15

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  7. Morphing ab initio potential energy curve of beryllium monohydride

    Science.gov (United States)

    Špirko, Vladimír

    2016-12-01

    Effective (mass-dependent) potential energy curves of the ground electronic states of 9BeH, 9BeD, and 9BeT are constructed by morphing a very accurate MR-ACPF ab initio potential of Koput (2011) within the framework of the reduced potential energy curve approach of Jenč (1983). The morphing is performed by fitting the RPC parameters to available experimental ro-vibrational data. The resulting potential energy curves provide a fairly quantitative reproduction of the fitted data. This allows for a reliable prediction of the so-far unobserved molecular states in terms of only a small number of fitting parameters.

  8. Spent coffee grounds as a versatile source of green energy.

    Science.gov (United States)

    Kondamudi, Narasimharao; Mohapatra, Susanta K; Misra, Mano

    2008-12-24

    The production of energy from renewable and waste materials is an attractive alternative to the conventional agricultural feed stocks such as corn and soybean. This paper describes an approach to extract oil from spent coffee grounds and to further transesterify the processed oil to convert it into biodiesel. This process yields 10-15% oil depending on the coffee species (Arabica or Robusta). The biodiesel derived from the coffee grounds (100% conversion of oil to biodiesel) was found to be stable for more than 1 month under ambient conditions. It is projected that 340 million gallons of biodiesel can be produced from the waste coffee grounds around the world. The coffee grounds after oil extraction are ideal materials for garden fertilizer, feedstock for ethanol, and as fuel pellets.

  9. The Wind Energy Potential of Iceland

    Science.gov (United States)

    Nawri, Nikolai; Nína Petersen, Guðrún; Bjornsson, Halldór; Hahmann, Andrea N.; Jónasson, Kristján; Bay Hasager, Charlotte; Clausen, Niels-Erik

    2014-05-01

    While Iceland has an abundant wind energy resource, its use for electrical power production has so far been limited. Electricity in Iceland is generated primarily from hydro- and geothermal sources, and adding wind energy has so far not been considered practical or even necessary. However, wind energy is becoming a more viable option, as opportunities for new hydro- or geothermal power installations become limited. In order to obtain an estimate of the wind energy potential of Iceland, a wind atlas has been developed as part of the joint Nordic project 'Improved Forecast of Wind, Waves and Icing' (IceWind). Downscaling simulations performed with the Weather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3.6, with the lowest values indicative of near-exponential distributions at sheltered locations, and the highest values indicative of normal distributions at exposed locations in winter. Compared with summer, average power density in winter is increased throughout Iceland by a factor of 2.0 - 5.5. In any season, there are also considerable spatial differences in average wind power density. Relative to the average value within 10 km of the coast, power density across Iceland varies between 50 - 250%, excluding glaciers, or between 300 - 1500 W m-2 at 50 m above ground level in winter. At intermediate elevations of 500 - 1000 m above mean sea level, power density is independent of the distance to the coast. In addition to seasonal and spatial variability, differences in average wind speed and power density also exist for different wind directions. Along the coast in winter, power density of onshore winds is higher by 100 - 700 W m-2 than that of offshore winds. The regions with the highest average wind speeds are impractical for wind farms, due to the distances from road

  10. The Wind Energy Potential of Iceland

    DEFF Research Database (Denmark)

    Nawri, Nikolai; Petersen, Guðrún Nína; Björnsson, Halldór

    2014-01-01

    Downscaling simulations performed with theWeather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3.......6, with the lowest values indicative of near-exponential distributions at sheltered locations, and the highest values indicative of normal distributions at exposed locations in winter. Compared with summer, average power density in winter is increased throughout Iceland by a factor of 2.0e5.5. In any season......, there are also considerable spatial differences in average wind power density. Relative to the average value within 10 km of the coast, power density across Iceland varies between 50 and 250%, excluding glaciers, or between 300 and 1500 W m_2 at 50 m above ground level in winter. At intermediate elevations...

  11. Mission aware energy saving strategies for Army ground vehicles

    Science.gov (United States)

    Dattathreya, Macam S.

    Fuel energy is a basic necessity for this planet and the modern technology to perform many activities on earth. On the other hand, quadrupled automotive vehicle usage by the commercial industry and military has increased fuel consumption. Military readiness of Army ground vehicles is very important for a country to protect its people and resources. Fuel energy is a major requirement for Army ground vehicles. According to a report, a department of defense has spent nearly $13.6 billion on fuel and electricity to conduct ground missions. On the contrary, energy availability on this plant is slowly decreasing. Therefore, saving energy in Army ground vehicles is very important. Army ground vehicles are embedded with numerous electronic systems to conduct missions such as silent and normal stationary surveillance missions. Increasing electrical energy consumption of these systems is influencing higher fuel consumption of the vehicle. To save energy, the vehicles can use any of the existing techniques, but they require complex, expensive, and time consuming implementations. Therefore, cheaper and simpler approaches are required. In addition, the solutions have to save energy according to mission needs and also overcome size and weight constraints of the vehicle. Existing research in the current literature do not have any mission aware approaches to save energy. This dissertation research proposes mission aware online energy saving strategies for stationary Army ground vehicles to save energy as well as to meet the electrical needs of the vehicle during surveillance missions. The research also proposes theoretical models of surveillance missions, fuzzy logic models of engine and alternator efficiency data, and fuzzy logic algorithms. Based on these models, two energy saving strategies are proposed for silent and normal surveillance type of missions. During silent mission, the engine is on and batteries power the systems. During normal surveillance mission, the engine is

  12. Biowaste energy potential in Kenya

    NARCIS (Netherlands)

    Nzila, C.; DeWulf, J.; Spanjers, H.; Kiriamiti, H.; Langenhove, H.

    2010-01-01

    Energy affects all aspects of national development. Hence the current global energy crisis demands greater attention to new initiatives on alternative energy sources that are renewable, economically feasible and sustainable. The agriculture-dependent developing countries in Africa can mitigate the e

  13. Renewable energy costs, potentials, barriers: Conceptual issues

    Energy Technology Data Exchange (ETDEWEB)

    Verbruggen, Aviel, E-mail: aviel.verbruggen@ua.ac.b [University of Antwerp (Belgium); Fischedick, Manfred [Wuppertal Institute for Climate, Environment, Energy (Germany); Moomaw, William [Tufts University, Center for International Environment and Resource Policy (United States); Weir, Tony [University of the South Pacific, Fiji Islands (Fiji); Nadai, Alain [Centre International de Recherche sur nvironnement et le Developpement CIRED (France); Nilsson, Lars J. [University of Lund (Sweden); Nyboer, John [Simon Fraser University, School of Resource and Environmental Management (Canada); Sathaye, Jayant [Lawrence Berkeley Laboratory (United States)

    2010-02-15

    Renewable energy can become the major energy supply option in low-carbon energy economies. Disruptive transformations in all energy systems are necessary for tapping widely available renewable energy resources. Organizing the energy transition from non-sustainable to renewable energy is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and policies have to be aligned to achieve full renewable energy potentials, and barriers impeding that growth need to be removed. These issues are also covered by IPCC's special report on renewable energy and climate change to be completed in 2010. This article focuses on the interrelations among the drivers. It clarifies definitions of costs and prices, and of barriers. After reviewing how the third and fourth assessment reports of IPCC cover mitigation potentials and commenting on definitions of renewable energy potentials in the literature, we propose a consistent set of potentials of renewable energy supplies.

  14. Hartree–Fock variational bounds for ground state energy of chargeless fermions with finite magnetic moment in the presence of a hard core potential: A stable ferromagnetic state

    Indian Academy of Sciences (India)

    Sudhanshu S Jha; S D Mahanti

    2007-05-01

    We use different determinantal Hartree–Fock (HF) wave functions to calculate true variational upper bounds for the ground state energy of spin-half fermions in volume 0, with mass , electric charge zero, and magnetic moment , interacting through magnetic dipole–dipole interaction. We find that at high densities when the average interparticle distance 0 becomes small compared to the magnetic length m ≡ 22/ħ2, a ferromagnetic state with spheroidal occupation function ↑ $(\\vec{k})$, involving quadrupolar deformation, gives a lower upper bound compared to the variational energy for the uniform paramagnetic state or for the state with dipolar deformation. This system is unstable towards infinite density collapse, but we show explicitly that a suitable short-range repulsive (hard core) interaction of strength 0 and range a can stop this collapse. The existence of a stable equilibrium high density ferromagnetic state with spheroidal occupation function is possible as long as the ratio of coupling constants cm ≡ (03/2) is not very smallcompared to 1.

  15. Using Ground Source Heat Pumps for Renewable Energy

    Directory of Open Access Journals (Sweden)

    Xhevat BERISHA

    2017-04-01

    Full Text Available This paper provides background information on the current energy supply, energy demand, and energy sources in Kosovo. Moreover, it presents the country‟s current level of applying alternative energy sources. Additionally, this paper focuses on geothermal energy as a renewable energy resource with the potential to contribute to a sustainable use of resources to meet renewable energy and energy efficiency requirements of the European Union (EU, “EU 20 20 by 2020” policy. Hence, a careful analysis is included on how to approach the aforementioned targets through investments in geothermal energy through providing an energy consumption forecast and analysing geothermal energy projects in Europe and specifically in Kosovo. This paper carefully represents the potential usage of geothermal energy in Kosovo, renewable energy source targets, and it addresses the importance of laws, regulations, and reports regarding the utilization of this type of energy. Economic and environmental implications of investing in geothermal energy - geothermal heat pumps for the case of International Village are additionally analysed. Lastly, recommendations and conclusions, for future actions, are derived and addressed to relevant stakeholders, primarily policy-makers, and government representatives.

  16. Tomography of ground water flow from self-potential data

    Science.gov (United States)

    Revil, A.; Jardani, A.

    2007-12-01

    An inversion algorithm is developed to interpret self-potential (SP) data in terms of distribution of the seepage velocity of the ground water. The model is based on the proportionality existing between the electrokinetic source current density and the seepage velocity of the water phase. As the inverse problem is underdetermined, we use a Tikhonov regularization method with a smoothness constraint based on the differential Laplacian operator to solve the inverse problem. The regularization parameter is determined by the L-shape method. The recovery of the distribution of the seepage velocity vector of the ground water flow depends on the localization and number of non-polarizing electrodes and information relative to the distribution of the electrical resistivity of the ground. The inversion method is tested on two 2D synthetic cases and on two real SP data. The first field test corresponds to the infiltration of water from a ditch. The second one corresponds to large flow at the Cerro Prieto geothermal field in Baja California.

  17. Energy efficiency potentials and energy management practices in Swedish firms

    OpenAIRE

    Backlund, Sandra; Broberg, Sarah; Ottosson, Mikael; Thollander, Patrik

    2012-01-01

    In order to improve energy efficiency and reach the EU:s 20-20-20 primary energy saving target, focus has mainly been on diffusion of technology. Previous studies have illustrated large untapped energy saving potentials from implementing energy management practices in firms. Energy management practices have large effects on energy utilization and also a short pay-back time. According to these studies, energy management practices also effect investment decisions and the outcome of investments ...

  18. Minke whales maximise energy storage on their feeding grounds.

    Science.gov (United States)

    Christiansen, Fredrik; Víkingsson, Gísli A; Rasmussen, Marianne H; Lusseau, David

    2013-02-01

    Seasonal trends in energy storage of the minke whale (Balaenoptera acutorostrata), a capital breeder, were investigated in Iceland, a North Atlantic feeding ground. The aim was to better understand the energy acquisition strategies of minke whales and the energetic costs that different reproductive classes face during the breeding season. We modelled total blubber volume, using blubber thickness and morphometric measurements of individual whales. Blubber volume was influenced by body length, and was higher for pregnant females than mature whales. Blubber volume increased linearly through the feeding season at the same rate for mature (mean ± s.e.m.=0.0028 ± 0.00103 m(3) day(-1); N=61 male, 5 female) and pregnant whales (0.0024 ± 0.00100 m(3) day(-1); N=49), suggesting that minke whales aim to maximise energy storage while on the feeding grounds. The total amount of blubber accumulated over the feeding season (0.51 ± 0.119 m(3) for mature and 0.43 ± 0.112 m(3) for pregnant whales), together with energy stored as muscle and intra-abdominal fats, constitutes the total amount of energy available for reproduction (fetus development and lactation) on the breeding grounds, as well as migration, daily field metabolic rates, growth and body maintenance. No seasonal variation was observed for immature whales (N=4 male, 12 female), suggesting that they are investing most of their excess energy into growth rather than reproduction, in order to reach the length of sexual maturity faster and start reproducing earlier. Our novel modelling approach provides insight into large whale bioenergetics and life history strategies, as well as the relationship between single-site measurement of blubber thickness and total blubber volume.

  19. Simple simulation for electron energy levels in geometrical potential wells

    CERN Document Server

    Pengpan, Teparksorn

    2008-01-01

    An octopus program is demonstrated to generate electron energy levels in three-dimensional geometrical potential wells. The wells are modeled to have shapes similar to cone, pyramid and truncated-pyramid. To simulate the electron energy levels in quantum mechanical scheme like the ones in parabolic band approximation scheme, the program is run initially to find a suitable electron mass fraction that can produce ground-state energies in the wells as close to those in quantum dots as possible and further to simulate excited-state energies. The programs also produce wavefunctions for exploring and determining their degeneracies and vibrational normal modes.

  20. Fourier-transform spectroscopy of Sr2 and revised ground-state potential

    Science.gov (United States)

    Stein, A.; Knöckel, H.; Tiemann, E.

    2008-10-01

    Precise potentials for the ground-state XΣg+1 and the minimum region of the excited state 2Σu+1 of Sr2 are derived by high-resolution Fourier-transform spectroscopy of fluorescence progressions from single-frequency laser excitation of Sr2 produced in a heat pipe at 950°C . A change of the rotational assignment by four units compared to an earlier work [G. Gerber , J. Chem. Phys. 81, 1538 (1984)] is needed for a consistent description leading to a significant shift of the potentials toward longer interatomic distances. The huge amount of ground-state data derived for the three different isotopomers Sr288 , Sr86Sr88 , and Sr87Sr88 (almost 60% of all excisting bound rovibrational ground-state levels for the isotopomer Sr288 ) fixes this assignment beyond a doubt. The presented ground-state potential is derived from the observed transitions for the radial region from 4to11Å ( 9cm-1 below the asymptote) and is extended to the long-range region by the use of theoretical dispersion coefficients together with already available photoassociation data. New estimations of the scattering lengths for the complete set of isotopic combinations are derived by mass scaling with the derived potential. The data set for the excited state 2Σu+1 was sufficient to derive a potential energy curve around the minimum.

  1. Potential of renewable and alternative energy sources

    Science.gov (United States)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  2. Alpha Decay Half-Lives of Some Nuclei from Ground State to Ground State with Yukawa Proximity Potential

    Institute of Scientific and Technical Information of China (English)

    E.Javadimanesh; H.Hassanabadi; A.A.Rajabi; H.Rahimov; S.Zarrinkamar

    2012-01-01

    We study the half-lives of some nuclei via the alpha-decay process from ground state to ground state. To go through the problem, we have considered a potential model with Yukawa proximity potential and have thereby calculated the half-lives. The comparison with the existing data is motivating.

  3. Potential energy savings and thermal comfort

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Rudbeck, Claus Christian; Schultz, Jørgen Munthe

    1996-01-01

    The simulation results on the energy saving potential and influence on indoor thermal comfort by replacement of common windows with aerogel windows as well as commercial low-energy windows are described and analysed.......The simulation results on the energy saving potential and influence on indoor thermal comfort by replacement of common windows with aerogel windows as well as commercial low-energy windows are described and analysed....

  4. Ground state and orbital stability for the NLS equation on a general starlike graph with potentials

    Science.gov (United States)

    Cacciapuoti, Claudio; Finco, Domenico; Noja, Diego

    2017-08-01

    We consider a nonlinear Schrödinger equation (NLS) posed on a graph (or network) composed of a generic compact part to which a finite number of half-lines are attached. We call this structure a starlike graph. At the vertices of the graph interactions of δ-type can be present and an overall external potential is admitted. Under general assumptions on the potential, we prove that the NLS is globally well-posed in the energy domain. We are interested in minimizing the energy of the system on the manifold of constant mass (L 2-norm). When existing, the minimizer is called ground state and it is the profile of an orbitally stable standing wave for the NLS evolution. We prove that a ground state exists for sufficiently small masses whenever the quadratic part of the energy admits a simple isolated eigenvalue at the bottom of the spectrum (the linear ground state). This is a wide generalization of a result previously obtained for a star-graph with a single vertex. The main part of the proof is devoted to prove the concentration compactness principle for starlike structures; this is non trivial due to the lack of translation invariance of the domain. Then we show that a minimizing, bounded, H 1 sequence for the constrained NLS energy with external linear potentials is in fact convergent if its mass is small enough. Moreover we show that the ground state bifurcates from the vanishing solution at the bottom of the linear spectrum. Examples are provided with a discussion of the hypotheses on the linear part.

  5. Potential risk of microplastics transportation into ground water

    Science.gov (United States)

    Huerta, Esperanza; Gertsen, Hennie; Gooren, Harm; Peters, Piet; Salánki, Tamás; van der Ploeg, Martine; Besseling, Ellen; Koelmans, Albert A.; Geissen, Violette

    2016-04-01

    Microplastics, are plastics particles with a size smaller than 5mm. They are formed by the fragmentation of plastic wastes. They are present in the air, soil and water. But only in aquatic systems (ocean and rivers) are studies over their distribution, and the effect of microplastics on organisms. There is a lack of information of what is the distribution of microplastics in the soil, and in the ground water. This study tries to estimate the potential risk of microplastics transportation into the ground water by the activity of earthworms. Earthworms can produce burrows and/or galleries inside the soil, with the presence of earthworms some ecosystem services are enhanced, as infiltration. In this study we observed after 14 days with 5 treatments (0, 7, 28 and 60% w/w microplastics mixed with Populus nigra litter) and the anecic earthworm Lumbricus terrestris, in microcosms (3 replicas per treatment) that macroplastics are indeed deposit inside earthworms burrows, with 7% microplastics on the surface is possible to find 1.8 g.kg-1 microplastics inside the burrows, with a bioaumentation factor of 0.65. Burrows made by earthworms under 60% microplastics, are significant bigger (pmicroplastics in their soil surface. The amount of litter that is deposit inside the burrows is significant higher (pmicroplastics on the surface than without microplastics. The microplastics size distribution is smaller inside the burrows than on the surface, with an abundance of particles under 63 μm.

  6. Low-grade energy of the ground for civil engineering

    Directory of Open Access Journals (Sweden)

    Potienko Natalia

    2017-01-01

    Full Text Available The article researches issues related to the relevance of applying renewable energy sources for civil engineering. The aim of the work is the study of modern approaches to designing buildings, using low-grade energy of the ground. The research methodology is based on the complex analysis of international design experience and on identifying the strengths and weaknesses of objects that use low-grade heat. We have identified the prospects of applying it for domestic construction practice. The state policy in the field of the efficient use of energy resources has been analyzed, and the vector of energy-saving programs development for the Samara Region has been defined. The research describes the impact of using geothermal energy on the architectural and planning solutions of buildings, as well as the peculiar features of the latter’s design, which are related primarily to the increase of energy efficiency. As a result, in the article a conclusion is made that the objects under investigation may be considered as one of the vectors of sustainable architecture development.

  7. Ground-coupled airwaves at Pavlof Volcano, Alaska, and their potential for eruption monitoring

    Science.gov (United States)

    Smith, Cassandra M.; McNutt, Stephen R.; Thompson, Glenn

    2016-07-01

    An abnormally high number of explosion quakes were noted during the monitoring effort for the 2007 eruption of Pavlof Volcano on the Alaska Peninsula. In this study, we manually cataloged the explosion quakes from their characteristic ground-coupled airwaves. This study investigates how the ground-coupled airwaves might be used in a monitoring or analysis effort by estimating energy release and gas mass release. Over 3 × 104 quakes were recorded. The energy release from the explosions is approximated to be 3 × 1011 J, and the total gas mass (assuming 100 % water) released was 450 t. The tracking of explosion quakes has the potential to estimate relative eruption intensity as a function of time and is thus a useful component of a seismic monitoring program.

  8. Biomass energy: the scale of the potential resource.

    Science.gov (United States)

    Field, Christopher B; Campbell, J Elliott; Lobell, David B

    2008-02-01

    Increased production of biomass for energy has the potential to offset substantial use of fossil fuels, but it also has the potential to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass energy agriculture on climate could be either cooling or warming, depending on the crop, the technology for converting biomass into useable energy, and the difference in carbon stocks and reflectance of solar radiation between the biomass crop and the pre-existing vegetation. The area with the greatest potential for yielding biomass energy that reduces net warming and avoids competition with food production is land that was previously used for agriculture or pasture but that has been abandoned and not converted to forest or urban areas. At the global scale, potential above-ground plant growth on these abandoned lands has an energy content representing approximately 5% of world primary energy consumption in 2006. The global potential for biomass energy production is large in absolute terms, but it is not enough to replace more than a few percent of current fossil fuel usage. Increasing biomass energy production beyond this level would probably reduce food security and exacerbate forcing of climate change.

  9. Storing unsteady energy, like photovoltaically generated electric energy, as potential energy

    OpenAIRE

    Kutz, Nadja

    2012-01-01

    A proposal to store unsteady energy in potential energy via lifting masses with a rough quantitative overview. Some applications and methods to harvest the potential energy are also given. A focus is put on photovoltaically generated energy.

  10. Geothermal Energy Potential in Western United States

    Science.gov (United States)

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  11. Geothermal Energy Potential in Western United States

    Science.gov (United States)

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  12. Casimir Free Energy at High Temperatures: Grounded vs Isolated Conductors

    CERN Document Server

    Fosco, C D; Mazzitelli, F D

    2016-01-01

    We evaluate the difference between the Casimir free energies corresponding to either grounded or isolated perfect conductors, at high temperatures. We show that a general and simple expression for that difference can be given, in terms of the electrostatic capacitance matrix for the system of conductors. For the case of close conductors, we provide approximate expressions for that difference, by evaluating the capacitance matrix using the proximity force approximation. Since the high-temperature limit for the Casimir free energy for a medium described by a frequency-dependent conductivity diverging at zero frequency coincides with that of an isolated conductor, our results may shed light on the corrections to the Casimir force in the presence of real materials.

  13. Analytical potential energy function for the Br + H{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Yuzuru [Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan). Kansai Research Establishment

    2001-10-01

    Analytical functions with a many-body expansion for the ground and first-excited-state potential energy surfaces for the Br+H{sub 2} system are newly presented in this work. These functions describe the abstraction and exchange reactions qualitatively well, although it has been found that the function for the ground-state potential surface is still quantitatively unsatisfactory. (author)

  14. Energy potential mapping for energy-producing neighborhoods

    NARCIS (Netherlands)

    Dobbelsteen, van den A.; Broersma, S.; Stremke, S.

    2011-01-01

    Over the past five years, the method of energy potential mapping (EPM) has evolved from a cartoonish charting of climatic features with energy consequences to a detailed methodology for the development of spatial plans based on energy-effective foundations. By means of EPM the rudimentary features

  15. Ground squirrel shooting and potential lead exposure in breeding avian scavengers

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A.; Wagner, Mason T.

    2016-01-01

    Recreational ground squirrel shooting is a popular activity throughout the western United States and serves as a tool for managing ground squirrel populations in agricultural regions. Belding’s ground squirrels (Spermophilus beldingi) are routinely shot in California, Nevada, and Oregon across habitats that overlap with breeding avian scavengers. Ground squirrels shot with lead (Pb)-based bullets may pose a risk to avian scavengers if they consume carcasses containing Pb fragments. To assess the potential risk to breeding avian scavengers we developed a model to estimate the number, mass, and distribution of Pb fragments in shot ground squirrels using radiographic images. Eighty percent of shot carcasses contained detectible Pb fragments with an average of 38.6 mg of Pb fragments. Seven percent of all carcasses contained Pb fragment masses exceeding a lethal dose for a model raptor nestling (e.g. American kestrel Falco sparverius). Bullet type did not influence the number of fragments in shot ground squirrels, but did influence the mass of fragments retained. Belding’s ground squirrels shot with .17 Super Mag and unknown ammunition types contained over 28 and 17 times more mass of Pb fragments than those shot with .22 solid and .22 hollow point bullets, respectively. Ground squirrel body mass was positively correlated with both the number and mass of Pb fragments in carcasses, increasing on average by 76% and 56% respectively across the range of carcass masses. Although the mass of Pb retained in ground squirrel carcasses was small relative to the original bullet mass, avian scavenger nestlings that frequently consume shot ground squirrels may be at risk for Pb-induced effects (e.g., physiology, growth, or survival). Using modeling efforts we found that if nestling golden eagles (Aquila chrysaetos), red-tailed hawks (Buteo jamaicensis), and Swainson’s hawks (B. swainsoni) consumed shot ground squirrels proportionately to the nestling’s mass, energy needs

  16. Assessment of wind energy potential in China

    Institute of Scientific and Technical Information of China (English)

    Zhu Rong; Zhang De; Wang Yuedong; Xing Xuhuang; Li Zechun

    2009-01-01

    China wind atlas was made by numerical simulation and the wind energy potential in China was calculated. The model system for wind energy resource assessment was set up based on Canadian Wind Energy Simulating Toolkit (WEST) and the simulating method was as follows. First, the weather classes were obtained depend on meteorological data of 30 years. Then, driven by the initial meteorological field produced by each weather class, the meso-scale model ran for the distribution of wind energy resources according each weather class condition one by one. Finally, averaging all the modeling output weighted by the occurrence frequency of each weather class, the annual mean distribution of wind energy resources was worked out. Compared the simulated wind energy potential with other results from several ac-tivities and studies for wind energy resource assessment, it is found that the simulated wind energy potential in mainland of China is 3 times that from the second and the third investigations for wind energy resources by CMA, and is similar to the wind energy potential obtained by NREL in Solar and Wind Energy Resource Assessment (SWERA) project. The simulated offshore wind energy potential of China seems smaller than the true value. According to the simulated results of CMA and considering lots of limited factors to wind energy development, the final conclusion can be obtained that the wind energy availability in China is 700~1 200 GW, in which 600~1 000 GW is in mainland and 100~200 GW is on offshore, and wind power will become the important part of energy composition in future.

  17. Renewable energy costs, potentials, barriers. Conceptual issues

    Energy Technology Data Exchange (ETDEWEB)

    Verbruggen, Aviel [University of Antwerp (Belgium); Fischedick, Manfred [Wuppertal Institute for Climate, Environment, Energy (Germany); Moomaw, William [Tufts University, Center for International Environment and Resource Policy (United States); Weir, Tony [University of the South Pacific, Fiji Islands (Fiji); Nadai, Alain [Centre International de Recherche sur Environnement et le Developpement CIRED (France); Nilsson, Lars J. [University of Lund (Sweden); Nyboer, John [Simon Fraser University, School of Resource and Environmental Management (Canada); Sathaye, Jayant [Lawrence Berkeley Laboratory (United States)

    2010-02-15

    Renewable energy can become the major energy supply option in low-carbon energy economies. Disruptive transformations in all energy systems are necessary for tapping widely available renewable energy resources. Organizing the energy transition from non-sustainable to renewable energy is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and policies have to be aligned to achieve full renewable energy potentials, and barriers impeding that growth need to be removed. These issues are also covered by IPCC's special report on renewable energy and climate change to be completed in 2010. This article focuses on the interrelations among the drivers. It clarifies definitions of costs and prices, and of barriers. After reviewing how the third and fourth assessment reports of IPCC cover mitigation potentials and commenting on definitions of renewable energy potentials in the literature, we propose a consistent set of potentials of renewable energy supplies. (author)

  18. Potential structural barriers to ground-water flow, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional geologic structures designated as potential ground-water flow barriers in an approximately 45,000...

  19. Potential structural barriers to ground-water flow, Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the surface traces of regional geologic structures designated as potential ground-water flow barriers in an approximately 45,000...

  20. Existence and Concentration of Ground States of Coupled Nonlinear Schr(o)dinger Equations with Bounded Potentials

    Institute of Scientific and Technical Information of China (English)

    Gongming WEI

    2008-01-01

    A 2-coupled nonlinear Schr(o)dinger equations with bounded varying potentials and strongly attractive interactions is considered.When the attractive interaction is strong enough,the existence of a ground state for sufficiently small Planck constant is proved.As the Planck constant approaches zero,it is proved that one of the components concentrates at a minimum point of the ground state energy function which is defined in Section 4.

  1. QED calculation of the ground-state energy of berylliumlike ions

    CERN Document Server

    Malyshev, A V; Glazov, D A; Tupitsyn, I I; Shabaev, V M; Plunien, G

    2014-01-01

    \\textit{Ab initio} QED calculations of the ground-state binding energies of berylliumlike ions are performed for the wide range of the nuclear charge number: $Z=18-96$. The calculations are carried out in the framework of the extended Furry picture starting with three different types of the screening potential. The rigorous QED calculations up to the second order of the perturbation theory are combined with the third- and higher-order electron-correlation contributions obtained within the Breit approximation by the use of the large-scale configuration-interaction Dirac-Fock-Sturm method. The effects of nuclear recoil and nuclear polarization are taken into account. The ionization potentials are obtained by subtracting the binding energies of the corresponding lithiumlike ions. In comparison with the previous calculations the accuracy of the binding energies and the ionization potentials is significantly improved.

  2. Zoning of the territory of Russia by the effectiveness of low-potential heat of the ground and atmospheric air for heating buildings

    Science.gov (United States)

    Vasilyev, G. P.; Kolesova, M. V.; Gornov, V. F.; Yurchenko, I. A.

    2016-06-01

    The article represents the results of researches to zone the territory of Russia and Europe division into districts of by efficiency of using for the heat supply of buildings of low-potential thermal energy of ground and free air and their combination. While modeling the heat regime of geothermal HPS in climatic conditions of different regions of the territory of Russia, the influence of the long-term extraction of geothermal heat energy on the ground heat regime has been taken into account as well as the influence of phase transitions of pore moisture in ground on the efficiency of operation of geothermal heat-pump heat-supply systems. Also considered were the sinking of temperatures of ground massif by long-term extraction of the heat energy from the ground as calculation parameters of the heat energy from the ground, and as calculation parameters of ground massif temperatures.

  3. Diabatic potential energy surfaces of H+ + CO

    Indian Academy of Sciences (India)

    F George D X; Sanjay Kumar

    2007-09-01

    Ab initio adiabatic and diabatic surfaces of the ground and the first excited electronic states have been computed for the H+ + CO system for the collinear ( = 0°) and the perpendicular ( = 90°) geometries employing the multi-reference configuration interaction method and Dunning's -VTZ basis set. Other properties such as mixing angle before coupling potential and before coupling matrix elements have also been obtained in order to provide an understanding of the coupling dynamics of inelastic and charge transfer process.

  4. Identification of Potential Fishing Grounds Using Geospatial Technique

    Science.gov (United States)

    Abdullah, Muhammad

    2016-07-01

    Fishery resources surveys using actual sampling and data collection methods require extensive ship time and sampling time. Informative data from satellite plays a vital role in fisheries application. Satellite Remote Sensing techniques can be used to detect fish aggregation just like visual fish identification ultimately these techniques can be used to predict the potential fishing zones by measuring the parameters which affect the distribution of fishes. Remote sensing is a time saving technique to locate fishery resources along the coast. Pakistan has a continental shelf area of 50,270 km2 and coastline length of 1,120 km. The total maritime zone of Pakistan is over 30 percent of the land area. Fishery plays an important role in the national economy. The marine fisheries sector is the main component, contributing about 57 percent in terms of production. Fishery is the most important economic activity in the villages and towns along the coast, and in most of the coastal villages and settlements it is the sole source of employment and income generation. Fishing by fishermen is done on the sole basis of repeated experiments and collection of information from other fishermen. Often they are in doubt about the location of potential fishing zones. This leads to waste of time and money, adversely affecting fishermen incomes and over or under-exploitation of fishing zones. The main purpose of this study was to map potential fishing grounds by identifying various environmental parameters which impact fish aggregation along the Pakistan coastline. The primary reason of this study is the fact that the fishing communities of Pakistan's coastal regions are extremely poor and lack knowledge of the modern tools and techniques that may be incorporated to enhance their yield and thus, improve their livelihood. Using geospatial techniques in order to accurately map the potential fishing zones based on sea surface temperature (SST) and chlorophyll -a content, in conjunction with

  5. Wind energy in China: Estimating the potential

    Science.gov (United States)

    Yuan, Jiahai

    2016-07-01

    Persistent and significant curtailment has cast concern over the prospects of wind power in China. A comprehensive assessment of the production of energy from wind has identified grid-integrated wind generation potential at 11.9-14% of China's projected energy demand by 2030.

  6. VARIATIONAL CALCULATION ON GROUND-STATE ENERGY OF BOUND POLARONS IN PARABOLIC QUANTUM WIRES

    Institute of Scientific and Technical Information of China (English)

    WANG ZHUANG-BING; WU FU-LI; CHEN QING-HU; JIAO ZHENG-KUAN

    2001-01-01

    Within the framework of Feynman path-integral variational theory, we calculate the ground-state energy of a polaron in parabolic quantum wires in the presence of a Coulomb potential. It is shown that the polaronic correction to the ground-state energy is more sensitive to the electron-phonon coupling constant than the Coulomb binding parameter,and it increases monotonically with decreasing effective wire radius. Moreover, compared to the results obtained by Feynman Haken variational path-integral theory, we obtain better results within the Feynman path-integral variational approach (FV approach). Applying our calculation to several polar semiconductor quantum wires, we find that the polaronic correction can be considerably large.

  7. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    Science.gov (United States)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  8. Timing of potential and metabolic brain energy

    DEFF Research Database (Denmark)

    Korf, Jakob; Gramsbergen, Jan Bert

    2007-01-01

    The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho-physiologic......The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho...... functions. We introduce the concepts of potential and metabolic brain energy to distinguish trans-membrane gradients of ions or neurotransmitters and the capacity to generate energy from intra- or extra-cerebral substrates, respectively. Higher brain functions, such as memory retrieval, speaking...

  9. VT Potential Solar PV SHW and Ground Mount Resources - ground area polygons

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Renewable Energy Atlas of Vermont and this dataset were created to assist town energy committees, the Clean Energy Development Fund and other...

  10. Bohm's Quantum Potential as an Internal Energy

    OpenAIRE

    Dennis, Glen; De Gosson, Maurice,; Hiley, Basil

    2014-01-01

    We pursue our discussion of Fermi's surface initiated in Dennis, de Gosson and Hiley and show that Bohm's quantum potential can be viewed as an internal energy of a quantum system. This gives further insight into the role it played by the quantum potential in stationary states. It also allows us to provide a physically motivated derivation of Schr\\"odinger's equation for a particle in an external potential.

  11. Estimation of length scale of RS II-$p$ braneworld model through perturbations in Helium's atom ground state energy

    CERN Document Server

    Garrido, Nephtali

    2012-01-01

    We put to the test an effective three-dimensional electrostatic potential, obtained effectively by considering an electrostatic source inside a (5+$p$)-dimensional braneworld scenario with $p$ compact and one infinite spacial extra dimensions in the RS II-$p$ model, for $p=1$ and $p=2$. This potential is regular at the source and matches the standard Coulomb potential outside a neighborhood. We use variational and perturbative approximation methods to calculate corrections to the ground energy of the Helium atom modified by this potential, by making use of a 6 and 39-parameter trial wave function of Hylleraas type for the ground state. These corrections to the ground-state energy are compared with experimental data for Helium atom in order to set bounds for the extra dimensions length scale. We find that these bounds are less restrictive than the ones obtained by Morales et. al. through a calculation using the Lamb shift in Hydrogen.

  12. A ground reaction force analysis for designing a sustainable energy-harvesting stairway

    Science.gov (United States)

    Puspitarini, Debrina; Suzianti, Amalia; Rasyid, Harun Al; Priscandy, Nabila

    2016-06-01

    There are many issues of how energy is currently generated and consumed. These include the cost of harvesting energy, the ever-growing demand for it, and the ever-decreasing reserve of current most applicable energy resources. Numerous ways to exploit new sustainable potential energy sources have been pursued, one of which is to create an energy-harvester; a device that captures free potential energy, scattered around in its environment, and transform it into another form of energy. Using NPD approach, Puspitarini, Suzianti, and Al Rasyid (2016) has developed a conceptual design of an energy-harvesting device, which includes a selection of product specification options and a gear set layout design. In this study, a mockup was built for the experiment based on those product specification options. The experiment was conducted using AMTI Force Platform, and its results were processed using Factorial Design. This effort is to test which product specification option contributes the most to Ground Reaction Force (GRF) generation. The greater the generated GRF, the greater amount of electricity produced. A theoretical calculation of electromotive force was also conducted based on the experiment result and the gear set layout design. The result of this study was later discussed and used as a basis to develop further the stairway design.

  13. Assessing the wind energy potential projects in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Himri, Y. [Electricity and Gas National Enterprise (SONELGAZ) Bechar (Algeria); Laboratory Renewable Energy and Thermal, University of Bechar (Algeria); Himri, S. [University of Bechar, Department of Fundamental Sciences (Algeria); Boudghene Stambouli, A. [University of Sciences and Technology of Oran, Department of Electronic (Algeria)

    2009-10-15

    A research program is under way in the SONELGAZ R and D Office with the aim of studying the potential of wind energy in Algeria. This paper presents an analysis of recently collected hourly wind data over a period of almost 5 years between 2002 and 2006, from four selected sites as well as preliminary evaluation of the wind energy potential. The results showed that Tindouf and Dely Brahim sites have higher wind energy potential with annual wind speed average of 5.8 and 5.7 m/s respectively at height of 17 m above ground level (AGL). The two sites are candidates for remote area wind energy applications. The Ouled Fayet and Marsa Ben M'hidi sites wind speed data indicated that the two sites have lower annual wind speed averages between 3.9-4.7 m/s at 17 m AGL. That makes the two sites candidates for installation of windmills to provide water for drinking and small scale irrigation purposes Brief description of the equipment, is also performed. Finally the aim of this work is only a preliminary study in order to assess wind energy analysis in Algeria and give useful insights to engineers and experts dealing with wind energy. (author)

  14. Energy Transfer in Scattering by Rotating Potentials

    Indian Academy of Sciences (India)

    Volker Enss; Vadim Kostrykin; Robert Schrader

    2002-02-01

    Quantum mechanical scattering theory is studied for time-dependent Schrödinger operators, in particular for particles in a rotating potential. Under various assumptions about the decay rate at infinity we show uniform boundedness in time for the kinetic energy of scattering states, existence and completeness of wave operators, and existence of a conserved quantity under scattering. In a simple model we determine the energy transferred to a particle by collision with a rotating blade.

  15. Alternative energies: Engineering, economics, market potential

    Energy Technology Data Exchange (ETDEWEB)

    Hake, B.

    1981-11-01

    Rentability calculations are disappointing for most alternative energies. Technical improvements that might change this are not in sight, so that the dependence on imported oil and gas will hardly be reduced. Producers of solar collectors, heat pumps, solar cells, and cogeneration units must keep in mind that the market will hardly expand. This was the result of a seminar on 'Alternative energy sources: Technology, economics, marketing potential - a critical review', held on May 5 at Haus der Technik, Essen.

  16. Total energy expenditure estimated using foot-ground contact pedometry.

    Science.gov (United States)

    Hoyt, Reed W; Buller, Mark J; Santee, William R; Yokota, Miyo; Weyand, Peter G; Delany, James P

    2004-02-01

    Routine walking and running, by increasing daily total energy expenditure (TEE), can play a significant role in reducing the likelihood of obesity. The objective of this field study was to compare TEE estimated using foot-ground contact time (Tc)-pedometry (TEE(PEDO)) with that measured by the criterion doubly labeled water (DLW) method. Eight male U.S. Marine test volunteers [27 +/- 4 years of age (mean +/- SD); weight = 83.2 +/- 10.7 kg; height = 182.2 +/- 4.5 cm; body fat = 17.0 +/- 2.9%] engaged in a field training exercise were studied over 2 days. TEE(PEDO) was defined as (calculated resting energy expenditure + estimated thermic effect of food + metabolic cost of physical activity), where physical activity was estimated by Tc-pedometry. Tc-pedometry was used to differentiate inactivity, activity other than exercise (i.e., non-exercise activity thermogenesis, or NEAT), and the metabolic cost of locomotion (M(LOCO)), where M(LOCO) was derived from total weight (body weight + load weight) and accelerometric measurements of Tc. TEE(PEDO) data were compared with TEEs measured by the DLW (2H2(18)O) method (TEE(DLW)): TEE(DLW) = 15.27 +/- 1.65 MJ/day and TEE(PEDO) = 15.29 +/- 0.83 MJ/day. Mean bias (i.e., TEE(PEDO) - TEE(DLW)) was 0.02 MJ, and mean error (SD of individual differences between TEE(PEDO) and TEE(DLW)) was 1.83 MJ. The Tc-pedometry method provided a valid estimate of the average TEE of a small group of physically active subjects where walking was the dominant activity.

  17. Kinetic energy partition method applied to ground state helium-like atoms.

    Science.gov (United States)

    Chen, Yu-Hsin; Chao, Sheng D

    2017-03-28

    We have used the recently developed kinetic energy partition (KEP) method to solve the quantum eigenvalue problems for helium-like atoms and obtain precise ground state energies and wave-functions. The key to treating properly the electron-electron (repulsive) Coulomb potential energies for the KEP method to be applied is to introduce a "negative mass" term into the partitioned kinetic energy. A Hartree-like product wave-function from the subsystem wave-functions is used to form the initial trial function, and the variational search for the optimized adiabatic parameters leads to a precise ground state energy. This new approach sheds new light on the all-important problem of solving many-electron Schrödinger equations and hopefully opens a new way to predictive quantum chemistry. The results presented here give very promising evidence that an effective one-electron model can be used to represent a many-electron system, in the spirit of density functional theory.

  18. An ab initio potential energy surface and vibrational energy levels of HXeBr

    Institute of Scientific and Technical Information of China (English)

    Zheng Guo Huang; En Cui Yang; Dai Qian Xie

    2008-01-01

    A three-dimensional global potential energy surface for the electronic ground state of HXeBr molecule is constructed from morethan 4200 ab initio points. These points are generated using an internally contracted multi-reference configuration interactionmethod with the Davidson correction (icMRCI + Q) and large basis sets. The stabilities and dissociation barriers are identified fromthe potential energy surfaces. The three-body dissociation channel is found to be the dominate dissociation channel for HXeBr.Based on the obtained potentials, low-lying vibrational energy levels of HXeBr calculated using the Lanczos algorithm is found tobe in good agreement with the available experimental band origins.2008 Zheng Guo Huang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  19. Wind energy potential in Antakya and Iskenderun regions, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Bilgili, M.; Sahin, B. [Cukurova Univ., Adana (Turkey). Dept. of Mechanical Engineering; Kahraman, A. [Selcuk Univ., Konya (Turkey). Faculty of Technical Education

    2004-08-01

    The aim of this study is to establish the potential and the feasibility basis for the wind energy resources in some locations of East Mediterranean region of Turkey and provide suitable data for evaluating the potential wind power. For this purpose, hourly wind data, which were observed between the years 1997 and 2001 at the meteorological stations of Antakya and Iskenderun regions, were used. The dominant wind directions, the mean values, wind speeds, wind potential and the frequency distributions were determined. The results were classified according to the height above the ground level. Finally, the wind atlas of these regions in the form of contours of constant wind speed and wind potential was produced. (author)

  20. Production systems and energy potential of tidal energy

    Directory of Open Access Journals (Sweden)

    Julián Rodrigo Quintero-González

    2016-01-01

    Full Text Available This article discusses the concept of tidal power and distinguishes the types of systems to exploitation the tidal energy; the same way; it also shows how this technology serves as a source of energy in some countries around the world, which is a role associated with the energy potential available in each region. This point equally shows through numbers in GWh/year per km2 reservoir surface. Last but not least, it is the influence that this technology has had on the environment, its contributions for improving and evaluating from an environmental point of view.

  1. Ground Fault Overvoltage With Inverter-Interfaced Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Ropp, Michael; Hoke, Anderson; Chakraborty, Sudipta; Schutz, Dustin; Mouw, Chris; Nelson, Austin; McCarty, Michael; Wang, Trudie; Sorenson, Adam

    2017-04-01

    Ground Fault Overvoltage can occur in situations in which a four-wire distribution circuit is energized by an ungrounded voltage source during a single phase to ground fault. The phenomenon is well-documented with ungrounded synchronous machines, but there is considerable discussion about whether inverters cause this phenomenon, and consequently whether inverters require effective grounding. This paper examines the overvoltages that can be supported by inverters during single phase to ground faults via theory, simulation and experiment, identifies the relevant physical mechanisms, quantifies expected levels of overvoltage, and makes recommendations for optimal mitigation.

  2. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.

    Science.gov (United States)

    Viel, Alexandra; Coutinho-Neto, Maurício D; Manthe, Uwe

    2007-01-14

    Quantum dynamics calculations of the ground state tunneling splitting and of the zero point energy of malonaldehyde on the full dimensional potential energy surface proposed by Yagi et al. [J. Chem. Phys. 1154, 10647 (2001)] are reported. The exact diffusion Monte Carlo and the projection operator imaginary time spectral evolution methods are used to compute accurate benchmark results for this 21-dimensional ab initio potential energy surface. A tunneling splitting of 25.7+/-0.3 cm-1 is obtained, and the vibrational ground state energy is found to be 15 122+/-4 cm-1. Isotopic substitution of the tunneling hydrogen modifies the tunneling splitting down to 3.21+/-0.09 cm-1 and the vibrational ground state energy to 14 385+/-2 cm-1. The computed tunneling splittings are slightly higher than the experimental values as expected from the potential energy surface which slightly underestimates the barrier height, and they are slightly lower than the results from the instanton theory obtained using the same potential energy surface.

  3. The ground state of long-range Schrodinger equations and static $q\\bar{q}$ potential

    CERN Document Server

    Beccaria, Matteo; Pallara, Diego

    2016-01-01

    Motivated by the recent results in arXiv:1601.05679 about the quark-antiquark potential in $\\mathcal N=4$ SYM, we reconsider the problem of computing the asymptotic weak-coupling expansion of the ground state energy of a certain class of 1d Schr\\"odinger operators $-\\frac{d^{2}}{dx^{2}}+\\lambda\\,V(x)$ with long-range potential $V(x)$. In particular, we consider even potentials obeying $\\int_{\\mathbb R}dx\\, V(x)<0$ with large $x$ asymptotics $V\\sim -a/x^{2}-b/x^{3}+\\cdots$. The associated Schr\\"odinger operator is known to admit a bound state for $\\lambda\\to 0^{+}$, but the binding energy is rigorously non-analytic at $\\lambda=0$. Its asymptotic expansion starts at order $\\mathcal O(\\lambda)$, but contains higher corrections $\\lambda^{n}\\,\\log^{m}\\lambda$ with all $0\\le m\\le n-1$ and standard Rayleigh-Schr\\"odinger perturbation theory fails order by order in $\\lambda$. We discuss various analytical tools to tame this problem and provide the general expansion of the binding energy at $\\mathcal O(\\lambda^{3})...

  4. Potential energy surface of alanine polypeptide chains

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...

  5. Energy from streaming current and potential

    NARCIS (Netherlands)

    Olthuis, Wouter; Schippers, Bob; Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    It is investigated how much energy can be delivered by a streaming current source. A streaming current and subsequent streaming potential originate when double layer charge is transported by hydrodynamic flow. Theory and a network model of such a source is presented and initial experimental results

  6. Characterization of ground state entanglement by single-qubit operations and excitation energies

    CERN Document Server

    Giampaolo, S M; Illuminati, F; Verrucchi, P; Giampaolo, Salvatore M.; Illuminati, Fabrizio; Siena, Silvio De; Verrucchi, Paola

    2006-01-01

    We consider single-qubit unitary operations and study the associated excitation energies above the ground state of interacting quantum spins. We prove that there exists a unique operation such that the vanishing of the corresponding excitation energy determines a necessary and sufficient condition for the separability of the ground state. We show that the energy difference associated to factorization exhibits a monotonic behavior with the one-tangle and the entropy of entanglement, including non analiticity at quantum critical points. The single-qubit excitation energy thus provides an independent, directly observable characterization of ground state entanglement, and a simple relation connecting two universal physical resources, energy and nonlocal quantum correlations.

  7. Linear energy relationships in ground state proton transfer and excited state proton-coupled electron transfer.

    Science.gov (United States)

    Gamiz-Hernandez, Ana P; Magomedov, Artiom; Hummer, Gerhard; Kaila, Ville R I

    2015-02-12

    Proton-coupled electron transfer (PCET) processes are elementary chemical reactions involved in a broad range of radical and redox reactions. Elucidating fundamental PCET reaction mechanisms are thus of central importance for chemical and biochemical research. Here we use quantum chemical density functional theory (DFT), time-dependent density functional theory (TDDFT), and the algebraic diagrammatic-construction through second-order (ADC(2)) to study the mechanism, thermodynamic driving force effects, and reaction barriers of both ground state proton transfer (pT) and photoinduced proton-coupled electron transfer (PCET) between nitrosylated phenyl-phenol compounds and hydrogen-bonded t-butylamine as an external base. We show that the obtained reaction barriers for the ground state pT reactions depend linearly on the thermodynamic driving force, with a Brønsted slope of 1 or 0. Photoexcitation leads to a PCET reaction, for which we find that the excited state reaction barrier depends on the thermodynamic driving force with a Brønsted slope of 1/2. To support the mechanistic picture arising from the static potential energy surfaces, we perform additional molecular dynamics simulations on the excited state energy surface, in which we observe a spontaneous PCET between the donor and the acceptor groups. Our findings suggest that a Brønsted analysis may distinguish the ground state pT and excited state PCET processes.

  8. Radiative lifetimes of spin forbidden a1Δ → X3Σ- and spin allowed A3Π → X3Σ- transitions and complete basis set extrapolated ab initio potential energy curves for the ground and excited states of CH-.

    Science.gov (United States)

    Srivastava, Saurabh; Sathyamurthy, N

    2012-12-01

    The spin forbidden transition a(1)Δ → X(3)Σ(-) in CH(-) has been studied using the Breit-Pauli Hamiltonian for a large number of geometries. This transition acquires intensity through spin-orbit coupling with singlet and triplet Π states. The transition moment matrix including more than one singlet and triplet Π states was calculated at the multi-reference configuration interaction/aug-cc-pV6Z level of theory. The computed radiative lifetime of 5.63 s is in good agreement with the experimental (5.9 s) and other theoretical (6.14 s) results. Transition moment values of the spin allowed A(3)Π → X(3)Σ(-) transition have also been calculated at the same level of theory. Calculations show that the corresponding radiative lifetime is considerably low, 2.4 × 10(-7) s. Complete basis set extrapolated potential energy curves for the ground state of CH and the ground state and six low lying excited states (a(1)Δ, b(1)Σ(+), two (3)Π, and two (1)Π) of CH(-) are reported. These curves are then used to calculate the vibrational bound states for CH and CH(-). The computed electron affinity of CH supports the electron affinity bounds reported by Okumura et al. [J. Chem. Phys. 85, 1971 (1986)].

  9. Comparative evaluation of ground-coupled heat pumps that use solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.W.; Catan, M.A.

    1985-03-01

    A study of combined building space conditioning systems using both solar energy and heat pumps was conducted for the US Department of Energy (DOE). Several of these systems used the ground as a source or storage element for thermal energy, in order to reduce or eliminate the need for backup energy. This paper summarizes the results obtained for these systems in the United States, and describes the relationship of ground-coupling to the overall US solar-assisted heat-pump program.

  10. Potential Energy Cost Savings from Increased Commercial Energy Code Compliance

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Michael I.; Hart, Philip R.; Athalye, Rahul A.; Zhang, Jian; Cohan, David F.

    2016-08-22

    An important question for commercial energy code compliance is: “How much energy cost savings can better compliance achieve?” This question is in sharp contrast to prior efforts that used a checklist of code requirements, each of which was graded pass or fail. Percent compliance for any given building was simply the percent of individual requirements that passed. A field investigation method is being developed that goes beyond the binary approach to determine how much energy cost savings is not realized. Prototype building simulations were used to estimate the energy cost impact of varying levels of non-compliance for newly constructed office buildings in climate zone 4C. Field data collected from actual buildings on specific conditions relative to code requirements was then applied to the simulation results to find the potential lost energy savings for a single building or for a sample of buildings. This new methodology was tested on nine office buildings in climate zone 4C. The amount of additional energy cost savings they could have achieved had they complied fully with the 2012 International Energy Conservation Code is determined. This paper will present the results of the test, lessons learned, describe follow-on research that is needed to verify that the methodology is both accurate and practical, and discuss the benefits that might accrue if the method were widely adopted.

  11. Divacancy binding energy, formation energy and surface energy of BCC transition metals using MEAM potentials

    Science.gov (United States)

    Uniyal, Shweta; Chand, Manesh; Joshi, Subodh; Semalty, P. D.

    2016-05-01

    The modified embedded atom method (MEAM) potential parameters have been employed to calculate the unrelaxed divacancy formation energy, binding energy and surface energies for low index planes in bcc transition metals. The calculated results of divacancy binding energy and vacancy formation energy compare well with experimental and other available calculated results.

  12. Sparse representation for a potential energy surface

    Science.gov (United States)

    Seko, Atsuto; Takahashi, Akira; Tanaka, Isao

    2014-07-01

    We propose a simple scheme to estimate the potential energy surface (PES) for which the accuracy can be easily controlled and improved. It is based on model selection within the framework of linear regression using the least absolute shrinkage and selection operator (LASSO) technique. Basis functions are selected from a systematic large set of candidate functions. The sparsity of the PES significantly reduces the computational cost of evaluating the energy and force in molecular dynamics simulations without losing accuracy. The usefulness of the scheme for describing the elemental metals Na and Mg is clearly demonstrated.

  13. Evaluation of bio-energy potential using world energy models; Sekai energy model ni yoru bio energy no potential hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Fujino, J.; Yamaji, K. [The University of Tokyo, Tokyo (Japan); Yamamoto, H. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-01-30

    Bio-energy potential is evaluated using world energy models. The world energy model is a dynamic model by which the total cost of energy systems between 1995 and 2055 can be minimized on the basis of the optimization type world energy demand and supply model. For the given utilization costs of transportation, recovery and planting, the utilization of bio-energy is promoted even under the cost minimization condition. However, the utilization amount varies in a wide range by changing the utilization costs. Among conversion technologies of bio-energy, it is biomass liquefaction that provides the largest utilization amount. Thermal demand, direct combustion for power generation, and biomass gasification follow to the above. Biomass-integrated gasifier/gas turbine (BIG/GT) is to be used up to 2020. It is not to be used after 2030, due to the complete shift to the biomass liquefaction. For a model including the utilization of fast breeder after 2030, the utilization amount of bio-energy is not to change. Competition with food and land utilization is to be investigated. 11 refs., 19 figs., 4 tabs.

  14. Evaluation of bio-energy potential using world energy models; Sekai energy model ni yoru bio energy no potential hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Fujino, J.; Yamaji, K. [The University of Tokyo, Tokyo (Japan); Yamamoto, H. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-01-30

    Bio-energy potential is evaluated using world energy models. The world energy model is a dynamic model by which the total cost of energy systems between 1995 and 2055 can be minimized on the basis of the optimization type world energy demand and supply model. For the given utilization costs of transportation, recovery and planting, the utilization of bio-energy is promoted even under the cost minimization condition. However, the utilization amount varies in a wide range by changing the utilization costs. Among conversion technologies of bio-energy, it is biomass liquefaction that provides the largest utilization amount. Thermal demand, direct combustion for power generation, and biomass gasification follow to the above. Biomass-integrated gasifier/gas turbine (BIG/GT) is to be used up to 2020. It is not to be used after 2030, due to the complete shift to the biomass liquefaction. For a model including the utilization of fast breeder after 2030, the utilization amount of bio-energy is not to change. Competition with food and land utilization is to be investigated. 11 refs., 19 figs., 4 tabs.

  15. Ground State of a Two-Electron Quantum Dot with a Gaussian Confining Potential

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2006-01-01

    We investigate the ground-state properties of a two-dimensional two-electron quantum dot with a Gaussian confining potential under the influence of perpendicular homogeneous magnetic field. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. A ground-state behaviour (singlet→triplet state transitions) as a function of the strength of a magnetic field has been found. It is found that the dot radius R of the Gaussian potential is important for the ground-state transition and the feature of ground-state for the Gaussian potential quantum dot (QD), and the parabolic potential QDs are similar when R is larger. The larger the quantum dot radius, the smaller the magnetic field for the singlet-triplet transition of the ground-state of two interacting electrons in the Gaussian quantum dot.

  16. The potential of ground gravity measurements to validate GRACE data

    Directory of Open Access Journals (Sweden)

    D. Crossley

    2003-01-01

    Full Text Available New satellite missions are returning high precision, time-varying, satellite measurements of the Earth’s gravity field. The GRACE mission is now in its calibration/- validation phase and first results of the gravity field solutions are imminent. We consider here the possibility of external validation using data from the superconducting gravimeters in the European sub-array of the Global Geodynamics Project (GGP as ‘ground truth’ for comparison with GRACE. This is a pilot study in which we use 14 months of 1-hour data from the beginning of GGP (1 July 1997 to 30 August 1998, when the Potsdam instrument was relocated to South Africa. There are 7 stations clustered in west central Europe, and one station, Metsahovi in Finland. We remove local tides, polar motion, local and global air pressure, and instrument drift and then decimate to 6-hour samples. We see large variations in the time series of 5–10µgal between even some neighboring stations, but there are also common features that correlate well over the 427-day period. The 8 stations are used to interpolate a minimum curvature (gridded surface that extends over the geographical region. This surface shows time and spatial coherency at the level of 2– 4µgal over the first half of the data and 1–2µgal over the latter half. The mean value of the surface clearly shows a rise in European gravity of about 3µgal over the first 150 days and a fairly constant value for the rest of the data. The accuracy of this mean is estimated at 1µgal, which compares favorably with GRACE predictions for wavelengths of 500 km or less. Preliminary studies of hydrology loading over Western Europe shows the difficulty of correlating the local hydrology, which can be highly variable, with large-scale gravity variations.Key words. GRACE, satellite gravity, superconducting gravimeter, GGP, ground truth

  17. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  18. On Euclidean designs and the potential energy

    CERN Document Server

    Miezaki, Tsuyoshi

    2011-01-01

    We study Euclidean designs from the viewpoint of the potential energy. For a finite set in Euclidean space, We formulate a linear programming bound for the potential energy by applying harmonic analysis on a sphere. We also introduce the concept of strong Euclidean designs from the viewpoint of the linear programming bound, and we give a Fisher type inequality for strong Euclidean designs. A finite set on Euclidean space is called a Euclidean a-code if any distinct two points in the set are separated at least by a. As a corollary of the linear programming bound, we give a method to determine an upper bound on the cardinalities of Euclidean a-codes on concentric spheres of given radii. Similarly we also give a method to determine a lower bound on the cardinalities of Euclidean t-designs as an analogue of the linear programming bound.

  19. Wave energy potential in Galicia (NW Spain)

    DEFF Research Database (Denmark)

    Iglesias, Gregorio; López, Mario; Carballo, Rodrigo;

    2009-01-01

    Wave power presents significant advantages with regard to other CO2-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very...... harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996 - 2005. Taking into account the results of this assessment along with other relevant considerations such as the location...... of ports, navigation routes, and fishing and aquaculture zones, an area is selected for wave energy exploitation. The transformation of the offshore wave field as it propagates into this area is computed by means of a nearshore wave model (SWAN) in order to select the optimum locations for a wave farm. Two...

  20. Learning Potential Energy Landscapes using Graph Kernels

    CERN Document Server

    Ferré, G; Barros, K

    2016-01-01

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab-initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. We show on a standard benchmark that our Graph Approximated Energy (GRAPE) method is competitive with state of the art kernel m...

  1. Potential energy surfaces of Polonium isotopes

    Science.gov (United States)

    Nerlo-Pomorska, B.; Pomorski, K.; Schmitt, C.; Bartel, J.

    2015-11-01

    The evolution of the potential energy landscape is analysed in detail for ten even-even polonium isotopes in the mass range 188\\lt A\\lt 220 as obtained within the macroscopic-microscopic approach, relying on the Lublin-Strasbourg drop model and the Yukawa-folded single-particle energies for calculating the microscopic shell and pairing corrections. A variant of the modified Funny-Hills nuclear shape parametrization is used to efficiently map possible fission paths. The approach explains the main features of the fragment partition as measured in low-energy fission along the polonium chain. The latter lies in a transitional region of the nuclear chart, and will be essential to consistently understand the evolution of fission properties from neutron-deficient mercury to heavy actinides. The ability of our method to predict fission observables over such an extended region looks promising.

  2. Energy Savings Potential of Radiative Cooling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  3. Potential energy landscapes of tetragonal pyramid molecules

    Science.gov (United States)

    Yoshida, Yuichiro; Sato, Hirofumi; Morgan, John W. R.; Wales, David J.

    2016-11-01

    Hiraoka et al. have developed a self-assembling system referred to as a nanocube (Hiraoka et al., 2008). In the present contribution a coarse-grained model for this system is analysed, focusing on how the potential energy landscape for self-assembly is related to the geometry of the building blocks. We find that six molecules assemble to form various clusters, with cubic and sheet structures the most stable. The relative stability is determined by the geometry of the building blocks.

  4. Potential Fluctuation Equality for Free Energy Evaluation

    CERN Document Server

    Ngo, Van

    2011-01-01

    Jarzynski's equality [1] allows us to investigate free energy landscapes (FELs) by constructing distributions of work performed on a system from an initial ensemble of states to final states. This work is experimentally measured by extension-versus-force (EVF) curves. We proposed a new approach that enables us to reconstruct such FELs without necessity of measuring EVF curves. We proved that any free energy changes could be computed by measuring the fluctuations of a harmonic external potential in final states. The main assumption of our proof is that one should probably treat a potential's minimum {\\lambda} (thought to be control parameter) and time in separate and independent manners. We recovered Jarzynski's equality from the introduction of a double Heaviside function. We then applied the approach in molecular dynamics (MD) simulations to compute the free energy barrier of breaking DNA base pairs (bps). The free energy barrier for breaking a CG bp in our simulations is identified as 1.7 +/- 0.2 kcal/mol t...

  5. In Search of the Wind Energy Potential

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    2017-01-01

    The worldwide advancement of wind energy is putting high demands on a number of underlying technologies such as wind turbine aerodynamics, structural dynamics, gearbox design, electrical grid connections, and so on. As wind is the only fuel for wind power plants, naturally, wind-meteorology and w......The worldwide advancement of wind energy is putting high demands on a number of underlying technologies such as wind turbine aerodynamics, structural dynamics, gearbox design, electrical grid connections, and so on. As wind is the only fuel for wind power plants, naturally, wind......-meteorology and wind-climatology are essential for any utilization of wind energy. This is what we are concerned about here with a view on what has happened in wind energy potential assessments in the last 25 years where the utilization of wind turbines in national power supply has accelerated and what......., The New Worldwide Microscale Wind Resource Assessment Data on IRENA's Global Atlas (The EUDP Global Wind Atlas, 2015)], and finally, the perspective for the current work with the New European Wind Atlas [E. L. Petersen et al., Energy Bull. 17, 34–39 (2014); Environ. Res. Lett. 8(1), 011005 (2013...

  6. Calculation of Energies of the Ground and Low Excited States of a Confined Helium Atom in a Spherical Parabolic Well

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2006-01-01

    @@ Making use of the adiabatic hyperspherical approach, we report a calculation for the energy spectrum of the ground and low-excited states of the confined helium atom in a spherical parabolic well. We find that the energies of a spherical parabolic well are in good agreement with those of an impenetrable spherical box for the larger confined potential radius. However, the energy values of a spherical parabolic well are much lower than those of an impenetrable spherical box for small values of re. We also find that the confinement may cause accidental degeneracies between levels with different low-excited states and the inversion of the energy values.

  7. Ground state energy of excitons in quantum dot treated variationally via Hylleraas-like wavefunction

    Institute of Scientific and Technical Information of China (English)

    S.(S)akiro(g)lu; (U). Do(g)an; A. Yildlz; K. Akgüng(o)r; H. Epik; Y. Ergün; H. San; (I).S(o)kmen

    2009-01-01

    In this work,the effects of quantum confinement on the ground state energy of a correlated electron-hole pair in a spherical and in a disc-like quantum dot have been investigated as a function of quantum dot size.Under parabolic confinement potential and within effective mass approximation Ritz's variational method is applied to Hylleraas-like trial wavefunction.An efficient method for reducing the main effort of the calculation of terms like rkeh exp(-λreh)is introduced.The main contribution of the present work is the introduction of integral transforms which provide the calculation of expectation value of energy and the related matrix elements to be done analytically over single-particle coordinates instead of Hylleraas coordinates.

  8. Revised Iterative Solution of Ground State of Double-Well Potential

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei-Qin

    2005-01-01

    The revised new iterative method for solving the ground state of Schrodinger equation is deduced. Based on Green functions defined by quadratures along a single trajectory this iterative method is applied to solve the ground state of the double-well potential. The result is compared to the one based on the original iterative method. The limitation of the asymptotic expansion is also discussed.

  9. Ground-state entanglement in a three-spin transverse Ising model with energy current

    Institute of Scientific and Technical Information of China (English)

    Zhang Yong; Liu Dan; Long Gui-Lu

    2007-01-01

    The ground-state entanglement associated with a three-spin transverse Ising model is studied. By introducing an energy current into the system, a quantum phase transition to energy-current phase may be presented with the variation of external magnetic field; and the ground-state entanglement varies suddenly at the critical point of quantum phase transition. In our model, the introduction of energy current makes the entanglement between any two qubits become maximally robust.

  10. Kinetic and dynamic studies of the Cl(2Pu) + H2O(X̃1A1) → HCl(X̃1Σ+) + OH(X̃2Π) reaction on an ab initio based full-dimensional global potential energy surface of the ground electronic state of ClH2O.

    Science.gov (United States)

    Li, Jun; Dawes, Richard; Guo, Hua

    2013-08-21

    Extensive high-level ab initio calculations were performed on the ground electronic state of ClH2O. The barrier region for the title reaction was found to have significant multi-reference character, thus favoring the multi-reference configuration interaction (MRCI) method over single-reference methods such as coupled-cluster. A full-dimensional global potential energy surface was developed by fitting about 25 000 MRCI points using the permutation invariant polynomial method. The reaction path features a "late" barrier flanked by deep pre- and post-barrier wells. Calculated rate constants for the forward reaction are in reasonable agreement with experiment, suggesting a good representation of the forward barrier. The dynamics of the forward reaction was also investigated using a quasi-classical trajectory method at energies just above the barrier. While the OH bond is found to be a spectator, the HCl product has significant rotational excitation. The reaction proceeds via both direct rebound and stripping mechanisms, leading to backward and sideways scattering.

  11. Potential Enhancement of Ground Penetrating Surveys with Dispersion Properties

    Science.gov (United States)

    Tsai, C. A.; Ghent, R. R.; Boivin, A.

    2016-12-01

    Ground penetrating radar (GPR) is a nondestructive measurement technique that utilizes the transmission or reflection of electromagnetic waves to locate targets buried under Earth or artificial materials. GPR is now widely used in mining, civil engineering archaeology and hydrology. One basic premise of surface GPR is that subsurface features will return reflections which are replicas of the transmitted signal. However, phase velocities of electromagnetic waves in real materials vary with frequency. This effect becomes more noticeable in GPR frequency range with increasing moisture content. Dispersion leads to difficulty in interpreting the received signals because the reflected signals are distorted. However, the effects of dispersion on the signals may provide an opportunity to more fully characterize materials under test than is possible using traditional reflection-mode GPR techniques. In this work we present 3D-FDTD numerical modeling results using gprMax to systematically characterize the effect of dispersion on GPR signals. In addition to numerical results, we assess the feasibility of applying our results to terrestrial geophysical scenarios by measuring the dielectric permittivities of a selection of natural materials, including samples from a massive sulphide mine. Our goal is to establish a parameter space that systematically characterize the effect of each parameter in the common dispersion models (Debye, Lorentz and Drude) on GPR signals. We begin the experiment by drying the samples completely and then adding water into the samples in 5 wt % increments. We measure the broadband relative permittivity and loss tangent using a coaxial transmission line for each state from 300 kHz to 8.5 GHz. The results provide a database for future GPR signal interpretation.

  12. Potential energy surfaces and reaction dynamics of polyatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yan-Tyng.

    1991-11-01

    A simple empirical valence bond (EVB) model approach is suggested for constructing global potential energy surfaces for reactions of polyatomic molecular systems. This approach produces smooth and continuous potential surfaces which can be directly utilized in a dynamical study. Two types of reactions are of special interest, the unimolecular dissociation and the unimolecular isomerization. For the first type, the molecular dissociation dynamics of formaldehyde on the ground electronic surface is investigated through classical trajectory calculations on EVB surfaces. The product state distributions and vector correlations obtained from this study suggest very similar behaviors seen in the experiments. The intramolecular hydrogen atom transfer in the formic acid dimer is an example of the isomerization reaction. High level ab initio quantum chemistry calculations are performed to obtain optimized equilibrium and transition state dimer geometries and also the harmonic frequencies.

  13. Development potential of wind energy in Turkey

    Directory of Open Access Journals (Sweden)

    İsmet Akova

    2011-07-01

    energy potential, as part of the renewable energy sources of Turkey, are highly important and each of these two sources has the technical potential to cover the electric production in 2008. The recent increase in the number of wind energy power stations can be related to the preparation of Turkish Wind Atlas, the preparation of legal arrangements to support private sector entrepreneurs and the rise in oil prices. Wind energy power stations are active in Marmara, Aegean region and the Mediterreanean region witnessing more constant and strong winds and are anticipated to be founded in other geographical regions as well in the future.

  14. Theoretical studies of potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L.B. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  15. Covering of heating load of object by using ground heat as a renewable energy source

    Directory of Open Access Journals (Sweden)

    Čenejac Aleksandra R.

    2012-01-01

    Full Text Available Rational use of energy, improving energy performance of buildings and use of renewable energy sources are the most important measures for reducing consumption of non-renewable primary energy (solid, liquid, and gaseous fuels, environmental protection and for the future sustainable development of mankind. In the total primary energy consumption great part is related to building industry, for heating spaces in which people stay and live. Renewable energy sources (RES present natural resources and they are one of the alternatives that allow obtaining heat for heating buildings, and by that they provide a significant contribution to the energy balance of a country. This paper analyzes the participation of ground source as RES, when the vertical (the probe in the ground and horizontal (registry in the ground heat exchangers are used for covering heating load of the building.

  16. The role of correlation in the ground state energy of confined helium atom

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, N. [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, 09340 México Distrito Federal (Mexico)

    2014-01-14

    We analyze the ground state energy of helium atom confined by spherical impenetrable walls, and the role of the correlation energy in the total energy. The confinement of an atom in a cavity is one way in which we can model the effect of the external pressure on an atom. The calculations of energy of the system are carried out by the variational method. We find that the correlation energy remains almost constant for a range values of size of the boxes analyzed.

  17. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    Science.gov (United States)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  18. Vacuum polarization screening corrections to the ground state energy of two-electron ions

    CERN Document Server

    Artemiev, A N; Yerokhin, V A

    1997-01-01

    Vacuum polarization screening corrections to the ground state energy of two-electron ions are calculated in the range $Z=20-100$. The calculations are carried out for a finite nucleus charge distribution.

  19. EFFECT OF DIELECTRIC CONSTANT ON THE EXCITON GROUND STATE ENERGY OF CdSe QUANTUM DOTS

    Institute of Scientific and Technical Information of China (English)

    HUI PING

    2000-01-01

    The B-spline technique is used in the calculation of the exciton ground state energy based on the effective mass approximation (EMA) model.The exciton is confined in CdSe microspherical crystallites with a finite-height potential wall (dots).In this approach,(a) the wave function is allowed to penetrate to the outside of the dots; (b) the dielectric constants of the quantum dot and the surrounding material are considered to be different; and (c) the dielectric constant of the dots are size-dependent.The exciton energies as functions of radii of the dots in the range 0.5-3.5nm are calculated and compared with experimental and previous theoretical data.The results show that: (1) The exciton energy is convergent as the radius of the dot becomes very small.(2) A good agreement with the experimental data better than other theoretical results is achieved.(3) The penetration (or leaking) of the wave function and the difference of the dielectric constants in different regions are necessary for correcting the Coulomb interaction energy and reproducing experimental data.(4) The EMA model with B-spline technique can describe the status of excition confined in quantum dot very well.

  20. Study of the Dependence Effectiveness of Low-potential Heat of the Ground and Atmospheric Air for Heating Buildings from Climatic parameters

    Directory of Open Access Journals (Sweden)

    Vasilyev Gregory P.

    2016-01-01

    Full Text Available The article represents the results of researches for division into districts of the territory of Russia and Europe by efficiency of using for the heat supply of buildings of low-potential thermal energy of ground and free air and their combination. While modeling of the heat regime of geothermal HPS in climatic conditions of different regions of the territory of Russia, the influence has been taken into account of the long-term extraction of geothermal heat energy on the ground heat regime as well as the influence of phase transitions of pore moisture in ground on the efficiency of operation of geothermal heat-pump heat-supply systems. While realization of the division into districts, the sinking of temperatures of ground massive was been taken into account which has been called by long-term extraction of the heat energy from the ground, and as calculation parameters of the heat energy from the ground, and as calculation parameters of ground massive temperatures, the ground temperatures were used which are waited for the 5-th year of operation of geothermal HPS.

  1. The potential surface in the ground electronic state of HCP with the isomerization process: the validity of calculating potential surface with DFT methods

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The density functional theory (DFT) provides us an effective way to calculate large cluster systems with moderate computational demands. We calculate potential energy surfaces (PES) with several different approaches of DFT. The PES in the ground electronic state are related to HCP's isomerization process. The calculated PES are compared with the “experimental” PES obtained by fitting from the experimental vibrational spectra and that given by the “accurate” quantum chemistry calculation with more expensive computations. The comparisons show that the potential surfaces calculated with DFT methods can reach the accuracy of less than 0.1 eV.

  2. Geothermal Energy: Delivering on the Global Potential

    Directory of Open Access Journals (Sweden)

    Paul L. Younger

    2015-10-01

    Full Text Available Geothermal energy has been harnessed for recreational uses for millennia, but only for electricity generation for a little over a century. Although geothermal is unique amongst renewables for its baseload and renewable heat provision capabilities, uptake continues to lag far behind that of solar and wind. This is mainly attributable to (i uncertainties over resource availability in poorly-explored reservoirs and (ii the concentration of full-lifetime costs into early-stage capital expenditure (capex. Recent advances in reservoir characterization techniques are beginning to narrow the bounds of exploration uncertainty, both by improving estimates of reservoir geometry and properties, and by providing pre-drilling estimates of temperature at depth. Advances in drilling technologies and management have potential to significantly lower initial capex, while operating expenditure is being further reduced by more effective reservoir management—supported by robust models—and increasingly efficient energy conversion systems (flash, binary and combined-heat-and-power. Advances in characterization and modelling are also improving management of shallow low-enthalpy resources that can only be exploited using heat-pump technology. Taken together with increased public appreciation of the benefits of geothermal, the technology is finally ready to take its place as a mainstream renewable technology, exploited far beyond its traditional confines in the world’s volcanic regions.

  3. The Wind Energy Potential of Kurdistan, Iran.

    Science.gov (United States)

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000-2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997-2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms.

  4. The extended Lennard-Jones potential energy function: A simpler model for direct-potential-fit analysis

    Science.gov (United States)

    Hajigeorgiou, Photos G.

    2016-12-01

    An analytical model for the diatomic potential energy function that was recently tested as a universal function (Hajigeorgiou, 2010) has been further modified and tested as a suitable model for direct-potential-fit analysis. Applications are presented for the ground electronic states of three diatomic molecules: oxygen, carbon monoxide, and hydrogen fluoride. The adjustable parameters of the extended Lennard-Jones potential model are determined through nonlinear regression by fits to calculated rovibrational energy term values or experimental spectroscopic line positions. The model is shown to lead to reliable, compact and simple representations for the potential energy functions of these systems and could therefore be classified as a suitable and attractive model for direct-potential-fit analysis.

  5. POTENTIAL FOR WASTEWATER MANAGEMENT USING ENERGY CROPS

    Directory of Open Access Journals (Sweden)

    Alistair R. McCRACKEN

    2015-04-01

    Full Text Available In most countries within Europe there are numerous small rural Waste Water Treatment Works (WWTWs often serving a small number of people equivalents (PEs. It is usually impractical and expensive to upgrade such WWTWs and yet they are often delivering potentially highly polluting effluent into streams and rivers. Short Rotation Coppice (SRC willow, grown as an energy source, may be an ideal crop for the bioremediation of a variety of effluents and wastewater streams. As part of an EU funded (INTERREG IVA project called ANSWER (Agricultural Need for Sustainable Willow Effluent Recycling four Proof of Concept irrigation schemes were established ranging in size from 5 to 15 ha. One of the larger of these at Bridgend, Co. Donegal, Republic of Ireland was planted in spring 2013 and has been irrigated with municipal effluent since June 2014. Over 19,000 m3 of effluent has been applied to the willow thus preventing 617 kg N and 28.5 kg P from being discharged to a neighbouring stream. Using SRC willow for the bioremediation of effluent from small rural WWWTs offers a sustainable, cost-effective and practical solution to wastewater management in many countries. There may be also potential to use willow for the bioremediation of landfill leachates, within the footprint of the landfill site.

  6. Role and potential of renewable energy and energy efficiency for global energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Krewitt, Wolfram; Nienhaus, Kristina [German Aerospace Center e.V. (DLR), Stuttgart (Germany); Klessmann, Corinna; Capone, Carolin; Stricker, Eva [Ecofys Germany GmbH, Berlin (Germany); Graus, Wina; Hoogwijk, Monique [Ecofys Netherlands BV, Utrecht (Netherlands); Supersberger, Nikolaus; Winterfeld, Uta von; Samadi, Sascha [Wuppertal Institute for Climate, Environment and Energy GmbH, Wuppertal (Germany)

    2009-12-15

    The analysis of different global energy scenarios in part I of the report confirms that the exploitation of energy efficiency potentials and the use of renewable energies play a key role in reaching global CO2 reduction targets. An assessment on the basis of a broad literature research in part II shows that the technical potentials of renewable energy technologies are a multiple of today's global final energy consumption. The analysis of cost estimates for renewable electricity generation technologies and even long term cost projections across the key studies in part III demonstrates that assumptions are in reasonable agreement. In part IV it is shown that by implementing technical potentials for energy efficiency improvements in demand and supply sectors by 2050 can be limited to 48% of primary energy supply in IEA's ''Energy Technology Perspectives'' baseline scenario. It was found that a large potential for cost-effective measures exists, equivalent to around 55-60% of energy savings of all included efficiency measures (part V). The results of the analysis on behavioural changes in part VI show that behavioural dimensions are not sufficiently included in energy scenarios. Accordingly major research challenges are revealed. (orig.)

  7. U.S. Army’s Ground Vehicle Energy Storage

    Science.gov (United States)

    2013-04-16

    platforms. • TARDEC Energy Storage Team Role is the Engineering Support Activity (ESA) to ensure conformance with the specification & recommendation...for QPL acceptance. • TARDEC Standardization Team Role is the Qualifying Activity that maintains the modifications to the MIL-PRF 32143B and QPL

  8. The potential impact of hydrogen energy use on the atmosphere

    Science.gov (United States)

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    ., Hess, P. G., Collins, W. D., Emmons, L. K., Ginoux, P., Luo, C. and Tie, X. X. (2005). "Response of a coupled chemistry-climate model to changes in aerosol emissions: Global impact on the hydrological cycle and the tropospheric burdens of OH, ozone and NOx." Geophysical Research Letters 32(16). Lamarque, J.-F., Kinnison, D. E., Hess, P. G. and Vitt, F. (2008). "Simulated lower stratospheric trends between 1970 and 2005: identifying the role of climate and composition changes." Journal of Geophysical Research 113(D12301). Price, H., Jaegle, L., Rice, A., Quay, P., Novelli, P. C. and Gammon, R. (2007). "Global budget of molecular hydrogen and its deuterium content: constraints from ground station, cruise, and aircraft observations." Journal of Geophysical Research 112(D22108). Sanderson, M. G., Collins, W. J., Derwent, R. G. and Johnson, C. E. (2003). "Simulation of Global Hydrogen Levels Using a Lagrangian Three-Dimensional Model." Journal of Atmospheric Chemistry 46(1): 15-28. Schultz, M. G., Diehl, T., Brasseur, G. P. and Zittel, W. (2003). "Air Pollution and Climate-Forcing Impacts of a Global Hydrogen Economy." Science 302(5645): 624-627. Tromp, T. K., Shia, R. L., Allen, M., Eiler, J. M. and Yung, Y. L. (2003). "Potential environmental impact of a hydrogen economy on the stratosphere." Science 300(5626): 1740-1742. van Ruijven, B., Hari, L., van Vuuren, D. P. and de Vries, B. (2008). "The potential role of hydrogen in India and Western Europe." Energy Policy 36(5): 1649-1665. van Ruijven, B., van Vuuren, D. P. and de Vries, B. (2007). "The potential role of hydrogen in energy systems with and without climate policy." International Journal of Hydrogen Energy 32(12): 1655-1672. van Vuuren, D. P. (2007). Energy systems and climate policy. Dept. of Science, Technology and Society, Faculty of Science. Utrecht, Utrecht University: 326.

  9. Energy potential of region and its quantitative assessment

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrovna Kovalenko

    2013-09-01

    Full Text Available The purpose of the article is the development of the concept of the energy potential of the region (EPR, the analysis of the existing structure of relationships for the EPR elements in Ukraine and improvement of a quantitative assessment of energy potential of the region (country. The methods of an assessment of the existing condition of energy potential of the territory are the subject matter of the research. As a result of the analysis of concept’s definitions of energy potential of the region, it has further development and included the consumer potential of energy resources and capacity of management. The structure of relationships between elements of energy potential is developed for the Ukraine region. The new economic indicator — the realized energy potential is offered for an EPR assessment. By means of this indicator, the assessment of energy potential for the different countries of the world and a number of Ukraine areas of is performed.

  10. Potential of renewable energy systems in China

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2011-01-01

    Along with high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand. In 2009, China has become both the largest energy consumer and CO2 emitting country in the world. In this case...... system has demonstrated the possibility of converting into a 100% renewable energy system. This paper discusses the perspective of renewable energy in China firstly, and then analyses whether it is suitable to adopt similar methodologies applied in other countries as China approaches a renewable energy......, the inappropriate energy consumption structure should be changed. As an alternative, a suitable infrastructure for the implementation of renewable energy may serve as a long-term sustainable solution. The perspective of a 100% renewable energy system has been analyzed and discussed in some countries previously...

  11. The ground state energy of the mean field spin glass model

    CERN Document Server

    Koukiou, Flora

    2008-01-01

    From the study of a functional equation of Gibbs measures we calculate the limiting free energy of the Sherrington-Kirkpatrick spin glass model at a particular value of (low) temperature. This implies the following lower bound for the ground state energy $\\epsilon_0$ \\[\\epsilon_0\\geq -0.7833...,\\] close to the replica symmetry breaking and numerical simulations values.

  12. Study on the Surface Free Energy of Ground CaO by IGC

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    CaO formed by decomposing CaCO3 at 1450℃ was ground in a vibrational mill,then the long-time ground sample was reheated at different temperatures.Inverse Gas Chromatography (IGC) was used to measure the variation of the sample′s surface free energy under grinding and reheating.It is concluded that the total surface free energy and the London dispersive component of the surface free energy increases with grinding,while the polar component first increases with grinding,and then decreases,and finally disappears.When the long-time ground sample was reheated,its total surface free energy decreases,among which the London component decreases,but the polar component appears again.

  13. Alaska's renewable energy potential.

    Energy Technology Data Exchange (ETDEWEB)

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  14. Solar-energy potential in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Sozen, Adnan; Ozalp, Mehmet [Gazi Univ., Mechanical Education Dept., Ankara (Turkey); Arcaklioglu, Erol [Kirikkale Univ., Mechanical Engineering Dept., Kirikkale (Turkey); Kanit, E. Galip [Turkish State Meteorological Office, Ankara (Turkey)

    2005-04-01

    In this study, a new formula based on meteorological and geographical data was developed to determine the solar-energy potential in Turkey using artificial neural-networks (ANNs). Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer function were used in the network. Meteorological data for the last four years (2000-2003) from 18 cities (Bilecik, Kirsehir, Akhisar, Bingol, Batman, Bodrum, Uzunkopru, Sile, Bartin, Yalova, Horasan, Polatli, Malazgirt, Koycegiz, Manavgat, Dortyol, Karatas and Birecik) spread over Turkey were used as data in order to train the neural network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration, and mean temperature) were used in the input layer of the network. Solar radiation is the output layer. One-month test data for each city was used, and these months data were not used for training. The results show that the maximum mean absolute percentage error (MAPE) was found to be 3.448% and the R{sup 2} value 0.9987 for Polatli. The best approach was found for Kirsehir (MAPE=1.2257, R{sup 2}=0.9998). The MAPE and R{sup 2} for the testing data were 3.3477 and 0.998534, respectively. The ANN models show greater accuracy for evaluating solar-resource possibilities in regions where a network of monitoring stations has not been established in Turkey. This study confirms the ability of the ANN to predict solar-radiation values precisely (Author)

  15. Solar-energy potential in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Soezen, Adnan; Arcaklioglu, Erol; Oezalp, Mehmet; Kanit, E. Galip

    2005-04-01

    In this study, a new formula based on meteorological and geographical data was developed to determine the solar-energy potential in Turkey using artificial neural-networks (ANNs). Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer function were used in the network. Meteorological data for the last four years (2000 {yields} 2003) from 18 cities (Bilecik, Kirsehir, Akhisar, Bingoel, Batman, Bodrum, Uzunkoeprue, Sile, Bartin, Yalova, Horasan, Polatli, Malazgirt, Koeycegiz, Manavgat, Doertyol, Karatas and Birecik) spread over Turkey were used as data in order to train the neural network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration, and mean temperature) were used in the input layer of the network. Solar radiation is the output layer. One-month test data for each city was used, and these months data were not used for training. The results show that the maximum mean absolute percentage error (MAPE) was found to be 3.448% and the R{sup 2} value 0.9987 for Polatli. The best approach was found for Kirsehir (MAPE=1.2257, R{sup 2}=0.9998). The MAPE and R{sup 2} for the testing data were 3.3477 and 0.998534, respectively. The ANN models show greater accuracy for evaluating solar-resource possibilities in regions where a network of monitoring stations has not been established in Turkey. This study confirms the ability of the ANN to predict solar-radiation values precisely.

  16. Potential energy savings and thermal comfort

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Rudbeck, Claus Christian; Schultz, Jørgen Munthe

    1996-01-01

    Results of simulations carried out on four different buildings with common windows, commercial low-energy windows and xerogel windows are presented. The results are the annual energy consumption for space heating and the indoor air temperature level....

  17. Renewable Energy Potential for New Mexico

    Science.gov (United States)

    RE-Powering America's Land: Renewable Energy on Contaminated Land and Mining Sites was presented by Penelope McDaniel, during the 2008 Brown to Green: Make the Connection to Renewable Energy workshop.

  18. Binding of oxygen with titanium dioxide on singlet potential energy surface: An ab initio investigation

    Science.gov (United States)

    Bogdanchikov, Georgii A.; Baklanov, Alexey V.

    2017-01-01

    Ab initio calculations have been carried out to investigate interaction of titanium dioxide TiO2 with oxygen O2 in ground triplet and excited singlet states. On a singlet potential energy surface (PES) formation of a stable compound of titanium peroxide TiO4 is revealed which should appear in reaction of TiO2 with singlet oxygen without activation barrier. This peroxide is lower in energy than the ground state of two individual molecules TiO2 + 3O2 by 34.6 kcal/mol. Location of conical intersection between triplet and singlet PESs of TiO2sbnd O2 is also investigated.

  19. Energy well. Ground-source heat in one-family houses; Energiakaivo. Maalaemmoen hyoedyntaeminen pientaloissa

    Energy Technology Data Exchange (ETDEWEB)

    Juvonen, J.; Lapinlampi, T.

    2013-08-15

    This guide deals with the legislation, planning, building, usage and maintenance of ground-source heat systems. The guide gives recommendations and instructions on national level on the permit practices and how to carry out the whole ground-source heat system project. The main focus of the guide is on energy wells for one-family houses. The principle is that an action permit is needed to build a ground-source heat system. On ground water areas a permit according to the water act may also be required. To avoid any problems, the placement of the system needs to be planned precisely. This guide gives a comprehension to the orderer on the issues that need to be considered before ordering, during construction, when the system is running and when giving up the use of the ground-source heat system. (orig.)

  20. Energy savings potential from energy-conserving irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  1. WKB formalism and a lower limit for the energy eigenstates of bound states for some potentials

    CERN Document Server

    Barragan-Gil, L F; Barragan-Gil, Luis F.; Camacho, Abel

    2007-01-01

    In the present work the conditions appearing in the WKB approximation formalism of quantum mechanics are analyzed. It is shown that, in general, a careful definition of an approximation method requires the introduction of two length parameters, one of them always considered in the text books on quantum mechanics, whereas the second one is usually neglected. Afterwards we define a particular family of potentials and prove, resorting to the aforementioned length parameters, that we may find an energy which is a lower bound to the ground energy of the system. The idea is applied to the case of a harmonic oscillator and also to a particle freely falling in a homogeneous gravitational field, and in both cases the consistency of our method is corroborated. This approach, together with the Rayleigh--Ritz formalism, allows us to define an energy interval in which the ground energy of any potential, belonging to our family, must lie.

  2. Assessment of potential strong ground motions in the city of Rome

    Directory of Open Access Journals (Sweden)

    L. Malagnini

    1994-06-01

    Full Text Available A methodology is used which combines stochastic generation of random series with a finite-difference technique to estimate the expected horizontal ground motion for the city of Rome as induced by a large earthquake in the Central Apennines. In this approach, source properties and long-path propagation are modelled through observed spectra of ground motion in the region, while the effects of the near-surface geology in the city are simulated by means of a finite-difference technique applied to 2-D models including elastic and anelastic properties of geologic materials and topographic variations. The parameters commonly used for earthquake engineering purposes are estimated from the simulated time histories of horizontal ground motion. We focus our attention on peak ground acceleration and velocity, and on the integral of the squared acceleration and velocity (that are proportional to the Arias intensity and seismic energy flux, respectively. Response spectra are analyzed as well. Parameter variations along 2-D profiles visualize the effects of the small-scale geological heterogeneities and topography irregularities on ground motion in the case of a strong earthquake. Interestingly, the largest amplification of peak ground acceleration and Arias intensity does not necessarily occur at the same sites where peak ground velocity and flux of seismic energy reach their highest values, depending on the frequency band of amplification. A magnitude 7 earthquake at a distance of 100 km results in peak ground accelerations ranging from 30 to 70 gals while peak ground velocities are estimated to vary from 5 to 7 cm/s; moreover, simulated time histories of horizontal ground motion yield amplitudes of 5% damped pseudovelocity response spectra as large as 15-20 cm/s for frequencies from 1to 3 Hz. In this frequency band, the mean value is 7 cm/s for firm sites and ranges from 10 to 13 cm/s for soil sites. All these results are in good agreement with predictions

  3. Calculation of Electron Beam Potential Energy from RF Photocathode Gun

    CERN Document Server

    Liu Wan Ming; Power, John G; Wang, Haitao

    2005-01-01

    In this paper, we consider the contribution of potential energy to beam dynamics as simulated by PARMELA at low energies (10 - 30MeV). We have developed a routine to calculate the potential energy of the relativistic electron beam using the static coulomb potential in the rest frame (first order approximation as in PARMELA). We found that the potential energy contribution to the beam dynamics could be very significant, particularly with high charge beams generated by an RF photocathode gun. Our results show that when the potential energy is counted correctly and added to the kinetic energy from PARMELA, the total energy is conserved. Simulation results of potential and kinetic energies for short beams (~1 mm) at various charges (1 - 100 nC) generated by a high current RF photocathode gun are presented.

  4. Tree based machine learning framework for predicting ground state energies of molecules

    Science.gov (United States)

    Himmetoglu, Burak

    2016-10-01

    We present an application of the boosted regression tree algorithm for predicting ground state energies of molecules made up of C, H, N, O, P, and S (CHNOPS). The PubChem chemical compound database has been incorporated to construct a dataset of 16 242 molecules, whose electronic ground state energies have been computed using density functional theory. This dataset is used to train the boosted regression tree algorithm, which allows a computationally efficient and accurate prediction of molecular ground state energies. Predictions from boosted regression trees are compared with neural network regression, a widely used method in the literature, and shown to be more accurate with significantly reduced computational cost. The performance of the regression model trained using the CHNOPS set is also tested on a set of distinct molecules that contain additional Cl and Si atoms. It is shown that the learning algorithms lead to a rich and diverse possibility of applications in molecular discovery and materials informatics.

  5. Tree based machine learning framework for predicting ground state energies of molecules

    CERN Document Server

    Himmetoglu, Burak

    2016-01-01

    We present an application of the boosted regression tree algorithm for predicting ground state energies of molecules made up of C, H, N, O, P, and S (CHNOPS). The PubChem chemical compound database has been incorporated to construct a dataset of 16,242 molecules, whose electronic ground state energies have been computed using density functional theory. This dataset is used to train the boosted regression tree algorithm, which allows a computationally efficient and accurate prediction of molecular ground state energies. Predictions from boosted regression trees are compared with neural network regression, a widely used method in the literature, and shown to be more accurate with significantly reduced computational cost. The performance of the regression model trained using the CHNOPS set is also tested on a set of distinct molecules that contain additional Cl and Si atoms. It is shown that the learning algorithms lead to a rich and diverse possibility of applications in molecular discovery and materials inform...

  6. User behaviour impact on energy savings potential

    DEFF Research Database (Denmark)

    Rose, Jørgen

    2014-01-01

    corresponding to different levels of energy consumption. The purpose of the analysis is to identify the importance of each of the four primary user-related parameters in terms of their relative and combined impact on the overall energy needs before/after upgrading; 1) Indoor temperature, 2) Internal heat gain......, 3) Domestic hot water consumption and 4) Air change rate. Based on the analysis, a methodology is established that can be used to make more realistic and accurate predictions of expected energy savings associated with energy upgrading taking into account user behaviour....

  7. The Energy and Environmental Performance of Ground-Mounted Photovoltaic Systems—A Timely Update

    Directory of Open Access Journals (Sweden)

    Enrica Leccisi

    2016-08-01

    Full Text Available Given photovoltaics’ (PVs constant improvements in terms of material usage and energy efficiency, this paper provides a timely update on their life-cycle energy and environmental performance. Single-crystalline Si (sc-Si, multi-crystalline Si (mc-Si, cadmium telluride (CdTe and copper indium gallium diselenide (CIGS systems are analysed, considering the actual country of production and adapting the input electricity mix accordingly. Energy pay-back time (EPBT results for fixed-tilt ground mounted installations range from 0.5 years for CdTe PV at high-irradiation (2300 kWh/(m2·yr to 2.8 years for sc-Si PV at low-irradiation (1000 kWh/(m2·yr, with corresponding quality-adjusted energy return on investment (EROIPE-eq values ranging from over 60 to ~10. Global warming potential (GWP per kWhel averages out at ~30 g(CO2-eq, with lower values (down to ~10 g for CdTe PV at high irradiation, and up to ~80 g for Chinese sc-Si PV at low irradiation. In general, results point to CdTe PV as the best performing technology from an environmental life-cycle perspective, also showing a remarkable improvement for current production modules in comparison with previous generations. Finally, we determined that one-axis tracking installations can improve the environmental profile of PV systems by approximately 10% for most impact metrics.

  8. Potential suitable areas of giant ground sloths dropped before its extinction in South America

    DEFF Research Database (Denmark)

    Lima-Ribeiro, Matheus Souza; Varela, Sara; Nogues, David Bravo

    2012-01-01

    Here we analyze the effects that climatic changes through last ice age had on the potential distributions and extinction risk dynamics of two extinct species of South American giant ground sloths, Eremotherium laurillardi and Megatherium americanum. We tested the assumption of stability of the cl...

  9. THE POSSIBILITY OF DISPOSING OF SPENT COFFEE GROUND WITH ENERGY RECYCLING

    Directory of Open Access Journals (Sweden)

    Tomasz Ciesielczuk

    2015-09-01

    Full Text Available The current policy of waste management requires, above all, a gradual reduction of waste amount and, to a larger extent, forces us to seek new methods of waste disposal. Recycling the energy contained in biomass waste is a more and more universally applied method of thermal converting. Biomass combustion allows saving fossil fuels which fits into sustainable development. This paper checks the possibility of using spent coffee ground (SCG in energy recycling using a combustion process. This particular biomass type up to now has not been widely examined, which inclines to consider its usage as a potential additive to alternative fuels. In the study, we examined the quality of fuel, which was in a form of briquette, made of beech shavings with 10 and 25% of post-exploitation waste obtained during the process of coffee infusion. This waste, if fresh, is distinguished by its high hydration. However, after drying it may constitute a valuable additive to alternative fuels. It increases the calorific value of fuel and reduces briquettes’ hardness what contributes to reducing resistance of conveying screw in stoves.

  10. Hysteresis and Soil Site Dependent Input and Hysteretic Energy Spectra for Far-Source Ground Motions

    Directory of Open Access Journals (Sweden)

    Mebrahtom Gebrekirstos Mezgebo

    2016-01-01

    Full Text Available Earthquake input energy spectra for four soil site classes, four hysteresis models, and five ductility levels are developed for far-source ground motion effect. These energy spectra are normalized by a quantity called velocity index (VI. The use of VI allows for the creation of dimensionless spectra and results in smaller coefficients of variation. Hysteretic energy spectra are then developed to address the demand aspect of an energy-based seismic design of structures with 5% critical damping and ductility that ranges from 2 to 5. The proposed input and hysteretic energy spectra are then compared with response spectra generated using nonlinear time history analyses of real ground motions and are found to produce reasonably good results over a relatively large period range.

  11. Energy Efficiency Improvement Potential in Historical Brick Building

    OpenAIRE

    Žogla, Gatis; Blumberga, Andra; Zvaigznītis, Kristaps; Dzikēvičs, Miķelis; Blumberga, Dagnija; Burinskiene, Marija

    2013-01-01

    Energy efficiency in historical heritage buildings is viewed as a taboo because these buildings usually are law-protected and no energy efficiency measures that would change the appearance of building are allowed. In this paper we look at a potential of increasing energy efficiency level in historical buildings. Measurements to determine energy efficiency of a historical brick building have been done, which also give the possibility to determine the potential of energy efficiency measures in ...

  12. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  13. Ground state bands of the E(5) and X(5) critical symmetries obtained from Davidson potentials through a variational procedure

    Energy Technology Data Exchange (ETDEWEB)

    Bonatsos, Dennis; Lenis, D.; Minkov, N.; Petrellis, D.; Raychev, P.P.; Terziev, P.A

    2004-03-25

    Davidson potentials of the form {beta}{sup 2}+{beta}{sub 0}{sup 4}/{beta}{sup 2}, when used in the original Bohr Hamiltonian for {gamma}-independent potentials bridge the U(5) and O(6) symmetries. Using a variational procedure, we determine for each value of angular momentum L the value of {beta}{sub 0} at which the derivative of the energy ratio R{sub L}=E(L)/E(2) with respect to {beta}{sub 0} has a sharp maximum, the collection of R{sub L} values at these points forming a band which practically coincides with the ground state band of the E(5) model, corresponding to the critical point in the shape phase transition from U(5) to O(6). The same potentials, when used in the Bohr Hamiltonian after separating variables as in the X(5) model, bridge the U(5) and SU(3) symmetries, the same variational procedure leading to a band which practically coincides with the ground state band of the X(5) model, corresponding to the critical point of the U(5) to SU(3) shape phase transition. A new derivation of the Holmberg-Lipas formula for nuclear energy spectra is obtained as a by-product.

  14. Ground State Bands of the E(5) and X(5) Critical Symmetries Obtained from Davidson Potentials through a Variational Procedure

    CERN Document Server

    Bonatsos, D; Minkov, N; Petrellis, D; Raychev, P P; Terziev, P A; Bonatsos, Dennis

    2004-01-01

    Davidson potentials of the form $\\beta^2 +\\beta_0^4/\\beta^2$, when used in the original Bohr Hamiltonian for $\\gamma$-independent potentials bridge the U(5) and O(6) symmetries. Using a variational procedure, we determine for each value of angular momentum $L$ the value of $\\beta_0$ at which the derivative of the energy ratio $R_L=E(L)/E(2)$ with respect to $\\beta_0$ has a sharp maximum, the collection of $R_L$ values at these points forming a band which practically coincides with the ground state band of the E(5) model, corresponding to the critical point in the shape phase transition from U(5) to O(6). The same potentials, when used in the Bohr Hamiltonian after separating variables as in the X(5) model, bridge the U(5) and SU(3) symmetries, the same variational procedure leading to a band which practically coincides with the ground state band of the X(5) model, corresponding to the critical point of the U(5) to SU(3) shape phase transition. A new derivation of the Holmberg-Lipas formula for nuclear energy ...

  15. Binding energies of an exciton in a Gaussian potential quantum dot

    Institute of Scientific and Technical Information of China (English)

    Xie Wen-Fang

    2006-01-01

    In this paper, an exciton trapped by a Gaussian confining potential quantum dot has been investigated. Calculations are made by using the method of numerical diagonalization of Hamiltonian in the effective-mass approximation. The dependences of binding energies of the ground state and the first excited state on the size of the confining potential and the strength of the magnetic field are analysed explicitly.

  16. The quasi-Gaussian entropy theory : Free energy calculations based on the potential energy distribution function

    NARCIS (Netherlands)

    Amadei, A; Apol, MEF; DiNola, A; Berendsen, HJC

    1996-01-01

    A new theory is presented for calculating the Helmholtz free energy based on the potential energy distribution function. The usual expressions of free energy, internal energy and entropy involving the partition function are rephrased in terms of the potential energy distribution function, which must

  17. The quasi-Gaussian entropy theory : Free energy calculations based on the potential energy distribution function

    NARCIS (Netherlands)

    Amadei, A; Apol, MEF; DiNola, A; Berendsen, HJC

    1996-01-01

    A new theory is presented for calculating the Helmholtz free energy based on the potential energy distribution function. The usual expressions of free energy, internal energy and entropy involving the partition function are rephrased in terms of the potential energy distribution function, which must

  18. Reference springs in California for the regional ground-water potential map by Bedinger and Harrill (2004), Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital geospatial data set is a compilation of reference points representing springs in California that were used for the regional ground-water potential map...

  19. Reference springs in Nevada for the regional ground-water potential map by Bedinger and Harrill (2004), Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital geospatial data set is a compilation of reference points representing springs in Nevada that were used for the regional ground-water potential map by...

  20. Reference springs in Nevada for the regional ground-water potential map by Bedinger and Harrill (2004), Death Valley regional ground-water flow system, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital geospatial data set is a compilation of reference points representing springs in Nevada that were used for the regional ground-water potential map by...

  1. Energy performance contracting - energy saving potential of selected energy conservation measures (ECM)

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, M. (Dansk Energi Analyse A/S, Frederiksberg (Denmark)); Langkilde, G.; Olesen, Bjarne W. (Technical Univ. of Denmark, ICIEE, Kgs. Lyngby (Denmark)); Moerck, O. (Cenergia Energy Consultants, Herlev (Denmark)); Sundman, O. (DONG Energy, Copenhagen (Denmark)); Engelund Thomsen, K. (Aalborg Univ., SBi, Hoersholm (Denmark))

    2008-09-15

    This report has been developed under the research project 'Etablering af grundlag for energitjenester i Danmark' (project number: ENS-33031-0185) under the Danish research programme - EFP. The objective of this project has been to contribute to the utilisation of the large potential for energy conservations in the building sector within the public, industry and service sectors through the development of a better basis for decision making for both the Energy Service Companies (ESCOes) and the building owners. The EU directive on Energy Service Contracting points at the buildings as the area where the biggest potential market for energy services and energy efficiency improvements are. The EFP-project has two parts: (1) A Danish part and (2) participation in the international cooperation project 'Holistic Assesment Tool-Kit on Energy Efficient Retrofit Measures for Government Buildings (EnERGo)', Annex 46 under the IEA R and D program 'Energy Conservation In Buildings And Community Systems' (ECBCS). This report describes the Danish contributions to the IEA projects subtask B, which has a primary objective to develop a database of energy conservation measures (ECM) with descriptions and performance characteristics of these. (au)

  2. Effects of exchange-correlation potentials in density functional descriptions of ground-state and photoionization of fullerenes

    Science.gov (United States)

    Choi, Jinwoo; Chang, Eonho; Anstine, Dylan M.; Chakraborty, Himadri

    2016-05-01

    We study the ground state properties of C60 and C240 molecules in a spherical frame of local density approximation (LDA). Within this mean-field theory, two different approximations to the exchange-correlation (xc) functional are used: (i) The Gunnerson-Lundqvist parametrization augmented by a treatment to correct for the electron self-interaction and (ii) the van Leeuwen and Baerends (LB94) model potential that inclusively restores electron's asymptotic properties. Results show differences in the ground-state potential, level energies and electron densities between the two xc choices. We then use the ground structure to find the excited and ionized states of the systems and calculate dipole single-photoionization cross sections in a time-dependent LDA method that incorporates linear-response dynamical correlations. Comparative effects of the choices of xc on collective plasmon and single-excitation Auger resonances as well as on geometry driven cavity oscillations are found significant. The work is supported by the NSF, USA.

  3. Potential ground water resources of Hat Yai Basin in Peninsular Thailand by gravity study

    Directory of Open Access Journals (Sweden)

    Warawutti Lohawijarn

    2005-05-01

    Full Text Available Residual gravity anomaly with a minimum of about -140 mm s-2 with approximately NS trend and a limited axial length was observed over Hat Yai Basin in Peninsular Thailand. The modeled Hat Yai basin is about 1 km deep at its deepest, 60 km long and 20 km wide. The porosity of basin sediment and the amount of potential ground water reserves within the basin are estimated to be 39% and 121.7±0.8 km3 respectively, assuming full saturation. Within the topmost 80 m of ground where the present extraction is concentrated, the estimated ground water reserve is 12.5±0.5 km3.

  4. The molecular structure and analytical potential energy function of HCO (X2A')

    Institute of Scientific and Technical Information of China (English)

    Wu Dong-Lan; Cheng Xin-Lu; Yang Xiang-Dong; Xie An-Dong; Ruan Wen; Yu Xiao-Guang; Wan Hui-Jun

    2007-01-01

    In this paper the equilibrium structure of HCO has been optimized by using density functional theory (DFT)/ B3P86 method and CC-PVTZ basis. It has a bent (Cs, X2A') ground state structure with an angle of 124.4095 °. The vibronic frequencies and force constants have also been calculated. Based on the principles of atomic and molecular reaction statics, the possible electronic states and reasonable dissociation limits for the ground state of HCO molecule have been determined. The analytic potential energy function of HCO (X2A') molecule has been derived by using the many-body expansion theory. The contour lines are constructed, which show the static properties of HCO (X2A'), such as the equilibrium structure, the lowest energies, etc. The potential energy surface of HCO (X2A') is reasonable and very satisfactory.

  5. Ground state energy of a non-integer number of particles with δ attractive interactions

    Science.gov (United States)

    Brunet, Éric; Derrida, Bernard

    2000-04-01

    We show how to define and calculate the ground state energy of a system of quantum particles with δ attractive interactions when the number of particles n is non-integer. The question is relevant to obtain the probability distribution of the free energy of a directed polymer in a random medium. When one expands the ground state energy in powers of the interaction, all the coefficients of the perturbation series are polynomials in n, allowing to define the perturbation theory for non-integer n. We develop a procedure to calculate all the cumulants of the free energy of the directed polymer and we give explicit, although complicated, expressions of the first three cumulants.

  6. Geothermal energy market potential in industrial processing

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, R.J.; Hanny, J.A.; Knuth, W.H.

    1978-11-01

    Geothermal energy is currently being used for a number of industrial processes in countries throughout the world. Its application in the United States is mainly limited to space heating even though the temperature of the geothermal fluid is sufficient for process uses, and could be sold at attractive prices while maintaining a high return on investment. The temperature span for industrial use ranges from 40 to 275/sup 0/C, thus encompassing both the abundant low temperature and the less available high temperature resources. Hydrothermal fluids can be used either directly or indirectly dependent upon fluid quality and process needs. The barriers facing hydrothermal industrial process development are (a) the development infrastructure does not exist, (b) energy users are not aware of hydrothermal energy and its advantages, (c) federal incentives are limited, (d) resources are not fully defined.

  7. Potential evaluation of biomass-based energy sources for Turkey

    Directory of Open Access Journals (Sweden)

    Mustafa Ozcan

    2015-06-01

    Full Text Available Turkey has great potential with respect to renewable energy sources (RES and, among such sources, “biomass energy” is of particular importance. The purpose of this study is to determine the primary electrical energy potential obtainable from the biomass potential, according to different biomass source types. In this study, the biomass sources of municipal solid wastes, energy crops, animal manure and urban wastewater treatment sludge are evaluated. For each source, individual biogas and biomass energy potential calculations are made. Methods for energy conversion from wastes applicable to the conditions of Turkey, and technical and economic parameters are used. As a result of the calculations made, the total primary energy value of biogas obtainable from the examined sources is 188.21 TWh/year. The total primary energy value related to the potential of the evaluated biomass sources is 278.40 TWh/year.

  8. Energy potential in the food industry; Store energipotensialer i naeringsmiddelindustrien

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, E; Risberg, T M; Mydske, H J; Helgerud, H E

    2007-07-01

    The food industry is one of the most power consuming industries (excluding the heavy industry) and has large potential for reducing the energy consumption. This report explains the most energy efficient measures and if the injunctions are followed

  9. Physico-chemical properties and energy potential of wood wastes ...

    African Journals Online (AJOL)

    Physico-chemical properties and energy potential of wood wastes from ... Journal Home > Vol 36, No 2 (2017) > ... The results are indications that the wood wastes are suitable as feedstock for renewable energy generation with little or no ...

  10. On the ground state energy of the delta-function Fermi gas

    Science.gov (United States)

    Tracy, Craig A.; Widom, Harold

    2016-10-01

    The weak coupling asymptotics to order γ of the ground state energy of the delta-function Fermi gas, derived heuristically in the literature, is here made rigorous. Further asymptotics are in principle computable. The analysis applies to the Gaudin integral equation, a method previously used by one of the authors for the asymptotics of large Toeplitz matrices.

  11. Computer Simulation and Optimization of the Process of Thawing of Grounds Using Microwave Energy

    Science.gov (United States)

    Nekrasov, S. A.; Volkov, V. S.

    2017-01-01

    In this article, consideration is given to a mathematical model and a numerical method to calculate and optimize the process of high-speed thawing of grounds using microwave energy. Relevant examples of calculations and an analysis of results are presented.

  12. Kin effects on energy allocation in group-living ground squirrels.

    Science.gov (United States)

    Viblanc, Vincent A; Saraux, Claire; Murie, Jan O; Dobson, F Stephen

    2016-09-01

    The social environment has potent effects on individual phenotype and fitness in group-living species. We asked whether the presence of kin might act on energy allocation, a central aspect of life-history variation. Using a 22-year data set on reproductive and somatic allocations in Columbian ground squirrels (Urocitellus columbianus), we tested the effects of co-breeding and non-breeding kin on the fitness and energy allocation balance between reproduction and personal body condition of individual females. Greater numbers of co-breeding kin had a positive effect on the number of offspring weaned, through the mechanism of altering energy allocation patterns. On average, females with higher numbers of co-breeding kin did not increase energy income but biased energy allocation towards reproduction. Co-breeding female kin ground squirrels maintain close nest burrows, likely providing a social buffer against territorial invasions from non-kin ground squirrels. Lower aggressiveness, lower risks of infanticide from female kin and greater protection of territorial boundaries may allow individual females to derive net fitness benefits via their energy allocation strategies. We demonstrated the importance of kin effects on a fundamental life-history trade-off.

  13. Supersymmetry of Demkov-Ostrovsky effective potentials at zero energy

    CERN Document Server

    Rosu, H C; Wolf, K B; Obregón, O; Rosu, Haret C; Reyes, Marco A; Wolf, Kurt Bernardo; Obregon, Octavio

    1995-01-01

    We present a Natanzon-type supersymmetric analysis of the wave problem with Demkov-Ostrovsky (DO) spherically symmetric class of focusing potentials at zero energy. It is known that at zero binding energy there exists a degenerate ``bound" state for this class of potentials. Working at zero energy and in the so-called R_{0}=0 sector, we obtain the corresponding superpartner (fermionic) DO scattering potentials within the standard one-dimensional supersymmetric procedure.

  14. Available Potential Energy and the Maintenance of the General Circulation

    OpenAIRE

    Lorenz, Edward N.

    2011-01-01

    The available potential energy of the atmosphere may be defined as the difference between the total potential energy and the minimum total potential energy which could result from any adiabatic redistribution of mass. It vanishes if the density stratification is horizontal and statically stable everywhere, and is positive otherwise. It is measured approximately by a weighted vertical average of the horizontal variance of temperature. In magnitude it is generally about ten times the total kine...

  15. Potential evaluation of biomass-based energy sources for Turkey

    OpenAIRE

    Mustafa Ozcan; Semra Öztürk; Yuksel Oguz

    2015-01-01

    Turkey has great potential with respect to renewable energy sources (RES) and, among such sources, “biomass energy” is of particular importance. The purpose of this study is to determine the primary electrical energy potential obtainable from the biomass potential, according to different biomass source types. In this study, the biomass sources of municipal solid wastes, energy crops, animal manure and urban wastewater treatment sludge are evaluated. For each source, individual biogas and biom...

  16. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  17. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  18. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  19. An Overview of Defected Ground Structure with Practical Application of Defected Ground Structure Bandpass Filter in Energy Harvester Circuit

    Directory of Open Access Journals (Sweden)

    M.T. Khan

    2014-08-01

    Full Text Available The aim of the study is to practically implement the Defected Ground Structure (DGS based microstrip bandpass filter in an energy harvester circuit. DGS is widely used to bring about an enhancement in the characteristics of microwave circuits. The study of DGS is derived from the concept of Photonic/electromagnetic Band Gap (PBG structures but it is easier to design and fabricate and has an easier equivalent LC resonator circuit. In this study, DGS has been reviewed from all aspects such as comparing it with PBG, discussing in detail its unit, its structure and property according to various shapes and designs and its several advantages in microstrip filters. Although DGS has various advantages in the area of microwave power amplifier, Wilkinson power divider, microwave antennas, couplers, etc., it is extensively used in the design of microwave filter to achieve stopband effects, slow-wave effects, frequency adjustment etc. Finally a DGS based bandpass filter working at 900 MHz has been designed, fabricated and tested for implementation in an Energy Harvester circuit.

  20. Ground-State Ionization Potentials for Lithium through Neon Isoelectronic Sequences with Z=37-82

    Institute of Scientific and Technical Information of China (English)

    HUANG Jie; JIANG Gang; ZHAO Qian

    2006-01-01

    The ground-state ionization potentials of different isoelectronic sequences are calculated systemically with the multi-configuration Dirac-Fock method.The relativistic corrections,Breit and QED effects are included in the calculation.These results are compared with the scanty existing theoretical and experimental data in the literature.Analytical expressions are obtained for expressing our theoretical data along the different sequences.

  1. Multiplicity of ground state solutions for discrete nonlinear Schrodinger equations with unbounded potentials

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2017-02-01

    Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. In this article, we consider a class of discrete nonlinear Schrodinger equations with unbounded potentials. We obtain some new sufficient conditions on the multiplicity results of ground state solutions for the equations by using the symmetric mountain pass lemma. Recent results in the literature are greatly improved.

  2. Ground Thermal Inertia for Energy Efficient Building Design: A Case Study on Food Industry

    Directory of Open Access Journals (Sweden)

    Fernando R. Mazarrón

    2012-02-01

    Full Text Available The search for energy efficient construction solutions is still pending in the agro-food industry, in which a large amount of energy is often consumed unnecessarily when storing products. The main objective of this research is to promote high energy efficiency built environments, which aim to reduce energy consumption in this sector. We analyze the suitability of using the thermal inertia of the ground to provide an adequate environment for the storage and conservation of agro-food products. This research compares different construction solutions based on the use of ground thermal properties, analyzing their effectiveness to decrease annual outdoor variations and provide adequate indoor conditions. The analysis undertaken is based on over five million pieces of data, obtained from an uninterrupted four year monitoring process of various constructions with different levels of thermal mass, ranging from high volume constructions to others lacking this resource. It has been proven that constructive solutions based on the use of ground thermal inertia are more effective than other solutions when reducing the effects of outdoor conditions, even when these have air conditioning systems. It is possible to reach optimal conditions to preserve agro-food products such as wine, with a good design and an adequate amount of terrain, without having to use air conditioning systems. The results of this investigation could be of great use to the agro-food industry, becoming a reference when it comes to the design of energy efficient constructions.

  3. On the Difference Between the Vacuum Casimir Energies for Grounded and Isolated Conductors

    CERN Document Server

    Fosco, C D; Mazzitelli, F D

    2016-01-01

    We study the vacuum (i.e., zero-temperature) Casimir energy for a system of neutral conductors which are isolated, as opposed to grounded. The former is meant to describe a situation where the total charge on each conductor, as well as all of its fluctuations, vanishes, while the latter describes a situation where the conductors are connected to a charge reservoir. We compute the difference between the vacuum energies for a given system of conductors, but subjected to the two different conditions stated above. The results can be written in terms of a generalized, frequency-dependent capacitance matrix of the system. Using a multipolar expansion, we show that the grounded Casimir energy includes a monopole-monopole interaction term that is absent in the isolated case in the large distance limit

  4. Potential Energy Sources Pose Mining Problem

    Science.gov (United States)

    Chemical and Engineering News, 1974

    1974-01-01

    Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as potential sources of fuel. (CC)

  5. The Effect of Images on Surface Potential and Resistance Calculation of Grounding Systems

    Directory of Open Access Journals (Sweden)

    MARTINS, A.

    2015-05-01

    Full Text Available In the grounding systems with a two layers soil, the calculation of the surface potential using the image method is sometimes impossible due to singularities, avoiding researchers to use the method for electrodes in the bottom layer. In the literature this problem solution is refereed as unreliable or solved with other more complex methods. This paper presents a new approach to calculate the surface potentials in a two. layer soil, for electrodes in the bottom layer, when images are at surface. The singularities in computing surface voltage, when the first image upwards lies at surface, are analysed and it's shown that a small change in top layer thickness allows an approximate solution. Surface potentials due to grid conductor are also considered and the values of resistance are compared with those from other methodologies. Singularities for a ground rod that crosses the two layers are also treated. The obtained values of resistance are not satisfactory, due to lower segments images that overlap the upper segments. This paper also proposes shifting the surface of the upper part of the ground rod, in the upper layer, or taking the modulus of the mutual resistance, to overcome this difficulty.

  6. Zeta-function approach to Casimir energy with singular potentials

    CERN Document Server

    Khusnutdinov, N R

    2006-01-01

    In the framework of zeta-function approach the Casimir energy for three simple model system: single delta potential, step function potential and three delta potentials is analyzed. It is shown that the energy contains contributions which are peculiar to the potentials. It is suggested to renormalize the energy using the condition that the energy of infinitely separated potentials is zero which corresponds to subtraction all terms of asymptotic expansion of zeta-function. The energy obtained in this way obeys all physically reasonable conditions. It is finite in the Dirichlet limit and it may be attractive or repulsive depending on the strength of potential. The effective action is calculated and it is shown that the surface contribution appears. The renormalization of the effective action is discussed.

  7. The Chandra High Energy Transmission Grating: Design, Fabrication, Ground Calibration and Five Years in Flight

    CERN Document Server

    Canizares, C R; Dewey, D; Flanagan, K A; Galton, E B; Huenemoerder, D P; Ishibashi, K; Markert, T H; Marshall, H L; McGuirk, M; Schattenburg, M L; Schulz, N S; Smith, H I; Wise, M; Canizares, Claude R.; Davis, John E.; Dewey, Daniel; Flanagan, Kathryn A.; Galton, Eugene B.; Huenemoerder, David P.; Ishibashi, Kazunori; Markert, Thomas H.; Marshall, Herman L.; Guirk, Michael Mc; Schattenburg, Mark L.; Schulz, Norbert S.; Smith, Henry I.; Wise, Michael

    2005-01-01

    Details of the design, fabrication, ground and flight calibration of the High Energy Transmission Grating, HETG, on the Chandra X-ray Observatory are presented after five years of flight experience. Specifics include the theory of phased transmission gratings as applied to the HETG, the Rowland design of the spectrometer, details of the grating fabrication techniques, and the results of ground testing and calibration of the HETG. For nearly six years the HETG has operated essentially as designed, although it has presented some subtle flight calibration effects.

  8. Potential function of the internal rotation of a methacrolein molecule in the ground ( S 0) electronic state

    Science.gov (United States)

    Koroleva, L. A.; Krasnoshchekov, S. V.; Matveev, V. K.; Pentin, Yu. A.

    2016-08-01

    The structural parameters of s- trans- and s- cis-isomers of a methacrolein molecule in the ground ( S 0) electronic state are determined by means of MP2 method with the cc-pVTZ basis set. Kinematic factor F(φ) is expanded in a Fourier series. The potential function of internal rotation (PFIR) of methacrolein in this state is built using experimental frequencies of transitions of the torsional vibration of both isomers, obtained from an analysis of the vibrational structure of the high-resolution UV spectrum with allowance for the geometry and difference between the energy (Δ H) of the isomers. It is shown that the V n parameters of the potential function of internal rotation of the molecule, built using the frequencies of the transition of the torsional vibrations of s- trans- and s- cis-isomers of the methacrolein molecule, determined from vibrational structure of the high-resolution UV spectrum and the FTIR spectrum, are close.

  9. Ground States for the Schrödinger Systems with Harmonic Potential and Combined Power-Type Nonlinearities

    Directory of Open Access Journals (Sweden)

    Baiyu Liu

    2014-01-01

    Full Text Available We consider a class of coupled nonlinear Schrödinger systems with potential terms and combined power-type nonlinearities. We establish the existence of ground states, by using a variational method. As an application, some symmetry results for ground states of Schrödinger systems with harmonic potential terms are obtained.

  10. Potential suitable areas of giant ground sloths dropped before its extinction in South America

    DEFF Research Database (Denmark)

    Lima-Ribeiro, Matheus Souza; Varela, Sara; Nogues, David Bravo;

    2012-01-01

    Here we analyze the effects that climatic changes through last ice age had on the potential distributions and extinction risk dynamics of two extinct species of South American giant ground sloths, Eremotherium laurillardi and Megatherium americanum. We tested the assumption of stability...... of the climate change, although do not support it as the unique stressor...... of the climate preferences through time for the two species and modeled their potential distributions at last glacial maximum (LGM, 21 ky BP) and mid-Holocene (6 ky BP) using Bioclimatic Envelope Modeling (BEM), fossil records and paleoclimatic simulations. The model predictions showed a drastic reduction...

  11. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: application to SSSH.

    Science.gov (United States)

    Kolmann, Stephen J; Jordan, Meredith J T

    2010-02-07

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  12. On the hypothetical utilization of atmospheric potential energy

    Directory of Open Access Journals (Sweden)

    Thomas Frisius

    2014-09-01

    Full Text Available Atmospheric potential energy is typically divided into an available and a nonavailable part. In this article a hypothetical utilization of a fraction of the nonavailable potential energy is described. This part stems from the water vapor that can be converted into the liquid phase. An energy gain results when the potential energy of the condensate relative to a reference height exceeds the energy necessary to condensate the water vapor. It is shown that this can be the case in a saturated atmosphere without convective available potential energy. Finally, simulations with the numerical cloud model HURMOD are performed to estimate the usability of the device in practice. Indeed, a positive energy output results in a simulation with immediate gathering of the condensate. On the contrary, potential energy gained falls significantly short of the necessary energy for forming the condensate when a realistic cloud microphysical scheme allowing re-evaporation of condensate is applied. Taken together it can be concluded that, a utilization of atmospheric potential energy is hypothetically possible but the practical realization is probably not feasible.

  13. A hierarchy of potential energy surfaces constructed from energies and energy derivatives calculated on grids

    Science.gov (United States)

    Matito, Eduard; Toffoli, Daniele; Christiansen, Ove

    2009-04-01

    In this work we develop and test a methodology for the generation of Born-Oppenheimer potential energy surfaces (PES) for use in vibrational structure calculations. The method relies on the widely used restricted-mode-coupling expansion of the fully coupled potential surface where only up to n or less vibrational coordinates are coupled in the potential. Low-order derivatives of the energy are then used to extrapolate the higher mode-coupling potential terms; derivative information is thus used in a convenient way for the evaluation of higher mode couplings avoiding their explicit calculation on multidimensional grids. The formulation, which is a variant of the popular modified Shepard interpolation, is general for any extrapolation of (n +p)-mode-coupling terms from n-mode couplings and can be applied to the energy or any other molecular property surface for which derivative information is available. The method depends only on analytical parameter-free weight functions that satisfy important limiting conditions and control the contribution from each direction of extrapolation. The procedure has been applied on a representative set of 13 molecules, and its accuracy has been tested using only gradients and using both gradients and Hessians. The results provide evidence for the importance of higher mode couplings and illustrate the cost efficiency of the proposed approach.

  14. Wind energy potential in Aden-Yemen

    Energy Technology Data Exchange (ETDEWEB)

    Algifri, A.H. [University of Aden (Republic of Yemen). Faculty of Engineering

    1998-02-01

    In this article a number of years data on wind speed in Aden has been studied and presented. A statistical analysis was carried out from which the annual wind speed was found to be 4.5 m/s and most of the time the wind speed is in the range of 3.5-7.5 m/s. The wind speed distributions were represented by Weibull and Rayleigh distributions. It was found that the Rayleigh distribution is suitable to represent the actual probability of wind speed data for Aden. The wind speed data showed that the maximum monthly wind speed occurs in the month of February with the maximum in the month of June. It is concluded that Aden can be explored for wind energy applications. (author)

  15. Mechanism and bounding of earthquake energy input to building structure on surface ground subjected to engineering bedrock motion

    OpenAIRE

    Kojima, K; Sakaguchi, K; Takewaki, I.

    2015-01-01

    The mechanism of earthquake energy input to building structures is clarified by considering the surface ground amplification and soil–structure interaction. The earthquake input energies to superstructures, soil–foundation systems and total swaying–rocking system are obtained by taking the corresponding appropriate free bodies into account and defining the energy transfer functions. It has been made clear that, when the ground surface motion is white, the input energy to the swaying–rocking m...

  16. The ground state of long-range Schrödinger equations and static qoverline{q} potential

    Science.gov (United States)

    Beccaria, Matteo; Metafune, Giorgio; Pallara, Diego

    2016-05-01

    Motivated by the recent results in arXiv:1601.05679 URL"/> about the quark-antiquark potential in {N} = 4 SYM, we reconsider the problem of computing the asymptotic weak-coupling expansion of the ground state energy of a certain class of 1d Schrödinger operators -d^2/d{x^2}+λ V(x) with long-range potential V ( x). In particular, we consider even potentials obeying ∫ ℝ dx V( x) < 0 with large x asymptotics V ˜ - a/x 2 - b/x 3 + · · · . The associated Schrödinger operator is known to admit a bound state for λ → 0+, but the binding energy is rigorously non-analytic at λ = 0. Its asymptotic expansion starts at order {O} (λ), but contains higher corrections λ n log m λ with all 0 ≤ m ≤ n - 1 and standard Rayleigh-Schrödinger perturbation theory fails order by order in λ. We discuss various analytical tools to tame this problem and provide the general expansion of the binding energy at {O} (λ3) in terms of quadratures. The method is tested on a soluble potential that is fully under control, and on various non-soluble cases as well. A supersymmetric case, arising in the study of the quark-antiquark potential in {N} = 6 ABJ(M) theory, is also exploited to provide a further non-trivial consistency check. Our analytical results confirm at third order a remarkable exponentiation of the leading infrared logarithms, first noticed in {N} = 4 SYM where it may be proved by Renormalization Group arguments. We prove this interesting feature at all orders at the level of the Schrödinger equation for general potentials in the considered class.

  17. The ground state of long-range Schrödinger equations and static qq̄ potential

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, Matteo [Dipartimento di Matematica e Fisica Ennio De Giorgi,Università del Salento, Via Arnesano, 73100 Lecce (Italy); INFN, Via Arnesano, 73100 Lecce (Italy); Metafune, Giorgio [Dipartimento di Matematica e Fisica Ennio De Giorgi,Università del Salento, Via Arnesano, 73100 Lecce (Italy); Pallara, Diego [Dipartimento di Matematica e Fisica Ennio De Giorgi,Università del Salento, Via Arnesano, 73100 Lecce (Italy); INFN, Via Arnesano, 73100 Lecce (Italy)

    2016-05-06

    Motivated by the recent results in http://arxiv.org/abs/1601.05679 about the quark-antiquark potential in N=4 SYM, we reconsider the problem of computing the asymptotic weak-coupling expansion of the ground state energy of a certain class of 1d Schrödinger operators −((d{sup 2})/(dx{sup 2}))+λ V(x) with long-range potential V(x). In particular, we consider even potentials obeying ∫{sub ℝ}dx V(x)<0 with large x asymptotics V∼−a/x{sup 2}−b/x{sup 3}+⋯. The associated Schrödinger operator is known to admit a bound state for λ→0{sup +}, but the binding energy is rigorously non-analytic at λ=0. Its asymptotic expansion starts at order O(λ), but contains higher corrections λ{sup n} log{sup m} λ with all 0≤m≤n−1 and standard Rayleigh-Schrödinger perturbation theory fails order by order in λ. We discuss various analytical tools to tame this problem and provide the general expansion of the binding energy at O(λ{sup 3}) in terms of quadratures. The method is tested on a soluble potential that is fully under control, and on various non-soluble cases as well. A supersymmetric case, arising in the study of the quark-antiquark potential in N=6 ABJ(M) theory, is also exploited to provide a further non-trivial consistency check. Our analytical results confirm at third order a remarkable exponentiation of the leading infrared logarithms, first noticed in N=4 SYM where it may be proved by Renormalization Group arguments. We prove this interesting feature at all orders at the level of the Schrödinger equation for general potentials in the considered class.

  18. Geothermal energy potential in the San Luis Valley, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Coe, B.A.

    1980-01-01

    The background of the area itself is investigated considering the geography, population, economy, attitudes of residents, and energy demands of the area. The requirements for geothermal energy development are considered, including socio-economic, institutional, and environmental conditions as well as some technical aspects. The current, proposed, and potential geothermal energy developments are described. The summary, conclusions, and methodology are included. (MHR)

  19. Energy saving potential of emerging technologies in milk powder production

    NARCIS (Netherlands)

    Moejes, S.N.; Boxtel, van A.J.B.

    2017-01-01

    Background

    The food industry has a large potential for energy reduction which, with an eye on the future, has to be exploited. Milk powder production consists of many thermal processes and is responsible for 15% of the total energy use in the dairy industry. A reduction in energy consumptio

  20. A new formulation to compute self-potential signals associated with ground water flow

    Directory of Open Access Journals (Sweden)

    A. Bolève

    2007-06-01

    Full Text Available The classical formulation of the coupled hydroelectrical flow in porous media is based on a linear formulation of two coupled constitutive equations for the electrical current density and the seepage velocity of the water phase and obeying Onsager's reciprocity. This formulation shows that the streaming current density is controlled by the gradient of the fluid pressure of the water phase and a streaming current coupling coefficient that depends on the so-called zeta potential. Recently a new formulation has been introduced in which the streaming current density is directly connected to the seepage velocity of the water phase and to the excess of electrical charge per unit pore volume in the porous material. The advantages of this formulation are numerous. First this new formulation is more intuitive not only in terms of constitutive equation for the generalized Ohm's law but also in specifying boundary conditions for the influence of the flow field upon the streaming potential. With the new formulation, the streaming potential coupling coefficient shows a decrease of its magnitude with permeability in agreement with published results. The new formulation is also easily extendable to non-viscous laminar flow problems (high Reynolds number ground water flow in cracks for example and to unsaturated conditions with applications to the vadose zone. We demonstrate here that this formulation is suitable to model self-potential signals in the field. We investigate infiltration of water from an agricultural ditch, vertical infiltration of water into a sinkhole, and preferential horizontal flow of ground water in a paleochannel. For the three cases reported in the present study, a good match is obtained between the finite element simulations performed with the finite element code Comsol Multiphysics 3.3 and field observations. Finally, this formulation seems also very promising for the inversion of the geometry of ground water flow from the

  1. Common ground on surgical abortion?--engaging Peter Singer on the moral status of potential persons.

    Science.gov (United States)

    Camosy, Charles C

    2008-12-01

    The debate over surgical abortion is certainly one of the most divisive in ethical discourse and for many it seems interminable. However, this paper argues that a primary reason for this is confusion with regard to what issues are actually under dispute. When looking at an entrenched and articulate figure on one side of the debate, Peter Singer, and comparing his views with those of his opponents, one finds that the disputed issue is actually quite a narrow one: the moral status of potential persons. Finding this common ground clears the conceptual space for a fruitful argument: the thesis of which is that most, including Singer, who argue that potential persons do not have full personal moral status fail to make the necessary distinction between natural potential (which confers moral status) and practical potential (which admittedly does not).

  2. Ground State Energy of Unitary Fermion Gas with the Thomson Problem Approach

    Institute of Scientific and Technical Information of China (English)

    CHEN Ji-Sheng

    2007-01-01

    The dimensionless universal coefficient § defines the ratio of the unitary fermions energy density to that for the ideal non-interacting ones in the non-relativistic limit with T = 0. The classical Thomson problem is taken as a nonperturbative quantum many-body arm to address the ground state energy including the Iow energy nonlinear quantum fluctuation/correlation effects. With the relativistic Dirac continuum field theory formalism, the concise expression for the energy density functional of the strongly interacting limit fermions at both finite temperature and density is obtained. Analytically, the universal factor is calculated to be § = 4/9. The energy gap is △ = 5/18 k2f/(2m).

  3. Modeling analysis of ground water recharge potential on alluvial fans using limited data.

    Science.gov (United States)

    Munévar, A; Mariño, M A

    1999-01-01

    A modeling approach is developed to evaluate the potential for artificial recharge on alluvial fans in the Salinas Valley, California, using limited data of soil texture, soil hydraulic properties, and interwell stratigraphy. Promising areas for surface recharge are identified and mapped on a broad-scale using soil surveys, geologic investigations, permeability tests, and seasonal ground water response to rainfall and runoff. Two-dimensional representations of the vadose zone at selected sites are then constructed from drillers'logs and soil material types are estimated. Next, hydraulic properties are assigned to each soil material type by comparing them to laboratory-tested cores of similar soils taken from one site. Finally, water flow through the vadose zone is modeled in two dimensions at seven sites using a transient, finite-difference, variably saturated flow model. Average infiltration rates range from 0.84 to 1.54 cm/hr and recharge efficiency, the percentage of infiltrated water that reaches the water table, varies from 51% to 79%. Infiltration rates and recharge efficiency are found to be relatively insensitive to recharge basin ponding depth due to the thickness of the vadose zones modeled (31 to 84 m). The impact of artificial recharge on the Salinas Valley ground water basin is investigated by simulating the regional ground water response to surface spreading and streamflow augmentation with a recently calibrated, finite-element, ground water-surface water model for the basin. It was determined that a combined approach of surface recharge and streamflow augmentation significantly reduces the state of ground water overdraft and, to a lesser extent, reduces the rate of sea water intrusion.

  4. Temperature and energy deficit in the ground during operation and recovery phases of closed-loop ground source heat pump system: Effect of the groundwater flow

    Science.gov (United States)

    Erol, Selcuk; Francois, Bertrand

    2016-04-01

    The advection/dispersion mechanism of the groundwater flow in the ground has a significant effect on a borehole heat exchanger (BHE) to enhance its thermal performance. However, the amount of energy extracted from the ground never disappears and only shifts with the magnitude of the effective thermal velocity in the infinite domain. In this work, we focus on the temperature and the energy balance of the ground in an advection/dispersion dominated heat transfer system during the operation period of a BHE and the subsequent recovery phase when the system is idle. The problem is treated with single BHE and multi-BHEs systems, for different representative geology and different groundwater flow velocity. In order to assess the thermal energy deficit due to heat extraction from the ground, we used the finite line source analytical model, developed recently (Erol et al., 2015) that provides the temperature distributions around the boreholes for discontinuous heat extraction. The model is developed based on the Green's function, which is the solution of heat conduction/advection/dispersion equation in porous media, for discontinuous heat extraction by analytically convoluting rectangular function or pulses in time domain. The results demonstrate the significant positive impact of the groundwater flow for the recovery in terms of temperature deficit at the location of the borehole. However, the total thermal energy deficit is not affected by the groundwater movement. The energy balance of the ground is the same no matter the prevailing heat transfer system, which can be only conduction or advection/dispersion. In addition, the energy balance of the ground is not based on either the duration of the production period operation or of the recovery phase, but depends on the total amount of heat that is extracted and on the bulk volumetric heat capacity of the ground.

  5. Energy of ground state in B-B'-U-Hubbard model in approximation of static fluctuations

    CERN Document Server

    Mironov, G I

    2002-01-01

    To explain some features of CuO sub 2 base high-temperature superconductors (HTSC) one should take account of possibility of electron transfer to the crystalline structure mode next to the nearest one. It terms of approximation of static fluctuations one calculated the energy of ground state in two-dimensional B-B'-U Hubbard model. Lattice is assumed to consist of two sublattices formed by various type atoms. The calculation results of ground state energy are compared with the precise solution for one-dimensional Hubbard model derived previously. Comparison of the precise and the approximated solutions shows that approximation of static fluctuations describes adequately behavior of the Hubbard studied model within both weak and strong correlation ranges

  6. Simulated Annealing for Ground State Energy of Ionized Donor Bound Excitons in Semiconductors

    Institute of Scientific and Technical Information of China (English)

    YANHai-Qing; TANGChen; LIUMing; ZHANGHao; ZHANGGui-Min

    2004-01-01

    We present a global optimization method, called the simulated annealing, to the ground state energies of excitons. The proposed method does not require the partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method is simpler in software programming than the variational method,and overcomes the major difficulties. The ground state energies of ionized-donor-bound excitons (D+,X) have beencal culated variationally for all values of effective electron-to-hole mass ratio σ. They are compared with those obtained by the variational method. The results obtained demonstrate that the proposed method is simple, accurate, and has more advantages than the traditional methods in calculation.

  7. Simulated Annealing for Ground State Energy of Ionized Donor Bound Excitons in Semiconductors

    Institute of Scientific and Technical Information of China (English)

    YAN Hai-Qing; TANG Chen; LIU Ming; ZHANG Hao; ZHANG Gui-Min

    2004-01-01

    We present a global optimization method, called the simulated annealing, to the ground state energies of excitons. The proposed method does not require the partial derivatives with respect to each variational parameter or solving an eigenequation, so the present method is simpler in software programming than the variational method,and overcomes the major difficulties. The ground state energies of ionized-donor-bound excitons (D+, X) have been calculated variationally for all values of effective electron-to-hole mass ratio σ. They are compared with those obtained by the variational method. The results obtained demonstrate that the proposed method is simple, accurate, and has more advantages than the traditional methods in calculation.

  8. Ground-state energy of the electron liquid in ultrathin wires.

    Science.gov (United States)

    Fogler, Michael M

    2005-02-11

    The ground-state energy and the density correlation function of the electron liquid in a thin one-dimensional wire are computed. The calculation is based on an approximate mapping of the problem with a realistic Coulomb interaction law onto exactly solvable models of mathematical physics. This approach becomes asymptotically exact in the limit of a small wire radius but remains numerically accurate even for modestly thin wires.

  9. Regional Differences in China's Energy Efficiency and Conservation Potentials

    Institute of Scientific and Technical Information of China (English)

    Shi Dan

    2007-01-01

    This paper investigates the maximum energy efficiency level and the energy saving potentials in each region in China that can be practically attained at current economic and technological development levels. Most of the nation's energy efficient provinces are found along the coast of southeast China, while most of its least energy efficient provinces are in the hinterland that is rich in coal resources, and which depends heavily on coal consumption. China's low efficiency in energy resource allocation stems from its secondary industry, which is handicapped by the lowest energy efficiency and the most striking regional differentials. 4comparison of the factors affecting the energy efficiency shows that the provinces being compared in this study differ tremendously in energy consumption structure, technological level of the secondary industry, and abundance of energy resources, and that the other factors are only adequate, rather than necessary, conditions. It is imperative to rectify the behaviors of provinces in balancing local energy allocation, to channel energy resources to energy efficient provinces, and to improve the national energy efficiency as a whole. When taking energy-saving steps, provinces must take into full consideration both the national and local factors that affect energy efficiency. Furthermore, it is unrealistic for China to set a unified energy saving goal for different provinces.

  10. NVU dynamics. III. Simulating molecules at constant potential energy

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Dyre, J. C.

    2012-01-01

    This is the final paper in a series that introduces geodesic molecular dynamics at constant potential energy. This dynamics is entitled NVU dynamics in analogy to standard energy-conserving Newtonian NVE dynamics. In the first two papers [T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B....... In this paper, the NVU algorithm for atomic systems is extended to be able to simulate the geodesic motion of molecules at constant potential energy. We derive an algorithm for simulating rigid bonds and test this algorithm on three different systems: an asymmetric dumbbell model, Lewis-Wahnström o......-terphenyl (OTP) and rigid SPC/E water. The rigid bonds introduce additional constraints beyond that of constant potential energy for atomic systems. The rigid-bond NVU algorithm conserves potential energy, bond lengths, and step length for indefinitely long runs. The quantities probed in simulations give results...

  11. The Pseudo Radiation Energy Amplifier (PREA) and the mean earth s ground temperature

    CERN Document Server

    Boucenna, Ahmed

    2008-01-01

    From the radiation balance diagram illustrating the IPCC reports one can estimate the power received by Earth from the sun at Pin = 342 W/m2 and the power consumed, remitted and reflected by the earth and its atmosphere at Pout = 599 kW/m2. It seems that the earth emits more power than it receives. The earth s ground mean temperature is estimated at 15 C. A calculation based on the black body radiation theory gives an earth s ground mean temperature of the order of -18 C which is much lower than 15 C. The important gap between these calculated and estimated temperature mean values requires an explanation. Here we show that a gray body separated from vacuum by an interface and submitted to outside incident radiation can behave like a Pseudo Radiation Energy Amplifier. The Earth which is a gray body separated from the space by an interface, behaves like a Pseudo Radiation Energy Amplifier. The balance of the energy exchanged between Earth and outer space is reconsidered and the 15 C Earth s ground temperature m...

  12. Analytical expressions for partial wave two-body Coulomb transition matrices at ground-state energy

    Science.gov (United States)

    Kharchenko, V. F.

    2016-11-01

    Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states.

  13. Zero-Magnetic-Field Spin Splitting of Polaron's Ground State Energy Induced by Rashba Spin-Orbit Interaction

    Institute of Scientific and Technical Information of China (English)

    LIU Jia; XIAO Jing-Ling

    2006-01-01

    We study theoretically the ground state energy of a polaron near the interface of a polar-polar semiconductor by considering the Rashba spin-orbit (SO) coupling with the Lee-Low-Pines intermediate coupling method. Our numerical results show that the Rashba SO interaction originating from the inversion asymmetry in the heterostructure splits the ground state energy of the polaron. The electron arealdensity and vector dependence of the ratio of the SO interaction to the total ground state energy or other energy composition are obvious. One can see that even without any external magnetic field, the ground state energy can be split by the Rashba SO interaction, and this split is not a single but a complex one. Since the presents of the phonons, whose energy gives negative contribution to the polaron's,the spin-splitting states of the polaron are more stable than electron's.

  14. Identifying potential ground movement as a landslide mitigation approach using resistivity method

    Science.gov (United States)

    Izzati, F. N.; Laksmana, Z. S.; Marcelina, B.; Hutabarat, S. S.; Widodo

    2017-07-01

    Landslide is defined as a form of ground movement in which land mass suddenly fails downward on a slope as aresult of gravitational pull. One of the mitigative approaches into investigating landslide is to identify a potential slip zone usingresistivity method. In this study, the array chosen to acquire the resistivity data was Wenner array as it provides a robust resolution in mapping lateral resistivity variations. This method will generate a contour map portraying thedistribution of resistivity values of the subsurface. Beforehand, a 2-dimensional forward modeling was conducted to acquire anexpected ideal result of possible potential slip zone. Landslides itself are affiliated with a low resistivity zone that is locatedbetween two high resistivity zones. This study is conducted in a ground slump in Jalan Citra Green, Northern Bandung which is comprised of mostly unconsolidated soil. By applying a least-square inversion to the resistivity data obtained, resistivity values of 10-200 Ωm is attained. Based on the inversion result, a low resistivity zone of 10-20 Ωm is identified spanning from the surface to approximately 10 meters deep. In conclusion, furtherinvestigations are needed to determine whether the low resistivity zone is associated with potential slip zone as our datais limited to a single line

  15. The dispersed fluorescence spectrum of NaAr - Ground and excited state potential curves

    Science.gov (United States)

    Tellinghuisen, J.; Ragone, A.; Kim, M. S.; Auerbach, D. J.; Smalley, R. E.; Wharton, L.; Levy, D. H.

    1979-01-01

    Potential curves for the ground state and the first excited state of NaAr were determined. The van der Waals molecule NaAr was prepared by supersonic free jet expansion of a mixture of sodium, argon, and helium. The electronic transition from the ground state to the first excited state A2pi was excited by a tunable dye laser and the resulting fluorescence was studied. The dispersed fluorescence spectra show discrete and diffuse features, corresponding to transitions from excited vibrational levels of the A state to bound and unbound levels of the x state. The characteristic reflection structure in the bound-free spectra permits an unambiguous assignment of the vibrational numbering in the A state, and this assignment together with previously measured spectroscopic constants are used to calculate the potential curve of the A state. The discrete structure in the fluorescence spectra is used to determine the potential curve of the x state in the well region, and the repulsive part of the X curve is then deduced through trial-and-error simulation of the bound-free spectra.

  16. Ground-water flow and the potential effects of remediation at Graces Quarters, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Tenbus, F.J.; Fleck, W.B.

    1996-01-01

    Ground water in the east-central part of Graces Quarters, a former open-air chemical-agent test facility at Aberdeen Proving Ground, Maryland, is contaminated with chlorinated volatile organic compounds. The U.S. Geological Survey's finite- difference model was used to help understand ground-water flow and simulate the effects of alternative remedial actions to clean up the ground water. Scenarios to simulate unstressed conditions and three extraction well con- figurations were used to compare alternative remedial actions on the contaminant plume. The scenarios indicate that contaminants could migrate from their present location to wetland areas within 10 years under unstressed conditions. Pumping 7 gal/min (gallons per minute) from one well upgradient of the plume will not result in containment or removal of the highest contaminant concentrations. Pumping 7 gal/min from three wells along the central axis of the plume should result in containment and removal of dissolved contami- nants, as should pumping 7 gal/min from three wells at the leading edge of the plume while injecting 7 gal/min back into an upgradient well.

  17. Connection for transfer of Liquid Nitrogen from High Voltage to ground potential

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Hansen, Finn; Willén, Dag

    2001-01-01

    In order to operate a superconducting cable conductor it must be kept at a cryogenic temperature (e.g. using liquid nitrogen). The superconducting cable conductor is at high voltage and the cooling equipment is kept at ground potential. This requires a thermally insulating connection that is also...... strength. However, samples of ExpancelÒ (polymer foam) have recently proved to withstand large electrical fields at room temperature as well as at cryogenic temperatures. In this work, two prototype devices have been tested with respect to the partial discharge inception voltage, thermal insulation...

  18. Advanced ground-based gravitational-wave detectors' potential to detect generic deviations from general relativity

    CERN Document Server

    Narikawa, Tatsuya

    2016-01-01

    We discuss the potential of the advanced ground-based gravitational-wave detectors, such as LIGO, Virgo, and KAGRA, to detect generic deviations of gravitational waveforms from the prediction of General Relativity. We use the parameterized post-Einsteinian formalism to characterize the deviations, and assess how much magnitude of the deviations are detectable by using an approximate decision scheme based on Bayesian statistics. We find that there exist detectable regions of the parameterized post-Einsteinian parameters by using a single gravitational wave event. The regions are not excluded by currently existing binary pulsar observations for the parameterized post-Einsteinian parameters at higher post-Newtonian order.

  19. Electrophysiological potentials reveal cortical mechanisms for mental imagery, mental simulation, and grounded (embodied cognition

    Directory of Open Access Journals (Sweden)

    Haline E. Schendan

    2012-09-01

    Full Text Available Grounded cognition theory proposes that cognition, including meaning, is grounded in sensorimotor processing. The mechanism for grounding cognition is mental simulation, which is a type of mental imagery that re-enacts modal processing. To reveal top-down, cortical mechanisms for mental simulation of shape, event-related potentials were recorded to face and object pictures preceded by mental imagery of a picture. Mental imagery of the identical face or object (congruous condition facilitated not only categorical perception (VPP/N170 but also later visual knowledge (N3[00] complex and linguistic knowledge (N400 for faces more than objects, and strategic semantic analysis (late positive complex between 200 and 700 ms. The later effects resembled semantic congruity effects with pictures. Mental imagery also facilitated category decisions, as a P3(00 peaked earlier for congruous than incongruous (other category pictures, resembling the case when identical pictures repeat immediately. Thus mental imagery mimics semantic congruity and immediate repetition priming processes with pictures. Perception control results showed the opposite for faces and were in the same direction for objects: Perceptual repetition adapts (and so impairs processing of perceived faces from categorical perception onwards, but primes processing of objects during categorical perception, visual knowledge processes, and strategic semantic analysis. For both imagery and perception, differences between faces and objects support domain-specificity and indicate that cognition is grounded in modal processing. Altogether, this direct neural evidence reveals that top-down processes of mental imagery sustain an imagistic representation that mimics perception well enough to prime subsequent perception and cognition. This also suggests that automatic mental simulation of the visual shape of faces and objects operates between 200 and 400 ms, and strategic mental simulation operates between

  20. Renewable energy potential from biomass residues in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Said, N.; Zamorano, M. [Civil Engineering Dept., Univ. of Granada, Campus de Fuentenueva, Granada (Spain); El-Shatoury, S.A. [Botany Dept., Faculty of Sciences, Suez Canal Univ., Ismailia (Egypt)

    2012-11-01

    Egypt has been one of the developing countries following successful programs for the development of renewable energy resources, with special emphasis on solar, wind and biomass. Utilization of biomass as a source of energy is important from energetic as well as environmental viewpoint. Furthermore, Egypt produces millions of biomass waste every year causing pollution and health problems. So, the incorporation of biomass with other renewable energy will increase the impact of solving energy and environmental problem. There is a good potential for the utilization of biomass energy resources in Egypt. Four main types of biomass energy sources are included in this study: agricultural residues, municipal solid wastes, animal wastes and sewage sludge. Analysis of the potential biomass resource quantity and its theoretical energy content has been computed according to literature review. The agriculture crop residue represents the main source of biomass waste with a high considerable amount of the theoretical potential energy in Egypt. Rice straw is considered one of the most important of such residue due to its high amount and its produced energy through different conversion techniques represent a suitable candidate for crop energy production in Egypt.

  1. Defining The Energy Saving Potential of Architectural Design

    DEFF Research Database (Denmark)

    Naboni, Emanuele; Malcangi, Antonio; Zhang, Yi

    2015-01-01

    Designers, in response to codes or voluntary " green building " programs, are increasingly concerned with building energy demand reduction, but they are not fully aware of the energy saving potential of architectural design. According to literature, building form, construction and material choices...... on sustainable design: " Design With Climate " by Olgyay (1963), which discussed strategies for climate-adapted architecture, and Lechner´s " Heating, Cooling and Lighting " (1991), on how to reduce building energy needs by as much as 60 – 80 percent with proper architectural design decisions. Both books used...... behaviour. The research shows the best solution for each of the climates and compares them with Olgyay´s findings. Finally, for each climate the energy saving potential is defined and then compared to Lechner's conclusions. Defining The Energy Saving Potential of Architectural Design (PDF Download Available...

  2. Potential energy curves for neutral and multiply charged carbon monoxide

    Indian Academy of Sciences (India)

    Pradeep Kumar; N Sathyamurthy

    2010-01-01

    Potential energy curves of various electronic states of CO+ (0 ≤ ≤ 6) are generated at MRCI/CASSCF level using cc-pvQZ basis set and the results are compared with available experimental and theoretical data.

  3. Possible explanation of the atmospheric kinetic and potential energy spectra.

    Science.gov (United States)

    Vallgren, Andreas; Deusebio, Enrico; Lindborg, Erik

    2011-12-23

    We hypothesize that the observed wave number spectra of kinetic and potential energy in the atmosphere can be explained by assuming that there are two related cascade processes emanating from the same large-scale energy source, a downscale cascade of potential enstrophy, giving rise to the k(-3) spectrum at synoptic scales and a downscale energy cascade giving rise to the k(-5/3) spectrum at mesoscales. The amount of energy which is going into the downscale energy cascade is determined by the rate of system rotation, with negligible energy going downscale in the limit of very fast rotation. We present a set of simulations of a system with strong rotation and stratification, supporting these hypotheses and showing good agreement with observations.

  4. An assessement of global energy resource economic potentials

    CERN Document Server

    Mercure, J F

    2012-01-01

    This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations using natural resource assessment data. Economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, with strong emphasis on uncertainty, using a consistent methodology that allow direct comparisons to be made. In order to interpolate through available resource assessment data and associated uncertainty, a theoretical framework and a computational methodology are given based on statistical properties of different types of resources, justified empirically by the data, and used throughout. This work aims to provide a global database for natural energy resources ready to integrate into models of energy systems, enabling to introduce at the same time uncertainty over natural resource assessments. The supplementary mate...

  5. Assessment of nitrification potential in ground water using short term, single-well injection experiments.

    Science.gov (United States)

    Smith, R L; Baumgartner, L K; Miller, D N; Repert, D A; Böhlke, J K

    2006-01-01

    Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the ammonium zone, which was characterized by inversely trending vertical gradients of oxygen (270 to 0 microM) and ammonium (19 to 625 microM) and appeared to be a potentially active zone for nitrification. The tests were conducted by injecting a tracer solution (ambient ground water + added constituents) into selected locations within the gradients using multilevel samplers. After injection, the tracers moved by natural ground water flow and were sampled with time from the injection port. Rates of nitrification were determined from changes in nitrate and nitrite concentration relative to bromide. Initial tests were conducted with (15)N-enriched ammonium; subsequent tests examined the effect of adding ammonium, nitrite, or oxygen above background concentrations and of adding difluoromethane, a nitrification inhibitor. In situ net nitrate production exceeded net nitrite production by 3- to 6- fold and production rates of both decreased in the presence of difluoromethane. Nitrification rates were 0.02-0.28 mumol (L aquifer)(-1) h(-1) with in situ oxygen concentrations and up to 0.81 mumol (L aquifer)(-1) h(-1) with non-limiting substrate concentrations. Geochemical considerations indicate that the rates derived from single-well injection tests yielded overestimates of in situ rates, possibly because the injections promoted small-scale mixing within a transport-limited reaction zone. Nonetheless, these tests were useful for characterizing ground water nitrification in situ and for comparing potential rates of activity when the tracer cloud included non-limiting ammonium and oxygen concentrations.

  6. Method of forecasting seismic energy induced by longwall exploitation based on changes in ground subsidence

    Institute of Scientific and Technical Information of China (English)

    Violetta Sokoola Szewiola

    2011-01-01

    A method of forecasting total seismic energy induced by longwall exploitation,based on changes in ground subsidence,is presented in the form of a linear regression model with one with one independent variable.In the method,ground subsidence is described with a cross-section area of a subsidence trough Pw along a line of observations in the direction of an advancing longwall front,approximately along the axis of the Iongwall area.Total seismic energy is determined on the basis of seismic energy data of tremors induced by exploitation.The presentation consists of a detailed method and evaluation of its predictive ability for the area of longwall exploitation within the region of one of the coal mines in the Upper Silesian Coal Basin.This method can be used for forecasting the total seismic energy released by tremors within the area directly connected with the exploitation,in which the seismic activity induced by this exploitation occurs.The estimation of the parameters of the determined model should each time be carried out with investigations of the correctness of the model.The method cannot be applied when the number of recorded phenomena is small and when there is insufficient data to make it possible to calculate the index Pw.

  7. Covariant energy density functionals: nuclear matter constraints and global ground state properties

    CERN Document Server

    Afanasjev, A V

    2016-01-01

    The correlations between global description of the ground state properties (binding energies, charge radii) and nuclear matter properties of the state-of-the-art covariant energy density functionals have been studied. It was concluded that the strict enforcement of the constraints on the nuclear matter properties (NMP) defined in Ref.\\ \\cite{RMF-nm} will not necessary lead to the functionals with good description of the binding energies and other ground and excited state properties. In addition, it will not substantially reduce the uncertainties in the predictions of the binding energies in neutron-rich systems. It turns out that the functionals, which come close to satisfying these NMP constraints, have some problems in the description of existing data. On the other hand, these problems are either absent or much smaller in the functionals which are carefully fitted to finite nuclei but which violate some NMP constraints. This is a consequence of the fact that the properties of finite nuclei are defined not o...

  8. Hubbard models with nearly flat bands: Ground-state ferromagnetism driven by kinetic energy

    Science.gov (United States)

    Müller, Patrick; Richter, Johannes; Derzhko, Oleg

    2016-04-01

    We consider the standard repulsive Hubbard model with a flat lowest-energy band for two one-dimensional lattices (diamond chain and ladder) as well as for a two-dimensional lattice (bilayer) at half filling of the flat band. The considered models do not fall in the class of Mielke-Tasaki flat-band ferromagnets, since they do not obey the connectivity conditions. However, the ground-state ferromagnetism can emerge, if the flat band becomes dispersive. To study this kinetic-energy-driven ferromagnetism we use perturbation theory and exact diagonalization of finite lattices. We find as a typical scenario that small and moderate dispersion may lead to a ferromagnetic ground state for sufficiently large on-site Hubbard repulsion U >Uc , where Uc increases monotonically with the acquired bandwidth. However, we also observe for some specific parameter cases, that (i) ferromagnetism appears at already very small Uc, (ii) ferromagnetism does not show up at all, (iii) the critical on-site repulsion Uc is a nonmonotonic function of the bandwidth, or that (iv) a critical bandwidth is needed to open the window for ground-state ferromagnetism.

  9. Teaching Potential Energy Functions and Stability with Slap Bracelets

    Science.gov (United States)

    Van Hook, Stephen J.

    2005-10-01

    The slap bracelet, an inexpensive child's toy, makes it easy to engage students in hands-on exploration of potential energy curves as well as of stable, unstable, and meta-stable states. Rather than just observing the teacher performing a demonstration, the students can manipulate the equipment themselves and make their own observations, which are then pooled to focus a class discussion on potential energy functions and stability.

  10. On the submarine communication cable JASC ground self-potential stability

    Science.gov (United States)

    Starjinsky, S. S.; Nikiforov, V. M.

    2005-09-01

    This investigation was undertaken for searching the source of linear trends in JASC submarine cable data over the time interval of 6 years and estimating the electrode noise level. One of the reasons for a trend is probably the potential instability in the cable ground, which happened because the titanium electrodes of the ground were placed in sea water that is electrochemically active. To study this phenomenon, we have registered the voltage variations of three titanium JASC cable electrodes, which were closely spaced (~15 cm) and placed at a depth of ~15 m near the coast for 70 days, synchronously with JASC cable voltage observations. The electrode noise level and coherence between channels were estimated and linear trends in electrode pair voltage variation were revealed. The estimated linear trend magnitude is about 0.28 mV/day, which is comparable with 0.21 mV/day earlier observed in JASC submarine cable data. We concluded that the linear trend in JASC cable data is, at least partly, probably caused by the titanium electrodes potential variations. This linear trend should be registered simultaneously with JASC cable voltage observation, keeping in mind the possibility of finding a procedure for removing it, in order to enhance the signal/noise ratio in data.

  11. On Conversions between Potential and Kinetic Energy in the Atmospher

    OpenAIRE

    White, Robert M.; Saltzman, Barry

    2011-01-01

    From a consideration of the large-scale horizontal variations of individual pressure change and 500 mb temperature in a mid-latitude sector of the Northern Hemisphere, computations are made of the required mean conversion of potential energy into the kinetic energy of the horizontal wind systems. The order of magnitude of the estimate obtained is in agreement with that obtained by Brunt from considerations of the frictional dissipation of kinetic energy. In addition, the role of organized ove...

  12. Solar and wind energy potential and utilization in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Raja, I.A. (Balochistan Univ., Quetta (Pakistan). Dept. of Physics); Abro, R.S. (Sheffield Univ. (United Kingdom). School of Architecture Studies)

    1994-08-01

    This paper identifies the potentials of solar and wind energy. The prime sites for wind are coastal area, arid zone and hill terrains. Solar energy is abundant over most parts of the country, the maximum being received over Quetta valley. (author)

  13. Gravitational potential as a source of earthquake energy

    Science.gov (United States)

    Barrows, L.; Langer, C.J.

    1981-01-01

    Some degree of tectonic stress within the earth originates from gravity acting upon density structures. The work performed by this "gravitational tectonics stress" must have formerly existed as gravitational potential energy contained in the stress-causing density structure. According to the elastic rebound theory (Reid, 1910), the energy of earthquakes comes from an elastic strain field built up by fairly continuous elastic deformation in the period between events. For earthquakes resulting from gravitational tectonic stress, the elastic rebound theory requires the transfer of energy from the gravitational potential of the density structures into an elastic strain field prior to the event. An alternate theory involves partial gravitational collapse of the stress-causing density structures. The earthquake energy comes directly from a net decrease in gravitational potential energy. The gravitational potential energy released at the time of the earthquake is split between the energy released by the earthquake, including work done in the fault zone and an increase in stored elastic strain energy. The stress associated with this elastic strain field should oppose further fault slip. ?? 1981.

  14. He-, Ne-, and Ar-phosgene intermolecular potential energy surfaces

    DEFF Research Database (Denmark)

    Munteanu, Cristian R.; Henriksen, Christian; Felker, Peter M.

    2013-01-01

    Using the CCSD(T) model, we evaluated the intermolecular potential energy surfaces of the He-, Ne-, and Ar-phosgene complexes. We considered a representative number of intermolecular geometries for which we calculated the corresponding interaction energies with the augmented (He complex) and double...

  15. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  16. Crevice Repassivation Potentials for Alloy 22 in Simulated Concentrated Ground Waters

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B; Evans, K J; Ilevbare, G O

    2006-11-08

    The resistance of Alloy 22 (N06022) to localized corrosion, mainly crevice corrosion, has been extensively investigated in the last few years. However, the behavior of Alloy 22 in concentrated aqueous solutions that may simulate concentrated ground waters was not fully understood. Systematic electrochemical tests using cyclic potentiodynamic polarization as well as the Tsujikawa-Hisamatsu electrochemical method were performed to determine the crevice corrosion susceptibility of Alloy 22 in simulated concentrated water (SCW), simulated acidified water (SAW) and basic saturated water (BSW). Results show that Alloy 22 is immune to crevice corrosion in SCW and SAW but may suffer crevice corrosion initiation in BSW. Results also show that in a naturally aerated environment, the corrosion potential would never reach the critical potential for crevice corrosion initiation.

  17. Conversion potential energy and its application to thermodynamic optimization

    Institute of Scientific and Technical Information of China (English)

    WU Jing; GUO ZengYuan

    2012-01-01

    In general,heat transfers can be classified into two categories according to the purposes of object heating or cooling and the heat to work conversion.Recently,a new physical quantity,entransy (or potential energy),was proposed to describe the ability of heat transfer with the former purpose.This paper addresses the concept of potential energy in terms of the heat transfer processes for the latter purpose,named the conversion potential energy.The physical meaning of this newly introduced concept is the potential energy for the heat to work conversion stored in the equivalent mass of heat (thermomass) derived on the basis of the Einstein's special theory of relativity.The dissipation of conversion potential energy occurs during the real irreversible heat to work conversion processes as a measure of the conversion irreversibility.Finally,a heat to work conversion problem of a heat exchanger group is provided to show that the minimum conversion potential energy dissipation rate can be used as an optimization criterion for the heat transfer performance with the purpose of the heat to work conversion.

  18. Potential energy surface of the photolysis of isocyanic acid HNCO

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The dissociation curves of the photolysis of the isocyanic acidHNCOHN+CO corresponding to the ground state (S0), the first triplet excited state (T1) and the first singlet excited state (S1) have been studied respectively at the UHF/6-311G** and CIS/6-311G** levels using ab initio method. The energy surface crossing points, S1/T1, T1/S0 and S1/S0, have been found and the characteristics of the energy minimum crossing point were given, based on which, the changes of the crossing points' geometries along the lower electronic energy surface and its end-result have been located according to the steepest descent principle. The computational result indicates that the photolysis of the isocyanic acid HNCOHN+CO has three competitive reaction channels ((A)-(C)), and from the kinetic piont of view, channel (A) is the most advantageous.

  19. The molecular structure and the analytical potential energy function of S-2 and S-3

    Institute of Scientific and Technical Information of China (English)

    Liu Yu-Fang; Li Jun-Yu; Han Xiao-Qin; Sun Jin-Feng

    2007-01-01

    In this paper, the equilibrium geometry, harmonic frequency and dissociation energy of S-2 and S-3 have been calculated at QCISD/6-311++G(3d2f) and B3P86/6-311++G(3d2f) level. The S-2 ground state is of 2Ⅱg, the S-3 ground state is of 2B1 and S-3 has a bent (C2V) structure with an angle of 115.65° The results are in good agreement with these reported in other literature. For S-3 ion, the vibration frequencies and the force constants have also been calculated. Base on the general principles of microscopic reversibility, the dissociation limits has been deduced. The Murrell-Sorbie potential energy function for S-2 has been derived according to the ab initio data through the leastsquares fitting. The force constants and spectroscopic data for S-2 have been calculated, then compared with other theoretical data. The analytical potential energy function of S-3 have been obtained based on the many-body expansion theory. The structure and energy can correctly reappear on the potential surface.

  20. Mitigation potential of horizontal ground coupled heat pumps for current and future climatic conditions: UK environmental modelling and monitoring studies

    Science.gov (United States)

    García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Gan, Guohui; Wu, Yupeng; Hughes, Andrew; Mansour, Majdi; Blyth, Eleanor; Finch, Jon; Main, Bruce

    2010-05-01

    An increased uptake of alternative low or non-CO2 emitting energy sources is one of the key priorities for policy makers to mitigate the effects of environmental change. Relatively little work has been undertaken on the mitigation potential of Ground Coupled Heat Pumps (GCHPs) despite the fact that a GCHP could significantly reduce CO2 emissions from heating systems. It is predicted that under climate change the most probable scenario is for UK temperatures to increase and for winter rainfall to become more abundant; the latter is likely to cause a general rise in groundwater levels. Summer rainfall may reduce considerably, while vegetation type and density may change. Furthermore, recent studies underline the likelihood of an increase in the number of heat waves. Under such a scenario, GCHPs will increasingly be used for cooling as well as heating. These factors will affect long-term performance of horizontal GCHP systems and hence their economic viability and mitigation potential during their life span ( 50 years). The seasonal temperature differences encountered in soil are harnessed by GCHPs to provide heating in the winter and cooling in the summer. The performance of a GCHP system will depend on technical factors (heat exchanger (HE) type, length, depth, and spacing of pipes), but also it will be determined to a large extent by interactions between the below-ground parts of the system and the environment (atmospheric conditions, vegetation and soil characteristics). Depending on the balance between extraction and rejection of heat from and to the ground, the soil temperature in the neighbourhood of the HE may fall or rise. The GROMIT project (GROund coupled heat pumps MITigation potential), funded by the Natural Environment Research Council (UK), is a multi-disciplinary research project, in collaboration with EarthEnergy Ltd., which aims to quantify the CO2 mitigation potential of horizontal GCHPs. It considers changing environmental conditions and combines

  1. Unification of ground-state aromaticity criteria - structure, electron delocalization, and energy - in light of the quantum chemical topology.

    Science.gov (United States)

    Badri, Zahra; Foroutan-Nejad, Cina

    2016-04-28

    In the present account we investigate a theoretical link between the bond length, electron sharing, and bond energy within the context of quantum chemical topology theories. The aromatic stabilization energy, ASE, was estimated from this theoretical link without using isodesmic reactions for the first time. The ASE values obtained from our method show a meaningful correlation with the number of electrons contributing to the aromaticity. This theoretical link demonstrates that structural, electronic, and energetic criteria of aromaticity - ground-state aromaticity - belong to the same class and guarantees that they assess the same property as aromaticity. Theory suggests that interatomic exchange-correlation potential, obtained from the theory of Interacting Quantum Atoms (IQA), is linearly connected to the delocalization index of Quantum Theory of Atoms in Molecules (QTAIM) and the bond length through a first order approximation. Our study shows that the relationship between energy, structure and electron sharing marginally deviates from the ideal linear form expected from the first order approximation. The observed deviation from linearity was attributed to a different contribution of exchange-correlation to the bond energy for the σ- and π-frameworks. Finally, we proposed two-dimensional energy-structure-based aromaticity indices in analogy to the electron sharing indices of aromaticity.

  2. Study on shift schedule saving energy of automatic transmission of ground vehicles

    Institute of Scientific and Technical Information of China (English)

    龚捷; 赵丁选; 陈鹰; 陈宁

    2004-01-01

    To improve ground vehicle efficiency, shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetrain. The shift schedule can keep the torque converter working in the high efficiency range under all the working conditions except in the low efficiency range on the left when the transmission worked at the lowest shift, and in the low efficiency range on the right when the transmission worked at the highest shift. The shift quality key factors were analysed. The automatic trans-mission's bench-test adopting this shift schedule was made on the automatic transmission's test-bed. The experimental results showed that the shift schedule was correct and that the shift quality was controllable.

  3. Study on shift schedule saving energy of automatic transmission of ground vehicles

    Institute of Scientific and Technical Information of China (English)

    龚捷; 赵丁选; 陈鹰; 陈宁

    2004-01-01

    To improve ground vehicle efficiency,shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetrain.The shift schedule can keep the torque converter working in the high efficiency range under all the working conditions except in the low efficiency range on the left when the transmission worked at the lowest shift,and in the low efficiency range on the right when the transmission worked at the highest shift.The shift quality key factors were analysed.The automatic transmission's bench-test adopting this shift schedule was made on the automatic transmission's test-bed.The experimental results showed that the shift schedule was correct and that the shift quality was controllable.

  4. Isomeric and ground state energy level measurements of natural tellurium isotopes via (γ,n) reaction

    Science.gov (United States)

    Tamkas, M.; Akcali, O.; Durusoy, A.

    2015-04-01

    We have planned to measure isomeric and ground state energy levels in 120Te(γ,n)119m,gTe, 122Te(γ,n)121m,gTe, 128Te(γ,n)127m,gTe, 130Te(γ,n)129m,gTe photonuclear reactions of natural tellurium induced by bremsstrahlung photons with end-point energy at 18 MeV. The sample was irradiated in the clinical linear electron accelerator (Philips SLi-25) at Akdeniz University Hospital. The gamma spectrum of the tellurium sample was measured using HP(Ge) semiconductor detector (ORTEC) and multi channel analyzer. We used both MAESTRO (ORTEC) and home made root based gui program (Theia) for data analyzing. The obtained experimental data values are compared with NUDAT energy values.

  5. Ab initio adiabatic and quasidiabatic potential energy surfaces of H++ CN system

    Indian Academy of Sciences (India)

    Bhargava Anusuri; Sanjay Kumar

    2016-02-01

    We present restricted geometry (collinear and perpendicular approaches of proton) ab initio three dimensional potential energy surfaces for H++ CN system. The calculations were performed at the internally contracted multi-reference configuration interaction level of theory using Dunning’s correlation consistent polarized valence triple zeta basis set. Adiabatic and quasidiabatic surfaces have been computed for the ground and the first excited electronic states. Nonadiabatic effects arising from radial coupling have been analyzed in terms of nonadiabatic coupling matrix elements and coupling potentials.

  6. Separable representation of energy-dependent optical potentials

    Science.gov (United States)

    Hlophe, L.; Elster, Ch.

    2016-03-01

    Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g., (d ,p ) reactions, should be used. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy dependent. Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex, energy-dependent optical potentials that fulfill reciprocity exactly. Methods: Momentum space Lippmann-Schwinger integral equations are solved with standard techniques to obtain the form factors for the separable representation. Results: Starting from a separable, energy-independent representation of global optical potentials based on a generalization of the Ernst-Shakin-Thaler (EST) scheme, a further generalization is needed to take into account the energy dependence. Applications to n +48Ca ,n +208Pb , and p +208Pb are investigated for energies from 0 to 50 MeV with special emphasis on fulfilling reciprocity. Conclusions: We find that the energy-dependent separable representation of complex, energy-dependent phenomenological optical potentials fulfills reciprocity exactly. In addition, taking into account the explicit energy dependence slightly improves the description of the S matrix elements.

  7. Ground-state energies and charge radii of $^{4}$He, $^{16}$O, $^{40}$Ca, and $^{56}$Ni in the unitary-model-operator approach

    CERN Document Server

    Miyagi, Takayuki; Okamoto, Ryoji; Otsuka, Takaharu

    2015-01-01

    We study the nuclear ground-state properties by using the unitary-model-operator approach (UMOA). Recently, the particle-basis formalism has been introduced in the UMOA and enables us to employ the charge-dependent nucleon-nucleon interaction. We evaluate the ground-state energies and charge radii of $^{4}$He, $^{16}$O, $^{40}$Ca, and $^{56}$Ni with the charge-dependent Bonn potential. The ground-state energy is dominated by the contributions from the one- and two-body cluster terms, while, for the radius, the one-particle-one-hole excitations are more important than the two-particle-two-hole excitations. The calculated results reproduce the trend of experimental data of the saturation property for finite nuclei.

  8. Scenarios of energy demand and efficiency potential for Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Tzvetanov, P.; Ruicheva, M.; Denisiev, M.

    1996-12-31

    The paper presents aggregated results on macroeconomic and final energy demand scenarios developed within the Bulgarian Country Study on Greenhouse Gas Emissions Mitigation, supported by US Country Studies Program. The studies in this area cover 5 main stages: (1) {open_quotes}Baseline{close_quotes} and {open_quotes}Energy Efficiency{close_quotes} socioeconomic and energy policy philosophy; (2) Modeling of macroeconomic and sectoral development till 2020; (3) Expert assessments on the technological options for energy efficiency increase and GHG mitigation in the Production, Transport and Households and Services Sectors; (4) Bottom-up modeling of final energy demand; and (5) Sectoral and overall energy efficiency potential and policy. Within the Bulgarian Country Study, the presented results have served as a basis for the final integration stage {open_quotes}Assessment of the Mitigation Policy and Measures in the Energy System of Bulgaria{close_quotes}.

  9. Solar energy in California industry - Applications, characteristics and potential

    Science.gov (United States)

    Barbieri, R. H.; Pivirotto, D. S.

    1978-01-01

    Results of a survey to determine the potential applicability of solar thermal energy to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar energy, total state energy consumption could be reduced by 100 trillion Btus (2%), while the use of solar energy in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar energy must contend are illustrated by a description of fluid milk processing operations. Solar energy application is found to be technically feasible for processes with thermal energy requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.

  10. Solar energy in California industry - Applications, characteristics and potential

    Science.gov (United States)

    Barbieri, R. H.; Pivirotto, D. S.

    1978-01-01

    Results of a survey to determine the potential applicability of solar thermal energy to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar energy, total state energy consumption could be reduced by 100 trillion Btus (2%), while the use of solar energy in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar energy must contend are illustrated by a description of fluid milk processing operations. Solar energy application is found to be technically feasible for processes with thermal energy requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.

  11. Recovering the Seismic Energy Transmitted to the Ground by Snow Avalanches.

    Science.gov (United States)

    Mangeney, A.; Surinach, E.; Levy, C.; Roig, P.

    2016-12-01

    The energy transmitted into the ground by flowing snow avalanches was estimated by using the seismic signal recorded at two different sites by UB LE-3D/5s seismic sensors. One sensor was located on the avalanche path, so that the avalanche passes over it. The second one was placed at about 400 m from the runout zone. The energy was recovered at each position of the path taking into account the attenuation factors (intrinsic attenuation and geometrical spreading) as in Vilajosana et al. (2008). Seismic characteristics of the ground, Digital Elevation Model of the area were taking into account for this calculation. The coincidence of the recovered energy at each position coming from the two sensors validates the approach. We then simulated the avalanches that occurred in 2004-2008 at the Ryggfonn experimental site (Norway) (Gauer and Kristensen, 2016) using the data obtained in collaboration with the Norwegian Geotechnical Institute. Dense and Mixed (artificially triggered and spontaneous) avalanches of large and medium size were studied. Video images and characteristics of the snow helped in the determination of the characteristics of the avalanches. The approximate length of the path was 2 km and the vertical drop was 900 m. The transmitted energy shows a good correspondence with the outputs of the SHALTOP numerical model that we used to simulate the snow avalanche along the real topography. We also show a correlation between the seismic energy and the fluctuations of the topography along the avalanche path. Moreover, for the two sites and different parts of the avalanche we recovered similar power laws relating the seismic energy and the signal duration than those observed in a very different environment with different gravitational flows (i. e. rockfalls and pyroclastic flows in La Réunion by Hibert et al., 2011 and Montserrat by Levy et al., 2015).

  12. Metallic bionanocatalysts: potential applications as green catalysts and energy materials.

    Science.gov (United States)

    Macaskie, Lynne E; Mikheenko, Iryna P; Omajai, Jacob B; Stephen, Alan J; Wood, Joseph

    2017-08-22

    Microbially generated or supported nanocatalysts have potential applications in green chemistry and environmental application. However, precious (and base) metals biorefined from wastes may be useful for making cheap, low-grade catalysts for clean energy production. The concept of bionanomaterials for energy applications is reviewed with respect to potential fuel cell applications, bio-catalytic upgrading of oils and manufacturing 'drop-in fuel' precursors. Cheap, effective biomaterials would facilitate progress towards dual development goals of sustainable consumption and production patterns and help to ensure access to affordable, reliable, sustainable and modern energy. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Investigating Energy-Saving Potentials in the Cloud

    Directory of Open Access Journals (Sweden)

    Da-Sheng Lee

    2014-02-01

    Full Text Available Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit.

  14. Feet on the potential energy surface, head in the pi clouds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Quentin [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This work presents explorations of the potential energy surface of clusters of atoms and of the interactions between molecules. First, structures of small aluminum clusters are examined and classified as ground states, transition states, or higher-order saddle points. Subsequently, the focus shifts to dispersion-dominated π-π interactions when the potential energy surfaces of benzene, substituted benzene, and pyridine dimers are explored. Because DNA nucleotide bases can be thought of as substituted heterocycles, a natural extension of the substituted benzene and pyridine investigations is to model paired nucleotide bases. Finally, the success of the dispersion studies inspires the development of an extension to the computational method used, which will enable the dispersion energy to be modeled – and the potential energy surface explored – in additional chemical systems. The effective fragment potential (EFP) method is described, as well as various quantum mechanical methods. An ab inito quantum mechanical study of 13-atom aluminum clusters is described. EFP studies of aromatic dimers are reported in which dispersion energy makes a significant contribution to the attraction between monomers. Theory and code development toward a means of computing dispersion energy in mixed ab inito-EFP systems are described.

  15. Sustainable energy. Economic growth for the Netherlands with green potential; Duurzame energie. Economisch groeigebied voor Nederland met groene potentie

    Energy Technology Data Exchange (ETDEWEB)

    Sijbesma, F.; Oudeman, M.

    2010-02-15

    Research of the economic potential and options for enhancing renewable energy in the Netherlands. The following research questions were addressed: What is the current and future economic value of renewable energy in the Netherlands?; What are the areas in which the Netherlands has a unique point of departure with respect to knowledge and activities?; How can the economic potential be optimally deployed? Can the opportunities be increased by making it a key area?; What are other ways are there to enhance the economic development?. [Dutch] Onderzoek naar de economische potentie en opties ter versterking van duurzame energie in Nederland. Daarbij stonden volgende onderzoeksvragen centraal: Wat is de huidige en toekomstige economische waarde van duurzame energie in Nederland?; Op welke gebieden heeft Nederland een unieke uitgangspositie qua kennis en bedrijvigheid? Hoe is de economische potentie optimaal te benutten?; Kunnen de kansen vergroot worden door het een sleutelgebied te maken?; Welke andere manieren zijn er om de economische ontwikkeling te stimuleren?.

  16. Ab initio potential energy and dipole moment surfaces of the F(-)(H2O) complex.

    Science.gov (United States)

    Kamarchik, Eugene; Toffoli, Daniele; Christiansen, Ove; Bowman, Joel M

    2014-02-05

    We present full-dimensional, ab initio potential energy and dipole moment surfaces for the F(-)(H2O) complex. The potential surface is a permutationally invariant fit to 16,114 coupled-cluster single double (triple)/aVTZ energies, while the dipole surface is a covariant fit to 11,395 CCSD(T)/aVTZ dipole moments. Vibrational self-consistent field/vibrational configuration interaction (VSCF/VCI) calculations of energies and the IR-spectrum are presented both for F(-)(H2O) and for the deuterated analog, F(-)(D2O). A one-dimensional calculation of the splitting of the ground state, due to equivalent double-well global minima, is also reported.

  17. Study of the potential of wave energy in Malaysia

    Science.gov (United States)

    Tan, Wan Ching; Chan, Keng Wai; Ooi, Heivin

    2017-07-01

    Renewable energy is generally defined as energy harnessed from resources which are naturally replenished. It is an alternative to the current conventional energy sources such as natural gas, oil and coal, which are nonrenewable. Besides being nonrenewable, the harnessing of these resources generally produce by-products which could be potentially harmful to the environment. On the contrary, the generation from renewable energy does not pose environmental degradation. Some examples of renewable energy sources are sunlight, wind, tides, waves and geothermal heat. Wave energy is considered as one of the most promising marine renewable resources and is becoming commercially viable quicker than other renewable technologies at an astonishing growth rate. This paper illustrates the working principle of wave energy converter (WEC) and the availability of wave energy in Malaysia oceans. A good understanding of the behaviour of ocean waves is important for designing an efficient WEC as the characteristics of the waves in shallow and deep water are different. Consequently, wave energy converters are categorized into three categories on shore, near shore and offshore. Therefore, the objectives of this study is ought to be carried out by focusing on the formation of waves and wave characteristics in shallow as well as in deep water. The potential sites for implementation of wave energy harvesting technology in Malaysia and the wave energy available in the respective area were analysed. The potential of wave energy in Malaysia were tabulated and presented with theoretical data. The interaction between motion of waves and heave buoys for optimum phase condition by using the mass and diameter as the variables were investigated.

  18. Separable Representation of Energy-Dependent Optical Potentials

    CERN Document Server

    Hlophe, Linda

    2015-01-01

    Background. One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g. (d,p) reactions, should be used. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose. Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy-dependent. Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex, energy-dependent optical potentials that fulfill reciprocity e...

  19. Estimation of energy potential of agricultural enterprise biomass

    Directory of Open Access Journals (Sweden)

    Lypchuk Vasyl

    2017-01-01

    Full Text Available Bioenergetics (obtaining of energy from biomass is one of innovative directions in energy branch of Ukraine. Correct and reliable estimation of biomass potential is essential for efficient use of it. The article reveals the issue of estimation of potential of biomass, obtained from byproducts of crop production and animal breeding, which can be used for power supply of agricultural enterprises. The given analysis was carried with application of common methodological fundamentals, revealed in the estimation of production structure of agricultural enterprises, structure of land employment, efficiency of crops growing, indicators of output of main and by-products, as well as normative (standard parameters of power output of energy raw material in relation to the chosen technology of its utilization. Results of the research prove high energy potential of byproducts of crop production and animal breeding at all of the studied enterprises, which should force its practical use.

  20. Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies.

    Science.gov (United States)

    Shie, Je-Lueng; Chang, Ching-Yuan; Chen, Ci-Syuan; Shaw, Dai-Gee; Chen, Yi-Hung; Kuan, Wen-Hui; Ma, Hsiao-Kan

    2011-06-01

    To be a viable alternative, a biofuel should provide a net energy gain and be capable of being produced in large quantities without reducing food supplies. Amounts of agricultural waste are produced and require treatment, with rice straw contributing the greatest source of such potential bio-fuel in Taiwan. Through life-cycle accounting, several energy indicators and four potential gasification technologies (PGT) were evaluated. The input energy steps for the energy life cycle assessment (ELCA) include collection, generator, torrefaction, crushing, briquetting, transportation, energy production, condensation, air pollution control and distribution of biofuels to the point of end use. Every PGT has a positive energy benefit. The input of energy required for the transportation and pre-treatment are major steps in the ELCA. On-site briquetting of refused-derived fuel (RDF) provides an alternative means of reducing transportation energy requirements. Bio-energy sources, such as waste rice straw, provide an ideal material for the bio-fuel plant.

  1. Potential for energy conservation in the glass industry

    Energy Technology Data Exchange (ETDEWEB)

    Garrett-Price, B.A.; Fassbender, A.G.; Bruno, G.A.

    1986-06-01

    While the glass industry (flat glass, container glass, pressed and blown glass, and insulation fiber glass) has reduced its specific energy use (Btu/ton) by almost 30% since 1972, significant potential for further reduction still remains. State-of-the-art technologies are available which could lead to incremental improvements in glass industry energy productivity; however, these technologies must compete for capital with projects undertaken for other reasons (e.g., capacity expansion, equipment rebuild, labor cost reduction, product quality improvement, or compliance with environmental, health or safety regulations). Narrowing profit margins in the large tonnage segments of the glass industry in recent years and the fact that energy costs represent less than 25% of the value added in glass manufacture have combined to impede the widespread adoption of many state-of-the-art conservation technologies. Savings in energy costs alone have not provided the incentive to justify the capital expenditures required to realize the energy savings. Beyond implementation of state-of-the-art technologies, significant potential energy savings could accrue from advanced technologies which represent a radical departure from current glass making technology. Long-term research and development (R and D) programs, which address the technical and economic barriers associated with advanced, energy-conserving technologies, offer the opportunity to realize this energy-saving potential.

  2. Framework for State-Level Renewable Energy Market Potential Studies

    Energy Technology Data Exchange (ETDEWEB)

    Kreycik, C.; Vimmerstedt, L.; Doris, E.

    2010-01-01

    State-level policymakers are relying on estimates of the market potential for renewable energy resources as they set goals and develop policies to accelerate the development of these resources. Therefore, accuracy of such estimates should be understood and possibly improved to appropriately support these decisions. This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study, including what supporting data are needed and what types of assumptions need to be made. The report distinguishes between goal-oriented studies and other types of studies, and explains the benefits of each.

  3. Institutional Grounds of State Regulation of Interrelation of Subjects of the Electric Energy Market

    Directory of Open Access Journals (Sweden)

    Koliesnichenko Anastasiia S.

    2014-03-01

    Full Text Available The article improves the theoretical and mathematical mechanism in order to put in order institutional grounds of state regulation of interrelations that appear between subjects of the energy market in the process of electric energy trade. The article establishes structural and logical links between institutional factors of economic development and those functions of the state, which the state regulation of interrelations of subjects of the electric energy market is based upon. Based on the evolution approach the article analyses institutional instruments of state regulation of interrelation of subjects of the electric energy market, which takes into account specific features of its operation, specific conditions of development and creates a scientific and methodical basis for formation of concepts, strategies and programmes of development of the market of electric energy at the state level. The article considers and offers ways of improvement of the regulatory and legal provision of the process of state regulation of inter-subject relations of participants of the electric energy market with the aim of increase of scientific justification of draft laws and taking into consideration urgent problems when improving and developing regulatory and legal acts.

  4. Identification and management of potential problems in aquifer thermal energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Michel, F.A. [Carleton Univ., Ottawa, ON (Canada); Allen, D.M. [Simon Fraser Univ., Burnaby, BC (Canada)

    2003-07-01

    There is renewed interest in alternative renewable energy sources because of high energy prices, shortages in peak load electrical supplies, and environmental considerations. Worldwide efforts are being made to extract thermal energy from the ground for heating and cooling individual dwellings and industrial and institutional complexes. Aquifer thermal energy storage systems offer a viable option. Often, there is a poor understanding of the problems associated with the well field, resulting in resistance in the consideration and implementation of the technology. Well-field problems include pressure build-up in the reinjection wells resulting in reduced flow conditions. Other problems associated with well-field configuration include wellbore clogging due to sediment accumulation, scaling, degassing or bio-fouling. These problems are often associated with changes in temperature and pressure. The authors examined these problems and presented guidelines to assist in the identification and management of the potential problems. 2 refs., 1 fig.

  5. Accurate Ground-State Energies of Solids and Molecules from Time-Dependent Density-Functional Theory

    DEFF Research Database (Denmark)

    Olsen, Thomas; Thygesen, Kristian Sommer

    2014-01-01

    We demonstrate that ground-state energies approaching chemical accuracy can be obtained by combining the adiabatic-connection fluctuation-dissipation theorem with time-dependent densityfunctional theory. The key ingredient is a renormalization scheme, which eliminates the divergence...

  6. Technical Potential of Solar Energy to Address Energy Poverty and Avoid GHG Emissions in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Cowlin, S. C.; Heimiller, D.; Bilello, D.; Renne, D.

    2008-01-01

    This analysis explores the technical potential of photovoltaics (PV) or concentrating solar power (CSP) to address energy poverty in Africa through a geographic information system (GIS) screening of solar resource data developed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL).

  7. Ab initio potential energy surface and vibration-rotation energy levels of silicon dicarbide, SiC2.

    Science.gov (United States)

    Koput, Jacek

    2016-10-01

    The accurate ground-state potential energy surface of silicon dicarbide, SiC2 , has been determined from ab initio calculations using the coupled-cluster approach. Results obtained with the conventional and explicitly correlated coupled-cluster methods were compared. The core-electron correlation, higher-order valence-electron correlation, and scalar relativistic effects were taken into account. The potential energy barrier to the linear SiCC configuration was predicted to be 1782 cm(-1) . The vibration-rotation energy levels of the SiC2 , (29) SiC2 , (30) SiC2 , and SiC(13) C isotopologues were calculated using a variational method. The experimental vibration-rotation energy levels of the main isotopologue were reproduced to high accuracy. In particular, the experimental energy levels of the highly anharmonic vibrational ν3 mode of SiC2 were reproduced to within 6.7 cm(-1) , up to as high as the v3  = 16 state.

  8. Potential use of ground-based sensor technologies for weed detection.

    Science.gov (United States)

    Peteinatos, Gerassimos G; Weis, Martin; Andújar, Dionisio; Rueda Ayala, Victor; Gerhards, Roland

    2014-02-01

    Site-specific weed management is the part of precision agriculture (PA) that tries to effectively control weed infestations with the least economical and environmental burdens. This can be achieved with the aid of ground-based or near-range sensors in combination with decision rules and precise application technologies. Near-range sensor technologies, developed for mounting on a vehicle, have been emerging for PA applications during the last three decades. These technologies focus on identifying plants and measuring their physiological status with the aid of their spectral and morphological characteristics. Cameras, spectrometers, fluorometers and distance sensors are the most prominent sensors for PA applications. The objective of this article is to describe-ground based sensors that have the potential to be used for weed detection and measurement of weed infestation level. An overview of current sensor systems is presented, describing their concepts, results that have been achieved, already utilized commercial systems and problems that persist. A perspective for the development of these sensors is given. © 2013 Society of Chemical Industry.

  9. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    OpenAIRE

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L.A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S

    2011-01-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV to 10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will con...

  10. Energy Planning in Selected European Regions - Methods for Evaluating the Potential of Renewable Energy Sources

    OpenAIRE

    Sliz-Szkliniarz, Beata

    2013-01-01

    Given their potentially positive impact on climate protection and the preservation of fossil resources, alternative energy sources have become increasingly important for the energy supply over the past years. However, the questions arises what economic and ecological impacts and potential conflicts over land use resources are associated with the promotion of renewable energy production. Using the examples of three selected European Regions in Poland, France and German, the dissertation discus...

  11. Spatial Modelling of Solar energy Potential in Kenya

    Directory of Open Access Journals (Sweden)

    Francis Omondi Oloo

    2015-06-01

    Full Text Available Solar energy is one of the readily available renewable energy resources in the developing countries within the tropical region. Kenya is one of the countries which receive an average of approximately 6.5 sunshine hours in a single day throughout the year. However, there is slow adoption of solar energy resources in the country due to limited information on the spatial variability solar energy potential. This study aims at assessing the potential of photovoltaic solar energy in Kenya. The factors that influence incident solar radiation which were considered in this task included atmospheric transmissivity and topography. The influence of atmospheric transmissivity was factored in by modelling monthly transmissivity factors from a combination of cloud cover, diffuse ratios and the effect of altitude. The contribution of topography was included by applying hemispherical viewshed analysis to determine the amount of incident global radiation on the surface based on the orientation of the terrain. GIS concepts were used to integrate the spatial datasets from different themes. The results showed that, about 70% of the land area in Kenya has the potential of receiving approximately 5kWh/m2/day throughout the year. In outline, this work successfully assessed the spatio-temporal variability in the characteristics of solar energy potential in Kenya and can be used as a basis for policy support in the country.

  12. Warm body temperature facilitates energy efficient cortical action potentials.

    Directory of Open Access Journals (Sweden)

    Yuguo Yu

    Full Text Available The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+ channel inactivation, resulting in a marked reduction in overlap of the inward Na(+, and outward K(+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.

  13. Potential for natural evaporation as a reliable renewable energy resource.

    Science.gov (United States)

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  14. Wind energy potential analysis in Al-Fattaih-Darnah

    Energy Technology Data Exchange (ETDEWEB)

    Tjahjana, Dominicus Danardono Dwi Prija, E-mail: danar1405@gmail.com; Salem, Abdelkarim Ali, E-mail: keemsalem@gmail.com; Himawanto, Dwi Aries, E-mail: dwiarieshimawanto@gmail.com [University of Sebelas Maret, Jl. Ir. Sutami No. 36 A, Surakarta, Indonesia 57126 (Indonesia)

    2016-03-29

    In this paper the wind energy potential in Al-Fattaih-Darnah, Libya, had been studied. Wind energy is very attractive because it can provide a clean and renewable energy. Due mostly to the uncertainty caused by the chaotic characteristics of wind near the earth’s surface, wind energy characteristic need to be investigated carefully in order to get consistent power generation. This investigation was based on one year wind data measured in 2003. As a result of the analysis, wind speed profile and wind energy potential have been developed. The wind energy potential of the location is looked very promising to generate electricity. The annual wind speed of the site is 8.21 m/s and the wind speed carrying maximum energy is 7.97 m/s. The annual power density of the site is classified into class 3. The Polaris P50-500 wind turbine can produce 768.39 M Wh/year and has capacity factor of 17.54%.

  15. Potential energy surface of triplet N{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Zoltan; Meana-Pañeda, Rubén; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G., E-mail: truhlar@umn.edu [Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States)

    2016-01-14

    We present a global ground-state triplet potential energy surface for the N{sub 2}O{sub 2} system that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation. The surface is based on multi-state complete-active-space second-order perturbation theory/minimally augmented correlation-consistent polarized valence triple-zeta electronic structure calculations plus dynamically scaled external correlation. In the multireference calculations, the active space has 14 electrons in 12 orbitals. The calculations cover nine arrangements corresponding to dissociative diatom-diatom collisions of N{sub 2}, O{sub 2}, and nitric oxide (NO), the interaction of a triatomic molecule (N{sub 2}O and NO{sub 2}) with the fourth atom, and the interaction of a diatomic molecule with a single atom (i.e., the triatomic subsystems). The global ground-state potential energy surface was obtained by fitting the many-body interaction to 54 889 electronic structure data points with a fitting function that is a permutationally invariant polynomial in terms of bond-order functions of the six interatomic distances.

  16. Chemical Characterization of Potentially Prebiotic Oligosaccharides in Brewed Coffee and Spent Coffee Grounds.

    Science.gov (United States)

    Tian, Tian; Freeman, Samara; Corey, Mark; German, J Bruce; Barile, Daniela

    2017-04-05

    Oligosaccharides are indigestible carbohydrates widely present in mammalian milk and in some plants. Milk oligosaccharides are associated with positive health outcomes; however, oligosaccharides in coffee have not been extensively studied. We investigated the oligosaccharides and their monomeric composition in dark roasted coffee beans, brewed coffee, and spent coffee grounds. Oligosaccharides with a degree of polymerization ranging from 3 to 15, and their constituent monosaccharides, were characterized and quantified. The oligosaccharides identified were mainly hexoses (potentially galacto-oligosaccharides and manno-oligosaccharides) containing a heterogeneous mixture of glucose, arabinose, xylose, and rhamnose. The diversity of oligosaccharides composition found in these coffee samples suggests that they could have selective prebiotic activity toward specific bacterial strains able to deconstruct the glycosidic bonds and utilize them as a carbon source.

  17. Ground-based RGB imaging to determine the leaf water potential of potato plants

    Science.gov (United States)

    Zakaluk, Robert F.

    The determination of plant water status from leaf water potential (Psi L) data obtained by conventional methods is impractical for meeting real time irrigation monitoring requirements. This research, undertaken first, in a greenhouse and then in the field, examined the use of artificial neural network (ANN) modeling of RGB (red green blue) images, captured by a ground-based, five mega pixel digital camera, to predict the leaf water potential of potato (Solanum tuberosum L). The greenhouse study examined cv. Russet Burbank, while the field study examined cv. Sangre. The protocol was similar in both studies: (1) images were acquired over different soil nitrate (N) and volumetric water content levels, (2) images were radiometrically calibrated, (3) green foliage was classified and extracted from the images, and (4) image transformations, and vegetation indices were calculated and transformed using principal components analysis (PCA). The findings from both studies were similar: (1) the R and G bands were more important than the B image band in the classification of green leaf pigment, (2) soil N showed an inverse linear relationship against leaf reflectance in the G image band, (3) the ANN model input neuron weights with more separation between soil N and PsiL were more important than other input neurons in predicting PsiL, and (4) the measured and predicted PsiL validation datasets were normally distributed with equal variances and means that were not significantly different. Based on these research findings, the ground-based digital camera proved to be an adequate sensor for image acquisition and a practical tool for acquiring data for predicting the PsiL of potato plants. Keywords: nitrogen, IHS transformation, chromaticity transformation, principal components, vegetation indices, remote sensing, artificial neural network, digital camera.

  18. Renewable energy technologies adoption in Kazakhstan: potentials, barriers and solutions

    Science.gov (United States)

    Karatayev, Marat; Marazza, Diego; Contin, Andrea

    2015-04-01

    The growth in environmental pollution alongside an increasing demand for electricity in Kazakhstan calls for a higher level of renewable energy penetration into national power systems. Kazakhstan has great potential for renewable energies from wind, solar, hydro and biomass resources that can be exploited for electricity production. In 2013, the Kazakhstani Ministry of Energy initiated a new power development plan, which aims to bring the share of renewable energy to 3% by 2020 rising to 30% by 2030 and 50% by 2050. The current contribution of renewable energy resources in the national electricity mix, however, is less than 1%. As a developing country, Kazakhstan has faced a number of barriers to increase renewable energy use, which have to be analysed and translated into a comprehensive renewable energy policy framework. This study presents an overview of the current conditions of renewable energy development in Kazakhstan. Secondly, it identifies and describes the main barriers that prevent diffusion of renewable energy technologies in Kazakhstan. Finally, the paper provides solutions to overcome specific barriers in order to successfully develop a renewable energy technology sector in Kazakhstan.

  19. Investigation into the potential of energy storage to tackle intermittency in renewable energy generation

    OpenAIRE

    Barbour, Edward

    2013-01-01

    Renewable Energy is by nature intermittent and matching the supply of energy to specific time dependent demand poses huge challenges. Energy storage is a useful tool in handling this temporal disparity, although except for regions very suitable for pumped hydroelectric storage schemes, it suffers from being technically difficult to implement and costly as a result. This study investigates the potential benefits offered by various scales of energy storage to different types of r...

  20. Energy splitting of the ground-state doublet in the nucleus 229Th.

    Science.gov (United States)

    Beck, B R; Becker, J A; Beiersdorfer, P; Brown, G V; Moody, K J; Wilhelmy, J B; Porter, F S; Kilbourne, C A; Kelley, R L

    2007-04-01

    The energy splitting of the 229Th ground-state doublet is measured to be 7.6+/-0.5 eV, significantly greater than earlier measurements. Gamma rays produced following the alpha decay of 233U (105 muCi) were counted in the NASA/electron beam ion trap x-ray microcalorimeter spectrometer with an experimental energy resolution of 26 eV (FWHM). A difference technique was applied to the gamma-ray decay of the 71.82 keV level that populates both members of the doublet. A positive correction amounting to 0.6 eV was made for the unobserved interband decay of the 29.19 keV state (29.19-->0 keV).

  1. Energy Splitting of the Ground-State Doublet in the Nucleus Th229

    Science.gov (United States)

    Beck, B. R.; Becker, J. A.; Beiersdorfer, P.; Brown, G. V.; Moody, K. J.; Wilhelmy, J. B.; Porter, F. S.; Kilbourne, C. A.; Kelley, R. L.

    2007-04-01

    The energy splitting of the Th229 ground-state doublet is measured to be 7.6±0.5eV, significantly greater than earlier measurements. Gamma rays produced following the alpha decay of U233 (105μCi) were counted in the NASA/electron beam ion trap x-ray microcalorimeter spectrometer with an experimental energy resolution of 26 eV (FWHM). A difference technique was applied to the gamma-ray decay of the 71.82 keV level that populates both members of the doublet. A positive correction amounting to 0.6 eV was made for the unobserved interband decay of the 29.19 keV state (29.19→0keV).

  2. Thermal Energy Storage in the Ground of a Greenhouse by the Polypropylene Capillary Heat Exchanger

    Directory of Open Access Journals (Sweden)

    M. Lazâar

    2008-01-01

    Full Text Available The problem of temperature inversion is one of solar origin principal problems about which the cultures under shelters complain. Indeed, for the winter period, the temperature under greenhouse is very low at night and it is rather high during the day in summer. Consequently, the heating of the greenhouses is essential. In this work, we studied the advisability of using two exchangers coupled between them to manage thermal energy in a greenhouse. The first system is a battery of plaits with capillary tubes buried under ground with a depth of 70 cm. The second is an air exchanger based on plastic tubes black known as agrotherms suspended with two meters and half height. The hot water, which circulates in the exchangers, is provided by the hot-water tank of the electro-solar power station of the Center of Energy Researches and Technologies (CRTEn from Tunisia.

  3. Potential of Laser Induced Breakdown Spectroscopy for analyzing the quality of unroasted and ground coffee

    Science.gov (United States)

    Silva, Tiago Varão; Hubinger, Silviane Zanni; Gomes Neto, José Anchieta; Milori, Débora Marcondes Bastos Pereira; Ferreira, Ednaldo José; Ferreira, Edilene Cristina

    2017-09-01

    Coffee is an important commodity and a very popular beverage around the world. Its economic value as well as beverage quality are strongly dependent of the quality of beans. The presence of defective beans in coffee blends has caused a negative impact on the beverage Global Quality (GQ) assessed by cupping tests. The main defective beans observed in the productive chain has been those Blacks, Greens and Sours (BGS). Chemical composition of BGS has a damaging impact on beverage GQ. That is why analytical tools are needed for monitoring and controlling the GQ in coffee agro-industry. Near Infrared Spectroscopy (NIRS) has been successfully applied for assessment of coffee quality. Another potential technique for direct, clean and fast measurement of coffee GQ is Laser Induced Breakdown Spectroscopy (LIBS). Elements and diatomic molecules commonly present in organic compounds (structure) can be assessed by using LIBS. In this article is reported an evaluation of LIBS for the main interferents of GQ (BGS defects). Results confirm the great potential of LIBS for discriminating good beans from those with BGS defects by using emission lines of C, CN, C2 and N. Most importantly, some emission lines presented strong linear correlation (r > 0.9) with NIRS absorption bands assigned to proteins, lipids, sugar and carboxylic acids, suggesting LIBS potential to estimate these compounds in unroasted and ground coffee samples.

  4. Frozen: The Potential and Pitfalls of Ground-Penetrating Radar for Archaeology in the Alaskan Arctic

    Directory of Open Access Journals (Sweden)

    Thomas M. Urban

    2016-12-01

    Full Text Available Ground-penetrating radar (GPR offers many advantages for assessing archaeological potential in frozen and partially frozen contexts in high latitude and alpine regions. These settings pose several challenges for GPR, including extreme velocity changes at the interface of frozen and active layers, cryogenic patterns resulting in anomalies that can easily be mistaken for cultural features, and the difficulty in accessing sites and deploying equipment in remote settings. In this study we discuss some of these challenges while highlighting the potential for this method by describing recent successful investigations with GPR in the region. We draw on cases from Bering Land Bridge National Preserve, Cape Krusenstern National Monument, Kobuk Valley National Park, and Gates of the Arctic National Park and Preserve. The sites required small aircraft accessibility with light equipment loads and minimal personnel. The substrates we investigate include coastal saturated active layer over permafrost, interior well-drained active layer over permafrost, a frozen thermo-karst lake, and an alpine ice patch. These examples demonstrate that GPR is effective at mapping semi-subterranean house remains in several contexts, including houses with no surface manifestation. GPR is also shown to be effective at mapping anomalies from the skeletal remains of a late Pleistocene mammoth frozen in ice. The potential for using GPR in ice and snow patch archaeology, an area of increasing interest with global environmental change exposing new material each year, is also demonstrated.

  5. Leptin regulates energy intake but fails to facilitate hibernation in fattening Daurian ground squirrels (Spermophilus dauricus).

    Science.gov (United States)

    Xing, Xin; Tang, Gang-Bin; Sun, Ming-Yue; Yu, Chao; Song, Shi-Yi; Liu, Xin-Yu; Yang, Ming; Wang, De-Hua

    2016-04-01

    Body fat storage before hibernation affects the timing of immergence in Daurian ground squirrels (Spermophilus dauricus). Leptin is an adipose signal and plays vital role in energy homeostasis mainly by action in brain. To test the hypothesis that leptin plays a role in facilitating the process of hibernation, squirrels were administrated with recombinant murine leptin (1μg/day) through intracerebroventricular (ICV) injection for 12 days during fattening. From day 7 to 12, animals were moved into a cold room (5±1°C) with constant darkness which functioned as hibernaculum. Energy intake, body mass and core body temperature (Tb) were continuously monitored throughout the course of experiment. Resting metabolic rate (RMR) was measured under both warm and cold conditions. At the end of leptin administration, we measured the serum concentration of hormones related to energy regulation, mRNA expression of hypothalamic neuropeptides and uncoupling protein 1 (UCP1) levels in brown adipose tissue (BAT). Our results showed that during leptin administration, the cumulative food intake and increase of body mass were suppressed while Tb and RMR were unaltered. The proportion of torpid squirrels was not different between two groups. At the end of leptin administration, the expressions of hypothalamic neuropeptide Y and agouti gene-related protein were suppressed. There were no differences in UCP1 mRNA expression or protein content in BAT between groups. Our data suggest that leptin can affect energy intake via hypothalamic neuropeptides, but is not involved in the initiation of hibernation in fattening Daurian ground squirrels.

  6. Communication: Fitting potential energy surfaces with fundamental invariant neural network

    Science.gov (United States)

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H.

    2016-08-01

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.

  7. Saturation wind power potential and its implications for wind energy.

    Science.gov (United States)

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy.

  8. Low-energy K- optical potentials: deep or shallow?

    Science.gov (United States)

    Cieplý, A.; Friedman, E.; Gal, A.; Mareš, J.

    2001-12-01

    The K- optical potential in the nuclear medium is evaluated self consistently from a free-space K-Nt matrix constructed within a coupled-channel chiral approach. The fit of model parameters gives a good description of the low-energy data plus the available K- atomic data. The resulting optical potential is relatively `shallow' in contradiction to the potentials obtained from phenomenological analysis. The calculated (Kstop-,π) hypernuclear production rates are very sensitive to the details of kaonic bound state wave function. The (Kstop-,π) reaction could thus serve as a suitable tool to distinguish between shallow and deep K- optical potentials.

  9. Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL; Craddick, William G [ORNL

    2007-09-01

    . With the greater energy savings the cost of the more energy efficient components required for the IHP can be recovered more quickly than if they were applied to individual pieces of equipment to meet each individual energy service need. An IHP can be designed to use either outdoor air or geothermal resources (e.g., ground, ground water, surface water) as the environmental energy source/sink. Based on a scoping study of a wide variety of possible approaches to meeting the energy service needs for a ZEH, DOE selected the IHP concept as the most promising and has supported research directed toward the development of both air- and ground-source versions. This report describes the ground-source IHP (GS-IHP) design and includes the lessons learned and best practices revealed by the research and development (R&D) effort throughout. Salient features of the GS-IHP include a variable-speed rotary compressor incorporating a brushless direct current permanent magnet motor which provides all refrigerant compression, a variable-speed fan for the indoor section, a multiple-speed ground coil circuit pump, and a single-speed pump for water heating operation. Laboratory IHP testing has thus far used R-22 because of the availability of the needed components that use this refrigerant. It is expected that HFC R-410A will be used for any products arising from the IHP concept. Data for a variable-speed compressor that uses R-410A has been incorporated into the DOE/ORNL Mark VI Heat Pump Design Model (HPDM). HPDM was then linked to TRNSYS, a time-series-dependent simulation model capable of determining the energy use of building cooling and heating equipment as applied to a defined house on a sub-hourly basis. This provided a highly flexible design analysis capability for advanced heat pump equipment; however, the program also took a relatively long time to run. This approach was used with the initial prototype design reported in Murphy et al. (2007a) and in the business case analysis of

  10. Capacitive technology for energy extraction from chemical potential differences

    OpenAIRE

    Bastos Sales, B.

    2013-01-01

    This thesis introduces the principle of Capacitive energy extraction based on Donnan Potential (CDP) to exploit salinity gradients. It also shows the fundamental characterization and improvements of CDP. An alternative application of this technology aimed at thermal gradients was tested.   Chapter 2 introduces the principle and initial tests. The entropy increase of mixing two solutions of different salt concentrations can be harnessed to generate electrical energy. Worldwide, the potent...

  11. Reaction Path Optimization with Holonomic Constraints and Kinetic Energy Potentials.

    Science.gov (United States)

    Brokaw, Jason B; Haas, Kevin R; Chu, Jhih-Wei

    2009-08-11

    Two methods are developed to enhance the stability, efficiency, and robustness of reaction path optimization using a chain of replicas. First, distances between replicas are kept equal during path optimization via holonomic constraints. Finding a reaction path is, thus, transformed into a constrained optimization problem. This approach avoids force projections for finding minimum energy paths (MEPs), and fast-converging schemes such as quasi-Newton methods can be readily applied. Second, we define a new objective function - the total Hamiltonian - for reaction path optimization, by combining the kinetic energy potential of each replica with its potential energy function. Minimizing the total Hamiltonian of a chain determines a minimum Hamiltonian path (MHP). If the distances between replicas are kept equal and a consistent force constant is used, then the kinetic energy potentials of all replicas have the same value. The MHP in this case is the most probable isokinetic path. Our results indicate that low-temperature kinetic energy potentials (optimization and can significantly reduce the required steps of minimization by 2-3 times without causing noticeable differences between a MHP and MEP. These methods are applied to three test cases, the C7eq-to-Cax isomerization of an alanine dipeptide, the (4)C1-to-(1)C4 transition of an α-d-glucopyranose, and the helix-to-sheet transition of a GNNQQNY heptapeptide. By applying the methods developed in this work, convergence of reaction path optimization can be achieved for these complex transitions, involving full atomic details and a large number of replicas (>100). For the case of helix-to-sheet transition, we identify pathways whose energy barriers are consistent with experimental measurements. Further, we develop a method based on the work energy theorem to quantify the accuracy of reaction paths and to determine whether the atoms used to define a path are enough to provide quantitative estimation of energy barriers.

  12. Potential of Sugarcane in Modern Energy Development in Southern Africa

    OpenAIRE

    Souza, Simone P.; Horta Nogueira, Luiz A.; Watson, Helen K.; Lynd, Lee Rybeck; Elmissiry, Mosad; Cortez,Luís A.B.

    2016-01-01

    For more than half of the Southern African population, human development is limited by a lack of access to electricity and modern energy for cooking. Modern bioenergy merits consideration as one means to address this situation in areas where sufficient arable land is available. While numerous studies have concluded that Africa has significant biomass potential, they do not indicate by how much it can effectively reduce the use of traditional biomass and provide more accessible energy, especia...

  13. Energy Potential Mapping: Visualising Energy Characteristics for the Exergetic Optimisation of the Built Environment

    Directory of Open Access Journals (Sweden)

    Michiel Fremouw

    2013-01-01

    Full Text Available It is difficult to fully satisfy the energy demand of today’s society with renewables. Nevertheless, most of the energy we use is lost as non-functional waste energy, whereas a large part of the built environment’s energy demand is only for low-quality energy, so the initial demand for primary, high-quality energy can be reduced by more effective usage, such as by low-exergy means. Gaining insight into the parameters of energy demands and local renewable and residual energy potentials enables matching energy demand with a fitting potential, not only concerning quantity but taking into account location, temporality and quality as well. The method of Energy Potential Mapping (EPM aims to visualise the energy potentials and demands by making information of quantity, quality and location of demand and supply accessible. The aspect of quality specifically applies to heat and cold. The methodology of EPM will be described and explained with case studies. The focus specifically lies on mapping heat (and cold, one of the main reasons for energy demand in the built environment. The visualisation of exergy, to be simplified as the quality of energy, becomes an extra parameter in the case of Dutch Heat Maps. These maps can help finding opportunities of practical implementations of exchanging or cascading heat or cold. This way EPM and Heat Mapping (HM enables application of exergy principles in the built environment. EPM and HM can be seen as a local energy catalogue and can be useful in spatial planning for energy-based urban and rural plans.

  14. Mapping Thermal Energy Resource Potentials from Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    Georg Neugebauer

    2015-09-01

    Full Text Available Wastewater heat recovery via heat exchangers and heat pumps constitutes an environmentally friendly, approved and economically competitive, but often underestimated technology. By introducing the spatial dimension in feasibility studies, the results of calculations change considerably. This paper presents a methodology to estimate thermal energy resource potentials of wastewater treatment plants taking spatial contexts into account. In close proximity to settlement areas, wastewater energy can ideally be applied for heating in mixed-function areas, which very likely have a continuous heat demand and allow for an increased amount of full-load hours compared to most single-use areas. For the Austrian case, it is demonstrated that the proposed methodology leads to feasible results and that the suggested technology might reduce up to 17% of the Austrian global warming potential of room heating. The method is transferrable to other countries as the input data and calculation formula are made available. A broad application of wastewater energy with regard to spatial structures and spatial development potentials can lead to (1 increasing energy efficiency by using a maximum of waste heat and (2 a significant reduction of (fossil energy consumption which results in a considerable reduction of the global warming potential of the heat supply (GWP if electricity from renewables is used for the operation of heat pumps.

  15. An adaptive interpolation scheme for molecular potential energy surfaces

    Science.gov (United States)

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  16. Calculating vibrational spectra using modified Shepard interpolated potential energy surfaces.

    Science.gov (United States)

    Evenhuis, Christian R; Manthe, Uwe

    2008-07-14

    A potential energy interpolation approach based on modified Shepard interpolation and specifically designed for calculation of vibrational states is presented. The importance of the choice of coordinates for the rate of convergence is demonstrated. Studying the vibrational states of the water molecule as a test case, a coordinate system comprised of inverse bond distances and trigonometric functions of the bond angle is found to be particularly efficient. Different sampling schemes used to locate the reference points in the modified Shepard interpolation are investigated. A final scheme is recommended, which allows the construction of potential energy surfaces to sub-wave-number accuracy.

  17. An adaptive interpolation scheme for molecular potential energy surfaces

    CERN Document Server

    Kowalewski, Markus; Heryudono, Alfa

    2016-01-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task -- especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior is evaluated for a model function in 2, 3 and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  18. Potentials and market prospects of wind energy in Vojvodina

    Directory of Open Access Journals (Sweden)

    Katić Vladimir A.

    2012-01-01

    Full Text Available The paper presents an overview of the wind energy potentials, technologies and market prospects in the Autonomous Province of Vojvodina, the region of Serbia with the most suitable location for exploitation of wind energy. The main characteristics of the region have been presented regarding wind energy and electric, road, railway and waterway infrastructure. The wind farm interconnection with the public grid is explained. The most suitable locations for the wind farms are presented, with present situation and future prospects of wind market in Vojvodina.

  19. Biohydrogen production as a potential energy fuel in South Africa

    Directory of Open Access Journals (Sweden)

    P.T. Sekoai

    2015-06-01

    Full Text Available Biohydrogen production has captured increasing global attention due to it social, economic and environmental benefits. Over the past few years, energy demands have been growing significantly in South Africa due to rapid economic and population growth. The South African parastatal power supplier i.e. Electricity Supply Commission (ESKOM has been unable to meet the country’s escalating energy needs. As a result, there have been widespread and persistent power cuts throughout the country. This prompts an urgent need for exploration and implementation of clean and sustainable energy fuels like biohydrogen production in order to address this crisis. Therefore, this paper discusses the current global energy challenges in relation to South Africa’s problems. It then examines the feasibility of using biohydrogen production as a potential energy fuel in South Africa. Finally, it reviews the hydrogen-infrastructure development plans in the country.

  20. Ground state analytical ab initio intermolecular potential for the Cl{sub 2}-water system

    Energy Technology Data Exchange (ETDEWEB)

    Hormain, Laureline; Monnerville, Maurice, E-mail: maurice.monnerville@univ-lille1.fr; Toubin, Céline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stéphane [Laboratoire de Physique des Lasers Atomes et Molécules, Unité Mixte de Recherche (UMR) 8523, Université Lille I, Bât. P5, 59655 Villeneuve d’Ascq Cedex (France); Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón [Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México (Mexico)

    2015-04-14

    The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.

  1. Analyses on Energy Saving Potential Based on Large-scale Public Buildings Energy Consumption

    Directory of Open Access Journals (Sweden)

    Xuping Chen

    2012-08-01

    Full Text Available To analyze large-scale public buildings’ energy-saving potential is one of the methods to realize scientific energy control management and service. This method aims at a typical public building’s powerconsumed system. Through analyzing and comparing the consumption data, it succeeds in analyzing the use efficiency of building power, consumption level and economic effects of the energy utilization. More over, this method has a quantity analysis on the power-consumed unit’s building usage, so that it is able to find the unit’s energy-saving potential. Its bases of all analyses are building energy balance and analyzing theory of energy cost, analyzing theory of engineering economy and environment and rational distribution theory of energy utilization system.

  2. Fossil energy savings potential of sugar cane bio-energy systems

    DEFF Research Database (Denmark)

    Nguyen, Thu Lan T; Hermansen, John Erik; Sagisaka, Masayuki

    2009-01-01

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity...... and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while...... proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts...

  3. Potentials and policy implications of energy and material efficiency improvement

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01

    There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

  4. Dynamics Near the Ground State for the Energy Critical Nonlinear Heat Equation in Large Dimensions

    Science.gov (United States)

    Collot, Charles; Merle, Frank; Raphaël, Pierre

    2016-11-01

    We consider the energy critical semilinear heat equation partial_tu = Δ u + |u|^{4/d-2}u, quad x in R^d and give a complete classification of the flow near the ground state solitary wave Q(x) = 1/(1+{|x|^2/{d(d-2)})^{d-2/2}} in dimension {d ≥ 7} , in the energy critical topology and without radial symmetry assumption. Given an initial data {Q + ɛ_0} with {|nabla ɛ_0|_{L^2} ≪ 1} , the solution either blows up in the ODE type I regime, or dissipates, and these two open sets are separated by a codimension one set of solutions asymptotically attracted by the solitary wave. In particular, non self similar type II blow up is ruled out in dimension {d ≥ 7} near the solitary wave even though it is known to occur in smaller dimensions (Schweyer, J Funct Anal 263(12):3922-3983, 2012). Our proof is based on sole energy estimates deeply connected to Martel et al. (Acta Math 212(1):59-140, 2014) and draws a route map for the classification of the flow near the solitary wave in the energy critical setting. A by-product of our method is the classification of minimal elements around Q belonging to the unstable manifold.

  5. Advanced Coupled Simulation of Borehole Thermal Energy Storage Systems and Above Ground Installations

    Science.gov (United States)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo

    2016-04-01

    Seasonal thermal energy storage in borehole heat exchanger arrays is a promising technology to reduce primary energy consumption and carbon dioxide emissions. These systems usually consist of several subsystems like the heat source (e.g. solarthermics or a combined heat and power plant), the heat consumer (e.g. a heating system), diurnal storages (i.e. water tanks), the borehole thermal energy storage, additional heat sources for peak load coverage (e.g. a heat pump or a gas boiler) and the distribution network. For the design of an integrated system, numerical simulations of all subsystems are imperative. A separate simulation of the borehole energy storage is well-established but represents a simplification. In reality, the subsystems interact with each other. The fluid temperatures of the heat generation system, the heating system and the underground storage are interdependent and affect the performance of each subsystem. To take into account these interdependencies, we coupled a software for the simulation of the above ground facilities with a finite element software for the modeling of the heat flow in the subsurface and the borehole heat exchangers. This allows for a more realistic view on the entire system. Consequently, a finer adjustment of the system components and a more precise prognosis of the system's performance can be ensured.

  6. Global Potential of Energy Efficiency Standards and Labeling Programs

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie; de la Rue du Can, Stephane

    2008-06-15

    This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds of policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration

  7. In search of a broader microscopic underpinning of the potential energy surface in heavy deformed nuclei

    Science.gov (United States)

    Hess, P. O.; Ermamatov, M.

    2017-07-01

    Starting from the content of the shell model space and using a simple symplectic as a weight Hamiltonian, the relative positions of different symplectic irreducible representations are deduced. Applying a geometrical mapping leads to a microscopically derived Potential-Energy-Surface. After smoothing this surface and fitting a mass parameter to the first excited 6+-state in the ground state band, the spectrum of a nucleus can be reproduced qualitatively. The method is also used to obtain a first estimation of the quadrupole Potential Energy Surface of any nucleus, allowing to obtain information about the structure of the nucleus in question. Of special interest is the prediction of the structure of nuclei away from the valley of stability and of super-heavy nuclei. The method will be illustrated at184W. One objective is to show that the Pauli Exclusion Principle is the main driving force for the structure of a nucleus, though some further microscopic input has to be used.

  8. Development and application of a vibration isolation system with adaptive stiffness considering potential energy

    Science.gov (United States)

    Chen, Chi-Jen; Lin, Tzu-Kang

    2015-03-01

    In recent years, a study of a semi-active isolation system named the Leverage-type Stiffness Controllable Isolation System (LSCIS) was proposed. The main concept of the LSCIS is to adjust the stiffness in the isolator for the fundamental period of the superstructure by a simple leverage mechanism. Although great performance has been achieved with the support of the least input energy method (LIEM) in far-field earthquakes, some results still reveal that the proposed system is not suitable for application in near-fault strong ground motion. To overcome this problem, two algorithms that consider the potential energy effect in the semi-active structural control system are proposed in this study. The optimal weightings between the potential and kinetic energy are first determined through a series of near-fault earthquake simulations. The proposed algorithms are then developed with the combination of the potential energy (Ep) and the kinetic energy (Ep) as the control objective to reduce the structural displacement responses efficiently. In order to demonstrate the performance of the proposed algorithm, a two-degree-of-freedom structure is used as a benchmark in both numerical simulation and experimental verification. Numerical results have shown that the dynamic response of the structure can be effectively alleviated by the proposed algorithm under both far-field and near-fault earthquakes, while the structural responses by the LIEM may be worse than the pure passive control. The feasibility of implementing the proposed system has also been experimentally verified.

  9. Energy harvesting potential of tuned inertial mass electromagnetic transducers

    Science.gov (United States)

    Asai, Takehiko; Araki, Yoshikazu; Ikago, Kohju

    2017-02-01

    The demand for developing renewable energy technologies has been growing in today's society. As one of promising renewable energy sources, large-scale energy harvesting from structural vibrations employing electromagnetic transducers has recently been proposed and considerable effort has been devoted to increase the power generation capability. In this paper, we introduce the mechanism of a tuned inertial mass electromagnetic transducer (TIMET), which can absorb vibratory energy more efficiently by tuning the parameters to adjust the system. Then we propose a new vibratory energy harvester with the TIMET and determine the parameter values for the device with a simple static admittance (SA) control law to maximize the energy harvested from a stationary stochastic disturbance. To investigate the energy harvesting potential of the TIMET further, the performance-guaranteed (PG) control and the LQG control proposed in the literature are applied as well. Then the numerical simulation studies are carried out and the effectiveness of the proposed energy harvester is examined by comparing the traditional electromagnetic transducers.

  10. Potential energy curves for the interaction of Ag(5s) and Ag(5p) with noble gas atoms

    CERN Document Server

    Loreau, J; Dalgarno, A

    2013-01-01

    We investigate the interaction of ground and excited states of a silver atom with noble gases (NG), including helium. Born-Oppenheimer potential energy curves are calculated with quantum chemistry methods and spin-orbit effects in the excited states are included by assuming a spin-orbit splitting independent of the internuclear distance. We compare our results with experimentally available spectroscopic data, as well as with previous calculations. Because of strong spin-orbit interactions, excited Ag-NG potential energy curves cannot be fitted to Morse-like potentials. We find that the labeling of the observed vibrational levels has to be shifted by one unit.

  11. Potential of Using Solar Energy for Drinking Water Treatment Plant

    Science.gov (United States)

    Bukhary, S. S.; Batista, J.; Ahmad, S.

    2016-12-01

    Where water is essential to energy generation, energy usage is integral to life cycle processes of water extraction, treatment, distribution and disposal. Increasing population, climate change and greenhouse gas production challenges the water industry for energy conservation of the various water-related operations as well as limiting the associated carbon emissions. One of the ways to accomplish this is by incorporating renewable energy into the water sector. Treatment of drinking water, an important part of water life cycle processes, is vital for the health of any community. This study explores the feasibility of using solar energy for a drinking water treatment plant (DWTP) with the long-term goal of energy independence and sustainability. A 10 MGD groundwater DWTP in southwestern US was selected, using the treatment processes of coagulation, filtration and chlorination. Energy consumption in units of kWh/day and kWh/MG for each unit process was separately determined using industry accepted design criteria. Associated carbon emissions were evaluated in units of CO2 eq/MG. Based on the energy consumption and the existing real estate holdings, the DWTP was sized for distributed solar. Results showed that overall the motors used to operate the pumps including the groundwater intake pumps were the largest consumers of energy. Enough land was available around DWTP to deploy distributed solar. Results also showed that solar photovoltaics could potentially be used to meet the energy demands of the selected DWTP, but warrant the use of a large storage capacity, and thus increased costs. Carbon emissions related to solar based design were negligible compared to the original case. For future, this study can be used to analyze unit processes of other DWTP based on energy consumption, as well as for incorporating sustainability into the DWTP design.

  12. Quantifying Systemic Efficiency using Exergy and Energy Analysis for Ground Source Heat Pumps: Domestic Space Conditioning and Water Heating Applications.

    Energy Technology Data Exchange (ETDEWEB)

    Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL; Munk, Jeffrey D [ORNL

    2017-01-01

    Although air temperatures over land surfaces show wide seasonal and daily variations, the ground, approximately 10 meters below the earth s surface, remains relatively stable in temperature thereby serving as an energy source or sink. Ground source heat pumps can heat, cool, and supply homes with hot water efficiently by utilizing the earth s renewable and essentially inexhaustible energy resources, saving fossil fuels, reducing greenhouse gas emissions, and lowering the environmental footprint. In this paper, evidence is shown that ground source heat pumps can provide up to 79%-87% of domestic hot water energy needs, and up to 77% of space heating needs with the ground s thermal energy resources. The case refers to a 12-month study conducted at a 253 m2 research house located in Oak Ridge, Tennessee, 36.01 N 84.26 W in a mixed-humid climate with HDD of 2218 C-days and CDD of 723 C-days under simulated occupancy conditions. A single 94.5m vertical bore interfaced the heat pump with the ground. The research shows that this technology is capable of achieving US DOE targets of 25 % and 35% energy savings in HVAC, and in water heating, respectively by 2030. It is also a viable technology to meet greenhouse gas target emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources. The paper quantifies systemic efficiencies using Exergy analysis of the major components, clearly pointing areas for further improvement.

  13. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces

    Science.gov (United States)

    Heaps, Charles W.; Mazziotti, David A.

    2016-04-01

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O ( N ) potential energy calculations, in contrast to O ( N 2 ) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O ( N ) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  14. Capacitive technology for energy extraction from chemical potential differences

    NARCIS (Netherlands)

    Bastos Sales, B.

    2013-01-01

    This thesis introduces the principle of Capacitive energy extraction based on Donnan Potential (CDP) to exploit salinity gradients. It also shows the fundamental characterization and improvements of CDP. An alternative application of this technology aimed at thermal gradients was tested.  

  15. ENERGY POTENTIAL OF SOLID STATE CW-MICROWAVE TRANCEIVERS

    Directory of Open Access Journals (Sweden)

    A. G. Gorelik

    2015-01-01

    Full Text Available The main parameters and block diagrams of CW-microwave transceivers are considered. The advisability of leading in conception of energy potential is founded. Qualitative assessment of three ways of CW-microwave transceivers composing is done. The some features for application of CW-microwave transceivers are discussed.

  16. Unified Technical Concepts. Module 7: Potential and Kinetic Energy.

    Science.gov (United States)

    Technical Education Research Center, Waco, TX.

    This concept module on potential and kinetic energy is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each…

  17. Assessing the potential for biomass energy development in South Carolina

    Science.gov (United States)

    Roger C. Conner; Tim O. Adams; Tony G. Johnson

    2009-01-01

    An assessment of the potential for developing a sustainable biomass energy industry in South Carolina was conducted. Biomass as defined by Forest Inventory and Analysis is the aboveground dry weight of wood in the bole and limbs of live trees ≥1-inch diameter at breast height, and excludes tree foliage, seedlings, and understory...

  18. Scattering at zero energy for attractive homogeneous potentials

    DEFF Research Database (Denmark)

    Derezinski, Jan; Skibsted, Erik

    2009-01-01

    We compute up to a compact term the zero-energy scattering matrix for a class of potentials asymptotically behaving as −γ|x|−μ with 0 < μ < 2 and γ > 0. It turns out to be the propagator for the wave equation on the sphere at time ....

  19. Design tool for the thermal energy potential of asphalt pavements

    NARCIS (Netherlands)

    Loomans, M.G.L.C.; Oversloot, H.P.; Bondt, A. de; Jansen, R.; Rij, H. van

    2003-01-01

    This paper describes the development of a design tool for the calculation of the thermal energy potential of a so-called asphalt collector. Two types of numerical models have been developed and validated against experimental results from a full-scale test-site. The validation showed to be a tedious

  20. Review of Potential Characterization Techniques in Approaching Energy and Sustainability

    Directory of Open Access Journals (Sweden)

    David J. LePoire

    2014-03-01

    Full Text Available Societal prosperity is linked to sustainable energy and a healthy environment. However, tough global challenges include increased demand for fossil fuels, while approaching peak oil production and uncertainty in the environmental impacts of energy generation. Recently, energy use was identified as a major component of economic productivity, along with capital and labor. Other environmental resources and impacts may be nearing environmental thresholds, as indicated by nine planetary environmental boundaries, many of which are linked to energy production and use. Foresight techniques could be applied to guide future actions which include emphasis on (1 energy efficiency to bridge the transition to a renewable energy economy; (2 continued research, development, and assessment of new technologies; (3 improved understanding of environment impacts including natural capital use and degradation; (4 exploration of GDP alternative measures that include both economic production and environmental impacts; and (5 international cooperation and awareness of longer-term opportunities and their associated potential scenarios. Examples from the U.S. and the international community illustrate challenges and potential.

  1. Heterobarrier for converting hot-phonon energy to electric potential

    Science.gov (United States)

    Shin, Seungha; Melnick, Corey; Kaviany, Massoud

    2013-02-01

    We show that hot phonons emitted in energy conversion or resistive processes can be converted to electric potential in heterobarrier structures. Using phonon and electron interaction kinetics and self-consistent ensemble Monte Carlo, we find the favorable conditions for unassisted absorption of hot phonons and design graded heterobarriers for their direct conversion into electric energy. Tandem barriers with nearly optical-phonon height allow for substantial potential gain without current loss. We find that 19% of hot phonons can be harvested with an optimized GaAs/AlxGa1-xAs barrier structure over a range of current and electron densities, thus enhancing the overall energy conversion efficiency and reducing waste heat.

  2. Three-dimensional potential energy surface of Ar–CO

    Energy Technology Data Exchange (ETDEWEB)

    Sumiyoshi, Yoshihiro, E-mail: y-sumiyoshi@gunma-u.ac.jp [Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510 (Japan); Endo, Yasuki [Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-01-14

    A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.

  3. Pontential energies and potential-energy tensors for subsystems: general properties

    CERN Document Server

    Caimmi, R

    2016-01-01

    With regard to generic two-component systems, the theory of first variations of global quantities is reviewed and explicit expressions are inferred for subsystem potential energies and potential-energy tensors. Performing a conceptual experiment, a physical interpretation of subsystem potential energies and potential-energy tensors is discussed. Subsystem tidal radii are defined by requiring an unbound component in absence of the other one. To this respect, a few guidance examples are presented as: (i) an embedding and an embedded homogeneous sphere; (ii) an embedding and an embedded truncated, singular isothermal sphere where related centres are sufficiently distant; (iii) a homogeneous sphere and a Roche system i.e. a mass point surrounded by a vanishing atmosphere. The results are discussed and compared with the findings of earlier investigations.

  4. U.S. Building-Sector Energy Efficiency Potential

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  5. Novel mixture model for the representation of potential energy surfaces

    Science.gov (United States)

    Pham, Tien Lam; Kino, Hiori; Terakura, Kiyoyuki; Miyake, Takashi; Dam, Hieu Chi

    2016-10-01

    We demonstrate that knowledge of chemical physics on a materials system can be automatically extracted from first-principles calculations using a data mining technique; this information can then be utilized to construct a simple empirical atomic potential model. By using unsupervised learning of the generative Gaussian mixture model, physically meaningful patterns of atomic local chemical environments can be detected automatically. Based on the obtained information regarding these atomic patterns, we propose a chemical-structure-dependent linear mixture model for estimating the atomic potential energy. Our experiments show that the proposed mixture model significantly improves the accuracy of the prediction of the potential energy surface for complex systems that possess a large diversity in their local structures.

  6. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    Science.gov (United States)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  7. The hibernating 13-lined ground squirrel as a model organism for potential cold storage of platelets

    OpenAIRE

    Cooper, Scott T.; Richters, Karl E.; Melin, Travis E.; Liu, Zhi-Jian; Hordyk, Peter J.; Benrud, Ryan R.; Geiser, Lauren R.; Cash, Steve E.; Simon Shelley, C.; Howard, David R.; Ereth, Mark H.; Sola-Visner, Martha C.

    2012-01-01

    Hibernating mammals have developed many physiological adaptations to extreme environments. During hibernation, 13-lined ground squirrels (Ictidomys tridecemlineatus) must suppress hemostasis to survive prolonged body temperatures of 4–8°C and 3–5 heartbeats per minute without forming lethal clots. Upon arousal in the spring, these ground squirrels must be able to quickly restore normal clotting activity to avoid bleeding. Here we show that ground squirrel platelets stored in vivo at 4–8°C wer...

  8. Assessment potential wind energy in the north area of Iraq

    Directory of Open Access Journals (Sweden)

    Ahmed F. Hassoon

    2013-01-01

    Full Text Available Wind energy is renewable and environment friendly, which can be connected for various end-uses. A precise knowledge of wind energy regime is a pre-requisite for the efficient planning and implementation of any wind energy project. However, due to the absence of a reliable and accurate Iraq Wind Atlas, further studies on the assessment of wind energy are necessary. The main purpose of this paper is present and perform an investigation on the wind energy potential in the northern area of Iraq. Therefore, in this study, wind data collected over a period of nearly three decades at five different locations in order to figure out the wind energy potential in this region. The data from selected stations were analyzed using the two-parameter Weibull probability distribution function. The higher probability frequency wind speed at windy month (July is found in Tuz and Tikrit stations. In Tuz the range (2.5-3.0 m/s taken about 45% from the domain wind, In Tikrit the high ranges of wind (3.5-4.0 m/s and (4.0-4.5m/s form 40.9% and 36.4% of wind speed frequency, but high frequency of low wind speed is concentrated at Biji, Kirkuk and Mosul. This is reflected on The maximum expected energy output (13.5kw/h occupied at Tikrit station. Overall The study presented here is an attempt to promote wind energy in north Iraq and to bridge the gap in order to create prospective Wind Atlas of Iraq.

  9. Performance-based potential for residential energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Performance-based potential for residential energy efficiency

    2013-01-15

    Energy performance contracts (EPCs) have proven an effective mechanism for increasing energy efficiency in nearly all sectors of the economy since their introduction nearly 30 years ago. In the modern form, activities undertaken as part of an EPC are scoped and implemented by experts with specialized technical knowledge, financed by commercial lenders, and enable a facility owner to limit risk and investment of time and resources while receiving the rewards of improved energy performance. This report provides a review of the experiences of the US with EPCs and discusses the possibilities for the residential sector to utilize EPCs. Notably absent from the EPC market is the residential segment. Historically, research has shown that the residential sector varies in several key ways from markets segments where EPCs have proven successful, including: high degree of heterogeneity of energy use characteristics among and within households, comparatively small quantity of energy consumed per residence, limited access to information about energy consumption and savings potential, and market inefficiencies that constrain the value of efficiency measures. However, the combination of recent technological advances in automated metering infrastructure, flexible financing options, and the expansion of competitive wholesale electricity markets to include energy efficiency as a biddable supply-side resource present an opportunity for EPC-like efforts to successfully engage the residential sector, albeit following a different model than has been used in EPCs traditionally.(Author)

  10. Economic Analysis of using Above Ground Gas Storage Devices for Compressed Air Energy Storage System

    Institute of Scientific and Technical Information of China (English)

    LIU Jinchao; ZHANG Xinjing; XU Yujie; CHEN Zongyan; CHEN Haisheng; TAN Chunqing

    2014-01-01

    Above ground gas storage devices for compressed air energy storage (CAES) have three types:air storage tanks,gas cylinders,and gas storage pipelines.A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis.The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number.The LCCs of the three types are comprehensively analyzed and compared.The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types.This study may serve as a reference for designing large-scale CAES systems.

  11. Cell Evolutionary Algorithm: a New Optimization Method on Ground-State Energy of the Atomic

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The purpose of this paper is to present a new general approach to solve ground-state energies of the double-electron systems in a uniform magnetic field, in which the basic element of evolution is the set in the solution space, rather than the point. The paper defines the Cell Evolutionary Algorithm, which imple-ments such a view of the evolution mechanism. First, the optimal set in which the optimal solution may be ob-tained. Then this approach applies the embedded search method to get the optimal solution. We tested this approach on the atomic structure, and the results show that it can improve not only the efficiency but also the accuracy of the calculations as it relates to this specific problem.

  12. Large climate-moderating envelopes for enclosed structures: a preliminary evaluation of energy conservation potential

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, R.L.; Giles, G.E.; Park, J.E.

    1981-12-01

    An investigation was made of the basic impacts of putting a large secondary enclosure around a number of functions and thereby creating a Large Climate Moderating Envelope (LCME). This study is a preliminary estimate of the energy conservation benefits of an LCME. A hypothetical LMCE design was chosen and a coupled fluid dynamic and energy transport analysis was performed to estimate the energy conservation potential of this design. The heat transfer models included insolation, outside air temperature and wind, thermal radiation exchange with the sky, and between the fabric and ground and thermal storage in the earth mass beneath the LCME. The energy transported within the fluid by the buoyancy driven circulation was modeled as an incompressible fluid utilizing the Boussinesq approximation. The climatic conditions were assumed to vary in smooth repeating daily cycles. The numerical simulation of climatic variation was continued until the results within the LCME achieved a repeating daily cycle. The results for selected seasonally characteristic days were utilized to estimate the annual energy consumption of structures within an LCME relative to similar structures exposed to the exterior environment. The relative annual energy savings for summer-dominated climates was estimated to be approx. 70%. The energy savings for a winter-dominated climate LCME were estimated to be somewhat smaller but the LCME concept could offer significant benefits for agricultural applications for this type of climate.

  13. Study of chirally motivated low-energy K - optical potentials

    Science.gov (United States)

    Cieplý, A.; Friedman, E.; Gal, A.; Mareš, J.

    2001-12-01

    The K - optical potential in the nuclear medium is evaluated self consistently from a free-space K -N t matrix constructed within a coupled-channel chiral approach to the low-energy K¯N data. The chiral-model parameters are fitted to a select subset of the low-energy data plus the K - atomic data throughout the periodic table. The resulting attractive K - optical potentials are relatively 'shallow', with central depth of the real part about 55 MeV, for a fairly reasonable reproduction of the atomic data with χ2/ N≈2.2. Relatively 'deep' attractive potentials of depth about 180 MeV, which result in other phenomenological approaches with χ2/ N≈1.5, are ruled out within chirally motivated models. Different physical data input is required to distinguish between shallow and deep K - optical potentials. The (K -stop, π) reaction could provide such a test, with exclusive rates differing by over a factor of three for the two classes of potentials. Finally, forward (K -,p) differential cross sections for the production of relatively narrow deeply bound K -nuclear states are evaluated for deep K - optical potentials, yielding values considerably lower than those estimated before.

  14. Energy potential of fruit tree pruned biomass in Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Bilandzija, N.; Voca, N.; Kricka, T.; Martin, A.; Jurisic, V.

    2012-11-01

    The world's most developed countries and the European Union (EU) deem that the renewable energy sources should partly substitute fossil fuels and become a bridge to the utilization of other energy sources of the future. This paper will present the possibility of using pruned biomass from fruit cultivars. It will also present the calculation of potential energy from the mentioned raw materials in order to determine the extent of replacement of non-renewable sources with these types of renewable energy. One of the results of the intensive fruit-growing process, in post pruning stage, is large amount of pruned biomass waste. Based on the calculated biomass (kg ha{sup 1}) from intensively grown woody fruit crops that are most grown in Croatia (apple, pear, apricots, peach and nectarine, sweet cherry, sour cherry, prune, walnut, hazelnut, almond, fig, grapevine, and olive) and the analysis of combustible (carbon 45.55-49.28%, hydrogen 5.91-6.83%, and sulphur 0.18-0.21%) and non-combustible matters (oxygen 43.34-46.6%, nitrogen 0.54-1.05%, moisture 3.65-8.83%, ashes 1.52-5.39%) with impact of lowering the biomass heating value (15.602-17.727 MJ kg{sup 1}), the energy potential of the pruned fruit biomass is calculated at 4.21 PJ. (Author) 31 refs.

  15. Casimir Energies and Pressures for $\\delta$-function Potentials

    CERN Document Server

    Milton, K A

    2004-01-01

    The Casimir energies and pressures for a massless scalar field associated with $\\delta$-function potentials in 1+1 and 3+1 dimensions are calculated. For parallel plane surfaces, the results are finite, coincide with the pressures associated with Dirichlet planes in the limit of strong coupling, and for weak coupling do not possess a power-series expansion in 1+1 dimension. The relation between Casimir energies and Casimir pressures is clarified,and the former are shown to involve surface terms. The Casimir energy for a $\\delta$-function spherical shell in 3+1 dimensions has an expression that reduces to the familiar result for a Dirichlet shell in the strong-coupling limit. However, the Casimir energy for finite coupling possesses a logarithmic divergence first appearing in third order in the weak-coupling expansion, which seems unremovable. The corresponding energies and pressures for a derivative of a $\\delta$-function potential for the same spherical geometry generalizes the TM contributions of electrodyn...

  16. Residential energy efficiency: Progress since 1973 and future potential

    Science.gov (United States)

    Rosenfeld, Arthur H.

    1985-11-01

    Today's 85 million U.S. homes use 100 billion of fuel and electricity (1150/home). If their energy intensity (resource energy/ft2) were still frozen at 1973 levels, they would use 18% more. With well-insulated houses, need for space heat is vanishing. Superinsulated Saskatchewan homes spend annually only 270 for space heat, 150 for water heat, and 400 for appliances, yet they cost only 2000±1000 more than conventional new homes. The concept of Cost of Conserved Energy (CCE) is used to rank conservation technologies for existing and new homes and appliances, and to develop supply curves of conserved energy and a least cost scenario. Calculations are calibrated with the BECA and other data bases. By limiting investments in efficiency to those whose CCE is less than current fuel and electricity prices, the potential residential plus commercial energy use in 2000 AD drops to half of that estimated by DOE, and the number of power plants needed drops by 200. For the whole buildings sector, potential savings by 2000 are 8 Mbod (worth 50B/year), at an average CCE of 10/barrel.

  17. THE POTENTIAL FOR BIOMASS ENERGY IN THREE ALBANIAN REGIONS

    Directory of Open Access Journals (Sweden)

    A. Jupe

    2012-03-01

    Full Text Available Biomass combustion is amongst the oldest and the most mature technique for conversion of biomass to energy; but still a great challenge lies ahead in developing new; more efficient and environmentally sustainable -systems. In light of the European Action and the National Strategy in the energy sector; Albania has enacted a friendly policy regarding renewable energy sources; including biomass. Execution of such projects is delegated to both regional and local authorities for various technical; economic and socio-environmental considerations as well as for an integrated approach to the land use planning. This paper identifies the main sources of biomass energy in three different regions of Albania i.e. Korça; Tirana and Vlora. It shows the weight of each possibility on the total potential for energy production by biomass as well as the type and distribution of each biomass. The manner how the potential offered by forestry; agriculture and agro-industry would be utilized will; apart from availability of appropriate technology; also depend on the ability of economic operators to organize themselves efficiently while respecting environmental sustainability.

  18. A "First Principles" Potential Energy Surface for Liquid Water from VRT Spectroscopy of Water Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, N; Leforestier, C; Saykally, R J

    2004-05-25

    We present results of gas phase cluster and liquid water simulations from the recently determined VRT(ASP-W)III water dimer potential energy surface. VRT(ASP-W)III is shown to not only be a model of high ''spectroscopic'' accuracy for the water dimer, but also makes accurate predictions of vibrational ground-state properties for clusters up through the hexamer. Results of ambient liquid water simulations from VRT(ASP-W)III are compared to those from ab initio Molecular Dynamics, other potentials of ''spectroscopic'' accuracy, and to experiment. The results herein represent the first time that a ''spectroscopic'' potential surface is able to correctly model condensed phase properties of water.

  19. Potential health impacts from range fires at Aberdeen Proving Ground, Maryland.

    Energy Technology Data Exchange (ETDEWEB)

    Willians, G.P.; Hermes, A.M.; Policastro, A.J.; Hartmann, H.M.; Tomasko, D.

    1998-03-01

    This study uses atmospheric dispersion computer models to evaluate the potential for human health impacts from exposure to contaminants that could be dispersed by fires on the testing ranges at Aberdeen Proving Ground, Maryland. It was designed as a screening study and does not estimate actual human health risks. Considered are five contaminants possibly present in the soil and vegetation from past human activities at APG--lead, arsenic, trichloroethylene (TCE), depleted uranium (DU), and dichlorodiphenyltrichloroethane (DDT); and two chemical warfare agents that could be released from unexploded ordnance rounds heated in a range fire--mustard and phosgene. For comparison, dispersion of two naturally occurring compounds that could be released by burning of uncontaminated vegetation--vinyl acetate and 2-furaldehyde--is also examined. Data from previous studies on soil contamination at APG are used in conjunction with conservative estimates about plant uptake of contaminants, atmospheric conditions, and size and frequency of range fires at APG to estimate dispersion and possible human exposure. The results are compared with US Environmental Protection Agency action levels. The comparisons indicate that for all of the anthropogenic contaminants except arsenic and mustard, exposure levels would be at least an order of magnitude lower than the corresponding action levels. Because of the compoundingly conservative nature of the assumptions made, they conclude that the potential for significant human health risks from range fires is low. The authors recommend that future efforts be directed at fire management and control, rather than at conducting additional studies to more accurately estimate actual human health risk from range fires.

  20. The potential for geothermal energy in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Downing, R.A.

    1985-01-01

    This work is a review of goethermal prospects in the UK. The book summarizes the results of an investigation of Britain's geothermal energy potential by the British Geological Survey between 1977 and 1984, supported by the Department of Energy and the EEC. The assessment covers both resources and the prospects for their development. Hot groundwaters in deep sedimentary basins and heat stored in 'hot dry rocks' are considered. The structure of the basins and the nature and properties of the sediments they contain are described and illustrated with maps and diagrams.

  1. [Biomass energy utilization in microbial fuel cells: potentials and challenges].

    Science.gov (United States)

    Huang, Liping; Cheng, Shaoan

    2010-07-01

    Microbial fuel cells (MFCs) that can harvest biomass energy from organic wastes through microbial catalysis have garnered more and more attention within the past decade due to its potential benefits to ecological environment. In this article, the updated progress in MFCs is reviewed, with a focus on frontier technologies such as chamber configurations, feedstock varieties and the integration of MFCs with microbial electrolysis cells for hydrogen production. And on the other hand, the challenges like development of cost-effective electrode materials, improvement of biomass energy recovery and power output, design and optimization of commercial MFC devices are presented.

  2. Low energy stage study. Volume 3: Conceptual design, interface analysis, flight and ground operations. [launching space shuttle payloads

    Science.gov (United States)

    1978-01-01

    Low energy conceptual stage designs and adaptations to existing/planned shuttle upper stages were developed and their performance established. Selected propulsion modes and subsystems were used as a basis to develop airborne support equipment (ASE) design concepts. Orbiter installation and integration (both physical and electrical interfaces) were defined. Low energy stages were adapted to the orbiter and ASE interfaces. Selected low energy stages were then used to define and describe typical ground and flight operations.

  3. Accurate potential energy, dipole moment curves, and lifetimes of vibrational states of heteronuclear alkali dimers.

    Science.gov (United States)

    Fedorov, Dmitry A; Derevianko, Andrei; Varganov, Sergey A

    2014-05-14

    We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X(1)Σ(+) electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-ζ basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-ζ quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtaining the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm(-1) for LiNa and by no more than 114 cm(-1) for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm(-1), and the discrepancies for the anharmonic correction are less than 0.1 cm(-1). We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrödinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.

  4. The Potential For Energy Efficiency In The State of Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, SW

    2001-12-05

    The purpose of this study was to do an initial estimate of the potential for energy savings in the state of Iowa. Several methods for determining savings were examined, including existing programs, surveys, savings calculators, and economic simulation. Each method has advantages and disadvantages, trading off between detail of information, accuracy of results, and scope. This paper concentrated on using economic simulation (the NEMS model (EIA 2000a)) to determine market potential for energy savings for the residential and commercial sectors. The results of surveys were used to calculate the economic potential for savings in the industrial sector. The NEMS model is used by the Energy Information Administration to calculate twenty-year projections of energy use for every region of the country. The results of the Annual Energy Outlook 2000 were used as the Base case (EIA 1999a). Two alternative cases were created to simulate energy savings policies. Voluntary, market-related programs were simulated by lowering the effective discount rates that end-users use when making decisions on equipment purchases. Standards programs in the residential sector were simulated by eliminating the availability of low efficiency equipment in future years. The parameters for these programs were based on the Moderate scenario from the DOE Clean Energy Futures study (Interlaboratory Working Group 2000), which assumed increased concern by society on energy efficiency but not to the point of fiscal policies such as taxes or direct subsidies. The study only considered a subset of the various programs, policies, and technologies that could reduce energy use. The major end-uses in the residential sector affected by the policies were space cooling (20% savings by 2020) and water heating (14% savings by 2020.) Figure S-1 shows the space cooling savings when voluntary programs and minimum efficiency standards were implemented. Refrigerators, freezers, and clothes dryers saw slight improvements

  5. Fossil energy savings potential of sugar cane bio-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thu Lan T. [Department of Agroecology, Aarhus University, Tjele (Denmark); The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Hermansen, John E. [Department of Agroecology, Aarhus University, Tjele (Denmark); Sagisaka, Masayuki [Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2009-11-15

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts to 15 million barrels of oil a year. Whether the saving benefits could be fully realized, however, depends on how well the potential land use change resulting from an expansion of ethanol production is managed. The results presented serve as a useful guidance to formulate strategies that enable optimum utilization of biomass as an energy source. (author)

  6. Data Network Equipment Energy Use and Savings Potential in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.

    2010-06-09

    Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.

  7. Evaluation of global onshore wind energy potential and generation costs.

    Science.gov (United States)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  8. Application of Bayesian Neural Networks to Energy Reconstruction in EAS Experiments for ground-based TeV Astrophysics

    CERN Document Server

    Bai, Ying; Lan, JieQin; Gao, WeiWei

    2016-01-01

    A toy detector array has been designed to simulate the detection of cosmic rays in Extended Air Shower(EAS) Experiments for ground-based TeV Astrophysics. The primary energies of protons from the Monte-Carlo simulation have been reconstructed by the algorithm of Bayesian neural networks (BNNs) and a standard method like the LHAASO experiment\\cite{lhaaso-ma}, respectively. The result of the energy reconstruction using BNNs has been compared with the one using the standard method. Compared to the standard method, the energy resolutions are significantly improved using BNNs. And the improvement is more obvious for the high energy protons than the low energy ones.

  9. Energy Spectrum of Ground State and Excitation Spectrum of Quasi-particle for Hard-Core Boson in Optical Lattices

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We investigate the energy spectrum of ground state and quasi-particle excitation spectrum of hard-core bosons, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and Bogoliubov approach. The results show that the energy spectrum has a single band structure, and the energy is lower near zero momentum; the excitation spectrum gives corresponding energy gap, and the system is in Mott-insulating state at Tonks limit. The analytic result of energy spectrum is in good agreement with that calculated in terms of Green's function at strong correlation limit.

  10. Accurate global potential energy surface for the H + OH+ collision

    Science.gov (United States)

    Gannouni, M. A.; Jaidane, N. E.; Halvick, P.; Stoecklin, T.; Hochlaf, M.

    2014-05-01

    We mapped the global three-dimensional potential energy surface (3D-PES) of the water cation at the MRCI/aug-cc-pV5Z including the basis set superposition (BSSE) correction. This PES covers the molecular region and the long ranges close to the H + OH+(X3Σ-), the O + H2+(X2Σg+), and the hydrogen exchange channels. The quality of the PES is checked after comparison to previous experimental and theoretical results of the spectroscopic constants of H2O+(tilde X2B1) and of the diatomic fragments, the vibronic spectrum, the dissociation energy, and the barrier to linearity for H2O+(tilde X2B1). Our data nicely approach those measured and computed previously. The long range parts reproduce quite well the diatomic potentials. In whole, a good agreement is found, which validates our 3D-PES.

  11. On the wave energy potential of Western Black Sea shelf

    CERN Document Server

    Galabov, Vasko

    2013-01-01

    In the present study we evaluate the approaches to estimate the wave energy potential of the western Black Sea shelf with numerical models. For the purpose of our evaluation and due to the lack of long time series of measurements in the selected area of the Black Sea, we compare the modeled mean wave power flux output from the SWAN wave model with the only available long term measurements from the buoy of Gelendzhik for the period 1997-2003 (with gaps). The forcing meteorological data for the numerical wave models for the selected years is extracted from the ERA Interim reanalysis of ECMWF (European Centre for Medium range Forecasts). For the year 2003 we also compare the estimated wave power with the modeled by SWAN, using ALADIN regional atmospheric model winds. We try to identify the shortcomings and limitations of the numerical modeling approach to the evaluation of the wave energy potential in Black Sea.

  12. Energy Perspectives In Switzerland: The Potential Of Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Foskolos, K.; Hardegger, P

    2005-03-01

    In 2004, discussions were started in Switzerland concerning future of energy supply, including domestic electricity generation. On behalf of the Federal Office of Energy, PSI undertook a study to evaluate the potential of future nuclear technologies, covering electricity demand, with a time horizon up to 2050. It has been shown that nuclear power plants (NPPs) of the Third Generation, similar to the ones currently under construction in several other countries, built on the existing nuclear sites in Switzerland, have the potential to replace, at competitive costs, the existing nuclear plants, and even to cover (postulated) increases in electricity demand. Because of their late maturity (expected at the earliest around 2030), NPPs of the Fourth Generation, which are currently under development, cannot play a major role in Switzerland, since, with the exception of the Leibstadt NPP, all decisions regarding replacement of the current Swiss NPPs have to be taken before 2030. (author)

  13. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  14. Schematic potential energy for interaction between isobutene and zeolite mordenite

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, L A [Programa de Crudo Maya, IMP, AP 15-805, DF 07730 (Mexico); Flores-Sandoval, C A [Programa de Crudo Maya, IMP, AP 15-805, DF 07730 (Mexico); Zaragoza, I P [Programa de Ingenieria Molecular, IMP, AP 15-805, DF 07730 (Mexico)

    2004-06-09

    A schematic representation of the potential energy for the interaction between isobutene and H mordenite was presented by using eight different positions (P1-P8) of C{sub 1} or C{sub 2} atoms located in front of the acid hydrogen (H{sup +}). In all cases a {pi} complex was formed yielding different values of the adsorption energy. In some cases of the adsorption point in P1-P8 the frontier orbitals are shown. The P8 position exhibits the highest value obtained for the adsorption energy, where the C{sub 1} atom is in front of the H{sup +}. Calculations were of all electron type employing HF/6-31G**.

  15. Market potential for optical fiber sensors in the energy sector

    Science.gov (United States)

    Bosselmann, T.

    2007-07-01

    For a long time electric power was taken as a natural unlimited resource. With globalisation the demand for energy has risen. This has brought rising prices for fossil fuels, as well as a diversification of power generation. Besides conventional fossil, nuclear plants are coming up again. Renewable energy sources are gaining importance resulting in recent boom of wind energy plants. In the past reliability and availability and an extremely long lifetime were of paramount importance. Today this has been added by cost, due to the global competition and the high fuel costs. New designs of power components have increased efficiency using lesser material. Higher efficiency causes inevitably higher stress on the materials, of which the machines are built. As a reduction of lifetime is not acceptable and maintenance costs are expected to be at a minimum, condition monitoring systems are going to being used now. This offers potentials for fibre optic sensor application.

  16. The Potential of Renewable Energy Sources in Latvia

    Science.gov (United States)

    Sakipova, S.; Jakovics, A.; Gendelis, S.

    2016-02-01

    The article discusses some aspects of the use of renewable energy sources in the climatic conditions prevailing in most of the territory of Latvia, with relatively low wind speeds and a small number of sunny days a year. The paper gives a brief description of the measurement equipment and technology to determine the parameters of the outer air; the results of the measurements are also analysed. On the basis of the data obtained during the last two years at the meteorological station at the Botanical Garden of the University of Latvia, the energy potential of solar radiation and wind was estimated. The values of the possible and the actual amount of produced energy were determined.

  17. On the potential energy landscape of supercooled liquids and glasses

    DEFF Research Database (Denmark)

    Rodney, D.; Schrøder, Thomas

    2011-01-01

    The activation-relaxation technique (ART), a saddle-point search method, is applied to determine the potential energy landscape around supercooled and glassy configurations of a three-dimensional binary Lennard-Jones system. We show a strong relation between the distribution of activation energies...... around a given glassy configuration and its history, in particular, the cooling rate used to produce the glass and whether or not the glass was plastically deformed prior to sampling. We also compare the thermally activated transitions found by ART around a supercooled configuration with the succession...... of transitions undergone by the same supercooled liquid during a time trajectory simulated by molecular dynamics. We find that ART is biased towards more heterogeneous transitions with higher activation energies and more broken bonds than the MD simulation....

  18. Designing of a risk assessment architecture to analyze potential risks from space weather to space and ground based assets

    Science.gov (United States)

    Sattar, Erum

    2016-07-01

    Today's world is more vulnerable to space weather due to ever increased advance and costly space technology deployed in space and on ground. The space weather has a natural potential of posing harmful effects on space and ground based assets and on astronaut's life. This global challenge of space weather essentially demands global and regional preparedness to develop its situational awareness, analyzing risks and devise possible mitigation procedures. Considering risk mitigation architecture as inevitable for all scientific missions, this paper focuses to develop a risk assessment architecture for the space environment and to map its utility in identifying and analyzing potential risks to space and ground based assets from space weather in the South Asia region. Different risk assessment tools will be studied and would conclude in the most effective tool or strategy that may help to develop our capability in identifying, protecting and mitigating from the devastating effects of the space weather.

  19. Electronic structure, molecular bonding and potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  20. Optimal quasifree approximation: Reconstructing the spectrum from ground-state energies

    Science.gov (United States)

    Campos Venuti, Lorenzo

    2011-07-01

    The sequence of ground-state energy density at finite size, eL, provides much more information than usually believed. Having at our disposal eL for short lattice sizes, we show how to reconstruct an approximate quasiparticle dispersion for any interacting model. The accuracy of this method relies on the best possible quasifree approximation to the model, consistent with the observed values of the energy eL. We also provide a simple criterion to assess whether such a quasifree approximation is valid. As a side effect, our method is able to assess whether the nature of the quasiparticles is fermionic or bosonic together with the effective boundary conditions of the model. When applied to the spin-1/2 Heisenberg model, the method produces a band of Fermi quasiparticles very close to the exact one of des Cloizeaux and Pearson. The method is further tested on a spin-1/2 Heisenberg model with explicit dimerization and on a spin-1 chain with single-ion anisotropy. A connection with the Riemann hypothesis is also pointed out.

  1. Electromagnetic potentials basis for energy density and power flux

    Science.gov (United States)

    Puthoff, H. E.

    2016-09-01

    In rounding out the education of students in advanced courses in applied electromagnetics it is incumbent on us as mentors to raise issues that encourage appreciation of certain subtle aspects that are often overlooked during first exposure to the field. One of these has to do with the interplay between fields and potentials, with the latter often seen as just a convenient mathematical artifice useful in solving Maxwell’s equations. Nonetheless, to those practiced in application it is well understood that various alternatives in the use of fields and potentials are available within electromagnetic (EM) theory for the definitions of energy density, momentum transfer, EM stress-energy tensor, and so forth. Although the various options are all compatible with the basic equations of electrodynamics (e.g., Maxwell’s equations, Lorentz force law, gauge invariance), nonetheless certain alternative formulations lend themselves to being seen as preferable to others with regard to the transparency of their application to physical problems of interest. Here we argue for the transparency of an energy density/power flux option based on the EM potentials alone.

  2. Bohm's quantum potential as an internal energy

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, Glen, E-mail: gdennis502@gmail.com [TPRU, Birkbeck College, University of London, London, WC1E 7HX (United Kingdom); Gosson, Maurice A. de, E-mail: maurice.de.gosson@univie.ac.at [University of Vienna, Faculty of Mathematics, NuHAG, Oskar-Morgenstern-Platz 1, 1090 Vienna (Austria); Hiley, Basil J., E-mail: b.hiley@bbk.ac.uk [TPRU, Birkbeck College, University of London, London, WC1E 7HX (United Kingdom)

    2015-06-26

    Highlights: • The quantum potential is seen as internal energy associated with a phase space region. • Fermi's trick shows that Bohm's particle is an extended structure in phase space. • We associate Bohm's quantum potential with a context-dependent energy redistribution. • A physically motivated derivation of Schrodinger's equation is provided. • We show the Fermi set associated with a 3-D coherent state contains a quantum blob. - Abstract: We pursue our discussion of Fermi's surface initiated by Dennis, de Gosson and Hiley and show that Bohm's quantum potential can be viewed as an internal energy of a quantum system, giving further insight into its role in stationary states. This implies that the ‘particle’ referred to in Bohm's theory is not a classical point-like object but rather has an extended structure in phase space which can be linked to the notion of a symplectic capacity, a topological feature of the underlying symplectic geometry. This structure provides us with a new, physically motivated derivation of Schrödinger's equation provided we interpret Gleason's theorem as a derivation of the Born rule from fundamental assumptions about quantum probabilities.

  3. Potential energy surface and rovibrational energy levels of the H2-CS van der Waals complex.

    Science.gov (United States)

    Denis-Alpizar, Otoniel; Stoecklin, Thierry; Halvick, Philippe; Dubernet, Marie-Lise; Marinakis, Sarantos

    2012-12-21

    Owing to its large dipole, astrophysicists use carbon monosulfide (CS) as a tracer of molecular gas in the interstellar medium, often in regions where H(2) is the most abundant collider. Predictions of the rovibrational energy levels of the weakly bound complex CS-H(2) (not yet observed) and also of rate coefficients for rotational transitions of CS in collision with H(2) should help to interpret the observed spectra. This paper deals with the first goal, i.e., the calculation of the rovibrational energy levels. A new four-dimensional intermolecular potential energy surface for the H(2)-CS complex is presented. Ab initio potential energy calculations were carried out at the coupled-cluster level with single and double excitations and a perturbative treatment of triple excitations, using a quadruple-zeta basis set and midbond functions. The potential energy surface was obtained by an analytic fit of the ab initio data. The equilibrium structure of the H(2)-CS complex is found to be linear with the carbon pointing toward H(2) at the intermolecular separation of 8.6 a(o). The corresponding well depth is -173 cm(-1). The potential was used to calculate the rovibrational energy levels of the para-H(2)-CS and ortho-H(2)-CS complexes. The present work provides the first theoretical predictions of these levels. The calculated dissociation energies are found to be 35.9 cm(-1) and 49.9 cm(-1), respectively, for the para and ortho complexes. The second virial coefficient for the H(2)-CS pair has also been calculated for a large range of temperature. These results could be used to assign future experimental spectra and to check the accuracy of the potential energy surface.

  4. Investigation of Energy and Environmental Potentials of a Renewable Trigeneration System in a Residential Application

    Directory of Open Access Journals (Sweden)

    Eun-Chul Kang

    2016-09-01

    Full Text Available Micro polygeneration utilizing renewable energy is a suitable approach to reduce energy consumption and carbon emission by offering high-efficiency performance, offsetting the need for centrally-generated grid electricity and avoiding transmission/distribution losses associated with it. This paper investigates the energy and environmental potential of a renewable trigeneration system in a residential application under Incheon (Korea and Ottawa (Canada weather conditions. The trigeneration system consists of a ground-to-air heat exchanger (GAHX, photovoltaic thermal (PVT panels and an air-to-water heat pump (AWHP. The study is performed by simulations in TRNSYS (Version 17.02 environment. The performance of the trigeneration system is compared to a reference conventional system that utilizes a boiler for space and domestic hot water heating and a chiller for space cooling. Simulation results showed substantial annual primary energy savings from the renewable trigeneration system in comparison to the reference system—45% for Incheon and 42% for Ottawa. The CO2eq emission reduction from the renewable trigeneration system is also significant, standing at 43% for Incheon and 82% for Ottawa. Furthermore, trigeneration systems’ capability to generate electricity and thermal energy at the point of use is considered as an attractive option for inclusion in the future smart energy network applications.

  5. Energy balance of chosen crops and their potential to saturate energy consumption in Slovakia

    Directory of Open Access Journals (Sweden)

    Katarína Hrčková

    2016-06-01

    Full Text Available The aim of the present work was to assess and compare energy inputs and outputs of various crop managements in 2011–2012. Two main crops on arable land and three permanent grasslands were investigated. Silage maize (Zea mays L. and winter wheat (Triticum aestivum L. were grown on lowland, whilst two semi-natural grasslands and grassland infested by tufted hair-grass (Deschampsia caespitose (L. P. Beauv were located in mountainous regions of Slovakia. In these crops and grasslands the dry matter yield was measured and subsequently the supplementary energy, energy gain and unifying energy value – tonne of oil equivalent (TOE – were calculated. Silage maize with 233.37 GJ*ha-1 has provided the highest energy gain. In the group of grasslands, grassland infested by tufted hair-grass has offered the highest energy gain (59.77 GJ*ha-1. And this grassland had the lowest requirement on the supplementary energy (3.66 GJ*ha-1, contrary to silage maize with highest one (12.37 GJ*ha-1. The total energy potential of the crop biomasses was confronted with energy consumption in Slovakia. Winter wheat has the biggest energy potential, but it could cover only 19.6% and 11.3% total consumption of electricity or natural gas, respectively. Large area of permanent grasslands and their spatial location make them an important energy reservoir for bioenergy production. But, it is not possible to replace all consumed fossil fuels by bioenergy from these tested renewable energy sources.

  6. Biomass energy in organic farming - the potential role of short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Uffe; Dalgaard, Tommy [Danish Inst. of Agricultural Sciences (DIAS), Dept. of Agroecology, Research Centre Foulum, Tjele (Denmark); Kristensen, Erik Steen [Danish Research Centre for Organic Farming (DARCOF), Research Centre Foulum, Tjele (Denmark)

    2005-02-01

    One of the aims of organic farming is to 'reduce the use of non-renewable resources (e.g. fossil fuels) to a minimum'. So far, however, only very little progress has been made to introduce renewable energy in organic farming. This paper presents energy balances of Danish organic farming compared with energy balances of conventional farming. In general, the conversion to organic farming leads to a lower energy use (approximately 10% per unit of product). But the production of energy in organic farming is very low compared with the extensive utilisation of straw from conventional farming in Denmark (energy content of straw used for energy production was equivalent to 18% of total energy input in Danish agriculture in 1996). Biomass is a key energy carrier with a good potential for on-farm development. Apart from utilising farm manure and crop residues for biogas production, the production of nutrient efficient short rotation coppice (SRC) is an option in organic farming. Alder (Alnus spp.) is an interesting crop due to its symbiosis with the actinomycete Frankia, which has the ability to fix up to 185 kg/ha nitrogen (N{sub 2}) from the air. Yields obtained at different European sites are presented and the R and D needed to implement energy cropping in organic farming is discussed. Possible win-win solutions for SRC production in organic farming that may facilitate its implementation are; the protection of ground water quality in intensively farmed areas, utilisation of wastewater for irrigation, or combination with outdoor animal husbandry such as pigs or poultry. (Author)

  7. Renormalized energy of ground and first excited state of Fröhlich polaron in the range of weak coupling

    Directory of Open Access Journals (Sweden)

    M.V. Tkach

    2015-09-01

    Full Text Available The partial summing of infinite range of diagrams for the two-phonon mass operator of polaron described by Frohlich Hamiltonian is performed using the Feynman-Pines diagram technique. The renormalized spectral parameters of ground and first excited (phonon repeat polaron state are accurately calculated for the weak electron-phonon coupling at T=0 K. It is shown that the stronger electron-phonon interaction shifts the energy of both states into low-energy region of the spectra. The ground state stays stationary and the excited one - decays at bigger coupling constant.

  8. Simulation of submillimetre atmospheric spectra for characterising potential ground-based remote sensing observations

    Science.gov (United States)

    Turner, Emma C.; Withington, Stafford; Newnham, David A.; Wadhams, Peter; Jones, Anna E.; Clancy, Robin

    2016-11-01

    The submillimetre is an understudied region of the Earth's atmospheric electromagnetic spectrum. Prior technological gaps and relatively high opacity due to the prevalence of rotational water vapour lines at these wavelengths have slowed progress from a ground-based remote sensing perspective; however, emerging superconducting detector technologies in the fields of astronomy offer the potential to address key atmospheric science challenges with new instrumental methods. A site study, with a focus on the polar regions, is performed to assess theoretical feasibility by simulating the downwelling (zenith angle = 0°) clear-sky submillimetre spectrum from 30 mm (10 GHz) to 150 µm (2000 GHz) at six locations under annual mean, summer, winter, daytime, night-time and low-humidity conditions. Vertical profiles of temperature, pressure and 28 atmospheric gases are constructed by combining radiosonde, meteorological reanalysis and atmospheric chemistry model data. The sensitivity of the simulated spectra to the choice of water vapour continuum model and spectroscopic line database is explored. For the atmospheric trace species hypobromous acid (HOBr), hydrogen bromide (HBr), perhydroxyl radical (HO2) and nitrous oxide (N2O) the emission lines producing the largest change in brightness temperature are identified. Signal strengths, centre frequencies, bandwidths, estimated minimum integration times and maximum receiver noise temperatures are determined for all cases. HOBr, HBr and HO2 produce brightness temperature peaks in the mK to µK range, whereas the N2O peaks are in the K range. The optimal submillimetre remote sensing lines for the four species are shown to vary significantly between location and scenario, strengthening the case for future hyperspectral instruments that measure over a broad wavelength range. The techniques presented here provide a framework that can be applied to additional species of interest and taken forward to simulate retrievals and guide the

  9. Structures, reduction potentials and absorption maxima of synthetic dyes of interest in photochemical solar-energy storage studies

    Energy Technology Data Exchange (ETDEWEB)

    Chan, M.S.; Bolton, J.R.

    1980-01-01

    The photochemical redox behavior of synthetic dyes is governed by their excitation energies and ground-state redox potentials. The structures, reduction potentials and absorption maxima of 66 water-soluble synthetic dyes have been tabulated in 5 classes, namely, acridines, phenazines, oxazines, thiazines and xanthenes. The relevant references for certain other dyes of current interest to solar energy research are also included. Examples are given of how this table can be used. Solar scientists working with dye-sensitized systems such as photogalvanic cells, pigmented semicondcutors or photochemical production of hydrogen gas should find this compilation useful.

  10. Assessment of Wind Energy Potential in Golestan Province of Iran

    Directory of Open Access Journals (Sweden)

    Mehdi Hashemi-Tilehnoee

    2016-02-01

    Full Text Available Renewable energy sources are estimated to have a thriving future in many countries as well as Iran. The aim of this work is the evaluation of wind energy potentiality for the five counties of Golestan province in the northern region of Iran. A long term data source, consisting of  30 years in Gorgan, 22 years in Gonbade-e Qabus, 21 years in Maraveh Tappeh, 9 years in Aliabad, and 7 years in Bandar-e Turkaman of eight-hourly mean wind data, was adopted and analyzed. Mean wind power based on quantified data, Weibull distribution function, the relative percentage error (RPE and wind direction between obtaining values of wind power has been considered. According to these data, it was found that the numerical values of the shape parameter and scale parameter for Golestan varied a tight range. Annual values of ‘‘k’’ ranged from 2.7 to 4.7 where it is constant in different elevation because of better performance of this method in estimating wind energy potential, while annual values of ‘‘c’’ were in the range of 2.6 m/s in 10 m and 7.6 m/s in 40 m. Wind power densities have been estimated and relatively low for large wind turbines. The consequences indicate that in some months Maraveh Tappeh and Bandar-e Turkaman has best wind energy potential, as class 2, in order to establish some small wind turbine models for the sustainable development of Golestan province. Article History: Received Sept 13, 2015; Received in revised form Dec 27, 2015; Accepted January 17, 2016; Available online How to Cite This Article: Babayani, D., Khaleghi, M. and Hashemi-Tilehnoee, M. (2016 Assessment of Wind Energy Potential in Golestan Province of Iran. Int. Journal of Renewable Energy Development, 5(1, 25-31. http://dx.doi.org/10.14710/ijred.5.1.25-31 

  11. Theoretical study of potential energy surface and vibrational spectra of ArF2 system

    Institute of Scientific and Technical Information of China (English)

    杨明晖; 谢代前; 鄢国森

    2000-01-01

    An ab initio potential energy surface (PES) of ArF2 system has been obtained by using MP4 calculation with a large basis set including bond functions. There are two local minimums on the PES: one is T-shaped and the other is L-shaped. The L-shaped minimum is the global minimum with a well depth of -119.62 cm- 1 at R = 0.3883nm. The T-shaped minimum has a well depth of -85.93cm -1 at R = 0.3486 nm. A saddle point is found at R = 0.3486 and θ = 61° with the well depth of -61.53 cm-1. The vibrational energy levels have been calculated by using VSCF-CI method. The results show that this PES supports 27 vibrational bound states, and the ground states are two degenerate states assigned to the L-type vibration.

  12. Theoretical study of potential energy surface and vibrational spectra of ArF2 system

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An ab initio potential energy surface (PES) of ArF2 system has been obtained by using MP4 calculation with a large basis set including bond functions. There are two local minimums on the PES: one is T-shaped and the other is L-shaped. The L-shaped minimum is the global minimum with a well depth of -119.62 cm-1 at R = 0.3883nm. The T-shaped minimum has a well depth of -85.93cm-1 at R = 0.3486 nm. A saddle point is found at R = 0.3486 and q = 61° with the well depth of -61.53 cm-1. The vibrational energy levels have been calculated by using VSCF-CI method. The results show that this PES supports 27 vibrational bound states, and the ground states are two degenerate states assigned to the L-type vibration.

  13. GIS Assessment of Wind Energy Potential in California and Florida

    Science.gov (United States)

    Snow, R. K.; Snow, M. M.

    2008-05-01

    Energy efficiency coupled with renewable energy technologies can provide most of the U.S. carbon emissions reductions needed to contain atmospheric carbon concentrations at 450-500 parts per million, considered by many to be a tipping point in mitigating climate change. Among the leaders in the alternative energy sector is wind power, which is now one of the largest sources of new power generation in the U.S. creating jobs and revenue for rural communities while powering our economy with an emissions-free source of energy. In 2006, wind turbines capable of generating more than 2,400 megawatts of electricity were installed in the U.S. and by 2007 this number had risen to 3,000 megawatts. The U.S. generated 31 billion kilowatt-hours of wind power in 2007, which is enough electricity to power the equivalent of nearly 3 million average homes. It is estimated that generating the same amount of electricity would require burning 16 million tons of coal or 50 million barrels of oil. This study examines the wind power potential of sites near populated areas in Florida and California to determine the practicability of installing wind turbines at these locations. A GIS was developed in order to conduct a spatial analysis of these sites based on mean annual wind speed measured in meters per second and wind power density ratings measured in watts per square meter. The analysis indicates that coastal areas of Cocoa Beach, Key West, Hollywood, and West Palm Beach, respectively, possess the greatest potential for wind energy in Florida with mean annual wind speeds of 4.9 m/s and average wind power density ratings of 171 w/m2 peaking at Cocoa Beach followed by wind speeds of 4.64 m/s and wind power ratings of 115 w/m2 at Key West. California wind energy potential is even greater than that of Florida with Fairfield exhibiting mean annual wind speeds of 5.9 m/s and average wind power density ratings of 327 w/m2 followed by the Mojave and Palmdale areas with mean annual wind speeds of

  14. Energy Spectra, Composition, and Other Properties of Ground-Level Events During Solar Cycle 23

    Science.gov (United States)

    Mewaldt, R. A.; COhen, C. M. S.; Labrador, A. W.; Leske, R. A.; Looper, M. D.; Haggerty, D. K.; Mason, G. M.; Mazur, J. E.; vonRosenvinge, T. T.

    2012-01-01

    We report spacecraft measurements of the energy spectra of solar protons and other solar energetic particle properties during the 16 Ground Level Events (GLEs) of Solar Cycle 23. The measurements were made by eight instruments on the ACE, GOES, SAMPBX, and STEREO spacecraft and extend from approximately 0.1 to approximately 500-700 MeV. All of the proton spectra exhibit spectral breaks at energies ranging from approximately 2 to approximately 46 MeV and all are well fit by a double power-law shape. A comparison of GLE events with a larger sample of other solar energetic particle (SEP) events shows that the typical spectral indices are harder in GLE events, with a mean slope of -3.18 at greater than 40 MeV/nuc. In the energy range 45 to 80 MeV/nucleon about approximately 50% of GLE events have properties in common with impulsive He-3-rich SEP events, including enrichments in Ne/O, Fe/O, Ne-22/Ne-20, and elevated mean charge states of Fe. These He-3 rich events contribute to the seed population accelerated by CME-driven shocks. An analysis is presented of whether highly-ionized Fe ions observed in five events could be due to electron stripping during shock acceleration in the low corona. Making use of stripping calculations by others and a coronal density model, we can account for events with mean Fe charge states of (Q(sub Fe) is approximately equal to +20 if the acceleration starts at approximately 1.24-1.6 solar radii, consistent with recent comparisons of CME trajectories and type-II radio bursts. In addition, we suggest that gradual stripping of remnant ions from earlier large SEP events may also contribute a highly-ionized suprathermal seed population. We also discuss how observed SEP spectral slopes relate to the energetics of particle acceleration in GLE and other large SEP events.

  15. Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Christiansen, Lars; Rosbjerg, Dan

    2011-01-01

    Coupled hydrogeophysical inversion emerges as an attractive option to improve the calibration and predictive capability of hydrological models. Recently, ground-based time-lapse relative gravity (TLRG) measurements have attracted increasing interest because there is a direct relationship between ...

  16. Multiple scattering of low energy ions in matter: Influence of energy loss and interaction potential

    Energy Technology Data Exchange (ETDEWEB)

    Mekhtiche, A. [Laboratoire SNIRM, Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32 El Alia, Bab Ezzouar, Algiers (Algeria); Faculté des Sciences et de la Technologie, Université Yahia Farès de Médéa (Algeria); Khalal-Kouache, K., E-mail: kkouache@yahoo.fr [Laboratoire SNIRM, Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32 El Alia, Bab Ezzouar, Algiers (Algeria)

    2015-07-01

    In this paper, the effect of inelastic energy loss and interaction potential on transmitted ions at low energy is studied. For this purpose, angular distributions of slow He{sup +} ions transmitted through thin Ag films are calculated using the theory of multiple scattering. Thin films (20–50 Å at 2 keV and 50–200 Å at 10 keV) are considered so that the total path length of transmitted ions can be approximated by the value of the target thickness in this calculation. The corresponding values of the relative energy loss ΔE/E are comprised between 0.04 and 0.17. We show that even if low values of the thickness are considered, the total energy loss of ions in the target should be included in the calculation. These calculated angular distributions are also influenced by the potential used to describe the interaction between the incident ion and the target atom.

  17. Molecular spinless energies of the modified Rosen-Morse potential energy model in higher spatial dimensions

    Science.gov (United States)

    Jia, Chun-Sheng; Dai, Jian-Wei; Zhang, Lie-Hui; Liu, Jian-Yi; Zhang, Guang-Dong

    2015-01-01

    We solve the Klein-Gordon equation with the modified Rosen-Morse potential energy model in D spatial dimensions. The bound state energy equation has been obtained by using the supersymmetric WKB approximation approach. We find that the inter-dimensional degeneracy symmetry exists for the molecular system represented by the modified Rosen-Morse potential. For fixed vibrational and rotational quantum numbers, the relativistic energies for the 61Πu state of the 7Li2 molecule and the X3Π state of the SiC radical increase as D increases. We observe that the behavior of the relativistic vibrational energies in higher dimensions remains similar to that of the three-dimensional system.

  18. VT Potential Solar PV SHW and Ground Mount Resources - location points

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Renewable Energy Atlas of Vermont and this dataset were created to assist town energy committees, the Clean Energy Development Fund and other...

  19. Examining fine potential energy effects in high-energy fission dynamics

    Science.gov (United States)

    Mazurek, K.; Schmitt, C.; Nadtochy, P. N.; Kmiecik, M.; Maj, A.; Wasiak, P.; Wieleczko, J. P.

    2013-11-01

    The potential energy surface plays a decisive role in nuclear fission. Together with inertia and viscosity, it influences the trajectory of the system, and the properties of the fission fragments result from the puzzling interplay between static and dynamical effects. A careful study on the influence of the parametrization of the potential energy landscape in heavy-ion-induced fission is performed. Dynamical calculations are done within the stochastic Langevin approach in a three-dimensional deformation space. Various prescriptions of the potential energy surface are considered, probing two different Liquid Drop models and the deformation dependence of the Wigner/congruence energy. A wide set of observables, including cross sections, particle multiplicities, and integral, as well as isotopic and isobaric, distributions of fission and evaporation products, is analyzed. Nuclei close to the Businaro-Gallone point are confirmed to be well suited for investigating the Liquid Drop parametrization, while the influence of the deformation-dependent Wigner/congruence energy is difficult to demonstrate unambiguously in fission at high excitation energies.

  20. Numerical integration of exchange-correlation energies and potentials using transformed sparse grids.

    Science.gov (United States)

    Rodríguez, Juan I; Thompson, David C; Ayers, Paul W; Köster, Andreas M

    2008-06-14

    A new numerical integration procedure for exchange-correlation energies and potentials is proposed and "proof of principle" results are presented. The numerical integration grids are built from sparse-tensor product grids (constructed according to Smolyak's prescription [Dokl. Akad. Nauk. 4, 240 (1963)] ) on the unit cube. The grid on the unit cube is then transformed to a grid over real space with respect to a weight function, which we choose to be the promolecular density. This produces a "whole molecule" grid, in contrast to conventional integration methods in density-functional theory, which use atom-in-molecule grids. The integration scheme was implemented in a modified version of the DEMON2K density-functional theory program, where it is used to evaluate integrals of the exchange-correlation energy density and the exchange-correlation potential. Ground-state energies and molecular geometries are accurately computed. The biggest advantages of the grid are its flexibility (it is easy to change the number and distribution of grid points) and its whole molecule nature. The latter feature is potentially helpful for basis-set-free computational algorithms.

  1. Accurate potential energy, dipole moment curves, and lifetimes of vibrational states of heteronuclear alkali dimers

    CERN Document Server

    Fedorov, Dmitry A; Varganov, Sergey A

    2014-01-01

    We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X1{\\Sigma}+ electronic state using the coupled cluster with singles doubles and triples (CCSDT) method. All-electron quadruple-{\\zeta} basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-{\\zeta} quality basis sets are used for K, Rb and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtaining the accurate potential energy curves. Large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm-1 for LiNa and by no more than 114 cm-1 for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencie...

  2. Correlation energy and dispersion interaction in the ab initio potential energy curve of the neon dimer.

    Science.gov (United States)

    Bytautas, Laimutis; Ruedenberg, Klaus

    2008-06-01

    A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion.

  3. Estimating pumping time and ground-water withdrawals using energy-consumption data. Water-Resources Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Hurr, R.T.; Litke, D.W.

    1989-01-01

    Evaluation of the hydrology of an aquifer requires knowledge about the volume of ground water in storage and also about the volume of ground-water withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all wells in an area with meters. A viable alternative is the use of rate-time methods to estimate withdrawals. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total ground-water withdrawals. Random sampling of power-consumption coefficients can be used to estimate area-wide ground-water withdrawals.

  4. Potential for energy conservation in the cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Garrett-Price, B.A.

    1985-02-01

    This report assesses the potential for energy conservation in the cement industry. Energy consumption per ton of cement decreased 20% between 1972 and 1982. During this same period, the cement industry became heavily dependent on coal and coke as its primary fuel source. Although the energy consumed per ton of cement has declined markedly in the past ten years, the industry still uses more than three and a half times the fuel that is theoretically required to produce a ton of clinker. Improving kiln thermal efficiency offers the greatest opportunity for saving fuel. Improving the efficiency of finish grinding offers the greatest potential for reducing electricity use. Technologies are currently available to the cement industry to reduce its average fuel consumption per ton by product by as much as 40% and its electricity consumption per ton by about 10%. The major impediment to adopting these technologies is the cement industry's lack of capital as a result of low or no profits in recent years.

  5. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Crusius, Johann-Philipp, E-mail: johann-philipp.crusius@uni-rostock.de; Hassel, Egon [Lehrstuhl für Technische Thermodynamik, Universität Rostock, 18059 Rostock (Germany); Hellmann, Robert; Bich, Eckard [Institut für Chemie, Universität Rostock, 18059 Rostock (Germany)

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C{sub 2}H{sub 4}O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  6. Bound state potential energy surface construction: ab initio zero-point energies and vibrationally averaged rotational constants.

    Science.gov (United States)

    Bettens, Ryan P A

    2003-01-15

    Collins' method of interpolating a potential energy surface (PES) from quantum chemical calculations for reactive systems (Jordan, M. J. T.; Thompson, K. C.; Collins, M. A. J. Chem. Phys. 1995, 102, 5647. Thompson, K. C.; Jordan, M. J. T.; Collins, M. A. J. Chem. Phys. 1998, 108, 8302. Bettens, R. P. A.; Collins, M. A. J. Chem. Phys. 1999, 111, 816) has been applied to a bound state problem. The interpolation method has been combined for the first time with quantum diffusion Monte Carlo calculations to obtain an accurate ground state zero-point energy, the vibrationally average rotational constants, and the vibrationally averaged internal coordinates. In particular, the system studied was fluoromethane using a composite method approximating the QCISD(T)/6-311++G(2df,2p) level of theory. The approach adopted in this work (a) is fully automated, (b) is fully ab initio, (c) includes all nine nuclear degrees of freedom, (d) requires no assumption of the functional form of the PES, (e) possesses the full symmetry of the system, (f) does not involve fitting any parameters of any kind, and (g) is generally applicable to any system amenable to quantum chemical calculations and Collins' interpolation method. The calculated zero-point energy agrees to within 0.2% of its current best estimate. A0 and B0 are within 0.9 and 0.3%, respectively, of experiment.

  7. Energy strategy and mitigation potential in energy sector of the Russian federation

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, A.F.; Petrov, V.N.; Chupyatov, V.P.

    1996-12-31

    This paper describes the mitigation potential in the Russian energy sector and presents CO{sub 2} - emission scenarios. Based on the Russian energy strategy, energy conservation potential has been estimated and three groups of energy conservation measures have been pointed out. Taking into account the economic development scenarios and the scenarios of energy consumption and energy conservation, future CO{sub 2} emission scenarios for 2000 and 2010 have been prepared. Some important characteristics of these scenarios have been presented and discussed. For the period 2000-2010 annual growth rates for CO{sub 2} emission in the Russian energy sector will not exceed 0.9-1.3 %, and emission levels in 2000 make up - 75-78 %, and in 2010 - 81-88 % of the 1990 level. For the probable scenario the CO{sub 2} emission reducing will make up about 6% and 25% (for the optimistic scenario about 16% and 31%) of CO{sub 2} emission for reference scenario in 2000 and 2010 respectively. Additional CO{sub 2} emission reducing (3-5% of domestic CO{sub 2} emission) will result from increasing share of natural gas consumption.

  8. Effects of low-lying excitations on ground-state energy and energy gap of the Sherrington-Kirkpatrick model in a transverse field

    Science.gov (United States)

    Koh, Yang Wei

    2016-04-01

    We present an extensive numerical study of the Sherrington-Kirkpatrick model in a transverse field. Recent numerical studies of quantum spin glasses have focused on exact diagonalization of the full Hamiltonian for small systems (≈20 spins). However, such exact numerical treatments are difficult to apply on larger systems. We propose making an approximation by using only a subspace of the full Hilbert space spanned by low-lying excitations consisting of one-spin-flipped and two-spin-flipped states. The approximation procedure is carried out within the theoretical framework of the Hartree-Fock approximation and configuration interaction. Although not exact, our approach allows us to study larger system sizes comparable to that achievable by state-of-the-art quantum Monte Carlo simulations. We calculate two quantities of interest due to recent advances in quantum annealing, the ground-state energy and the energy gap between the ground and first excited states. For the energy gap, we derive a formula that enables it to be calculated using just the ground-state wave function, thereby circumventing the need to diagonalize the Hamiltonian. We calculate the scalings of the energy gap and the leading correction to the extensive part of the ground-state energy with system size, which are difficult to obtain with current methods.

  9. Spin–orbit-coupled BEC in a double-well potential: Quantum energy spectrum and flat band

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wen-Yuan [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Cao, Hui, E-mail: hcao.physics@gmail.com [National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Liu, Jie [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100084 (China); Fu, Li-Bin, E-mail: lbfu@iapcm.ac.cn [National Laboratory of Science and Technology on Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100084 (China)

    2015-09-04

    Spin–orbit-coupled Bose–Einstein condensates (BECs) provide a powerful platform for studies on physical problems in various fields. Here we study the energy spectrum of a tunable spin–orbit-coupled BEC in a double-well potential with adjustable Raman laser intensity. We find in the single-particle spectrum there is a highly degenerate flat band in the ground state of the BEC, which remains stable against changes of the Raman strength. Many-body interactions between atoms remove this high degeneracy. Analytical results for particular cases are obtained by using the perturbation theory, which are in good agreement with the numerical results. - Highlights: • Energy spectrum of a tunable SOC BEC in a double-well potential is obtained. • Single-particle spectrum shows a highly degenerate flat band in the ground state. • Weak interactions between atoms remove this high degeneracy. • Analytical results are obtained by perturbation theory.

  10. Theoretical studies of potential energy surfaces and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  11. Potential impacts of nanotechnology on energy transmission applications and needs.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Environmental Science Division

    2007-11-30

    The application of nanotechnologies to energy transmission has the potential to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of energy, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce potential ROW impacts. Potential environmental, safety, and health impacts are also discussed.

  12. Potential environmental effects of energy conservation measures in northwest industries

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  13. Assessment of Global Wind Energy Resource Utilization Potential

    Science.gov (United States)

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  14. The hibernating 13-lined ground squirrel as a model organism for potential cold storage of platelets.

    Science.gov (United States)

    Cooper, Scott T; Richters, Karl E; Melin, Travis E; Liu, Zhi-jian; Hordyk, Peter J; Benrud, Ryan R; Geiser, Lauren R; Cash, Steve E; Simon Shelley, C; Howard, David R; Ereth, Mark H; Sola-Visner, Martha C

    2012-05-15

    Hibernating mammals have developed many physiological adaptations to extreme environments. During hibernation, 13-lined ground squirrels (Ictidomys tridecemlineatus) must suppress hemostasis to survive prolonged body temperatures of 4-8°C and 3-5 heartbeats per minute without forming lethal clots. Upon arousal in the spring, these ground squirrels must be able to quickly restore normal clotting activity to avoid bleeding. Here we show that ground squirrel platelets stored in vivo at 4-8°C were released back into the blood within 2 h of arousal in the spring with a body temperature of 37°C but were not rapidly cleared from circulation. These released platelets were capable of forming stable clots and remained in circulation for at least 2 days before newly synthesized platelets were detected. Transfusion of autologous platelets stored at 4°C or 37°C showed the same clearance rates in ground squirrels, whereas rat platelets stored in the cold had a 140-fold increase in clearance rate. Our results demonstrate that ground squirrel platelets appear to be resistant to the platelet cold storage lesions observed in other mammals, allowing prolonged storage in cold stasis and preventing rapid clearance upon spring arousal. Elucidating these adaptations could lead to the development of methods to store human platelets in the cold, extending their shelf life.

  15. Potential for energy savings in old and new auto engines

    Science.gov (United States)

    Reitz, John R.

    1985-11-01

    This paper disucsses the potential for energy savings in the transportation sector through the use of both improved and entirely new automotive engines. Although spark-ignition and diesel internal combustion engines will remain the dominant choices for passenger-car use throughout the rest of this century, improved versions of these engines (lean-burn, low-friction spark-ignition and adiabatic, low-friction diesel engines) could, in the long term, provide a 20-30 percent improvement in fuel economy over what is currently available. The use of new materials, and modifications to both vehicle structure and vehicle transmissions may yield further improvements. Over a longer time frame, the introduction of the high-temperature gas-turbine engine and the use of new synfuels may provide further opportunities for energy conservation.

  16. Stabilized Quasi-Newton Optimization of Noisy Potential Energy Surfaces

    CERN Document Server

    Schaefer, Bastian; Roy, Shantanu; Goedecker, Stefan

    2014-01-01

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient, but also very reliable. Unfortunately computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a sever problem to the stability of efficient optimization methods like the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are sup...

  17. Energy expenditure estimates during school physical education: Potential vs. reality?

    Science.gov (United States)

    Kahan, David; McKenzie, Thomas L

    2017-02-01

    Schools are salient locations for addressing the high prevalence of overweight and obesity. Most US states require some physical education (PE) and the energy expended during PE has potential to positively affect energy balance. We previously used 2012 data to examine state policies for PE to calculate estimated student energy expenditure (EEE) under potential (i.e., recommendations followed) and existing conditions. Since then, data have been updated on both state policies and the conduct of PE. Based on updated data, we used PE frequency, duration, and intensity, student mass, and class size to calculate EEE for the delivery of PE under (a) national professional recommendations, (b) 2016 state policies, and (c) school-reported conditions. Although increased from four years ago, only 22 states currently have policies mandating specific PE minutes. EEE over 10years shows the enormous impact PE could have on energy balance. For the average recommended-size PE class, resultant annual EEE based on professional recommendations for min/week far exceeded those based on average state (n=22) policy for min/week by 44.5% for elementary, 62.7% for middle, and 59.5% for high schools. Since 2012 more states adopted policies for PE minutes than dropped them, however, EEE over 10years showed a net loss of 1200kcal/student. With no overall recent improvements in state PE policy and professional recommendations currently not being met, PE remains an underutilized public health resource for EEE. Strong policies, coupled with enhanced accountability of PE teachers and administrators, are needed to ensure PE exists in schools.

  18. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    Science.gov (United States)

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  19. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom

    Science.gov (United States)

    Harbola, Varun

    2011-01-01

    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  20. Passive suppression of helicopter ground resonance using nonlinear energy sinks attached on the helicopter blades

    Science.gov (United States)

    Bergeot, B.; Bellizzi, S.; Cochelin, B.

    2017-03-01

    This paper investigates the passive control of a rotor instability named helicopter Ground Resonance (GR). The passive device consists of a set of essential cubic nonlinear absorbers named Nonlinear Energy Sinks (NES) each of them positioned on a blade. A dynamic model reproducing helicopter GR instability is presented and transformed to a time-invariant nonlinear system using a multi-blade coordinate transformation based on Fourier transform mapping the dynamic state variables into a non-rotating reference frame. Combining complexification, slow/fast partition of the dynamics and averaging procedure, a reduced model is obtained which allowed us to use the so-called geometric singular perturbation analysis to characterize the steady state response regimes. As in the case of a NES attached to the fuselage, it is shown that under suitable conditions, GR instability can be completely suppressed, partially suppressed through periodic response or strongly modulated response. Relevant analytical results are compared, for validation purposes, to direct integration of the reference and reduced models.

  1. Energy use and potential energy conservation for companies and institutions; Energieverbruik en besparingspotentieel bedrijven en instellingen

    Energy Technology Data Exchange (ETDEWEB)

    De Groot, G.M.; Morgenstern, P.P.

    2009-07-01

    The VROM Inspectorate (VI) ordered an investigation to determine which types of companies and institutions would qualify for the VI project Climate and Energy, which aims to stimulate companies to save energy. The project will focus on branches and sectors that, currently, are not participating in government energy conservation agreements or the Greenhouse gas Emission Trading System, but that have a high energy consumption and a significant potential for conserving energy. A large part of the Dutch trade, services and government sector (Handel, Diensten en Overheid (HDO)) qualifies for participation in the project of the VROM Inspectorate. This HDO sector is responsible for 12% of the energy use within the Netherlands and has large energy-saving potential. Many of the branches within this sector use a considerable amount of energy (five petajoules or more), but are not part of any energy conservation agreement. The branches involved are: recreation; healthcare and welfare; wholesale; retail; car trade, maintenance and repairs; food services; and commercial and financial services. The largest energy conservation measures for which the costs could be recovered within five years, relate to power consumption by machines, appliances and lighting. Insulation of existing buildings could also realise substantial energy savings, although the cost-recovery time would be longer and, therefore, these measures often are not mandatory. An important part of the industrial sector, consuming around 30 per cent of the energy within the Netherlands, does not qualify for participation in the VI project. In this sector, around 90% of the energy is used by companies that already participate in energy conservation agreements (the Covenant Benchmarking, and the Long-term agreements on energy efficiency (LTA3)), or in the Greenhouse Gas Emission Trading System (EU ETS). These companies have the largest potential for saving energy. Industrial sectors that, as yet, do not participate in

  2. Understanding the Potential of Aeroelastic Couplings to Stabilize Ground and Air Resonance in a Soft-Inplane Tiltrotor

    Science.gov (United States)

    Howard, Anna K. T.

    1999-01-01

    The tiltrotor offers the best mix of hovering and cruise flight of any of the current V/STOL configurations. One possible improvement on the tiltrotors of today designs would be using a soft-inplane hingeless hub. The advantages to a soft-inplane hingeless hub range from reduced weight and maintenance to reduced vibration and loads. However, soft-inplane rotor systems are inherently in danger of the aeromechanical instabilities of ground and air resonance. Furthermore tiltrotors can be subject to whirl flutter. At least in part because of the potential for air and ground resonance in a soft-inplane rotor, the Bell XV-15, the Bell-Boeing V-22 Osprey, and the new Bell Augusta 609 have stiff-inplane, gimballed rotors which do not experience these instabilities. In order to design soft-inplane V/STOL aircraft that do not experience ground or air resonance, it is important to be able to predict these instabilities accurately. Much of the research studying the stability of tiltrotors has been focused on the understanding and prediction of whirl flutter. As this instability is increasingly well understood, air and ground resonance for a tiltrotor need to be investigated. Once we understand the problems of air and ground resonance in a tiltrotor, we must look for solutions to these instabilities. Other researchers have found composite or kinematic couplings in the blades of a helicopter helpful for ground and air resonance stability. Tiltrotor research has shown composite couplings in the wing to be helpful for whirl flutter. Therefore, this project will undertake to model ground and air resonance of a soft-inplane hingeless tiltrotor to understand the mechanisms involved and to evaluate whether aeroelastic couplings in the wing or kinematic couplings in the blades would aid in stabilizing these instabilities in a tiltrotor.

  3. A new methodology for monitoring wood fluxes in rivers using a ground camera: Potential and limits

    Science.gov (United States)

    Benacchio, Véronique; Piégay, Hervé; Buffin-Bélanger, Thomas; Vaudor, Lise

    2017-02-01

    Ground imagery, which produces large amounts of valuable data at high frequencies, is increasingly used by fluvial geomorphologists to survey and understand processes. While such technology provides immense quantities of information, it can be challenging to analyze and requires automatization and associated development of new methodologies. This paper presents a new approach to automate the processing of image analysis to monitor wood delivery from the upstream Rhône River (France). The Génissiat dam is used as an observation window; all pieces of wood coming from the catchment are trapped here, hence a wood raft accumulates over time. In 2011, we installed an Axis 211W camera to acquire oblique images of the reservoir every 10 min with the goal of automatically detecting a wood raft area, in order to transform it to wood weight (t) and flux (t/d). The methodology we developed is based on random forest classification to detect the wood raft surface over time, which provided a good classification rate of 97.2%. Based on 14 mechanical wood extractions that included weight of wood removed each time, conducted during the survey period, we established a relationship between wood weight and wood raft surface area observed just before the extraction (R2 = 0.93). We found that using such techniques to continuously monitor wood flux is difficult because the raft undergoes very significant changes through time in terms of density, with a very high interday and intraday variability. Misclassifications caused by changes in weather conditions can be mitigated as well as errors from variation in pixel resolution (owing to camera position or window size), but a set of effects on raft density and mobility must still be explored (e.g., dam operation effects, wind on the reservoir surface). At this stage, only peak flow contribution to wood delivery can be well calculated, but determining an accurate, continuous series of wood flux is not possible. Several recommendations are

  4. Excitation energies and potential energy curves for the 19 excited electronic terms of CH: Efficiency examination of the multireference first-order polarization propagator approximation

    Science.gov (United States)

    Seleznev, Alexey O.; Khrustov, Vladimir F.; Stepanov, Nikolay F.

    2013-11-01

    The attainability of a uniform precision level for estimates of electronic transition characteristics through the multireference first-order polarization propagator approximation (MR-FOPPA) was examined under extension of a basis set, using the CH ion as an example. The transitions from the ground electronic state to the 19 excited electronic terms were considered. Balanced approximations for (i) transition energies to the studied excited states and (ii) forms and relative dispositions of their potential energy curves were attained in the 3-21G and 6-311G (d,p) basis sets. In both the basis sets, a balanced approximation for the corresponding transition moments was not achieved.

  5. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas, representing 52% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity

  6. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Iron and Steel Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Keith Jamison, Caroline Kramer, Sabine Brueske, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas and select subareas, representing 82% of sector-wide energy consumption. Energy savings opportunities for individual processes and subareas are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  7. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

    Directory of Open Access Journals (Sweden)

    M. Ashrafi

    2005-01-01

    Full Text Available Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

  8. Freezing of Energy of a Soliton in an External Potential

    Science.gov (United States)

    Bambusi, D.; Maspero, A.

    2016-05-01

    In this paper we study the dynamics of a soliton in the generalized NLS with a small external potential ɛV of Schwartz class. We prove that there exists an effective mechanical system describing the dynamics of the soliton and that, for any positive integer r, the energy of such a mechanical system is almost conserved up to times of order ɛ - r . In the rotational invariant case we deduce that the true orbit of the soliton remains close to the mechanical one up to times of order ɛ - r .

  9. The Potential Energy Landscape and Mechanisms of Diffusion in Liquids

    OpenAIRE

    Keyes, T.; J. Chowdhary

    2001-01-01

    The mechanism of diffusion in supercooled liquids is investigated from the potential energy landscape point of view, with emphasis on the crossover from high- to low-T dynamics. Molecular dynamics simulations with a time dependent mapping to the associated local mininum or inherent structure (IS) are performed on unit-density Lennard-Jones (LJ). New dynamical quantities introduced include r2_{is}(t), the mean-square displacement (MSD) within a basin of attraction of an IS, R2(t), the MSD of t...

  10. Potential Energy Surfaces Using Algebraic Methods Based on Unitary Groups

    Directory of Open Access Journals (Sweden)

    Renato Lemus

    2011-01-01

    Full Text Available This contribution reviews the recent advances to estimate the potential energy surfaces through algebraic methods based on the unitary groups used to describe the molecular vibrational degrees of freedom. The basic idea is to introduce the unitary group approach in the context of the traditional approach, where the Hamiltonian is expanded in terms of coordinates and momenta. In the presentation of this paper, several representative molecular systems that permit to illustrate both the different algebraic approaches as well as the usual problems encountered in the vibrational description in terms of internal coordinates are presented. Methods based on coherent states are also discussed.

  11. Potential Energy Surfaces and Quantum Yields for Photochromic Diarylethene Reactions

    Directory of Open Access Journals (Sweden)

    Makoto Hatakeyama

    2013-05-01

    Full Text Available Photochromic diarylethenes (DAEs are among the most promising molecular switching systems for future molecular electronics. Numerous derivatives have been synthesized recently, and experimental quantum yields (QYs have been reported for two categories of them. Although the QY is one of the most important properties in various applications, it is also the most difficult property to predict before a molecule is actually synthesized. We have previously reported preliminary theoretical studies on what determines the QYs in both categories of DAE derivatives. Here, reflecting theoretical analyses of potential energy surfaces and recent experimental results, a rational explanation of the general guiding principle for QY design is presented for future molecular design.

  12. Waste characterisation, determining the energy potential of waste

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2015-11-01

    Full Text Available stream_source_info Oelofse2_2015.pdf.txt stream_content_type text/plain stream_size 4108 Content-Encoding UTF-8 stream_name Oelofse2_2015.pdf.txt Content-Type text/plain; charset=UTF-8 1 Waste characterisation..., determining the energy potential of waste 25 November 2015 by Prof Suzan Oelofse Research Group Leader: Waste for Development Competency Area: Solutions for a Green Economy 2 WtE should consider Fitness for purpose • Feedstock...

  13. Taboo search by successive confinement: Surveying a potential energy surface

    Science.gov (United States)

    Chekmarev, Sergei F.

    2001-09-01

    A taboo search for minima on a potential energy surface (PES) is performed by means of confinement molecular dynamics: the molecular dynamics trajectory of the system is successively confined to various basins on the PES that have not been sampled yet. The approach is illustrated for a 13-atom Lennard-Jones cluster. It is shown that the taboo search radically accelerates the process of surveying the PES, with the probability of finding a new minimum defined by a propagating Fermi-like distribution.

  14. Waste to Energy Potential - A High Concentration Anaerobic Bioreactor

    Science.gov (United States)

    2012-05-23

    REPORT DATE 23 MAY 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Waste to Energy Potential - A High...and fermentative bacteria break down organic carbon to VFAs Acetogens break down VFAs to CH3CO2 − and H2 + Acetoclastic methanogens break...s -999999 999999 7 481 su -999999 999999 0 .. -999999 999999 HCA8 pti Flo$&-tdgc Tan.\\ feed su -999999 999999 0 .. -999999 999999 A-l>o -999999

  15. Material and energy recovery in integrated waste management systems: the potential for energy recovery.

    Science.gov (United States)

    Consonni, Stefano; Viganò, Federico

    2011-01-01

    This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental

  16. Wind and Solar Energy Potential Assessment for Development of Renewables Energies Applications in Bucaramanga, Colombia

    Science.gov (United States)

    Ordóñez, G.; Osma, G.; Vergara, P.; Rey, J.

    2014-06-01

    Currently, the trend of micro-grids and small-scale renewable generation systems implementation in urban environments requires to have historical and detailed information about the energy potential resource in site. In Colombia, this information is limited and do not favor the design of these applications; for this reason, must be made detailed studies of the energy potential in their cities. In this paper is presented the wind and solar energy resource assessment for the city of Bucaramanga, based on the monitoring on four strategic points during the years 2010, 2011 and 2012. According to the analysis, is evidenced a significant solar resource throughout the year ascending on average to 1 734 kWh/m2, equivalent to 4.8 kWh/m2/day. Also, from a wind statistical study based on the Weibull probability distribution and Wind Power Density (WPD) was established the wind potential as Class 1 according to the scale of the Department of Energy of the United States (DOE), since the average speed is near 1.4 m/s. Due this, it is technically unfeasible the using of micro-turbines in the city, even so their potential for natural ventilation of building was analyzed. Finally, is presented a methodology to analyze solar harvesting by sectors in the city, according to the solar motion and shadowing caused by existing structures.

  17. [Heavy metals in the surface sediment of the dumping ground outside Jiaozhou Bay and their potential ecological risk].

    Science.gov (United States)

    Cao, Cong-hua; Zhang, Nai-xing; Wu, Feng-cong; Sun, Bin; Ren, Rong-zhu; Sun, Xu; Lin, Sen; Zhang, Shao-ping

    2011-05-01

    Based on the monitoring data of heavy metals (Cr, Hg, Cd, Pb, Zn, Cu) in the surface sediment of the dumping ground outside Jiaozhou Bay from 2003 to 2008, the distribution patterns, factors controlling the distribution, and the potential ecological risks of heavy metals were studied with the data in 2007-08, and the fluctuation trends of heavy metals in the surface sediment over the 6 years were also discussed. The average concentrations of heavy metals Cr, Hg, Cd, Pb, Zn, Cu in the surface sediment were 29.47, 0.065, 0.105, 1.145, 9.63, 3.355 microg/g, respectively. Except for Cr, the concentration of heavy metals was high in the central dumping area while low outside the dumping ground, suggesting that the dredged material dumped was the main source of heavy metals. Organic carbon content in the surface sediment had a significant positive correlation with heavy metals except for Cr. Based on the results of ecological risk assessment, Hg had a medium potential ecological risk, while the other heavy metals had low potential ecological risk. The overall risk index (RI) of the heavy metals was 100.50, which was considered as a level of low potential ecological risk. The average concentration of heavy metals showed a decreasing trend over the 6 years, except Hg. In conclusion, the quality of surface sediment in term of heavy metals in the dumping ground outside Jiaozhou Bay is relatively good.

  18. Positive and ground state solutions for the critical Klein-Gordon-Maxwell system with potentials

    CERN Document Server

    Carriao, Paulo C; Miyagaki, Olimpio H

    2010-01-01

    In this paper we study a class of Klein-Gordon-Maxwell system when the nonlinearity exhibits critical growth. First we prove both existence and ground state solutions for this system with a periodic potencial V, and then we show the existence in the case that a nonperiodic potencial V is introduced.

  19. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Patel, D. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Bertram, K. M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  20. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  1. Microscopically derived potential energy surfaces from mostly structural considerations

    Energy Technology Data Exchange (ETDEWEB)

    Ermamatov, M.J. [Instituto de Física, Universidade Federal Fluminense, 24210-340, Niterói, Rio de Janeiro (Brazil); Institute of Nuclear Physics, Ulughbek, Tashkent 100214 (Uzbekistan); Hess, Peter O., E-mail: hess@nucleares.unam.mx [Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, C.U., A.P. 70-543, 04510, Mexico D.F. (Mexico)

    2016-08-15

    A simple procedure to estimate the quadrupole Potential-Energy-Surface (PES) is presented, using mainly structural information, namely the content of the shell model space and the Pauli exclusion principle. Further microscopic properties are implicitly contained through the use of results from the Möller and Nix tables or experimental information. A mapping to the geometric potential is performed yielding the PES. The General Collective Model is used in order to obtain an estimate on the spectrum and quadrupole transitions, adjusting only the mass parameter. First, we test the conjecture on known nuclei, deriving the PES and compare them to known data. We will see that the PES approximates very well the structure expected. Having acquired a certain confidence, we predict the PES of several chain of isotopes of heavy and super-heavy nuclei and at the end we investigate the structure of nuclei in the supposed island of stability. One of the main points to show is that simple assumptions can provide already important information on the structure of nuclei outside known regions and that spectra and electromagnetic transitions can be estimated without using involved calculations and assumptions. The procedure does not allow to calculate binding energies. The method presented can be viewed as a starting point for further improvements.

  2. Renewable energy technologies in the Maldives - determining the potential

    Energy Technology Data Exchange (ETDEWEB)

    van Alphen, Klaas; Hekkert, Marko P. [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, University of Utrecht, P.O. Box 80115, NL 3508 TC, Utrecht (Netherlands); van Sark, Wilfried G.J.H.M. [Department of Science, Technology and Society, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht (Netherlands)

    2007-10-15

    The Maldives is one of the most vulnerable countries to the projected impacts of climate change, due to a combination of the small sizes of the islands and their low height above sea level. Like other small island developing states, the Maldives depends overwhelmingly on petroleum imports for their electricity production, which creates serious economic and financial difficulties. The Government of Maldives is therefore committed to promote sustainable energy and has been actively pursuing several inter-related initiatives to overcome the existing barriers to the utilization of renewable energy technologies. To assist this, the quantification and evaluation of the potentials of available solar and wind resources in the country for electricity applications has been performed. The hybrid system design tool HOMER has been used to create optimal renewable energy (RE) system designs. In order to evaluate these different RE alternatives a multi-criteria analysis is performed using a number of criteria that are likely to be decisive in implementation decisions. The evaluation shows that fully RE system configurations are not financially viable in the Maldives while the RE-diesel hybrid systems could bring down the price of electricity with 5-10 cent/kWh in smaller outer islands. Assuming that these latter systems with a high probability of adoption are implemented, the results show that 10% of the electricity in the Maldives could be supplied by RE based systems in a cost effective way. (author)

  3. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy.

    Science.gov (United States)

    Chen, Jun; Yang, Jin; Li, Zhaoling; Fan, Xing; Zi, Yunlong; Jing, Qingshen; Guo, Hengyu; Wen, Zhen; Pradel, Ken C; Niu, Simiao; Wang, Zhong Lin

    2015-03-24

    With 70% of the earth's surface covered with water, wave energy is abundant and has the potential to be one of the most environmentally benign forms of electric energy. However, owing to lack of effective technology, water wave energy harvesting is almost unexplored as an energy source. Here, we report a network design made of triboelectric nanogenerators (TENGs) for large-scale harvesting of kinetic water energy. Relying on surface charging effect between the conventional polymers and very thin layer of metal as electrodes for each TENG, the TENG networks (TENG-NW) that naturally float on the water surface convert the slow, random, and high-force oscillatory wave energy into electricity. On the basis of the measured output of a single TENG, the TENG-NW is expected to give an average power output of 1.15 MW from 1 km(2) surface area. Given the compelling features, such as being lightweight, extremely cost-effective, environmentally friendly, easily implemented, and capable of floating on the water surface, the TENG-NW renders an innovative and effective approach toward large-scale blue energy harvesting from the ocean.

  4. Potential strategic consequences of the nuclear energy revival

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Ch.D.

    2010-07-01

    Many people have projected their hopes and fears onto nuclear power. Nuclear energy has both benefits and risks, and disagreement persists about whether this energy source is, on balance, more of an asset than a liability. This debate involves a complicated set of factors that are difficult to assess, let alone fully resolve because of the differing interests in various countries' use and pursuit of nuclear power. Renewed interest throughout the globe in harnessing this energy source has stoked this perennial debate and raised concern about security threats from states and non-state actors while holding out the promise of more electricity for more people. While the motivations for nuclear energy vary among states, the two primary public goods this energy source offers are countering human-induced climate change and providing for greater energy security. Although views on how to achieve energy security differ, the essential aspect for nuclear energy is that for several countries, especially those with scarce indigenous energy sources from fossil fuels, investing in nuclear power plants diversifies electricity production portfolios and helps reduce dependence on foreign sources of energy. The focus here is on assessing the potential security consequences of increased use of nuclear power in the existing nuclear power states and most importantly in many more states that have in recent years expressed interest in this power source. The risks of nuclear power include possible reactor accidents, release of radioactive waste to the environment, attacks on or sabotage of nuclear facilities, and misuse of peaceful nuclear technologies to make nuclear weapons. While safety of nuclear plants and disposal of radioactive waste are important issues, this paper analyzes the latter two issues. In addition, it addresses two under-examined risks: military attacks on nuclear facilities and the effects on security alliances and conventional arms buildups as more countries seek to

  5. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Science.gov (United States)

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S.; Asano, K.; Asorey, H.; Bähr, J.; Bais, A.; Baixeras, C.; Bajtlik, S.; Balis, D.; Bamba, A.; Barbier, C.; Barceló, M.; Barnacka, A.; Barnstedt, J.; Barres de Almeida, U.; Barrio, J. A.; Basso, S.; Bastieri, D.; Bauer, C.; Becerra, J.; Becherini, Y.; Bechtol, K.; Becker, J.; Beckmann, V.; Bednarek, W.; Behera, B.; Beilicke, M.; Belluso, M.; Benallou, M.; Benbow, W.; Berdugo, J.; Berger, K.; Bernardino, T.; Bernlöhr, K.; Biland, A.; Billotta, S.; Bird, T.; Birsin, E.; Bissaldi, E.; Blake, S.; Blanch, O.; Bobkov, A. A.; Bogacz, L.; Bogdan, M.; Boisson, C.; Boix, J.; Bolmont, J.; Bonanno, G.; Bonardi, A.; Bonev, T.; Borkowski, J.; Botner, O.; Bottani, A.; Bourgeat, M.; Boutonnet, C.; Bouvier, A.; Brau-Nogué, S.; Braun, I.; Bretz, T.; Briggs, M. S.; Brun, P.; Brunetti, L.; Buckley, J. H.; Bugaev, V.; Bühler, R.; Bulik, T.; Busetto, G.; Buson, S.; Byrum, K.; Cailles, M.; Cameron, R.; Canestrari, R.; Cantu, S.; Carmona, E.; Carosi, A.; Carr, J.; Carton, P. H.; Casiraghi, M.; Castarede, H.; Catalano, O.; Cavazzani, S.; Cazaux, S.; Cerruti, B.; Cerruti, M.; Chadwick, P. M.; Chiang, J.; Chikawa, M.; Cieślar, M.; Ciesielska, M.; Cillis, A.; Clerc, C.; Colin, P.; Colomé, J.; Compin, M.; Conconi, P.; Connaughton, V.; Conrad, J.; Contreras, J. L.; Coppi, P.; Corlier, M.; Corona, P.; Corpace, O.; Corti, D.; Cortina, J.; Costantini, H.; Cotter, G.; Courty, B.; Couturier, S.; Covino, S.; Croston, J.; Cusumano, G.; Daniel, M. K.; Dazzi, F.; Angelis, A. De; de Cea Del Pozo, E.; de Gouveia Dal Pino, E. M.; de Jager, O.; de La Calle Pérez, I.; de La Vega, G.; de Lotto, B.; de Naurois, M.; de Oña Wilhelmi, E.; de Souza, V.; Decerprit, B.; Deil, C.; Delagnes, E.; Deleglise, G.; Delgado, C.; Dettlaff, T.; di Paolo, A.; di Pierro, F.; Díaz, C.; Dick, J.; Dickinson, H.; Digel, S. W.; Dimitrov, D.; Disset, G.; Djannati-Ataï, A.; Doert, M.; Domainko, W.; Dorner, D.; Doro, M.; Dournaux, J.-L.; Dravins, D.; Drury, L.; Dubois, F.; Dubois, R.; Dubus, G.; Dufour, C.; Durand, D.; Dyks, J.; Dyrda, M.; Edy, E.; Egberts, K.; Eleftheriadis, C.; Elles, S.; Emmanoulopoulos, D.; Enomoto, R.; Ernenwein, J.-P.; Errando, M.; Etchegoyen, A.; Falcone, A. D.; Farakos, K.; Farnier, C.; Federici, S.; Feinstein, F.; Ferenc, D.; Fillin-Martino, E.; Fink, D.; Finley, C.; Finley, J. P.; Firpo, R.; Florin, D.; Föhr, C.; Fokitis, E.; Font, Ll.; Fontaine, G.; Fontana, A.; Förster, A.; Fortson, L.; Fouque, N.; Fransson, C.; Fraser, G. W.; Fresnillo, L.; Fruck, C.; Fujita, Y.; Fukazawa, Y.; Funk, S.; Gäbele, W.; Gabici, S.; Gadola, A.; Galante, N.; Gallant, Y.; García, B.; García López, R. J.; Garrido, D.; Garrido, L.; Gascón, D.; Gasq, C.; Gaug, M.; Gaweda, J.; Geffroy, N.; Ghag, C.; Ghedina, A.; Ghigo, M.; Gianakaki, E.; Giarrusso, S.; Giavitto, G.; Giebels, B.; Giro, E.; Giubilato, P.; Glanzman, T.; Glicenstein, J.-F.; Gochna, M.; Golev, V.; Gómez Berisso, M.; González, A.; González, F.; Grañena, F.; Graciani, R.; Granot, J.; Gredig, R.; Green, A.; Greenshaw, T.; Grimm, O.; Grube, J.; Grudzińska, M.; Grygorczuk, J.; Guarino, V.; Guglielmi, L.; Guilloux, F.; Gunji, S.; Gyuk, G.; Hadasch, D.; Haefner, D.; Hagiwara, R.; Hahn, J.; Hallgren, A.; Hara, S.; Hardcastle, M. J.; Hassan, T.; Haubold, T.; Hauser, M.; Hayashida, M.; Heller, R.; Henri, G.; Hermann, G.; Herrero, A.; Hinton, J. A.; Hoffmann, D.; Hofmann, W.; Hofverberg, P.; Horns, D.; Hrupec, D.; Huan, H.; Huber, B.; Huet, J.-M.; Hughes, G.; Hultquist, K.; Humensky, T. B.; Huppert, J.-F.; Ibarra, A.; Illa, J. M.; Ingjald, J.; Inoue, Y.; Inoue, S.; Ioka, K.; Jablonski, C.; Jacholkowska, A.; Janiak, M.; Jean, P.; Jensen, H.; Jogler, T.; Jung, I.; Kaaret, P.; Kabuki, S.; Kakuwa, J.; Kalkuhl, C.; Kankanyan, R.; Kapala, M.; Karastergiou, A.; Karczewski, M.; Karkar, S.; Karlsson, N.; Kasperek, J.; Katagiri, H.; Katarzyński, K.; Kawanaka, N.; Kȩdziora, B.; Kendziorra, E.; Khélifi, B.; Kieda, D.; Kifune, T.; Kihm, T.; Klepser, S.; Kluźniak, W.; Knapp, J.; Knappy, A. R.; Kneiske, T.; Knödlseder, J.; Köck, F.; Kodani, K.; Kohri, K.; Kokkotas, K.; Komin, N.; Konopelko, A.; Kosack, K.; Kossakowski, R.; Kostka, P.; Kotuła, J.; Kowal, G.; Kozioł, J.; Krähenbühl, T.; Krause, J.; Krawczynski, H.; Krennrich, F.; Kretzschmann, A.; Kubo, H.; Kudryavtsev, V. A.; Kushida, J.; La Barbera, N.; La Parola, V.; La Rosa, G.; López, A.; Lamanna, G.; Laporte, P.; Lavalley, C.; Le Flour, T.; Le Padellec, A.; Lenain, J.-P.; Lessio, L.; Lieunard, B.; Lindfors, E.; Liolios, A.; Lohse, T.; Lombardi, S.; Lopatin, A.; Lorenz, E.; Lubiński, P.; Luz, O.; Lyard, E.; Maccarone, M. C.; Maccarone, T.; Maier, G.; Majumdar, P.; Maltezos, S.; Małkiewicz, P.; Mañá, C.; Manalaysay, A.; Maneva, G.; Mangano, A.; Manigot, P.; Marín, J.; Mariotti, M.; Markoff, S.; Martínez, G.; Martínez, M.; Mastichiadis, A.; Matsumoto, H.; Mattiazzo, S.; Mazin, D.; McComb, T. J. L.; McCubbin, N.; McHardy, I.; Medina, C.; Melkumyan, D.; Mendes, A.; Mertsch, P.; Meucci, M.; Michałowski, J.; Micolon, P.; Mineo, T.; Mirabal, N.; Mirabel, F.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Moal, B.; Moderski, R.; Molinari, E.; Monteiro, I.; Moralejo, A.; Morello, C.; Mori, K.; Motta, G.; Mottez, F.; Moulin, E.; Mukherjee, R.; Munar, P.; Muraishi, H.; Murase, K.; Murphy, A. Stj.; Nagataki, S.; Naito, T.; Nakamori, T.; Nakayama, K.; Naumann, C.; Naumann, D.; Nayman, P.; Nedbal, D.; Niedźwiecki, A.; Niemiec, J.; Nikolaidis, A.; Nishijima, K.; Nolan, S. J.; Nowak, N.; O'Brien, P. T.; Ochoa, I.; Ohira, Y.; Ohishi, M.; Ohka, H.; Okumura, A.; Olivetto, C.; Ong, R. A.; Orito, R.; Orr, M.; Osborne, J. P.; Ostrowski, M.; Otero, L.; Otte, A. N.; Ovcharov, E.; Oya, I.; Oziȩbło, A.; Paiano, S.; Pallota, J.; Panazol, J. L.; Paneque, D.; Panter, M.; Paoletti, R.; Papyan, G.; Paredes, J. M.; Pareschi, G.; Parsons, R. D.; Paz Arribas, M.; Pedaletti, G.; Pepato, A.; Persic, M.; Petrucci, P. O.; Peyaud, B.; Piechocki, W.; Pita, S.; Pivato, G.; Płatos, Ł.; Platzer, R.; Pogosyan, L.; Pohl, M.; Pojmański, G.; Ponz, J. D.; Potter, W.; Prandini, E.; Preece, R.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quel, E.; Quirrenbach, A.; Rajda, P.; Rando, R.; Rataj, M.; Raue, M.; Reimann, C.; Reimann, O.; Reimer, A.; Reimer, O.; Renaud, M.; Renner, S.; Reymond, J.-M.; Rhode, W.; Ribó, M.; Ribordy, M.; Rico, J.; Rieger, F.; Ringegni, P.; Ripken, J.; Ristori, P.; Rivoire, S.; Rob, L.; Rodriguez, S.; Roeser, U.; Romano, P.; Romero, G. E.; Rosier-Lees, S.; Rovero, A. C.; Roy, F.; Royer, S.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Russo, F.; Ryde, F.; Sacco, B.; Saggion, A.; Sahakian, V.; Saito, K.; Saito, T.; Sakaki, N.; Salazar, E.; Salini, A.; Sánchez, F.; Sánchez Conde, M. Á.; Santangelo, A.; Santos, E. M.; Sanuy, A.; Sapozhnikov, L.; Sarkar, S.; Scalzotto, V.; Scapin, V.; Scarcioffolo, M.; Schanz, T.; Schlenstedt, S.; Schlickeiser, R.; Schmidt, T.; Schmoll, J.; Schroedter, M.; Schultz, C.; Schultze, J.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schweizer, T.; Seiradakis, J.; Selmane, S.; Seweryn, K.; Shayduk, M.; Shellard, R. C.; Shibata, T.; Sikora, M.; Silk, J.; Sillanpää, A.; Sitarek, J.; Skole, C.; Smith, N.; Sobczyńska, D.; Sofo Haro, M.; Sol, H.; Spanier, F.; Spiga, D.; Spyrou, S.; Stamatescu, V.; Stamerra, A.; Starling, R. L. C.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steiner, S.; Stergioulas, N.; Sternberger, R.; Stinzing, F.; Stodulski, M.; Straumann, U.; Suárez, A.; Suchenek, M.; Sugawara, R.; Sulanke, K. H.; Sun, S.; Supanitsky, A. D.; Sutcliffe, P.; Szanecki, M.; Szepieniec, T.; Szostek, A.; Szymkowiak, A.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, K.; Takalo, L.; Takami, H.; Talbot, R. G.; Tam, P. H.; Tanaka, M.; Tanimori, T.; Tavani, M.; Tavernet, J.-P.; Tchernin, C.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Tenzer, C.; Terada, Y.; Terrier, R.; Teshima, M.; Testa, V.; Tibaldo, L.; Tibolla, O.; Tluczykont, M.; Todero Peixoto, C. J.; Tokanai, F.; Tokarz, M.; Toma, K.; Torres, D. F.; Tosti, G.; Totani, T.; Toussenel, F.; Vallania, P.; Vallejo, G.; van der Walt, J.; van Eldik, C.; Vandenbroucke, J.; Vankov, H.; Vasileiadis, G.; Vassiliev, V. V.; Vegas, I.; Venter, L.; Vercellone, S.; Veyssiere, C.; Vialle, J. P.; Videla, M.; Vincent, P.; Vink, J.; Vlahakis, N.; Vlahos, L.; Vogler, P.; Vollhardt, A.; Volpe, F.; von Gunten, H. P.; Vorobiov, S.; Wagner, S.; Wagner, R. M.; Wagner, B.; Wakely, S. P.; Walter, P.; Walter, R.; Warwick, R.; Wawer, P.; Wawrzaszek, R.; Webb, N.; Wegner, P.; Weinstein, A.; Weitzel, Q.; Welsing, R.; Wetteskind, H.; White, R.; Wierzcholska, A.; Wilkinson, M. I.; Williams, D. A.; Winde, M.; Wischnewski, R.; Wiśniewski, Ł.; Wolczko, A.; Wood, M.; Xiong, Q.; Yamamoto, T.; Yamaoka, K.; Yamazaki, R.; Yanagita, S.; Yoffo, B.; Yonetani, M.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.; Zabalza, V.; Zagdański, A.; Zajczyk, A.; Zdziarski, A.; Zech, A.; Ziȩtara, K.; Ziółkowski, P.; Zitelli, V.; Zychowski, P.

    2011-12-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

  6. Design Concepts for the Cherenkov Telescope Array CTA: An Advanced Facility for Ground-Based High-Energy Gamma-Ray Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Actis, M

    2012-04-17

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

  7. ROMANIA'S ENERGY POTENTIAL OF RENEWABLE ENERGIES IN THE CONTEXT OF SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Maghear Diana

    2011-12-01

    environmental pollution as well as the depletion of the conventional resources that are highly polluting, highlighting the energy potential that renewable energy resources Romania has. This issue will be extensively discussed in the thesis entitled 'The necessity and importance of sustainable development of Romania. Case study on the use of renewable energies for heating the population in the western part of Romania' which I intend to realize and support at The West University of Timisoara, Faculty of Economics and Business Administration, under the guidance of Professor Doctor Laura Cismas.

  8. Theoretical Electric Dipole Moments and Dissociation Energies for the Ground States of GaH-BrH

    Science.gov (United States)

    Pettersson, Lars G. M.; Langhoff, Stephen R.

    1986-01-01

    Reliable experimental diople moments are available for the ground states of SeH and BrH whereas no values have been reported for GaH and AsH a recently reported experimental dipole moment for GeH of 1.24 + or -0.01 D has been seriously questioned, and a much lower value of, 0.1 + or - 0.05 D, suggested. In this work, we report accurate theoretical dipole moments, dipole derivatives, dissociation energies, and spectroscopic constants (tau(sub e), omega(sub e)) for the ground states of GaH through BrH.

  9. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  10. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Adame, J.; Warzel, S., E-mail: warzel@ma.tum.de [Zentrum Mathematik, TU München, Boltzmannstr. 3, 85747 Garching (Germany)

    2015-11-15

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.

  11. Shallow soil moisture – ground thaw interactions and controls – Part 2: Influences of water and energy fluxes

    Directory of Open Access Journals (Sweden)

    X. J. Guan

    2010-07-01

    Full Text Available The companion paper (Guan et al., 2010 demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the presence of surface water was the key control in variable soil moisture and frost table interactions among sites. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological and energy processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.

  12. Ab initio characterization of low-lying triplet state potential-energy surfaces and vibrational frequencies in the Wulf band of ozone

    Science.gov (United States)

    Xie, Daiqian; Guo, Hua; Peterson, Kirk A.

    2001-12-01

    Accurate ab initio potential-energy surfaces of the 3A2 and 3B1 states of ozone and their nonadiabatic coupling are reported near the ground-state equilibrium geometry using an internally contracted multireference configuration interaction method. These coupled three-dimensional potential-energy surfaces enable the first theoretical characterization of all three vibrational modes in the Wulf band. Reasonably good agreement with recent experimental observations is obtained.

  13. Imaging a multidimensional multichannel potential energy surface: Photodetachment of H-(NH3) and NH4-

    Science.gov (United States)

    Hu, Qichi; Song, Hongwei; Johnson, Christopher J.; Li, Jun; Guo, Hua; Continetti, Robert E.

    2016-06-01

    Probes of the Born-Oppenheimer potential energy surfaces governing polyatomic molecules often rely on spectroscopy for the bound regions or collision experiments in the continuum. A combined spectroscopic and half-collision approach to image nuclear dynamics in a multidimensional and multichannel system is reported here. The Rydberg radical NH4 and the double Rydberg anion NH4- represent a polyatomic system for benchmarking electronic structure and nine-dimensional quantum dynamics calculations. Photodetachment of the H-(NH3) ion-dipole complex and the NH4- DRA probes different regions on the neutral NH4 PES. Photoelectron energy and angular distributions at photon energies of 1.17, 1.60, and 2.33 eV compare well with quantum dynamics. Photoelectron-photofragment coincidence experiments indicate dissociation of the nascent NH4 Rydberg radical occurs to H + NH3 with a peak kinetic energy of 0.13 eV, showing the ground state of NH4 to be unstable, decaying by tunneling-induced dissociation on a time scale beyond the present scope of multidimensional quantum dynamics.

  14. Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System

    Science.gov (United States)

    Girifalco, L. A.; Lad, R. A.

    1956-01-01

    The lattice summations of the potential energy of importance in the graphite system have been computed by direct summation assuming a Lennard-Jones 6-12 potential between carbon atoms. From these summations, potential energy curves were constructed for interactions between a carbon atom and a graphite monolayer, between a carbon atom and a graphite surface, between a graphite monolayer and a semi-infinite graphite crystal and between two graphite semi-infinite crystals. Using these curves, the equilibrium distance between two isolated physically interacting carbon atoms was found to be 2.70 a, where a is the carbon-carbon distance in a graphite sheet. The distance between a surface plane and the rest of the crystal was found to be 1.7% greater than the interlayer spacing. Theoretical values of the energy of cohesion and the compressibility were calculated from the potential curve for the interaction between two semi-infinite crystals. They were (delta)E(sub c) = -330 ergs/sq cm and beta =3.18x10(exp -12)sq cm/dyne, respectively. These compared favorably with the experimental values of (delta)E(sub c) = -260 ergs/sq cm and beta = 2.97 X 10(exp -2) sq cm/dyne.

  15. Ground-state energy of the q-state Potts model: The minimum modularity.

    Science.gov (United States)

    Lee, J S; Hwang, S; Yeo, J; Kim, D; Kahng, B

    2014-11-01

    A wide range of interacting systems can be described by complex networks. A common feature of such networks is that they consist of several communities or modules, the degree of which may quantified as the modularity. However, even a random uncorrelated network, which has no obvious modular structure, has a finite modularity due to the quenched disorder. For this reason, the modularity of a given network is meaningful only when it is compared with that of a randomized network with the same degree distribution. In this context, it is important to calculate the modularity of a random uncorrelated network with an arbitrary degree distribution. The modularity of a random network has been calculated [Reichardt and Bornholdt, Phys. Rev. E 76, 015102 (2007)PLEEE81539-375510.1103/PhysRevE.76.015102]; however, this was limited to the case whereby the network was assumed to have only two communities, and it is evident that the modularity should be calculated in general with q(≥2) communities. Here we calculate the modularity for q communities by evaluating the ground-state energy of the q-state Potts Hamiltonian, based on replica symmetric solutions assuming that the mean degree is large. We found that the modularity is proportional to 〈sqrt[k]〉/〈k〉 regardless of q and that only the coefficient depends on q. In particular, when the degree distribution follows a power law, the modularity is proportional to 〈k〉^{-1/2}. Our analytical results are confirmed by comparison with numerical simulations. Therefore, our results can be used as reference values for real-world networks.

  16. Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Christiansen, Lars; Rosbjerg, Dan

    2011-01-01

    parameter uncertainty decreased significantly when TLRG data was included in the inversion. The forced infiltration experiment caused changes in unsaturated zone storage, which were monitored using TLRG and ground-penetrating radar. A numerical unsaturated zone model was subsequently conditioned on both...... in gravity due to unmonitored non-hydrological effects, and the requirement of a gravitationally stable reference station. Application of TLRG in hydrology should be combined with other geophysical and/or traditional monitoring methods....

  17. An ab initio potential energy surface and vibrational states of MgH2(1(1)A').

    Science.gov (United States)

    Li, Hui; Xie, Daiqian; Guo, Hua

    2004-09-01

    A three-dimensional global potential energy surface for the ground electronic state of MgH(2) is constructed from more than 3000 ab initio points calculated using the internally contracted multireference configuration interaction method with the Davidson correction at the complete basis set limit. Low-lying vibrational energy levels of MgH(2) and MgD(2) are calculated using the Lanczos algorithm, and found to be in good agreement with known experimental band origins. The majority of the vibrational energy levels up to 8000 cm(-1) are assigned with normal mode quantum numbers. However, our results indicate a gradual transition from a normal mode regime for the stretching vibrations at low energies to a local mode regime near 7400 cm(-1), as evidenced by a decreasing energy gap between the (n(1),0,0) and (n(1)-1,0,1) vibrational states and bifurcation of the corresponding wave functions.

  18. Wind energy as a potential generation source at Ras Benas, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ahmed Shata [Physics Department, Faculty of Science in Port Said, Suez Canal University (Egypt)

    2010-10-15

    Analysis of the wind characteristics in Ras Benas city located on the east coast of Red Sea in Egypt using measured data (wind, pressure and temperature) and Weibull function were made. Statistical analysis model to evaluate the wind energy potential was introduced. According to the power calculations done for the site, the annual mean wind density is 315 kW/m{sup 2} at a height of 70 m above ground level. This station has a huge wind energy potential for electricity generation, especially during spring and summer seasons, comparing with some European countries. In addition, the monthly wind turbine efficiency parameter ({eta}{sub monthly}) has been calculated by using a commercial wind turbine 1 MW with 70 m hub height to help designers and users in evaluating the potentialities and choosing the suitable wind turbine for the considered site. The use of wind turbine with capacity greater than 1000 kW at this station was recommended. Ras Benas station was selected to install 30 MW-wind farm consists of 20 commercial wind turbines (Nordex S 77) with hub heights and Rotor diameter were 100 and 77 m, respectively. This site has annual wind speed more than 9.8 m/s at 100 m height and enough area to locate these turbines. The estimated energy production using WASP Program of these wind farm was 130 GWh/year. Furthermore, the production costs was found 1.3EUR cent/kWh, which is a competition price at the wind energy world market. (author)

  19. Ab initio calculation of accurate dissociation energy,potential energy curve and dipole moment function for the A1∑+ state 7LiH molecule

    Institute of Scientific and Technical Information of China (English)

    Shi De-Heng; Liu Yu-Fang; Sun Jin-Feng; Yang Xiang-Dong; Zhu Zun-Lue

    2006-01-01

    The reasonable dissociation limit of the A1∑+ state 7LiH molecule is obtained. The accurate dissociation energy and the equilibrium geometry of this state are calculated using a symmetry-adapted-cluster configuration-interaction method in complete active space for the first time. The whole potential energy curve and the dipole moment function for the A1∑+ state are calculated over a wide internuclear separation range from about 0.1 to 1.4 nm. The calculated equilibrium geometry and dissociation energy of this potential energy curve are of Re=0.2487 nm and De=1.064 eV,respectively. The unusual negative values of the anharmonicity constant and the vibration-rotational coupling constant are of wexe=-4.7158cm-1 and αe=-0.08649cm-1, respectively. The vertical excitation energy from the ground to the A1∑+ state is calculated and the value is of 3.613eV at 0.15875nm (the equilibrium position of the ground state).The highly anomalous shape of this potential energy curve, which is exceptionally flat over a wide radial range around the equilibrium position, is discussed in detail. The harmonic frequency value of 502.47cm-1 about this state is approximately estimated. Careful comparison of the theoretical determinations with those obtained by previous theories about the A1∑+ state dissociation energy clearly shows that the present calculations are much closer to the experiments than previous theories, thus represents an improvement.

  20. Probing the limitations of isotropic pair potentials to produce ground-state structural extremes via inverse statistical mechanics.

    Science.gov (United States)

    Zhang, G; Stillinger, F H; Torquato, S

    2013-10-01

    Inverse statistical-mechanical methods have recently been employed to design optimized short-range radial (isotropic) pair potentials that robustly produce novel targeted classical ground-state many-particle configurations. The target structures considered in those studies were low-coordinated crystals with a high degree of symmetry. In this paper, we further test the fundamental limitations of radial pair potentials by targeting crystal structures with appreciably less symmetry, including those in which the particles have different local structural environments. These challenging target configurations demanded that we modify previous inverse optimization techniques. In particular, we first find local minima of a candidate enthalpy surface and determine the enthalpy difference ΔH between such inherent structures and the target structure. Then we determine the lowest positive eigenvalue λ(0) of the Hessian matrix of the enthalpy surface at the target configuration. Finally, we maximize λ(0)ΔH so that the target structure is both locally stable and globally stable with respect to the inherent structures. Using this modified optimization technique, we have designed short-range radial pair potentials that stabilize the two-dimensional kagome crystal, the rectangular kagome crystal, and rectangular lattices, as well as the three-dimensional structure of the CaF(2) crystal inhabited by a single-particle species. We verify our results by cooling liquid configurations to absolute zero temperature via simulated annealing and ensuring that such states have stable phonon spectra. Except for the rectangular kagome structure, all of the target structures can be stabilized with monotonic repulsive potentials. Our work demonstrates that single-component systems with short-range radial pair potentials can counterintuitively self-assemble into crystal ground states with low symmetry and different local structural environments. Finally, we present general principles that offer

  1. Biogas from poultry waste-production and energy potential.

    Science.gov (United States)

    Dornelas, Karoline Carvalho; Schneider, Roselene Maria; do Amaral, Adriana Garcia

    2017-08-01

    The objective of this study was to evaluate the effect of heat treatment on poultry litter with different levels of reutilisation for potential generation of biogas in experimental biodigesters. Chicken litter used was obtained from two small-scale poultry houses where 14 birds m(-2) were housed for a period of 42 days per cycle. Litter from aviary 1 received no heat treatment while each batch of litter produced from aviary 2 underwent a fermentation process. For each batch taken, two biodigesters were set for each aviary, with hydraulic retention time of 35 days. The efficiency of the biodigestion process was evaluated by biogas production in relation to total solids (TS) added, as well as the potential for power generation. Quantified volumes ranged from 8.9 to 41.1 L of biogas for aviary 1, and 6.7 to 33.9 L of biogas for aviary 2, with the sixth bed reused from both aviaries registering the largest biogas potential. Average potential biogas in m(3) kg(-1) of TS added were 0.022 to 0.034 for aviary 1 and 0.015 to 0.022 for aviary 2. Energy values ​​of biogas produced were calculated based on calorific value and ranged from 0.06 to 0.33 kWh for chicken litter without fermentation and from 0.05 to 0.27 kWh for chicken litter with fermentation. It was concluded that the re-use of poultry litter resulted in an increase in biogas production, and the use of fermentation in the microbiological treatment of poultry litter seems to have negatively influenced production of biogas.

  2. Renewable Energy Potential of Greenland with emphasis on wind resource assessment

    DEFF Research Database (Denmark)

    Jakobsen, Kasper Rønnow

    of Profitable (required returns of investment), more can economically be saved by replacing outdated equipment. The renewable energy potential for both solar and wind was relatively high, with solar radiation above 1000 kWh=m2=year and mean wind speeds of 6.1 m/s at 10 MAG. For a 50 kWp PV installation the 25...... sources, such as wind and solar power. The biggest barriers to implementing these sources are lack of knowledge about the resources and their geographical distribution. In this project, different sources and methods for wind resource assessment are studied, with a focus on their performance in the complex...... areas. First, the existing ground-based measurements (Climate stations) were studied to determine applicability for wind resource estimation, and for many of the stations, a high local effect, inhomogeneous time series, and deviance from the WMO guidelines were found. The next step was to design...

  3. Improved DFT Potential Energy Surfaces via Improved Densities.

    Science.gov (United States)

    Kim, Min-Cheol; Park, Hansol; Son, Suyeon; Sim, Eunji; Burke, Kieron

    2015-10-01

    Density-corrected DFT is a method that cures several failures of self-consistent semilocal DFT calculations by using a more accurate density instead. A novel procedure employs the Hartree-Fock density to bonds that are more severely stretched than ever before. This substantially increases the range of accurate potential energy surfaces obtainable from semilocal DFT for many heteronuclear molecules. We show that this works for both neutral and charged molecules. We explain why and explore more difficult cases, for example, CH(+), where density-corrected DFT results are even better than sophisticated methods like CCSD. We give a simple criterion for when DC-DFT should be more accurate than self-consistent DFT that can be applied for most cases.

  4. Potential alternative energy technologies on the Outer Continental Shelf.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Environmental Assessment

    2007-04-20

    This technical memorandum (TM) describes the technology requirements for three alternative energy technologies for which pilot and/or commercial projects on the U.S. Outer Continental Shelf (OCS) are likely to be proposed within the next five to seven years. For each of the alternative technologies--wind, wave, and ocean current--the TM first presents an overview. After each technology-specific overview, it describes the technology requirements for four development phases: site monitoring and testing, construction, operation, and decommissioning. For each phase, the report covers the following topics (where data are available): facility description, electricity generated, ocean area (surface and bottom) occupied, resource requirements, emissions and noise sources, hazardous materials stored or used, transportation requirements, and accident potential. Where appropriate, the TM distinguishes between pilot-scale (or demonstration-scale) facilities and commercial-scale facilities.

  5. Shallow soil moisture – ground thaw interactions and controls – Part 2: Influences of water and energy fluxes

    Directory of Open Access Journals (Sweden)

    C. J. Westbrook

    2010-01-01

    Full Text Available The companion paper (Guan et al., 2010 demonstrated variable interactions and correlations between shallow soil moisture and ground thaw in soil filled areas along a wetness spectrum in a subarctic Canadian Precambrian Shield landscape. From wetter to drier, these included a wetland, peatland and soil filled valley. Herein, water and energy fluxes were examined for these same subarctic study sites to discern the key controlling processes on the found patterns. Results showed the key control in variable soil moisture and frost table interactions among the sites was the presence of surface water. At the peatland and wetland sites, accumulated water in depressions and flow paths maintained soil moisture for a longer duration than at the hummock tops. These wet areas were often locations of deepest thaw depth due to the transfer of latent heat accompanying lateral surface runoff. Although the peatland and wetland sites had large inundation extent, modified Péclet numbers indicated the relative influence of external and internal hydrological processes at each site were different. Continuous inflow from an upstream lake into the wetland site caused advective and conductive thermal energies to be of equal importance to conductive ground thaw. The absence of continuous surface flow at the peatland and valley sites led to dominance of conductive thermal energy over advective energy for ground thaw. The results suggest that the modified Péclet number could be a very useful parameter to differentiate landscape components in modeling frost table heterogeneity. The calculated water and energy fluxes, and the modified Péclet number provide quantitative explanations for the shallow soil moisture-ground thaw patterns by linking them with hydrological processes and hillslope storage capacity.

  6. Renewable energy technologies in the Maldives - Realizing the potential

    Energy Technology Data Exchange (ETDEWEB)

    Alphen, Klaas van; Hekkert, Marko P. [Department of Innovation Studies, Copernicus Institute for Sustainable Development and Innovation, University of Utrecht, P.O. Box 80115, NL 3508 TC, Utrecht (Netherlands); Sark, Wilfried G.J.H.M. van [Department of Science, Technology and Society, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht (Netherlands)

    2008-01-15

    Like in many Small Island Developing States, the techno-economic potential of renewable energy technologies (RETs) in the Maldives is substantial. However, it is not certain that these economically viable RETs will indeed be implemented and utilized, since this is greatly influenced by various social, institutional and political factors (i.e., the Innovation System). In order to steer away from activities that enhance the current fossil fuel based lock-in situation and create an environment that increases the chance of a successful transfer and diffusion of RETs, several projects have been set up in the Maldives. These projects have been initiated by the Global Environmental Facility, the United Nations Development Program, and the European Commission. In this article we evaluate these projects by analyzing whether or not they strengthen the local Renewable Energy Innovation System. This evaluation shows that these RE programs strengthen most of the key processes necessary in an Innovation System conducive to technology transfer. However, as not enough attention is being paid to local entrepreneurial activities and the creation of a domestic market for RETs, the process of RET transfer might run the risk of stagnation after completion of the RE programs. (author)

  7. CONNECTION BETWEEN THE POTENTIAL WIND ENERGY AND THE WINDY DAYS

    Directory of Open Access Journals (Sweden)

    KÁROLY TAR

    2008-06-01

    Full Text Available Preliminary wind climate information are required for the selection of the sites of energetic wind measurements. Optimal locations of wind energy projects, where the amount of utilizable wind energy can be forecasted with a good approach, can be determined using GIS and statistical methods. Anyhow, it is necessary to elaborate methods what make posible to gain data for the wind potential of a given location on the base of measured data. Monthly number of windy days can be such predictor if its basic statistical parameters and its connection to the monthly mean wind power can be determined. This latter one can be substituted by the area under the curve of the function fitted to thehourly averages of the cubes of the wind speeds. A regression modell is fitted to the monthly number of windy days and areas under the curve, on the base of time series of 7 Hungarian weather stations and the error of the modell is determined. On this base, the modell is extrapolated to a 35 years long period. The area under the curve proportional to the monthly mean wind power calculated on the base of the monthly number of windy days show a significant decreasing trend in 4 Hungarian weather stations.

  8. Alterations of potential wind energy with height and parts of the day

    Directory of Open Access Journals (Sweden)

    Károly Tar

    2009-05-01

    Full Text Available According to studies on the planetaryboundary layer the theoretical logarithmic windprofile law can give a good approach of wind speedat heights over 100 meters above the ground and atgreater heights in periods of close to neutral orweakly unstable atmospheric situations, that ismainly daytime. The value of exponent of simplifiedversion of this law is constant for practical use determinedmainly by the roughness of the surface.Due to its simplicity this law is widely used in energeticwind measurements for converting wind speedsmeasured near the ground to the height of the windturbines. However the value of the exponent is determinednot only by the roughness of the surface,but numerous atmospheric factors like stabilityconditions, for example, as it was proved by thestudies on the wind energy potential of Hungary.For this reason if the diurnal course of the exponentis neglected and a constant value is used for it theerror of the estimation will increase in case of closeto the surface inversions (strongly stable conditionsespecially in the night. Results of our examinationson the seasonal characteristics of the diurnalcourses of the exponent what determines the estimatedchanges of the wind speed with the height arepresented in this paper. Our method is demonstratedon the wind speed datasets of the meteorologicaltower of Paks for the year of 2000-2001. There arewind speed measurements at three levels (20, 50 and120 meters on the tower with the 10 minutes averagesregistered. On the base of our examinations itcan be claimed that there is a turn in the dailycourse of potential wind energy over the inflexionheight that is, there is more utilizable wind energyduring the night than in the day. Naturally, thesame is true for the electricity produced from windenergy.

  9. The potential of energy farming in the southeastern California desert

    Science.gov (United States)

    Lew, V.

    1980-04-01

    The use of energy forms to provide future sources of energy for California is considered. Marginal desert lands in southeastern California are proposed for the siting of energy farms using acacia, eucalyptus, euphorbia, guayule, jojoba, mesquite, or tamarisk.

  10. Estimating Solar Energy Potential in Buildings on a Global Level

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia

    2015-01-01

    This chapter contributes to the debate around net-zero energy concept from a global perspective. By means of comprehensive modelling, it analyses how much global building energy consumption could be reduced through utilisation of building-integrated solar energy technologies and energy......-efficiency improvements. Valuable insights on the locations and building types, in which it is feasible to achieve a net-zero level of energy performance through solar energy utilisation, are presented in world maps....

  11. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    National Research Council Canada - National Science Library

    Karolis Januševičius; Giedrė Streckienė

    2013-01-01

    .... Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country...

  12. Ground state energy of dilute neutron matter at next-to-leading order in lattice chiral effective field theory

    CERN Document Server

    Epelbaum, Evgeny; Lee, Dean; Meißner, Ulf-G

    2008-01-01

    We present lattice calculations for the ground state energy of dilute neutron matter at next-to-leading order in chiral effective field theory. This study follows a series of recent papers on low-energy nuclear physics using chiral effective field theory on the lattice. In this work we introduce an improved spin- and isospin-projected leading-order action which allows for a perturbative treatment of corrections at next-to-leading order and smaller estimated errors. Using auxiliary fields and Euclidean-time projection Monte Carlo, we compute the ground state of 8, 12, and 16 neutrons in a periodic cube, covering a density range from 2% to 10% of normal nuclear density.

  13. Ground State Masses and Biding Energies of the Nucleon, Hyperon and Heavy Baryons in a Light-Front Model

    CERN Document Server

    Suisso, E F; Frederico, T

    2003-01-01

    The ground state masses and binding energies of the nucleon, $\\Lambda^0$, $\\Lambda^+_c$, $\\Lambda^0_b$ are studied within a constituent quark QCD-inspired light-front model. The light-front Faddeev equations for the $Qqq$ composite spin 1/2 baryons, are derived and solved numerically. The experimental data for the masses are qualitatively described by a flavor independent effective interaction.

  14. Six-dimensional potential energy surface of the dissociative chemisorption of HCl on Au(111) using neural networks

    Institute of Scientific and Technical Information of China (English)

    LIU TianHui; FU BiNa; ZHANG Dong H

    2014-01-01

    We constructed a six-dimensional potential energy surface(PES)for the dissociative chemisorption of HCl on Au(111)using the neural networks method based on roughly 70000 energies obtained from extensive density functional theory(DFT)calculations.The resulting PES is accurate and smooth,based on the small fitting errors and good agreement between the fitted PES and the direct DFT calculations.Time-dependent wave packet calculations show that the potential energy surface is very well converged with respect to the number of DFT data points,as well as to the fitting process.The dissociation probabilities of HCl initially in the ground rovibrational state from six-dimensional quantum dynamical calculations are quite diferent from the four-dimensional fixed-site calculations,indicating it is essential to perform full-dimensional quantum dynamical studies for the title molecule-surface interaction system.

  15. Interpolation of multi-sheeted multi-dimensional potential-energy surfaces via a linear optimization procedure.

    Science.gov (United States)

    Opalka, Daniel; Domcke, Wolfgang

    2013-06-14

    Significant progress has been achieved in recent years with the development of high-dimensional permutationally invariant analytic Born-Oppenheimer potential-energy surfaces, making use of polynomial invariant theory. In this work, we have developed a generalization of this approach which is suitable for the construction of multi-sheeted multi-dimensional potential-energy surfaces exhibiting seams of conical intersections. The method avoids the nonlinear optimization problem which is encountered in the construction of multi-sheeted diabatic potential-energy surfaces from ab initio electronic-structure data. The key of the method is the expansion of the coefficients of the characteristic polynomial in polynomials which are invariant with respect to the point group of the molecule or the permutation group of like atoms. The multi-sheeted adiabatic potential-energy surface is obtained from the Frobenius companion matrix which contains the fitted coefficients. A three-sheeted nine-dimensional adiabatic potential-energy surface of the (2)T2 electronic ground state of the methane cation has been constructed as an example of the application of this method.

  16. On the global and regional potential of renewable energy sources

    NARCIS (Netherlands)

    Hoogwijk, Monique Maria

    2004-01-01

    In this thesis, the central research question is: what can be the contribution of renewable energy sources to the present and future world and regional energy supply system. The focus is on wind, solar PV and biomass energy (energy crops) for electricity generation. For the assessment of the economi

  17. On the global and regional potential of renewable energy sources

    NARCIS (Netherlands)

    Hoogwijk, Monique Maria

    2004-01-01

    In this thesis, the central research question is: what can be the contribution of renewable energy sources to the present and future world and regional energy supply system. The focus is on wind, solar PV and biomass energy (energy crops) for electricity generation. For the assessment of the economi

  18. Potential Ambient Energy-Harvesting Sources and Techniques

    Science.gov (United States)

    Yildiz, Faruk

    2009-01-01

    Ambient energy harvesting is also known as energy scavenging or power harvesting, and it is the process where energy is obtained from the environment. A variety of techniques are available for energy scavenging, including solar and wind powers, ocean waves, piezoelectricity, thermoelectricity, and physical motions. For example, some systems…

  19. The Potential of Renewable Energy Systems in China

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2009-01-01

    This paper discusses the prospective of renewable energy in the process of sustainable development in China. Along with the high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand....... Such sustainable energy strategy typical involves three technologies issue: energy conservation, efficiency improvement and replacement fossil fuel by renewable energy sources. Denmark is an example of such strategy can be implemented and it shows the possibility of converting into a 100% renewable energy system...... as well as reduce environmental pollution. To ensure energy security and mitigate climate changes the inappropriate energy consumption structure should be changed. As an alternative, a suitable infrastructure for the implementation of renewable energy may serve as a long-term sustainable possibility...

  20. China and United States have Great Potential for Energy Cooperation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ China and the United States are the top two consumers of energy resources in the worldand are thus bound to cooperate in this area. Such cooperation includes mutual study andabsorption of each other's energy policies, cooperation in related technology, includingnuclear energy, and cooperation in energy strategy. If the two countries succeed in suchcooperation, it would not only enhance strategic mutual trust between them but alsocontribute positively to global energy assurance and security.