WorldWideScience

Sample records for ground object spectral

  1. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  2. Comprehensive Space-Object Characterization using Spectrally Compressive Polarimetric Sensing

    Science.gov (United States)

    2015-04-08

    Space Object Characterization using Spectrally Compressive Polarimetric Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-11-1-0194 5c. PROGRAM...images. 15. SUBJECT TERMS Compressed spectral-polarimetric sensing , shape parameterization and reconstruction, Bayesian image analysis, statistical...Object Characterization using Spectrally Compressive Polarimetric Sensing Prof. S. Prasad, U. New Mexico, PI with contributions from the co-PIs, Prof

  3. Spectral transform approaches of 3D coordinates for object classification

    OpenAIRE

    Semenov, N.; Leontiev, A.

    2008-01-01

    This article describes one of the methods to process the data for subsequent classification spectral processing of the three dimensional data. This processing allows, using minimal amount of computation, to transfer the object's coordinates to the starting point, as well as to turn the object around any axis and normalize its size.

  4. Spectral image analysis of mutual illumination between florescent objects.

    Science.gov (United States)

    Tominaga, Shoji; Kato, Keiji; Hirai, Keita; Horiuchi, Takahiko

    2016-08-01

    This paper proposes a method for modeling and component estimation of the spectral images of the mutual illumination phenomenon between two fluorescent objects. First, we briefly describe the bispectral characteristics of a single fluorescent object, which are summarized as a Donaldson matrix. We suppose that two fluorescent objects with different bispectral characteristics are located close together under a uniform illumination. Second, we model the mutual illumination between two objects. It is shown that the spectral composition of the mutual illumination is summarized with four components: (1) diffuse reflection, (2) diffuse-diffuse interreflection, (3) fluorescent self-luminescence, and (4) interreflection by mutual fluorescent illumination. Third, we develop algorithms for estimating the spectral image components from the observed images influenced by the mutual illumination. When the exact Donaldson matrices caused by the mutual illumination influence are unknown, we have to solve a non-linear estimation problem to estimate both the spectral functions and the location weights. An iterative algorithm is then proposed to solve the problem based on the alternate estimation of the spectral functions and the location weights. In our experiments, the feasibility of the proposed method is shown in three cases: the known Donaldson matrices, weak interreflection, and strong interreflection.

  5. Hiding levitating objects above a ground plane

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Luo, Yu; Mortensen, Asger

    2010-01-01

    An approach to hiding objects levitating above a conducting sheet is suggested in this paper. The proposed device makes use of isotropic negative-refractive-index materials without extreme material parameters, and creates an illusion of a remote conducting sheet. Numerical simulations are perform...

  6. (LMRG): Microscope Resolution, Objective Quality, Spectral Accuracy and Spectral Un-mixing

    Science.gov (United States)

    Bayles, Carol J.; Cole, Richard W.; Eason, Brady; Girard, Anne-Marie; Jinadasa, Tushare; Martin, Karen; McNamara, George; Opansky, Cynthia; Schulz, Katherine; Thibault, Marc; Brown, Claire M.

    2012-01-01

    The second study by the LMRG focuses on measuring confocal laser scanning microscope (CLSM) resolution, objective lens quality, spectral imaging accuracy and spectral un-mixing. Affordable test samples for each aspect of the study were designed, prepared and sent to 116 labs from 23 countries across the globe. Detailed protocols were designed for the three tests and customized for most of the major confocal instruments being used by the study participants. One protocol developed for measuring resolution and objective quality was recently published in Nature Protocols (Cole, R. W., T. Jinadasa, et al. (2011). Nature Protocols 6(12): 1929–1941). The first study involved 3D imaging of sub-resolution fluorescent microspheres to determine the microscope point spread function. Results of the resolution studies as well as point spread function quality (i.e. objective lens quality) from 140 different objective lenses will be presented. The second study of spectral accuracy looked at the reflection of the laser excitation lines into the spectral detection in order to determine the accuracy of these systems to report back the accurate laser emission wavelengths. Results will be presented from 42 different spectral confocal systems. Finally, samples with double orange beads (orange core and orange coating) were imaged spectrally and the imaging software was used to un-mix fluorescence signals from the two orange dyes. Results from 26 different confocal systems will be summarized. Time will be left to discuss possibilities for the next LMRG study.

  7. Multi-objective based spectral unmixing for hyperspectral images

    Science.gov (United States)

    Xu, Xia; Shi, Zhenwei

    2017-02-01

    Sparse hyperspectral unmixing assumes that each observed pixel can be expressed by a linear combination of several pure spectra in a priori library. Sparse unmixing is challenging, since it is usually transformed to a NP-hard l0 norm based optimization problem. Existing methods usually utilize a relaxation to the original l0 norm. However, the relaxation may bring in sensitive weighted parameters and additional calculation error. In this paper, we propose a novel multi-objective based algorithm to solve the sparse unmixing problem without any relaxation. We transform sparse unmixing to a multi-objective optimization problem, which contains two correlative objectives: minimizing the reconstruction error and controlling the endmember sparsity. To improve the efficiency of multi-objective optimization, a population-based randomly flipping strategy is designed. Moreover, we theoretically prove that the proposed method is able to recover a guaranteed approximate solution from the spectral library within limited iterations. The proposed method can directly deal with l0 norm via binary coding for the spectral signatures in the library. Experiments on both synthetic and real hyperspectral datasets demonstrate the effectiveness of the proposed method.

  8. AGN Spectral Energy Distributions of GLAST Telescope Network Program Objects

    Science.gov (United States)

    Adkins, Jeff; Lacy, Mark; Daou, Doris; Rapp, Steve; Stefaniak, Linda

    2005-03-01

    The Gamma-Ray Large Area Space Telescope (GLAST) has a proposed observing list that includes AGNs and Polars bright enough to be observed optically by amateurs and students. This observing list is maintained by the "GLAST Telescope Network" (GTN) and includes a number of objects that have yet to be observed by the Spitzer Space Telescope. Our project will observe one of these objects with the Spitzer MIPS and the IRAC instruments to determine their Spectral Energy Distribution (SED), which will be compared to a computer model of disk emission in order to determine what component of the SED is due to the disk and what component is due to synchrotron radiation induced by the jets. In addition we will observe our program objects prior to, simultaneously with, and after Spitzer observes them. This gives a direct connection from Spitzer research to student activities in the classroom.

  9. Software for calculations of surge processes in ground conductors and grounded objects

    Directory of Open Access Journals (Sweden)

    Kuklin D.V.

    2015-03-01

    Full Text Available Software for calculations related to propagation of electromagnetic waves in high-voltage objects (transmission towers and their grounding, substation grounding has been described in the paper. Using the software the oblique thin wire simulation method proposed by Guiffaut et al. (2012 has been verified for conductive medium

  10. Progress on multi-object exoplanet search spectral interferometer

    Science.gov (United States)

    Zhang, Kai; Zhu, Yongtian; Wang, Lei; Yue, Zhongyu; Chen, Yi; Tang, Jin; Hu, Zhongwen

    2012-09-01

    It's a very important point that fully open up power of Gou Shoujing telescope (LAMOST) in exoplanet detection field by developing a multi-exoplanet survey system. But it's an indisputable truth in the present astronomy that a traditional type of multi-object high resolution spectrograph is almost impossible to be developed. External Dispersed Interferometry is an effective way to improve the radial velocity measuring accuracy of medium resolution spectrograph. With the using of this technique, Multi-object Exoplanet Search Spectral Interferometer (MESSI) is an exploratory system with medium measuring accuracy based on LAMOST low resolution spectrograph works in medium-resolution mode (R=5,000 - 10,000). And it's believed that will bring some feasible way in the future development of multi-object medium/high resolution spectrograph. After prototype experiment in 2010, a complete configuration is under the development, including a multi-object fixed-delay Michelson interferometer, an iodine cell with multi-fiber optical coupling system and a multi-terminal switching system in an efficient fiber physical coupling way. By some effective improvement, the interferometer has smaller cross section and more stable interference component. Moreover, based on physical and optical fiber coupling technique, it's possible for the iodine cell and the switching system to simultaneously and identically coupling 25 pairs of fibers. In paper, all of the progress is given in detail.

  11. Ground Penetrating Radar Imaging of Buried Metallic Objects

    DEFF Research Database (Denmark)

    Polat, A. Burak; Meincke, Peter

    2001-01-01

    During the past decade there has been considerable research on ground penetrating radar (GPR) tomography for detecting objects such as pipes, cables, mines and barrels buried under the surface of the Earth. While the earlier researches were all based on the assumption of a homogeneous background...

  12. Grounded Object and Grasp Representations in a Cognitive Architecture

    DEFF Research Database (Denmark)

    Kraft, Dirk

    for example unknown objects, we need to establish that something is an object (and not, an obstacle). One of the initial steps there is to see if we can manipulate the object. We therefore present work that describes how to achieve physical control over an object. This work uses a feature-action relationship...... developed. This work presents a system that is able to learn autonomously about objects and applicable grasps in an unknown environment through exploratory manipulation and to then use this grounded knowledge in a planning setup to address complex tasks. A set of different subsystems is needed to achieve....... We also explain how the feature-action relationship can be improved through learning from a set of experiences. Once physical control is achieved, we can move the object in such a way that we can gather visual information from different viewpoints. We describe how this information can be integrated...

  13. Spectrally selective surfaces for ground and space-based instrumentation: support for a resource base

    Science.gov (United States)

    McCall, Susan H.; Sinclair, R. Lawrence; Pompea, Stephen M.; Breault, Robert P.

    1993-11-01

    The performance of space telescopes, space instruments, and space radiator systems depends critically upon the selection of appropriate spectrally selective surfaces. Many space programs have suffered severe performance limitations, schedule setbacks, and spent hundreds of thousands of dollars in damage control because of a lack of readily-accessible, accurate data on the properties of spectrally selective surfaces, particularly black surfaces. A Canadian effort is underway to develop a resource base (database and support service) to help alleviate this problem. The assistance of the community is required to make the resource base comprehensive and useful to the end users. The paper aims to describe the objectives of this project. In addition, a request for information and support is made for various aspects of the project. The resource base will be useful for both ground and space-based instrumentation.

  14. Ground-based optical observation system for LEO objects

    Science.gov (United States)

    Yanagisawa, T.; Kurosaki, H.; Oda, H.; Tagawa, M.

    2015-08-01

    We propose a ground-based optical observation system for monitoring LEO objects, which uses numerous optical sensors to cover a vast region of the sky. Its potential in terms of detection and orbital determination were examined. About 30 cm LEO objects at 1000 km altitude are detectable using an 18 cm telescope, a CCD camera and the analysis software developed. Simulations and a test observation showed that two longitudinally separate observation sites with arrays of optical sensors can identify the same objects from numerous data sets and determine their orbits precisely. The proposed system may complement or replace the current radar observation system for monitoring LEO objects, like space-situation awareness, in the near future.

  15. Grounded Object and Grasp Representations in a Cognitive Architecture

    DEFF Research Database (Denmark)

    Kraft, Dirk

    . We also explain how the feature-action relationship can be improved through learning from a set of experiences. Once physical control is achieved, we can move the object in such a way that we can gather visual information from different viewpoints. We describe how this information can be integrated......Robotic systems are today still mostly unable to perform complex tasks in unknown environments. While there have been many approaches to cope with unknown environments, for example in mobile robot navigation, the work done when it comes to more complex tasks, for example object handling are, less...... developed. This work presents a system that is able to learn autonomously about objects and applicable grasps in an unknown environment through exploratory manipulation and to then use this grounded knowledge in a planning setup to address complex tasks. A set of different subsystems is needed to achieve...

  16. Efficient Underground Object Detection for Ground Penetrating Radar Signals

    Directory of Open Access Journals (Sweden)

    Ibrahim Mesecan

    2016-12-01

    Full Text Available Ground penetrating radar (GPR is one of the common sensor system for underground inspection. GPR emits electromagnetic waves which can pass through objects. The reflecting waves are recorded and digitised, and then, the B-scan images are formed. According to the properties of scanning object, GPR creates higher or lower intensity values on the object regions. Thus, these changes in signal represent the properties of scanning object. This paper proposes a 3-step method to detect and discriminate landmines: n-row average-subtraction (NRAS; Min-max normalisation; and image scaling. Proposed method has been tested using 3 common algorithms from the literature. According to the results, it has increased object detection ratio and positive object discrimination (POD significantly. For artificial neural networks (ANN, POD has increased from 77.4 per cent to 87.7 per cent. And, it has increased from 37.8 per cent to 80.2 per cent, for support vector machines (SVM.

  17. spectral analysis of ground magnetic data in magadi area, southern ...

    African Journals Online (AJOL)

    Mgina

    issue from fractures distributed along the shores of the lake. Presence of ... Spectral analysis involving determining power spectrum was applied to magnetic data along selected profiles ... of Lake Magadi issuing from the base of fault scarps.

  18. AGN Spectral Energy Distribution of GLAST Telescope Network Program Object 4C 29.45

    Science.gov (United States)

    Adkins, J.; Stefaniak, L.; Rapp, S.; Hinckley, B.; Lacy, M.

    2006-06-01

    The Gamma-Ray Large Area Space Telescope (GLAST) to be launched in 2006 has a proposed observing list that includes AGNs and Polars bright enough to be observed optically by amateurs and students. This observing list is maintained by the GLAST Telescope Network (GTN) and includes a number of objects that have yet to be observed by the Spitzer Space Telescope. Our project observed one of these objects, 4C 29.45, with the Spitzer MIPS and the IRAC instruments and also using ground based telescopes. Observations were made in seven infrared bands with Spitzer. Additional observations made from the ground by students, amateur astronomers, and small college observatories in R,V, and I were nearly simultaneous with the Spitzer observations. We have used this data to construct the Spectral Energy Distribution (SED) of 4C 29.45. We compare these data to models of the dust emission from the torus, sychrotron emission from the radio core, and thermal emission from the accretion disk to determine the relative importance of the different emission mechanisms in this object as a function of wavelength.

  19. Morpho-Spectral Recognition of Dense Urban Objects by Hyperspectral Imagery

    Science.gov (United States)

    Gadal, S.; Ouerghemmi, W.

    2015-08-01

    This paper presents a methodology for recognizing, identifying and classifying built objects in dense urban areas, using a morphospectral approach applied to VNIR/SWIR hyperspectral image (HySpex). This methodology contains several image processing steps: Principal Components Analysis and Laplacian enhancement, Feature Extraction of segmented build-up objects, and supervised classification from a morpho-spectral database (i.e. spectral and morphometric attributes). The Feature Extraction toolbox automatically generates a vector map of segmented buildings and an urban object-oriented morphometric database which is merged with an independent spectral database of urban objects. Each build-up object is spectrally identified and morphologically characterized thanks to the built-in morpho-spectral database.

  20. Ground Object Recognition using Laser Radar Data : Geometric Fitting, Performance Analysis, and Applications

    OpenAIRE

    Grönwall, Christna

    2006-01-01

    This thesis concerns detection and recognition of ground object using data from laser radar systems. Typical ground objects are vehicles and land mines. For these objects, the orientation and articulation are unknown. The objects are placed in natural or urban areas where the background is unstructured and complex. The performance of laser radar systems is analyzed, to achieve models of the uncertainties in laser radar data. A ground object recognition method is presented. It handles general,...

  1. Spectral invariance hypothesis study of polarized reflectance with Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI)

    Science.gov (United States)

    Bradley, Christine L.; Kupinski, Meredith; Diner, David J.; Xu, Feng; Chipman, Russell A.

    2015-09-01

    Many models used to represent the boundary condition for the separation of atmospheric scattering from the surface reflectance in polarized remote sensing measurements assume that the polarized surface reflectance is spectrally neutral. The Spectral Invariance Hypothesis asserts that the magnitude and shape of the polarized bidirectional reflectance factor (pBRF) is equal for all wavelengths. In order to test this hypothesis, JPL's Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) is used to measure polarization information of different outdoor surface types. GroundMSPI measures the linear polarization Stokes parameters (I, Q, U), at three wavelengths, 470 nm, 660 nm, and 865 nm. The camera is mounted on a two-axis gimbal to accurately select the view azimuth and elevation directions. On clear sky days we acquired day-long scans of scenes that contain various surface types such as grass, dirt, cement, brick, and asphalt and placed a Spectralon panel in the camera field of view to provide a reflectance reference. Over the course of each day, changing solar position in the sky provides a large range of scattering angles for this study. The polarized bidirectional reflectance factor (pBRF) is measured for the three wavelengths and the best fit slope of the spectral correlation is reported. This work reports the range of best fit slopes measured for five region types.

  2. AGN Spectral Energy Distributions of GLAST Telescope Network Program Objects II

    Science.gov (United States)

    Adkins, Jeff; Lacy, Mark; Rapp, Steve; Stefaniak, Linda

    2006-03-01

    The Gamma-Ray Large Area Space Telescope (GLAST) has a proposed observing list that includes AGNs and Polars bright enough to be observed optically by amateurs and students. This observing list is maintained by the "GLAST Telescope Network" (GTN) and includes a number of objects that have yet to be observed by the Spitzer Space Telescope. In the first year of the Spitzer Teacher Observing Program, our project observed one of these objects (4C 29.45) with the Spitzer MIPS and the IRAC instruments as well as ground based instruments. These observations were used to determine its Spectral Energy Distribution (SED), which was compared to a model of disk emission in order to determine if there was a component of the SED due to synchrotron radiation induced by the jets. In this proposal we will observe another target from the list and expand our efforts to create simultaneous observations through radio telescopes, optical telescopes (large and small), and other instruments as the opportunity arises.

  3. Topographic gradient based site characterization in India complemented by strong ground-motion spectral attributes

    KAUST Repository

    Nath, Sankar Kumar

    2013-12-01

    We appraise topographic-gradient approach for site classification that employs correlations between 30. m column averaged shear-wave velocity and topographic gradients. Assessments based on site classifications reported from cities across India indicate that the approach is reasonably viable at regional level. Additionally, we experiment three techniques for site classification based on strong ground-motion recordings, namely Horizontal-to-Vertical Spectral Ratio (HVSR), Response Spectra Shape (RSS), and Horizontal-to-Vertical Response Spectral Ratio (HVRSR) at the strong motion stations located across the Himalayas and northeast India. Statistical tests on the results indicate that these three techniques broadly differentiate soil and rock sites while RSS and HVRSR yield better signatures. The results also support the implemented site classification in the light of strong ground-motion spectral attributes observed in different parts of the globe. © 2013 Elsevier Ltd.

  4. Dynamic corner frequency in source spectral model for stochastic synthesis of ground motion

    Institute of Scientific and Technical Information of China (English)

    Xiaodan Sun; Xiaxin Tao; Guoxin Wang; Taojun Liu

    2009-01-01

    The static corner frequency and dynamic corner frequency in stochastic synthesis of ground motion from finite-fault modeling are introduced, and conceptual disadvantages of the two are discussed in this paper. Furthermore, the non-uniform radiation of seismic wave on the fault plane, as well as the trend of the larger rupture area, the lower corner frequency, can be described by the source spectral model developed by the authors. A new dynamic corner frequency can be developed directly from the model. The dependence of ground motion on the size of subfault can be eliminated if this source spectral model is adopted in the synthesis. Finally, the approach presented is validated from the comparison between the synthesized and observed ground motions at six rock stations during the Northridge earthquake in 1994.

  5. Tracking Non-stellar Objects on Ground and in Space

    DEFF Research Database (Denmark)

    Riis, Troels; Jørgensen, John Leif

    1999-01-01

    Many space exploration missions require a fast, early and accurate detection of a specific target. E.g. missions to asteroids, x-ray source missions or interplanetary missions.A second generation star tracker may be used for accurate detection of non-stellar objects of interest for such missions...... approximately down to CCD magnitude mv 7.5), the objects thus listed will include galaxies, nebulae, planets, asteroids, comets and artefacts as satellites.The angular resolution in inertial reference coordinates is a few arcseconds, allowing quite accurate tracking of these objects. Furthermore, the objects...... are easily divided into two classes; Stationary (galaxies, nebulae etc.), and moving object (planets, asteroids, satellite etc.).For missions targeting moving objects, detection down to mv 11 is possible without any system impacts, simply by comparing lists of objects with regular intervals, leaving out all...

  6. Tracking Non-stellar Objects on Ground and in Space

    DEFF Research Database (Denmark)

    Riis, Troels; Jørgensen, John Leif

    1999-01-01

    are easily divided into two classes; Stationary (galaxies, nebulae etc.), and moving object (planets, asteroids, satellite etc.).For missions targeting moving objects, detection down to mv 11 is possible without any system impacts, simply by comparing lists of objects with regular intervals, leaving out all......Many space exploration missions require a fast, early and accurate detection of a specific target. E.g. missions to asteroids, x-ray source missions or interplanetary missions.A second generation star tracker may be used for accurate detection of non-stellar objects of interest for such missions......, simply by listing all objects detected in an image not being identified as a star. Of course a lot of deep space objects will be listed too, especially if the detection threshold is set to let faint object pass through. Assuming a detection threshold of, say mv 7 (the Hipparcos catalogue is complete...

  7. Analysis of the spectral response of flourishing-withering vegetation changes based on ground spectral measurements

    Institute of Scientific and Technical Information of China (English)

    Guli·Japper; CHEN Xi; ZHAO Jin; MA ZhongGuo; CHANG Cun; ZHANG XueRen

    2007-01-01

    A structural mode was used to characterize vegetation composition at the plant leaf level and a flourishing-withering ratio was developed. The spectral responses of vegetation with different flourishing-withering ratios were analyzed, the change rates of the chlorophyll and moisture content indices of vegetation with different flourishing-withering ratios were compared, and correlations between the chlorophyll and moisture content indices were analyzed. The results reveal that leaves with an intermediate flourishing-withering ratio can increase the absorption signatures of vegetation and that band ranges of 570-700 nm and 1300-1540 nm can play a role in indicating changes in the flourishing-withering ratios of vegetation; NPQI, NPCI, R695/R420, R695/R760, R750/R700, the peak-value area of red selvedge, the red selvedge amplitude, the ratio between the red selvedge amplitude and the minimum amplitude, and the NDVl of vegetation change regularly with the change in flourishing-withering ratios,and these nine vegetation indices are highly related to the chlorophyll content. Vegetation indexes of NDWI and PRI are very sensitive to the flourishing-withering change in vegetation and are closely related to the moisture content, and the correlation coefficient is higher than 0.9. The derivative of the spectra is more effective in describing changes in the structural mode of vegetation with different flourishing-withering ratios, especially at band ranges of 552-628 nm and 630-686 nm, and it is more sensitive to the mixed flourishing-withering ratios of leaves rather than to the vegetation indices. The red selvedge position in the spectrum is highly related to the chlorophyll content and is not sensitive to changes in the structural mode of mixed flourishing-withering leaves. The red selvedge parameters are sensitive to changes in the flourishing-withering ratio at the peak-value area of the red selvedge amplitude and the ratio between the red selvedge amplitude and the

  8. SPECTRAL VARIABILITY AND TRANSIENT INJECTION OF RELATIVISTIC ELECTRONS FOR BL LAC OBJECTS

    Institute of Scientific and Technical Information of China (English)

    MEI DONG-CHENG; XIE GUANG-ZHONG; CHEN LUO-EN

    2000-01-01

    The spectral hardening with increasing intensity in optical range for four BL Lac objects have been found by analyzing our observed data. Making use of the synchrotron loss of transient injection of relativistic electrons, we succeeded in explaining the phenomenon of the spectral hardening in the outburst phase. The value of magnetic intensity and the limit condition of the transient injection of relativistic electrons seem to be reasonable.

  9. Spectral characteristics of vertical ground motion in the Northridge and other earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Bozorgnia, Y. [ATS Engineering, Walnut Creek, CA (United States); Niazi, M. [Berkeley Geophysical Consultants, CA (United States); Campbell, K.W. [EQE International, Evergreen, CO (United States)

    1995-12-31

    Spectral characteristics of vertical ground motion recorded during the Northridge earthquake are evaluated and compared to those of other earthquakes. Relationship between vertical and horizontal spectra is examined through development of attenuation of vertical and horizontal response spectra. Vertical-to-horizontal response spectral relationship is then compared to that of 1989 Loma Prieta earthquake, and several other earthquakes recorded over SMART-1 array in Taiwan. This preliminary analysis shows that the main characteristics of vertical-to-horizontal spectral ratio are similar to those of other earthquakes. One main characteristic is that in the near-field region and in short period range, the ratio is much higher than commonly assumed ratio of 2/3.

  10. FSR: a field portable spectral reflectometer to measure ground from NIR to LWIR

    Science.gov (United States)

    Moreau, Louis; Bourque, Hugo; Ouellet, Réal; Prel, Florent; Roy, Claude; Vallieres, Christian; Thériault, Guillaume

    2011-11-01

    ABB Bomem has recently designed a field-deployable reflectometer. The Full Spectrum Reflectometer (FSR) measures the diffuse reflectance of surfaces in the 0.7 μm to 13.5 μm spectral range. The spectral resolution is adjustable from 32 to 4 cm-1. The instrument is portable, battery-operated and designed for field usage in a single, lightweight and ruggedized package. In its simplest mode, the instrument is automated and can be operated by non-specialist personnel with minimal training. The FSR has a laboratory mode to measure targets brought to the instrument in a sampling cup and a field mode with automated measurement sequence. To facilitate the measurement of various ground surfaces, the instrument is packaged in a three-point mount for easy target access and stability. One of the mount is the sampling port. The instrument has its own built-in NIR and LWIR infrared sources to illuminate the ground area to be measured. The instrument includes two built-in references for calibration: a Spectralon diffuser and an Infragold diffuser. The first units were commissioned to build a spectral database of surfaces in various conditions (humidity, temperature, texture, mixing, etc.) and in the presence of interfering chemicals (oils, solvents, etc.) but the instrument can also serve other purposes such as the identification of unknown materials.

  11. The ground side of an object: perceived as shapeless yet processed for semantics.

    Science.gov (United States)

    Sanguinetti, Joseph L; Allen, John J B; Peterson, Mary A

    2014-01-01

    Traditional theories of perception posit that only objects access semantics; abutting, patently shapeless grounds do not. Surprisingly, this assumption has been untested until now. In two experiments, participants classified silhouettes as depicting meaningful real-world or meaningless novel objects while event-related potentials (ERPs) were recorded. The borders of half of the novel objects suggested portions of meaningful objects on the ground side. Participants were unaware of these meaningful objects because grounds are perceived as shapeless. In Experiment 1, in which silhouettes were presented twice, N400 ERP repetition effects indicated that semantics were accessed for novel silhouettes that suggested meaningful objects in the ground and for silhouettes that depicted real-world objects, but not for novel silhouettes that did not suggest meaningful objects in the ground. In Experiment 2, repetition was manipulated via matching prime words. This experiment replicated the effect observed in Experiment 1. These experiments provide the first neurophysiological evidence that semantic access can occur for the apparently shapeless ground side of a border.

  12. Variability of Extragalactic Objects in Relation to Redshift, Color, Radio Spectral Index and Absorption Lines

    Indian Academy of Sciences (India)

    D. Basu

    2001-12-01

    Optical variability of extragalactic objects, viz., QSOs, BL Lacs and Seyfert galaxies has been monitored systematically over an appreciable period of time and a large amount of data have accumulated. The present work reports results of investigations involving statistical analysis of updated data on relationships between variability and various observed properties of the objects, viz., redshift, color indices, radio spectral index and absorption lines. It is found that at high frequencies (rest frame) radio spectral index does not change significantly with the degree of variability. However, the degree of variability depends on redshifts. On the other hand, presence or absence of absorption lines is significantly associated with variability for QSOs with larger redshifts ( > 1.0), while no such relationship exists for QSOs at smaller redshifts ( < 1.0 or other objects. Correlation between color indices and redshifts depends on the degree of variability and the sample chosen for the color index.

  13. Multi- and Hyper-Spectral Sensing for Autonomous Ground Vehicle Navigation

    Energy Technology Data Exchange (ETDEWEB)

    FOGLER, ROBERT J.

    2003-06-01

    Robotic vehicles that navigate autonomously are hindered by unnecessary avoidance of soft obstacles, and entrapment by potentially avoidable obstacles. Existing sensing technologies fail to reliably distinguish hard obstacles from soft obstacles, as well as impassable thickets and other sources of entrapment. Automated materials classification through advanced sensing methods may provide a means to identify such obstacles, and from their identity, to determine whether they must be avoided. Multi- and hyper-spectral electro-optic sensors are used in remote sensing applications to classify both man-made and naturally occurring materials on the earth's surface by their reflectance spectra. The applicability of this sensing technology to obstacle identification for autonomous ground vehicle navigation is the focus of this report. The analysis is restricted to system concepts in which the multi- or hyper-spectral sensor is on-board the ground vehicle, facing forward to detect and classify obstacles ahead of the vehicle. Obstacles of interest include various types of vegetation, rocks, soils, minerals, and selected man-made materials such as paving asphalt and concrete.

  14. Determination of the Characteristics of Ground-Based IR Spectral Instrumentation for Environmental Monitoring of the Atmosphere

    Science.gov (United States)

    Makarova, M. V.; Poberovskii, A. V.; Hase, F.; Timofeyev, Yu. M.; Imhasin, Kh. Kh.

    2016-07-01

    This is a study of the spectral characteristics of a ground-based spectral system consisting of an original system for tracking the sun developed at St. Petersburg State University and a Bruker IFS125HR Fourier spectrometer. The importance of accounting for the actual instrument function of the spectral system during processing of ground-based IR spectra of direct solar radiation is illustrated by the example of determining the overall abundance of methane in the atmosphere. Spectral intervals are proposed for taking spectra of direct solar radiation with an HBr cell, which yield information on the parameters of the ground-based system, while simultaneously checking the alignment of the system for each spectrum of the atmosphere.

  15. New spectral functions of the near-ground albedo derived from aircraft diffraction spectrometer observations

    Directory of Open Access Journals (Sweden)

    C. A. Varotsos

    2013-06-01

    Full Text Available The airborne spectral observations of the upward and downward irradiances are revisited to investigate the dependence of the near-ground albedo as a function of wavelength in the entire solar spectrum for different surfaces (sand, water, snow and in different conditions (clear or cloudy sky. The radiative upward and downward fluxes were determined by a diffraction spectrometer flown on a research aircraft that was performing multiple flight paths near ground. The results obtained show that the near-ground albedo does not generally increase with increasing wavelengths for all kinds of surfaces as is widely believed today. Particularly, in the case of water surfaces we found that the albedo in the ultraviolet region is more or less independent of the wavelength on a long-term basis. Interestingly, in the visible and near-infrared spectra the water albedo obeys an almost constant power-law relationship with wavelength. In the case of sand surfaces we found that the sand albedo is a quadratic function of wavelength, which becomes more accurate, if the ultraviolet wavelengths are neglected. Finally, we found that the spectral dependence of snow albedo behaves similarly to that of water, i.e. both decrease from the ultraviolet to the near-infrared wavelengths by 20–50%, despite of the fact that their values differ by one order of magnitude (water albedo being lower. In addition, the snow albedo versus ultraviolet wavelength is almost constant, while in the visible-near infrared spectrum the best simulation is achieved by a second-order polynomial, as in the case of sand, but with opposite slopes.

  16. Spectral entropy as an objective measure of sedation state in midazolam-premedicated patients

    Directory of Open Access Journals (Sweden)

    Hany A Mowafi

    2012-01-01

    Full Text Available Context: Objective assessment of sedation depth is a valuable target. Spectral entropy is an anesthetic depth monitor based on the analysis of the electroencephalogram signal. Aims: To evaluate the performance of spectral entropy as an objective measure of sedation state in midazolam-premedicated patients and to correlate it with a clinically assessed sedation score. Settings and Design: This prospective double-blind placebo-controlled study was performed in King Fahd Hospital of the university. Methods: Eighty adult ASA I-II patients were randomly assigned into 4 groups. Patients were premedicated using 0.02, 0.04, or 0.06 mg/kg midazolam or saline intramuscularly. The effect of these doses on the Observer′s Assessment of Alertness and Sedation (OAA/S scale, hemodynamic variables, response entropy (RE, and state entropy (SE, was evaluated at 10, 20, and 30 min after premedication. Statistical analysis: Spearman Rank-order correlation analysis to examine the relation between OAA/S and entropy. The ability of spectral entropy to predict the depth of sedation was evaluated using Smith prediction probability. Results: Midazolam doses ≥0.04 mg/kg produced significant decreases in RE, SE, and OAA/S scores. There was a strong correlation between midazolam dose and OAA/S scale, RE, and SE since Spearman Rank R values were 0.792, 0.822, and 0.745, respectively (P<0.001. In addition, RE and SE were strong predictors of OAA/S level during midazolam sedation with no significant difference in prediction between the 2 entropy components. Conclusions: Spectral entropy is a reliable measure for the sedative premedication. It may be used to objectively assess the adequacy of midazolam premedication and to determine the dose requirement.

  17. [A method of object detection for remote sensing-imagery based on spectral space transformation].

    Science.gov (United States)

    Wu, Gui-Ping; Xiao, Peng-Feng; Feng, Xue-Zhi; Wang, Ke

    2013-03-01

    Object detection is an intermediate link for remote sensing image processing, which is an important guarantee of remote sensing application and services aspects. In view of the characteristics of remotely sensed imagery in frequency domain, a novel object detection algorithm based on spectral space transformation was proposed in the present paper. Firstly, the Fourier transformation method was applied to transform the image in spatial domain into frequency domain. Secondly, the wedge-shaped sample and overlay analysis methods for frequency energy were used to decompose signal into different frequency spectrum zones, and the center frequency values of object's features were acquired as detection marks in frequency domain. Finally, object information was detected with the matched Gabor filters which have direction and frequency selectivity. The results indicate that the proposed algorithm here performs better and it has good detection capability in specific direction as well.

  18. General scaling limitations of ground-plane and isolated-object cloaks

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, Hila; Johnson, Steven G. [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Oskooi, A. [Department of Electronic Science and Engineering, Kyoto University (Japan); Joannopoulos, J. D. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2011-08-15

    We prove that, for arbitrary three-dimensional transformation-based invisibility cloaking of an object above a ground plane or of isolated objects, there are practical constraints that increase with the object size. In particular, we show that the cloak thickness must scale proportionally to the thickness of the object being cloaked, assuming bounded refractive indices, and that absorption discrepancies and other imperfections must scale inversely with the object thickness. For isolated objects, we also show that bounded refractive indices imply a lower bound on the effective cross section.

  19. [Cotton identification and extraction using near infrared sensor and object-oriented spectral segmentation technique].

    Science.gov (United States)

    Deng, Jin-Song; Shi, Yuan-Yuan; Chen, Li-Su; Wang, Ke; Zhu, Jin-Xia

    2009-07-01

    The real-time, effective and reliable method of identifying crop is the foundation of scientific management for crop in the precision agriculture. It is also one of the key techniques for the precision agriculture. However, this expectation cannot be fulfilled by the traditional pixel-based information extraction method with respect to complicated image processing and accurate objective identification. In the present study, visible-near infrared image of cotton was acquired using high-resolution sensor. Object-oriented segmentation technique was performed on the image to produce image objects and spatial/spectral features of cotton. Afterwards, nearest neighbor classifier integrated the spectral, shape and topologic information of image objects to precisely identify cotton according to various features. Finally, 300 random samples and an error matrix were applied to undertake the accuracy assessment of identification. Although errors and confusion exist, this method shows satisfying results with an overall accuracy of 96.33% and a KAPPA coefficient of 0.926 7, which can meet the demand of automatic management and decision-making in precision agriculture.

  20. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    Directory of Open Access Journals (Sweden)

    Sungdae Sim

    2012-12-01

    Full Text Available Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  1. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    Science.gov (United States)

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-12-12

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  2. Spectral fine structure of the atomic ground states based on full relativistic theory

    Institute of Scientific and Technical Information of China (English)

    Zhenghe Zhu; Yongjian Tang

    2011-01-01

    @@ We focus on the full relativistic quantum mechanical calculations from boron to fluorine atoms with electronic configuration of 1s22s22pn (n = 1, 2, 3, 4, and 5), where 1s22s2 is the closed shell and 2pn is the open shell. Their active electrons in the open shell occupy all the six spinors as far as possible.Therefore, we suggest a new rule called "maximum probability" for the full symmetry group relativistic theory. Furthermore, the spectral fine structure of the atomic ground states based on the full relativistic theory and their intervals of L-S splitting are all reasonable. It is impossible to calculate the L-S splitting through non-relativistic quantum mechanics. The relativistic effect of atomic mass is increased significantly by about 12 folds from boron atom to fluorine atom.%We focus on the full relativistic quantum mechanical calculations from boron to fluorine atoms with electronic configuration of 1s22s22pn (n = 1, 2, 3, 4, and 5), where 1s22s2 is the closed shell and 2pn is the open shell. Their active electrons in the open shell occupy all the six spinors as far as possible.Therefore, we suggest a new rule called "maximum probability" for the full symmetry group relativistic theory. Furthermore, the spectral fine structure of the atomic ground states based on the full relativistic theory and their intervals of L-S splitting are all reasonable. It is impossible to calculate the L-S splitting through non-relativistic quantum mechanics. The relativistic effect of atomic mass is increased significantly by about 12 folds from boron atom to fluorine atom.

  3. Differential visualisation of a spectrally selective structure of strongly scattering objects

    Energy Technology Data Exchange (ETDEWEB)

    Kuratov, A S; Rudenko, V N; Shuvalov, V V [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-07-31

    We describe a modification of the algorithm for the fast approximate solution of the diffuse optical tomography inverse problem. In this modification the amount of a priori (auxiliary) information necessary for the visualisation of the internal structure of the object is reduced by using a differential measurement scheme. The experiment is performed at two different wavelengths, and some a priori information, necessary to reconstruct only the spectrally selective component of the internal structure (the difference structure of the spatial distributions of the extinction coefficient at the wavelength employed), is replaced by the data of one of these measurements. (laser biophotonics)

  4. Feature Extraction and Automatic Material Classification of Underground Objects from Ground Penetrating Radar Data

    OpenAIRE

    Qingqing Lu; Jiexin Pu; Zhonghua Liu

    2014-01-01

    Ground penetrating radar (GPR) is a powerful tool for detecting objects buried underground. However, the interpretation of the acquired signals remains a challenging task since an experienced user is required to manage the entire operation. Particularly difficult is the classification of the material type of underground objects in noisy environment. This paper proposes a new feature extraction method. First, discrete wavelet transform (DWT) transforms A-Scan data and approximation coefficient...

  5. Coregistration refinement of hyperspectral images and DSM: An object-based approach using spectral information

    Science.gov (United States)

    Avbelj, Janja; Iwaszczuk, Dorota; Müller, Rupert; Reinartz, Peter; Stilla, Uwe

    2015-02-01

    For image fusion in remote sensing applications the georeferencing accuracy using position, attitude, and camera calibration measurements can be insufficient. Thus, image processing techniques should be employed for precise coregistration of images. In this article a method for multimodal object-based image coregistration refinement between hyperspectral images (HSI) and digital surface models (DSM) is presented. The method is divided in three parts: object outline detection in HSI and DSM, matching, and determination of transformation parameters. The novelty of our proposed coregistration refinement method is the use of material properties and height information of urban objects from HSI and DSM, respectively. We refer to urban objects as objects which are typical in urban environments and focus on buildings by describing them with 2D outlines. Furthermore, the geometric accuracy of these detected building outlines is taken into account in the matching step and for the determination of transformation parameters. Hence, a stochastic model is introduced to compute optimal transformation parameters. The feasibility of the method is shown by testing it on two aerial HSI of different spatial and spectral resolution, and two DSM of different spatial resolution. The evaluation is carried out by comparing the accuracies of the transformations parameters to the reference parameters, determined by considering object outlines at much higher resolution, and also by computing the correctness and the quality rate of the extracted outlines before and after coregistration refinement. Results indicate that using outlines of objects instead of only line segments is advantageous for coregistration of HSI and DSM. The extraction of building outlines in comparison to the line cue extraction provides a larger amount of assigned lines between the images and is more robust to outliers, i.e. false matches.

  6. Measurement of the spectral characteristics and color parameters of flat objects

    Science.gov (United States)

    Gorbunova, Elena V.; Chertov, Aleksandr N.; Lastovskaia, Elena A.; Korotaev, Valery V.; Norko, Vadim E.

    2015-02-01

    Quality control of different coatings (colorful, paint, marker, safety, etc.) that are applied to the surface of various objects (both metallic and non-metallic) is an important problem. Also, there is a problem of dealing with counterfeit products. So it's necessary to distinguish the fake replicas of marking from the authentic marking of producer. To solve these problems, we propose an automated device (hardware and software complex) for analysis and control of spectral reflection characteristics, albedo and color parameters of extended (up to 150 mm × 150 mm) flat objects. It allows constructing the color image of the object surface as well as its multispectral images in selected regions of the spectrum. Herewith the color of the object surface can be calculated for various standard light sources (A, B, C, D65, E, F2, F7, F11, GE), or to any light source with a predetermined emission spectrum. The paper presents the description of construction and working principles of the proposed hardware and software complex. All color settings calculations correspond to the requirements and recommendations of CIE.

  7. Fine spectral structures in Jovian decametric radio emission observed by ground-based radio telescope.

    Science.gov (United States)

    Panchenko, M.; Brazhenko, A. I.; Shaposhnikov, V. E.; Konovalenko, A. A.; Rucker, H. O.

    2014-04-01

    Jupiter with the largest planetary magnetosphere in the solar system emits intense coherent non-thermal radio emission in a wide frequency range. This emission is a result of a complicated interaction between the dynamic Jovian magnetosphere and energetic particles supplying the free energy from planetary rotation and the interaction between Jupiter and the Galilean moons. Decametric radio emission (DAM) is the strongest component of Jovian radiation observed in a frequency range from few MHz up to 40 MHz. This emission is generated via cyclotron maser mechanism in sources located along Jovian magnetic field lines. Depending on the time scales the Jovian DAMexhibits different complex spectral structures. We present the observations of the Jovian decametric radio emission using the large ground-based radio telescope URAN- 2 (Poltava, Ukraine) operated in the decametric frequency range. This telescope is one of the largest low frequency telescopes in Europe equipped with high performance digital radio spectrometers. The antenna array of URAN-2 consists of 512 crossed dipoles with an effective area of 28 000m2 and beam pattern size of 3.5 x 7 deg. (at 25 MHz). The instrument enables continuous observations of the Jovian radio during long period of times. Jovian DAM was observed continuously since Sep. 2012 (depending on Jupiter visibility) with relatively high time-frequency resolution (4 kHz - 100ms) in the broad frequency range (8-32MHz). We have detected a big amount of the fine spectral structures in the dynamic spectra of DAM such as trains of S-bursts, quasi-continuous narrowband emission, narrow-band splitting events and zebra stripe-like patterns. We analyzed mainly the fine structures associated with non-Io controlled DAM. We discuss how the observed narrowband structures which most probably are related to the propagation of the decametric radiation in the Jupiter's ionosphere can be used to study the plasma parameters in the inner Jovian magnetosphere.

  8. Highly-Damped Spectral Acceleration as a Ground Motion Intensity Measure for Estimating Collapse Vulnerability of Buildings

    Science.gov (United States)

    Buyco, K.; Heaton, T. H.

    2016-12-01

    Current U.S. seismic code and performance-based design recommendations quantify ground motion intensity using 5%-damped spectral acceleration when estimating the collapse vulnerability of buildings. This intensity measure works well for predicting inter-story drift due to moderate shaking, but other measures have been shown to be better for estimating collapse risk.We propose using highly-damped (>10%) spectral acceleration to assess collapse vulnerability. As damping is increased, the spectral acceleration at a given period T begins to behave like a weighted average of the corresponding lowly-damped (i.e. 5%) spectrum at a range of periods. Weights for periods longer than T increase as damping increases. Using high damping is physically intuitive for two reasons. Firstly, ductile buildings dissipate a large amount of hysteretic energy before collapse and thus behave more like highly-damped systems. Secondly, heavily damaged buildings experience period-lengthening, giving further credence to the weighted-averaging property of highly-damped spectral acceleration.To determine the optimal damping value(s) for this ground motion intensity measure, we conduct incremental dynamic analysis for a suite of ground motions on several different mid-rise steel buildings and select the damping value yielding the lowest dispersion of intensity at the collapse threshold. Spectral acceleration calculated with damping as high as 70% has been shown to be a better indicator of collapse than that with 5% damping.

  9. High Resolution Spectral Analysis of Hiss and Chorus Emissions in Ground Based Data

    Science.gov (United States)

    Hosseini Aliabad, S. P.; Golkowski, M.; Gibby, A. R.

    2015-12-01

    The dynamic evolution of the radiation belts is believed to be controlled in large part by two separate but related classes of naturally occurring plasma waves: ELF/VLF chorus and hiss emissions. Although whistler mode chorus has been extensively studied since the first reports by Storey in 1953, the source mechanism and properties are still subjects of active research. Moreover, the origin of plasmaspheric hiss, the electromagnetic emission believed to be responsible for the gap between the inner and outer radiation belts, has been debated for over four decades. Although these waves can be observed in situ on spacecraft, ground-based observing stations can provide orders of magnitude higher data volumes and decades long data coverage essential for certain long-term and statistical studies of wave properties. Recent observational and theoretical works suggest that high resolution analysis of the spectral features of both hiss and chorus emissions can provide insight into generation processes and be used to validate existing theories. Application of the classic Fourier (FFT) technique unfortunately yields a tradeoff between time and frequency resolution. In additional to Fourier spectra, we employ novel methods to make spectrograms with high time and frequency resolutions, independently using minimum variance distortionless response (MVDR). These techniques are applied to ground based data observations of hiss and chorus made in Alaska. Plasmaspheric hiss has been widely regarded as a broadband, structure less, incoherent emission. We quantify the extent to which plasmaspheric hiss can be a coherent emission with complex fine structure. Likewise, to date, researchers have differentiated between hiss and chorus coherency primarily using qualitative "naked eye" approaches to amplitude spectra. Using a quantitative approach to observed amplitude and we present more rigorous classification criteria for these emissions.

  10. A Novel Technique to Observe Rapidly Pulsating Objects Using Spectral Wave-Interaction Effects

    CERN Document Server

    Borra, Ermanno F

    2010-01-01

    Conventional techniques that measure rapid time variations are inefficient or inadequate to discover and observe rapidly pulsating astronomical sources. It is therefore conceivable that there exist some classes of objects pulsating with extremely short periods that have not yet been discovered. This article starts from the fact that rapid flux variations generate a spectral modulation that can be detected in the beat spectrum of the output current fluctuations of a quadratic detector. The telescope could observe at any frequency, although shorter frequencies would have the advantage of lower photon noise. The techniques would allow us to find and observe extremely fast time variations, opening up a new time window in Astronomy. The current fluctuation technique, like intensity interferometers, uses second-order correlation effects and fits into the current renewal of interest in intensity interferometry. An interesting aspect it shares with intensity interferometry is that it can use inexpensive large telesco...

  11. The Optical Microvariability and Spectral Changes of the BL Lacertae Object S5 0716+714

    Indian Academy of Sciences (India)

    H. Poon; J. H. Fan; J. N. Fu

    2011-03-01

    The BL Lac object S5 0716+714 was monitored in the optical band during October 2008, December 2008 and February 2009. We achieved a best temporal resolution of about 5 min in the bands. The source was active during the whole monitoring campaign. It showed microvariability in 13 days out of 14 days of observation. Four fast flares were observed with amplitudes ranging from 0.3–0.75 mag. The overall amplitude changes during the whole campaign are ∼ 0. 89, ∼ 0. 80, ∼ 0. 73, and ∼ 0. 51. On internight time scales, strong bluer-when-brighter chromatism was found while different spectral behaviours were found on intranight time scales.

  12. Extracting Urban Ground Object Information from Images and LiDAR Data

    Science.gov (United States)

    Yi, Lina; Zhao, Xuesheng; Li, Luan; Zhang, Guifeng

    2016-06-01

    To deal with the problem of urban ground object information extraction, the paper proposes an object-oriented classification method using aerial image and LiDAR data. Firstly, we select the optimal segmentation scales of different ground objects and synthesize them to get accurate object boundaries. Then, this paper uses ReliefF algorithm to select the optimal feature combination and eliminate the Hughes phenomenon. Eventually, the multiple classifier combination method is applied to get the outcome of the classification. In order to validate the feasible of this method, this paper selects two experimental regions in Stuttgart and Germany (Region A and B, covers 0.21 km2 and 1.1 km2 respectively). The aim of the first experiment on the Region A is to get the optimal segmentation scales and classification features. The overall accuracy of the classification reaches to 93.3 %. The purpose of the experiment on region B is to validate the application-ability of this method for a large area, which is turned out to be reaches 88.4 % overall accuracy. In the end of this paper, the conclusion shows that the proposed method can be performed accurately and efficiently in terms of urban ground information extraction and be of high application value.

  13. Object-Based Analysis of Aerial Photogrammetric Point Cloud and Spectral Data for Land Cover Mapping

    Science.gov (United States)

    Debella-Gilo, M.; Bjørkelo, K.; Breidenbach, J.; Rahlf, J.

    2013-04-01

    The acquisition of 3D point data with the use of both aerial laser scanning (ALS) and matching of aerial stereo images coupled with advances in image processing algorithms in the past years provide opportunities to map land cover types with better precision than before. The present study applies Object-Based Image Analysis (OBIA) to 3D point cloud data obtained from matching of stereo aerial images together with spectral data to map land cover types of the Nord-Trøndelag county of Norway. The multi-resolution segmentation algorithm of the Definiens eCognition™ software is used to segment the scenes into homogenous objects. The objects are then classified into different land cover types using rules created based on the definitions given for each land cover type by the Norwegian Forest and Landscape Institute. The quality of the land cover map was evaluated using data collected in the field as part of the Norwegian National Forest Inventory. The results show that the classification has an overall accuracy of about 80% and a kappa index of about 0.65. OBIA is found to be a suitable method for utilizing 3D remote sensing data for land cover mapping in an effort to replace manual delineation methods.

  14. Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space

    Science.gov (United States)

    Spann, James; Niles, Paul; Eppler, Dean; Kennedy, Kriss; Lewis, Ruthan; Sullivan, Thomas

    2016-07-01

    Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting re-search objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will be enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long dura-tion spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fun-damental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support stag-ing of robotic and tele-robotic assets as well as

  15. A method for comparison of growth media in objective identification of Penicillium based on multi-spectral imaging

    DEFF Research Database (Denmark)

    Clemmensen, Line Katrine Harder; Hansen, Michael Adsetts Edberg; Frisvad, Jens Christian

    2007-01-01

    We consider the problems of using excessive growth media for identification and performing objective identification of fungi at the species level. We propose a method for choosing the subset of growth media, which provides the best discrimination between several fungal species. Furthermore, we pr...... to macro-morphological features. The species have been classified using only 3–4 of the spectral bands with a 100% correct classification rate using both leave-one-out cross-validation and test set validation....... propose the use of multi-spectral imaging as a means of objective identification. Three species of the fungal genus Penicillium are subject to classification. To obtain an objective classification we use multi-spectral images. Previously, RGB images have proven useful for the purpose. We use multi-spectral...

  16. Detection of objects in sandy ground by an FM-CW radar

    OpenAIRE

    Yamaguchi, Y.(International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan); Tsurugi, M.; Watanabe, Y.; Sengoku, M.; Kikuta, T.; Nishino, M; Tsunasaki, M.; Yamaguchi, Yoshio; Sengoku, Masakazu; 山口, 芳雄; 仙石, 正和

    1993-01-01

    An FM-CW radar system for the detection of objects buried in sandy ground is explored and applied to field measurement. The key factors for underground radar performance are the center frequency and the bandwidth determining the depth at which the radar can detect targets and the resolution in the range direction, respectively. To realize a practical underground radar, two ridged horn antennas are employed in the system, which are operative in the frequency range of 250-1000 MHz. The impedanc...

  17. Initial building investigations at Aberdeen Proving Ground, Maryland: Objectives and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, K.L.; Dougherty, J.M.; McGinnis, L.D.

    1994-12-01

    As part of an environmental-contamination source-definition program at Aberdeen Proving Ground, detailed internal and external inspections of 23 potentially contaminated buildings are being conducted to describe and characterize the state of each building as it currently exists and to identify areas potentially contaminated with toxic or other hazardous substances. In addition, a detailed geophysical investigation is being conducted in the vicinity of each target building to locate and identify subsurface structures, associated with former building operations, that are potential sources of contamination. This report describes the objectives of the initial building inspections, including the geophysical investigations, and discusses the methodology that has been developed to achieve these objectives.

  18. A 1-mm spectral line survey toward GLIMPSE Extended Green Objects (EGOs)

    CERN Document Server

    He, J H; Chen, X

    2012-01-01

    A northern subsample of 89 Spitzer GLIMPSE extended green objects (EGOs), the candidate massive young stellar objects, are surveyed for molecular lines in two 1-GHz ranges: 251.5- 252.5 and 260.188-261.188 GHz. A comprehensive catalog of observed molecular line data and spectral plots are presented. Eight molecular species are undoubtedly detected: H13CO+, SiO, SO, CH3OH, CH3OCH3, CH3CH2CN, HCOOCH3, and HN13C. H13CO+ 3-2 line is detected in 70 EGOs among which 37 ones also show SiO 6-5 line, demonstrating their association to dense gas and supporting the outflow interpretation of the extended 4.5 um excess emission. Our major dense gas and outflow tracers (H13CO+, SiO, SO and CH3OH) are combined with our previous survey of 13CO, 12CO and C18O 1-0 toward the same sample of EGOs for a multi-line multi- cloud analysis of line width and luminosity correlations. Good log-linear correlations are found among all considered line luminosities, which requires a universal similarity of density and thermal structures and...

  19. Laser- and Multi-Spectral Monitoring of Natural Objects from UAVs

    Science.gov (United States)

    Reiterer, Alexander; Frey, Simon; Koch, Barbara; Stemmler, Simon; Weinacker, Holger; Hoffmann, Annemarie; Weiler, Markus; Hergarten, Stefan

    2016-04-01

    The paper describes the research, development and evaluation of a lightweight sensor system for UAVs. The system is composed of three main components: (1) a laser scanning module, (2) a multi-spectral camera system, and (3) a processing/storage unit. All three components are newly developed. Beside measurement precision and frequency, the low weight has been one of the challenging tasks. The current system has a total weight of about 2.5 kg and is designed as a self-contained unit (incl. storage and battery units). The main features of the system are: laser-based multi-echo 3D measurement by a wavelength of 905 nm (totally eye save), measurement range up to 200 m, measurement frequency of 40 kHz, scanning frequency of 16 Hz, relative distance accuracy of 10 mm. The system is equipped with both GNSS and IMU. Alternatively, a multi-visual-odometry system has been integrated to estimate the trajectory of the UAV by image features (based on this system a calculation of 3D-coordinates without GNSS is possible). The integrated multi-spectral camera system is based on conventional CMOS-image-chips equipped with a special sets of band-pass interference filters with a full width half maximum (FWHM) of 50 nm. Good results for calculating the normalized difference vegetation index (NDVI) and the wide dynamic range vegetation index (WDRVI) have been achieved using the band-pass interference filter-set with a FWHM of 50 nm and an exposure times between 5.000 μs and 7.000 μs. The system is currently used for monitoring of natural objects and surfaces, like forest, as well as for geo-risk analysis (landslides). By measuring 3D-geometric and multi-spectral information a reliable monitoring and interpretation of the data-set is possible. The paper gives an overview about the development steps, the system, the evaluation and first results.

  20. Feature Extraction and Automatic Material Classification of Underground Objects from Ground Penetrating Radar Data

    Directory of Open Access Journals (Sweden)

    Qingqing Lu

    2014-01-01

    Full Text Available Ground penetrating radar (GPR is a powerful tool for detecting objects buried underground. However, the interpretation of the acquired signals remains a challenging task since an experienced user is required to manage the entire operation. Particularly difficult is the classification of the material type of underground objects in noisy environment. This paper proposes a new feature extraction method. First, discrete wavelet transform (DWT transforms A-Scan data and approximation coefficients are extracted. Then, fractional Fourier transform (FRFT is used to transform approximation coefficients into fractional domain and we extract features. The features are supplied to the support vector machine (SVM classifiers to automatically identify underground objects material. Experiment results show that the proposed feature-based SVM system has good performances in classification accuracy compared to statistical and frequency domain feature-based SVM system in noisy environment and the classification accuracy of features proposed in this paper has little relationship with the SVM models.

  1. A 1 mm Spectral Line Survey Toward GLIMPSE Extended Green Objects (EGOs)

    Science.gov (United States)

    He, J. H.; Takahashi, S.; Chen, X.

    2012-09-01

    A northern subsample of 89 Spitzer GLIMPSE extended green objects (EGOs), the candidate massive young stellar objects, are surveyed for molecular lines in two 1 GHz ranges: 251.5-252.5 and 260.188-261.188 GHz. A comprehensive catalog of observed molecular line data and spectral plots are presented. Eight molecular species are undoubtedly detected: H13CO+, SiO, SO, CH3OH, CH3OCH3, CH3CH2CN, HCOOCH3, and HN13C. The H13CO+ 3-2 line is detected in 70 EGOs, among which 37 also show the SiO 6-5 line, demonstrating their association with dense gas and supporting the outflow interpretation of the extended 4.5 μm excess emission. Our major dense gas and outflow tracers (H13CO+, SiO, SO, and CH3OH) are combined with our previous survey of 13CO, 12CO, and C18O 1-0 toward the same sample of EGOs for a multi-line, multi-cloud analysis of linewidth and luminosity correlations. Good log-linear correlations are found among all considered line luminosities, the explanation of which requires a universal similarity of density and thermal structures and probably of shock properties among all EGO clouds. It also requires that the shocks be produced within the natal clouds of the EGOs. Diverse degrees of correlation are found among the linewidths. However, both the linewidth and luminosity correlations tend to progressively worsen across larger cloud subcomponent size scales, depicting the increase of randomness across cloud subcomponent sizes. Moreover, the linewidth correlations among the three isotopic CO 1-0 lines show data scatter as linear functions of the linewidth itself, indicating that the velocity randomness also increases with whole cloud sizes in a regular way. The SMT observing time was funded by Academia Sinica, Institute of Astronomy and Astrophysics, Taipei.

  2. Behavior of peak values and spectral ordinates of near-source strong ground motion over the smart 1 array

    Energy Technology Data Exchange (ETDEWEB)

    Niazi, M.

    1990-06-01

    The array recordings are used to investigate several important properties of the seismic ground motions themselves. The results reported here address the question of the variability of the peak vertical and horizontal accelerations, velocities and displacements. Statistical treatment of the variability is feasible when ground motions are recorded, as in SMART 1, at a group of stations within a limited distance. The three rings of the SMART 1 array have radii of 200 m, 1 km and 2 km. Since it became operational in September 1980, it has recorded accelerations up to 0.33g and 0.34g on the horizontal and vertical components, respectively. At present there are over 3,000 accelerograms from 53 local earthquakes available. From the set of observations, 12 earthquakes have been selected providing more than 700 accelerograms for analysis and statistical treatment. Nonlinear regression procedure are used to fit the peak values to an attenuation form which has as parameters, earthquake magnitude and source-to-site distance. Spectral information on ground motion is included; correlations are made between spectral ordinate values at 23 discrete frequencies in the range of engineering interest. Among the notable results is the finding that the ratio of the vertical to horizontal response spectral ordinates is less than the often used value of 2/3 for periods longer than about 0.2 second, and also for all frequencies at distances greater than 30 km from the source.

  3. Automatic Object-Oriented, Spectral-Spatial Feature Extraction Driven by Tobler’s First Law of Geography for Very High Resolution Aerial Imagery Classification

    Directory of Open Access Journals (Sweden)

    Zhiyong Lv

    2017-03-01

    Full Text Available Aerial image classification has become popular and has attracted extensive research efforts in recent decades. The main challenge lies in its very high spatial resolution but relatively insufficient spectral information. To this end, spatial-spectral feature extraction is a popular strategy for classification. However, parameter determination for that feature extraction is usually time-consuming and depends excessively on experience. In this paper, an automatic spatial feature extraction approach based on image raster and segmental vector data cross-analysis is proposed for the classification of very high spatial resolution (VHSR aerial imagery. First, multi-resolution segmentation is used to generate strongly homogeneous image objects and extract corresponding vectors. Then, to automatically explore the region of a ground target, two rules, which are derived from Tobler’s First Law of Geography (TFL and a topological relationship of vector data, are integrated to constrain the extension of a region around a central object. Third, the shape and size of the extended region are described. A final classification map is achieved through a supervised classifier using shape, size, and spectral features. Experiments on three real aerial images of VHSR (0.1 to 0.32 m are done to evaluate effectiveness and robustness of the proposed approach. Comparisons to state-of-the-art methods demonstrate the superiority of the proposed method in VHSR image classification.

  4. Detection of shallow buried objects using an autoregressive model on the ground penetrating radar signal

    Science.gov (United States)

    Nabelek, Daniel P.; Ho, K. C.

    2013-06-01

    The detection of shallow buried low-metal content objects using ground penetrating radar (GPR) is a challenging task. This is because these targets are right underneath the ground and the ground bounce reflection interferes with their detections. They do not create distinctive hyperbolic signatures as required by most existing GPR detection algorithms due to their special geometric shapes and low metal content. This paper proposes the use of the Autoregressive (AR) modeling method for the detection of these targets. We fit an A-scan of the GPR data to an AR model. It is found that the fitting error will be small when such a target is present and large when it is absent. The ratio of the energy in an Ascan before and after AR model fitting is used as the confidence value for detection. We also apply AR model fitting over scans and utilize the fitting residual energies over several scans to form a feature vector for improving the detections. Using the data collected from a government test site, the proposed method can improve the detection of this kind of targets by 30% compared to the pre-screener, at a false alarm rate of 0.002/m2.

  5. Resolving ranges of layered objects using ground vehicle LiDAR

    Science.gov (United States)

    Hollinger, Jim; Kutscher, Brett; Close, Ryan

    2015-06-01

    Lidar systems are well known for their ability to measure three-dimensional aspects of a scene. This attribute of Lidar has been widely exploited by the robotics community, among others. The problem of resolving ranges of layered objects (such as a tree canopy over the forest floor) has been studied from the perspective of airborne systems. However, little research exists in studying this problem from a ground vehicle system (e.g., a bush covering a rock or other hazard). This paper discusses the issues involved in solving this problem from a ground vehicle. This includes analysis of extracting multi-return data from Lidar and the various laser properties that impact the ability to resolve multiple returns, such as pulse length and beam size. The impacts of these properties are presented as they apply to three different Lidar imaging technologies: scanning pulse Lidar, Geiger-mode flash Lidar, and Time-of-Flight camera. Tradeoffs associated with these impacts are then discussed for a ground vehicle Lidar application.

  6. Short-Term Spectral Variability in the Binary FS CMa-Type Object MWC 728

    Science.gov (United States)

    Zharikov, S. V.; Miroshnichenko, A. S.

    2017-02-01

    We report the results of a long-term spectroscopic monitoring of the FS CM-type object MWC 728. We found that it is a binary system with a B5 ve (T1,eff = 14000±1000 K) primary and a G8 III (T2,eff ˜ 5000 K) secondary. Absorption lines of the cool star show regular variations with a semi-amplitude of ˜20 km s-1 and a period of 27.5 days. The system mass function is 2.3×10-2 M⊙, and its orbital plane is ˜ 13-15° tilted from the plane of the sky. The hot star has a projected rotational velocity of ˜110 km s-1 which implies a nearly breakup rotation at the equator. We detected strong variations of the Balmer and He I emission-line profiles on timescales from days to years. This points out to a variable stellar wind of the hot star in addition to the presence of a circum-primary gaseous disk. The strength of the absorption-line spectrum along with the optical and near-IR continuum suggest that the hot star contributes ˜60% of the V-band flux, the disk contributes ˜30%, and the cool star ˜10%.The binary system parameters, along with the interstellar extinction, suggest a distance of ˜1 kpc, that the cool star radius (˜8 R⊙) is smaller than its Roche lobe, and that the companions' mass ratio is q ˜0.5. Overall, the observed spectral variability and the presence of a strong IR-excess are in agreement with a model of a close binary system that has undergone a non-conservative mass-transfer.

  7. EXPLORATION ON METHOD OF AUTO-CLASSIFICATION FOR MAIN GROUND OBJECTS OF THREE GORGES RESERVOIR AREA

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bao-lei; SONG Meng-qiang; ZHOU Wan-cun

    2005-01-01

    Taking TM images, SPOT photos and DEM images as the basic information, this paper had not only put forward a kind of manual controlled computer-automatic extraction method, but also completed the task of extracting the main types of ground objects in the Three Gorges Reservoir area under relatively high accuracy, after finishing such preprocessing tasks as correcting the topographical spectrum and synthesizing the data. Taking the specialized image analysis software-eCognition as the platform, the research achieved the goal of classifying through choosing samples, picking out the best wave bands, and producing the identifying functions. At the same time the extraction process partly dispelled the influence of such phenomena as the same thing with different spectrums, different things with the same spectrum, border transitions, etc. The research did certain exploration in the aspect of technological route and method of using automatic extraction of the remote sensing image to obtain the information of land cover for the regions whose ground objects have complicated spectrums.

  8. Assessing the Spectral Properties of Sunlit and Shaded Components in Rice Canopies with Near-Ground Imaging Spectroscopy Data

    Directory of Open Access Journals (Sweden)

    Kai Zhou

    2017-03-01

    Full Text Available Monitoring the components of crop canopies with remote sensing can help us understand the within-canopy variation in spectral properties and resolve the sources of uncertainties in the spectroscopic estimation of crop foliar chemistry. To date, the spectral properties of leaves and panicles in crop canopies and the shadow effects on their spectral variation remain poorly understood due to the insufficient spatial resolution of traditional spectroscopy data. To address this issue, we used a near-ground imaging spectroscopy system with high spatial and spectral resolutions to examine the spectral properties of rice leaves and panicles in sunlit and shaded portions of canopies and evaluate the effect of shadows on the relationships between spectral indices of leaves and foliar chlorophyll content. The results demonstrated that the shaded components exhibited lower reflectance amplitude but stronger absorption features than their sunlit counterparts. Specifically, the reflectance spectra of panicles had unique double-peak absorption features in the blue region. Among the examined vegetation indices (VIs, significant differences were found in the photochemical reflectance index (PRI between leaves and panicles and further differences in the transformed chlorophyll absorption reflectance index (TCARI between sunlit and shaded components. After an image-level separation of canopy components with these two indices, statistical analyses revealed much higher correlations between canopy chlorophyll content and both PRI and TCARI of shaded leaves than for those of sunlit leaves. In contrast, the red edge chlorophyll index (CIRed-edge exhibited the strongest correlations with canopy chlorophyll content among all vegetation indices examined regardless of shadows on leaves. These findings represent significant advances in the understanding of rice leaf and panicle spectral properties under natural light conditions and demonstrate the significance of commonly

  9. H2O and δD profiles remotely-sensed from ground in different spectral infrared regions

    Directory of Open Access Journals (Sweden)

    F. Hase

    2010-07-01

    Full Text Available We present ground-based FTIR (Fourier transform infrared water vapour analyses performed for three different spectral regions: in the mid-infrared at 790–1330 cm−1 and 2650–3180 cm−1 as well as in the near infrared at 4560–4710 cm−1. All three analyses allow the retrieval of lower, middle, and upper tropospheric water vapour amounts with a vertical resolution of about 2, 4, and 6 km, respectively. The mid-infrared analyses allow in addition the retrieval of lower and middle/upper tropospheric δD values with a vertical resolution of 3 and 7 km, respectively. The H2O profiles retrieved in all three spectral regions show a very good agreement with coincident Vaisala RS92 radiosonde measurements performed on seven different days during the Measurements of Humidity in the Atmosphere and Validation Experiment (MOHAVE 2009 campaign. We analyse 325 ground-based FTIR spectra measured on 11 different days. For optimised line parameters we find that the 325 H2O profiles retrieved in each of the three spectral regions and the 325 δD profiles retrieved in the two mid-infrared regions agree very well. Spectroscopic parameters are the major error source for the ground-based remote sensing of δD profiles. Our inter-comparison of the two different mid-infrared spectral regions allows thus an empirical estimation of the precision of the remotely-sensed δD data of 10 and 20‰, for the lower and middle/upper troposphere, respectively.

  10. A 1 mm SPECTRAL LINE SURVEY TOWARD GLIMPSE EXTENDED GREEN OBJECTS (EGOs)

    Energy Technology Data Exchange (ETDEWEB)

    He, J. H. [Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Astronomical Observatory/National Astronomical Observatory, Chinese Academy of Sciences, P.O. Box 110, Kunming, 650011 Yunnan Province (China); Takahashi, S. [Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Chen, X., E-mail: jinhuahe@ynao.ac.cn, E-mail: satoko_t@asiaa.sinica.edu.tw, E-mail: chenxi@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Key Laboratory of Radio Astronomy, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China)

    2012-09-15

    A northern subsample of 89 Spitzer GLIMPSE extended green objects (EGOs), the candidate massive young stellar objects, are surveyed for molecular lines in two 1 GHz ranges: 251.5-252.5 and 260.188-261.188 GHz. A comprehensive catalog of observed molecular line data and spectral plots are presented. Eight molecular species are undoubtedly detected: H{sup 13}CO{sup +}, SiO, SO, CH{sub 3}OH, CH{sub 3}OCH{sub 3}, CH{sub 3}CH{sub 2}CN, HCOOCH{sub 3}, and HN{sup 13}C. The H{sup 13}CO{sup +} 3-2 line is detected in 70 EGOs, among which 37 also show the SiO 6-5 line, demonstrating their association with dense gas and supporting the outflow interpretation of the extended 4.5 {mu}m excess emission. Our major dense gas and outflow tracers (H{sup 13}CO{sup +}, SiO, SO, and CH{sub 3}OH) are combined with our previous survey of {sup 13}CO, {sup 12}CO, and C{sup 18}O 1-0 toward the same sample of EGOs for a multi-line, multi-cloud analysis of linewidth and luminosity correlations. Good log-linear correlations are found among all considered line luminosities, the explanation of which requires a universal similarity of density and thermal structures and probably of shock properties among all EGO clouds. It also requires that the shocks be produced within the natal clouds of the EGOs. Diverse degrees of correlation are found among the linewidths. However, both the linewidth and luminosity correlations tend to progressively worsen across larger cloud subcomponent size scales, depicting the increase of randomness across cloud subcomponent sizes. Moreover, the linewidth correlations among the three isotopic CO 1-0 lines show data scatter as linear functions of the linewidth itself, indicating that the velocity randomness also increases with whole cloud sizes in a regular way.

  11. A Ground-Based Mid-Infrared Imaging Survey of Embedded Young Stellar Objects in the Rho Ophiuchi Cloud Core

    Science.gov (United States)

    Barsony, M.; Ressler, M. E.; Marsh, K. A.

    2004-12-01

    Results of a comprehensive, new, ground-based mid-infrared imaging survey of the young stellar population of the ρ Ophiuchi cloud are presented. Data were acquired at the Palomar 5-m and at the Keck 10-m telescopes with the MIRLIN and LWS instruments, at 0.5'' and 0.25'' resolutions, respectively. Of 172 survey objects, 85 were detected. A plot of the frequency distribution of the detected objects with SED spectral slope shows that YSOs spend ˜ 3 × 105 yr in the Flat Spectrum phase, clearing out their remnant infall envelopes. Mid-infrared variability is found among a significant fraction of the surveyed objects and is found to occur for all SED classes with optically thick disks. Large amplitude near-infrared variability, also found for all SED classes with optically thick disks, seems to occur with somewhat higher frequency at the earlier evolutionary stages. The highly variable value of K-band veiling that a single source can exhibit in any of the SED classes in which active disk accretion can take place is striking, and is direct observational evidence for highly time-variable accretion activity in disks. Finallly, by comparing mid-infrared vs. near-infrared excesses in a subsample with well-determined effective temperatures and extinction values, disk clearing mechanisms are explored. Financial support for this project through NSF grants AST 00-96087 (CAREER), AST 97-53229 (POWRE), and AST 02-06146 is gratefully acknowledged. MB further thanks the NASA/ASEE Summer Faculty Fellowship program at JPL, that made this work possible.

  12. Calibration and evaluation of CCD spectroradiometers for ground-based and airborne measurements of spectral actinic flux densities

    Science.gov (United States)

    Bohn, Birger; Lohse, Insa

    2017-09-01

    The properties and performance of charge-coupled device (CCD) array spectroradiometers for the measurement of atmospheric spectral actinic flux densities (280-650 nm) and photolysis frequencies were investigated. These instruments are widely used in atmospheric research and are suitable for aircraft applications because of high time resolutions and high sensitivities in the UV range. The laboratory characterization included instrument-specific properties like the wavelength accuracy, dark signal, dark noise and signal-to-noise ratio (SNR). Spectral sensitivities were derived from measurements with spectral irradiance standards. The calibration procedure is described in detail, and a straightforward method to minimize the influence of stray light on spectral sensitivities is introduced. From instrument dark noise, minimum detection limits ≈ 1 × 1010 cm-2 s-1 nm-1 were derived for spectral actinic flux densities at wavelengths around 300 nm (1 s integration time). As a prerequisite for the determination of stray light under field conditions, atmospheric cutoff wavelengths were defined using radiative transfer calculations as a function of the solar zenith angle (SZA) and total ozone column (TOC). The recommended analysis of field data relies on these cutoff wavelengths and is also described in detail taking data from a research flight on HALO (High Altitude and Long Range Research Aircraft) as an example. An evaluation of field data was performed by ground-based comparisons with a double-monochromator-based, highly sensitive reference spectroradiometer. Spectral actinic flux densities were compared as well as photolysis frequencies j(NO2) and j(O1D), representing UV-A and UV-B ranges, respectively. The spectra expectedly revealed increased daytime levels of stray-light-induced signals and noise below atmospheric cutoff wavelengths. The influence of instrument noise and stray-light-induced noise was found to be insignificant for j(NO2) and rather limited for j(O1D

  13. The SPectral Ocean Color (SPOC) Small Satellite Mission: From Payload to Ground Station Development and Everything in Between

    Science.gov (United States)

    Bernardes, S.; Cotten, D. L.

    2016-12-01

    This work introduces the mission concept, technologies, and development status for the measuring SPectral Ocean Color (SPOC) small satellite mission, which will use a hyperspectral imager to map sensitive coastal regions and off coast water quality near the state of Georgia and beyond. SPOC is being developed by The University of Georgia's Small Satellite Research Laboratory (SSRL) with funds from NASA's Undergraduate Student Instrument Project (USIP). The project is led by undergraduates from a wide range of backgrounds and supervised by a multidisciplinary team of Principal Investigators. Using optical components, electronics boards, a grating spectrometer, and a CMOS array the students will assemble and integrate the payload components and ensure their compatibility with the other subsystems. In-house development and assembly includes building the hyperspectral imager, as well integrating it into the satellite, and testing of the different subsystems of the satellite. The mission will collect spectral data along a 300 km swath using the grating spectrometer to diffract the incoming radiation into the 440-865 nm spectral range. The resulting images will be 75 km x 300 km in size, have a 120 m spatial resolution, and a spectral resolution of 2 nm, covering 100 spectral bands. The resulting dataset will allow for spectral analysis comparisons with some of NASA's legacy satellites. The work describes the timeline and current progress of the SPOC mission. Focus will be equally distributed to all the different systems of the satellite including their development, testing, and integration. Particular emphasis is given to Attitude Determination and Control System (ADCS), command and data handling (CDH), payload, power generation, S-Band/X-Band transceivers, and the development of ground station capabilities (S-Band/X-Band).

  14. Objective Performance Evaluation of Video Segmentation Algorithms with Ground-Truth

    Institute of Scientific and Technical Information of China (English)

    杨高波; 张兆扬

    2004-01-01

    While the development of particular video segmentation algorithms has attracted considerable research interest, relatively little effort has been devoted to provide a methodology for evaluating their performance. In this paper, we propose a methodology to objectively evaluate video segmentation algorithm with ground-truth, which is based on computing the deviation of segmentation results from the reference segmentation. Four different metrics based on classification pixels, edges, relative foreground area and relative position respectively are combined to address the spatial accuracy. Temporal coherency is evaluated by utilizing the difference of spatial accuracy between successive frames. The experimental results show the feasibility of our approach. Moreover, it is computationally more efficient than previous methods. It can be applied to provide an offline ranking among different segmentation algorithms and to optimally set the parameters for a given algorithm.

  15. Sequential feature selection for detecting buried objects using forward looking ground penetrating radar

    Science.gov (United States)

    Shaw, Darren; Stone, Kevin; Ho, K. C.; Keller, James M.; Luke, Robert H.; Burns, Brian P.

    2016-05-01

    Forward looking ground penetrating radar (FLGPR) has the benefit of detecting objects at a significant standoff distance. The FLGPR signal is radiated over a large surface area and the radar signal return is often weak. Improving detection, especially for buried in road targets, while maintaining an acceptable false alarm rate remains to be a challenging task. Various kinds of features have been developed over the years to increase the FLGPR detection performance. This paper focuses on investigating the use of as many features as possible for detecting buried targets and uses the sequential feature selection technique to automatically choose the features that contribute most for improving performance. Experimental results using data collected at a government test site are presented.

  16. The Hubble Wide Field Camera 3 Test of Surfaces in the Outer Solar System: Spectral Variation on Kuiper Belt Objects

    CERN Document Server

    Fraser, Wesley C; Glass, Florian

    2015-01-01

    Here we present additional photometry of targets observed as part of the Hubble Wide Field Camera 3 Test of Surfaces in the Outer Solar System. 12 targets were re-observed with the Wide Field Camera 3 in optical and NIR wavebands designed to compliment those used during the first visit. Additionally, all observations originally presented by Fraser and Brown (2012) were reanalyzed through the same updated photometry pipeline. A reanalysis of the optical and NIR colour distribution reveals a bifurcated optical colour distribution and only two identifiable spectral classes, each of which occupies a broad range of colours and have correlated optical and NIR colours, in agreement with our previous findings. We report the detection of significant spectral variations on 5 targets which cannot be attributed to photometry errors, cosmic rays, point spread function or sensitivity variations, or other image artifacts capable of explaining the magnitude of the variation. The spectrally variable objects are found to have ...

  17. Spectral Reflectance Characteristics of Different Snow and Snow-Covered Land Surface Objects and Mixed Spectrum Fitting

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jia-hua; ZHOU Zheng-ming; WANG Pei-juan; YAO Feng-mei; Liming Yang

    2011-01-01

    The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area.The result showed that for a pure snow spectrum,the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1 030 nm wavelength.Compared with fresh snow,the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300~1 300,1 700~1 800 and 2 200~2 300 nm,the lowest was from the compacted snow and frozen ice.For the vegetation and snow mixed spectral characteristics,it was indicated that the spectral reflectance increased for the snow-covered land types (including pine leaf with snow and pine leaf on snow background),due to the influence of snow background in the range of 350~1 300 nm.However,the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic.In the end,based on the spectrum analysis of snow,vegetation,and mixed snow/vegetation pixels,the mixed spectral fitting equations were established,and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones (correlation coefficient R2 =0.950 9).

  18. Spectral reflectance characteristics of different snow and snow-covered land surface objects and mixed spectrum fitting.

    Science.gov (United States)

    Zhang, Jia-Hua; Zhou, Zheng-Ming; Wang, Pei-Juan; Yao, Feng-Mei; Liming, Yang

    2011-09-01

    The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area. The result showed that for a pure snow spectrum, the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1 030 nm wavelength. Compared with fresh snow, the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300-1 300, 1 700-1 800 and 2 200-2 300 nm, the lowest was from the compacted snow and frozen ice. For the vegetation and snow mixed spectral characteristics, it was indicated that the spectral reflectance increased for the snow-covered land types (including pine leaf with snow and pine leaf on snow background), due to the influence of snow background in the range of 350-1 300 nm. However, the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic. In the end, based on the spectrum analysis of snow, vegetation, and mixed snow/vegetation pixels, the mixed spectral fitting equations were established, and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones (correlation coefficient R2 = 0.950 9).

  19. Evaluation and Improvement of Spectral Features for the Detection of Buried Explosive Hazards Using Forward-Looking Ground-Penetrating Radar

    Science.gov (United States)

    2012-07-01

    for the NIITEK ground penetrating radar using order weighted averaging operators for landmine detection”, Proc. SPIE 5415, 953-962 (2004). [9] Sun, Y...and Li, J., "Plastic landmine detection using time-frequency analysis for forward-looking ground - penetrating radar ”, Proc. SPIE 5089, 851-862...REPORT Evaluation and Improvement of Spectral Features for the Detection of Buried Explosive Hazards Using Forward-Looking Ground - Penetrating Radar 14

  20. Areal-averaged and Spectrally-resolved Surface Albedo from Ground-based Transmission Data Alone: Toward an Operational Retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.; Riihimaki, Laura D.; Michalsky, Joseph; Hodges, G. B.

    2014-08-22

    We present here a simple retrieval of the areal-averaged and spectrally resolved surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties in the visible and near-infrared spectral range. The feasibility of our approach for the routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements:(1) spectrally resolved atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR) at wavelength 415, 500, 615, 673, and 870 nm, (2) tower-based measurements of local surface albedo at the same wavelengths, and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both long (2008-2013) and short (April-May, 2010) periods at the ARM Southern Great Plains (SGP) site and the NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE), which is defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved area-averaged albedo, is quite small (RMSE≤0.01) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between the tower-based daily averages of surface albedo for the completely overcast and non-overcast conditions is also demonstrated. This agreement suggests that our retrieval originally developed for the overcast conditions likely will work for non-overcast conditions as well.

  1. THE METHOD of computation images matching with the standard AS A METHOD FOR IDENTIFICATION OF MOVING Ground OBJECTS

    Directory of Open Access Journals (Sweden)

    B. V. Kazbekov

    2014-01-01

    Full Text Available The article focuses on the identification of moving ground targets on board unmanned aerial vehicle. The possibility of realization of algorithm for identification of objects in real-time by comparing the image of the object under consideration and a set of reference images of the objects of the classes are considered. The merit of the developed modification and the results of the experiments are given.

  2. Multi-band morpho-Spectral Component Analysis Deblending Tool (MuSCADeT): Deblending colourful objects

    CERN Document Server

    Joseph, R; Starck, J -L

    2016-01-01

    We introduce a new algorithm for colour separation and deblending of multi-band astronomical images called MuSCADeT which is based on Morpho-spectral Component Analysis of multi-band images. The MuSCADeT algorithm takes advantage of the sparsity of astronomical objects in morphological dictionaries such as wavelets and their differences in spectral energy distribution (SED) across multi-band observations. This allows us to devise a model independent and automated approach to separate objects with different colours. We show with simulations that we are able to separate highly blended objects and that our algorithm is robust against SED variations of objects across the field of view. To confront our algorithm with real data, we use HST images of the strong lensing galaxy cluster MACS J1149+2223 and we show that MuSCADeT performs better than traditional profile-fitting techniques in deblending the foreground lensing galaxies from background lensed galaxies. Although the main driver for our work is the deblending...

  3. Development of a technique based on multi-spectral imaging for monitoring the conservation of cultural heritage objects.

    Science.gov (United States)

    Marengo, Emilio; Manfredi, Marcello; Zerbinati, Orfeo; Robotti, Elisa; Mazzucco, Eleonora; Gosetti, Fabio; Bearman, Greg; France, Fenella; Shor, Pnina

    2011-11-14

    A new approach for monitoring the state of conservation of cultural heritage objects surfaces is being developed. The technique utilizes multi-spectral imaging, multivariate analysis and statistical process control theory for the automatic detection of a possible deterioration process, its localization and identification, and the wavelengths most sensitive to detecting this before the human eye can detect the damage or potential degradation changes occur. A series of virtual degradation analyses were performed on images of parchment in order to test the proposed algorithm in controlled conditions. The spectral image of a Dead Sea Scroll (DSS) parchment, IAA (Israel Antiquities Authority) inventory plate # 279, 4Q501 Apocryphal Lamentations B, taken during the 2008 Pilot of the DSS Digitization Project, was chosen for the simulation.

  4. Multi-spectral synthetic image generation for ground vehicle identification training

    Science.gov (United States)

    May, Christopher M.; Pinto, Neil A.; Sanders, Jeffrey S.

    2016-05-01

    There is a ubiquitous and never ending need in the US armed forces for training materials that provide the warfighter with the skills needed to differentiate between friendly and enemy forces on the battlefield. The current state of the art in battlefield identification training is the Recognition of Combat Vehicles (ROC-V) tool created and maintained by the Communications - Electronics Research, Development and Engineering Center Night Vision and Electronic Sensors Directorate (CERDEC NVESD). The ROC-V training package utilizes measured visual and thermal imagery to train soldiers about the critical visual and thermal cues needed to accurately identify modern military vehicles and combatants. This paper presents an approach to augment the existing ROC-V imagery database with synthetically generated multi-spectral imagery that will allow NVESD to provide improved training imagery at significantly lower costs.

  5. Wire-grid electromagnetic modelling of metallic cylindrical objects with arbitrary section, for Ground Penetrating Radar applications

    Science.gov (United States)

    Adabi, Saba; Pajewski, Lara

    2014-05-01

    This work deals with the electromagnetic wire-grid modelling of metallic cylindrical objects, buried in the ground or embedded in a structure, for example in a wall or in a concrete slab. Wire-grid modelling of conducting objects was introduced by Richmond in 1966 [1] and, since then, this method has been extensively used over the years to simulate arbitrarily-shaped objects and compute radiation patterns of antennas, as well as the electromagnetic field scattered by targets. For any wire-grid model, a fundamental question is the choice of the optimum wire radius and grid spacing. The most widely used criterion to fix the wire size is the so-called same-area rule [2], coming from empirical observation: the total surface area of the wires has to be equal to the surface area of the object being modelled. However, just few authors have investigated the validity of this criterion. Ludwig [3] studied the reliability of the rule by examining the canonical radiation problem of a transverse magnetic field by a circular cylinder fed with a uniform surface current, compared with a wire-grid model; he concluded that the same-area rule is optimum and that too thin wires are just as bad as too thick ones. Paknys [4] investigated the accuracy of the same-area rule for the modelling of a circular cylinder with a uniform current on it, continuing the study initiated in [3], or illuminated by a transverse magnetic monochromatic plane wave; he deduced that the same-area rule is optimal and that the field inside the cylinder is most sensitive to the wire radius than the field outside the object, so being a good error indicator. In [5], a circular cylinder was considered, embedded in a dielectric half-space and illuminated by a transverse magnetic monochromatic plane wave; the scattered near field was calculated by using the Cylindrical-Wave Approach and numerical results, obtained for different wire-grid models in the spectral domain, were compared with the exact solution. The

  6. In-line quality control of moving objects by means of spectral-domain OCT

    Science.gov (United States)

    Markl, Daniel; Hannesschläger, Günther; Buchsbaum, Andreas; Sacher, Stephan; Khinast, Johannes G.; Leitner, Michael

    2014-08-01

    In-line quality control of intermediate and final products is essential in various industries. This may imply determining the thickness of a foil or evaluating the homogeneity of coating applied to a pharmaceutical tablet. Such a qualitative and quantitative monitoring in a depth-resolved manner can be accomplished using optical coherence tomography (OCT). In-line quality control based on OCT requires additional consideration of motion effects for the system design as well as for data interpretation. This study focuses on transverse motion effects that can arise in spectral-domain (SD-) OCT systems. The impact of a transverse movement is analyzed for a constant relative speed difference up to 0.7 m/s between sample and sensor head. In particular, transverse motion is affecting OCT system properties such as the beam displacement (distance between adjacent A-scans) and transverse resolution. These properties were evaluated theoretically and experimentally for OCT images of a resolution target and pharmaceutical film-coated tablets. Both theoretical and experimental analyses highlight the shift of the transverse resolution limiting factor from the optics to the beam displacement above a relative speed difference between sensor head and sample of 0.42 m/s (for the presented SD-OCT setup). Speeds above 0.4 m/s are often demanded when monitoring industrial processes, such as a coating process when producing film-coated tablets. This emphasizes the importance of a fast data acquisition when using OCT as in-line quality control tool.

  7. Areal-Averaged Spectral Surface Albedo from Ground-Based Transmission Data Alone: Toward an Operational Retrieval

    Directory of Open Access Journals (Sweden)

    Evgueni Kassianov

    2014-08-01

    Full Text Available We present here a simple retrieval of the areal-averaged spectral surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation. The feasibility of our retrieval for routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements: (1 spectral atmospheric transmission from the Multi-Filter Rotating Shadowband Radiometer (MFRSR at five wavelengths (415, 500, 615, 673, and 870 nm; (2 tower-based measurements of local surface albedo at the same wavelengths; and (3 areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS observations. These integrated datasets cover both temporally long (2008–2013 and short (April–May 2010 periods at the Atmospheric Radiation Measurement (ARM Southern Great Plains site and the National Oceanic and Atmospheric Administration (NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE, defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved areal-averaged albedo, is quite small (RMSE ≤ 0.015 and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between tower-based measurements of daily-averaged surface albedo for completely overcast and non-overcast conditions is also demonstrated.

  8. Areal-Averaged Spectral Surface Albedo in an Atlantic Coastal Area: Estimation from Ground-Based Transmission

    Directory of Open Access Journals (Sweden)

    Evgueni Kassianov

    2017-07-01

    Full Text Available Tower-based data combined with high-resolution satellite products have been used to produce surface albedo at various spatial scales over land. Because tower-based albedo data are available at only a few sites, surface albedos using these combined data are spatially limited. Moreover, tower-based albedo data are not representative of highly heterogeneous regions. To produce areal-averaged and spectrally-resolved surface albedo for regions with various degrees of surface heterogeneity, we have developed a transmission-based retrieval and demonstrated its feasibility for relatively homogeneous land surfaces. Here, we demonstrate its feasibility for a highly heterogeneous coastal region. We use the atmospheric transmission measured during a 19-month period (June 2009–December 2010 by a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR at five wavelengths (0.415, 0.5, 0.615, 0.673 and 0.87 µm at the Department of Energy’s Atmospheric Radiation Measurement (ARM Mobile Facility (AMF site located on Graciosa Island. We compare the MFRSR-retrieved areal-averaged surface albedo with albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS observations, and also a composite-based albedo. We demonstrate that these three methods produce similar spectral signatures of surface albedo; however, the MFRSR-retrieved albedo, is higher on average (≤0.04 than the MODIS-based areal-averaged surface albedo and the largest difference occurs in winter.

  9. Geophysical astrophysical spectral-element adaptive refinement (GASpAR): Object-oriented h-adaptive fluid dynamics simulation

    Science.gov (United States)

    Rosenberg, Duane; Fournier, Aimé; Fischer, Paul; Pouquet, Annick

    2006-06-01

    An object-oriented geophysical and astrophysical spectral-element adaptive refinement (GASpAR) code is introduced. Like most spectral-element codes, GASpAR combines finite-element efficiency with spectral-method accuracy. It is also designed to be flexible enough for a range of geophysics and astrophysics applications where turbulence or other complex multiscale problems arise. The formalism accommodates both conforming and non-conforming elements. Several aspects of this code derive from existing methods, but here are synthesized into a new formulation of dynamic adaptive refinement (DARe) of non-conforming h-type. As a demonstration of the code, several new 2D test cases are introduced that have time-dependent analytic solutions and exhibit localized flow features, including the 2D Burgers equation with straight, curved-radial and oblique-colliding fronts. These are proposed as standard test problems for comparable DARe codes. Quantitative errors are reported for 2D spatial and temporal convergence of DARe.

  10. Underground object characterization based on neural networks for ground penetrating radar data

    Science.gov (United States)

    Zhang, Yu; Huston, Dryver; Xia, Tian

    2016-04-01

    In this paper, an object characterization method based on neural networks is developed for GPR subsurface imaging. Currently, most existing studies demonstrate detecting and imaging objects of cylindrical shapes. While in this paper, no restriction is imposed on the object shape. Three neural network algorithms are exploited to characterize different types of object signatures, including object shape, object material, object size, object depth and subsurface medium's dielectric constant. Feature extraction is performed to characterize the instantaneous amplitude and time delay of the reflection signal from the object. The characterization method is evaluated utilizing the data synthesized with the finite-difference timedomain (FDTD) simulator.

  11. Martian Surface Temperature and Spectral Response from the MSL REMS Ground Temperature Sensor

    Science.gov (United States)

    Martin-Torres, Javier; Martínez-Frías, Jesús; Zorzano, María-Paz; Serrano, María; Mendaza, Teresa; Hamilton, Vicky; Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; REMS Team

    2013-04-01

    The Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory (MSL) offers the opportunity to explore the near surface atmospheric conditions and, in particular will shed new light into the heat budget of the Martian surface. This is important for studies of the atmospheric boundary layer (ABL), as the ground and air temperatures measured directly by REMS control the coupling of the atmosphere with the surface [Zurek et al., 1992]. This coupling is driven by solar insolation. The ABL plays an important role in the general circulation and the local atmospheric dynamics of Mars. One of the REMS sensors, the ground temperature sensor (GTS), provides the data needed to study the thermal inertia properties of the regolith and rocks beneath the MSL rover. The GTS includes thermopile detectors, with infrared bands of 8-14 µm and 16-20 µm [Gómez-Elvira et al., 2012]. These sensors are clustered in a single location on the MSL mast and the 8-14 µm thermopile sounds the surface temperature. The infrared radiation reaching the thermopile is proportional to the emissivity of the surface minerals across these thermal wavelengths. We have developed a radiative transfer retrieval method for the REMS GTS using a database of thermal infrared laboratory spectra of analogue minerals and their mixtures. [Martín Redondo et al. 2009, Martínez-Frías et al. 2012 - FRISER-IRMIX database]. This method will be used to assess the perfomance of the REMS GTS as well as determine, through the error analysis, the surface temperature and emissivity values where MSL is operating. Comparisons with orbiter data will be performed. References Gómez-Elvira et al. [2012], REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover, Space Science Reviews, Volume 170, Issue 1-4, pp. 583-640. Martín-Redondo et al. [2009] Journal of Environmental Monitoring 11:, pp. 1428-1432. Martínez-Frías et al. [2012] FRISER-IRMIX database http

  12. An Approach for Predicting the Shape and Size of a Buried Basic Object on Surface Ground Penetrating Radar System

    Directory of Open Access Journals (Sweden)

    Nana Rachmana Syambas

    2012-01-01

    Full Text Available Surface ground-penetrating radar (GPR is one of the radar technology that is widely used in many applications. It is nondestructive remote sensing method to detect underground buried objects. However, the output target is only hyperbolic representation. This research develops a system to identify a buried object on surface GPR based on decision tree method. GPR data of many basic objects (with circular, triangular, and rectangular cross-section are classified and extracted to generate data training model as a unique template for each type of basic object. The pattern of object under test will be known by comparing its data with the training data using a decision tree method. A simple powerful algorithm to extract feature parameters of object which is based on linear extrapolation is proposed. The result showed that tested buried basic objects can be correctly predicted and the developed system works properly.

  13. Investigating the Potential of Using the Spatial and Spectral Information of Multispectral LiDAR for Object Classification

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2015-09-01

    Full Text Available The abilities of multispectral LiDAR (MSL as a new high-potential active instrument for remote sensing have not been fully revealed. This study demonstrates the potential of using the spectral and spatial features derived from a novel MSL to discriminate surface objects. Data acquired with the MSL include distance information and the intensities of four wavelengths at 556, 670, 700, and 780 nm channels. A support vector machine was used to classify diverse objects in the experimental scene into seven types: wall, ceramic pots, Cactaceae, carton, plastic foam block, and healthy and dead leaves of E. aureum. Different features were used during classification to compare the performance of different detection systems. The spectral backscattered reflectance of one wavelength and distance represented the features from an equivalent single-wavelength LiDAR system; reflectance of the four wavelengths represented the features from an equivalent multispectral image with four bands. Results showed that the overall accuracy of using MSL data was as high as 88.7%, this value was 9.8%–39.2% higher than those obtained using a single-wavelength LiDAR, and 4.2% higher than for multispectral image.

  14. [The design and implementation of the web typical surface object spectral information system in arid areas based on .NET and SuperMap].

    Science.gov (United States)

    Xia, Jun; Tashpolat, Tiyip; Zhang, Fei; Ji, Hong-jiang

    2011-07-01

    The characteristic of object spectrum is not only the base of the quantification analysis of remote sensing, but also the main content of the basic research of remote sensing. The typical surface object spectral database in arid areas oasis is of great significance for applied research on remote sensing in soil salinization. In the present paper, the authors took the Ugan-Kuqa River Delta Oasis as an example, unified .NET and the SuperMap platform with SQL Server database stored data, used the B/S pattern and the C# language to design and develop the typical surface object spectral information system, and established the typical surface object spectral database according to the characteristics of arid areas oasis. The system implemented the classified storage and the management of typical surface object spectral information and the related attribute data of the study areas; this system also implemented visualized two-way query between the maps and attribute data, the drawings of the surface object spectral response curves and the processing of the derivative spectral data and its drawings. In addition, the system initially possessed a simple spectral data mining and analysis capabilities, and this advantage provided an efficient, reliable and convenient data management and application platform for the Ugan-Kuqa River Delta Oasis's follow-up study in soil salinization. Finally, It's easy to maintain, convinient for secondary development and practically operating in good condition.

  15. Spectral Modeling of Ground Ices Exposed by Trenching at the Phoenix Mars Landing Site

    Science.gov (United States)

    Cull, S.; Arvidson, R. E.; Blaney, D.; Morris, R. V.

    2008-12-01

    The Phoenix Lander, which landed on the northern plains of Mars on 25 May 2008, used its Robotic Arm (RA) to dig six trenches during its nominal 90-sol mission: Dodo-Goldilocks, Snow White, Cupboard, Neverland, Burn Alive, and Stone Soup. During excavation of the first five of these, the RA encountered hard material interpreted to be the ice table, and the Stereo Surface Imager (SSI) imaged the exposed materials using 15 filters spanning a wavelength range from 445 to 1001 nm. Materials exposed in the Dodo- Goldilocks and Snow White trenches are spectroscopically dissimilar: Dodo-Goldilocks hard material is brighter relative to the surrounding soil, and has a distinct downturn around 800 nm resulting from a dusty ice with low soil-to-ice ratio. Snow White hard stuff varies in brightness and spectral shape depending on the phase angle, with low-phase angle images showing dark material and higher phase angles showing more soil-like material. The Snow White material does not have the strong 800-nm downturn seen in Dodo- Goldilocks, because the soil-to-ice ratio is high as inferred by the rapid development of a sublimation lag; however, the albedo variation with phase angle could be due to strong forward-scattering at low phase angles, consistent with icy material. A modified Hapke model is used to estimate the relative abundances of water ice and dust in the Dodo- Goldilocks and Snow White materials, with dehydrated palagonite as an analogue for dust . The ice exposed at Dodo-Goldilocks must be relatively dust-free, since only a small amount of dust is needed to obscure water ice absorptions. In our modeling, we find that as little as 5 wt% 20-um dust is enough to completely mask the 1001 nm absorption in 1-mm grain size water ice. Dodo-Goldilocks spectra can have up to a 20% drop in reflectance from 800 nm to 1001 nm, which is best-matched in our Hapke model by water ice with path lengths on the order of 2-3 mm. The Snow White dark materials typically have a small

  16. Covering of heating load of object by using ground heat as a renewable energy source

    Directory of Open Access Journals (Sweden)

    Čenejac Aleksandra R.

    2012-01-01

    Full Text Available Rational use of energy, improving energy performance of buildings and use of renewable energy sources are the most important measures for reducing consumption of non-renewable primary energy (solid, liquid, and gaseous fuels, environmental protection and for the future sustainable development of mankind. In the total primary energy consumption great part is related to building industry, for heating spaces in which people stay and live. Renewable energy sources (RES present natural resources and they are one of the alternatives that allow obtaining heat for heating buildings, and by that they provide a significant contribution to the energy balance of a country. This paper analyzes the participation of ground source as RES, when the vertical (the probe in the ground and horizontal (registry in the ground heat exchangers are used for covering heating load of the building.

  17. Objectives and Progress on Integrated Vehicle Ground Vibration Testing for the Ares Launch Vehicles

    Science.gov (United States)

    Tuma, Margaret L.; Asloms. Brice R.

    2009-01-01

    As NASA begins design and development of the Ares launch vehicles to replace the Space Shuttle and explore beyond low Earth orbit, Integrated Vehicle Ground Vibration Testing (IVGVT) will be a vital component of ensuring that those vehicles can perform the missions assigned to them. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. This data is then used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. The Ares Flight & Integrated Test Office (FITO) will be conducting IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2011 to 2012 using the venerable Test Stand (TS) 4550, which supported similar tests for the Saturn V and Space Shuttle vehicle stacks.

  18. Spectral Analyses and Radiation Exposures from Several Ground-Level Enhancement (GLE) Solar Proton Events: A Comparison of Methodologies

    Science.gov (United States)

    Atwell, William; Tylka, Allan; Dietrich, William; Badavi, Francis; Rojdev, Kristina

    2011-01-01

    Several methods for analyzing the particle spectra from extremely large solar proton events, called Ground-Level Enhancements (GLEs), have been developed and utilized by the scientific community to describe the solar proton energy spectra and have been further applied to ascertain the radiation exposures to humans and radio-sensitive systems, namely electronics. In this paper 12 GLEs dating back to 1956 are discussed, and the three methods for describing the solar proton energy spectra are reviewed. The three spectral fitting methodologies are EXP [an exponential in proton rigidity (R)], WEIB [Weibull fit: an exponential in proton energy], and the Band function (BAND) [a double power law in proton rigidity]. The EXP and WEIB methods use low energy (MeV) GLE solar proton data and make extrapolations out to approx.1 GeV. On the other hand, the BAND method utilizes low- and medium-energy satellite solar proton data combined with high-energy solar proton data deduced from high-latitude neutron monitoring stations. Thus, the BAND method completely describes the entire proton energy spectrum based on actual solar proton observations out to 10 GeV. Using the differential spectra produced from each of the 12 selected GLEs for each of the three methods, radiation exposures are presented and discussed in detail. These radiation exposures are then compared with the current 30-day and annual crew exposure limits and the radiation effects to electronics.

  19. Object-Action Complexes: Grounded Abstractions of Sensori-motor Processes

    DEFF Research Database (Denmark)

    Krüger, Norbert; Geib, Christopher; Piater, Justus

    2011-01-01

    This paper formalises Object-Action Complexes (OACs) as a basis for symbolic representations of sensorimotor experience and behaviours. OACs are designed to capture the interaction between objects and associated actions in articial cognitive systems. This paper gives a formal denition of OACs......, provides examples of their use for autonomous cognitive robots, and enumerates a number of critical learning problems in terms of OACs....

  20. Ground-penetrating radar signal processing for the detection of buried objects

    Science.gov (United States)

    Walters, Mitchell; Garcia, Ephrahim

    2011-06-01

    In this work the singular value decomposition (SVD) is used to analyze matrices of ground penetrating radar (GPR) data. The targets to be detected are Russian PMN antipersonnel landmines and improvised explosive devices constructed from 155mm artillery shells. Target responses are simulated with GPRmax 2D, a simulation package based on the Finite- Difference-Time-Domain method. First, the utility of the SVD for image enhancement and reconstruction is demonstrated. Then the singular values and singular vectors of the decomposed matrices are analyzed with the goal of finding properties that will aid in the development of automated underground detection algorithms.

  1. Ground-based Multi-object Spectroscopy of XO-2b using a Systematic Wavelength Calibration

    Science.gov (United States)

    Pearson, Kyle; Griffith, Caitlin Ann; Zellem, Robert Thomas

    2016-10-01

    Here we present multiple observations of the primary transit of the bright hot-Jupiter XO-2b with visible wavelength spectroscopy. Repeated observations of XO-2b record simulatenous measurements of both the exoplanet host star and one or more comparison stars. Ideally, the comparison star measures errors, such as airmass variations and telescope jitter. The hypothesis is that these errors can then be divided out from the target star to achieve higher SNR and improve estimation of the small transit signal. However, we find that the astrophysical signals are subject to time-varying translations along the spectroscopic dispersion axis that change according to wavelength. Improper alignment prior to dividing the astrophysical signals can result in spurious spectral features or inadequate removal of shared systematics. We showcase ways to check for inadequate alignment and offer corrections to such problems.

  2. Variability in Proto-Planetary Nebulae: IV. Light Curve Analyses of Four Oxygen-Rich, F Spectral-Type Objects

    CERN Document Server

    Hrivnak, Bruce J; Nault, Kristie A

    2015-01-01

    We present new light curves covering 14 to 19 years of observations of four bright proto-planetary nebulae (PPNs), all O-rich and of F spectral type. They each display cyclical light curves with significant variations in amplitude. All four were previously known to vary in light. Our data were combined with published data and searched for periodicity. The results are as follows: IRAS 19475+3119 (HD 331319; 41.0 days), 17436+5003 (HD 161796; 45.2 days), 19386+0155 (101.8 days), and 18095+2704 (113.3 days). The two longer periods are in agreement with previous studies while the two shorter periods each reveal for the first time reveal a dominant period over these long observing intervals. Multiple periods were also found for each object. The secondary periods were all close to the dominant periods, with P2/P1 ranging from 0.86 to 1.06. The variations in color reveal maximum variations in T(eff) of 400 to 770 K. These variations are due to pulsations in these post-AGB objects. Maximum seasonal light variations a...

  3. Figure-ground organization and the emergence of proto-objects in the visual cortex

    Directory of Open Access Journals (Sweden)

    Rüdiger evon der Heydt

    2015-11-01

    Full Text Available A long history of studies of perception has shown that the visual system organizes the incoming information early on, interpreting the 2D image in terms of a 3D world and producing a structure that provides perceptual continuity and enables object-based attention. Recordings from monkey visual cortex show that many neurons, especially in area V2, are selective for border ownership. These neurons are edge selective and have ordinary classical receptive fields, but in addition their responses are modulated (enhanced or suppressed depending on the location of a ‘figure’ relative to the edge in their receptive field. Each neuron has a fixed preference for location on one side or the other. This selectivity is derived from the image context far beyond the classical receptive field. This paper reviews evidence indicating that border ownership selectivity reflects the formation of early object representations (‘proto-objects’. The evidence includes experiments showing (1 reversal of border ownership signals with change of perceived object structure, (2 border ownership specific enhancement of responses in object-based selective attention, (3 persistence of border ownership signals in accordance with continuity of object perception, and (4 remapping of border ownership signals across saccades and object movements. Findings 1 and 2 can be explained by hypothetical grouping circuits that sum contour feature signals in search of objecthood, and, via recurrent projections, enhance the corresponding low-level feature signals. Findings 3 and 4 might be explained by assuming that the activity of grouping circuits persists and can be remapped. Grouping, persistence and remapping are fundamental operations of vision. Finding these operations manifest in low-level visual areas challenges traditional views of visual processing. New computational models need to be developed for a comprehensive understanding of the function of the visual cortex.

  4. Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth

    Science.gov (United States)

    Jha, Abhinav K.; Song, Na; Caffo, Brian; Frey, Eric C.

    2015-03-01

    Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a volume of interest (VOI) in a patient image. This objective evaluation can be performed if the true value of the estimated parameter is known, i.e. we have a gold standard. However, very rarely is this gold standard known in human studies. Thus, no-gold-standard techniques to optimize and evaluate systems and algorithms in the absence of gold standard are required. In this work, we developed a no-gold-standard technique to objectively evaluate reconstruction methods used in quantitative SPECT when the parameter to be estimated is the mean activity concentration in a VOI. We studied the performance of the technique with realistic simulated image data generated from an object database consisting of five phantom anatomies with all possible combinations of five sets of organ uptakes, where each anatomy consisted of eight different organ VOIs. Results indicate that the method pro- vided accurate ranking of the reconstruction methods. We also demonstrated the application of consistency checks to test the no-gold-standard output.

  5. Objectives and Progress on Ground Vibration Testing for the Ares Projects

    Science.gov (United States)

    Tuma, Margaret L.; Chenevert, Donald J.

    2010-01-01

    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA s next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be conducting the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO will perform the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orion/lander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. The current plan is to test six configurations in three unique test positions inside TS 4550. Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Position 1 represents the entire launch stack at lift-off (using inert first stage segments). Because of long disuse, TS 4550 is being repaired and modified for reactivation to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. Two new cranes will help move test articles at the test stand and at the

  6. Scientific Ground of a New Optical Device for Contactless Measurement of the Small Spatial Displacements of Control Object Surfaces

    Science.gov (United States)

    Miroshnichenko, I. P.; Parinov, I. A.

    2017-06-01

    It is proposed the computational-experimental ground of newly developed optical device for contactless measurement of small spatial displacements of control object surfaces based on the use of new methods of laser interferometry. The proposed device allows one to register linear and angular components of the small displacements of control object surfaces during the diagnosis of the condition of structural materials for forced elements of goods under exploring by using acoustic non-destructive testing methods. The described results are the most suitable for application in the process of high-precision measurements of small linear and angular displacements of control object surfaces during experimental research, the evaluation and diagnosis of the state of construction materials for forced elements of goods, the study of fast wave propagation in layered constructions of complex shape, manufactured of anisotropic composite materials, the study of damage processes in modern construction materials in mechanical engineering, shipbuilding, aviation, instrumentation, power engineering, etc.

  7. Using object-oriented analysis to design a multi-mission ground data system

    Science.gov (United States)

    Shames, Peter

    1995-01-01

    This paper describes an analytical approach and descriptive methodology that is adapted from Object-Oriented Analysis (OOA) techniques. The technique is described and then used to communicate key issues of system logical architecture. The essence of the approach is to limit the analysis to only service objects, with the idea of providing a direct mapping from the design to a client-server implementation. Key perspectives on the system, such as user interaction, data flow and management, service interfaces, hardware configuration, and system and data integrity are covered. A significant advantage of this service-oriented approach is that it permits mapping all of these different perspectives on the system onto a single common substrate. This services substrate is readily represented diagramatically, thus making details of the overall design much more accessible.

  8. Temperature rise in objects due to optical focused beam through atmospheric turbulence near ground and ocean surface

    Science.gov (United States)

    Stoneback, Matthew; Ishimaru, Akira; Reinhardt, Colin; Kuga, Yasuo

    2013-03-01

    We consider an optical beam propagated through the atmosphere and incident on an object causing a temperature rise. In clear air, the physical characteristics of the optical beam transmitted to the object surface are influenced primarily by the effect of atmospheric turbulence, which can be significant near the ground or ocean surface. We use a statistical model to quantify the expected power transfer through turbulent atmosphere and provide guidance toward the threshold of thermal blooming for the considered scenarios. The bulk thermal characteristics of the materials considered are used in a thermal diffusion model to determine the net temperature rise at the object surface due to the incident optical beam. These results of the study are presented in graphical form and are of particular interest to operators of high power laser systems operating over large distances through the atmosphere. Numerical examples include a CO2 laser (λ=10.6 μm) with: aperture size of 5 cm, varied pulse duration, and propagation distance of 0.5 km incident on 0.1-mm copper, 10-mm polyimide, 1-mm water, and 10-mm glass/resin composite targets. To assess the effect of near ground/ocean laser propagation, we compare turbulent (of varying degrees) and nonturbulent atmosphere.

  9. Stepped-Frequency Ground-Penetrating Radar for Detection of Small Non-metallic Buried Objects

    DEFF Research Database (Denmark)

    Jakobsen, Kaj Bjarne; Sørensen, Helge Bjarup Dissing; Nymann, Ole

    1997-01-01

    to an HP8753C Network Analyzer through a 5 m long Sucoflex coaxial cable. The data are collected automatically using an HPIB interface. The collected data contains both the amplitude and phase information of the reflection coefficient. Data are measured at up to a maximum of 401 different frequencies...... at each measurement point using a mesh-grid with a resolution down to 1 mm by 1 mm. The size of the scan area is 1410 mm by 210 mm. Measurements have been performed on loamy soil containing a buried M-56, a non-metallic AP-mine, and various other mine-like objects made of solid plastic, brass, aluminum......, steel, and wood. The presented results are based on probe-data measured at 100 different frequencies at each measurement point and a coarser mesh-grid of 10 mm by 10 mm, since it is found that less probe-data is needed. Our experiments show that even less amount of probe-data may be necessary....

  10. How Precise Are Preinterventional Measurements Using Centerline Analysis Applications? Objective Ground Truth Evaluation Reveals Software-Specific Centerline Characteristics.

    Science.gov (United States)

    Hoegen, Philipp; Wörz, Stefan; Müller-Eschner, Matthias; Geisbüsch, Philipp; Liao, Wei; Rohr, Karl; Schmitt, Matthias; Rengier, Fabian; Kauczor, Hans-Ulrich; von Tengg-Kobligk, Hendrik

    2017-08-01

    To evaluate different centerline analysis applications using objective ground truth from realistic aortic aneurysm phantoms with precisely defined geometry and centerlines to overcome the lack of unknown true dimensions in previously published in vivo validation studies. Three aortic phantoms were created using computer-aided design (CAD) software and a 3-dimensional (3D) printer. Computed tomography angiograms (CTAs) of phantoms and 3 patients were analyzed with 3 clinically approved and 1 research software application. The 3D centerline coordinates, intraluminal diameters, and lengths were validated against CAD ground truth using a dedicated evaluation software platform. The 3D centerline position mean error ranged from 0.7±0.8 to 2.9±2.5 mm between tested applications. All applications calculated centerlines significantly different from ground truth. Diameter mean errors varied from 0.5±1.2 to 1.1±1.0 mm among 3 applications, but exceeded 8.0±11.0 mm with one application due to an unsteady distortion of luminal dimensions along the centerline. All tested commercially available software tools systematically underestimated centerline total lengths by -4.6±0.9 mm to -10.4±4.3 mm (maximum error -14.6 mm). Applications with the highest 3D centerline accuracy yielded the most precise diameter and length measurements. One clinically approved application did not provide reproducible centerline-based analysis results, while another approved application showed length errors that might influence stent-graft choice and procedure success. The variety and specific characteristics of endovascular aneurysm repair planning software tools require scientific evaluation and user awareness.

  11. DEM Development from Ground-Based LiDAR Data: A Method to Remove Non-Surface Objects

    Directory of Open Access Journals (Sweden)

    Maneesh Sharma

    2010-11-01

    Full Text Available Topography and land cover characteristics can have significant effects on infiltration, runoff, and erosion processes on watersheds. The ability to model the timing and routing of surface water and erosion is affected by the resolution of the digital elevation model (DEM. High resolution ground-based Light Detecting and Ranging (LiDAR technology can be used to collect detailed topographic and land cover characteristic data. In this study, a method was developed to remove vegetation from ground-based LiDAR data to create high resolution DEMs. Research was conducted on intensively studied rainfall–runoff plots on the USDA-ARS Walnut Gulch Experimental Watershed in Southeast Arizona. LiDAR data were used to generate 1 cm resolution digital surface models (DSM for 5 plots. DSMs created directly from LiDAR data contain non-surface objects such as vegetation cover. A vegetation removal method was developed which used a slope threshold and a focal mean filter method to remove vegetation and create bare earth DEMs. The method was validated on a synthetic plot, where rocks and vegetation were added incrementally. Results of the validation showed a vertical error of ±7.5 mm in the final DEM.

  12. Bi-objective approach for placing ground and air ambulance base and helipad locations in order to optimize EMS response.

    Science.gov (United States)

    Shahriari, Milad; Bozorgi-Amiri, Ali; Tavakoli, Shayan; Yousefi-Babadi, Abolghasem

    2017-06-15

    Shortening the travel time of patient transfer has clinical implications for many conditions such as cardiac arrest, trauma, stroke and STEMI. As resources are often limited precise calculations are needed. In this paper we consider the location problem for both ground and aerial emergency medical services. Given the uncertainty of when patients are in need of prompt medical attention we consider these demand points to be uncertain. We consider various ways in which ground and helicopter ambulances can work together to make the whole process go faster. We develop a mathematical model that minimizes travel time and maximizes service level. We use a compromising programming method to solve this bi-objective mathematical model. For numerical experiments we apply our model to a case study in Lorestan, Iran, using geographical and population data, and the location of the actual hospital based in the capital of the province. Results show that low-accessibility locations are the main focus of the proposed problem and with mathematical modeling access to a hospital is vastly improved. We also found out that once the budget reaches a certain point which suffices for building certain ambulance bases more investments does not necessarily result in less travel time. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Ground-Based Near-Earth Object Studies in the post-Russian (Chelyabinsk) Meteor Airburst World

    Science.gov (United States)

    Ryan, E.; Ryan, W. H.

    2013-09-01

    Public awareness of the danger of potentially hazardous asteroids has been heightened by the airburst of a meteor over Chelyabinsk, Russia, on February 15, 2013, which caused millions of dollars in damage from a shock wave that impacted structures and injured ~1500 people. Later that same day, a larger asteroid, 2012 DA14, made a close approach to the Earth, but harmlessly skimmed past. Further, other very close-approaching Near-Earth objects (NEOs) have recently posed threats to man-made space assets by passing through or very near the geosynchronous satellite zone. These events have lead to increased awareness and concern, and have subsequently served as a catalyst for deeper exploration of what is being done to mitigate such hazards, and whether more effort needs to be placed in this area of study. An NEO is designated as "potentially hazardous" when its orbit comes to within 0.05 AU of the Earth's orbit. Ground-based physical characterization studies of Near-Earth Objects (NEOs) that are cataloged as potentially hazardous objects (PHOs) are very beneficial to any mitigation plan that might be devised if the risk of impact is high. After a well-defined orbit has been determined for a PHO, other physical parameters such as size, rotation rate, and composition are important. For the smallest PHOs being discovered, observational efforts must commence at or near the time of discovery to ensure favorable parameters for data collection. Otherwise, subsequent optimal apparitions for observing an asteroid or comet may be decades away. Researchers at the Magdalena Ridge Observatory (MRO) 2.4-meter telescope facility are well positioned to acquire real-time physical information on PHOs since their ongoing NEO follow-up and characterization program collects data monthly throughout the year on the smallest, close-approaching NEOs being discovered. Over the past 5 years that this program has been in operation, spin rates for over 50 Near-Earth asteroids have been obtained

  14. IN-SEASON ASSESSMENT OF WHEAT CROP HEALTH USING VEGETATION INDICES BASED ON GROUND MEASURED HYPER SPECTRAL DATA

    Directory of Open Access Journals (Sweden)

    Khalid Ali Al-Gaadi

    2014-01-01

    Full Text Available An experiment on a 50 ha center pivot field was conducted to determine the Vegetation Indices (VI’s that were helpful in assessing the in-season performance of wheat crop treated with graded levels of irrigation water and fertilizers. The irrigation levels were at 100, 90, 80 and 70% evapotranspiration (ETc; however, the fertilizer levels of N: P: K kg-1ha included 300:150:200 (low; 400:250:300 (medium and 500:300:300 (High. The crop was sown on January 1st and harvested on May 9th, 2012. Temporal data on biophysical parameters and reflectance of the crop in hyper spectral bands (350-2500 nm were collected at booting and ripening growth stages (February 17th and April 5th, 2012. Results of the study revealed that many of the tested spectral indices showed significant response to irrigation levels. Out of those, only two spectral indices (Plant Senescence Reflectance Index ‘PSRI’ and Photochemical Reflectance Index ‘PRI’ also exhibited significant response to fertilizer levels. The Middle Infrared-Based Vegetation Index (MIVI showed a significant response to the irrigation levels for both sampling dates. Among the tested spectral indices, Normalized Difference Infrared Index (NDII and Normalized Difference Nitrogen Index (NDNI exhibited the highest correlation to crop Leaf Area Index (LAI. Five indices showed the most response to wheat grain yield. These indices included Near Infrared band (NIR, Water Band Index (WBI, Normalized Water Index-1 (NWI-1, Normalized Water Index-3 (NWI-3 and Normalized Water Index-4 (NWI-4.

  15. Incorporating Endmember Variability into Linear Unmixing of Coarse Resolution Imagery: Mapping Large-Scale Impervious Surface Abundance Using a Hierarchically Object-Based Spectral Mixture Analysis

    Directory of Open Access Journals (Sweden)

    Chengbin Deng

    2015-07-01

    Full Text Available As an important indicator of anthropogenic impacts on the Earth’s surface, it is of great necessity to accurately map large-scale urbanized areas for various science and policy applications. Although spectral mixture analysis (SMA can provide spatial distribution and quantitative fractions for better representations of urban areas, this technique is rarely explored with 1-km resolution imagery. This is due mainly to the absence of image endmembers associated with the mixed pixel problem. Consequently, as the most profound source of error in SMA, endmember variability has rarely been considered with coarse resolution imagery. These issues can be acute for fractional land cover mapping due to the significant spectral variations of numerous land covers across a large study area. To solve these two problems, a hierarchically object-based SMA (HOBSMA was developed (1 to extrapolate local endmembers for regional spectral library construction; and (2 to incorporate endmember variability into linear spectral unmixing of MODIS 1-km imagery for large-scale impervious surface abundance mapping. Results show that by integrating spatial constraints from object-based image segments and endmember extrapolation techniques into multiple endmember SMA (MESMA of coarse resolution imagery, HOBSMA improves the discriminations between urban impervious surfaces and other land covers with well-known spectral confusions (e.g., bare soil and water, and particularly provides satisfactory representations of urban fringe areas and small settlements. HOBSMA yields promising abundance results at the km-level scale with relatively high precision and small bias, which considerably outperforms the traditional simple mixing model and the aggregated MODIS land cover classification product.

  16. The Impact of Sunlight Conditions on the Consistency of Vegetation Indices in Croplands—Effective Usage of Vegetation Indices from Continuous Ground-Based Spectral Measurements

    Directory of Open Access Journals (Sweden)

    Mitsunori Ishihara

    2015-10-01

    Full Text Available A ground-based network of spectral observations is useful for ecosystem monitoring and validation of satellite data. However, these observations contain inherent uncertainties due to the change of sunlight conditions. This study investigated the impact of changing solar zenith angles and diffuse/direct light conditions on the consistency of vegetation indices (normalized difference vegetation index (NDVI and green-red vegetation index (GRVI derived from ground-based spectral measurements in three different types of cropland (paddy field, upland field, cultivated grassland in Japan. In general, the vegetation indices decreased with decreasing solar zenith angle. This response was affected significantly by the growth stage and diffuse/direct light conditions. The decreasing response of the NDVI to the decreasing solar zenith angle was high during the middle growth stage (0.4 < NDVI < 0.8. On the other hand, a similar response of the GRVI was evident except in the early growth stage (GRVI < 0. The response of vegetation indices to the solar zenith angle was evident under clear sky conditions but almost negligible under cloudy sky conditions. At large solar zenith angles, neither the NDVI nor the GRVI were affected by diffuse/direct light conditions in any growth stage. These experimental results were supported well by the results of simulations based on a physically-based canopy reflectance model (PROSAIL. Systematic selection of the data from continuous diurnal spectral measurements in consideration of the solar light conditions would be effective for accurate and consistent assessment of the canopy structure and functioning.

  17. Land cover classification based on object-oriented with airborne lidar and high spectral resolution remote sensing image

    Science.gov (United States)

    Li, Fangfang; Liu, Zhengjun; Xu, Qiangqiang; Ren, Haicheng; Zhou, Xingyu; Yuan, Yonghua

    2016-10-01

    In order to improve land cover classification accuracy of the coastal tidal wetland area in Dafeng, this paper take advantage of hyper-spectral remote sensing image with high spatial resolution airborne Lidar data. The introduction of feature extraction, band selection and nDSM models to reduce the dimension of the original image. After segmentation process that combining FNEA segmentation with spectral differences segmentation method, the paper finalize the study area through the establishment of the rule set classification of land cover classification. The results show that the proposed classification for land cover classification accuracy has improved significantly, including housing, shadow, water, vegetation classification of high precision. That is to say that the method can meet the needs of land cover classification of the coastal tidal wetland area in Dafeng. This innovation is the introduction of principal component analysis, and the use of characteristic index, shape and characteristics of various types of data extraction nDSM feature to improve the accuracy and speed of land cover classification.

  18. A full 1---40 micron spectral energy distribution for the Becklin-Neugebauer object: Placing constraints on disk size for a runaway massive young stellar object

    Science.gov (United States)

    Shuping, Ralph; Keller, Luke D.; Adams, Joseph D.; Petkova, Maya; Wood, Kenneth; Herter, Terry; Sloan, Greg; Jaffe, Daniel Thomas; Greene, Thomas P.; Ennico, Kimberly

    2017-01-01

    The Becklin-Neugebauer (BN) Object—one of the brightest infrared obejcts in the sky—is a highly luminous young stellar object (YSO) deeply embedded in Orion Molecular Cloud 1 (OMC-1), which sits behind the Orion Nebula (M42). The BN object is likely a 8—15 M⊙ star and has no obvious optical counterpart due to high visual extinction on the line of sight. Furthermore, recent radio studies show that BN is moving towards the northwest at approximately 26 km/s with respect to the Orion Nebula Cluster (ONC), which may indicate that BN was dynamically ejected from either the Trapezium or from within OMC-1 itself. Near-IR polarimetry suggests that BN is surrounded by a large (R=800 AU) disk, which is surprising since a close encounter leading to an ejection would likely disrupt and/or truncate a disk of this size. In this poster presentation, we present new SOFIA-FORCAST grism spectroscopy of BN from 10—40 μm. In conjunction with previous SOFIA-FORCAST photometry and data form the literature, we present the full 1—40 μm SED of BN which we compare to theoretical models using the HOCHUNK-3D radiative equilibrium code. We report constraints on disk parameters and discuss implications for dynamical ejection scenarios.

  19. Fingerprints of endogenous process on Europa through linear spectral modeling of ground-based observations (ESO/VLT/SINFONI)

    Science.gov (United States)

    Ligier, Nicolas; Carter, John; Poulet, François; Langevin, Yves; Dumas, Christophe; Gourgeot, Florian

    2016-04-01

    Jupiter's moon Europa harbors a very young surface dated, based on cratering rates, to 10-50 M.y (Zahnle et al. 1998, Pappalardo et al. 1999). This young age implies rapid surface recycling and reprocessing, partially engendered by a global salty subsurface liquid ocean that could result in tectonic activity (Schmidt et al. 2011, Kattenhorn et al. 2014) and active plumes (Roth et al. 2014). The surface of Europa should contain important clues about the composition of this sub-surface briny ocean and about the potential presence of material of exobiological interest in it, thus reinforcing Europa as a major target of interest for upcoming space missions such as the ESA L-class mission JUICE. To perform the investigation of the composition of the surface of Europa, a global mapping campaign of the satellite was performed between October 2011 and January 2012 with the integral field spectrograph SINFONI on the Very Large Telescope (VLT) in Chile. The high spectral binning of this instrument (0.5 nm) is suitable to detect any narrow mineral signature in the wavelength range 1.45-2.45 μm. The spatially resolved spectra we obtained over five epochs nearly cover the entire surface of Europa with a pixel scale of 12.5 by 25 m.a.s (~35 by 70 km on Europa's surface), thus permitting a global scale study. Until recently, a large majority of studies only proposed sulfate salts along with sulfuric acid hydrate and water-ice to be present on Europa's surface. However, recent works based on Europa's surface coloration in the visible wavelength range and NIR spectral analysis support the hypothesis of the predominance of chlorine salts instead of sulfate salts (Hand & Carlson 2015, Fischer et al. 2015). Our linear spectral modeling supports this new hypothesis insofar as the use of Mg-bearing chlorines improved the fits whatever the region. As expected, the distribution of sulfuric acid hydrate is correlated to the Iogenic sulfur ion implantation flux distribution (Hendrix et al

  20. Object-based assessment of burn severity in diseased forests using high-spatial and high-spectral resolution MASTER airborne imagery

    Science.gov (United States)

    Chen, Gang; Metz, Margaret R.; Rizzo, David M.; Dillon, Whalen W.; Meentemeyer, Ross K.

    2015-04-01

    Forest ecosystems are subject to a variety of disturbances with increasing intensities and frequencies, which may permanently change the trajectories of forest recovery and disrupt the ecosystem services provided by trees. Fire and invasive species, especially exotic disease-causing pathogens and insects, are examples of disturbances that together could pose major threats to forest health. This study examines the impacts of fire and exotic disease (sudden oak death) on forests, with an emphasis on the assessment of post-fire burn severity in a forest where trees have experienced three stages of disease progression pre-fire: early-stage (trees retaining dried foliage and fine twigs), middle-stage (trees losing fine crown fuels), and late-stage (trees falling down). The research was conducted by applying Geographic Object-Based Image Analysis (GEOBIA) to MASTER airborne images that were acquired immediately following the fire for rapid assessment and contained both high-spatial (4 m) and high-spectral (50 bands) resolutions. Although GEOBIA has gradually become a standard tool for analyzing high-spatial resolution imagery, high-spectral resolution data (dozens to hundreds of bands) can dramatically reduce computation efficiency in the process of segmentation and object-based variable extraction, leading to complicated variable selection for succeeding modeling. Hence, we also assessed two widely used band reduction algorithms, PCA (principal component analysis) and MNF (minimum noise fraction), for the delineation of image objects and the subsequent performance of burn severity models using either PCA or MNF derived variables. To increase computation efficiency, only the top 5 PCA and MNF and top 10 PCA and MNF components were evaluated, which accounted for 10% and 20% of the total number of the original 50 spectral bands, respectively. Results show that if no band reduction was applied the models developed for the three stages of disease progression had relatively

  1. Evaluating the quality of ground-based microwave radiometer measurements and retrievals using detrended fluctuation and spectral analysis methods

    CERN Document Server

    Ivanova, K; Shirer, H N; Ackerman, T P; Liljegren, J C; Ausloos, M

    2001-01-01

    Time series both of microwave radiometer brightness temperature measurements at 23.8 and 31.4 GHz and of retrievals of water vapor and liquid water path from these brightness temperatures are evaluated using the detrended fluctuation analysis method. As quantified by the parameter $\\alpha$, this method (i) enables identification of the time scales over which noise dominates the time series and (ii) characterizes the temporal range of correlations in the time series. The more common spectral analysis method is also used to assess the data and its results are compared with those from detrended fluctuation analysis method. The assumption that measurements should have certain scaling properties allows the quality of the measurements to be characterized. The additional assumption that the scaling properties of the measurements of an atmospheric quantity are preserved in a useful retrieval provides a means for evaluating the retrieval itself. Applying these two assumptions to microwave radiometer measurements and r...

  2. Stepped Fault Line Selection Method Based on Spectral Kurtosis and Relative Energy Entropy of Small Current to Ground System

    Directory of Open Access Journals (Sweden)

    Xiaowei Wang

    2014-01-01

    Full Text Available This paper proposes a stepped selection method based on spectral kurtosis relative energy entropy. Firstly, the length and type of window function are set; then when fault occurs, enter step 1: the polarity of first half-wave extremes is analyzed; if the ratios of extremes between neighboring lines are positive, the bus bar is the fault line, else, the SK relative energy entropies are calculated, and then enter step 2: if the obtained entropy multiple is bigger than the threshold or equal to the threshold, the overhead line of max entropy corresponding is the fault line, if not, enter step 3: the line of max entropy corresponding is the fault line. At last, the applicability of the proposed algorithm is presented, and the comparison results are discussed.

  3. Research on spectral factors towards determining nocturnal ground irradiance under overcast sky conditions in densely populated regions

    Science.gov (United States)

    Petržala, Jaromír; Kocifaj, Miroslav

    2017-03-01

    Light pollution is closely correlated with the meteorological factors, specifically cloudiness that is one of the major amplifiers of night sky radiances in urban regions. Although the decisive effects of cloud deck on artificial nighttime skyglow have been recognized experimentally, the radiative transfer modelling in a heterogeneous nocturnal environment illuminated from many light sources is a non-trivial problem that is difficult to solve both theoretically and numerically. A satisfactorily accurate evaluation of ground-reaching diffuse light is, however, an important issue as some optical properties (e.g. horizontal irradiance) are usually difficult to obtain with common instruments. Overcast sky represents a special class of situations in which clouds can act as amplifiers of the light pollution of the city. In this paper we proceeded with a simple two-stream approach to solve the scalar radiative transfer equation (RTE) under overcast conditions. The technique we are using allows for a rapid prediction of ground irradiances in densely populated regions assuming various emission functions. We have shown that the classical RTE concept can be adopted in determining the diffuse irradiance, while the model abilities are illustrated in a set of numerical experiments for low and high turbidity states.

  4. A method for comparison of growth media in objective identification of Penicillium based on multi-spectral imaging

    DEFF Research Database (Denmark)

    Clemmensen, Line Katrine Harder; Hansen, Michael Adsetts Edberg; Frisvad, Jens Christian

    2007-01-01

    We consider the problems of using excessive growth media for identification and performing objective identification of fungi at the species level. We propose a method for choosing the subset of growth media, which provides the best discrimination between several fungal species. Furthermore, we...

  5. High-Spectral Resolution, Ground-Based Observations of the Lunar Sodium and Potassium Exosphere During the LADEE Mission.

    Science.gov (United States)

    Kuruppuaratchi, D. C. P.; Oliversen, R. J.; Mierkiewicz, E. J.; Derr, N. J.; Freer, C. W.; Gallant, M. A.; Gardner, D. D.; Lupie, O. L.; Spalsbury, L. C.; Wilson, M. L.

    2014-12-01

    We apply high resolution spectroscopy to investigate the lunar exosphere by measuring sodium and potassium spectral line profiles to determine the variations in exospheric effective temperatures and velocities. Observations were made at the National Solar Observatory McMath-Pierce Telescope concurrent with the Lunar Atmosphere and Dust Environment Explorer (LADEE) science phase. We used a dual-etalon Fabry-Perot spectrometer with a resolving power of 200,000 to measure the line widths and radial velocity Doppler shifts of the sodium D2 (5889.951 Å) and potassium D1 (7698.965 Å) emission lines. Data were taken during the full moon periods from November 2013 through May 2014 with the exception of March 2014. The instrument's Field of View (FOV) of 3 arcmin (~360 km) was positioned at several locations, centered at 1.5 arcmin, off the East and West limbs. The deconvolved line widths indicate sodium temperatures pre- and post- magnetotail passage are on the order of 1600 K while temperatures during passage through the magnetotail are on the order of a several thousand Kelvin. Unlike sodium, the potassium deconvolved line widths indicate pre-magnetotail passage several hundred degrees hotter than the post-magnetotail passage temperatures. Additionally, both sodium and potassium intensities were brighter after magnetotail passage than before. This work was partially supported by the NASA Planetary Astronomy programs, NNX11AE38G and NNX13AL30G.

  6. Object-Based Land Use Classification of Agricultural Land by Coupling Multi-Temporal Spectral Characteristics and Phenological Events in Germany

    Science.gov (United States)

    Knoefel, Patrick; Loew, Fabian; Conrad, Christopher

    2015-04-01

    Crop maps based on classification of remotely sensed data are of increased attendance in agricultural management. This induces a more detailed knowledge about the reliability of such spatial information. However, classification of agricultural land use is often limited by high spectral similarities of the studied crop types. More, spatially and temporally varying agro-ecological conditions can introduce confusion in crop mapping. Classification errors in crop maps in turn may have influence on model outputs, like agricultural production monitoring. One major goal of the PhenoS project ("Phenological structuring to determine optimal acquisition dates for Sentinel-2 data for field crop classification"), is the detection of optimal phenological time windows for land cover classification purposes. Since many crop species are spectrally highly similar, accurate classification requires the right selection of satellite images for a certain classification task. In the course of one growing season, phenological phases exist where crops are separable with higher accuracies. For this purpose, coupling of multi-temporal spectral characteristics and phenological events is promising. The focus of this study is set on the separation of spectrally similar cereal crops like winter wheat, barley, and rye of two test sites in Germany called "Harz/Central German Lowland" and "Demmin". However, this study uses object based random forest (RF) classification to investigate the impact of image acquisition frequency and timing on crop classification uncertainty by permuting all possible combinations of available RapidEye time series recorded on the test sites between 2010 and 2014. The permutations were applied to different segmentation parameters. Then, classification uncertainty was assessed and analysed, based on the probabilistic soft-output from the RF algorithm at the per-field basis. From this soft output, entropy was calculated as a spatial measure of classification uncertainty

  7. Choroidal thickness maps from spectral domain and swept source optical coherence tomography: algorithmic versus ground truth annotation.

    Science.gov (United States)

    Philip, Ana-Maria; Gerendas, Bianca S; Zhang, Li; Faatz, Henrik; Podkowinski, Dominika; Bogunovic, Hrvoje; Abramoff, Michael D; Hagmann, Michael; Leitner, Roland; Simader, Christian; Sonka, Milan; Waldstein, Sebastian M; Schmidt-Erfurth, Ursula

    2016-10-01

    The purpose of the study was to create a standardised protocol for choroidal thickness measurements and to determine whether choroidal thickness measurements made on images obtained by spectral domain optical coherence tomography (SD-OCT) and swept source (SS-) OCT from patients with healthy retina are interchangeable when performed manually or with an automatic algorithm. 36 grid cell measurements for choroidal thickness for each volumetric scan were obtained, which were measured for SD-OCT and SS-OCT with two methods on 18 eyes of healthy volunteers. Manual segmentation by experienced retinal graders from the Vienna Reading Center and automated segmentation on >6300 images of the choroid from both devices were statistically compared. Model-based comparison between SD-OCT/SS-OCT showed a systematic difference in choroidal thickness of 16.26±0.725 μm (pthickness of -0.68±0.513 μm (p=0.1833). The correlation coefficients for SD-OCT and SS-OCT measures within eyes were 0.975 for manual segmentation and 0.955 for automatic segmentation. Choroidal thickness measurements of SD-OCT and SS-OCT indicate that these two devices are interchangeable with a trend of choroidal thickness measurements being slightly thicker on SD-OCT with limited clinical relevance. Use of an automated algorithm to segment choroidal thickness was validated in healthy volunteers. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Correlation between the spectral features and electric field changes of multiple return strokes in negative cloud-to-ground lightning

    Science.gov (United States)

    Wang, Xuejuan; Yuan, Ping; Cen, Jianyong; Liu, Guorong

    2017-05-01

    Using high time-resolved spectra and simultaneous records of the electric field change of three negative cloud-to-ground (CG) lightning flashes with multiple return strokes, the correlations between the total intensity of ionic lines in the spectra and the corresponding amplitude of the initial electric field change, as well as between the total intensity of the spectra and the channel apparent diameter, have been analyzed. The analysis shows the following: (1) The amplitude of the initial electric field change is roughly proportional to the total intensity of ionic lines. (2) The total intensity of the spectra shows a significant linear correlation with the apparent diameter of the channel. (3) The total intensity of ionic lines for 17 analyzed return strokes decreases with increasing height along the channel, which is consistent with the current variation along the channel in the modified transmission line model; the Master, Uman, Lin, and Standler model; and the Diendorfer-Uman model. Meanwhile, the total intensity of ionic lines for other two analyzed return strokes along the channel without attenuation, this is consistent with the current variation along the channel in the Bruce-Golde model, the transmission line model, and the Traveling Current Source model.

  9. Pure component spectral reconstruction from mixture data using SVD, global entropy minimization, and simulated annealing. Numerical investigations of admissible objective functions using a synthetic 7-species data set.

    Science.gov (United States)

    Widjaja, Effendi; Garland, Marc

    2002-07-15

    A combination of singular value decomposition, entropy minimization, and simulated annealing was applied to a synthetic 7-species spectroscopic data set with added white noise. The pure spectra were highly overlapping. Global minima for selected objective functions were obtained for the transformation of the first seven right singular vectors. Simple Shannon type entropy functions were used in the objective functions and realistic physical constraints were imposed in the penalties. It was found that good first approximations for the pure component spectra could be obtained without the use of any a priori information. The present method out performed the two widely used routines, namely Simplisma and OPA-ALS, as well as IPCA. These results indicate that a combination of SVD, entropy minimization, and simulated annealing is a potentially powerful tool for spectral reconstructions from large real experimental systems. Copyright 2002 Wiley Periodicals, Inc.

  10. A combined spectral and object-based approach to transparent cloud removal in an operational setting for Landsat ETM+

    Science.gov (United States)

    Watmough, Gary R.; Atkinson, Peter M.; Hutton, Craig W.

    2011-04-01

    The automated cloud cover assessment (ACCA) algorithm has provided automated estimates of cloud cover for the Landsat ETM+ mission since 2001. However, due to the lack of a band around 1.375 μm, cloud edges and transparent clouds such as cirrus cannot be detected. Use of Landsat ETM+ imagery for terrestrial land analysis is further hampered by the relatively long revisit period due to a nadir only viewing sensor. In this study, the ACCA threshold parameters were altered to minimise omission errors in the cloud masks. Object-based analysis was used to reduce the commission errors from the extended cloud filters. The method resulted in the removal of optically thin cirrus cloud and cloud edges which are often missed by other methods in sub-tropical areas. Although not fully automated, the principles of the method developed here provide an opportunity for using otherwise sub-optimal or completely unusable Landsat ETM+ imagery for operational applications. Where specific images are required for particular research goals the method can be used to remove cloud and transparent cloud helping to reduce bias in subsequent land cover classifications.

  11. 积雪混合像元光谱特征观测及解混方法比较%Observations of Snow Mixed Pixel Spectral Characteristics Using a Ground-Based Spectral Radiometer and Comparing with Unmixing Algorithms

    Institute of Scientific and Technical Information of China (English)

    郝晓华; 王杰; 王建; 黄晓东; 李弘毅; 刘艳

    2012-01-01

    The unmixing algorithms of mixed snow pixels and the fractional snow cover products are an important research direc-tion for snow remote sensing. In the present study, we first designed the mixed snow pixels of different snow fraction/proportion in Northern Xinjiang, China as ground truth. Then, a SVC HR-1024 ground-based spectral radiometer was used for measuring the spectral property of this designed pixel for different snow fractions and different underlying surfaces. Finally, using the measured spectral data, the four mixed-pixel decomposition models were validated and evaluated for their performance in terms of accuracy and computational efficiency. The results showed that the reflectivity does not decline linearly with the reduction of snow ratio in the pixel, and that the unmixing accuracy inversely depends on the scales of the observation. Further, the comparison of the above mentioned unmixing algotihms showed that the linear regression method has the worst accuracy, especially when the snow proportion is less than 50%; the accuracy of sparse regression algorithm and non-negative matrix factorization were slightly higher than the full constrained linear mixed-pixel decomposition; however, full constrained linear mixed-pixel decomposition method had higher computational efficiency than the other two methods; the sparse regression algorithm has lowest computational efficiency. With unmixing remote sensing images, due to the large data volumes, we must consider the algorithms' computational efficiency. This study would promote quantitative researches on snow mixed pixel decomposition, and provide a theoretical basis for accurately extracting the snow coverage of interest area using remote sensing images.%积雪混合像元分解方法研究及积雪比例产品的发展是积雪遥感的重要研究方向.在我国北疆地区利用SVC HR-1024野外便携式光谱仪观测了已知积雪比例的混合像元光谱特征并进行系统分析,同时,采用四

  12. Spectral models for ground motion prediction in the L'Aquila region (central Italy): evidence for stress-drop dependence on magnitude and depth

    Science.gov (United States)

    Pacor, F.; Spallarossa, D.; Oth, A.; Luzi, L.; Puglia, R.; Cantore, L.; Mercuri, A.; D'Amico, M.; Bindi, D.

    2016-02-01

    .0-5.8. We find a significant stress drop increase with seismic moment for events with Mw larger than 3.75, with so-called scaling parameter ε close to 1.5. We also observe that the overall offset of the stress-drop scaling is controlled by earthquake depth. We evaluate the performance of the proposed parametric models through the residual analysis of the Fourier spectra in the frequency range 0.5-25 Hz. The results show that the considered stress-drop scaling with magnitude and depth reduces, on average, the standard deviation by 18 per cent with respect to a constant stress-drop model. The overall quality of fit (standard deviation between 0.20 and 0.27, in the frequency range 1-20 Hz) indicates that the spectral model calibrated in this study can be used to predict ground motion in the L'Aquila region.

  13. A comparison between single- and multi-objective optimization to fit spectral induced polarization data from laboratory measurements on alluvial sediments

    Science.gov (United States)

    Inzoli, S.; Giudici, M.

    2015-11-01

    Spectral induced polarization measurements on unconsolidated and saturated alluvial samples, sand-clay mixtures and well sorted sandy samples, are modelled with the generalized Cole-Cole phenomenological model and two simplified models: the standard Cole-Cole and the Cole-Davidson model. The goodness of fit is evaluated, as a first step, through the root mean square error, weighted on the data errors of the real and the imaginary component. At a later stage a multi-objective optimization is proposed, based on two different indicators for the resistivity amplitude and phase misfit. The analysis of the misfits variations among all the tested parameters associations is conducted to identify the Pareto set of optimal solutions. Both procedures lead to model parameter estimates comparable with literature values. However, the multi-objective approach provides information about the uncertainty of the parameter estimates and highlights the presence of more than one characteristic value for the relaxation time and the frequency exponent in many samples, thus suggesting the possible occurrence of different polarization processes in the investigated frequency range.

  14. Revealing of major factors in the directional thermal radiation of ground objects--A new way for improving the precision of directional radiant temperature measuring and data analysis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper is devoted to eliminating the noise from the measuring of directional thermal radiation for ground objects.Specifically,we think that the noise is mainly due to the variance of components in the field of view of the sensor with the view angle changing and to the heat balance change on the ground during the period of measurement.The authors present two new observation methods named as "constant area method by thermal camera" and "concurrent method by dual sensors" respectively.The experiments show that the data obtained by these methods abide by some regularly directional distribution,which is totally different from the data from the former methods.The analysis of the major factors in the directionality of thermal radiation is also made in the paper.

  15. Estimation of Mass of Compact Object in H 1743-322 from 2010 and 2011 Outbursts using TCAF Solution and Spectral Index–QPO Frequency Correlation

    Science.gov (United States)

    Molla, Aslam Ali; Chakrabarti, Sandip K.; Debnath, Dipak; Mondal, Santanu

    2017-01-01

    The well-known black hole candidate (BHC) H 1743-322 exhibited temporal and spectral variabilities during several outbursts. The variation of the accretion rates and flow geometry that change on a daily basis during each of the outbursts can be very well understood using the recent implementation of the two-component advective flow solution of the viscous transonic flow equations as an additive table model in XSPEC. This has dramatically improved our understanding of accretion flow dynamics. Most interestingly, the solution allows us to treat the mass of the BHC as a free parameter and its mass could be estimated from spectral fits. In this paper, we fitted the data of two successive outbursts of H 1743-322 in 2010 and 2011 and studied the evolution of accretion flow parameters, such as two-component (Keplerian and sub-Keplerian) accretion rates, shock location (i.e., size of the Compton cloud), etc. We assume that the model normalization remains the same across the states in both these outbursts. We used this to estimate the mass of the black hole and found that it comes out in the range of 9.25{--}12.86 {M}ȯ . For the sake of comparison, we also estimated mass using the Photon index versus Quasi Periodic Oscillation frequency correlation method, which turns out to be 11.65+/- 0.67 {M}ȯ using GRO J1655-40 as a reference source. Combining these two estimates, the most probable mass of the compact object becomes {11.21}-1.96+1.65 {M}ȯ .

  16. A spectral invariant representation of spectral reflectance

    Science.gov (United States)

    Ibrahim, Abdelhameed; Tominaga, Shoji; Horiuchi, Takahiko

    2011-03-01

    Spectral image acquisition as well as color image is affected by several illumination factors such as shading, gloss, and specular highlight. Spectral invariant representations for these factors were proposed for the standard dichromatic reflection model of inhomogeneous dielectric materials. However, these representations are inadequate for other characteristic materials like metal. This paper proposes a more general spectral invariant representation for obtaining reliable spectral reflectance images. Our invariant representation is derived from the standard dichromatic reflection model for dielectric materials and the extended dichromatic reflection model for metals. We proof that the invariant formulas for spectral images of natural objects preserve spectral information and are invariant to highlights, shading, surface geometry, and illumination intensity. It is proved that the conventional spectral invariant technique can be applied to metals in addition to dielectric objects. Experimental results show that the proposed spectral invariant representation is effective for image segmentation.

  17. Investigation of the Directional Structure of Horizontal Cloud Inhomogeneities Derived from Ground-Based and Airborne Spectral Imaging and Cloud Resolving Models

    Science.gov (United States)

    Schäfer, Michael; Bierwirth, Eike; Ehrlich, André; Jäkel, Evelyn; Loewe, Katharina; Werner, Frank; Hoose, Corinna; Wendisch, Manfred

    2017-04-01

    Clouds exhibit considerable horizontal inhomogeneities of their optical and microphysical properties. This complicates their realistic representation in weather and climate models. In order to investigate cloud inhomogeneities with respect to their horizontal structure, two-dimensional (2D) fields of optical thickness of subtropical cirrus and Arctic stratus are investigated. The applied 2D cloud optical thickness fields with a spatial resolution of less than 10 m are derived from (a) ground-based measured downward (transmitted) solar spectral radiance fields of four subtropical cirrus clouds, and (b) upward (reflected) radiances measured airborne above ten Arctic stratus clouds. The measurements were performed during the two field campaigns: (a) Clouds, Aerosol, Radiation, and tuRbulence in the trade wInd regime over BArbados (CARRIBA), and (b) VERtical Distribution of Ice in Arctic clouds (VERDI). One-dimensional (1D) inhomogeneity parameters and 2D autocorrelation functions are derived from the retrieved fields of cloud optical thickness. For each measurement case, the typical spatial scale of horizontal cloud inhomogeneities is quantified. The results reveal that considerable cloud inhomogeneities with prevailing directional structures are found in most of the investigated cloud cases; the cloud inhomogeneities favour a specific horizontal direction while across this direction the cloud is of homogeneous character. The investigations show that it is not sufficient to quantify horizontal cloud inhomogeneities by 1D inhomogeneity parameters; 2D parameters are strongly required. Additionally, the applied methods are used in conjunction with simulated fields of Arctic stratus obtained from cloud resolving models in order to (I) validate model results against measurements and (II) to increase the number of available cloud fields, which improves the statistics of investigated cloud cases.

  18. Análise discriminante dos solos por meio da resposta espectral no nível terrestre Soil discrimination analysis by spectral response in the ground level

    Directory of Open Access Journals (Sweden)

    Marcos Rafael Nanni

    2004-10-01

    Full Text Available O objetivo deste trabalho foi desenvolver e avaliar um método para discriminação das classes de solos a partir de suas respostas espectrais, utilizando-se um sensor em laboratório. Os dados espectrais foram utilizados no desenvolvimento de modelos estatísticos para discriminar as classes de solos de uma área no sudoeste do Estado de São Paulo. Equações discriminantes foram desenvolvidas para as 18 classes. A resposta espectral foi obtida em amostras da porção superficial e da porção subsuperficial dos solos da área de estudo, num total de 370 amostras. As amostras foram coletadas em 185 ha, com uma tradagem por ha. Os resultados demonstraram que as classes de solos podem ser individualizadas e distinguidas pela análise discriminante. A análise registrou índices de acerto acima de 80% de determinação da classe de solo avaliada. O acerto global foi de 90,71% quando se utilizaram todas as classes para a geração dos modelos, e 93,44% quando se utilizaram as dez classes com maior número de indivíduos. O teste estatístico simulado mostrou-se eficiente na análise discriminante, com taxa média de acerto acima de 91%, com erro global de 8,8%. A análise demonstrou redução na qualidade do modelo quando aplicado para um subconjunto de 20% das amostras, com erro global de 33,9%. O método auxilia na discriminação de classes de solos pela sua reflectância, devido às interações físicas com a energia eletromagnética.The objective of this study was to develop and test a discrimination method for soil classes by their spectral response (SR, using a laboratory sensor. Spectral data were used to develop statistical model for discriminating soil classes in an area at the southwest of São Paulo State, Brazil. Discriminant equations were developed for 18 soil classes. The spectral data were obtained in superficial and subsuperficial soil samples in the study area, with a total of 370 samples. The samples were collected in 185 ha

  19. Comparison of Mixed Layer Heights from Airborne High Spectral Resolution Lidar, Ground-based Measurements, and the WRP-Chem Model during CalNex and CARES

    Energy Technology Data Exchange (ETDEWEB)

    Scarino, Amy Jo; Obland, Michael; Fast, Jerome D.; Burton, S. P.; Ferrare, R. A.; Hostetler, Chris A.; Berg, Larry K.; Lefer, Barry; Haman, C.; Hair, John; Rogers, Ray; Butler, Carolyn; Cook, A. L.; Harper, David

    2014-06-05

    The California Research at the Nexus of Air Quality and Climate Change (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES) field campaigns during May and June 2010 provided a data set appropriate for studying characteristics of the planetary boundary layer (PBL). The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) was deployed to California onboard the NASA LaRC B-200 aircraft to aid incharacterizing aerosol properties during these two field campaigns. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 31 flights, many in coordination with other research aircraft and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as the depth and variability of the daytime mixed layer (ML), which is a subset within the PBL. This work illustrates the temporal and spatial variability of the ML in the vicinity of Los Angeles and Sacramento, CA. ML heights derived from HSRL measurements are compared to PBL heights derived from radiosonde profiles, ML heights measured from ceilometers, and simulated PBL heights from the Weather Research and Forecasting Chemistry (WRF-Chem) community model. Comparisons between the HSRL ML heights and the radiosonde profiles in Sacramento result in a correlation coefficient value (R) of 0.93 (root7 mean-square (RMS) difference of 157 m and bias difference (HSRL radiosonde) of 5 m). HSRL ML heights compare well with those from the ceilometer in the LA Basin with an R of 0.89 (RMS difference of 108 m and bias difference (HSRL Ceilometer) of -9.7 m) for distances of up to 30 km between the B-200 flight track and the ceilometer site. Simulated PBL heights from WRF-Chem were compared with those obtained from all flights for each campaign, producing an R of 0.58 (RMS difference of 604 m and a bias difference (WRF-Chem HSRL) of -157 m) for CalNex and 0

  20. Research into a Single-aperture Light Field Camera System to Obtain Passive Ground-based 3D Imagery of LEO Objects

    Science.gov (United States)

    Bechis, K.; Pitruzzello, A.

    2014-09-01

    This presentation describes our ongoing research into using a ground-based light field camera to obtain passive, single-aperture 3D imagery of LEO objects. Light field cameras are an emerging and rapidly evolving technology for passive 3D imaging with a single optical sensor. The cameras use an array of lenslets placed in front of the camera focal plane, which provides angle of arrival information for light rays originating from across the target, allowing range to target and 3D image to be obtained from a single image using monocular optics. The technology, which has been commercially available for less than four years, has the potential to replace dual-sensor systems such as stereo cameras, dual radar-optical systems, and optical-LIDAR fused systems, thus reducing size, weight, cost, and complexity. We have developed a prototype system for passive ranging and 3D imaging using a commercial light field camera and custom light field image processing algorithms. Our light field camera system has been demonstrated for ground-target surveillance and threat detection applications, and this paper presents results of our research thus far into applying this technology to the 3D imaging of LEO objects. The prototype 3D imaging camera system developed by Northrop Grumman uses a Raytrix R5 C2GigE light field camera connected to a Windows computer with an nVidia graphics processing unit (GPU). The system has a frame rate of 30 Hz, and a software control interface allows for automated camera triggering and light field image acquisition to disk. Custom image processing software then performs the following steps: (1) image refocusing, (2) change detection, (3) range finding, and (4) 3D reconstruction. In Step (1), a series of 2D images are generated from each light field image; the 2D images can be refocused at up to 100 different depths. Currently, steps (1) through (3) are automated, while step (4) requires some user interaction. A key requirement for light field camera

  1. 面向电子政务的全国典型地物波谱数据服务平台设计与实现%Design and Realization of the Service Platform for Typical Ground Objects Spectrum Data in China based on E-government

    Institute of Scientific and Technical Information of China (English)

    施健; 柳钦火; 闻建光; 唐勇; 窦宝成; 王锦地; 张立新

    2011-01-01

    地物波谱是遥感重要的信息源之一,通过数据库建设管理波谱数据已越来越得到重视。自然资源和地理空间基础信息库是国家电子政务4个基础信息库之一,其主要目的是实现部门间的数据共享与交换,其下设有全国典型地物波谱数据库。为应对电子政务的需求,在原有波谱数据库的工作基础上,构建了面向电子政务的全国典型地物波谱数据服务平台,用以向电子政务提供符合要求的数据以支持电子政务数据共享及政务决策。介绍了波谱数据服务平台的设计及关键技术研究,并展示了实现后的波谱数据服务平台。%Ground object spectrum is one of the most important remote sensing information sources.Recently,building a spectral database to manage these spectra data has attracted more and more attention.The database of natural resources and geo-spatial basic information is one of the four basic information databases of national E-government project.The main purpose of this database is to achieve the data sharing and exchange among different departments.National typical ground object spectral library is included in this database.To meet the requirement of E-government,we built an E-government oriented national typical ground object spectral library service platform.This platform aims to provide E-government suitable data and strategies.This article presented the design of spectral library service platform and related critical techniques.

  2. The power of low-resolution spectroscopy: On the spectral classification of planet candidates in the ground-based CoRoT follow-up

    CERN Document Server

    Eiff, M Ammler-von; Guenther, E W; Stecklum, B; Cabrera, J

    2015-01-01

    Planetary transits detected by the CoRoT mission can be mimicked by a low-mass star in orbit around a giant star. Spectral classification helps to identify the giant stars and also early-type stars which are often excluded from further follow-up. We study the potential and the limitations of low-resolution spectroscopy to improve the photometric spectral types of CoRoT candidates. In particular, we want to study the influence of the signal-to-noise ratio (SNR) of the target spectrum in a quantitative way. We built an own template library and investigate whether a template library from the literature is able to reproduce the classifications. Including previous photometric estimates, we show how the additional spectroscopic information improves the constraints on spectral type. Low-resolution spectroscopy ($R\\approx$1000) of 42 CoRoT targets covering a wide range in SNR (1-437) and of 149 templates was obtained in 2012-2013 with the Nasmyth spectrograph at the Tautenburg 2m telescope. Spectral types have been d...

  3. Objective Lightning Forecasting at Kennedy Space Center/Cape Canaveral Air Force Station using Cloud-to-Ground Lightning Surveillance System Data

    Science.gov (United States)

    Lambert, Winifred; Wheeler, Mark

    2004-01-01

    The 45th Weather Squadron (45 WS) forecasters at Cape Canaveral Air Force Station (CCAFS) in Florida include a probability of thunderstorm occurrence in their daily morning briefings. This information is used by personnel involved in determining the possibility of violating Launch Commit Criteria, evaluating Flight Rules for the Space Shuttle, and daily planning for ground operation activities on Kennedy Space Center (KSC)/CCAFS. Much of the current lightning probability forecast is based on a subjective analysis of model and observational data. The forecasters requested that a lightning probability forecast tool based on statistical analysis of historical warm-season (May - September) data be developed in order to increase the objectivity of the daily thunderstorm probability forecast. The tool is a set of statistical lightning forecast equations that provide a lightning occurrence probability for the day by 1100 UTC (0700 EDT) during the warm season. This study used 15 years (1989-2003) of warm season data to develop the objective forecast equations. The local CCAFS 1000 UTC sounding was used to calculate stability parameters for equation predictors. The Cloud-to-Ground Lightning Surveillance System (CGLSS) data were used to determine lightning occurrence for each day. The CGLSS data have been found to be more reliable indicators of lightning in the area than surface observations through local informal analyses. This work was based on the results from two earlier research projects. Everitt (1999) used surface observations and rawinsonde data to develop logistic regression equations that forecast the daily thunderstorm probability at CCAFS. The Everitt (1999) equations showed an improvement in skill over the Neumann-Pfeffer thunderstorm index (Neumann 1971), which uses multiple linear regression, and also persistence and climatology forecasts. Lericos et al. (2002) developed lightning distributions over the Florida peninsula based on specific flow regimes. The

  4. NEOCAM: Near Earth Object Chemical Analysis Mission: Bridging the Gulf between Telescopic Observations and the Chemical and Mineralogical Compositions of Asteroids or Diogenes A: Diagnostic Observation of the Geology of Near Earth Spectrally-Classified Asteroids

    Science.gov (United States)

    Nuth, Joseph A.

    2009-01-01

    Studies of meteorites have yielded a wealth of scientific information based on highly detailed chemical and isotopic studies possible only in sophisticated terrestrial laboratories. Telescopic studies have revealed an enormous (greater than 10(exp 5)) number of physical objects ranging in size from a few tens of meters to several hundred kilometers, orbiting not only in the traditional asteroid belt between Mars and Jupiter but also throughout the inner solar system. Many of the largest asteroids are classed into taxonomic groups based on their observed spectral properties and are designated as C, D. X, S or V types (as well as a wide range in sub-types). These objects are certainly the sources far the meteorites in our laboratories, but which asteroids are the sources for which meteorites? Spectral classes are nominally correlated to the chemical composition and physical characteristics of the asteroid itself based on studies of the spectral changes induced in meteorites due to exposure to a simulated space environment. While laboratory studies have produced some notable successes (e.g. the identification of the asteroid Vesta as the source of the H, E and D meteorite classes), it is unlikely that we have samples of each asteroidal spectral type in our meteorite collection. The correlation of spectral type and composition for many objects will therefore remain uncertain until we can return samples of specific asteroid types to Earth for analyses. The best candidates for sample return are asteroids that already come close to the Earth. Asteroids in orbit near 1 A.U. have been classified into three groups (Aten, Apollo & Amor) based on their orbital characteristics. These Near Earth Objects (NEOs) contain representatives of virtually all spectral types and sub-types of the asteroid population identified to date. Because of their close proximity to Earth, NEOs are prime targets for asteroid missions such as the NEAR-Shoemaker NASA Discovery Mission to Eros and the

  5. Incorporating Endmember Variability into Linear Unmixing of Coarse Resolution Imagery: Mapping Large-Scale Impervious Surface Abundance Using a Hierarchically Object-Based Spectral Mixture Analysis

    OpenAIRE

    Chengbin Deng

    2015-01-01

    As an important indicator of anthropogenic impacts on the Earth’s surface, it is of great necessity to accurately map large-scale urbanized areas for various science and policy applications. Although spectral mixture analysis (SMA) can provide spatial distribution and quantitative fractions for better representations of urban areas, this technique is rarely explored with 1-km resolution imagery. This is due mainly to the absence of image endmembers associated with the mixed pixel problem. Con...

  6. Estimation of Mass of Compact Object in H 1743-322 from 2010 and 2011 Outbursts using TCAF Solution and Spectral Index - QPO Frequency Correlation

    CERN Document Server

    Molla, Aslam Ali; Debnath, Dipak; Mondal, Santanu

    2016-01-01

    The well known black hole candidate H~1743-322 exhibited temporal and spectral variabilities during several outbursts. Daily variation of the accretion rates and the flow geometry change on a daily basis during each of the outbursts could be understood very well using the recent implementation of two component advective flow (TCAF) solution of the viscous transonic flow equations as an additive table model in XSPEC. This has dramatically improved our understanding about the accretion flow dynamics. Most interestingly, the solution allows to treat mass of the black hole candidate as a free parameter and there mass could be estimated from spectral fits. In this paper, we fit the data of two successive outbursts of H~1743-322 in 2010 and 2011 and studied evolutions of accretion flow parameters, such as, two component (Keplerian and sub-Keplerian) accretion rates, shock location (i.e., size of the Compton cloud), etc. We assume that the model Normalization remains the same accross the states in both these outburs...

  7. Optically visible post-AGB/RGB stars and young stellar objects in the Small Magellanic Cloud: candidate selection, spectral energy distributions and spectroscopic examination

    CERN Document Server

    Kamath, D; Van Winckel, H

    2014-01-01

    We have carried out a search for optically visible post-AGB candidates in the Small Magellanic Cloud (SMC). We used mid-IR observations from the Spitzer Space Telescope to select optically visible candidates with a mid-IR excess. We obtained low-resolution optical spectra for 801 candidates. After removing contaminants and poor quality spectra, the final sample comprised of 63 post-AGB/RGB candidates of A - F spectral type. Using the spectra, we estimated the stellar parameters: effective temperature, surface gravity and [Fe/H]. We also estimated the reddening and deduced the luminosity using the stellar parameters combined with photometry. Based on a luminosity criterion, 42 of these 63 sources were classified as post-RGB candidates and the remaining as post-AGB candidates. From the spectral energy distributions we found that 6 of the 63 post-AGB/RGB candidates have a circumstellar shell suggesting that they are single stars, while 27 of them have a surrounding disc, suggesting that they are binaries. For th...

  8. Ground and excited state behavior of 1,4-dimethoxy-3-methyl-anthracene-9,10-dione in silver nanoparticles: Spectral and computational investigations

    Energy Technology Data Exchange (ETDEWEB)

    Umadevi, M., E-mail: ums10@yahoo.com [Department of Physics, Mother Teresa Women' s University, Kodaikanal 624101, Tamil Nadu (India); Kavitha, S.R. [Department of Physics, Mother Teresa Women' s University, Kodaikanal 624101, Tamil Nadu (India); Vanelle, P.; Terme, T.; Khoumeri, O. [Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire ICR, UMR 7273, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05 (France)

    2013-10-15

    Silver nanoparticles (Ag NPs) of various sizes have been successfully synthesized by the simple and convenient Creighton method using sodium borohydride as the reducing agent under microwave irradiation. Optical absorption and fluorescence emission spectroscopic techniques were employed to investigate the effect of silver nanoparticles on the ground and excited state of 1,4-dimethoxy-3-methylanthracene-9,10-dione (DMMAD). The surface plasmon resonance (SPR) peak of the prepared silver colloidal solution was observed at 400 nm. Fluorescence quenching of DMMAD by silver nanoparticles has been found to increase with increase in the size of Ag. The fluorescence quenching has been explained by Forster Resonance Energy Transfer (FRET) theory between DMMAD and silver nanoparticles. The Stern–Volmer quenching constant and Benesi–Hildebrand association constant for the above system were calculated. DFT calculations were also performed to study the charge distribution of DMMAD in Ag both in ground and excited states. -- Highlights: • Silver nanoparticles (Ag NPs) have been synthesized using the Creighton method. • Effect of Ag NPs on the ground state of DMMAD was studied. • Influence of Ag NPs on the excited state of DMMAD was investigated. • Fluorescence quenching has been explained by Forster Resonance Energy Transfer. • Quenching and binding constants were also calculated.

  9. Object and Objective Lost?

    DEFF Research Database (Denmark)

    Lopdrup-Hjorth, Thomas

    2015-01-01

    This paper explores the erosion and problematization of ‘the organization’ as a demarcated entity. Utilizing Foucault's reflections on ‘state-phobia’ as a source of inspiration, I show how an organization-phobia has gained a hold within Organization Theory (OT). By attending to the history...... of this organization-phobia, the paper argues that OT has become increasingly incapable of speaking about its core object. I show how organizations went from being conceptualized as entities of major importance to becoming theoretically deconstructed and associated with all kinds of ills. Through this history......, organizations as distinct entities have been rendered so problematic that they have gradually come to be removed from the center of OT. The costs of this have been rather significant. Besides undermining the grounds that gave OT intellectual credibility and legitimacy to begin with, the organization-phobia...

  10. The radiation problem from a vertical short dipole antenna above flat and lossy ground. Novel formulation in the spectral domain with closed form analytical solution in the high frequency regime

    CERN Document Server

    Christakis, Ch; Sautbekov, S; Frangos, P; Atanov, S K

    2014-01-01

    In this paper we consider the problem of radiation from a vertical short Hertzian dipole above flat lossy ground, which represents the well known in the literature Sommerfeld radiation problem. The problem is formulated in a novel spectral domain approach, and by inverse three dimensional Fourier transformation the expressions for the received electric and magnetic field in the physical space are derived as one dimensional integrals over the radial component of wavevector, in cylindrical coordinates. Subsequent use of the Stationary Phase Method in the high frequency regime yields closed form analytical solutions for the received EM field vectors, which coincide with the corresponding reflected EM field originating from the image point. In this way, we conclude that the so called in the literature space wave, i.e. line of sight plus reflected EM field, represents the total solution of the Sommerfeld problem in the high frequency regime, in which case the surface wave can be ignored. Finally, numerical results...

  11. Blue spectral inflation

    CERN Document Server

    Schunck, Franz E

    2008-01-01

    We reconsider the nonlinear second order Abel equation of Stewart and Lyth, which follows from a nonlinear second order slow-roll approximation. We find a new eigenvalue spectrum in the blue regime. Some of the discrete values of the spectral index n_s have consistent fits to the cumulative COBE data as well as to recent ground-base CMB experiments.

  12. Multi-spectral study of a new sample of blue compact dwarf galaxies. I. B and R surface photometry of 23 objects from the Byurakan lists

    Science.gov (United States)

    Doublier, V.; Comte, G.; Petrosian, A.; Surace, C.; Turatto, M.

    1997-09-01

    We present the first results of the surface photometry of a sample of Blue Compact Dwarf galaxies (hereafter BCDGs). The images were obtained at Pic du Midi (France) and Asiago (Italy). In this paper, we produce an atlas of isophotal maps and brightness distribution profiles for 23 objects in the Northern hemisphere. Short individual descriptions of the galaxies, and tables of photometric parameters are given. The main result is that a substantial fraction of objects are showing an r^{1/4} brightness distribution, consistently with previous observations. The integral colors, luminosity-radius relations and "compactness" properties are briefly investigated. This sample is being extended with new observations, that will be reported in a future paper with a more complete discussion. Based on observations performed at Bernard Lyot Telescope, Pic-du-Midi, operated by Institut National des Sciences de l'Univers, CNRS, and at Cima Ekar telescope, operated by Padova Observatory.

  13. Collision induced broadening of ν1 band and ground state spectral lines of sulfur dioxide perturbed by N2 and O2

    Science.gov (United States)

    Ceselin, Giorgia; Tasinato, Nicola; Puzzarini, Cristina; Charmet, Andrea Pietropolli; Stoppa, Paolo; Giorgianni, Santi

    2017-09-01

    To monitor the constituents and trace pollutants of Earth atmosphere and understand its evolution, accurate spectroscopic parameters are fundamental information. SO2 is produced by both natural and anthropogenic sources and it is one of the principal causes of acid rains as well as an important component of fine aerosol particles, once oxidized to sulfate. The present work aims at determining SO2 broadening parameters using N2 and O2 as atmospherically relevant damping gases. Measurements are carried out in the infrared (IR) and mm-/sub-mm wave regions, around 8.8 μm and in the 104 GHz-1.1 THz interval, respectively. IR ro-vibrational transitions are recorded by using a tunable diode laser spectrometer, whereas the microwave spectra are recorded by using a frequency-modulated millimeter-/submillimeter-wave spectrometer. SO2-N2 and SO2-O2 collisional cross sections are retrieved for several ν1 band ro-vibrational transitions of 32S16O2, for some transitions belonging to either ν1 + ν2 - ν2 of 32S16O2 or ν1 of 34S16O2 as well as for about 20 pure rotational transitions in the vibrational ground state of the main isotopic species. From N2- and O2- broadening coefficients the broadening parameters of SO2 in air are derived. The work is completed with the study of the dependence of foreign broadening coefficients on the rotational quantum numbers.

  14. Hyperspectral Image Land Cover Classification Algorithm Based on Spatial-spectral Coordination Embedding

    Directory of Open Access Journals (Sweden)

    HUANG Hong

    2016-08-01

    Full Text Available Aiming at the problem that in hyperspectral image land cover classification, the traditional classification methods just apply the spectral information while they ignore the relationship between the spatial neighbors, a new dimensionality algorithm called spatial-spectral coordination embedding (SSCE and a new classifier called spatial-spectral coordination nearest neighbor (SSCNN were proposed in this paper. Firstly, the proposed method defines a spatial-spectral coordination distance and the distance is applied to the neighbor selection and low-dimensional embedding. Then, it constructs a spatial-spectral neighborhood graph to maintain the manifold structure of the data set, and enhances the aggregation of data through raising weight of the spatial neighbor points to extract the discriminant features. Finally, it uses the SSCNN to classify the reduced dimensional data. Experimental results using PaviaU and Salinas data set show that the proposed method can effectively improve ground objects classification accuracy comparing with traditional spectral classification methods.

  15. Planck 2013 results. IX. HFI spectral response

    DEFF Research Database (Denmark)

    Planck Collaboration,; Ade, P. A. R.; Aghanim, N.;

    2013-01-01

    The Planck HFI spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests is to measure the relative spectral response (including the level of out-of-band s...

  16. Spectral Methods

    CERN Document Server

    Shen, Jie; Wang, Li-Lian

    2011-01-01

    Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large

  17. Spectral Skyline Separation: Extended Landmark Databases and Panoramic Imaging

    Directory of Open Access Journals (Sweden)

    Dario Differt

    2016-09-01

    Full Text Available Evidence from behavioral experiments suggests that insects use the skyline as a cue for visual navigation. However, changes of lighting conditions, over hours, days or possibly seasons, significantly affect the appearance of the sky and ground objects. One possible solution to this problem is to extract the “skyline” by an illumination-invariant classification of the environment into two classes, ground objects and sky. In a previous study (Insect models of illumination-invariant skyline extraction from UV (ultraviolet and green channels, we examined the idea of using two different color channels available for many insects (UV and green to perform this segmentation. We found out that for suburban scenes in temperate zones, where the skyline is dominated by trees and artificial objects like houses, a “local” UV segmentation with adaptive thresholds applied to individual images leads to the most reliable classification. Furthermore, a “global” segmentation with fixed thresholds (trained on an image dataset recorded over several days using UV-only information is only slightly worse compared to using both the UV and green channel. In this study, we address three issues: First, to enhance the limited range of environments covered by the dataset collected in the previous study, we gathered additional data samples of skylines consisting of minerals (stones, sand, earth as ground objects. We could show that also for mineral-rich environments, UV-only segmentation achieves a quality comparable to multi-spectral (UV and green segmentation. Second, we collected a wide variety of ground objects to examine their spectral characteristics under different lighting conditions. On the one hand, we found that the special case of diffusely-illuminated minerals increases the difficulty to reliably separate ground objects from the sky. On the other hand, the spectral characteristics of this collection of ground objects covers well with the data collected

  18. Optical Reflection Spectroscopy of GEO Objects

    Science.gov (United States)

    Seitzer, Patrick; Cardona, Tammaso; Lederer, Susan M.; Cowardin, Heather; Abercromby, Kira J.; Barker, Edwin S.; Bedard, Donald

    2013-01-01

    We report on optical reflection spectroscopy of geosynchronous (GEO) objects in the US Space Surveillance Network (SSN) catalog. These observations were obtained using imaging spectrographs on the 6.5-m Magellan telescopes at the Las Campanas Observatory in Chile. Our goal is to determine the composition of these objects by comparing these spectral observations with ground-based laboratory measurements of spacecraft materials. The observations are all low resolution (1 nm after smoothing) obtained through a 5 arcsecond wide slit and using a grism as the dispersing element. The spectral range covered was from 450 nm to 800 nm. All spectra were flux calibrated using observations of standard stars with the exact same instrumental setup. An effort was made to obtain all observations within a limited range of topocentric phase angle, although the solar incident angle is unknown due to the lack of any knowledge of the attitude of the observed surface at the time of observation.

  19. The Radiation Problem from a Vertical Hertzian Dipole Antenna above Flat and Lossy Ground: Novel Formulation in the Spectral Domain with Closed-Form Analytical Solution in the High Frequency Regime

    Directory of Open Access Journals (Sweden)

    K. Ioannidi

    2014-01-01

    Full Text Available We consider the problem of radiation from a vertical short (Hertzian dipole above flat lossy ground, which represents the well-known “Sommerfeld radiation problem” in the literature. The problem is formulated in a novel spectral domain approach, and by inverse three-dimensional Fourier transformation the expressions for the received electric and magnetic (EM field in the physical space are derived as one-dimensional integrals over the radial component of wavevector, in cylindrical coordinates. This formulation appears to have inherent advantages over the classical formulation by Sommerfeld, performed in the spatial domain, since it avoids the use of the so-called Hertz potential and its subsequent differentiation for the calculation of the received EM field. Subsequent use of the stationary phase method in the high frequency regime yields closed-form analytical solutions for the received EM field vectors, which coincide with the corresponding reflected EM field originating from the image point. In this way, we conclude that the so-called “space wave” in the literature represents the total solution of the Sommerfeld problem in the high frequency regime, in which case the surface wave can be ignored. Finally, numerical results are presented, in comparison with corresponding numerical results based on Norton’s solution of the problem.

  20. Reading visually embodied meaning from the brain: Visually grounded computational models decode visual-object mental imagery induced by written text.

    Science.gov (United States)

    Anderson, Andrew James; Bruni, Elia; Lopopolo, Alessandro; Poesio, Massimo; Baroni, Marco

    2015-10-15

    Embodiment theory predicts that mental imagery of object words recruits neural circuits involved in object perception. The degree of visual imagery present in routine thought and how it is encoded in the brain is largely unknown. We test whether fMRI activity patterns elicited by participants reading objects' names include embodied visual-object representations, and whether we can decode the representations using novel computational image-based semantic models. We first apply the image models in conjunction with text-based semantic models to test predictions of visual-specificity of semantic representations in different brain regions. Representational similarity analysis confirms that fMRI structure within ventral-temporal and lateral-occipital regions correlates most strongly with the image models and conversely text models correlate better with posterior-parietal/lateral-temporal/inferior-frontal regions. We use an unsupervised decoding algorithm that exploits commonalities in representational similarity structure found within both image model and brain data sets to classify embodied visual representations with high accuracy (8/10) and then extend it to exploit model combinations to robustly decode different brain regions in parallel. By capturing latent visual-semantic structure our models provide a route into analyzing neural representations derived from past perceptual experience rather than stimulus-driven brain activity. Our results also verify the benefit of combining multimodal data to model human-like semantic representations. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Non-invasive cardiac assessment in high risk patients (The GROUND study: rationale, objectives and design of a multi-center randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Moll Frans L

    2008-08-01

    Full Text Available Abstract Background Peripheral arterial disease (PAD is a common disease associated with a considerably increased risk of future cardiovascular events and most of these patients will die from coronary artery disease (CAD. Screening for silent CAD has become an option with recent non-invasive developments in CT (computed tomography-angiography and MR (magnetic resonance stress testing. Screening in combination with more aggressive treatment may improve prognosis. Therefore we propose to study whether a cardiac imaging algorithm, using non-invasive imaging techniques followed by treatment will reduce the risk of cardiovascular disease in PAD patients free from cardiac symptoms. Design The GROUND study is designed as a prospective, multi-center, randomized clinical trial. Patients with peripheral arterial disease, but without symptomatic cardiac disease will be asked to participate. All patients receive a proper risk factor management before randomization. Half of the recruited patients will enter the 'control group' and only undergo CT calcium scoring. The other half of the recruited patients (index group will undergo the non invasive cardiac imaging algorithm followed by evidence-based treatment. First, patients are submitted to CT calcium scoring and CT angiography. Patients with a left main (or equivalent coronary artery stenosis of > 50% on CT will be referred to a cardiologist without further imaging. All other patients in this group will undergo dobutamine stress magnetic resonance (DSMR testing. Patients with a DSMR positive for ischemia will also be referred to a cardiologist. These patients are candidates for conventional coronary angiography and cardiac interventions (coronary artery bypass grafting (CABG or percutaneous cardiac interventions (PCI, if indicated. All participants of the trial will enter a 5 year follow up period for the occurrence of cardiovascular events. Sequential interim analysis will take place. Based on sample size

  2. Preliminary results of simulation of hypo magnetic conditions and variations in energetic range of cosmic rays in ground-based experiments on plant objects

    Science.gov (United States)

    Belisheva, Natalia; Petrashova, Dina; Shchegolev, Boris

    The most dangerous for the astronauts and cosmonauts are the cosmic rays and drastic decrease of the tension of geomagnetic field (GMF) on the Earth orbit and in the open space. The tension in the interplanetary magnetic field is 10 nT, whereas the tension of GMF is 10 (4) nT on the Earth surface. We carried out the preliminary experiments for study the effects of hypo magnetic conditions and variations in energetic range of cosmic rays (CR) on the plant objects (Vigna radiata, Phaseolus vulgaris, Allium cepa and A. fistulosum, Cucumis sativis). GMF was weakened by using special shielding chamber made on the basis of the amorphous alloy magnetic material. The camera is able to weaken the GMF from 48 μT till 0.192 μT. Modulation of the energetic range of the neutron component of secondary CR was performed with using of the shielding by graphite and by paraffin. The influence of hypo magnetic field and the neutron intensity were studied on the germination of seeds, the growth, the length and the side branches of the roots in the experimental samples. We found that the sensitivity to the hypo magnetic field and to the variations in energetic range of neutrons can vary from object to object. For instance, exposure of the hypo magnetic field on black bean and mung bean stimulated the growth of the roots while do not affect on the white bean. Likewise sensitivity of Phaseolus vulgaris (black and white bean) and Vigna radiata (mung bean) to exposure of nucleon component of cosmic rays on the Earth's surface are differed. It was found that modification of energetic range of CR by using graphite shielding leads to a change in sign of correlation between the length of roots in all experimental samples and the nucleon component of CR compared with the control samples. This is evidence that physiology of biological objects significantly are modified in hypo magnetic environment, as well as under exposure of the CR in different energetic ranges during the space flights. Our

  3. Application of spectral analysis techniques to the intercomparison of aerosol data - Part 4: Combined maximum covariance analysis to bridge the gap between multi-sensor satellite retrievals and ground-based measurements

    Science.gov (United States)

    Li, J.; Carlson, B. E.; Lacis, A. A.

    2014-04-01

    The development of remote sensing techniques has greatly advanced our knowledge of atmospheric aerosols. Various satellite sensors and the associated retrieval algorithms all add to the information of global aerosol variability, while well-designed surface networks provide time series of highly accurate measurements at specific locations. In studying the variability of aerosol properties, aerosol climate effects, and constraining aerosol fields in climate models, it is essential to make the best use of all of the available information. In the previous three parts of this series, we demonstrated the usefulness of several spectral decomposition techniques in the analysis and comparison of temporal and spatial variability of aerosol optical depth using satellite and ground-based measurements. Specifically, Principal Component Analysis (PCA) successfully captures and isolates seasonal and interannual variability from different aerosol source regions, Maximum Covariance Analysis (MCA) provides a means to verify the variability in one satellite dataset against Aerosol Robotic Network (AERONET) data, and Combined Principal Component Analysis (CPCA) realized parallel comparison among multi-satellite, multi-sensor datasets. As the final part of the study, this paper introduces a novel technique that integrates both multi-sensor datasets and ground observations, and thus effectively bridges the gap between these two types of measurements. The Combined Maximum Covariance Analysis (CMCA) decomposes the cross covariance matrix between the combined multi-sensor satellite data field and AERONET station data. We show that this new method not only confirms the seasonal and interannual variability of aerosol optical depth, aerosol source regions and events represented by different satellite datasets, but also identifies the strengths and weaknesses of each dataset in capturing the variability associated with sources, events or aerosol types. Furthermore, by examining the spread of

  4. Goals, Objectives, and Requirements (GOR) of the Ground-based Nuclear Detonation Detection (GNDD) Team for the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D)

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of "game-changer" advances in science and technology.

  5. Goals, Objectives, and Requirements (GOR) of the Ground-based Nuclear Detonation Detection (GNDD) Team for the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D)

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of "game-changer" advances in science and technology.

  6. Objective Lightning Forecasting at Kennedy Space Center and Cape Canaveral Air Force Station using Cloud-to-Ground Lightning Surveillance System Data

    Science.gov (United States)

    Lambert, Winfred; Wheeler, Mark; Roeder, William

    2005-01-01

    The 45th Weather Squadron (45 WS) at Cape Canaveral Air-Force Station (CCAFS)ln Florida issues a probability of lightning occurrence in their daily 24-hour and weekly planning forecasts. This information is used for general planning of operations at CCAFS and Kennedy Space Center (KSC). These facilities are located in east-central Florida at the east end of a corridor known as 'Lightning Alley', an indication that lightning has a large impact on space-lift operations. Much of the current lightning probability forecast is based on a subjective analysis of model and observational data and an objective forecast tool developed over 30 years ago. The 45 WS requested that a new lightning probability forecast tool based on statistical analysis of more recent historical warm season (May-September) data be developed in order to increase the objectivity of the daily thunderstorm probability forecast. The resulting tool is a set of statistical lightning forecast equations, one for each month of the warm season, that provide a lightning occurrence probability for the day by 1100 UTC (0700 EDT) during the warm season.

  7. Spectral Analysis

    CERN Document Server

    Cecconi, Jaures

    2011-01-01

    G. Bottaro: Quelques resultats d'analyse spectrale pour des operateurs differentiels a coefficients constants sur des domaines non bornes.- L. Garding: Eigenfuction expansions.- C. Goulaouic: Valeurs propres de problemes aux limites irreguliers: applications.- G. Grubb: Essential spectra of elliptic systems on compact manifolds.- J.Cl. Guillot: Quelques resultats recents en Scattering.- N. Schechter: Theory of perturbations of partial differential operators.- C.H. Wilcox: Spectral analysis of the Laplacian with a discontinuous coefficient.

  8. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  9. Planck 2013 results. IX. HFI spectral response

    CERN Document Server

    Ade, P A R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, L -Y; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Comis, B; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Giard, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leahy, J P; Leonardi, R; Leroy, C; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; McGehee, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; North, C; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Santos, D; Savini, G; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (including out-of-band signal rejection) of all HFI detectors. This was determined by measuring the output of a continuously scanned Fourier transform spectrometer coupled with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. Ver...

  10. Advanced Signal Analysis for Forensic Applications of Ground Penetrating Radar

    Energy Technology Data Exchange (ETDEWEB)

    Steven Koppenjan; Matthew Streeton; Hua Lee; Michael Lee; Sashi Ono

    2004-06-01

    Ground penetrating radar (GPR) systems have traditionally been used to image subsurface objects. The main focus of this paper is to evaluate an advanced signal analysis technique. Instead of compiling spatial data for the analysis, this technique conducts object recognition procedures based on spectral statistics. The identification feature of an object type is formed from the training vectors by a singular-value decomposition procedure. To illustrate its capability, this procedure is applied to experimental data and compared to the performance of the neural-network approach.

  11. [The ground reflectance spectrum retrieval from ETM images].

    Science.gov (United States)

    Chen, Chun; Wu, Yu-Hang; Liu, Zhi-Ming; He, Hai-Jian

    2007-04-01

    Retrieval of ground reflectance spectrum from satellite sensor digital count requires knowledge of the atmospheric conditions. Images of spectral radiance from ground-atmosphere system recorded by the multi-spectral imager ETM which boarded Landsat-7 sensor can retrieve the ground reflectivity spectrum. The uncertainty of reflectance spectrum retrieval is no more than 17% at the band 1 of ETM, and less than 10% at the band 2 and 3 of ETM. It is superior to those arithmetics widely used at present. Retrieval of ground radiance spectrum from ground-atmosphere system can be used to synthesize the sRGB true color image, but the definition is not excellent. And it was proved that the color of the images can not reflect the actual nature of earth objects before being adjusted. And the accuracy of interpretation based on true color synthesized images is superior to those based on the source images. So the precision of such reflectance spectrum retrieval is not as good as expected if applied to the true color photography on the ground.

  12. Detecting salient objects based on spectral residual and multi-resolution%基于谱残差和多分辨率分析的显著目标检测

    Institute of Scientific and Technical Information of China (English)

    刘娟妮; 彭进业; 李大湘; 王平

    2011-01-01

    According to the characteristics of human visual system, a salient object detection method based on spectral residual and multi-resolution is proposed.We first compute the spectral residual of three features i.e.intensity, color and orientation under different scales to build a series of multi-resolution saliency maps, which can be combined through linear interpolation to generate three feature-saliency maps.Then we use k-means clustering for binary clustering and select the feature-saliency map with the largest distance between two centroids.Finally we apply dynamic threshold segmentation to get salient regions in an image.The experimental results on natural images show that the new algorithm is stable and practical, and we achieve satisfied results.%根据人类视觉系统的特点,提出一种融合谱残差和多分辨率分析的显著目标检测方法.该方法通过在不同尺度上计算图像的亮度、颜色以及方向特征的谱残差,构建多分辨率显著性图谱序列,然后用线性插值方法将不同分辨率的特征显著图叠加得到3个特征显著图,再利用k均值聚类算法将每个特征显著图聚为两类,选择聚类中心距离最大的特征显著图作为最终的显著图,最后经过动态阈值处理获得图像的显著目标区域.基于自然图像的显著目标检测实验结果表明,该方法具有较强的稳定性和实用性,得到较为满意的检测结果.

  13. Spectral Ranking

    CERN Document Server

    Vigna, Sebastiano

    2009-01-01

    This note tries to attempt a sketch of the history of spectral ranking, a general umbrella name for techniques that apply the theory of linear maps (in particular, eigenvalues and eigenvectors) to matrices that do not represent geometric transformations, but rather some kind of relationship between entities. Albeit recently made famous by the ample press coverage of Google's PageRank algorithm, spectral ranking was devised more than fifty years ago, almost exactly in the same terms, and has been studied in psychology and social sciences. I will try to describe it in precise and modern mathematical terms, highlighting along the way the contributions given by previous scholars.

  14. Large Spectral Library Problem

    Energy Technology Data Exchange (ETDEWEB)

    Chilton, Lawrence K.; Walsh, Stephen J.

    2008-10-03

    Hyperspectral imaging produces a spectrum or vector at each image pixel. These spectra can be used to identify materials present in the image. In some cases, spectral libraries representing atmospheric chemicals or ground materials are available. The challenge is to determine if any of the library chemicals or materials exist in the hyperspectral image. The number of spectra in these libraries can be very large, far exceeding the number of spectral channels collected in the ¯eld. Suppose an image pixel contains a mixture of p spectra from the library. Is it possible to uniquely identify these p spectra? We address this question in this paper and refer to it as the Large Spectral Library (LSL) problem. We show how to determine if unique identi¯cation is possible for any given library. We also show that if p is small compared to the number of spectral channels, it is very likely that unique identi¯cation is possible. We show that unique identi¯cation becomes less likely as p increases.

  15. Spectral Tagging

    Energy Technology Data Exchange (ETDEWEB)

    Smartt, Heidi A. [Sandia National Laboratories (United States)

    2003-05-01

    This research examines the feasibility of spectral tagging, which involves modifying the spectral signature of a target, e.g. by mixing an additive with the target's paint. The target is unchanged to the human eye, but the tag is revealed when viewed with a spectrometer. This project investigates a layer of security that is not obvious, and therefore easy to conceal. The result is a tagging mechanism that is difficult to counterfeit. Uniquely tagging an item is an area of need in safeguards and security and non-proliferation. The powdered forms of the minerals lapis lazuli and olivine were selected as the initial test tags due to their availability and uniqueness in the visible to near-infrared spectral region. They were mixed with paints and applied to steel. In order to verify the presence of the tags quantitatively, the data from the spectrometer was input into unmixing models and signal detection algorithms. The mixture with the best results was blue paint mixed with lapis lazuli and olivine. The tag had a 0% probability of false alarm and a 100% probability of detection. The research proved that spectral tagging is feasible, although certain tag/paint mixtures are more detectable than others.

  16. Objective Performance Evaluation of Video Segmentation Algorithms with Ground-Truth%一种客观的视频对象分割算法性能评价方法

    Institute of Scientific and Technical Information of China (English)

    杨高波; 张兆扬

    2004-01-01

    While the development of particular video segmentation algorithms has attracted considerable research interest, relatively little effort has been devoted to provide a methodology for evaluating their performance.In this paper, we propose a methodology to objectively evaluate video segmentation algorithm with ground-truth, which is based on computing the deviation of segmentation results from the reference segmentation.Four different metrics based on classification pixels, edges, relative foreground area and relative position respectively are combined to address the spatial accuracy.Temporal coherency is evaluated by utilizing the difference of spatial accuracy between successive frames.The experimental results show the feasibility of our approach.Moreover, it is computationally more efficient than previous methods.It can be applied to provide an offline ranking among different segmentation algorithms and to optimally set the parameters for a given algorithm.

  17. Spectral Predictors

    Energy Technology Data Exchange (ETDEWEB)

    Ibarria, L; Lindstrom, P; Rossignac, J

    2006-11-17

    Many scientific, imaging, and geospatial applications produce large high-precision scalar fields sampled on a regular grid. Lossless compression of such data is commonly done using predictive coding, in which weighted combinations of previously coded samples known to both encoder and decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective transmission, the spatial pattern of the known neighbors is often irregular and varies from one sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To handle such situations and make the best use of available neighboring samples, we propose a local spectral predictor that offers optimal prediction by tailoring the weights to each configuration of known nearby samples. These weights may be precomputed and stored in a small lookup table. We show that predictive coding using our spectral predictor improves compression for various sources of high-precision data.

  18. Orientation effect on ground motion measurement for Mexican subduction earthquakes

    Institute of Scientific and Technical Information of China (English)

    H.P Hong; A. Pozos-Estrada; R. Gomez

    2009-01-01

    The existence of the principal directions of the ground motion based on Arias intensity is well-known. These principal directions do not necessarily coincide with the orientations of recording sensors or with the orientations along which the ground motion parameters such as the peak ground acceleration and the pseudo-spectral acceleration (PSA) are maximum. This is evidenced by the fact that the maximum PSA at different natural vibration periods for horizontal excitations do not correspond to the same orientation. A recent analysis carried out for California earthquake records suggests that an orientation-dependent ground motion measurement for horizontal excitations can be developed. The main objective of this study is to investigate and provide seismic ground motion measurements in the horizontal plane, including bidirectional horizontal ground motions, for Mexican interplate and inslab earthquake records. Extensive statistical analyses of PSA are conducted for the assessment, The analysis results suggest that similar to the case of California records, the average behavior of the ratio of the PSA to the maximum resulting PSA can be approximated by a quarter of an ellipse in one quadrant; and that the ratio can be considered to be independent of the value of the maximum resulting PSA, earthquake magnitude, earthquake distance and the focal depth. Sets of response ratios and attenuation relationships that can be used to represent a bidirectional horizontal ground motion measurement for Mexican interplate and inslab earthquakes were also developed.

  19. Grounded theory.

    Science.gov (United States)

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  20. Analysis of SNR for ground-based infrared detection of space object%空间目标红外地基探测的信噪比分析

    Institute of Scientific and Technical Information of China (English)

    杨帆; 宣益民; 韩玉阁

    2012-01-01

    A simulation model for sky background radiation, atmosphere transmission, and ground-based sensor was proposed. Based on the proposed model and the existing model for studying the infrared radiometric feature of a LEO satellite, a proposal for investigating the infrared detection of space object was put forward. The proposal was used to calculate the signal-to-noise ratio(SNR) of the sensor received from a modeling satellite, thereby the detection effect of satellite at different transit time was analyzed. The method to choose the best observation band in different case was advanced by comparing the character of SNR on various IR bands. It can be concluded from the results that the SNR on the near infrared band is very high when the ground sensor is in the earth's shadow and the object is sunlit. No signal is detected in the sensor when the object is in the earth's shadow. In the far infrared band, the object can be always detected either it is sunlit or in the earth's shadow. However, the SNR gets smaller when the surface temperature of the satellite is lower or the range of detection is larger. In addition, due to the sun-oriented character of the battery panels, the signal detected by the sensor varies with the solar elevation angle.%建立了天空背景辐射、大气传输和地基探测系统的仿真模型,并基于已有的低轨道卫星红外辐射特性的模型,整合了一套研究空间目标红外探测的方案.利用该方案计算了探测器对卫星探测的信噪比,分析了卫星在不同过境时间的红外地基探测的效果.通过比较不同红外波段的探测信噪特性,探究了在不同情况下如何选择最佳的观测波段.研究结果显示,当目标处于日照区而观测点在阴影区时,近红外波段的探测信噪比很高,当目标进入阴影区后该波段无探测信号.不论卫星是在日照区还是阴影区,远红外波段始终可进行探测,但是当卫星表面温度较低或者距离较

  1. Grounded cognition.

    Science.gov (United States)

    Barsalou, Lawrence W

    2008-01-01

    Grounded cognition rejects traditional views that cognition is computation on amodal symbols in a modular system, independent of the brain's modal systems for perception, action, and introspection. Instead, grounded cognition proposes that modal simulations, bodily states, and situated action underlie cognition. Accumulating behavioral and neural evidence supporting this view is reviewed from research on perception, memory, knowledge, language, thought, social cognition, and development. Theories of grounded cognition are also reviewed, as are origins of the area and common misperceptions of it. Theoretical, empirical, and methodological issues are raised whose future treatment is likely to affect the growth and impact of grounded cognition.

  2. Spectral Classification Beyond M

    CERN Document Server

    Leggett, S K; Burgasser, A J; Jones, H R A; Marley, M S; Tsuji, T

    2004-01-01

    Significant populations of field L and T dwarfs are now known, and we anticipate the discovery of even cooler dwarfs by Spitzer and ground-based infrared surveys. However, as the number of known L and T dwarfs increases so does the range in their observational properties, and difficulties have arisen in interpreting the observations. Although modellers have made significant advances, the complexity of the very low temperature, high pressure, photospheres means that problems remain such as the treatment of grain condensation as well as incomplete and non-equilibrium molecular chemistry. Also, there are several parameters which control the observed spectral energy distribution - effective temperature, grain sedimentation efficiency, metallicity and gravity - and their effects are not well understood. In this paper, based on a splinter session, we discuss classification schemes for L and T dwarfs, their dependency on wavelength, and the effects of the parameters T_eff, f_sed, [m/H] and log g on optical and infra...

  3. Global and local aspects of spectral actions

    CERN Document Server

    Iochum, Bruno; Vassilevich, Dmitri

    2012-01-01

    The principal object in noncommutatve geometry is the spectral triple consisting of an algebra A, a Hilbert space H, and a Dirac operator D. Field theories are incorporated in this approach by the spectral action principle, that sets the field theory action to Tr f(D^2/\\Lambda^2), where f is a real function such that the trace exists, and \\Lambda is a cutoff scale. In the low-energy (weak-field) limit the spectral action reproduces reasonably well the known physics including the standard model. However, not much is known about the spectral action beyond the low-energy approximation. In this paper, after an extensive introduction to spectral triples and spectral actions, we study various expansions of the spectral actions (exemplified by the heat kernel). We derive the convergence criteria. For a commutative spectral triple, we compute the heat kernel on the torus up the second order in gauge connection and consider limiting cases.

  4. Comprehensive Spectral Signal Investigation of a Larch Forest Combining - and Satellite-Based Measurements

    Science.gov (United States)

    Landmann, J. M.; Rutzinger, M.; Bremer, M.; chmidtner, K.

    2016-06-01

    Collecting comprehensive knowledge about spectral signals in areas composed by complex structured objects is a challenging task in remote sensing. In the case of vegetation, shadow effects on reflectance are especially difficult to determine. This work analyzes a larch forest stand (Larix decidua MILL.) in Pinnis Valley (Tyrol, Austria). The main goal is extracting the larch spectral signal on Landsat 8 (LS8) Operational Land Imager (OLI) images using ground measurements with the Cropscan Multispectral Radiometer with five bands (MSR5) simultaneously to satellite overpasses in summer 2015. First, the relationship between field spectrometer and OLI data on a cultivated grassland area next to the forest stand is investigated. Median ground measurements for each of the grassland parcels serve for calculation of the mean difference between the two sensors. Differences are used as "bias correction" for field spectrometer values. In the main step, spectral unmixing of the OLI images is applied to the larch forest, specifying the larch tree spectral signal based on corrected field spectrometer measurements of the larch understory. In order to determine larch tree and shadow fractions on OLI pixels, a representative 3D tree shape is used to construct a digital forest. Benefits of this approach are the computational savings compared to a radiative transfer modeling. Remaining shortcomings are the limited capability to consider exact tree shapes and nonlinear processes. Different methods to implement shadows are tested and spectral vegetation indices like the Normalized Difference Vegetation Index (NDVI) and Greenness Index (GI) can be computed even without considering shadows.

  5. Multi-year objective analyses of warm season ground-level ozone and PM2.5 over North America using real-time observations and Canadian operational air quality models

    Science.gov (United States)

    Robichaud, A.; Ménard, R.

    2014-02-01

    Multi-year objective analyses (OA) on a high spatiotemporal resolution for the warm season period (1 May to 31 October) for ground-level ozone and for fine particulate matter (diameter less than 2.5 microns (PM2.5)) are presented. The OA used in this study combines model outputs from the Canadian air quality forecast suite with US and Canadian observations from various air quality surface monitoring networks. The analyses are based on an optimal interpolation (OI) with capabilities for adaptive error statistics for ozone and PM2.5 and an explicit bias correction scheme for the PM2.5 analyses. The estimation of error statistics has been computed using a modified version of the Hollingsworth-Lönnberg (H-L) method. The error statistics are "tuned" using a χ2 (chi-square) diagnostic, a semi-empirical procedure that provides significantly better verification than without tuning. Successful cross-validation experiments were performed with an OA setup using 90% of data observations to build the objective analyses and with the remainder left out as an independent set of data for verification purposes. Furthermore, comparisons with other external sources of information (global models and PM2.5 satellite surface-derived or ground-based measurements) show reasonable agreement. The multi-year analyses obtained provide relatively high precision with an absolute yearly averaged systematic error of less than 0.6 ppbv (parts per billion by volume) and 0.7 μg m-3 (micrograms per cubic meter) for ozone and PM2.5, respectively, and a random error generally less than 9 ppbv for ozone and under 12 μg m-3 for PM2.5. This paper focuses on two applications: (1) presenting long-term averages of OA and analysis increments as a form of summer climatology; and (2) analyzing long-term (decadal) trends and inter-annual fluctuations using OA outputs. The results show that high percentiles of ozone and PM2.5 were both following a general decreasing trend in North America, with the eastern

  6. Reflective type objective based spectral-domain phase-sensitive optical coherence tomography for high-sensitive structural and functional imaging of cochlear microstructures through intact bone of an excised guinea pig cochlea

    Science.gov (United States)

    Subhash, Hrebesh M.; Wang, Ruikang K.; Chen, Fangyi; Nuttall, Alfred L.

    2013-03-01

    Most of the optical coherence tomographic (OCT) systems for high resolution imaging of biological specimens are based on refractive type microscope objectives, which are optimized for specific wave length of the optical source. In this study, we present the feasibility of using commercially available reflective type objective for high sensitive and high resolution structural and functional imaging of cochlear microstructures of an excised guinea pig through intact temporal bone. Unlike conventional refractive type microscopic objective, reflective objective are free from chromatic aberrations due to their all-reflecting nature and can support a broadband of spectrum with very high light collection efficiency.

  7. Spectral functions of hadrons in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Y.; Asakawa, M. [Nagoya Univ. (Japan). Dept. of Physics; Hatsuda, T. [Kyoto Univ. (Japan). Dept. of Physics

    2000-01-01

    Using the maximum entropy method, spectral functions of the pseudo-scalar and vector mesons are extracted from lattice Monte Carlo data of the imaginary time Green's functions. The resonance and continuum structures as well as the ground state peaks are successfully obtained. Error analysis of the resultant spectral functions is also given on the basis of the Bayes probability theory. (author)

  8. New spectral types in NGC 3603

    Science.gov (United States)

    Morrell, N.; Melena, N.; Massey, P.; Zangari, A.

    NGC 3603 is a giant H II region known to harbor a large population of massive stars. Its central cluster is the closest galactic counterpart to the R136 cluster in 30 Dor, in the Large Magellanic Cloud (Walborn 1973). It is very compact (76 arcsecs in diameter) which makes it an extremely difficult target for individual stars spectroscopy. Some stars lying mostly in the periphery of NGC 3603 have been classified from the ground by Moffat (1983), but for the highly crowded core only one study was available at present (Drissen et al. 1995), which was performed with the Faint Object Spectrograph on board of the Hubble Space Telescope (HST). Among the massive members of NGC 3603 there are some of the objects showing H-rich WN + abs spectra, also found in the R136 cluster in 30 Doradus (Massey & Hunter 1998). During 2 nights in April 2006, we have made use of the excellent seeing and large aperture of the Magellan telescopes to obtain individual spectroscopy for stars in the crowded core of NGC 3603. We used the IMACS spectrograph in F4 mode at the Baade (Magellan I) telescope, with a 600 l/mm grating and a 0.7 arcsec long slit. From these observations we were able to derive new spectral types for 26 stars: 16 of which are classified here for the first time, while for the remaining 10 we have revised previous spectral classifications, finding very good general agreement, but exact coincidence for only 2 of them. This rises to 38 the number of stars in this massive star forming region, for which spectral classification is available. Not surprisingly, most of the newly classified spectra belong to the earliest O-subtypes. This work is part of a more comprehensive study (Melena et al. 2007) in which archival HST/ACS-HRC images (P.I. Maiz-Apellaniz) have been used to derive new photometry for stars in the cluster, including those for which there is spectroscopy. Having new spectral types and improved photometry, allowed us to determine new values for the reddening (E (B

  9. Ibis ground calibration

    Energy Technology Data Exchange (ETDEWEB)

    Bird, A.J.; Barlow, E.J.; Tikkanen, T. [Southampton Univ., School of Physics and Astronomy (United Kingdom); Bazzano, A.; Del Santo, M.; Ubertini, P. [Istituto di Astrofisica Spaziale e Fisica Cosmica - IASF/CNR, Roma (Italy); Blondel, C.; Laurent, P.; Lebrun, F. [CEA Saclay - Sap, 91 - Gif sur Yvette (France); Di Cocco, G.; Malaguti, E. [Istituto di Astrofisica Spaziale e Fisica-Bologna - IASF/CNR (Italy); Gabriele, M.; La Rosa, G.; Segreto, A. [Istituto di Astrofisica Spaziale e Fisica- IASF/CNR, Palermo (Italy); Quadrini, E. [Istituto di Astrofisica Spaziale e Fisica-Cosmica, EASF/CNR, Milano (Italy); Volkmer, R. [Institut fur Astronomie und Astrophysik, Tubingen (Germany)

    2003-11-01

    We present an overview of results obtained from IBIS ground calibrations. The spectral and spatial characteristics of the detector planes and surrounding passive materials have been determined through a series of calibration campaigns. Measurements of pixel gain, energy resolution, detection uniformity, efficiency and imaging capability are presented. The key results obtained from the ground calibration have been: - optimization of the instrument tunable parameters, - determination of energy linearity for all detection modes, - determination of energy resolution as a function of energy through the range 20 keV - 3 MeV, - demonstration of imaging capability in each mode, - measurement of intrinsic detector non-uniformity and understanding of the effects of passive materials surrounding the detector plane, and - discovery (and closure) of various leakage paths through the passive shielding system.

  10. Ground Wars

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Kleis

    Political campaigns today are won or lost in the so-called ground war--the strategic deployment of teams of staffers, volunteers, and paid part-timers who work the phones and canvass block by block, house by house, voter by voter. Ground Wars provides an in-depth ethnographic portrait of two...... infrastructures that utilize large databases with detailed individual-level information for targeting voters, and armies of dedicated volunteers and paid part-timers. Nielsen challenges the notion that political communication in America must be tightly scripted, controlled, and conducted by a select coterie...... of professionals. Yet he also quashes the romantic idea that canvassing is a purer form of grassroots politics. In today's political ground wars, Nielsen demonstrates, even the most ordinary-seeming volunteer knocking at your door is backed up by high-tech targeting technologies and party expertise. Ground Wars...

  11. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  12. The Design and Implementation of the Web Typical Surface Object Spectral Information System in Arid Areas Based on. NET and SuperMap%基于.NET和SuperMap的干旱区Web典型地物光谱信息系统的设计与实现

    Institute of Scientific and Technical Information of China (English)

    夏军; 塔西甫拉提·特依拜; 张飞; 姬洪亮

    2011-01-01

    地物波谱特性是遥感定量分析的基础,也是遥感基础研究的重要内容.干旱区绿洲典型地物光谱数据库对于遥感技术在土壤盐渍化方面的应用研究具有重要的意义.该文以渭干河-库车河三角洲绿洲为例,将.NET和SuperMap平台相结合,用SQL Server数据库存储数据,采用B/S模式,使用C#语言设计并开发了地物光谱信息系统,并针对干旱区绿洲的特点建立了典型地物光谱数据库.该系统实现了对研究区典型地物光谱信息及其相关属性数据的分类存储和管理;地图与属性数据的可视化双向查询;地物光谱响应曲线的绘制;导数光谱数据处理及曲线绘制,初步具备了简单的光谱数据挖掘和分析能力,为该地区后续土壤盐渍化研究提供了一个高效、可靠、便捷的数据管理和应用平台.该系统容易维护,便于二次开发,实际运行状况良好.%The characteristic of object spectrum is not only the base of the quantification analysis of remote sensing, but also the main content of the basic research of remote sensing. The typical surface object spectral database in arid areas oasis is of great significance for applied research on remote sensing in soil salinization. In the present paper, the authors took the Ugan-Kuqa River Delta Oasis as an example, unified. NET and the SuperMap platform with SQL Server database stored data, used the B/S pattern and the C# language to design and develop the typical surface object spectral information system, and established the typical surface object spectral database according to the characteristics of arid areas oasis. The system implemented the classified storage and the management of typical surface object spectral information and the related attribute data of the study areas; this system also implemented visualized two-way query between the maps and attribute data, the drawings of the surface object spectral response curves and the processing of the

  13. SPECTRAL ANALYSIS OF RADIOXENON

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Matthew W.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Hubbard, Charles W.; McIntyre, Justin I.; Schrom, Brian T.

    2008-09-23

    Monitoring changes in atmospheric radioxenon concentrations is a major tool in the detection of an underground nuclear explosion. Ground based systems like the Automated Radioxenon Sampler /Analyzer (ARSA), the Swedish Unattended Noble gas Analyzer (SAUNA) and the Automatic portable radiometer of isotopes Xe (ARIX), can collect and detect several radioxenon isotopes by processing and transferring samples into a high efficiency beta-gamma coincidence detector. The high efficiency beta-gamma coincidence detector makes these systems highly sensitive to the radioxenon isotopes 133Xe, 131mXe, 133mXe and 135Xe. The standard analysis uses regions of interest (ROI) to determine the amount of a particular radioxenon isotope present. The ROI method relies on the peaks of interest falling within energy limits of the ROI. Some potential problems inherent in this method are the reliance on stable detector gains and a fixed resolution for each energy peak. In addition, when a high activity sample is measured there will be more interference among the ROI, in particular within the 133Xe, 133mXe, and 131mXe regions. A solution to some of these problems can be obtained through spectral fitting of the data. Spectral fitting is simply the fitting of the peaks using known functions to determine the number and relative peak positions and widths. By knowing this information it is possible to determine which isotopes are present. Area under each peak can then be used to determine an overall concentration for each isotope. Using the areas of the peaks several key detector characteristics can be determined: efficiency, energy calibration, energy resolution and ratios between interfering isotopes (Radon daughters).

  14. Spectral Energy Distributions of SDSS Blazars

    Indian Academy of Sciences (India)

    H. Z. Li; L. E. Chen

    2014-09-01

    We compiled the radio, optical and X-ray data for SDSS sample, and presented broad band spectral index. The broad band energy distribution reveals that FSRQs and LBLs objects have similar spectral properties. However, HBLs have a separate distinct property. Even so, a unified scheme was also revealed from colour–colour diagram.

  15. Quantum Spectral Symmetries

    Science.gov (United States)

    Hamhalter, Jan; Turilova, Ekaterina

    2017-02-01

    Quantum symmetries of spectral lattices are studied. Basic properties of spectral order on A W ∗-algebras are summarized. Connection between projection and spectral automorphisms is clarified by showing that, under mild conditions, any spectral automorphism is a composition of function calculus and Jordan ∗-automorphism. Complete description of quantum spectral symmetries on Type I and Type II A W ∗-factors are completely described.

  16. Object crowding.

    Science.gov (United States)

    Wallace, Julian M; Tjan, Bosco S

    2011-05-25

    Crowding occurs when stimuli in the peripheral fields become harder to identify when flanked by other items. This phenomenon has been demonstrated extensively with simple patterns (e.g., Gabors and letters). Here, we characterize crowding for everyday objects. We presented three-item arrays of objects and letters, arranged radially and tangentially in the lower visual field. Observers identified the central target, and we measured contrast energy thresholds as a function of target-to-flanker spacing. Object crowding was similar to letter crowding in spatial extent but was much weaker. The average elevation in threshold contrast energy was in the order of 1 log unit for objects as compared to 2 log units for letters and silhouette objects. Furthermore, we examined whether the exterior and interior features of an object are differentially affected by crowding. We used a circular aperture to present or exclude the object interior. Critical spacings for these aperture and "donut" objects were similar to those of intact objects. Taken together, these findings suggest that crowding between letters and objects are essentially due to the same mechanism, which affects equally the interior and exterior features of an object. However, for objects defined with varying shades of gray, it is much easier to overcome crowding by increasing contrast.

  17. Performance Objectives

    Science.gov (United States)

    1978-12-01

    objectives may direct students’ learning (Duchastel and Merrill, 1973; Kapfer , 1970; Kibler et al., 1974), since such objectives may provide...matter learning. Journal of Educational Psychology, 62(1): 67-70 (1971). Kapfer , P. G. Behavioral objectives and the curriculum processor. Educational

  18. Prelaunch spectral calibration of a carbon dioxide spectrometer

    Science.gov (United States)

    Li, Zhigang; Lin, Chao; Li, Chengliang; Wang, Long; Ji, Zhenhua; Xue, Hao; Wei, Yuefeng; Gong, Chenghu; Gao, Minghui; Liu, Lei; Gao, Zhiliang; Zheng, Yuquan

    2017-06-01

    The carbon dioxide spectrometer (CDS) on board the Chinese Carbon Dioxide Observation Satellite (TanSat) is a high spectral and spatial resolution grating spectrometer with three specific spectral bands dedicated to atmospheric CO2 detection. The CDS’s design and on-ground spectral calibration are presented in this paper. The instrument line shape functions and spectral dispersion were characterized using a tunable diode laser-based testing system for all spectral pixels of the CDS placed in a thermal vacuum chamber.

  19. A framelet-based iterative maximum-likelihood reconstruction algorithm for spectral CT

    Science.gov (United States)

    Wang, Yingmei; Wang, Ge; Mao, Shuwei; Cong, Wenxiang; Ji, Zhilong; Cai, Jian-Feng; Ye, Yangbo

    2016-11-01

    Standard computed tomography (CT) cannot reproduce spectral information of an object. Hardware solutions include dual-energy CT which scans the object twice in different x-ray energy levels, and energy-discriminative detectors which can separate lower and higher energy levels from a single x-ray scan. In this paper, we propose a software solution and give an iterative algorithm that reconstructs an image with spectral information from just one scan with a standard energy-integrating detector. The spectral information obtained can be used to produce color CT images, spectral curves of the attenuation coefficient μ (r,E) at points inside the object, and photoelectric images, which are all valuable imaging tools in cancerous diagnosis. Our software solution requires no change on hardware of a CT machine. With the Shepp-Logan phantom, we have found that although the photoelectric and Compton components were not perfectly reconstructed, their composite effect was very accurately reconstructed as compared to the ground truth and the dual-energy CT counterpart. This means that our proposed method has an intrinsic benefit in beam hardening correction and metal artifact reduction. The algorithm is based on a nonlinear polychromatic acquisition model for x-ray CT. The key technique is a sparse representation of iterations in a framelet system. Convergence of the algorithm is studied. This is believed to be the first application of framelet imaging tools to a nonlinear inverse problem.

  20. Ground Motion Prediction Models for Caucasus Region

    Science.gov (United States)

    Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino

    2016-04-01

    Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.

  1. The Spectral Shift Function and Spectral Flow

    Science.gov (United States)

    Azamov, N. A.; Carey, A. L.; Sukochev, F. A.

    2007-11-01

    At the 1974 International Congress, I. M. Singer proposed that eta invariants and hence spectral flow should be thought of as the integral of a one form. In the intervening years this idea has lead to many interesting developments in the study of both eta invariants and spectral flow. Using ideas of [24] Singer’s proposal was brought to an advanced level in [16] where a very general formula for spectral flow as the integral of a one form was produced in the framework of noncommutative geometry. This formula can be used for computing spectral flow in a general semifinite von Neumann algebra as described and reviewed in [5]. In the present paper we take the analytic approach to spectral flow much further by giving a large family of formulae for spectral flow between a pair of unbounded self-adjoint operators D and D + V with D having compact resolvent belonging to a general semifinite von Neumann algebra {mathcal{N}} and the perturbation V in {mathcal{N}} . In noncommutative geometry terms we remove summability hypotheses. This level of generality is made possible by introducing a new idea from [3]. There it was observed that M. G. Krein’s spectral shift function (in certain restricted cases with V trace class) computes spectral flow. The present paper extends Krein’s theory to the setting of semifinite spectral triples where D has compact resolvent belonging to {mathcal{N}} and V is any bounded self-adjoint operator in {mathcal{N}} . We give a definition of the spectral shift function under these hypotheses and show that it computes spectral flow. This is made possible by the understanding discovered in the present paper of the interplay between spectral shift function theory and the analytic theory of spectral flow. It is this interplay that enables us to take Singer’s idea much further to create a large class of one forms whose integrals calculate spectral flow. These advances depend critically on a new approach to the calculus of functions of non

  2. Comparison of Advanced Pixel Based (ANN and SVM) and Object-Oriented Classification Approaches Using Landsat-7 Etm+ Data

    OpenAIRE

    Prasun Kumar Gupta; Gaurav Kalidas Pakhale

    2010-01-01

    In this study, the pixel-based and object-oriented image classification approaches were used for identifying different land use types in Karnal district. Imagery from Landsat-7 ETM with 6 spectral bands was used to perform the image classification.Ground truth data were collected from the available maps, personal knowledge and communication with the local people. In order to prepare land use map different approaches: Artificial Neural Network(ANN) and Support Vector Machine (SVM) were used. F...

  3. Agile Objects

    Science.gov (United States)

    German, Senta; Harris, Jim

    2017-01-01

    In this article, the authors argue that the art-historical canon, however it is construed, has little relevance to the selection of objects for museum-based teaching. Their contention is that all objects are fundamentally agile and capable of interrogation from any number of disciplinary standpoints, and that the canon of museum education,…

  4. Adaptable Multivariate Calibration Models for Spectral Applications

    Energy Technology Data Exchange (ETDEWEB)

    THOMAS,EDWARD V.

    1999-12-20

    Multivariate calibration techniques have been used in a wide variety of spectroscopic situations. In many of these situations spectral variation can be partitioned into meaningful classes. For example, suppose that multiple spectra are obtained from each of a number of different objects wherein the level of the analyte of interest varies within each object over time. In such situations the total spectral variation observed across all measurements has two distinct general sources of variation: intra-object and inter-object. One might want to develop a global multivariate calibration model that predicts the analyte of interest accurately both within and across objects, including new objects not involved in developing the calibration model. However, this goal might be hard to realize if the inter-object spectral variation is complex and difficult to model. If the intra-object spectral variation is consistent across objects, an effective alternative approach might be to develop a generic intra-object model that can be adapted to each object separately. This paper contains recommendations for experimental protocols and data analysis in such situations. The approach is illustrated with an example involving the noninvasive measurement of glucose using near-infrared reflectance spectroscopy. Extensions to calibration maintenance and calibration transfer are discussed.

  5. Relations among Early Object Recognition Skills: Objects and Letters

    Science.gov (United States)

    Augustine, Elaine; Jones, Susan S.; Smith, Linda B.; Longfield, Erica

    2015-01-01

    Human visual object recognition is multifaceted and comprised of several domains of expertise. Developmental relations between young children's letter recognition and their 3-dimensional object recognition abilities are implicated on several grounds but have received little research attention. Here, we ask how preschoolers' success in recognizing…

  6. Impact of ground motion characterization on conservatism and variability in seismic risk estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, R.T.; Toro, G.R.; McGuire, R.K.

    1996-07-01

    This study evaluates the impact, on estimates of seismic risk and its uncertainty, of alternative methods in treatment and characterization of earthquake ground motions. The objective of this study is to delineate specific procedures and characterizations that may lead to less biased and more precise seismic risk results. This report focuses on sources of conservatism and variability in risk that may be introduced through the analytical processes and ground-motion descriptions which are commonly implemented at the interface of seismic hazard and fragility assessments. In particular, implication of the common practice of using a single, composite spectral shape to characterize motions of different magnitudes is investigated. Also, the impact of parameterization of ground motion on fragility and hazard assessments is shown. Examination of these results demonstrates the following. (1) There exists significant conservatism in the review spectra (usually, spectra characteristic of western U.S. earthquakes) that have been used in conducting past seismic risk assessments and seismic margin assessments for eastern U.S. nuclear power plants. (2) There is a strong dependence of seismic fragility on earthquake magnitude when PGA is used as the ground-motion characterization. When, however, magnitude-dependent spectra are anchored to a common measure of elastic spectral acceleration averaged over the appropriate frequency range, seismic fragility shows no important nor consistent dependence on either magnitude or strong-motion duration. Use of inelastic spectral acceleration (at the proper frequency) as the ground spectrum anchor demonstrates a very similar result. This study concludes that a single, composite-magnitude spectrum can generally be used to characterize ground motion for fragility assessment without introducing significant bias or uncertainty in seismic risk estimates.

  7. Advanced Spectral Library II: Hot Stars

    Science.gov (United States)

    Ayres, Thomas

    2013-10-01

    Stars are the bright matter of the Universe. Without them, it would be a dull and dreary place indeed: no light, no heavy elements, no planets, no life. It also is safe to say that stellar spectroscopy is a cornerstone of astrophysics, providing much of what we know concerning temperatures and masses of stars, their compositions, planets, and the dynamics and evolution of the galaxies they inhabit. This is especially true for the satellite ultraviolet, owing to the rich collection of atomic and ionic transitions found there. Unfortunately, the archive of Space Telescope Imaging Spectrograph rarely achieves the high S/N of the best ground-based spectra, and relatively few objects have the full wavelength coverage for which the powerful, highly multiplexed, second generation Hubble instrument was designed. Our aim is to collect STIS UV echelle spectra - comparable in S/N and resolution to the best ground-based material - for a diverse sample of representative stars, to build an Advanced Spectral Library; a foundation for astrophysical exploration: stellar, interstellar, and beyond. Our first effort, in Cycle 18, involved cool stars. Now we turn attention to the hot side of the H-R diagram.Our Treasury program will provide detailed stellar "atlases," based on advanced processing of the STIS echellegrams. Members of our broad collaboration will analyze these data for specific purposes, such as dynamics of O-star mass-loss; detection of rare species in sharp-lined B stars; and properties and kinematics of local interstellar clouds; but public release {based on the "ASTRAL-I" model} will enable many other investigations by a much wider community, for decades to come.

  8. Spectral Reconstruction for Obtaining Virtual Hyperspectral Images

    Science.gov (United States)

    Perez, G. J. P.; Castro, E. C.

    2016-12-01

    Hyperspectral sensors demonstrated its capabalities in identifying materials and detecting processes in a satellite scene. However, availability of hyperspectral images are limited due to the high development cost of these sensors. Currently, most of the readily available data are from multi-spectral instruments. Spectral reconstruction is an alternative method to address the need for hyperspectral information. The spectral reconstruction technique has been shown to provide a quick and accurate detection of defects in an integrated circuit, recovers damaged parts of frescoes, and it also aids in converting a microscope into an imaging spectrometer. By using several spectral bands together with a spectral library, a spectrum acquired by a sensor can be expressed as a linear superposition of elementary signals. In this study, spectral reconstruction is used to estimate the spectra of different surfaces imaged by Landsat 8. Four atmospherically corrected surface reflectance from three visible bands (499 nm, 585 nm, 670 nm) and one near-infrared band (872 nm) of Landsat 8, and a spectral library of ground elements acquired from the United States Geological Survey (USGS) are used. The spectral library is limited to 420-1020 nm spectral range, and is interpolated at one nanometer resolution. Singular Value Decomposition (SVD) is used to calculate the basis spectra, which are then applied to reconstruct the spectrum. The spectral reconstruction is applied for test cases within the library consisting of vegetation communities. This technique was successful in reconstructing a hyperspectral signal with error of less than 12% for most of the test cases. Hence, this study demonstrated the potential of simulating information at any desired wavelength, creating a virtual hyperspectral sensor without the need for additional satellite bands.

  9. Trusted Objects

    Energy Technology Data Exchange (ETDEWEB)

    CAMPBELL,PHILIP L.; PIERSON,LYNDON G.; WITZKE,EDWARD L.

    1999-10-27

    In the world of computers a trusted object is a collection of possibly-sensitive data and programs that can be allowed to reside and execute on a computer, even on an adversary's machine. Beyond the scope of one computer we believe that network-based agents in high-consequence and highly reliable applications will depend on this approach, and that the basis for such objects is what we call ''faithful execution.''

  10. Object theatre

    DEFF Research Database (Denmark)

    Ryöppy, Merja; Heiberg, Andreas

    2015-01-01

    possibilities to emerge. We present a study in which the Object Theatre approach is applied to redesign socially shared everyday products that are located in public places. This project demonstrates how Object Theatre offers a broad perspective form which to explore and present product interactions....... In particular, it emphasises the understanding of a product by relating and changing perspectives, and takes into account context of use and diverse social settings....

  11. A novel approach to modeling spacecraft spectral reflectance

    Science.gov (United States)

    Willison, Alexander; Bédard, Donald

    2016-10-01

    Simulated spectrometric observations of unresolved resident space objects are required for the interpretation of quantities measured by optical telescopes. This allows for their characterization as part of regular space surveillance activity. A peer-reviewed spacecraft reflectance model is necessary to help improve the understanding of characterization measurements. With this objective in mind, a novel approach to model spacecraft spectral reflectance as an overall spectral bidirectional reflectance distribution function (sBRDF) is presented. A spacecraft's overall sBRDF is determined using its triangular-faceted computer-aided design (CAD) model and the empirical sBRDF of its homogeneous materials. The CAD model is used to determine the proportional contribution of each homogeneous material to the overall reflectance. Each empirical sBRDF is contained in look-up tables developed from measurements made over a range of illumination and reflection geometries using simple interpolation and extrapolation techniques. A demonstration of the spacecraft reflectance model is provided through simulation of an optical ground truth characterization using the Canadian Advanced Nanospace eXperiment-1 Engineering Model nanosatellite as the subject. Validation of the reflectance model is achieved through a qualitative comparison of simulated and measured quantities.

  12. Spectral Estimation of NMR Relaxation

    Science.gov (United States)

    Naugler, David G.; Cushley, Robert J.

    2000-08-01

    In this paper, spectral estimation of NMR relaxation is constructed as an extension of Fourier Transform (FT) theory as it is practiced in NMR or MRI, where multidimensional FT theory is used. nD NMR strives to separate overlapping resonances, so the treatment given here deals primarily with monoexponential decay. In the domain of real error, it is shown how optimal estimation based on prior knowledge can be derived. Assuming small Gaussian error, the estimation variance and bias are derived. Minimum bias and minimum variance are shown to be contradictory experimental design objectives. The analytical continuation of spectral estimation is constructed in an optimal manner. An important property of spectral estimation is that it is phase invariant. Hence, hypercomplex data storage is unnecessary. It is shown that, under reasonable assumptions, spectral estimation is unbiased in the context of complex error and its variance is reduced because the modulus of the whole signal is used. Because of phase invariance, the labor of phasing and any error due to imperfect phase can be avoided. A comparison of spectral estimation with nonlinear least squares (NLS) estimation is made analytically and with numerical examples. Compared to conventional sampling for NLS estimation, spectral estimation would typically provide estimation values of comparable precision in one-quarter to one-tenth of the spectrometer time when S/N is high. When S/N is low, the time saved can be used for signal averaging at the sampled points to give better precision. NLS typically provides one estimate at a time, whereas spectral estimation is inherently parallel. The frequency dimensions of conventional nD FT NMR may be denoted D1, D2, etc. As an extension of nD FT NMR, one can view spectral estimation of NMR relaxation as an extension into the zeroth dimension. In nD NMR, the information content of a spectrum can be extracted as a set of n-tuples (ω1, … ωn), corresponding to the peak maxima

  13. Million object spectrograph

    Science.gov (United States)

    Ditto, Thomas D.; Ritter, Joseph M.

    2008-07-01

    A new class of astronomical telescope with a primary objective grating (POG) has been studied as an alternative to mirrors. Nineteenth century POG telescopes suffered from low resolution and ambiguity of overlapping spectra as well as background noise. The present design uses a conventional secondary spectrograph to disambiguate all objects while enjoying a very wide instantaneous field-of-view, up to 40°. The POG competes with mirrors, in part, because diffraction gratings provide the very chromatic dispersion that mirrors defeat. The resulting telescope deals effectively with long-standing restrictions on multiple object spectrographs (MOS). The combination of a POG operating in the first-order, coupled to a spectrographic astronomical telescope, isolates spectra from all objects in the free spectral range of the primary. First disclosed as a concept in year 2002, a physical proof-of-principle is now reported. The miniature laboratory model used a 50 mm plane grating primary and was able to disambiguate between objects appearing at angular resolutions of 55 arcseconds and spectral spacings of 0.15 nm. Astronomical performance is a matter of increasing instrument size. A POG configured according to our specifications has no moving parts during observations and is extensible to any length that can be held flat to tolerances approaching float glass. The resulting telescope could record over one million spectra per night of objects in a line of right ascension. The novel MOS does not require pre-imaging to start acquisition of uncharted star fields. Problems are anticipated in calibration and integration time. We propose means to ameliorate them.

  14. 'Grounded' Politics

    DEFF Research Database (Denmark)

    Schmidt, Garbi

    2012-01-01

    play within one particular neighbourhood: Nørrebro in the Danish capital, Copenhagen. The article introduces the concept of grounded politics to analyse how groups of Muslim immigrants in Nørrebro use the space, relationships and history of the neighbourhood for identity political statements....... The article further describes how national political debates over the Muslim presence in Denmark affect identity political manifestations within Nørrebro. By using Duncan Bell’s concept of mythscape (Bell, 2003), the article shows how some political actors idealize Nørrebro’s past to contest the present...

  15. Spectral Clustering with Imbalanced Data

    OpenAIRE

    Qian, Jing; Saligrama, Venkatesh

    2013-01-01

    Spectral clustering is sensitive to how graphs are constructed from data particularly when proximal and imbalanced clusters are present. We show that Ratio-Cut (RCut) or normalized cut (NCut) objectives are not tailored to imbalanced data since they tend to emphasize cut sizes over cut values. We propose a graph partitioning problem that seeks minimum cut partitions under minimum size constraints on partitions to deal with imbalanced data. Our approach parameterizes a family of graphs, by ada...

  16. Efficient integration of spectral features for vehicle tracking utilizing an adaptive sensor

    Science.gov (United States)

    Uzkent, Burak; Hoffman, Matthew J.; Vodacek, Anthony

    2015-03-01

    Object tracking in urban environments is an important and challenging problem that is traditionally tackled using visible and near infrared wavelengths. By inserting extended data such as spectral features of the objects one can improve the reliability of the identification process. However, huge increase in data created by hyperspectral imaging is usually prohibitive. To overcome the complexity problem, we propose a persistent air-to-ground target tracking system inspired by a state-of-the-art, adaptive, multi-modal sensor. The adaptive sensor is capable of providing panchromatic images as well as the spectra of desired pixels. This addresses the data challenge of hyperspectral tracking by only recording spectral data as needed. Spectral likelihoods are integrated into a data association algorithm in a Bayesian fashion to minimize the likelihood of misidentification. A framework for controlling spectral data collection is developed by incorporating motion segmentation information and prior information from a Gaussian Sum filter (GSF) movement predictions from a multi-model forecasting set. An intersection mask of the surveillance area is extracted from OpenStreetMap source and incorporated into the tracking algorithm to perform online refinement of multiple model set. The proposed system is tested using challenging and realistic scenarios generated in an adverse environment.

  17. Fashion Objects

    DEFF Research Database (Denmark)

    Andersen, Bjørn Schiermer

    2009-01-01

    This article attempts to create a framework for understanding modern fashion phenomena on the basis of Durkheim's sociology of religion. It focuses on Durkheim's conception of the relation between the cult and the sacred object, on his notion of 'exteriorisation', and on his theory of the social...... symbol in an attempt to describe the peculiar attraction of the fashion object and its social constitution. However, Durkheim's notions of cult and ritual must undergo profound changes if they are to be used in an analysis of fashion. The article tries to expand the Durkheimian cult, radically enlarging...... it without totally dispersing it; depicting it as held together exclusively by the sheer 'force' of the sacred object. Firstly, the article introduces the themes and problems surrounding Durkheim's conception of the sacred. Next, it briefly sketches an outline of fashion phenomena in Durkheimian categories...

  18. Novel spectral features of nanoelectromechanical systems

    KAUST Repository

    Tahir, M.

    2014-02-17

    Electron transport through a quantum dot or single molecule coupled to a quantum oscillator is studied by the Keldysh nonequilibrium Green\\'s function formalism to obtain insight into the quantum dynamics of the electronic and oscillator degrees of freedom. We tune the electronic level of the quantum dot by a gate voltage, where the leads are kept at zero temperature. Due to the nonequilibrium distribution of the electrons in the quantum dot, the spectral function becomes a function of the gate voltage. Novel spectral features are identified for the ground and excited states of nanomechanical oscillators that can be used to enhance the measurement sensitivity.

  19. Explosive hazard detection using MIMO forward-looking ground penetrating radar

    Science.gov (United States)

    Shaw, Darren; Ho, K. C.; Stone, Kevin; Keller, James M.; Popescu, Mihail; Anderson, Derek T.; Luke, Robert H.; Burns, Brian

    2015-05-01

    This paper proposes a machine learning algorithm for subsurface object detection on multiple-input-multiple-output (MIMO) forward-looking ground-penetrating radar (FLGPR). By detecting hazards using FLGPR, standoff distances of up to tens of meters can be acquired, but this is at the degradation of performance due to high false alarm rates. The proposed system utilizes an anomaly detection prescreener to identify potential object locations. Alarm locations have multiple one-dimensional (ML) spectral features, two-dimensional (2D) spectral features, and log-Gabor statistic features extracted. The ability of these features to reduce the number of false alarms and increase the probability of detection is evaluated for both co-polarizations present in the Akela MIMO array. Classification is performed by a Support Vector Machine (SVM) with lane-based cross-validation for training and testing. Class imbalance and optimized SVM kernel parameters are considered during classifier training.

  20. [The linear hyperspectral camera rotating scan imaging geometric correction based on the precise spectral sampling].

    Science.gov (United States)

    Wang, Shu-min; Zhang, Ai-wu; Hu, Shao-xing; Wang, Jing-meng; Meng, Xian-gang; Duan, Yi-hao; Sun, Wei-dong

    2015-02-01

    As the rotation speed of ground based hyperspectral imaging system is too fast in the image collection process, which exceeds the speed limitation, there is data missed in the rectified image, it shows as the_black lines. At the same time, there is serious distortion in the collected raw images, which effects the feature information classification and identification. To solve these problems, in this paper, we introduce the each component of the ground based hyperspectral imaging system at first, and give the general process of data collection. The rotation speed is controlled in data collection process, according to the image cover area of each frame and the image collection speed of the ground based hyperspectral imaging system, And then the spatial orientation model is deduced in detail combining with the star scanning angle, stop scanning angle and the minimum distance between the sensor and the scanned object etc. The oriented image is divided into grids and resampled with new spectral. The general flow of distortion image corrected is presented in this paper. Since the image spatial resolution is different between the adjacent frames, and in order to keep the highest image resolution of corrected image, the minimum ground sampling distance is employed as the grid unit to divide the geo-referenced image. Taking the spectral distortion into account caused by direct sampling method when the new uniform grids and the old uneven grids are superimposed to take the pixel value, the precise spectral sampling method based on the position distribution is proposed. The distortion image collected in Lao Si Cheng ruin which is in the Zhang Jiajie town Hunan province is corrected through the algorithm proposed on above. The features keep the original geometric characteristics. It verifies the validity of the algorithm. And we extract the spectral of different features to compute the correlation coefficient. The results show that the improved spectral sampling method is

  1. Rayleigh imaging in spectral mammography

    Science.gov (United States)

    Berggren, Karl; Danielsson, Mats; Fredenberg, Erik

    2016-03-01

    Spectral imaging is the acquisition of multiple images of an object at different energy spectra. In mammography, dual-energy imaging (spectral imaging with two energy levels) has been investigated for several applications, in particular material decomposition, which allows for quantitative analysis of breast composition and quantitative contrast-enhanced imaging. Material decomposition with dual-energy imaging is based on the assumption that there are two dominant photon interaction effects that determine linear attenuation: the photoelectric effect and Compton scattering. This assumption limits the number of basis materials, i.e. the number of materials that are possible to differentiate between, to two. However, Rayleigh scattering may account for more than 10% of the linear attenuation in the mammography energy range. In this work, we show that a modified version of a scanning multi-slit spectral photon-counting mammography system is able to acquire three images at different spectra and can be used for triple-energy imaging. We further show that triple-energy imaging in combination with the efficient scatter rejection of the system enables measurement of Rayleigh scattering, which adds an additional energy dependency to the linear attenuation and enables material decomposition with three basis materials. Three available basis materials have the potential to improve virtually all applications of spectral imaging.

  2. Compressive Spectral Renormalization Method

    CERN Document Server

    Bayindir, Cihan

    2016-01-01

    In this paper a novel numerical scheme for finding the sparse self-localized states of a nonlinear system of equations with missing spectral data is introduced. As in the Petviashivili's and the spectral renormalization method, the governing equation is transformed into Fourier domain, but the iterations are performed for far fewer number of spectral components (M) than classical versions of the these methods with higher number of spectral components (N). After the converge criteria is achieved for M components, N component signal is reconstructed from M components by using the l1 minimization technique of the compressive sampling. This method can be named as compressive spectral renormalization (CSRM) method. The main advantage of the CSRM is that, it is capable of finding the sparse self-localized states of the evolution equation(s) with many spectral data missing.

  3. Objective becoming

    CERN Document Server

    Skow, Bradford

    2015-01-01

    Bradford Skow presents an original defense of the 'block universe' theory of time, often said to be a theory according to which time does not pass. Along the way, he provides in-depth discussions of alternative theories of time, including those in which there is 'robust passage' of time or 'objective becoming': presentism, the moving spotlight theory of time, the growing block theory of time, and the 'branching time' theory of time. Skow explains why the moving spotlight theory is the best of these arguments, and rebuts several popular arguments against the thesis that time passes. He surveys the problems that the special theory of relativity has been thought to raise for objective becoming, and suggests ways in which fans of objective becoming may reconcile their view with relativistic physics. The last third of the book aims to clarify and evaluate the argument that we should believe that time passes because, somehow, the passage of time is given to us in experience. He isolates three separate arguments thi...

  4. Sinergias Entre el Modelo de Mezclas Espectrales y el Análisis de Imágenes Basado en Objetos en el Estudio de Incendios Forestales / Synergies Between Linear Spectral Mixture Analysis and Object- Based Image Analysis to Study Forest Fires

    Directory of Open Access Journals (Sweden)

    Alfonso Fernández-Manso

    2006-10-01

    Full Text Available Las metodologías unitemporales habitualmente utilizadas para cartografiar el área afectada por un incendio forestal se basan en la clasificación de una imagen NDVI post-incendio; sin embargo, presentan algunas limitaciones. Este trabajo propone una metodología basada en el empleo conjunto del Modelo de Mezclas Espectrales (Spectral Mixture Analysis - SMA y el análisis de imágenes basado en objetos (Object-Based Image Analysis - OBIA, con la finalidad de minimizar estos problemas. Por una parte, SMA, que trabaja a nivel subpíxel, posibilita minimizar las confusiones originadas por la influencia del suelo; y, por otra, OBIA, trabajando a nivel suprapíxel, permite considerar características no espectrales tales como la forma y la textura. La imagen fracción vegetación quemada, obtenida al descomponer espectralmente una imagen Landsat Enhanced Thematic Mapper Plus, ETM+, posterior al incendio considerado, fue la entrada de un clasificador orientado a objetos que empleó dos niveles de segmentación. La precisión de los resultados obtenidos utilizando esta metodología en el incendio ocurrido entre los días 13 y 17 de septiembre de 1998 en Tabuyo del Monte – León- España (3.309 ha, es muy prometedora, indicando sinergias entre ambos métodos, y con un gran potencial para la cartografía de áreas quemadas y estimación de niveles de severidad.AbstractUnitemporal methodologies used to mapping burned area are usually based on post fire NDVI image classification; nevertheless they present several limitations. In order to minimize these deficiencies, this work shows a methodology based on Spectral Mixture Analysis (SMA and Object-Based Image Analysis (OBIA. On the one hand, SMA, working at subpixel level, permits minimise the errors due to soil influence. On the other hand, OBIA, working at suprapixel scale, allows to consider not only spectral characteristics but also form and texture. The burned vegetation fraction image, obtained by

  5. Young Children's Understanding of Cultural Common Ground

    Science.gov (United States)

    Liebal, Kristin; Carpenter, Malinda; Tomasello, Michael

    2013-01-01

    Human social interaction depends on individuals identifying the common ground they have with others, based both on personally shared experiences and on cultural common ground that all members of the group share. We introduced 3- and 5-year-old children to a culturally well-known object and a novel object. An experimenter then entered and asked,…

  6. The other spectral flow

    CERN Document Server

    Gato-Rivera, Beatriz; Gato-Rivera, Beatriz; Rosado, Jose Ignacio

    1995-01-01

    Recently we showed that the spectral flow acting on the N=2 twisted topological theories gives rise to a topological algebra automorphism. Here we point out that the untwisting of that automorphism leads to a spectral flow on the untwisted N=2 superconformal algebra which is different from the usual one. This "other" spectral flow does not interpolate between the chiral ring and the antichiral ring. In particular, it maps the chiral ring into the chiral ring and the antichiral ring into the antichiral ring. We discuss the similarities and differences between both spectral flows. We also analyze their action on null states.

  7. Surviving Objects

    OpenAIRE

    Murjas, Teresa

    2012-01-01

    Surviving Objects (2012) is a devised multi-media practice-as-research performance based on extensive interviews conducted with my elderly mother and recorded on a hand-held device. Our conversations concern her experiences as a child refugee following violent deportation by the Soviet Army from Eastern Poland to Siberia (1941), and her subsequent route, via Persia, to a British-run refugee camp in Northern Rhodesia, where she remained for 6 years before arriving in the UK. In order to aid my...

  8. A Novel Spectral Data Processing Procedure on Multi-Object Fiber Spectral Data Based on 2-D Algorithms%一种基于二维算法的新颖的多目标光纤光谱数据处理流程

    Institute of Scientific and Technical Information of China (English)

    张博; 叶中付; 徐旭

    2016-01-01

    郭守敬望远镜(Large Sky Area Multi-Object Fiber Spectroscopic Telescope,LAMOST)、斯隆数字巡天(Sloan Digital Sky Survey,SDSS)、英澳望远镜(Anglo-Australia Telescope,AAT)等大多数多目标光纤光谱望远镜现用的数据处理流程都是基于一维算法的.以LAMOST为例提出多目标光纤光谱数据处理流程方法.在LAMOST现用数据处理流程中,在预处理过程之后,通过基于一维模型的抽谱算法从二维观测目标光谱数据中得到一维抽谱结果作为中间数据.后续的处理步骤都基于一维模型的算法.然而,这种数据处理流程不符合观测光谱的形成机理.因此,在每个步骤中都引入了不可忽略的误差.为了解决这一问题,提出了一种还未被用于LAMOST及其他望远镜数据处理系统的新颖的数据处理流程.重新设计安排了各个数据处理模块的顺序,各关键步骤算法都是基于二维模型的.核心算法将详细论述.此外,列出了部分实验结果来证明二维算法的有效性和优越性.

  9. On Longitudinal Spectral Coherence

    DEFF Research Database (Denmark)

    Kristensen, Leif

    1979-01-01

    It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between...

  10. Spectral geometry of spacetime

    CERN Document Server

    Kopf, T

    2000-01-01

    Spacetime, understood as a globally hyperbolic manifold, may be characterized by spectral data using a 3+1 splitting into space and time, a description of space by spectral triples and by employing causal relationships, as proposed earlier. Here, it is proposed to use the Hadamard condition of quantum field theory as a smoothness principle.

  11. Hydrocarbon Spectral Database

    Science.gov (United States)

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  12. Objective thermomechanics

    CERN Document Server

    Fülöp, Tamás

    2015-01-01

    An irreversible thermodynamical theory of solids is presented where the kinematic quantities are defined in an automatically objective way. Namely, auxiliary elements like reference frame, reference time and reference configuration are avoided by formulating the motion of the continuum on spacetime directly, utilizing the Weyl-Matolcsi description of spacetime. This restricts the range of definable kinematic quantities heavily. Solids are distinguished from fluids by possessing not only an instantaneous metric tensor but a relaxed metric, too, that represents the natural geometric structure of the solid. The comparison of the instantaneous metric to the relaxed one is the basis of the definition of the elastic state variable, the elastic deformedness tensor. Thermal expansion is conceived as the temperature dependence of the relaxed metric. As opposed to this reversible type of change, plasticity means an irreversible change in the relaxed metric, and is describable via a plastic change rate tensor. The relat...

  13. Spectral Geometry and Causality

    CERN Document Server

    Kopf, T

    1996-01-01

    For a physical interpretation of a theory of quantum gravity, it is necessary to recover classical spacetime, at least approximately. However, quantum gravity may eventually provide classical spacetimes by giving spectral data similar to those appearing in noncommutative geometry, rather than by giving directly a spacetime manifold. It is shown that a globally hyperbolic Lorentzian manifold can be given by spectral data. A new phenomenon in the context of spectral geometry is observed: causal relationships. The employment of the causal relationships of spectral data is shown to lead to a highly efficient description of Lorentzian manifolds, indicating the possible usefulness of this approach. Connections to free quantum field theory are discussed for both motivation and physical interpretation. It is conjectured that the necessary spectral data can be generically obtained from an effective field theory having the fundamental structures of generalized quantum mechanics: a decoherence functional and a choice of...

  14. Snapshot spectral imaging system

    Science.gov (United States)

    Arnold, Thomas; De Biasio, Martin; McGunnigle, Gerald; Leitner, Raimund

    2010-02-01

    Spectral imaging is the combination of spectroscopy and imaging. These fields are well developed and are used intensively in many application fields including industry and the life sciences. The classical approach to acquire hyper-spectral data is to sequentially scan a sample in space or wavelength. These acquisition methods are time consuming because only two spatial dimensions, or one spatial and the spectral dimension, can be acquired simultaneously. With a computed tomography imaging spectrometer (CTIS) it is possible to acquire two spatial dimensions and a spectral dimension during a single integration time, without scanning either spatial or spectral dimensions. This makes it possible to acquire dynamic image scenes without spatial registration of the hyperspectral data. This is advantageous compared to tunable filter based systems which need sophisticated image registration techniques. While tunable filters provide full spatial and spectral resolution, for CTIS systems there is always a tradeoff between spatial and spectral resolution as the spatial and spectral information corresponding to an image cube is squeezed onto a 2D image. The presented CTIS system uses a spectral-dispersion element to project the spectral and spatial image information onto a 2D CCD camera array. The system presented in this paper is designed for a microscopy application for the analysis of fixed specimens in pathology and cytogenetics, cell imaging and material analysis. However, the CTIS approach is not limited to microscopy applications, thus it would be possible to implement it in a hand-held device for e.g. real-time, intra-surgery tissue classification.

  15. 基于大气中性点的地-气分离方法空基验证探究%Airborne Validation of Ground-Object Detection from Polarized Neutral-Point Atmosphere

    Institute of Scientific and Technical Information of China (English)

    杨尚强; 关桂霞; 赵海盟; 赵红颖; 杨彬; 张文凯; 谭翔; 吴太夏; 晏磊

    2013-01-01

    偏振遥感是遥感领域的一个新兴对地观测手段,地物反射的偏振效应是偏振遥感进行观测的基础.然而,地物反射具有偏振效应,大气粒子的反射与散射也具有偏振效应,并且大气的偏振效应往往大大强于地物偏振效应.当用偏振遥感器对地表目标进行观测时,大气的强偏振效应会干扰甚至覆盖地物的偏振信息.因此,如何最大限度地消除大气的偏振效应对地物偏振效应的影响是偏振遥感的一个关键性问题.大气中性点是大气中偏振度趋近为零的区域.利用大气中性点进行地-气分离理论的核心思想是将探测器放置于中性点区域进行对地观测,以减弱大气偏振对地物偏振的影响.基于国内首次大气中性点偏振遥感航空飞行实验,通过处理和分析实验所得影像数据,分别得到了中性点位置和非中性点位置影像偏振度分布,发现中性点位置偏振度集中分布区域要明显小于非中性点位置,验证了利用大气中性点进行地-气分离理论的合理性和可行性,提出了利用中性点进行偏振遥感实验所需要的条件,并初步分析出,波长较长的波段更适合于偏振遥感观测.%Based on the object's polarization effects,polarization is a newly emerging method in the field of remote sensing.Both objects and atmosphere have polarization effects,however,the atmosphere's polarization effects are much stronger than that of objects'.Consequently,atmosphere polarization effects will interfere or even cover objects'when observing with sensors.How to maximally eliminate the polarized effects generated by the atmosphere is a crucial problem in polarization remote sensing.Atmospheric neutral point is an area where the degree of atmosphere polarization is near to zero; therefore,if sensors are set up in this area,atmosphere polarization would be greatly elimimted,which is the main content of separating the effects between objects and atmosphere

  16. REMOTE SPECTRAL IMAGING USING A LOW COST UAV SYSTEM

    Directory of Open Access Journals (Sweden)

    C. Tsouvaltsidis

    2015-08-01

    Full Text Available The purpose of this scientific survey is to support the research being conducted at York University in the field of spectroscopy and nanosatellites using Argus 1000 micro- spectrometer and low cost unmanned aerial vehicle (UAV system. On the CanX-2 mission, the Argus spectrometer observes reflected infrared solar radiation emitted by Earth surface targets as small as 1.5 km within the 0.9-1.7 μm range. However, limitations in the volume of data due to onboard power constraints and a lack of an onboard camera system make it very difficult to verify these objectives using ground truth. In the last five years that Argus has been in operation, we have made over 200 observations over a series of land and ocean targets. We have recently examined algorithms to improve the geolocation accuracy of the spectrometer payload and began to conduct an analysis of soil health content using Argus spectral data. A field campaign is used to obtain data to assess geolocation accuracy using coastline crossing detection and to obtain airborne bare soil spectra in ground truth form. The payload system used for the field campaign consists of an Argus spectrometer, optical camera, GPS, and attitude sensors, integrated into a low-cost, unmanned aerial vehicle (UAV, which will be presented along with the experimental procedure and field campaign results.

  17. Optimized ground coupled heat pump mechanical package

    Energy Technology Data Exchange (ETDEWEB)

    Catan, M.A.

    1987-01-01

    This project addresses the question of how well a ground coupled heat pump system could perform with a heat pump which was designed specifically for such systems operating in a northern climate. Conventionally, systems are designed around water source heat pumps which are not designed for ground coupled heat pump application. The objective of the project is to minimize the life cycle cost for a ground coupled system given the freedom to design the heat pump and the ground coil in concert. In order to achieve this objective a number of modeling tools were developed which will likely be of interest in their own right.

  18. New Imaging Spectrometric Method for Rotary Object

    Institute of Scientific and Technical Information of China (English)

    方俊永; 赵达尊; 蒋月娟; 楚建军

    2003-01-01

    A new technique for imaging spectrometer for rotary object based on computed-tomography is proposed. A discrete model of this imaging spectrometric system is established, which is accordant to actual measurements and convenient for computation. In computer simulations with this method, projections of the object are detected by CCD while the object is rotating, and the original spectral images are numerically reconstructed from them by using the algorithm of computed-tomography. Simulation results indicate that the principle of the method is correct and it performs well for both broadband and narrow-band spectral objects.

  19. Spectral analysis of bedform dynamics

    DEFF Research Database (Denmark)

    Winter, Christian; Ernstsen, Verner Brandbyge; Noormets, Riko

    . An assessment of bedform migration was achieved, as the growth and displacement of every single constituent can be distinguished. It can be shown that the changes in amplitude remain small for all harmonic constituents, whereas the phase shifts differ significantly. Thus the harmonics can be classified....... The proposed method overcomes the above mentioned problems of common descriptive analysis as it is an objective and straightforward mathematical process. The spectral decomposition of superimposed dunes allows a detailed description and analysis of dune patterns and migration....

  20. The JCMT Spectral Legacy Survey

    CERN Document Server

    Plume, R; Helmich, F; Van der Tak, F F S; Roberts, H; Bowey, J; Buckle, J; Butner, H; Caux, E; Ceccarelli, C; Van Dishoeck, E F; Friberg, P; Gibb, A G; Hatchell, J; Hogerheijde, M R; Matthews, H; Millar, T; Mitchell, G; Moore, T J T; Ossenkopf, V; Rawlings, J; Richer, J; Roellig, M; Schilke, P; Spaans, M; Tielens, A G G M; Thompson, M A; Viti, S; Weferling, B; White, G J; Wouterloot, J; Yates, J; Zhu, M; White, Glenn J.

    2006-01-01

    Stars form in the densest, coldest, most quiescent regions of molecular clouds. Molecules provide the only probes which can reveal the dynamics, physics, chemistry and evolution of these regions, but our understanding of the molecular inventory of sources and how this is related to their physical state and evolution is rudimentary and incomplete. The Spectral Legacy Survey (SLS) is one of seven surveys recently approved by the JCMT Board. Starting in 2007, the SLS will produce a spectral imaging survey of the content and distribution of all the molecules detected in the 345 GHz atmospheric window (between 332 GHz and 373 GHz) towards a sample of 5 sources. Our intended targets are: a low mass core (NGC1333 IRAS4), 3 high mass cores spanning a range of star forming environments and evolutionary states (W49, AFGL2591, and IRAS20126), and a PDR (the Orion Bar). The SLS will use the unique spectral imaging capabilities of HARP-B/ACSIS to study the molecular inventory and the physical structure of these objects, w...

  1. Earthquake Ground Motion Measures for Seismic Response Evaluation of Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In-Kil; Ahn, Seong-Moon; Choun, Young-Sun; Seo, Jeong-Moon

    2007-03-15

    This study used the assessment results of failure criteria - base shear, story drift, top acceleration and top displacement - for a PSC containment building subjected to 30 sets of near-fault ground motions to evaluate the earthquake ground motion intensity measures. Seven intensity measures, peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(Sa), velocity(Sv), spectrum intensity for acceleration(SIa), velocity(SIv) and displacement(SId), were used to represent alternative ground motion. The regression analyses of the failure criteria for a PSC containment building were carried out to evaluate a proper intensity measure by using two regression models and seven ground motion parameters. The regression analysis results demonstrate the correlation coefficients of the failure criteria in terms of the candidate IM. From the results, spectral acceleration(Sa) is estimated as the best parameter for a evaluation of the structural safety for a seismic PSA.

  2. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  3. Spectral line polarimetry with a channeled polarimeter.

    Science.gov (United States)

    van Harten, Gerard; Snik, Frans; Rietjens, Jeroen H H; Martijn Smit, J; Keller, Christoph U

    2014-07-01

    Channeled spectropolarimetry or spectral polarization modulation is an accurate technique for measuring the continuum polarization in one shot with no moving parts. We show how a dual-beam implementation also enables spectral line polarimetry at the intrinsic resolution, as in a classic beam-splitting polarimeter. Recording redundant polarization information in the two spectrally modulated beams of a polarizing beam-splitter even provides the possibility to perform a postfacto differential transmission correction that improves the accuracy of the spectral line polarimetry. We perform an error analysis to compare the accuracy of spectral line polarimetry to continuum polarimetry, degraded by a residual dark signal and differential transmission, as well as to quantify the impact of the transmission correction. We demonstrate the new techniques with a blue sky polarization measurement around the oxygen A absorption band using the groundSPEX instrument, yielding a polarization in the deepest part of the band of 0.160±0.010, significantly different from the polarization in the continuum of 0.2284±0.0004. The presented methods are applicable to any dual-beam channeled polarimeter, including implementations for snapshot imaging polarimetry.

  4. Undecidability of the Spectral Gap (short version)

    CERN Document Server

    Cubitt, Toby; Wolf, Michael M

    2015-01-01

    The spectral gap -- the difference in energy between the ground state and the first excited state -- is one of the most important properties of a quantum many-body system. Quantum phase transitions occur when the spectral gap vanishes and the system becomes critical. Much of physics is concerned with understanding the phase diagrams of quantum systems, and some of the most challenging and long-standing open problems in theoretical physics concern the spectral gap, such as the Haldane conjecture that the Heisenberg chain is gapped for integer spin, proving existence of a gapped topological spin liquid phase, or the Yang-Mills gap conjecture (one of the Millennium Prize problems). These problems are all particular cases of the general spectral gap problem: Given a quantum many-body Hamiltonian, is the system it describes gapped or gapless? Here we show that this problem is undecidable, in the same sense as the Halting Problem was proven to be undecidable by Turing. A consequence of this is that the spectral gap...

  5. A theoretical-experimental methodology for assessing the sensitivity of biomedical spectral imaging platforms, assays, and analysis methods.

    Science.gov (United States)

    Leavesley, Silas J; Sweat, Brenner; Abbott, Caitlyn; Favreau, Peter; Rich, Thomas C

    2017-05-09

    Spectral imaging technologies have been used for many years by the remote sensing community. More recently, these approaches have been applied to biomedical problems, where they have shown great promise. However, biomedical spectral imaging has been complicated by the high variance of biological data and the reduced ability to construct test scenarios with fixed ground truths. Hence, it has been difficult to objectively assess and compare biomedical spectral imaging assays and technologies. Here, we present a standardized methodology that allows assessment of the performance of biomedical spectral imaging equipment, assays, and analysis algorithms. This methodology incorporates real experimental data and a theoretical sensitivity analysis, preserving the variability present in biomedical image data. We demonstrate that this approach can be applied in several ways: to compare the effectiveness of spectral analysis algorithms, to compare the response of different imaging platforms, and to assess the level of target signature required to achieve a desired performance. Results indicate that it is possible to compare even very different hardware platforms using this methodology. Future applications could include a range of optimization tasks, such as maximizing detection sensitivity or acquisition speed, providing high utility for investigators ranging from design engineers to biomedical scientists. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The New Generation Atlas of Quasar Spectral Energy Distributions from Radio to X-rays

    CERN Document Server

    Shang, Zhaohui; Wills, Beverley J; Wills, Derek; Cales, Sabrina; Dale, Daniel A; Green, Richard F; Runnoe, Jessie; Nemmen, Rodrigo S; Gallagher, Sarah; Ganguly, Rajib; Hines, Dean C; Kelly, Benjamin; Kriss, Gerard A; Li, Jun; Tang, Baitian; Xie, Yanxia

    2011-01-01

    We have produced the next generation of quasar spectral energy distributions (SEDs), essentially updating the work of Elvis et al. (1994) by using high-quality data obtained with several space and ground-based telescopes, including NASA's Great Observatories. We present an atlas of SEDs of 85 optically bright, non-blazar quasars over the electromagnetic spectrum from radio to X-rays. The heterogeneous sample includes 27 radio-quiet and 58 radio-loud quasars. Most objects have quasi-simultaneous ultraviolet-optical spectroscopic data, supplemented with some far-ultraviolet spectra, and more than half also have Spitzer mid-infrared IRS spectra. The X-ray spectral parameters are collected from the literature where available. The radio, far-infrared, and near-infrared photometric data are also obtained from either the literature or new observations. We construct composite spectral energy distributions for radio-loud and radio-quiet objects and compare these to those of Elvis et al., finding that ours have similar...

  7. Interpretation of archaeological small-scale features in spectral images

    DEFF Research Database (Denmark)

    Grøn, Ole; Palmer, Susanna; Stylegar, Frans-Arne;

    2011-01-01

    The paper's focus is the use of spectral images for the distinction of small archaeological anomalies on the basis of the authors work. Special attention is given to the ground-truthing perspective in the discussion of a number of cases from Norway. Different approaches to pattern-recognition are......-recognition are considered in the light of the increasing availability of hyper-spectral images that are difficult to analyse using visual inspection alone....

  8. Spectral functions in the quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, Masayuki [Kyoto Univ., Kyoto (Japan)

    2002-09-01

    Using the maximum entropy method, spectral functions of the vector mesons are extracted from lattice Monte Carlo data of the zero-temperature imaginary time Green's functions. The resonance and continuum structures as well as the ground state peaks are successfully obtained. In addition, we present a preliminary result for finite temperature spectral functions in the vector channel above the confinement-deconfinement phase transition temperature. (author)

  9. Unmixing of spectrally similar minerals

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available -bearing oxide/hydroxide/sulfate minerals in complex mixtures be obtained using hyperspectral data? Debba (CSIR) Unmixing of spectrally similar minerals MERAKA 2009 3 / 18 Method of spectral unmixing Old method: problem Linear Spectral Mixture Analysis (LSMA...

  10. Spectral unmixing techniques for retrieving plant foliar information

    Science.gov (United States)

    Themelis, Kostas; Sykioti, Olga; Rontogiannis, Athanasios; Koutroumbas, Konstantinos; Kyparissis, Aris

    2010-05-01

    In this study two novel approaches for supervised and semi-supervised hyperspectral unmixing are applied in the unmixing of CHRIS/PROBA data, in order to monitor seasonal land cover changes - in particular plant foliar coverage. Foliar coverage variations are directly linked to seasonal changes of the ecophysiological status of a plant (i.e. growth status, pigment concentrations, LAI etc). The high potential of using hyperspectral satellite data in monitoring plant biochemical and structural characteristics is important in ecophysiological studies. A reliable and efficient method to extract leaf and/or canopy information from a mixed pixel significantly contributes towards this direction. In this study, the development of two efficient algorithms in spectral unmixing enables the detection and mapping of leaf contribution to the overall pixel spectra and its seasonal variations. For this purpose, leaf spectra measured in the field, simultaneously to satellite acquisitions, are included in the endmember data set. The proposed unmixing techniques are performed on ground reflectances, assuming knowledge of the number and spectral signatures of the objects present in the images. An efficient estimation for their corresponding fractions in the pixels of the image is developed, based on a recently proposed maximum a posteriori probability (MAP) method. By exploiting the constraints naturally imposed to the problem, closed form expressions are derived for the statistical parameters required by the MAP estimator. In the semi-supervised scenario, we assume that a spectral library is given, containing spectral signatures of multiple endmembers. The objective in the latter case, is (a) to determine how many and which endmembers are present in the mixed pixel under study and (b) to use the selected endmembers to estimate the corresponding abundance fractions - especially the abundance of foliar coverage. The approach is based on a properly modified weighted l1-regularized least

  11. Vowel Inherent Spectral Change

    CERN Document Server

    Assmann, Peter

    2013-01-01

    It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...

  12. Temporal Lorentzian spectral triples

    Science.gov (United States)

    Franco, Nicolas

    2014-09-01

    We present the notion of temporal Lorentzian spectral triple which is an extension of the notion of pseudo-Riemannian spectral triple with a way to ensure that the signature of the metric is Lorentzian. A temporal Lorentzian spectral triple corresponds to a specific 3 + 1 decomposition of a possibly noncommutative Lorentzian space. This structure introduces a notion of global time in noncommutative geometry. As an example, we construct a temporal Lorentzian spectral triple over a Moyal-Minkowski spacetime. We show that, when time is commutative, the algebra can be extended to unbounded elements. Using such an extension, it is possible to define a Lorentzian distance formula between pure states with a well-defined noncommutative formulation.

  13. Spectral recognition of graphs

    Directory of Open Access Journals (Sweden)

    Cvetković Dragoš

    2012-01-01

    Full Text Available At some time, in the childhood of spectral graph theory, it was conjectured that non-isomorphic graphs have different spectra, i.e. that graphs are characterized by their spectra. Very quickly this conjecture was refuted and numerous examples and families of non-isomorphic graphs with the same spectrum (cospectral graphs were found. Still some graphs are characterized by their spectra and several mathematical papers are devoted to this topic. In applications to computer sciences, spectral graph theory is considered as very strong. The benefit of using graph spectra in treating graphs is that eigenvalues and eigenvectors of several graph matrices can be quickly computed. Spectral graph parameters contain a lot of information on the graph structure (both global and local including some information on graph parameters that, in general, are computed by exponential algorithms. Moreover, in some applications in data mining, graph spectra are used to encode graphs themselves. The Euclidean distance between the eigenvalue sequences of two graphs on the same number of vertices is called the spectral distance of graphs. Some other spectral distances (also based on various graph matrices have been considered as well. Two graphs are considered as similar if their spectral distance is small. If two graphs are at zero distance, they are cospectral. In this sense, cospectral graphs are similar. Other spectrally based measures of similarity between networks (not necessarily having the same number of vertices have been used in Internet topology analysis, and in other areas. The notion of spectral distance enables the design of various meta-heuristic (e.g., tabu search, variable neighbourhood search algorithms for constructing graphs with a given spectrum (spectral graph reconstruction. Several spectrally based pattern recognition problems appear in many areas (e.g., image segmentation in computer vision, alignment of protein-protein interaction networks in bio

  14. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  15. Thermophotovoltaic Spectral Control

    Energy Technology Data Exchange (ETDEWEB)

    DM DePoy; PM Fourspring; PF Baldasaro; JF Beausang; EJ Brown; MW Dashiel; KD Rahner; TD Rahmlow; JE Lazo-Wasem; EJ Gratrix; B Wemsman

    2004-06-09

    Spectral control is a key technology for thermophotovoltaic (TPV) direct energy conversion systems because only a fraction (typically less than 25%) of the incident thermal radiation has energy exceeding the diode bandgap energy, E{sub g}, and can thus be converted to electricity. The goal for TPV spectral control in most applications is twofold: (1) Maximize TPV efficiency by minimizing transfer of low energy, below bandgap photons from the radiator to the TPV diode. (2) Maximize TPV surface power density by maximizing transfer of high energy, above bandgap photons from the radiator to the TPV diode. TPV spectral control options include: front surface filters (e.g. interference filters, plasma filters, interference/plasma tandem filters, and frequency selective surfaces), back surface reflectors, and wavelength selective radiators. System analysis shows that spectral performance dominates diode performance in any practical TPV system, and that low bandgap diodes enable both higher efficiency and power density when spectral control limitations are considered. Lockheed Martin has focused its efforts on front surface tandem filters which have achieved spectral efficiencies of {approx}83% for E{sub g} = 0.52 eV and {approx}76% for E{sub g} = 0.60 eV for a 950 C radiator temperature.

  16. Assessing post-fire ground cover in Mediterranean shrublands with field spectrometry and digital photography

    Science.gov (United States)

    Montorio Llovería, Raquel; Pérez-Cabello, Fernando; García-Martín, Alberto

    2016-09-01

    Fire severity can be assessed by identifying and quantifying the fractional abundance of post-fire ground cover types, an approach with great capacity to predict ecosystem response. Focused on shrubland formations of Mediterranean-type ecosystems, three burned areas (Ibieca and Zuera wildfires and Peñaflor experimental fire) were sampled in the summers of 2006 and 2007. Two different ground measurements were made for each of the 356 plots: (i) 3-band high spatial resolution photography (HSRP) and (ii) the hemispherical-conical reflectance factor (HCRF) in the visible to near-infrared spectral range (VNIR, 400-900 nm). Stepwise multiple lineal regression (SMLR) models were fitted to spectral variables (HCRF, first derivative spectra or FDS, and four absorption indices) to estimate the fractional cover of seven post-fire ground cover types (vegetation and soil - unburned and charred components - and ash - char and ash, individually and as a combined category). Models were developed and validated at the Peñaflor site (training, n = 217; validation, n = 88) and applied to the samples from the Ibieca and Zuera sites (n = 51). The best results were observed for the abundance estimations of green vegetation (Radj.20.70-0.90), unburned soil (Radj.20.40-0.75), and the combination of ashes (Radj.20.65-0.80). In comparison of spectral data, FDS outperforms reflectance or absorption data because of its higher accuracy levels and, importantly, its greater capacity to yield generalizable models. Future efforts should be made to improve the estimation of intermediate severity levels and upscaling the developed models. In the context of fire severity assessment, our study demonstrates the potential of hyperspectral data to estimate in a quick and objective manner post-fire ground cover fractions and thus provide valuable information to guide management responses.

  17. Scaling earthquake ground motions for performance-based assessment of buildings

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.; Hamburger, R.O.

    2011-01-01

    The impact of alternate ground-motion scaling procedures on the distribution of displacement responses in simplified structural systems is investigated. Recommendations are provided for selecting and scaling ground motions for performance-based assessment of buildings. Four scaling methods are studied, namely, (1)geometric-mean scaling of pairs of ground motions, (2)spectrum matching of ground motions, (3)first-mode-period scaling to a target spectral acceleration, and (4)scaling of ground motions per the distribution of spectral demands. Data were developed by nonlinear response-history analysis of a large family of nonlinear single degree-of-freedom (SDOF) oscillators that could represent fixed-base and base-isolated structures. The advantages and disadvantages of each scaling method are discussed. The relationship between spectral shape and a ground-motion randomness parameter, is presented. A scaling procedure that explicitly considers spectral shape is proposed. ?? 2011 American Society of Civil Engineers.

  18. Grounded Eyes on Distant Watery Skies

    Science.gov (United States)

    Kohler, Susanna

    2017-08-01

    What can we learn about exoplanets from high-resolution, ground-based observations? A new view of the nearby upsilon Andromedae system has revealed a great deal about the systems closest-in exoplanet including the presence of water vapor in its atmosphere.Search for WobblesIllustration of how spectral lines shift when observing two objects that orbit each other. Click here to see a simulation of this process. [R. Pogge, OSU]The upsilon Andromedae system is located roughly 44 light-years from Earth. In 1997, a hot Jupiter exoplanet was discovered orbiting the primary star, and more planets were found not long after making this the first multiple-planet system discovered around a main-sequence star.These planets, however, were not discovered due to transits; their orbital planes are not aligned with our line of sight to the star. Instead, the hiddenplanets were first detected via the stars spectrum. The radial velocity method of detecting exoplanets searches for telltale periodic shifts of a stars spectral lines, which are induced by the orbiting planets gravitational tugs.In recent years, ground-based spectroscopy has become ever more powerful; thus revisiting old systems with higher resolution instruments can often open a whole new world of data to us. In the case of a recent study, a team of astronomers led by Danielle Piskorz (California Institute of Technology) revisited upsilon Andromedae with the high-resolution Near Infrared Spectrometer (NIRSPEC) at the Keck telescope in Hawaii. Their goal: to gather data about upsilon Andromedae b, the closest-in planet in the system.Top-down schematic of the orbit of upsilon Andromedae b around its star and the location in the orbit of the authors observations. [Piskorz et al. 2017]An Unusual ArchitecturePiskorz and collaborators obtained 13 different sets of observations of upsilon Andromedae with NIRSPEC across three different wavelength bands. By treating the starplanet system as though it were a spectroscopic binary

  19. Rapid spectral analysis for spectral imaging.

    Science.gov (United States)

    Jacques, Steven L; Samatham, Ravikant; Choudhury, Niloy

    2010-07-15

    Spectral imaging requires rapid analysis of spectra associated with each pixel. A rapid algorithm has been developed that uses iterative matrix inversions to solve for the absorption spectra of a tissue using a lookup table for photon pathlength based on numerical simulations. The algorithm uses tissue water content as an internal standard to specify the strength of optical scattering. An experimental example is presented on the spectroscopy of portwine stain lesions. When implemented in MATLAB, the method is ~100-fold faster than using fminsearch().

  20. Seismic design technology for breeder reactor structures. Volume 1. Special topics in earthquake ground motion

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, D.P.

    1983-04-01

    This report is divided into twelve chapters: seismic hazard analysis procedures, statistical and probabilistic considerations, vertical ground motion characteristics, vertical ground response spectrum shapes, effects of inclined rock strata on site response, correlation of ground response spectra with intensity, intensity attenuation relationships, peak ground acceleration in the very mean field, statistical analysis of response spectral amplitudes, contributions of body and surface waves, evaluation of ground motion characteristics, and design earthquake motions. (DLC)

  1. TP89 - SIRZ Decomposition Spectral Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Seetho, Isacc M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Azevedo, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, Jerel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, William D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Jr., Harry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-08

    The primary objective of this test plan is to provide X-ray CT measurements of known materials for the purposes of generating and testing MicroCT and EDS spectral estimates. These estimates are to be used in subsequent Ze/RhoE decomposition analyses of acquired data.

  2. Monitoring objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  3. Bipolar spectral associative memories.

    Science.gov (United States)

    Spencer, R G

    2001-01-01

    Nonlinear spectral associative memories are proposed as quantized frequency domain formulations of nonlinear, recurrent associative memories in which volatile network attractors are instantiated by attractor waves. In contrast to conventional associative memories, attractors encoded in the frequency domain by convolution may be viewed as volatile online inputs, rather than nonvolatile, off-line parameters. Spectral memories hold several advantages over conventional associative memories, including decoder/attractor separability and linear scalability, which make them especially well suited for digital communications. Bit patterns may be transmitted over a noisy channel in a spectral attractor and recovered at the receiver by recurrent, spectral decoding. Massive nonlocal connectivity is realized virtually, maintaining high symbol-to-bit ratios while scaling linearly with pattern dimension. For n-bit patterns, autoassociative memories achieve the highest noise immunity, whereas heteroassociative memories offer the added flexibility of achieving various code rates, or degrees of extrinsic redundancy. Due to linear scalability, high noise immunity and use of conventional building blocks, spectral associative memories hold much promise for achieving robust communication systems. Simulations are provided showing bit error rates for various degrees of decoding time, computational oversampling, and signal-to-noise ratio.

  4. Noncomputable Spectral Sets

    CERN Document Server

    Teutsch, J

    2007-01-01

    It is possible to enumerate all computer programs. In particular, for every partial computable function, there is a shortest program which computes that function. f-MIN is the set of indices for shortest programs. In 1972, Meyer showed that f-MIN is Turing equivalent to 0'', the halting set with halting set oracle. This paper generalizes the notion of shortest programs, and we use various measures from computability theory to describe the complexity of the resulting "spectral sets." We show that under certain Godel numberings, the spectral sets are exactly the canonical sets 0', 0'', 0''', ... up to Turing equivalence. This is probably not true in general, however we show that spectral sets always contain some useful information. We show that immunity, or "thinness" is a useful characteristic for distinguishing between spectral sets. In the final chapter, we construct a set which neither contains nor is disjoint from any infinite arithmetic set, yet it is 0-majorized and contains a natural spectral set. Thus ...

  5. ECRB ALCOVE AND NICHE GROUND SUPPORT ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Keifer

    1999-05-09

    The purpose of the analysis is to provide design bases for Enhanced Characterization of the Repository Block (ECRB) alcove and niche ground support drawings. The objective is to evaluate the ESF Alcove Ground Support Analysis (Ref 5.1) to determine if the calculations technically bound the ECRB alcoves and to address specific differences in the conditions and constraints.

  6. Discussing the theological grounds of moral principles.

    Science.gov (United States)

    Heller, Jan C

    2005-01-01

    Discussing the theological beliefs that ground Catholic moral principles can make some people uncomfortable, even while others will appreciate it. But these reactions will sometimes be revealed not as the emotions they are, but as objections to the relative independence or dependence of morality on foundational beliefs. In the end, context should dictate whether one displays the theological beliefs that ground Catholic moral principles.

  7. Spectral ladar: towards active 3D multispectral imaging

    Science.gov (United States)

    Powers, Michael A.; Davis, Christopher C.

    2010-04-01

    In this paper we present our Spectral LADAR concept, an augmented implementation of traditional LADAR. This sensor uses a polychromatic source to obtain range-resolved 3D spectral images which are used to identify objects based on combined spatial and spectral features, resolving positions in three dimensions and up to hundreds of meters in distance. We report on a proof-of-concept Spectral LADAR demonstrator that generates spectral point clouds from static scenes. The demonstrator transmits nanosecond supercontinuum pulses generated in a photonic crystal fiber. Currently we use a rapidly tuned receiver with a high-speed InGaAs APD for 25 spectral bands with the future expectation of implementing a linear APD array spectrograph. Each spectral band is independently range resolved with multiple return pulse recognition. This is a critical feature, enabling simultaneous spectral and spatial unmixing of partially obscured objects when not achievable using image fusion of monochromatic LADAR and passive spectral imagers. This enables higher identification confidence in highly cluttered environments such as forested or urban areas (e.g. vehicles behind camouflage or foliage). These environments present challenges for situational awareness and robotic perception which can benefit from the unique attributes of Spectral LADAR. Results from this demonstrator unit are presented for scenes typical of military operations and characterize the operation of the device. The results are discussed here in the context of autonomous vehicle navigation and target recognition.

  8. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  9. Photovoltaic spectral responsivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T. [National Renewable Energy Lab., Golden, CO (United States)

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  10. Classification of Ground Objects Using Laser Radar Data

    OpenAIRE

    Brandin, Martin; Hamrén, Roger

    2003-01-01

    Accurate 3D models of natural environments are important for many modelling and simulation applications, for both civilian and military purposes. When building 3D models from high resolution data acquired by an airborne laser scanner it is de-sirable to separate and classify the data to be able to process it further. For example, to build a polygon model of a building the samples belonging to the building must be found. In this thesis we have developed, implemented (in IDL and ENVI), and eval...

  11. Vector-Based Ground Surface and Object Representation Using Cameras

    Science.gov (United States)

    2009-12-01

    abbreviation of Conditional Density Propagation [ Isard 1998]. The Particle filter is a model estimation technique using probability distribution...Proceedings of the, 1992, pp. 213-218. M. Isard and A. Blake, "CONDENSATION—Conditional Density Propagation for Visual Tracking," International Journal

  12. Research On The Classification Of High Resolution Image Based On Object-oriented And Class Rule

    Science.gov (United States)

    Li, C. K.; Fang, W.; Dong, X. J.

    2015-06-01

    With the development of remote sensing technology, the spatial resolution, spectral resolution and time resolution of remote sensing data is greatly improved. How to efficiently process and interpret the massive high resolution remote sensing image data for ground objects, which with spatial geometry and texture information, has become the focus and difficulty in the field of remote sensing research. An object oriented and rule of the classification method of remote sensing data has presents in this paper. Through the discovery and mining the rich knowledge of spectrum and spatial characteristics of high-resolution remote sensing image, establish a multi-level network image object segmentation and classification structure of remote sensing image to achieve accurate and fast ground targets classification and accuracy assessment. Based on worldview-2 image data in the Zangnan area as a study object, using the object-oriented image classification method and rules to verify the experiment which is combination of the mean variance method, the maximum area method and the accuracy comparison to analysis, selected three kinds of optimal segmentation scale and established a multi-level image object network hierarchy for image classification experiments. The results show that the objectoriented rules classification method to classify the high resolution images, enabling the high resolution image classification results similar to the visual interpretation of the results and has higher classification accuracy. The overall accuracy and Kappa coefficient of the object-oriented rules classification method were 97.38%, 0.9673; compared with object-oriented SVM method, respectively higher than 6.23%, 0.078; compared with object-oriented KNN method, respectively more than 7.96%, 0.0996. The extraction precision and user accuracy of the building compared with object-oriented SVM method, respectively higher than 18.39%, 3.98%, respectively better than the object-oriented KNN method 21

  13. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  14. The Moon: Determining Minerals and their Abundances with Mid-IR Spectral Deconvolution II

    Science.gov (United States)

    Kozlowski, Richard W.; Donaldson Hanna, K.; Sprague, A. L.; Grosse, F. A.; Boop, T. S.; Warell, J.; Boccafola, K.

    2007-10-01

    We determine the mineral compositions and abundances at three locations on the lunar surface using an established spectral deconvolution algorithm (Ramsey 1996, Ph.D. Dissertation, ASU; Ramsey and Christiansen 1998, JGR 103, 577-596) for mid-infrared spectral libraries of mineral separates of varying grain sizes. Spectral measurements of the lunar surface were obtained at the Infrared Telescope Facility (IRTF) on Mauna Kea, HI with Boston University's Mid-Infrared Spectrometer and Imager (MIRSI). Our chosen locations, Aristarchus, Grimaldi and Mersenius C, have been previously observed in the VIS near-IR from ground-based telescopes and spacecraft (Zisk et al. 1977, The Moon 17, 59-99; Hawke et al. 1993, GRL 20, 419-422; McEwen et al. 1994, Science 266, 1858-1862; Peterson et al. 1995, 22, 3055-3058; Warell et al. 2006, Icarus 180, 281-291), however there are no sample returns for analysis. Surface mineral deconvolutions of the Grimaldi Basin infill are suggestive of anorthosite, labradorite, orthopyroxene, olivine, garnet and phosphate. Peterson et al. (1995) indicated the infill of Grimaldi Basin has a noritic anorthosite or anorthositic norite composition. Our spectral deconvolution supports these results. Modeling of other lunar locations is underway. We have also successfully modeled laboratory spectra of HED meteorites, Vesta, and Mercury (see meteorites and mercurian abstracts this meeting). These results demonstrate the spectral deconvolution method to be robust for making mineral identifications on remotely observed objects, in particular main-belt asteroids, the Moon, and Mercury. This work was funded by NSF AST406796.

  15. Spectral Networks and Snakes

    CERN Document Server

    Gaiotto, Davide; Neitzke, Andrew

    2012-01-01

    We apply and illustrate the techniques of spectral networks in a large collection of A_{K-1} theories of class S, which we call "lifted A_1 theories." Our construction makes contact with Fock and Goncharov's work on higher Teichmuller theory. In particular we show that the Darboux coordinates on moduli spaces of flat connections which come from certain special spectral networks coincide with the Fock-Goncharov coordinates. We show, moreover, how these techniques can be used to study the BPS spectra of lifted A_1 theories. In particular, we determine the spectrum generators for all the lifts of a simple superconformal field theory.

  16. Spectral line intensity and polarization in gas-dusty medium

    CERN Document Server

    Silant'ev, N A; Novikov, V V

    2016-01-01

    It is assumed that in Seyfert galaxies the gas-dusty medium exits near the centre in the form of a molecular and dusty torus and equatorial flow. These objects have spectral lines emission of hydrogen, helium and other atoms. We derived the spectral line radiative transfer equation for such media. This equation has dimensionless extinction factor of the form: $\\alpha(\

  17. Designing as middle ground

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian Mossfeldt; Binder, Thomas

    2010-01-01

    The theoretical background in this chapter is science and technology studies and actor network theory, enabling investigation of heterogeneity, agency and perfor-mative effects through ‘symmetric’ analysis. The concept of design is defined as being imaginative and mindful to a number of actors...... in a network of humans and non-humans, highlighting that design objects and the designer as an authority are constructed throughout this endeavour. The illustrative case example is drawn from product development in a rubber valve factory in Jutland in Denmark. The key contribution to a general core of design...... research is an articulation of design activity taking place as a middle ground and as an intermixture between a ‘scientific’ regime of knowledge transfer and a capital ‘D’ ‘Designerly’ regime of authoring....

  18. Spectral library searching in proteomics.

    Science.gov (United States)

    Griss, Johannes

    2016-03-01

    Spectral library searching has become a mature method to identify tandem mass spectra in proteomics data analysis. This review provides a comprehensive overview of available spectral library search engines and highlights their distinct features. Additionally, resources providing spectral libraries are summarized and tools presented that extend experimental spectral libraries by simulating spectra. Finally, spectrum clustering algorithms are discussed that utilize the same spectrum-to-spectrum matching algorithms as spectral library search engines and allow novel methods to analyse proteomics data.

  19. Power Spectral Density Conversions and Nonlinear Dynamics

    Directory of Open Access Journals (Sweden)

    Mostafa Rassaian

    1994-01-01

    Full Text Available To predict the vibration environment of a payload carried by a ground or air transporter, mathematical models are required from which a transfer function to a prescribed input can be calculated. For sensitive payloads these models typically include linear shock isolation system stiffness and damping elements relying on the assumption that the isolation system has a predetermined characteristic frequency and damping ratio independent of excitation magnitude. In order to achieve a practical spectral analysis method, the nonlinear system has to be linearized when the input transportation and handling vibration environment is in the form of an acceleration power spectral density. Test data from commercial isolators show that when nonlinear stiffness and damping effects exist the level of vibration input causes a variation in isolator resonant frequency. This phenomenon, described by the stationary response of the Duffing oscillator to narrow-band Gaussian random excitation, requires an alternative approach for calculation of power spectral density acceleration response at a shock isolated payload under random vibration. This article details the development of a plausible alternative approach for analyzing the spectral response of a nonlinear system subject to random Gaussian excitations.

  20. Spectral Properties of Unimodular Lattice Triangulations

    Science.gov (United States)

    Krüger, Benedikt; Schmidt, Ella M.; Mecke, Klaus

    2016-05-01

    Random unimodular lattice triangulations have been recently used as an embedded random graph model, which exhibit a crossover behavior between an ordered, large-world and a disordered, small-world behavior. Using the ergodic Pachner flips that transform such triangulations into another and an energy functional that corresponds to the degree distribution variance, Markov chain Monte Carlo simulations can be applied to study these graphs. Here, we consider the spectra of the adjacency and the Laplacian matrix as well as the algebraic connectivity and the spectral radius. Power law dependencies on the system size can clearly be identified and compared to analytical solutions for periodic ground states. For random triangulations we find a qualitative agreement of the spectral properties with well-known random graph models. In the microcanonical ensemble analytical approximations agree with numerical simulations. In the canonical ensemble a crossover behavior can be found for the algebraic connectivity and the spectral radius, thus combining large-world and small-world behavior in one model. The considered spectral properties can be applied to transport problems on triangulation graphs and the crossover behavior allows a tuning of important transport quantities.

  1. Grounding word learning in space.

    Directory of Open Access Journals (Sweden)

    Larissa K Samuelson

    Full Text Available Humans and objects, and thus social interactions about objects, exist within space. Words direct listeners' attention to specific regions of space. Thus, a strong correspondence exists between where one looks, one's bodily orientation, and what one sees. This leads to further correspondence with what one remembers. Here, we present data suggesting that children use associations between space and objects and space and words to link words and objects--space binds labels to their referents. We tested this claim in four experiments, showing that the spatial consistency of where objects are presented affects children's word learning. Next, we demonstrate that a process model that grounds word learning in the known neural dynamics of spatial attention, spatial memory, and associative learning can capture the suite of results reported here. This model also predicts that space is special, a prediction supported in a fifth experiment that shows children do not use color as a cue to bind words and objects. In a final experiment, we ask whether spatial consistency affects word learning in naturalistic word learning contexts. Children of parents who spontaneously keep objects in a consistent spatial location during naming interactions learn words more effectively. Together, the model and data show that space is a powerful tool that can effectively ground word learning in social contexts.

  2. Exoplanetary Detection By Multifractal Spectral Analysis

    CERN Document Server

    Agarwal, Sahil; Wettlaufer, John S

    2016-01-01

    Owing to technological advances the number of exoplanets discovered has risen dramatically in the last few years. However, when trying to observe Earth analogs, it is often difficult to test the veracity of detection. We have developed a new approach to the analysis of exoplanetary spectral observations based on temporal multifractality, which identifies time scales that characterize planetary orbital motion around the host star. Without fitting spectral data to stellar models, we show how the planetary signal can be robustly detected from noisy data using noise amplitude as a source of information. For observation of transiting planets, combining this method with simple geometry allows us to relate the time scales obtained to primary transit and secondary exoplanet eclipse of the exoplanets. Making use of data obtained with ground-based and space-based observations we have tested our approach on HD 189733b. Moreover, we have investigated the use of this technique in measuring planetary orbital motion via dop...

  3. Spectral Classification of Asteroids by Random Forest

    Science.gov (United States)

    Huang, C.; Ma, Y. H.; Zhao, H. B.; Lu, X. P.

    2016-09-01

    With the increasing asteroid spectral and photometric data, a variety of classification methods for asteroids have been proposed. This paper classifies asteroids based on the observations of Sloan Digital Sky Survey (SDSS) Moving Object Catalogue (MOC) by using the random forest algorithm. With the training data derived from the taxonomies of Tholen, Bus, Lazzaro, DeMeo, and Principal Component Analysis, we classify 48642 asteroids according to g, r, i, and z SDSS magnitudes. In this way, asteroids are divided into 8 spectral classes (C, X, S, B, D, K, L, and V).

  4. Quarkonium Spectral Functions

    Energy Technology Data Exchange (ETDEWEB)

    Mocsy, Agnes [Department of Mathematics and Science, Pratt Institute, Brooklyn, NY 11205 (United States)

    2009-11-01

    In this talk I summarize the progress achieved in recent years on the understanding of quarkonium properties at finite temperature. Theoretical studies from potential models, lattice QCD, and effective field theories are discussed. I also highlight a bridge from spectral functions to experiment.

  5. Spectral representation of fingerprints

    NARCIS (Netherlands)

    Xu, Haiyun; Bazen, Asker M.; Veldhuis, Raymond N.J.; Kevenaar, Tom A.M.; Akkermans, Anton H.M.

    2007-01-01

    Most fingerprint recognition systems are based on the use of a minutiae set, which is an unordered collection of minutiae locations and directions suffering from various deformations such as translation, rotation and scaling. The spectral minutiae representation introduced in this paper is a novel m

  6. Characterizing Habitable Extrasolar Planets using Spectral Fingerprints

    CERN Document Server

    Kaltenegger, L

    2009-01-01

    The detection and characterization of Earth-like planet is approaching rapidly thanks to radial velocity surveys (HARPS), transit searches (Corot, Kepler) and space observatories dedicated to their characterization are already in development phase (James Webb Space Telescope), large ground based telescopes (ELT, TNT, GMT), and dedicated space-based missions like Darwin, Terrestrial Planet Finder, New World Observer). In this paper we discuss how we can read a planets spectrum to assess its habitability and search for the signatures of a biosphere. Identifying signs of life implies understanding how the observed atmosphere physically and chemically works and thus to gather information on the planet in addition to the observing its spectral fingerprint.

  7. Conscientious Objection to Vaccination.

    Science.gov (United States)

    Clarke, Steve; Giubilini, Alberto; Walker, Mary Jean

    2017-03-01

    Vaccine refusal occurs for a variety of reasons. In this article we examine vaccine refusals that are made on conscientious grounds; that is, for religious, moral, or philosophical reasons. We focus on two questions: first, whether people should be entitled to conscientiously object to vaccination against contagious diseases (either for themselves or for their children); second, if so, to what constraints or requirements should conscientious objection (CO) to vaccination be subject. To address these questions, we consider an analogy between CO to vaccination and CO to military service. We argue that conscientious objectors to vaccination should make an appropriate contribution to society in lieu of being vaccinated. The contribution to be made will depend on the severity of the relevant disease(s), its morbidity, and also the likelihood that vaccine refusal will lead to harm. In particular, the contribution required will depend on whether the rate of CO in a given population threatens herd immunity to the disease in question: for severe or highly contagious diseases, if the population rate of CO becomes high enough to threaten herd immunity, the requirements for CO could become so onerous that CO, though in principle permissible, would be de facto impermissible.

  8. Spectral-collocation variational integrators

    Science.gov (United States)

    Li, Yiqun; Wu, Boying; Leok, Melvin

    2017-03-01

    Spectral methods are a popular choice for constructing numerical approximations for smooth problems, as they can achieve geometric rates of convergence and have a relatively small memory footprint. In this paper, we introduce a general framework to convert a spectral-collocation method into a shooting-based variational integrator for Hamiltonian systems. We also compare the proposed spectral-collocation variational integrators to spectral-collocation methods and Galerkin spectral variational integrators in terms of their ability to reproduce accurate trajectories in configuration and phase space, their ability to conserve momentum and energy, as well as the relative computational efficiency of these methods when applied to some classical Hamiltonian systems. In particular, we note that spectrally-accurate variational integrators, such as the Galerkin spectral variational integrators and the spectral-collocation variational integrators, combine the computational efficiency of spectral methods together with the geometric structure-preserving and long-time structural stability properties of symplectic integrators.

  9. Automated spectral classification and the GAIA project

    Science.gov (United States)

    Lasala, Jerry; Kurtz, Michael J.

    1995-01-01

    Two dimensional spectral types for each of the stars observed in the global astrometric interferometer for astrophysics (GAIA) mission would provide additional information for the galactic structure and stellar evolution studies, as well as helping in the identification of unusual objects and populations. The classification of the large quantity generated spectra requires that automated techniques are implemented. Approaches for the automatic classification are reviewed, and a metric-distance method is discussed. In tests, the metric-distance method produced spectral types with mean errors comparable to those of human classifiers working at similar resolution. Data and equipment requirements for an automated classification survey, are discussed. A program of auxiliary observations is proposed to yield spectral types and radial velocities for the GAIA-observed stars.

  10. Reconstructing spectral reflectance from digital camera through samples selection

    Science.gov (United States)

    Cao, Bin; Liao, Ningfang; Yang, Wenming; Chen, Haobo

    2016-10-01

    Spectral reflectance provides the most fundamental information of objects and is recognized as the "fingerprint" of them, since reflectance is independent of illumination and viewing conditions. However, reconstructing high-dimensional spectral reflectance from relatively low-dimensional camera outputs is an illposed problem and most of methods requaired camera's spectral responsivity. We propose a method to reconstruct spectral reflectance from digital camera outputs without prior knowledge of camera's spectral responsivity. This method respectively averages reflectances of selected subset from main training samples by prescribing a limit to tolerable color difference between the training samples and the camera outputs. Different tolerable color differences of training samples were investigated with Munsell chips under D65 light source. Experimental results show that the proposed method outperforms classic PI method in terms of multiple evaluation criteria between the actual and the reconstructed reflectances. Besides, the reconstructed spectral reflectances are between 0-1, which make them have actual physical meanings and better than traditional methods.

  11. Wavelength conversion based spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin

    There has been a strong, application driven development of Si-based cameras and spectrometers for imaging and spectral analysis of light in the visible and near infrared spectral range. This has resulted in very efficient devices, with high quantum efficiency, good signal to noise ratio and high...... resolution for this spectral region. Today, an increasing number of applications exists outside the spectral region covered by Si-based devices, e.g. within cleantech, medical or food imaging. We present a technology based on wavelength conversion which will extend the spectral coverage of state of the art...... visible or near infrared cameras and spectrometers to include other spectral regions of interest....

  12. Performance assessment of onboard and scene-based methods for Airborne Prism Experiment spectral characterization.

    Science.gov (United States)

    D'Odorico, Petra; Guanter, Luis; Schaepman, Michael E; Schläpfer, Daniel

    2011-08-20

    Accurate spectral calibration of airborne and spaceborne imaging spectrometers is essential for proper preprocessing and scientific exploitation of high spectral resolution measurements of the land and atmosphere. A systematic performance assessment of onboard and scene-based methods for in-flight monitoring of instrument spectral calibration is presented for the first time in this paper. Onboard and ground imaging data were collected at several flight altitudes using the Airborne Prism Experiment (APEX) imaging spectrometer. APEX is equipped with an in-flight characterization (IFC) facility allowing the evaluation of radiometric, spectral, and geometric system properties, both in-flight and on-ground for the full field of view. Atmospheric and onboard filter spectral features present in at-sensor radiances are compared with the same features in reference transmittances convolved to varying instrument spectral configurations. A spectrum-matching algorithm, taking advantage of the high sensitivity of measurements around sharp spectral features toward spectrometer spectral performance, is used to retrieve channel center wavelength and bandwidth parameters. Results showed good agreement between spectral parameters estimated using onboard IFC and ground imaging data. The average difference between estimates obtained using the O(2) and H(2)O features and those obtained using the corresponding filter features amounted to about 0.3 nm (0.05 of a spectral pixel). A deviation from the nominal laboratory instrument spectral calibration and an altitude-dependent performance was additionally identified. The relatively good agreement between estimates obtained by the two approaches in similar spectral windows suggests they can be used in a complementary fashion: while the method relying on atmospheric features can be applied without the need for dedicated calibration acquisitions, the IFC allows assessment at user-selectable wavelength positions by custom filters as well as for

  13. Spectral variability of the particulate backscattering ratio

    Science.gov (United States)

    Whitmire, A. L.; Boss, E.; Cowles, T. J.; Pegau, W. S.

    2007-05-01

    The spectral dependency of the particulate backscattering ratio is relevant in the fields of ocean color inversion, light field modeling, and inferring particle properties from optical measurements. Aside from theoretical predictions for spherical, homogeneous particles, we have very limited knowledge of the actual in situ spectral variability of the particulate backscattering ratio. This work presents results from five research cruises that were conducted over a three-year period. Water column profiles of physical and optical properties were conducted across diverse aquatic environments that offered a wide range of particle populations. The main objective of this research was to examine the behavior of the spectral particulate backscattering ratio in situ, both in terms of its absolute magnitude and its variability across visible wavelengths, using over nine thousand 1-meter binned data points for each of five wavelengths of the spectral particulate backscattering ratio. Our analysis reveals no spectral dependence of the particulate backscattering ratio within our measurement certainty, and a geometric mean value of 0.013 for this dataset. This is lower than the commonly used value of 0.0183 from Petzold’s integrated volume scattering data. Within the first optical depth of the water column, the mean particulate backscattering ratio was 0.010.

  14. Early object relations into new objects.

    Science.gov (United States)

    Downey, T W

    2001-01-01

    out of. And development continues from early objects to new objects. New and renewed understandings of analytic events necessarily guide the analyst in the timing of his traditional activities of attending, listening, talking, and relating. A contemporary surge of clinical understanding has led to a more active and informed relatedness on the part of the analyst that allows for a more compassionate approach to verbalization, whether with adults or children. We now know that not every word and every dynamic needs to be funneled through interpretation. The spontaneous powers for recovery that are stimulated by the analytic ground and the analytic process may come to be more accepted as a component of therapeutic gain. Appreciation of the balance of power between the verbal and nonverbal aspects of the analytic process in bringing about therapeutic change has increased. This has led to a greater parity of power and responsibility in the therapeutic alliance. The idea of a "tilted partnership" in which both members work for or against the powerful forces of the analytic process, or of a reciprocal relationship between analyst and analysand has become available to replace the former emphasis on the "tilted relationship." The analyst need no longer be so much in charge of the proceedings whether through deep interpretations of the unconscious or by obsessive attention to associational detail. The ongoing process of developing a body of theoretical and technical understanding that is both reliable and plastic demands an openness that at times flies in the face of the imperative needs of our patients and our profession for clinical confidence and certainty. The analytic clinician, part artist and part scientist, is forever struggling to balance the interminable task of culling new understanding from experience while imposing previously derived understandings that while sure are yet subject to changes stimulated by analytic experience. (ABSTRACT TRUNCATED)

  15. Context Dependent Spectral Unmixing

    Science.gov (United States)

    2014-08-01

    International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa , July 2009. HONORS AND AWARDS: 1. IEEE Outstanding CECS Student Award...COMMEND on the Usgs1C2M3 data across the 25 runs and at all noise levels: (a) SME , (b) SMAE, (c) AME. . . . . . . . . . . . . . 59 6.10 True (solid lines...identifying multiple sets of endmembers. In other words, the unmixing process is adapted to different regions of the spectral space. Another challenge with most

  16. Test of spectral/spatial classifier

    Science.gov (United States)

    Landgrebe, D. A. (Principal Investigator); Kast, J. L.; Davis, B. J.

    1977-01-01

    The author has identified the following significant results. The supervised ECHO processor (which utilizes class statistics for object identification) successfully exploits the redundancy of states characteristic of sampled imagery of ground scenes to achieve better classification accuracy, reduce the number of classifications required, and reduce the variability of classification results. The nonsupervised ECHO processor (which identifies objects without the benefit of class statistics) successfully reduces the number of classifications required and the variability of the classification results.

  17. EEG signatures accompanying auditory figure-ground segregation.

    Science.gov (United States)

    Tóth, Brigitta; Kocsis, Zsuzsanna; Háden, Gábor P; Szerafin, Ágnes; Shinn-Cunningham, Barbara G; Winkler, István

    2016-11-01

    In everyday acoustic scenes, figure-ground segregation typically requires one to group together sound elements over both time and frequency. Electroencephalogram was recorded while listeners detected repeating tonal complexes composed of a random set of pure tones within stimuli consisting of randomly varying tonal elements. The repeating pattern was perceived as a figure over the randomly changing background. It was found that detection performance improved both as the number of pure tones making up each repeated complex (figure coherence) increased, and as the number of repeated complexes (duration) increased - i.e., detection was easier when either the spectral or temporal structure of the figure was enhanced. Figure detection was accompanied by the elicitation of the object related negativity (ORN) and the P400 event-related potentials (ERPs), which have been previously shown to be evoked by the presence of two concurrent sounds. Both ERP components had generators within and outside of auditory cortex. The amplitudes of the ORN and the P400 increased with both figure coherence and figure duration. However, only the P400 amplitude correlated with detection performance. These results suggest that 1) the ORN and P400 reflect processes involved in detecting the emergence of a new auditory object in the presence of other concurrent auditory objects; 2) the ORN corresponds to the likelihood of the presence of two or more concurrent sound objects, whereas the P400 reflects the perceptual recognition of the presence of multiple auditory objects and/or preparation for reporting the detection of a target object.

  18. Object Discovery via Cohesion Measurement.

    Science.gov (United States)

    Guo, Guanjun; Wang, Hanzi; Zhao, Wan-Lei; Yan, Yan; Li, Xuelong

    2017-02-16

    Color and intensity are two important components in an image. Usually, groups of image pixels, which are similar in color or intensity, are an informative representation for an object. They are therefore particularly suitable for computer vision tasks, such as saliency detection and object proposal generation. However, image pixels, which share a similar real-world color, may be quite different since colors are often distorted by intensity. In this paper, we reinvestigate the affinity matrices originally used in image segmentation methods based on spectral clustering. A new affinity matrix, which is robust to color distortions, is formulated for object discovery. Moreover, a cohesion measurement (CM) for object regions is also derived based on the formulated affinity matrix. Based on the new CM, a novel object discovery method is proposed to discover objects latent in an image by utilizing the eigenvectors of the affinity matrix. Then we apply the proposed method to both saliency detection and object proposal generation. Experimental results on several evaluation benchmarks demonstrate that the proposed CM-based method has achieved promising performance for these two tasks.

  19. Graspable objects shape number processing

    Directory of Open Access Journals (Sweden)

    Mariagrazia eRanzini

    2011-12-01

    Full Text Available The field of numerical cognition represents an interesting case for action-based theories of cognition, since number is a special kind of abstract concept. Several studies have shown that within the parietal lobes adjacent neural regions code numerical magnitude and grasping-related information. This anatomical proximity between brain areas involved in number and sensorimotor processes may account for interactions between numerical magnitude and action. In particular, recent studies has demonstrated a causal role of action perception on numerical magnitude processing. If objects are represented in terms of actions (affordances, the causal role of action on number processing should extend to the case of objects affordances. This study investigates the relationship between numbers and objects affordances in two experiments, without (Experiment 1 or with (Experiment 2 a motor action execution (i.e., participants were asked to hold an object in their hands during the task. The task consisted in repeating aloud the odd or even digit within a pair depending on the type of the preceding or following object. Order of presentation (object-number vs. number-object, object type (graspable vs. ungraspable, object size (small vs. large, and Numerical magnitude (small vs. large were manipulated for each experiment. Experiment 1 showed a facilitation – in terms of quicker responses - for graspable over ungraspable objects preceded by numbers, and an effect of numerical magnitude after the presentation of graspable objects. Experiment 2 demonstrated that the action execution enhanced overall the sensitivity to numerical magnitude, however interfering with the effects of objects affordances on number processing. Overall, these findings demonstrate that numbers and graspable objects communicate with each other, supporting the view that abstract concepts may be grounded in motor experience.

  20. Spectral Ages of CSOs and CSS Sources

    CERN Document Server

    Murgia, M

    2003-01-01

    This paper deals with the spectral ageing study of a representative sample of compact symmetric objects (CSOs) and compact steep spectrum (CSS) sources. Observations reveal a distinctive high-frequency steepening of the radio spectra of many of these sources. The existence of such a spectral feature is expected or may be naturally interpreted in terms of radiative ageing of synchrotron emitting electrons. The small angular size of CSS sources makes it relatively easy to measure their integrated spectra over a wide frequency range for a conspicuous number of objects. For those sources whose emission is dominated by the mini-lobes, the integrated spectra can be used to constrain the source age. Assuming equipartition magnetic fields, the spectral ages we found are in the range from 10^2 to 10^5 yr. Multifrequency VLBA observations allow us to study the spectral properties of two CSOs: B1323+321 and B1943+546. The case of B1943+546 is particularly interesting since for this source a kinematic age has been derive...

  1. Ape Metaphysics: Object Individuation without Language

    Science.gov (United States)

    Mendes, Natacha; Rakoczy, Hannes; Call, Josep

    2008-01-01

    Developmental research suggests that whereas very young infants individuate objects purely on spatiotemporal grounds, from (at latest) around 1 year of age children are capable of individuating objects according to the kind they belong to and the properties they instantiate. As the latter ability has been found to correlate with language, some…

  2. Parts, Cavities, and Object Representation in Infancy

    Science.gov (United States)

    Hayden, Angela; Bhatt, Ramesh S.; Kangas, Ashley; Zieber, Nicole

    2011-01-01

    Part representation is not only critical to object perception but also plays a key role in a number of basic visual cognition functions, such as figure-ground segregation, allocation of attention, and memory for shapes. Yet, virtually nothing is known about the development of part representation. If parts are fundamental components of object shape…

  3. Preliminary results of ground-motion characteristics

    Directory of Open Access Journals (Sweden)

    Francesca Bozzoni

    2012-10-01

    Full Text Available The preliminary results are presented herein for the engineering applications of the characteristics of the ground motion induced by the May 20, 2012, Emilia earthquake. Shake maps are computed to provide estimates of the spatial distribution of the induced ground motion. The signals recorded at the Mirandola (MRN station, the closest to the epicenter, have been processed to obtain acceleration, velocity and displacement response spectra. Ground-motion parameters from the MRN recordings are compared with the corresponding estimates from recent ground-motion prediction equations, and with the spectra prescribed by the current Italian Building Code for different return periods. The records from the MRN station are used to plot the particle orbit (hodogram described by the waveform. The availability of results from geotechnical field tests that were performed at a few sites in the Municipality of Mirandola prior to this earthquake of May 2012 has allowed preliminary assessment of the ground response. The amplification effects at Mirandola are estimated using fully stochastic site-response analyses. The seismic input comprises seven actual records that are compatible with the Italian code-based spectrum that refers to a 475-year return period. The computed acceleration response spectrum and the associated dispersion are compared to the spectra calculated from the recordings of the MRN station. Good agreement is obtained for periods up to 1 s, especially for the peak ground acceleration. For the other periods, the spectral acceleration of the MRN recordings exceeds that of the computed spectra.

  4. What Makes an Object Memorable?

    KAUST Repository

    Dubey, Rachit

    2016-02-19

    Recent studies on image memorability have shed light on what distinguishes the memorability of different images and the intrinsic and extrinsic properties that make those images memorable. However, a clear understanding of the memorability of specific objects inside an image remains elusive. In this paper, we provide the first attempt to answer the question: what exactly is remembered about an image? We augment both the images and object segmentations from the PASCAL-S dataset with ground truth memorability scores and shed light on the various factors and properties that make an object memorable (or forgettable) to humans. We analyze various visual factors that may influence object memorability (e.g. color, visual saliency, and object categories). We also study the correlation between object and image memorability and find that image memorability is greatly affected by the memorability of its most memorable object. Lastly, we explore the effectiveness of deep learning and other computational approaches in predicting object memorability in images. Our efforts offer a deeper understanding of memorability in general thereby opening up avenues for a wide variety of applications. © 2015 IEEE.

  5. Using GIS servers and interactive maps in spectral data sharing and administration: Case study of Ahvaz Spectral Geodatabase Platform (ASGP)

    Science.gov (United States)

    Karami, Mojtaba; Rangzan, Kazem; Saberi, Azim

    2013-10-01

    With emergence of air-borne and space-borne hyperspectral sensors, spectroscopic measurements are gaining more importance in remote sensing. Therefore, the number of available spectral reference data is constantly increasing. This rapid increase often exhibits a poor data management, which leads to ultimate isolation of data on disk storages. Spectral data without precise description of the target, methods, environment, and sampling geometry cannot be used by other researchers. Moreover, existing spectral data (in case it accompanied with good documentation) become virtually invisible or unreachable for researchers. Providing documentation and a data-sharing framework for spectral data, in which researchers are able to search for or share spectral data and documentation, would definitely improve the data lifetime. Relational Database Management Systems (RDBMS) are main candidates for spectral data management and their efficiency is proven by many studies and applications to date. In this study, a new approach to spectral data administration is presented based on spatial identity of spectral samples. This method benefits from scalability and performance of RDBMS for storage of spectral data, but uses GIS servers to provide users with interactive maps as an interface to the system. The spectral files, photographs and descriptive data are considered as belongings of a geospatial object. A spectral processing unit is responsible for evaluation of metadata quality and performing routine spectral processing tasks for newly-added data. As a result, by using internet browser software the users would be able to visually examine availability of data and/or search for data based on descriptive attributes associated to it. The proposed system is scalable and besides giving the users good sense of what data are available in the database, it facilitates participation of spectral reference data in producing geoinformation.

  6. Online Multi-Spectral Meat Inspection

    DEFF Research Database (Denmark)

    Nielsen, Jannik Boll; Larsen, Anders Boesen Lindbo

    2013-01-01

    We perform an explorative study on multi-spectral image data from a prototype device developed for fast online quality inspection of meat products. Because the camera setup is built for speed, we sacrifice exact pixel correspondences between the different bands of the multi-spectral images. Our...... work is threefold as we 1) investigate the color distributions and construct a model to describe pork loins, 2) classify the different components in pork loins (meat, fat, membrane), and 3) detect foreign objects on the surface of pork loins. Our investigation shows that the color distributions can...... effectively be modeled using the Gaussian mixture model (GMM). For the classification task we build a classifier using a GMM. For detecting foreign objects, we construct a novelty detector using a GMM. We evaluate our method on a small dataset with mixed results. While we are able to provide reasonable...

  7. Sound objects – Auditory objects – Musical objects

    DEFF Research Database (Denmark)

    Hjortkjær, Jens

    2015-01-01

    The auditory system transforms patterns of sound energy into perceptual objects but the precise definition of an ‘auditory object’ is much debated. In the context of music listening, Pierre Schaeffer argued that ‘sound objects’ are the fundamental perceptual units in ‘musical objects......’. In this paper, I review recent neurocognitive research suggesting that the auditory system is sensitive to structural information about real-world objects. Instead of focusing solely on perceptual sound features as determinants of auditory objects, I propose that real-world object properties are inherent...

  8. Sound objects – Auditory objects – Musical objects

    DEFF Research Database (Denmark)

    Hjortkjær, Jens

    2016-01-01

    The auditory system transforms patterns of sound energy into perceptual objects but the precise definition of an ‘auditory object’ is much debated. In the context of music listening, Pierre Schaeffer argued that ‘sound objects’ are the fundamental perceptual units in ‘musical objects......’. In this paper, I review recent neurocognitive research suggesting that the auditory system is sensitive to structural information about real-world objects. Instead of focusing solely on perceptual sound features as determinants of auditory objects, I propose that real-world object properties are inherent...

  9. Surface Albedo and Spectral Variability of Ceres

    CERN Document Server

    Li, Jian-Yang; Nathues, Andreas; Corre, Lucille Le; Izawa, Matthew R M; Clouts, Edward A; Sykes, Mark V; Carsenty, Uri; Castillo-Rogez, Julie C; Hoffmann, Martin; Jaumann, Ralf; Krohn, Katrin; Mottola, Stefano; Prettyman, Thomas H; Schaefer, Michael; Schenk, Paul; Schröder, Stefan E; Williams, David A; Smith, David E; Zuber, Maria T; Konopliv, Alexander S; Park, Ryan S; Raymond, Carol A; Russell, Christopher T

    2016-01-01

    Previous observations suggested that Ceres has active but possibly sporadic water outgassing, and possibly varying spectral characteristics in a time scale of months. We used all available data of Ceres collected in the past three decades from the ground and the Hubble Space Telescope, and the newly acquired images by Dawn Framing Camera to search for spectral and albedo variability on Ceres, in both a global scale and local regions, particularly the bright spots inside Occator crater, over time scales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in Occator crater by >15%, or the global albedo by >3% over various time scales that we searched. Recently reported spectral slope variations can be explained by changing Sun-Ceres-Earth geometry. The active area on Ceres is less than 1 km$^2...

  10. Undecidability of the Spectral Gap (full version)

    CERN Document Server

    Cubitt, Toby; Wolf, Michael M

    2015-01-01

    We show that the spectral gap problem is undecidable. Specifically, we construct families of translationally-invariant, nearest-neighbour Hamiltonians on a 2D square lattice of $d$-level quantum systems ($d$ constant), for which determining whether the system is gapped or gapless is an undecidable problem. This is true even with the promise that each Hamiltonian is either gapped or gapless in the strongest sense: it is promised to either have continuous spectrum above the ground state in the thermodynamic limit, or its spectral gap is lower-bounded by a constant in the thermodynamic limit. Moreover, this constant can be taken equal to the local interaction strength of the Hamiltonian. This implies that it is logically impossible to say in general whether a quantum many-body system is gapped or gapless. Our results imply that there exist specific Hamiltonians for which the presence or absence of a spectral gap is independent of all consistent axiomatisations of mathematics. These results have a number of impor...

  11. Optimum segmentation of simple objects in high-resolution remote sensing imagery in coastal areas

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianyu; PAN Delu; MAO Zhihua

    2006-01-01

    The optimum segmentation of ground objects in a landscape is essential for interpretation of high-resolution remotely sensed imagery and detection of objects; and it is also a technical foundation to efficiently use spatial information in remote sensing imagery. Landscapes are complex system composed of a large number of heterogeneous components. There are many explicit homogeneous image objects that have similar spectral character and yet differ from surrounding objects in high-resolution remote sensing imagery. Thereby, a new concept of Distinctive Feature of fractal is put forward and used in deriving Distinctive Feature curve of fractal evolution in multiscale segmentation.Through distinguishing the extremum condition of Distinctive Feature curve and the inclusion relationship of fractals in multiscale representation the Scalar Order is built. This can help to determinate the optimum scale in image segmentation for simple-objects, and the potential meaningful image-object fitting the intrinsic scale of the dominant landscape object can be obtained. Based on the application in high-resolution remote sensing imagery in coastal areas, a satisfactory result was acquired.

  12. Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS): Stony Asteroids Abundant in the Background and Family Populations

    Science.gov (United States)

    Lucas, Michael P.; Emery, Joshua P.; Pinilla-Alonso, Noemi; Lindsay, Sean S.; Lorenzi, Vania

    2016-10-01

    The Hungaria region represents a "purgatory" for the closest, preserved samples of the material from which the terrestrial planets accreted. The Hungaria region harbors a collisional family of Xe-type asteroids, which are situated among a background of predominantly S-complex asteroids. Deciphering their surface composition may provide constraints on the nature of the primordial building blocks of the terrestrial planets. We hypothesize that planetesimals in the inner part of the primordial asteroid belt experienced partial- to full-melting and differentiation, the Hungaria region should retain any petrologically-evolved material that formed there.We have undertaken an observational campaign entitled the Hungaria Asteroid Region Telescopic Spectral Survey (HARTSS) to record near-infrared (NIR) spectra to characterize taxonomy, surface mineralogy, and potential meteorite analogs. We used NIR instruments at two ground-based facilities (NASA IRTF; TNG). Our data set includes spectra of 82 Hungaria asteroids (61 background; 21 family), 65 were observed during HARTSS. We compare S-complex background asteroids to calibrations developed via laboratory analyses of ordinary chondrites, and to our analyses (EPMA, XRD, VIS+NIR spectra) of 11 primitive achondrite (acapulcoite-lodranite clan) meteorites.We find that stony S-complex asteroids dominate the Hungaria background population (~80%). Background objects exhibit considerable spectral diversity, when quantified by spectral band parameter measurements, translates to a variety of surface compositions. Two main meteorite groups are represented within the Hungaria background: unmelted, nebular L chondrites (and/or L chondrites), and partially-melted primitive achondrites. H-chondrite mineralogies appear to be absent from the Hungaria background. Xe-type Hungaria family members exhibit spectral homogeneity, consistent with the hypothesis that the family was derived from the disruption of a parent body analogous to an enstatite

  13. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  14. Spectral Variability of FSRQs

    Indian Academy of Sciences (India)

    Minfeng Gu; Y. L. Ai

    2011-03-01

    The optical variability of 29 flat spectrum radio quasars in SDSS Stripe 82 region are investigated by using DR7 released multi-epoch data. All FSRQs show variations with overall amplitude ranging from 0.24 mag to 3.46 mag in different sources. About half of FSRQs show a bluer-when-brighter trend, which is commonly observed for blazars. However, only one source shows a redder-when-brighter trend, which implies it is rare in FSRQs. In this source, the thermal emission may be responsible for the spectral behaviour.

  15. Spectrally encoded confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tearney, G.J.; Webb, R.H.; Bouma, B.E. [Wellman Laboratories of Photomedicine, Massachusetts General Hospital, 50 Blossom Street, BAR 703, Boston, Massachusetts 02114 (United States)

    1998-08-01

    An endoscope-compatible, submicrometer-resolution scanning confocal microscopy imaging system is presented. This approach, spectrally encoded confocal microscopy (SECM), uses a quasi-monochromatic light source and a transmission diffraction grating to detect the reflectivity simultaneously at multiple points along a transverse line within the sample. Since this method does not require fast spatial scanning within the probe, the equipment can be miniaturized and incorporated into a catheter or endoscope. Confocal images of an electron microscope grid were acquired with SECM to demonstrate the feasibility of this technique. {copyright} {ital 1998} {ital Optical Society of America}

  16. An Object-Oriented Approach to Extracting Productive Fossil Localities from Remotely Sensed Imagery

    Directory of Open Access Journals (Sweden)

    Charles Emerson

    2015-12-01

    Full Text Available Most vertebrate fossils are rare and difficult to find and although paleontologists and paleoanthropologists use geological maps to identify potential fossil-bearing deposits, the process of locating fossiliferous localities often involves a great deal of luck. One way to reduce the role of serendipity is to develop predictive models that increase the likelihood of locating fossils by identifying combinations of geological, geospatial, and spectral features that are common to productive localities. We applied GEographic Object-Based Image Analysis (GEOBIA of high resolution QuickBird and medium resolution images from the Landsat 8 Operational Land Imager (OLI along with GIS data such as slope and surface geology layers to identify potentially productive Eocene vertebrate fossil localities in the Great Divide Basin, Wyoming. The spectral and spatial characteristics of the image objects that represent a highly productive locality (WMU-VP-222 were used to extract similar image objects in the area covered by the high resolution imagery and throughout the basin using the Landsat imagery. During the 2013 summer field season, twenty-six locations that would not have been spotted from the road in a traditional ground survey were visited. Fourteen of the eighteen localities that were fossiliferous were identified by the predictive model. In 2014, the GEOBIA techniques were applied to Landsat 8 imagery of the entire basin, correctly identifying six new productive localities in a previously unsurveyed part of the basin.

  17. Object-based Analysis for Extraction of Dominant Tree Species

    Institute of Scientific and Technical Information of China (English)

    Meiyun; SHAO; Xia; JING; Lu; WANG

    2015-01-01

    As forest is of great significance for our whole development and the sustainable plan is so focus on it. It is very urgent for us to have the whole distribution,stock volume and other related information about that. So the forest inventory program is on our schedule. Aiming at dealing with the problem in extraction of dominant tree species,we tested the highly hot method-object-based analysis. Based on the ALOS image data,we combined multi-resolution in e Cognition software and fuzzy classification algorithm. Through analyzing the segmentation results,we basically extract the spruce,the pine,the birch and the oak of the study area. Both the spectral and spatial characteristics were derived from those objects,and with the help of GLCM,we got the differences of each species. We use confusion matrix to do the Classification accuracy assessment compared with the actual ground data and this method showed a comparatively good precision as 87% with the kappa coefficient 0. 837.

  18. Quasi-objects, Cult Objects and Fashion Objects

    DEFF Research Database (Denmark)

    Andersen, Bjørn Schiermer

    2011-01-01

    This article attempts to rehabilitate the concept of fetishism and to contribute to the debate on the social role of objects as well as to fashion theory. Extrapolating from Michel Serres’ theory of the quasi-objects, I distinguish two phenomenologies possessing almost opposite characteristics....... These two phenomenologies are, so I argue, essential to quasi-object theory, yet largely ignored by Serres’ sociological interpreters. They correspond with the two different theories of fetishism found in Marx and Durkheim, respectively. In the second half of the article, I introduce the fashion object...... as a unique opportunity for studying the interchange between these two forms of fetishism and their respective phenomenologies. Finally, returning to Serres, I briefly consider the theoretical consequences of introducing the fashion object as a quasi-object....

  19. Improved Objective Measurements for Speech Quality Testing

    Science.gov (United States)

    1985-01-01

    and argue that most any reasonable frequency variant spectral analysis choice may be virtually equivalent. The filter bank approach appears to have...parameter III specifies thce threshold between objectively interrupted and non-interrupted speech. In the foi- aula apecifying RATIO, mf is the index of the

  20. A NEW OBJECT-BASED FRAMEWORK TO DETECT SHODOWS IN HIGH-RESOLUTION SATELLITE IMAGERY OVER URBAN AREAS

    Directory of Open Access Journals (Sweden)

    N. Tatar

    2015-12-01

    Full Text Available In this paper a new object-based framework to detect shadow areas in high resolution satellite images is proposed. To produce shadow map in pixel level state of the art supervised machine learning algorithms are employed. Automatic ground truth generation based on Otsu thresholding on shadow and non-shadow indices is used to train the classifiers. It is followed by segmenting the image scene and create image objects. To detect shadow objects, a majority voting on pixel-based shadow detection result is designed. GeoEye-1 multi-spectral image over an urban area in Qom city of Iran is used in the experiments. Results shows the superiority of our proposed method over traditional pixel-based, visually and quantitatively.

  1. Airport Ground Staff Scheduling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    travels safely and efficiently through the airport. When an aircraft lands, a significant number of tasks must be performed by different groups of ground crew, such as fueling, baggage handling and cleaning. These tasks must be complete before the aircraft is able to depart, as well as check......-in and security services. These tasks are collectively known as ground handling, and are the major source of activity with airports. The business environments of modern airports are becoming increasingly competitive, as both airports themselves and their ground handling operations are changing to private...... ownership. As airports are in competition to attract airline routes, efficient and reliable ground handling operations are imperative for the viability and continued growth of both airports and airlines. The increasing liberalization of the ground handling market prompts ground handling operators...

  2. [Introduction to grounded theory].

    Science.gov (United States)

    Wang, Shou-Yu; Windsor, Carol; Yates, Patsy

    2012-02-01

    Grounded theory, first developed by Glaser and Strauss in the 1960s, was introduced into nursing education as a distinct research methodology in the 1970s. The theory is grounded in a critique of the dominant contemporary approach to social inquiry, which imposed "enduring" theoretical propositions onto study data. Rather than starting from a set theoretical framework, grounded theory relies on researchers distinguishing meaningful constructs from generated data and then identifying an appropriate theory. Grounded theory is thus particularly useful in investigating complex issues and behaviours not previously addressed and concepts and relationships in particular populations or places that are still undeveloped or weakly connected. Grounded theory data analysis processes include open, axial and selective coding levels. The purpose of this article was to explore the grounded theory research process and provide an initial understanding of this methodology.

  3. Ground Vehicle Robotics

    Science.gov (United States)

    2013-08-20

    Ground Vehicle Robotics Jim Parker Associate Director, Ground Vehicle Robotics UNCLASSIFIED: Distribution Statement A. Approved for public...DATE 20 AUG 2013 2. REPORT TYPE Briefing Charts 3. DATES COVERED 09-05-2013 to 15-08-2013 4. TITLE AND SUBTITLE Ground Vehicle Robotics 5a...Willing to take Risk on technology -User Evaluated -Contested Environments -Operational Data Applied Robotics for Installation & Base Ops -Low Risk

  4. SURFACE ALBEDO AND SPECTRAL VARIABILITY OF CERES

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-Yang; Reddy, Vishnu; Corre, Lucille Le; Sykes, Mark V.; Prettyman, Thomas H. [Planetary Science Institute, 1700 E. Ft. Lowell Road, Suite 106, Tucson, AZ 85719 (United States); Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael [Max Planck Institute for Solar System Research, Göttingen (Germany); Izawa, Matthew R. M.; Cloutis, Edward A. [University of Winnipeg, Winnipeg, Manitoba (Canada); Carsenty, Uri; Jaumann, Ralf; Krohn, Katrin; Mottola, Stefano; Schröder, Stefan E. [German Aerospace Center (DLR), Institute of Planetary Research, Berlin (Germany); Castillo-Rogez, Julie C. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Schenk, Paul [Lunar and Planetary Institute, Houston, TX 77058 (United States); Williams, David A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Smith, David E. [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Zuber, Maria T. [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); and others

    2016-02-01

    Previous observations suggested that Ceres has active, but possibly sporadic, water outgassing as well as possibly varying spectral characteristics over a timescale of months. We used all available data of Ceres collected in the past three decades from the ground and the Hubble Space Telescope, as well as the newly acquired images by the Dawn  Framing Camera, to search for spectral and albedo variability on Ceres, on both a global scale and in local regions, particularly the bright spots inside the Occator crater, over timescales of a few months to decades. Our analysis has placed an upper limit on the possible temporal albedo variation on Ceres. Sporadic water vapor venting, or any possibly ongoing activity on Ceres, is not significant enough to change the albedo or the area of the bright features in the Occator crater by >15%, or the global albedo by >3% over the various timescales that we searched. Recently reported spectral slope variations can be explained by changing Sun–Ceres–Earth geometry. The active area on Ceres is less than 1 km{sup 2}, too small to cause global albedo and spectral variations detectable in our data. Impact ejecta due to impacting projectiles of tens of meters in size like those known to cause observable changes to the surface albedo on Asteroid Scheila cannot cause detectable albedo change on Ceres due to its relatively large size and strong gravity. The water vapor activity on Ceres is independent of Ceres’ heliocentric distance, ruling out the possibility of the comet-like sublimation process as a possible mechanism driving the activity.

  5. Aluminum Rich Epoxy Primer for Ground and Air Vehicles

    Science.gov (United States)

    2017-03-01

    UNCLASSIFIED DOCUMENT Aluminum Rich Epoxy Primer for Ground and Air Vehicles Monthly Technical Report for the Period: January 20, 2017...Objective: To further develop the Aluminum Rich Epoxy Primer systems for Air and Ground Vehicles while addressing the objective requirements... Epoxy Primers in order to afford a lower initial viscosity allowing for better application properties; lower VOC; and the incorporation of various

  6. The Grounded Theory Bookshelf

    Directory of Open Access Journals (Sweden)

    Vivian B. Martin, Ph.D.

    2005-03-01

    Full Text Available Bookshelf will provide critical reviews and perspectives on books on theory and methodology of interest to grounded theory. This issue includes a review of Heaton’s Reworking Qualitative Data, of special interest for some of its references to grounded theory as a secondary analysis tool; and Goulding’s Grounded Theory: A practical guide for management, business, and market researchers, a book that attempts to explicate the method and presents a grounded theory study that falls a little short of the mark of a fully elaborated theory.Reworking Qualitative Data, Janet Heaton (Sage, 2004. Paperback, 176 pages, $29.95. Hardcover also available.

  7. SSME Condition Monitoring Using Neural Networks and Plume Spectral Signatures

    Science.gov (United States)

    Hopkins, Randall; Benzing, Daniel

    1996-01-01

    For a variety of reasons, condition monitoring of the Space Shuttle Main Engine (SSME) has become an important concern for both ground tests and in-flight operation. The complexities of the SSME suggest that active, real-time condition monitoring should be performed to avoid large-scale or catastrophic failure of the engine. In 1986, the SSME became the subject of a plume emission spectroscopy project at NASA's Marshall Space Flight Center (MSFC). Since then, plume emission spectroscopy has recorded many nominal tests and the qualitative spectral features of the SSME plume are now well established. Significant discoveries made with both wide-band and narrow-band plume emission spectroscopy systems led MSFC to develop the Optical Plume Anomaly Detection (OPAD) system. The OPAD system is designed to provide condition monitoring of the SSME during ground-level testing. The operational health of the engine is achieved through the acquisition of spectrally resolved plume emissions and the subsequent identification of abnormal emission levels in the plume indicative of engine erosion or component failure. Eventually, OPAD, or a derivative of the technology, could find its way on to an actual space vehicle and provide in-flight engine condition monitoring. This technology step, however, will require miniaturized hardware capable of processing plume spectral data in real-time. An objective of OPAD condition monitoring is to determine how much of an element is present in the SSME plume. The basic premise is that by knowing the element and its concentration, this could be related back to the health of components within the engine. For example, an abnormal amount of silver in the plume might signify increased wear or deterioration of a particular bearing in the engine. Once an anomaly is identified, the engine could be shut down before catastrophic failure occurs. Currently, element concentrations in the plume are determined iteratively with the help of a non-linear computer

  8. Hierarchical processing of auditory objects in humans.

    Directory of Open Access Journals (Sweden)

    Sukhbinder Kumar

    2007-06-01

    Full Text Available This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG, containing the primary auditory cortex, planum temporale (PT, and superior temporal sulcus (STS, and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal "templates" in the PT before further analysis of the abstracted form in anterior temporal lobe areas.

  9. Estimation of spectral distribution of sky radiance using a commercial digital camera.

    Science.gov (United States)

    Saito, Masanori; Iwabuchi, Hironobu; Murata, Isao

    2016-01-10

    Methods for estimating spectral distribution of sky radiance from images captured by a digital camera and for accurately estimating spectral responses of the camera are proposed. Spectral distribution of sky radiance is represented as a polynomial of the wavelength, with coefficients obtained from digital RGB counts by linear transformation. The spectral distribution of radiance as measured is consistent with that obtained by spectrometer and radiative transfer simulation for wavelengths of 430-680 nm, with standard deviation below 1%. Preliminary applications suggest this method is useful for detecting clouds and studying the relation between irradiance at the ground and cloud distribution.

  10. A coarse-grained spectral signature generator

    Science.gov (United States)

    Lam, K. P.; Austin, J. C.; Day, C. R.

    2007-01-01

    This paper investigates the method for object fingerprinting in the context of element specific x-ray imaging. In particular, the use of spectral descriptors that are illumination invariant and viewpoint independent for pattern identification was examined in some detail. To improve generating the relevant "signature", the spectral descriptor constructed is enhanced with a differentiator which has built-in noise filtration capability and good localisation properties, thus facilitating the extraction of element specific features at a coarse-grained level. In addition to the demonstrable efficacy in identifying significant image intensity transitions that are associated with the underlying physical process of interest, the method has the distinct advantage of being conceptually simple and computationally efficient. These latter properties allow the descriptor to be further utilised by an intelligent system capable of performing a fine-grained analysis of the extracted pattern signatures. The performance of the spectral descriptor has been studied in terms of the quality of the signature vectors that it generated, quantitatively based on the established framework of Spectral Information Measure (SIM). Early results suggested that such a multiscale approach of image sequence analysis offers a considerable potential for real-time applications.

  11. Macro vs. Micro: Relating the Spectral Properties of Vesta and the HED Meteorite

    Science.gov (United States)

    Ammannito, E.; Coradini, A.; DeSanctis, M. C.; Filacchione, G.; Fonte, S.; Magni, G.; Capaccioni, F.; Capria, M. T.; Tosi, F.; Blewett, D. T.; Combe, J. P.; Farina, M.; Mittlefehldt, D. W.; Palomba, E.; Pieters, C. M.; Sunshine, J.; Titus, T. N.; Toplis, M. J.; Russell, C. T.; Raymond, C. A.; McSween, H. Y., Jr.

    2011-01-01

    We present the main results obtained comparing the visible-near infrared (VIS-NIR) spectra Vesta s surface with howardites, eucrites, diogenites (HED). HEDs are commonly associated with Vesta s composition based on spectral similarities. Because of such association, much effort is being made to merge the information from HEDs as well as Vestoids - with that from Vesta to characterize the lithologic diversity of the surface of this asteroid and to infer clues regarding its thermal history. However, while the HEDs are a class of meteorites well studied in the laboratory, the only spectral data available for Vesta until now were telescopic observations which are limited in terms of observation conditions, spatial resolution and Signal to Noise Ratio. The Dawn spacecraft, orbiting around Vesta since July 2011, is performing detailed observations of this body and thus improving our knowledge of its properties. Dawn s scientific payload includes an imaging spectrometer, VIR-MS, sensitive to the VIS-NIR spectral range. VIR-MS began acquiring spectra during the approach phase started in May 2011 and will continue its observations through July 2012 when the spacecraft will depart Vesta to travel to Ceres. The VIR-MS spatial resolution depends upon the mission phase (approach, survey, high altitude, low altitude). However, spectra acquired by VIR-MS have already exceeded the spatial resolution of ground-based telescopic observations, with resolution in the approach phase ranging from 2.5 up to 0.8 km/pixel. Moreover, the observations are uniformly distributed in latitude and longitude allowing us to have a global view of Vesta s crust spectral properties. Using the information provided by VIR spectra, we studied the distribution of the spectral heterogeneities on the surface and we used our findings to perform a comparison with HEDs spectra in the VIS-NIR spectral range searching for analogies and/or incompatibilities. In our analysis, we focused on a method to compare the

  12. Spectral Gap Energy Transfer in Atmospheric Boundary Layer

    Science.gov (United States)

    Bhushan, S.; Walters, K.; Barros, A. P.; Nogueira, M.

    2012-12-01

    and away from the ground are studied. The energy spectra predicted by WRF-ARW are qualitatively compared with LES results to emphasize the limitations of the currently used turbulence parameterizations. Ongoing validation efforts include: (1) extending the interaction of large scale circulation with wall simulations to finer grids to capture a wider range of wavenumbers; and (2) a coupled 2D-3D simulation is planned to predict the entire atmospheric turbulence spectra at a very low computational expense. The overarching objective of this study to develop turbulence modeling capability based on the energy transfer mechanisms proposed in this study. Such a model will be implemented in WRF-ARW, and applied to atmospheric simulations, for example the prediction of moisture convergence patterns at the meso-scale in the southeast United States (Tao & Barros, 2008).

  13. Rectangular spectral collocation

    KAUST Repository

    Driscoll, Tobin A.

    2015-02-06

    Boundary conditions in spectral collocation methods are typically imposed by removing some rows of the discretized differential operator and replacing them with others that enforce the required conditions at the boundary. A new approach based upon resampling differentiated polynomials into a lower-degree subspace makes differentiation matrices, and operators built from them, rectangular without any row deletions. Then, boundary and interface conditions can be adjoined to yield a square system. The resulting method is both flexible and robust, and avoids ambiguities that arise when applying the classical row deletion method outside of two-point scalar boundary-value problems. The new method is the basis for ordinary differential equation solutions in Chebfun software, and is demonstrated for a variety of boundary-value, eigenvalue and time-dependent problems.

  14. Spectral disentangling with Spectangular

    Science.gov (United States)

    Sablowski, Daniel P.; Weber, Michael

    2017-01-01

    The paper introduces the software Spectangular for spectral disentangling via singular value decomposition with global optimisation of the orbital parameters of the stellar system or radial velocities of the individual observations. We will describe the procedure and the different options implemented in our program. Furthermore, we will demonstrate the performance and the applicability using tests on artificial data. Additionally, we use high-resolution spectra of Capella to demonstrate the performance of our code on real-world data. The novelty of this package is the implemented global optimisation algorithm and the graphical user interface (GUI) for ease of use. We have implemented the code to tackle SB1 and SB2 systems with the option of also dealing with telluric (static) lines. Based in part on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC.

  15. Spectral Animation Compression

    Institute of Scientific and Technical Information of China (English)

    Chao Wang; Yang Liu; Xiaohu Guo; Zichun Zhong; Binh Le; Zhigang Deng

    2015-01-01

    This paper presents a spectral approach to compress dynamic animation consisting of a sequence of homeomor-phic manifold meshes. Our new approach directly compresses the field of deformation gradient defined on the surface mesh, by decomposing it into rigid-body motion (rotation) and non-rigid-body deformation (stretching) through polar decompo-sition. It is known that the rotation group has the algebraic topology of 3D ring, which is different from other operations like stretching. Thus we compress these two groups separately, by using Manifold Harmonics Transform to drop out their high-frequency details. Our experimental result shows that the proposed method achieves a good balance between the reconstruction quality and the compression ratio. We compare our results quantitatively with other existing approaches on animation compression, using standard measurement criteria.

  16. Spectral disentangling with Spectangular

    CERN Document Server

    Sablowski, Daniel P

    2016-01-01

    The paper introduces the software Spectangular for spectral disentangling via singular value decomposition with global optimisation of the orbital parameters of the stellar system or radial velocities of the individual observations. We will describe the procedure and the different options implemented in our program. Furthermore, we will demonstrate the performance and the applicability using tests on artificial data. Additionally, we use high-resolution spectra of Capella to demonstrate the performance of our code on real-world data. The novelty of this package is the implemented global optimisation algorithm and the graphical user interface (GUI) for ease of use. We have implemented the code to tackle SB1 and SB2 systems with the option of also dealing with telluric (static) lines.

  17. Spectral proper orthogonal decomposition

    CERN Document Server

    Sieber, Moritz; Paschereit, Christian Oliver

    2015-01-01

    The identification of coherent structures from experimental or numerical data is an essential task when conducting research in fluid dynamics. This typically involves the construction of an empirical mode base that appropriately captures the dominant flow structures. The most prominent candidates are the energy-ranked proper orthogonal decomposition (POD) and the frequency ranked Fourier decomposition and dynamic mode decomposition (DMD). However, these methods fail when the relevant coherent structures occur at low energies or at multiple frequencies, which is often the case. To overcome the deficit of these "rigid" approaches, we propose a new method termed Spectral Proper Orthogonal Decomposition (SPOD). It is based on classical POD and it can be applied to spatially and temporally resolved data. The new method involves an additional temporal constraint that enables a clear separation of phenomena that occur at multiple frequencies and energies. SPOD allows for a continuous shifting from the energetically ...

  18. The γ-ray spectral changes in Fermi blazars

    Science.gov (United States)

    Yang, Jianghe; Fan, Junhui; Nie, Jianjun; Yang, Rushu; Tuo, Manxian; Zhang, Yuelian

    2017-02-01

    Based upon Fermi 2FGL and 3FGL catalogues, a sample of 842 blazars (hereinto 356 FSRQs, 486 BL Lac objects) is collected to discuss the changes of γ-ray photon spectral indices and brightness from 2FGL to 3FGL blazars. Our results indicate that the distributions of γ-ray photon spectral indices and luminosities between 2FGL and 3FGL have no obvious difference; The photon spectral indices and γ-ray luminosity from 2FGL are closely correlated with that from 3FGL respectively; There are close anti-relations between the change of photon spectral indices and the change of luminosity for FSRQs and BL Lac objects samples and for sub-class samples of HBLs, IBLs and LBLs, which suggests that the spectrum becomes flat when the source becomes bright.

  19. Spectral unmixing: estimating partial abundances

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available of spectral unmixing 3 End-member spectra and synthetic mixtures 4 Results 5 Conclusions Debba (CSIR) Spectral Unmixing LQM 2009 2 / 22 Background and Research Question If research could be as easy as eating a chocolate cake . . . Figure: Can you guess... the ingredients for this chocolate cake? Debba (CSIR) Spectral Unmixing LQM 2009 3 / 22 Background and Research Question Ingredients Quantity unsweetened chocolate unsweetened cocoa powder boiling water flour baking powder baking soda salt unsalted...

  20. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  1. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  2. Communication, concepts and grounding.

    Science.gov (United States)

    van der Velde, Frank

    2015-02-01

    This article discusses the relation between communication and conceptual grounding. In the brain, neurons, circuits and brain areas are involved in the representation of a concept, grounding it in perception and action. In terms of grounding we can distinguish between communication within the brain and communication between humans or between humans and machines. In the first form of communication, a concept is activated by sensory input. Due to grounding, the information provided by this communication is not just determined by the sensory input but also by the outgoing connection structure of the conceptual representation, which is based on previous experiences and actions. The second form of communication, that between humans or between humans and machines, is influenced by the first form. In particular, a more successful interpersonal communication might require forms of situated cognition and interaction in which the entire representations of grounded concepts are involved.

  3. Ground energy coupling

    Science.gov (United States)

    Metz, P. D.

    The feasibility of ground coupling for various heat pump systems was investigated. Analytical heat flow models were developed to approximate design ground coupling devices for use in solar heat pump space conditioning systems. A digital computer program called GROCS (GRound Coupled Systems) was written to model 3-dimensional underground heat flow in order to simulate the behavior of ground coupling experiments and to provide performance predictions which have been compared to experimental results. GROCS also has been integrated with TRNSYS. Soil thermal property and ground coupling device experiments are described. Buried tanks, serpentine earth coils in various configurations, lengths and depths, and sealed vertical wells are being investigated. An earth coil used to heat a house without use of resistance heating is described.

  4. Enhanced representation of spectral contrasts in the primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Nicolas eCatz

    2013-06-01

    Full Text Available The role of early auditory processing may be to extract some elementary features from an acoustic mixture in order to organize the auditory scene. To accomplish this task, the central auditory system may rely on the fact that sensory objects are often composed of spectral edges, i.e. regions where the stimulus energy changes abruptly over frequency. The processing of acoustic stimuli may benefit from a mechanism enhancing the internal representation of spectral edges. While the visual system is thought to rely heavily on this mechanism (enhancing spatial edges, it is still unclear whether a related process plays a significant role in audition. We investigated the cortical representation of spectral edges, using acoustic stimuli composed of multi-tone pips whose time-averaged spectral envelope contained suppressed or enhanced regions. Importantly, the stimuli were designed such that neural responses properties could be assessed as a function of stimulus frequency during stimulus presentation. Our results suggest that the representation of acoustic spectral edges is enhanced in the auditory cortex, and that this enhancement is sensitive to the characteristics of the spectral contrast profile, such as depth, sharpness and width. Spectral edges are maximally enhanced for sharp contrast and large depth. Cortical activity was also suppressed at frequencies within the suppressed region. To note, the suppression of firing was larger at frequencies nearby the lower edge of the suppressed region than at the upper edge. Overall, the present study gives critical insights into the processing of spectral contrasts in the auditory system.

  5. Tracking target objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  6. Spectral mapping of comet 67P/Churyumov-Gerasimenko with VLT/MUSE and SINFONI

    Science.gov (United States)

    Guilbert-Lepoutre, Aurelie; Besse, Sebastien; Snodgrass, Colin; Yang, Bin

    2016-10-01

    Comets are supposedly the most primitive objects in the solar system, preserving the earliest record of material from the nebula out of which our Sun and planets were formed, and thus holding crucial clues on the early phases of the solar system formation and evolution. For most small bodies in the solar system we can only access the surface properties, whereas active comet nuclei lose material from their subsurface, so that understanding cometary activity represents an unique opportunity to assess their internal composition, and by extension the composition, the temperature and pressure conditions of the protoplanetary disk at their place of formation.The ESA/Rosetta mission is performing the most thorough investigation of a comet ever made. Rosetta is measuring properties of comet 67P/Churyumov-Gerasimenko at distances between 5 and hundreds of km from the nucleus. However, it is unable to make any measurement over the thousands of km of the rest of the coma. Fortunately, the outer coma is accessible from the ground. In addition, we currently lack an understanding of how the very detailed information gathered from space-based observations can be extrapolated to the many ground-based observations that we can potentially perform. Combining parallel in situ observations with observations from the ground therefore gives us a great opportunity, not only to understand the behavior of 67P, but also to other comets observed exclusively from Earth. As part of the many observations taken from the ground, we have performed a spectral mapping of 67's coma using two IFU instruments mounted on the VLT: MUSE in the visible, and SINFONI in the near-infrared. The observations, carried out in March 2016, will be presented and discussed.

  7. Identification of resonant earthquake ground motion

    Indian Academy of Sciences (India)

    Abbas Moustafa

    2010-06-01

    Resonant ground motion has been observed in earthquake records measured at several parts of the world. This class of ground motion is characterized by its energy being contained in a narrow frequency band. This paper develops measures to quantify the frequency content of the ground motion using the entropy principle and the dispersion index. These measures are based on the geometric properties of the power spectral density function of the ground acceleration. The application of these measures to quantify the frequency content of random earthquake models is demonstrated first. Subsequently, these measures are used to quantify the frequency content of the ground acceleration for near-field records measured at rock and soil sites, short-duration and long-duration earthquakes.

  8. Spectral Clustering with Local Projection Distance Measurement

    Directory of Open Access Journals (Sweden)

    Chen Diao

    2015-01-01

    Full Text Available Constructing a rational affinity matrix is crucial for spectral clustering. In this paper, a novel spectral clustering via local projection distance measure (LPDM is proposed. In this method, the Local-Projection-Neighborhood (LPN is defined, which is a region between a pair of data, and other data in the LPN are projected onto the straight line among the data pairs. Utilizing the Euclidean distance between projective points, the local spatial structure of data can be well detected to measure the similarity of objects. Then the affinity matrix can be obtained by using a new similarity measurement, which can squeeze or widen the projective distance with the different spatial structure of data. Experimental results show that the LPDM algorithm can obtain desirable results with high performance on synthetic datasets, real-world datasets, and images.

  9. Luminosity and spectral evolution of QSOs

    CERN Document Server

    Choi, Y Y; Yi, I S

    1999-01-01

    We apply the observed spectral states of the Galactic black hole candidates (GBHCs) to the quasi-stellar object (QSO) luminosity evolution based on the correlation between luminosity and the spectrum, which is strongly supported by the similarities of emission mechanisms in GBHCs and QSOs. We derive the QSO luminosity evolution trends in the UV/optical and the X-ray energy bands and demonstrate that their trends are significantly affected by the spectral evolution. Each energy band shows distinct evolution properties. We test one of the widely discussed cosmological evolution scenarios of QSOs, in which QSOs evolve as a single long-lived population, and show that the resulting luminosity functions seen in different energy bands exhibit distinguishable and potentially observable evolution signatures in the X-ray energy bands.

  10. Spectral Identification of Lighting Type and Character

    Directory of Open Access Journals (Sweden)

    Christopher D. Elvidge

    2010-04-01

    Full Text Available We investigated the optimal spectral bands for the identification of lighting types and the estimation of four major indices used to measure the efficiency or character of lighting. To accomplish these objectives we collected high-resolution emission spectra (350 to 2,500 nm for forty-three different lamps, encompassing nine of the major types of lamps used worldwide. The narrow band emission spectra were used to simulate radiances in eight spectral bands including the human eye photoreceptor bands (photopic, scotopic, and “meltopic” plus five spectral bands in the visible and near-infrared modeled on bands flown on the Landsat Thematic Mapper (TM. The high-resolution continuous spectra are superior to the broad band combinations for the identification of lighting type and are the standard for calculation of Luminous Efficacy of Radiation (LER, Correlated Color Temperature (CCT and Color Rendering Index (CRI. Given the high cost that would be associated with building and flying a hyperspectral sensor with detection limits low enough to observe nighttime lights we conclude that it would be more feasible to fly an instrument with a limited number of broad spectral bands in the visible to near infrared. The best set of broad spectral bands among those tested is blue, green, red and NIR bands modeled on the band set flown on the Landsat Thematic Mapper. This set provides low errors on the identification of lighting types and reasonable estimates of LER and CCT when compared to the other broad band set tested. None of the broad band sets tested could make reasonable estimates of Luminous Efficacy (LE or CRI. The photopic band proved useful for the estimation of LER. However, the three photoreceptor bands performed poorly in the identification of lighting types when compared to the bands modeled on the Landsat Thematic Mapper. Our conclusion is that it is feasible to identify lighting type and make reasonable estimates of LER and CCT using four or

  11. SpecViz: Interactive Spectral Data Analysis

    Science.gov (United States)

    Earl, Nicholas Michael; STScI

    2016-06-01

    The astronomical community is about to enter a new generation of scientific enterprise. With next-generation instrumentation and advanced capabilities, the need has arisen to equip astronomers with the necessary tools to deal with large, multi-faceted data. The Space Telescope Science Institute has initiated a data analysis forum for the creation, development, and maintenance of software tools for the interpretation of these new data sets. SpecViz is a spectral 1-D interactive visualization and analysis application built with Python in an open source development environment. A user-friendly GUI allows for a fast, interactive approach to spectral analysis. SpecViz supports handling of unique and instrument-specific data, incorporation of advanced spectral unit handling and conversions in a flexible, high-performance interactive plotting environment. Active spectral feature analysis is possible through interactive measurement and statistical tools. It can be used to build wide-band SEDs, with the capability of combining or overplotting data products from various instruments. SpecViz sports advanced toolsets for filtering and detrending spectral lines; identifying, isolating, and manipulating spectral features; as well as utilizing spectral templates for renormalizing data in an interactive way. SpecViz also includes a flexible model fitting toolset that allows for multi-component models, as well as custom models, to be used with various fitting and decomposition routines. SpecViz also features robust extension via custom data loaders and connection to the central communication system underneath the interface for more advanced control. Incorporation with Jupyter notebooks via connection with the active iPython kernel allows for SpecViz to be used in addition to a user’s normal workflow without demanding the user drastically alter their method of data analysis. In addition, SpecViz allows the interactive analysis of multi-object spectroscopy in the same straight

  12. Integral field spectroscopy of L 449-1 -- A test case for spectral differential imaging with SINFONI

    CERN Document Server

    Janson, Markus; Henning, Thomas

    2007-01-01

    Spectral differential imaging is an increasingly used technique for ground-based direct imaging searches for brown dwarf and planetary mass companions to stars. The technique takes advantage of absorption features that exist in these cool objects, but not in stars, and is normally implemented through simultaneous narrow-band imagers in 2 to 4 adjacent channels. However, by instead using an integral field unit, different spectral features could be used depending on the actual spectrum, potentially leading to greater flexibility and stronger detection limits. In this paper, we present the results of a test of spectral differential imaging using the SINFONI integral field unit at the VLT to study the nearby active star L449-1. No convincing companion candidates are found. We find that the method provides a 3 sigma contrast limit of 7.5 mag at 0.35", which is about 1.5 mag lower than for NACO-SDI at the same telescope, using the same integration time. We discuss the reasons for this, and the implications. In addi...

  13. Regionally Adaptable Ground Motion Prediction Equation (GMPE) from Empirical Models of Fourier and Duration of Ground Motion

    Science.gov (United States)

    Bora, Sanjay; Scherbaum, Frank; Kuehn, Nicolas; Stafford, Peter; Edwards, Benjamin

    2016-04-01

    The current practice of deriving empirical ground motion prediction equations (GMPEs) involves using ground motions recorded at multiple sites. However, in applications like site-specific (e.g., critical facility) hazard ground motions obtained from the GMPEs are need to be adjusted/corrected to a particular site/site-condition under investigation. This study presents a complete framework for developing a response spectral GMPE, within which the issue of adjustment of ground motions is addressed in a manner consistent with the linear system framework. The present approach is a two-step process in which the first step consists of deriving two separate empirical models, one for Fourier amplitude spectra (FAS) and the other for a random vibration theory (RVT) optimized duration (Drvto) of ground motion. In the second step the two models are combined within the RVT framework to obtain full response spectral amplitudes. Additionally, the framework also involves a stochastic model based extrapolation of individual Fourier spectra to extend the useable frequency limit of the empirically derived FAS model. The stochastic model parameters were determined by inverting the Fourier spectral data using an approach similar to the one as described in Edwards and Faeh (2013). Comparison of median predicted response spectra from present approach with those from other regional GMPEs indicates that the present approach can also be used as a stand-alone model. The dataset used for the presented analysis is a subset of the recently compiled database RESORCE-2012 across Europe, the Middle East and the Mediterranean region.

  14. Spectral Analysis of Markov Chains

    OpenAIRE

    2007-01-01

    The paper deals with the problem of a statistical analysis of Markov chains connected with the spectral density. We present the expressions for the function of spectral density. These expressions may be used to estimate the parameter of the Markov chain.

  15. SPECTRAL ANALYSIS OF EXCHANGE RATES

    Directory of Open Access Journals (Sweden)

    ALEŠA LOTRIČ DOLINAR

    2013-06-01

    Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates

  16. Selecting a Reference Object

    Science.gov (United States)

    Miller, Jared E.; Carlson, Laura A.; Hill, Patrick L.

    2011-01-01

    One way to describe the location of an object is to relate it to another object. Often there are many nearby objects, each of which could serve as a candidate to be the reference object. A common theoretical assumption is that features that make a given object salient relative to the candidate set are instrumental in determining which is selected.…

  17. Miniature spectrally selective dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.R.; Macconochie, I.O.; Poole, B.D.

    1983-02-08

    The present invention discloses a miniature spectrally selective dosimeter capable of measuring selected bandwidths of radiation exposure on small mobile areas. This is achieved by the combination of photovoltaic detectors, electrochemical integrators (e-cells) and filters in a small compact case which can be easily attached in close proximity to and substantially parallel to the surface being measured. In one embodiment two photovoltaic detectors, two e-cells and three filters are packaged in a small case with attaching means consisting of a safety pin. In another embodiment, two detectors, one e-cell and three filters are packaged in a small case with attaching means consisting of a clip to clip over a side piece of an eye glass frame in a further embodiment, the electro-optic elements a packaged in a wristwatch case with attaching means being a watchband. The filters in all embodiments allow only selected wavelengths of radiation to be detected by the photovoltaic detectors and then integrated by the e-cells.

  18. Multiwavelength Spectral Study of 3C 279 in the Internal Shock Scenario

    CERN Document Server

    Joshi, Manasvita; Marscher, Alan; Böttcher, Markus; Agudo, Ivan; Larionov, Valeri; Aller, Margo; Gurwell, Mark; Lähteenmäki, Anne

    2012-01-01

    We have observed 3C~279 in a gamma-ray flaring state in November 2008. We construct quasi-simultaneous spectral energy distributions (SEDs) of the source for the flaring period of 2008 and during a quiescent period in May 2010. Data have been compiled from observations with Fermi, Swift, RXTE, the VLBA, and various ground-based optical and radio telescopes. The objective is to comprehend the correspondence between the flux and polarization variations observed during these two time periods by carrying out a detailed spectral analyses of 3C~279 in the internal shock scenario, and gain insights into the role of intrinsic parameters and interplay of synchrotron and inverse Compton radiation processes responsible for the two states. As a first step, we have used a multi-slice time-dependent leptonic jet model, in the framework of the internal shock scenario, with radiation feedback to simulate the SED of 3C~279 observed in an optical high state in early 2006. We have used physical jet parameters obtained from the ...

  19. Relational grounding facilitates development of scientifically useful multiscale models

    Directory of Open Access Journals (Sweden)

    Lam Tai

    2011-09-01

    Full Text Available Abstract We review grounding issues that influence the scientific usefulness of any biomedical multiscale model (MSM. Groundings are the collection of units, dimensions, and/or objects to which a variable or model constituent refers. To date, models that primarily use continuous mathematics rely heavily on absolute grounding, whereas those that primarily use discrete software paradigms (e.g., object-oriented, agent-based, actor typically employ relational grounding. We review grounding issues and identify strategies to address them. We maintain that grounding issues should be addressed at the start of any MSM project and should be reevaluated throughout the model development process. We make the following points. Grounding decisions influence model flexibility, adaptability, and thus reusability. Grounding choices should be influenced by measures, uncertainty, system information, and the nature of available validation data. Absolute grounding complicates the process of combining models to form larger models unless all are grounded absolutely. Relational grounding facilitates referent knowledge embodiment within computational mechanisms but requires separate model-to-referent mappings. Absolute grounding can simplify integration by forcing common units and, hence, a common integration target, but context change may require model reengineering. Relational grounding enables synthesis of large, composite (multi-module models that can be robust to context changes. Because biological components have varying degrees of autonomy, corresponding components in MSMs need to do the same. Relational grounding facilitates achieving such autonomy. Biomimetic analogues designed to facilitate translational research and development must have long lifecycles. Exploring mechanisms of normal-to-disease transition requires model components that are grounded relationally. Multi-paradigm modeling requires both hyperspatial and relational grounding.

  20. Multi-spectral confocal microendoscope for in-vivo imaging

    Science.gov (United States)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  1. Spectral numbers in Floer theories

    CERN Document Server

    Usher, Michael

    2007-01-01

    The chain complexes underlying Floer homology theories typically carry a real-valued filtration, allowing one to associate to each Floer homology class a spectral number defined as the infimum of the filtration levels of chains representing that class. These spectral numbers have been studied extensively in the case of Hamiltonian Floer homology by Oh, Schwarz, and others. We prove that the spectral number associated to any nonzero Floer homology class is always finite, and that the infimum in the definition of the spectral number is always attained. In the Hamiltonian case, this implies that what is known as the "nondegenerate spectrality" axiom holds on all closed symplectic manifolds. Our proofs are entirely algebraic and rather elementary, and apply to any Floer-type theory (including Novikov homology) satisfying certain standard formal properties provided that one works with coefficients in a Novikov ring whose degree-zero part \\Lambda_0 is a field. The key ingredient is a theorem about linear transforma...

  2. Interferometric and nonlinear-optical spectral-imaging techniques for outer space and live cells

    Science.gov (United States)

    Itoh, Kazuyoshi

    2015-12-01

    Multidimensional signals such as the spectral images allow us to have deeper insights into the natures of objects. In this paper the spectral imaging techniques that are based on optical interferometry and nonlinear optics are presented. The interferometric imaging technique is based on the unified theory of Van Cittert-Zernike and Wiener-Khintchine theorems and allows us to retrieve a spectral image of an object in the far zone from the 3D spatial coherence function. The retrieval principle is explained using a very simple object. The promising applications to space interferometers for astronomy that are currently in progress will also be briefly touched on. An interesting extension of interferometric spectral imaging is a 3D and spectral imaging technique that records 4D information of objects where the 3D and spectral information is retrieved from the cross-spectral density function of optical field. The 3D imaging is realized via the numerical inverse propagation of the cross-spectral density. A few techniques suggested recently are introduced. The nonlinear optical technique that utilizes stimulated Raman scattering (SRS) for spectral imaging of biomedical targets is presented lastly. The strong signals of SRS permit us to get vibrational information of molecules in the live cell or tissue in real time. The vibrational information of unstained or unlabeled molecules is crucial especially for medical applications. The 3D information due to the optical nonlinearity is also the attractive feature of SRS spectral microscopy.

  3. Semiconductor Laser Multi-Spectral Sensing and Imaging

    Directory of Open Access Journals (Sweden)

    Han Q. Le

    2010-01-01

    Full Text Available Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO. These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  4. [Thoughts regarding researchers utilizing Grounded Theory].

    Science.gov (United States)

    Leite, Joséte Luzia; da Silva, Laura Johanson; de Oliveira, Rosane Mara Pontes; Stipp, Marluci Andrade Conceição

    2012-06-01

    This descriptive-reflexive study was performed with the objective to present the characteristics of researchers who use the Grounded Theory method, and outline the development of aptitudes for the researcher to become a Grounded Theoretician. The theoretical discussion was based on the frameworks of this methodology and supported by the literature. The article presents the main demands of qualitative studies using Grounded Theory, and important behaviors, attitudes and characteristics developed by the researchers. It is concluded that learning about Grounded Theory involves more than operationalizing a group of procedures and techniques. It also involves facing challenges to change one's attitude as a researcher and develop new ways of thinking and researching, gathering knowledge based on data to form a theory.

  5. Bolzano's Concept of Grounding (Abfolge) against the Background of Normal Proofs

    NARCIS (Netherlands)

    Rumberg, Antje

    2013-01-01

    In this paper I will provide a thorough discussion and reconstruction of Bernard Bolzano's theory of grounding and a detailed investigation into the parallels between his concept of grounding and current notions of normal proofs. Grounding (Abfolge) is an objective ground-consequence relation among

  6. Exoplanetary Detection by Multifractal Spectral Analysis

    Science.gov (United States)

    Agarwal, Sahil; Del Sordo, Fabio; Wettlaufer, John S.

    2017-01-01

    Owing to technological advances, the number of exoplanets discovered has risen dramatically in the last few years. However, when trying to observe Earth analogs, it is often difficult to test the veracity of detection. We have developed a new approach to the analysis of exoplanetary spectral observations based on temporal multifractality, which identifies timescales that characterize planetary orbital motion around the host star and those that arise from stellar features such as spots. Without fitting stellar models to spectral data, we show how the planetary signal can be robustly detected from noisy data using noise amplitude as a source of information. For observation of transiting planets, combining this method with simple geometry allows us to relate the timescales obtained to primary and secondary eclipse of the exoplanets. Making use of data obtained with ground-based and space-based observations we have tested our approach on HD 189733b. Moreover, we have investigated the use of this technique in measuring planetary orbital motion via Doppler shift detection. Finally, we have analyzed synthetic spectra obtained using the SOAP 2.0 tool, which simulates a stellar spectrum and the influence of the presence of a planet or a spot on that spectrum over one orbital period. We have demonstrated that, so long as the signal-to-noise-ratio ≥ 75, our approach reconstructs the planetary orbital period, as well as the rotation period of a spot on the stellar surface.

  7. Ground State Spin Logic

    CERN Document Server

    Whitfield, J D; Biamonte, J D

    2012-01-01

    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground state subspace encoding the truth tables of Boolean formulas. The ground state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground state embeddings found in both classical optimization as well as adiabatic quantum optimization.

  8. Ground Vehicle Robotics Presentation

    Science.gov (United States)

    2012-08-14

    Mr. Jim Parker Associate Director Ground Vehicle Robotics Distribution Statement A. Approved for public release Report Documentation Page...Briefing 3. DATES COVERED 01-07-2012 to 01-08-2012 4. TITLE AND SUBTITLE Ground Vehicle Robotics Presentation 5a. CONTRACT NUMBER 5b. GRANT...ABSTRACT Provide Transition-Ready, Cost-Effective, and Innovative Robotics and Control System Solutions for Manned, Optionally-Manned, and Unmanned

  9. Specification of Concurrent Objects

    DEFF Research Database (Denmark)

    Sørensen, Morten U.

    relation over two objects and an event. In the model, objects can be composed by parallel composition, encapsulation, and hiding of operations. Refinement between objects is defined as fair trace inclusion.A specification language is presented where objects can be specified operationally by abstract......Concurrent objects are named concurrent processes that interact by invoking each other's operations. We describe how such concurrent objects can be specified, how objects can be composed, and how it can be shown that one object refines another.First a model is defined, based on a transition...

  10. Simulation of Ground Winds Time Series

    Science.gov (United States)

    Adelfang, S. I.

    2008-01-01

    A simulation process has been developed for generation of the longitudinal and lateral components of ground wind atmospheric turbulence as a function of mean wind speed, elevation, temporal frequency range and distance between locations. The distance between locations influences the spectral coherence between the simulated series at adjacent locations. Short distances reduce correlation only at high frequencies; as distances increase correlation is reduced over a wider range of frequencies. The choice of values for the constants d1 and d3 in the PSD model is the subject of work in progress. An improved knowledge of the values for zO as a function of wind direction at the ARES-1 launch pads is necessary for definition of d1. Results of other studies at other locations may be helpful as summarized in Fichtl's recent correspondence. Ideally, further research is needed based on measurements of ground wind turbulence with high resolution anemometers at a number of altitudes at a new KSC tower located closer to the ARES-1 launch pad .The proposed research would be based on turbulence measurements that may be influenced by surface terrain roughness that may be significantly different from roughness prior to 1970 in Fichtl's measurements. Significant improvements in instrumentation, data storage end processing will greatly enhance the capability to model ground wind profiles and ground wind turbulence.

  11. Ground based spectroscopy of hot Jupiters

    Science.gov (United States)

    Waldmann, Ingo

    2010-05-01

    It has been shown in recent years with great success that spectroscopy of exoplanetary atmospheres is feasible using space based observatories such as the HST and Spitzer. However, with the end of the Spitzer cold-phase, space based observations in the near to mid infra-red are limited, which will remain true until the the onset of the JWST. The importance of developing methods of ground based spectroscopic analysis of known hot Jupiters is therefore apparent. In the past, various groups have attempted exoplanetary spectroscopy using ground based facilities and various techniques. Here I will present results using a novel spectral retrieval method for near to mid infra-red emission and transmission spectra of exoplanetary atmospheres taken from the ground and discuss the feasibility of future ground-based spectroscopy in a broader context. My recently commenced PhD project is under the supervision of Giovanna Tinetti (University College London) and in collaboration with J. P. Beaulieu (Institut d'Astrophysique de Paris), Mark Swain and Pieter Deroo (Jet Propulsion Laboratory, Caltech).

  12. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  13. On the Reduction of Grounding to Essence

    Directory of Open Access Journals (Sweden)

    Pablo Carnino

    2014-12-01

    Full Text Available In a recent article, Fabrice Correia explores the project of reducing the notion of grounding to that of essence. He then goes on to provide several candidate definitions and test each of them against a number of objections. His final take on the situation is, roughly, that two of the definitions can handle all of the considered objections. The aim of this paper is to re-evaluate Correia's conclusions in the light of two sources of insights: Firstly, I will argue that one of the objections treated by Correia has been somewhat underestimated, and that it still constitutes a threat against definitions of grounding in terms of essence. Secondly, there are at least two further objections that should be considered by the advocate of such definitions. As I will show, one of them can be neutralized; but the other one is more serious and suggests a clear dialectical edge to an operationalist definition.

  14. CCN Spectral Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, James G.

    2009-02-27

    Detailed aircraft measurements were made of cloud condensation nuclei (CCN) spectra associated with extensive cloud systems off the central California coast in the July 2005 MASE project. These measurements include the wide supersaturation (S) range (2-0.01%) that is important for these polluted stratus clouds. Concentrations were usually characteristic of continental/anthropogenic air masses. The most notable feature was the consistently higher concentrations above the clouds than below. CCN measurements are so important because they provide a link between atmospheric chemistry and cloud-climate effects, which are the largest climate uncertainty. Extensive comparisons throughout the eleven flights between two CCN spectrometers operated at different but overlapping S ranges displayed the precision and accuracy of these difficult spectral determinations. There are enough channels of resolution in these instruments to provide differential spectra, which produce more rigorous and precise comparisons than traditional cumulative presentations of CCN concentrations. Differential spectra are also more revealing than cumulative spectra. Only one of the eleven flights exhibited typical maritime concentrations. Average below cloud concentrations over the two hours furthest from the coast for the 8 flights with low polluted stratus was 614?233 at 1% S, 149?60 at 0.1% S and 57?33 at 0.04% S cm-3. Immediately above cloud average concentrations were respectively 74%, 55%, and 18% higher. Concentration variability among those 8 flights was a factor of two. Variability within each flight excluding distances close to the coast ranged from 15-56% at 1% S. However, CN and probably CCN concentrations sometimes varied by less than 1% over distances of more than a km. Volatility and size-critical S measurements indicated that the air masses were very polluted throughout MASE. The aerosol above the clouds was more polluted than the below cloud aerosol. These high CCN concentrations from

  15. Classification of Extremely Red Objects in the COSMOS Field

    CERN Document Server

    Kong, Xu; Arimoto, Nobuo; Wang, Min

    2009-01-01

    We present a study of the classification of z ~1 extremely red objects (EROs), using a combination of HST/ACS, Spitzer/IRAC, and ground-based images of the COSMOS field. Our sample includes about 5300 EROs with i-Ks>2.45 (AB, equivalently I-Ks=4 in Vega) and Ks<=21.1 (AB). For EROs in our sample, we compute, using the ACS F814W images, their concentration, asymmetry, as well as their Gini coefficient and the second moment of the brightest 20% of their light. Using those morphology parameters and the Spitzer/IRAC [3.6]-[8.0] color, the spectral energy distribution (SED) fitting method, we classify EROs into two classes: old galaxies (OGs) and young, dusty starburst galaxies (DGs). We found that the fraction of OGs and DGs in our sample is similar, about 48 percentages of EROs in our sample are OGs, and 52 percentages of them are DGs. To reduce the redundancy of these three different classification methods, we performed a principal component analysis on the measurements of EROs, and find that morphology para...

  16. Sentinel-2 diffuser on-ground calibration

    Science.gov (United States)

    Mazy, E.; Camus, F.; Chorvalli, V.; Domken, I.; Laborie, A.; Marcotte, S.; Stockman, Y.

    2013-10-01

    The Sentinel-2 multi-spectral instrument (MSI) will provide Earth imagery in the frame of the Global Monitoring for Environment and Security (GMES) initiative which is a joint undertaking of the European Commission and the Agency. MSI instrument, under Astrium SAS responsibility, is a push-broom spectro imager in 13 spectral channels in VNIR and SWIR. The instrument radiometric calibration is based on in-flight calibration with sunlight through a quasi Lambertian diffuser. The diffuser covers the full pupil and the full field of view of the instrument. The on-ground calibration of the diffuser BRDF is mandatory to fulfil the in-flight performances. The diffuser is a 779 x 278 mm2 rectangular flat area in Zenith-A material. It is mounted on a motorised door in front of the instrument optical system entrance. The diffuser manufacturing and calibration is under the Centre Spatial of Liege (CSL) responsibility. The CSL has designed and built a completely remote controlled BRDF test bench able to handle large diffusers in their mount. As the diffuser is calibrated directly in its mount with respect to a reference cube, the error budget is significantly improved. The BRDF calibration is performed directly in MSI instrument spectral bands by using dedicated band-pass filters (VNIR and SWIR up to 2200 nm). Absolute accuracy is better than 0.5% in VNIR spectral bands and 1% in SWIR spectral bands. Performances were cross checked with other laboratories. The first MSI diffuser for flight model was calibrated mid 2013 on CSL BRDF measurement bench. The calibration of the diffuser consists mainly in thermal vacuum cycles, BRDF uniformity characterisation and BRDF angular characterisation. The total amount of measurement for the first flight model diffuser corresponds to more than 17500 BRDF acquisitions. Performance results are discussed in comparison with requirements.

  17. Ground-based Measurements of Next Generation Spectroradiometric Standard Stars

    Science.gov (United States)

    McGraw, John T.

    2013-01-01

    Accurate, radiometric standards are essential to the future of ground- and space-based astronomy and astrophysics. While astronomers tend to think of “standard stars” as available calibration sources, progress at NIST to accurately calibrate inexpensive, easy to use photodiode detectors as spectroradiometric standards from 200 nm to 1800 nm allows referencing astronomical measurements to these devices. Direction-, time-, and wavelength-dependent transmission of Earth’s atmosphere is the single largest source of error for ground-based radiometric measurement of astronomical objects. Measurements and impacts of atmospheric extinction - scattering and absorption - on imaging radiometric and spectroradiometric measurements are described. The conclusion is that accurate real-time measurement of extinction in the column of atmosphere through which standard star observations are made, over the spectral region being observed and over the field of view of the telescope are required. New techniques to directly and simultaneously measure extinction in the column of atmosphere through which observations are made are required. Our direct extinction measurement solution employs three small facility-class instruments working in parallel: a lidar to measure rapidly time variable transmission at three wavelengths with uncertainty of 0.25% per airmass, a spectrophotometer to measure rapidly wavelength variable extinction with sub-1% precision per nanometer resolution element from 350 to 1050nm, and a wide-field camera to measure angularly variable extinction over the field of view. These instruments and their operation will be described. We assert that application of atmospheric metadata provided by this instrument suite corrects for a significant fraction of systematic errors currently limiting radiometric precision, and provides a major step towards measurements that are provably dominated by random noise.

  18. Sports Video Segmentation using Spectral Clustering

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhao

    2014-07-01

    Full Text Available With the rapid development of the computer and multimedia technology, the video processing technique is applied to the field of sports in order to analyze the sport video. For sports video analysis, how to segment the sports video image has become an important research topic. Nowadays, the algorithms for video image segmentation mainly include neural network, K-means and so on. However, the accuracy and speed of these algorithms for moving objects segmentation are not satisfied, and easily influenced by the irregular movement of the object and illumination, etc. In view of this, this paper proposes an algorithm for object segmentation in sports video image sequence, based on the spectral clustering. This algorithm simultaneously considers the pixel level visual feature and the edge information of the neighboring pixels to make the calculation of similarity is more intuitive and not affected by factors such as image texture. When clustering the image feature, the proposed method: (1 preprocesses video image sequence and extracts the image feature. (2Using weight function to build and calculate the similar matrix between pixels. (2 Extract feature vector. (3 Perform clustering using spectral clustering algorithm to segment the sports video image. The experimental results indicate that the method proposed in this paper has the advantages, such as lower complexity, high computational effectiveness, low computational amount, and so on. It can get better extraction effects on video image

  19. Hyperspectral imaging simulation of object under sea-sky background

    Science.gov (United States)

    Wang, Biao; Lin, Jia-xuan; Gao, Wei; Yue, Hui

    2016-10-01

    Remote sensing image simulation plays an important role in spaceborne/airborne load demonstration and algorithm development. Hyperspectral imaging is valuable in marine monitoring, search and rescue. On the demand of spectral imaging of objects under the complex sea scene, physics based simulation method of spectral image of object under sea scene is proposed. On the development of an imaging simulation model considering object, background, atmosphere conditions, sensor, it is able to examine the influence of wind speed, atmosphere conditions and other environment factors change on spectral image quality under complex sea scene. Firstly, the sea scattering model is established based on the Philips sea spectral model, the rough surface scattering theory and the water volume scattering characteristics. The measured bi directional reflectance distribution function (BRDF) data of objects is fit to the statistical model. MODTRAN software is used to obtain solar illumination on the sea, sky brightness, the atmosphere transmittance from sea to sensor and atmosphere backscattered radiance, and Monte Carlo ray tracing method is used to calculate the sea surface object composite scattering and spectral image. Finally, the object spectrum is acquired by the space transformation, radiation degradation and adding the noise. The model connects the spectrum image with the environmental parameters, the object parameters, and the sensor parameters, which provide a tool for the load demonstration and algorithm development.

  20. Infrasound from ground to space

    Science.gov (United States)

    Bowman, Daniel Charles

    Acoustic detector networks are usually located on the Earth's surface. However, these networks suffer from shortcomings such as poor detection range and pervasive wind noise. An alternative is to deploy acoustic sensors on high altitude balloons. In theory, such platforms can resolve signals arriving from great distances, acquire others that never reach the surface at all, and avoid wind noise entirely. This dissertation focuses on scientific advances, instrumentation, and analytical techniques resulting from the development of such sensor arrays. Results from infrasound microphones deployed on balloon flights in the middle stratosphere are described, and acoustic sources such as the ocean microbarom and building ventilation systems are discussed. Electromagnetic noise originating from the balloon, flight system, and other payloads is shown to be a pervasive issue. An experiment investigating acoustic sensor calibration at low pressures is presented, and implications for high altitude recording are considered. Outstanding challenges and opportunities in sound measurement using sensors embedded in the free atmosphere are outlined. Acoustic signals from field scale explosions designed to emulate volcanic eruptions are described, and their generation mechanisms modeled. Wave forms recorded on sensors suspended from tethered helium balloons are compared with those detected on ground stations during the experiment. Finally, the Hilbert-Huang transform, a high time resolution spectral analysis method for nonstationary and nonlinear time series, is presented.

  1. A New Spectral Shape-Based Record Selection Approach Using Np and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Edén Bojórquez

    2013-01-01

    Full Text Available With the aim to improve code-based real records selection criteria, an approach inspired in a parameter proxy of spectral shape, named Np, is analyzed. The procedure is based on several objectives aimed to minimize the record-to-record variability of the ground motions selected for seismic structural assessment. In order to select the best ground motion set of records to be used as an input for nonlinear dynamic analysis, an optimization approach is applied using genetic algorithms focuse on finding the set of records more compatible with a target spectrum and target Np values. The results of the new Np-based approach suggest that the real accelerograms obtained with this procedure, reduce the scatter of the response spectra as compared with the traditional approach; furthermore, the mean spectrum of the set of records is very similar to the target seismic design spectrum in the range of interest periods, and at the same time, similar Np values are obtained for the selected records and the target spectrum.

  2. High-Temperature Target Recognition Based on Spectral Radiation Information

    Institute of Scientific and Technical Information of China (English)

    Fan Xueliang; Cheng Xiaofang; Xu Jun

    2006-01-01

    Based on the principles of optics and radiometry, the imaging mathematical model is established and the factors of the contrast (signal-noise-ratio) of high-temperature target and the scenery are given. By analyzing not only the differences in spectral properties between objects in the scene, but also the CCD spectral response theoretically, a new method of enhancement of contrast is given. By optimizing the initial image capture stage, using liquid crystal light valve to make a simple modification of the imaging system, the goal of high-temperature object recognition is achieved. The experimental results agree with the theoretical predict.

  3. spectral-cube: Read and analyze astrophysical spectral data cubes

    Science.gov (United States)

    Robitaille, Thomas; Ginsburg, Adam; Beaumont, Chris; Leroy, Adam; Rosolowsky, Erik

    2016-09-01

    Spectral-cube provides an easy way to read, manipulate, analyze, and write data cubes with two positional dimensions and one spectral dimension, optionally with Stokes parameters. It is a versatile data container for building custom analysis routines. It provides a uniform interface to spectral cubes, robust to the wide range of conventions of axis order, spatial projections, and spectral units that exist in the wild, and allows easy extraction of cube sub-regions using physical coordinates. It has the ability to create, combine, and apply masks to datasets and is designed to work with datasets too large to load into memory, and provide basic summary statistic methods like moments and array aggregates.

  4. Multi-spectral observations of flares

    Science.gov (United States)

    Zuccarello, F.

    2016-11-01

    Observations show that during solar flares radiation can be emitted across the entire electromagnetic spectrum, spanning from gamma rays to radio waves. These emissions, related to the conversion of magnetic energy into other forms of energy (kinetic, thermal, waves) through magnetic reconnection, are due to different physical processes that can occur in different layers of the Sun. This means that flare observations need to be carried out using instruments operating in different wave-bands in order to achieve a complete scenario of the processes going on. Taking into account that most of the radiative energy is emitted at optical and UV wavelengths, observations carried out from space, need to be complemented by observations carried out from ground-based telescopes. Nowadays, the possibility to carry on high temporal, spatial and spectral resolution from ground-based telescopes in coordinated campaigns with space-borne instruments (like, i.e., IRIS and HINODE) gives the opportunity to investigate the details of the flare emission at different wavelengths and can provide useful hints to understand these phenomena and compare observations with models. However, it is undoubted that sometimes the pointing to the flaring region is not an easy task, due to the necessity to provide the target coordinates to satellites with some hours in advance. Some problems arising from this issue will be discussed. Moreover, new projects related to flare catalogues and archives will be presented.

  5. Special algorithm for investigations of narrow-band spectral oscillations

    Science.gov (United States)

    Somov, N. N.

    The multichannel photon counting systems in spectral astronomical observations (Robinson and Wampler, 1972; Boksenberg, 1971; Somova et al., 1982; Sharp, 1992) permit to investigate fast spectral variability of faint objects with a high time resolution. A special algorithm for reduction of the spectral data, obtained with BTA scanner (Drabek et al., 1986) in a high time resolution (32 ms) mode (Somov, 1988) of observations is presented. The algorithm is aimed at searching for monochromatic spectral oscillations and makes it possible to calculate the dependence of the amplitude, phase and power of spectral oscillations relative to the continuous spectrum on the wavelength and period in a region from approx 0.3 s to the time of exposure with a desirable resolution over the period. The described algoritm was realized in the last version of the special programming language SIPRAN (Somov, 1986), and was checked by a computer simulation and in spectral observations of standard stars and several astrophysical objects such as three intermediate polars and one polar.

  6. Spectral classification using convolutional neural networks

    CERN Document Server

    Hála, Pavel

    2014-01-01

    There is a great need for accurate and autonomous spectral classification methods in astrophysics. This thesis is about training a convolutional neural network (ConvNet) to recognize an object class (quasar, star or galaxy) from one-dimension spectra only. Author developed several scripts and C programs for datasets preparation, preprocessing and postprocessing of the data. EBLearn library (developed by Pierre Sermanet and Yann LeCun) was used to create ConvNets. Application on dataset of more than 60000 spectra yielded success rate of nearly 95%. This thesis conclusively proved great potential of convolutional neural networks and deep learning methods in astrophysics.

  7. SPECTRAL REFLECTANCE MEASUREMENTS AT THE CHINA RADIOMETRIC CALIBRATION TEST SITE FOR THE REMOTE SENSING SATELITE SENSOR

    Institute of Scientific and Technical Information of China (English)

    张玉香; 张广顺; 刘志权; 张立军; 朱顺斌; 戎志国; 邱康睦

    2001-01-01

    A comprehensive field experiment was made with the support of the project of China Radiometric Calibration Site (CRCS) during June-July 1999. Ground reflectance spectra were measured at Dunhuang Calibration Test Site in the experiment. More than two thousands of spectral curves were acquired in a 20 km × 20 km area. The spectral coverage is from 350 nm to 2500 nm. The measurement values show that reflectance is between 10% and 33% at the VISSWIR spectral region. The standard deviation of reflectance is between 1.0% and 2.0% for the spectral range. Optical characteristics and ground reflectance measurements at the Dunhuang test site, result analysis and error source were described. In addition, a comparison of the reflectance obtained in 1999 with those measured in 1994 and 1996 was also made.

  8. BLAZAR SPECTRAL PROPERTIES AT 74 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; Funk, S. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Giroletti, M. [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Paggi, A.; D' Abrusco, R. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Tosti, G. [Dipartimento di Fisica, Università degli Studi di Perugia, I-06123 Perugia (Italy)

    2013-10-01

    Blazars are the most extreme class of active galactic nuclei. Despite a previous investigation at 102 MHz for a small sample of BL Lac objects and our recent analysis of blazars detected in the Westerbork Northern Sky Survey, a systematic study of the blazar spectral properties at frequencies below 100 MHz has been never carried out. In this paper, we present the first analysis of the radio spectral behavior of blazars based on the recent Very Large Array Low-frequency Sky Survey (VLSS) at 74 MHz. We search for blazar counterparts in the VLSS catalog, confirming that they are detected at 74 MHz. We then show that blazars present radio-flat spectra (i.e., radio spectral indices of ∼0.5) when evaluated, which also about an order of magnitude in frequency lower than previous analyses. Finally, we discuss the implications of our findings in the context of the blazars-radio galaxies connection since the low-frequency radio data provide a new diagnostic tool to verify the expectations of the unification scenario for radio-loud active galaxies.

  9. Automatic object recognition

    Science.gov (United States)

    Ranganath, H. S.; Mcingvale, Pat; Sage, Heinz

    1988-01-01

    Geometric and intensity features are very useful in object recognition. An intensity feature is a measure of contrast between object pixels and background pixels. Geometric features provide shape and size information. A model based approach is presented for computing geometric features. Knowledge about objects and imaging system is used to estimate orientation of objects with respect to the line of sight.

  10. Timescale Analysis of Spectral Lags

    Institute of Scientific and Technical Information of China (English)

    Ti-Pei Li; Jin-Lu Qu; Hua Feng; Li-Ming Song; Guo-Qiang Ding; Li Chen

    2004-01-01

    A technique for timescale analysis of spectral lags performed directly in the time domain is developed. Simulation studies are made to compare the time domain technique with the Fourier frequency analysis for spectral time lags. The time domain technique is applied to studying rapid variabilities of X-ray binaries and γ-ray bursts. The results indicate that in comparison with the Fourier analysis the timescale analysis technique is more powerful for the study of spectral lags in rapid variabilities on short time scales and short duration flaring phenomena.

  11. Object oriented methods

    CERN Document Server

    Graham, Ian

    1994-01-01

    This book is a revision of Ian Graham's successful survey of the whole area of object technology. It covers object- oriented programming, object-oriented design, object- oriented analysis, object-oriented databases and treats several related technologies. New to this edition are more applications of object-oriented methods and more coverage of object-oriented database products available. Graham has also doubled the design and analysis material that examines over 60 different approaches - making this the most comprehensive book on the market. Also new is the foreword by Grady Booch.

  12. Ground Enterprise Management System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Emergent Space Technologies Inc. proposes to develop the Ground Enterprise Management System (GEMS) for spacecraft ground systems. GEMS will provide situational...

  13. Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Connor J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Radiation Measurement (ARM) Program

    2016-03-01

    The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) measures the absolute infrared (IR) spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. More information about the instrument can be found through the manufacturer’s website. The spectral measurement range of the instrument is 3300 to 520 wavenumbers (cm-1) or 3-19.2 microns for the normal-range instruments and 3300 to 400 cm-1 or 3-25 microns, for the extended-range polar instruments. Spectral resolution is 1.0 cm-1. Instrument field-of-view is 1.3 degrees. Calibrated sky radiance spectra are produced on cycle of about 141 seconds with a group of 6 radiance spectra zenith having dwell times of about 14 seconds each interspersed with 55 seconds of calibration and mirror motion. The ASSIST data is comparable to the Atmospheric Emitted Radiance Interferometer (AERI) data and can be used for 1) evaluating line-by-line radiative transport codes, 2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance (and hence is valuable for cloud property retrievals), and 3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.

  14. High-Energy Spectral Signatures in $\\gamma$-Ray Bursts

    CERN Document Server

    Baring, M G

    1999-01-01

    One of the principal results obtained by the EGRET experiment aboard the Compton Gamma-Ray Observatory (CGRO) was the detection of several Gamma-ray bursts (GRBs) above 100 MeV. The broad-band spectra obtained for these bursts gave no indication of any high energy spectral attenuation that might preclude detection of bursts by ground-based Cerenkov telescopes (ACTs), thus motivating several TeV observational programs. This paper explores the expectations for the spectral properties in the TeV and sub-TeV bands for bursts, in particular how attenuation of photons by pair creation internal to the source modifies the spectrum to produce distinctive spectral signatures. The energy of spectral breaks and the associated spectral indices provide valuable information that can constrain the bulk Lorentz factor of the GRB outflow at a given time. These characteristics define palpable observational goals for ACT programs, and strongly impact the observability of bursts in the TeV band.

  15. Invariant representation for spectral reflectance images and its application

    Directory of Open Access Journals (Sweden)

    Ibrahim Abdelhameed

    2011-01-01

    Full Text Available Abstract Spectral images as well as color images observed from object surfaces are much influenced by various illumination conditions such as shading and specular highlight. Several invariant representations were proposed for these conditions using the standard dichromatic reflection model of dielectric materials. However, these representations are inadequate for other materials like metal. This article proposes an invariant representation that is derived from the standard dichromatic reflection model for dielectric and the extended dichromatic reflection model for metal. We show that a normalized surface-spectral reflectance by the minimum reflectance is invariant to highlights, shading, surface geometry, and illumination intensity. Here the illumination spectrum and the spectral sensitivity functions of the imaging system are measured in a separate way. As an application of the proposed invariant representation, a segmentation algorithm based on the proposed representation is presented for effectively segmenting spectral images of natural scenes and bare circuit boards.

  16. Temporal intensity interferometry for characterization of very narrow spectral lines

    Science.gov (United States)

    Tan, P. K.; Kurtsiefer, C.

    2017-08-01

    Some stellar objects exhibit very narrow spectral lines in the visible range additional to their blackbody radiation. Natural lasing has been suggested as a mechanism to explain narrow lines in Wolf-Rayet stars. However, the spectral resolution of conventional astronomical spectrographs is still about two orders of magnitude too low to test this hypothesis. We want to resolve the linewidth of narrow spectral emissions in starlight. A combination of spectral filtering with single-photon-level temporal correlation measurements breaks the resolution limit of wavelength-dispersing spectrographs by moving the linewidth measurement into the time domain. We demonstrate in a laboratory experiment that temporal intensity interferometry can determine a 20-MHz-wide linewidth of Doppler-broadened laser light and identify a coherent laser light contribution in a blackbody radiation background.

  17. Multiplexed Spectral Imaging of 120 Different Fluorescent Labels.

    Directory of Open Access Journals (Sweden)

    Alex M Valm

    Full Text Available The number of fluorescent labels that can unambiguously be distinguished in a single image when acquired through band pass filters is severely limited by the spectral overlap of available fluorophores. The recent development of spectral microscopy and the application of linear unmixing algorithms to spectrally recorded image data have allowed simultaneous imaging of fluorophores with highly overlapping spectra. However, the number of distinguishable fluorophores is still limited by the unavoidable decrease in signal to noise ratio when fluorescence signals are fractionated over multiple wavelength bins. Here we present a spectral image analysis algorithm to greatly expand the number of distinguishable objects labeled with binary combinations of fluorophores. Our algorithm utilizes a priori knowledge about labeled specimens and imposes a binary label constraint on the unmixing solution. We have applied our labeling and analysis strategy to identify microbes labeled by fluorescence in situ hybridization and here demonstrate the ability to distinguish 120 differently labeled microbes in a single image.

  18. Spectral image reconstruction by a tunable LED illumination

    Science.gov (United States)

    Lin, Meng-Chieh; Tsai, Chen-Wei; Tien, Chung-Hao

    2013-09-01

    Spectral reflectance estimation of an object via low-dimensional snapshot requires both image acquisition and a post numerical estimation analysis. In this study, we set up a system incorporating a homemade cluster of LEDs with spectral modulation for scene illumination, and a multi-channel CCD to acquire multichannel images by means of fully digital process. Principal component analysis (PCA) and pseudo inverse transformation were used to reconstruct the spectral reflectance in a constrained training set, such as Munsell and Macbeth Color Checker. The average reflectance spectral RMS error from 34 patches of a standard color checker were 0.234. The purpose is to investigate the use of system in conjunction with the imaging analysis for industry or medical inspection in a fast and acceptable accuracy, where the approach was preliminary validated.

  19. Effects of impurity location on the impurity bands and their spectral densities in quantum wells

    Science.gov (United States)

    Gold, A.; Ghazali, A.; Serre, J.

    1989-09-01

    The electronic density of states and the spectral density of quantum wells are calculated as functions of the impurity position zi. A multiple-scattering method which accounts for the formation of impurity bands is used. The study of the spectral densities provides us with the behavior of the averaged wave functions of the ground- and excited-state impurity bands in the k space. We demonstrate that our approach can be used to study hybridization effects between different bands.

  20. Spectral Hardening and Geoeffectiveness of Solar Flares

    Science.gov (United States)

    Jain, R.; Kumar, S.; Dave, H.; Deshpande, M. R.

    We present the results of a few typical flares that observed by the first space borne solar astronomy experiment of India namely "Solar X-ray Spectrometer (SOXS)" mission, which has completed one year of its successful operation in geostationary orbit. The SOXS mission onboard GSAT-2 Indian spacecraft was launched successfully by GSLV-D2 rocket on 08 May 2003 to study the energy release and particle acceleration in solar flares. The SOXS is composed of two independent payloads viz. SOXS Low Energy Detector (SLD) payload, and SOXS High Energy Detector (SHD) payload. We restrict our presentation to SLD payload that designed, developed and fabricated by Physical Research Laboratory (PRL) in collaboration with Space Application Centre (SAC), Ahmedabad and ISRO Satellite Centre (ISAC), Bangalore of Indian Space Research Organization (ISRO). We briefly present the scientific objectives and instrumentation of the SLD payload. The SLD payload employs the state-of-art solid state detectors viz. Si PIN and CZT detectors, which reveal sub-keV spectral and 100ms temporal resolution characteristics that are necessary to study the spectral response of the flare components. The dynamic range of Si and CZT detectors is 4-25 and 4-56 keV respectively. The SLD has observed more than 140 flares of C and M class since its commissioning in the orbit. We present the X-ray emission characteristics of a few typical flares in view of their spectral hardening and geo-effectiveness. We extend our study of these flares to optical and radio waveband observations in order to improve the relationship of X-ray spectral hardening and geo-effectiveness. The flares with harder spectra and associated with small or large CME, and radio emission at frequencies above 10 GHz are found geo-effective.

  1. Spectral Band Selection for Urban Material Classification Using Hyperspectral Libraries

    Science.gov (United States)

    Le Bris, A.; Chehata, N.; Briottet, X.; Paparoditis, N.

    2016-06-01

    In urban areas, information concerning very high resolution land cover and especially material maps are necessary for several city modelling or monitoring applications. That is to say, knowledge concerning the roofing materials or the different kinds of ground areas is required. Airborne remote sensing techniques appear to be convenient for providing such information at a large scale. However, results obtained using most traditional processing methods based on usual red-green-blue-near infrared multispectral images remain limited for such applications. A possible way to improve classification results is to enhance the imagery spectral resolution using superspectral or hyperspectral sensors. In this study, it is intended to design a superspectral sensor dedicated to urban materials classification and this work particularly focused on the selection of the optimal spectral band subsets for such sensor. First, reflectance spectral signatures of urban materials were collected from 7 spectral libraires. Then, spectral optimization was performed using this data set. The band selection workflow included two steps, optimising first the number of spectral bands using an incremental method and then examining several possible optimised band subsets using a stochastic algorithm. The same wrapper relevance criterion relying on a confidence measure of Random Forests classifier was used at both steps. To cope with the limited number of available spectra for several classes, additional synthetic spectra were generated from the collection of reference spectra: intra-class variability was simulated by multiplying reference spectra by a random coefficient. At the end, selected band subsets were evaluated considering the classification quality reached using a rbf svm classifier. It was confirmed that a limited band subset was sufficient to classify common urban materials. The important contribution of bands from the Short Wave Infra-Red (SWIR) spectral domain (1000-2400 nm) to material

  2. Broadband Advanced Spectral System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NovaSol proposes to develop an advanced hyperspectral imaging system for earth science missions named BRASS (Broadband Advanced Spectral System). BRASS combines...

  3. Matched Spectral Filter Imager Project

    Data.gov (United States)

    National Aeronautics and Space Administration — OPTRA proposes the development of an imaging spectrometer for greenhouse gas and volcanic gas imaging based on matched spectral filtering and compressive imaging....

  4. Spectral Methods for Numerical Relativity

    CERN Document Server

    Grandclément, Philippe

    2007-01-01

    Equations arising in General Relativity are usually to complicated to be solved analytically and one has to rely on numerical methods to solve sets of coupled, partial differential, equations. Amongst the possible choices, this paper focuses on a class called spectral methods where, typically, the various functions are expanded onto sets of orthogonal polynomials or functions. A theoretical introduction on spectral expansion is first given and a particular emphasize is put on the fast convergence of the spectral approximation. We present then different approaches to solve partial differential equations, first limiting ourselves to the one-dimensional case, with one or several domains. Generalization to more dimensions is then discussed. In particular, the case of time evolutions is carefully studied and the stability of such evolutions investigated. One then turns to results obtained by various groups in the field of General Relativity by means of spectral methods. First, works which do not involve explicit t...

  5. Substitution dynamical systems spectral analysis

    CERN Document Server

    Queffélec, Martine

    2010-01-01

    This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...

  6. Spectral Theory and Mirror Symmetry

    CERN Document Server

    Marino, Marcos

    2015-01-01

    Recent developments in string theory have revealed a surprising connection between spectral theory and local mirror symmetry: it has been found that the quantization of mirror curves to toric Calabi-Yau threefolds leads to trace class operators, whose spectral properties are conjecturally encoded in the enumerative geometry of the Calabi-Yau. This leads to a new, infinite family of solvable spectral problems: the Fredholm determinants of these operators can be found explicitly in terms of Gromov-Witten invariants and their refinements; their spectrum is encoded in exact quantization conditions, and turns out to be determined by the vanishing of a quantum theta function. Conversely, the spectral theory of these operators provides a non-perturbative definition of topological string theory on toric Calabi-Yau threefolds. In particular, their integral kernels lead to matrix integral representations of the topological string partition function, which explain some number-theoretic properties of the periods. In this...

  7. Figure-ground modulation in awake primate thalamus

    OpenAIRE

    Jones, H. E.; Andolina, I.M.; Shipp, S. D.; Adams, D. L.; J. Cudeiro; Salt, T. E.; Sillito, A M

    2015-01-01

    Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground...

  8. Optimal estimation of spectral reflectance based on metamerism

    Science.gov (United States)

    Chou, Tzren-Ru; Lin, Wei-Ju

    2012-01-01

    In this paper, we proposed an accurate estimation method for spectral reflectance of objects captured in an image. The spectral reflectance is simply modeled by a linear combination of three basic spectrums of R, G, and B colors respectively, named as spectral reflective bases of objects, which are acquired by solving a linear system based on the principle of color metamerism. Some experiments were performed to evaluate the accuracy of the estimated spectral reflectance of objects. The average mean square error of 24 colors in Macbeth checker between we simulated and the measured is 0.0866, and the maximum is 0.310. In addition, the average color difference of the 24 colors is less than 1.5 under the D65 illuminant. There are 13 colors having their color difference values less than 1, and other 8 colors having the values during the range of 1 and 2. Only three colors are relatively larger, with the differences of 2.558, 4.130 and 2.569, from the colors of No. 2, No. 13, and No. 18 in Macbeth checker respectively. Furthermore, the computational cost of this spectral estimation is very low and suitable for many practical applications in real time.

  9. Reinventing Grounded Theory: Some Questions about Theory, Ground and Discovery

    Science.gov (United States)

    Thomas, Gary; James, David

    2006-01-01

    Grounded theory's popularity persists after three decades of broad-ranging critique. In this article three problematic notions are discussed--"theory," "ground" and "discovery"--which linger in the continuing use and development of grounded theory procedures. It is argued that far from providing the epistemic security promised by grounded theory,…

  10. Nanocatalytic resonance scattering spectral analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The resonance scattering spectral technique has been established using the synchronous scanning technique on spectrofluorometry.Because of its advantages of simplicity,rapidity and sensitivity,it has been widely applied to analyses of proteins,nucleic acids and inorganic ions.This paper summarizes the application of immunonanogold and aptamer modified nanogold(AptAu) catalytic resonance scattering spectral technique in combination with the work of our group,citing 53 references.

  11. Spectral Conditions for Positive Maps

    Science.gov (United States)

    Chruściński, Dariusz; Kossakowski, Andrzej

    2009-09-01

    We provide partial classification of positive linear maps in matrix algebras which is based on a family of spectral conditions. This construction generalizes the celebrated Choi example of a map which is positive but not completely positive. It is shown how the spectral conditions enable one to construct linear maps on tensor products of matrix algebras which are positive but only on a convex subset of separable elements. Such maps provide basic tools to study quantum entanglement in multipartite systems.

  12. Prym varieties of spectral covers

    CERN Document Server

    Hausel, Tamás

    2010-01-01

    Given a possibly reducible and non-reduced spectral cover X over a smooth projective complex curve C we determine the group of connected components of the Prym variety Prym(X/C). We also describe the sublocus of characteristics a for which the Prym variety Prym(X_a/C) is connected. These results extend special cases of work of Ng\\^o who considered integral spectral curves.

  13. Object reading: text recognition for object recognition

    NARCIS (Netherlands)

    Karaoglu, S.; van Gemert, J.C.; Gevers, T.

    2012-01-01

    We propose to use text recognition to aid in visual object class recognition. To this end we first propose a new algorithm for text detection in natural images. The proposed text detection is based on saliency cues and a context fusion step. The algorithm does not need any parameter tuning and can d

  14. On the Alternatives for Bath Correlators and Spectral Densities from Mixed Quantum-Classical Simulations

    OpenAIRE

    2012-01-01

    We investigate on the procedure of extracting a "spectral density" from mixed QM/MM calculations and employing it in open quantum systems models. In particular, we study the connection between the energy gap correlation function extracted from ground state QM/MM and the bath spectral density used as input in open quantum system approaches. We introduce a simple model which can give intuition on when the ground state QM/MM propagation will give the correct energy gap. We also discuss the role ...

  15. Ground water in Oklahoma

    Science.gov (United States)

    Leonard, A.R.

    1960-01-01

    One of the first requisites for the intelligent planning of utilization and control of water and for the administration of laws relating to its use is data on the quantity, quality, and mode of occurrence of the available supplies. The collection, evaluation and interpretation, and publication of such data are among the primary functions of the U.S. Geological Survey. Since 1895 the Congress has made appropriations to the Survey for investigation of the water resources of the Nation. In 1929 the Congress adopted the policy of dollar-for-dollar cooperation with the States and local governmental agencies in water-resources investigations of the U.S. Geological Survey. In 1937 a program of ground-water investigations was started in cooperation with the Oklahoma Geological Survey, and in 1949 this program was expanded to include cooperation with the Oklahoma Planning and Resources Board. In 1957 the State Legislature created the Oklahoma Water Resources Board as the principal State water agency and it became the principal local cooperator. The Ground Water Branch of the U.S. Geological Survey collects, analyzes, and evaluates basic information on ground-water resources and prepares interpretive reports based on those data. Cooperative ground-water work was first concentrated in the Panhandle counties. During World War II most work was related to problems of water supply for defense requirements. Since 1945 detailed investigations of ground-water availability have been made in 11 areas, chiefly in the western and central parts of the State. In addition, water levels in more than 300 wells are measured periodically, principally in the western half of the State. In Oklahoma current studies are directed toward determining the source, occurrence, and availability of ground water and toward estimating the quantity of water and rate of replenishment to specific areas and water-bearing formations. Ground water plays an important role in the economy of the State. It is

  16. Compositional Ground Truth of Diviner Lunar Radiometer Observations

    Science.gov (United States)

    Greenhagen, B. T.; Thomas, I. R.; Bowles, N. E.; Allen, C. C.; Donaldson Hanna, K. L.; Foote, E. J.; Paige, D. A.

    2012-01-01

    The Moon affords us a unique opportunity to "ground truth" thermal infrared (i.e. 3 to 25 micron) observations of an airless body. The Moon is the most accessable member of the most abundant class of solar system bodies, which includes Mercury, astroids, and icy satellites. The Apollo samples returned from the Moon are the only extraterrestrial samples with known spatial context. And the Diviner Lunar Radiometer (Diviner) is the first instrument to globally map the spectral thermal emission of an airless body. Here we compare Diviner observations of Apollo sites to compositional and spectral measurements of Apollo lunar soil samples in simulated lunar environment (SLE).

  17. Ground- and excited-state impurity bands in quantum wells

    Science.gov (United States)

    Ghazali, A.; Gold, A.; Serre, J.

    1989-02-01

    The density of states and the spectral density of electrons in quantum wells with charged impurities are calculated with use of a multiple-scattering method. The impurity-density-dependent broadening and the gradual merging of the ground (1s) and excited (2p+/-,2s) impurity levels into impurity bands are investigated. At low density the shapes of the 1s, 2p+/-, and 2s spectral densities are found to be in excellent agreement with the analytical results obtained for the ideal two-dimensional Coulomb problem.

  18. Detection of ground ice using ground penetrating radar method

    Institute of Scientific and Technical Information of China (English)

    Gennady M. Stoyanovich; Viktor V. Pupatenko; Yury A. Sukhobok

    2015-01-01

    The paper presents the results of a ground penetrating radar (GPR) application for the detection of ground ice. We com-bined a reflection traveltime curves analysis with a frequency spectrogram analysis. We found special anomalies at specific traces in the traveltime curves and ground boundaries analysis, and obtained a ground model for subsurface structure which allows the ground ice layer to be identified and delineated.

  19. Collison and Grounding

    DEFF Research Database (Denmark)

    Wang, G.; Ji, C.; Kuhala, P.;

    2006-01-01

    COMMITTEE MANDATE Concern for structural arrangements on ships and floating structures with regard to their integrity and adequacy in the events of collision and grounding, with the view towards risk assessment and management. Consideration shall be given to the frequency of occurrence, the proba......COMMITTEE MANDATE Concern for structural arrangements on ships and floating structures with regard to their integrity and adequacy in the events of collision and grounding, with the view towards risk assessment and management. Consideration shall be given to the frequency of occurrence...

  20. An outline of object-oriented philosophy.

    Science.gov (United States)

    Harman, Graham

    2013-01-01

    This article summarises the principles of object-oriented philosophy and explains its similarities with, and differences from, the outlook of the natural sciences. Like science, the object-oriented position avoids the notion (quite common in philosophy) that the human-world relation is the ground of all others, such that scientific statements about the world would only be statements about the world as it is for humans. But unlike science, object-oriented metaphysics treats artificial, social, and fictional entities in the same way as natural ones, and also holds that the world can only be known allusively rather than directly.

  1. Scheduler for monitoring objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Scot S; Pertica, Alexander J; Riot, Vincent J; De Vries, Willem H; Bauman, Brian J; Nikolaev, Sergei; Henderson, John R; Phillion, Donald W

    2015-04-28

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  2. Spectral reflectance estimation using a six-color scanner

    Science.gov (United States)

    Tominaga, Shoji; Kohno, Satoshi; Kakinuma, Hirokazu; Nohara, Fuminori; Horiuchi, Takahiko

    2009-01-01

    A method is proposed for estimating the spectral reflectance function of an object surface by using a six-color scanner. The scanner is regarded as a six-band spectral imaging system, since it captures six color channels in total from two separate scans using two difference lamps. First, we describe the basic characteristics of the imaging systems for a HP color scanner and a multiband camera used for comparison. Second, we describe a computational method for recovering surface-spectral reflectances from the noisy sensor outputs. A LMMSE estimator is presented as an optimal estimator. We discuss the reflectance estimation for non-flat surfaces with shading effect. A solution method is presented for the reliable reflectance estimation. Finally, the performance of the proposed method is examined in detail on experiments using the Macbeth Color Checker and non-flat objects.

  3. Coding Issues in Grounded Theory

    Science.gov (United States)

    Moghaddam, Alireza

    2006-01-01

    This paper discusses grounded theory as one of the qualitative research designs. It describes how grounded theory generates from data. Three phases of grounded theory--open coding, axial coding, and selective coding--are discussed, along with some of the issues which are the source of debate among grounded theorists, especially between its…

  4. Coding Issues in Grounded Theory

    Science.gov (United States)

    Moghaddam, Alireza

    2006-01-01

    This paper discusses grounded theory as one of the qualitative research designs. It describes how grounded theory generates from data. Three phases of grounded theory--open coding, axial coding, and selective coding--are discussed, along with some of the issues which are the source of debate among grounded theorists, especially between its…

  5. Gravitational waves from compact objects

    Institute of Scientific and Technical Information of China (English)

    José Antonio de Freitas Pacheco

    2010-01-01

    Large ground-based laser beam interferometers are presently in operation both in the USA (LIGO) and in Europe (VIRGO) and potential sources that might be detected by these instruments are revisited. The present generation of detectors does not have a sensitivity high enough to probe a significant volume of the universe and,consequently, predicted event rates are very low. The planned advanced generation of interferometers will probably be able to detect, for the first time, a gravitational signal. Advanced LIGO and EGO instruments are expected to detect few (some): binary coalescences consisting of either two neutron stars, two black holes or a neutron star and a black hole. In space, the sensitivity of the planned LISA spacecraft constellation will allow the detection of the gravitational signals, even within a "pessimistic" range of possible signals, produced during the capture of compact objects by supermassive black holes, at a rate of a few tens per year.

  6. Defining Learning Objectives

    Institute of Scientific and Technical Information of China (English)

    霍鑫红

    2014-01-01

    <正>This article attempts to introduce the teacher to developments in the area of specifying learning objectives.When you have studied this article carefully,you should be able to(a)distinguish between statements of aims and statements of objectives,(b)discuss the merits of writing objectives from the point of view of the learner,and(c)write both complete and abbreviated statements of learning objectives for different language skills,functions,and notions.

  7. [Historiography of medical objects].

    Science.gov (United States)

    Cid, Felip

    2008-01-01

    It has become acceptable among historians of medicine to profess a predilection for the historiography of medical ideas. But it is justified all the same to ask whether the logical connection really caused the origin, the change, or the disappearance of the medical objects. The interaction of ideas and medical objects assure as much objectivity as possible. In consequence, the contents of the museums, medical objects, is an aspect rather that a branch of the history of medicine.

  8. VLT FORS2 comparative transmission spectral survey of clear and cloudy exoplanet atmospheres

    Science.gov (United States)

    Nikolov, Nikolay; Sing, David; Gibson, Neale; Evans, Thomas; Barstow, Joanna Katy; Kataria, Tiffany; Wilson, Paul A.

    2016-10-01

    Transmission spectroscopy is a key to unlocking the secrets of close-in exoplanet atmospheres. Observations have started to unveil a vast diversity of irradiated giant planet atmospheres with clouds and hazes playing a definitive role across the entire mass and temperature regime. We have initiated a ground-based, multi-object transmission spectroscopy of a hand full of hot Jupiters, covering the wavelength range 360-850nm using the recently upgraded FOcal Reducer and Spectrograph (FORS2) mounted on the Very Large Telescope (VLT) at the European Southern Observatory (ESO). These targets were selected for comparative follow-up as their transmission spectra showed evidence for alkali metal absorption, based on the results of Hubble Space Telescope (HST) observations. This talk will discuss the first results from the programme, demonstrating excellent agreement between the transmission spectra measured from VLT and HST and further reinforce the findings of clear, cloudy and hazy atmospheres. More details will be discussed on the narrow alkali features obtained with FORS2 at higher resolution, revealing its high potential in securing optical transmission spectra. These FORS2 observations are the first ground-based detections of clear, cloudy and hazy hot-Jupiter atmosphere with a simultaneous detections of Na, K, and H2 Rayleigh scattering. Our program demonstrates the large potential of the instrument for optical transmission spectroscopy, capable of obtaining HST-quality light curves from the ground. Compared to HST, the larger aperture of VLT will allow for fainter targets to be observed and higher spectral resolution, which can greatly aid comparative exoplanet studies. This is important for further exploring the diversity of exoplanet atmospheres and is particularly complementary to the near- and mid-IR regime, to be covered by the upcoming James-Webb Space Telescope (JWST) and is readily applicable to less massive planets down to super-Earths.

  9. Learning Objects and Gerontology

    Science.gov (United States)

    Weinreich, Donna M.; Tompkins, Catherine J.

    2006-01-01

    Virtual AGE (vAGE) is an asynchronous educational environment that utilizes learning objects focused on gerontology and a learning anytime/anywhere philosophy. This paper discusses the benefits of asynchronous instruction and the process of creating learning objects. Learning objects are "small, reusable chunks of instructional media" Wiley…

  10. Survivability via Control Objectives

    Energy Technology Data Exchange (ETDEWEB)

    CAMPBELL,PHILIP L.

    2000-08-11

    Control objectives open an additional front in the survivability battle. A given set of control objectives is valuable if it represents good practices, it is complete (it covers all the necessary areas), and it is auditable. CobiT and BS 7799 are two examples of control objective sets.

  11. Presentation on Instructional Objectives

    Science.gov (United States)

    Naz, Bibi Asia

    2009-01-01

    "Learning can be defined as change in a student's capacity for performance as a result of experience" (Kenneth D. Moore). The intended changes should be specified in instructional objectives. Viewed in this context, an objective can be defined as a clear and unambiguous description of your instructional intent. An objective is not a…

  12. On the Crime Object

    Science.gov (United States)

    Akutaev, Rasul M.; Magomedov, Guseyn B.

    2016-01-01

    The relevance of the research of this problem is caused by the theoretical and practical needs of a specific concept of the crime object as one of the corpus delicti signs essentially the determining and defining its object and objective side, thereby--the nature of socially dangerous act. Besides, being a facultative sign of corpus delicti, the…

  13. Birth of the Object: Detection of Objectness and Extraction of Object Shape through Object Action Complexes

    DEFF Research Database (Denmark)

    Kraft, Dirk; Pugeault, Nicolas; Baseski, Emre

    2008-01-01

    interact. First, by making use of an object independent grasping mechanism, physical control over potential objects can be gained. Having evaluated the initial grasping mechanism as being successful, a second behavior extracts the object shape by making use of prediction based on the motion induced...

  14. Objects in Motion

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  15. Ownership and Object History

    Science.gov (United States)

    Friedman, Ori; Neary, Karen R.; Defeyter, Margaret A.; Malcolm, Sarah L.

    2011-01-01

    Appropriate behavior in relation to an object often requires judging whether it is owned and, if so, by whom. The authors propose accounts of how people make these judgments. Our central claim is that both judgments often involve making inferences about object history. In judging whether objects are owned, people may assume that artifacts (e.g.,…

  16. High Frequency Ground Motion from Finite Fault Rupture Simulations

    Science.gov (United States)

    Crempien, Jorge G. F.

    There are many tectonically active regions on earth with little or no recorded ground motions. The Eastern United States is a typical example of regions with active faults, but with low to medium seismicity that has prevented sufficient ground motion recordings. Because of this, it is necessary to use synthetic ground motion methods in order to estimate the earthquake hazard a region might have. Ground motion prediction equations for spectral acceleration typically have geometric attenuation proportional to the inverse of distance away from the fault. Earthquakes simulated with one-dimensional layered earth models have larger geometric attenuation than the observed ground motion recordings. We show that as incident angles of rays increase at welded boundaries between homogeneous flat layers, the transmitted rays decrease in amplitude dramatically. As the receiver distance increases away from the source, the angle of incidence of up-going rays increases, producing negligible transmitted ray amplitude, thus increasing the geometrical attenuation. To work around this problem we propose a model in which we separate wave propagation for low and high frequencies at a crossover frequency, typically 1Hz. The high-frequency portion of strong ground motion is computed with a homogeneous half-space and amplified with the available and more complex one- or three-dimensional crustal models using the quarter wavelength method. We also make use of seismic coda energy density observations as scattering impulse response functions. We incorporate scattering impulse response functions into our Green's functions by convolving the high-frequency homogeneous half-space Green's functions with normalized synthetic scatterograms to reproduce scattering physical effects in recorded seismograms. This method was validated against ground motion for earthquakes recorded in California and Japan, yielding results that capture the duration and spectral response of strong ground motion.

  17. Adaptive on-line classification of multi-spectral scanner data

    Science.gov (United States)

    Fromm, F. R.; Northouse, R. A.

    1973-01-01

    A possible solution to the analysis of the massive amounts of multi-spectral scanner data from the Earth Resource Technical Satellite (ERTS) program is proposed. This solution is offered as an adaptive on-line classification scheme. The classifier is described as well as its controller which is based on ground truth data. Cluster analysis is presented as an alternative approach to the ground truth data. Adaptive feature selection is discussed and possible mini-computer implementations are offered.

  18. The grounding of temporal metaphors

    Science.gov (United States)

    Lai, Vicky T.; Desai, Rutvik H.

    2016-01-01

    Grounded cognition suggests that the processing of conceptual knowledge cued by language relies on the sensory-motor regions. Does temporal language similarly engage brain areas involved in time perception? Participants read sentences that describe the temporal extent of events with motion verbs (Her seminar stretches across the afternoon) and their static controls. Comparison conditions were fictive motion (Her backyard stretches across the desert) and literal motion (Her arm stretches across the table), along with their static controls. Several time sensitive locations, identified using a meta-analysis, showed activation specific to temporal metaphors, including in the left insula, right claustrum, and bilateral posterior superior temporal sulci. Fictive and literal motion contrasts did not show this difference. Fictive motion contrast showed activation in a conceptual motion sensitive area of the left posterior inferior temporal sulcus. These data suggest that language of time is at least partially grounded in experiential time. In addition, motion semantics has different consequences for events and objects: temporal events become animate, while static entities become motional. PMID:26854961

  19. Mechanics of Ship Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    In these notes first a simplified mathematical model is presented for analysis of ship hull loading due to grounding on relatively hard and plane sand, clay or rock sea bottoms. In a second section a more rational calculation model is described for the sea bed soil reaction forces on the sea bottom...

  20. Grounding Anger Management

    Directory of Open Access Journals (Sweden)

    Odis E. Simmons, PhD

    2017-06-01

    Full Text Available One of the things that drew me to grounded theory from the beginning was Glaser and Strauss’ assertion in The Discovery of Grounded Theory that it was useful as a “theoretical foothold” for practical applications (p. 268. From this, when I was a Ph.D student studying under Glaser and Strauss in the early 1970s, I devised a GT based approach to action I later came to call “grounded action.” In this short paper I’ll present a very brief sketch of an anger management program I developed in 1992, using grounded action. I began my research by attending a two-day anger management training workshop designed for training professionals in the most commonly used anger management model. Like other intervention programs I had seen, this model took a psychologizing and pathologizing approach to the issue. Following this, I sat through the full course of an anger management program that used this model, observing the reactions of the participants and the approach of the facilitator. Following each session I conducted open-ended interviews with most of the participants, either individually or in groups of two or three. I had also done previous research in counseling and social work contexts that turned out to be very relevant to an anger management program design.

  1. Grounding in Instant Messaging

    Science.gov (United States)

    Fox Tree, Jean E.; Mayer, Sarah A.; Betts, Teresa E.

    2011-01-01

    In two experiments, we investigated predictions of the "collaborative theory of language use" (Clark, 1996) as applied to instant messaging (IM). This theory describes how the presence and absence of different grounding constraints causes people to interact differently across different communicative media (Clark & Brennan, 1991). In Study 1, we…

  2. Informed Grounded Theory

    Science.gov (United States)

    Thornberg, Robert

    2012-01-01

    There is a widespread idea that in grounded theory (GT) research, the researcher has to delay the literature review until the end of the analysis to avoid contamination--a dictum that might turn educational researchers away from GT. Nevertheless, in this article the author (a) problematizes the dictum of delaying a literature review in classic…

  3. TARDEC Ground Vehicle Robotics

    Science.gov (United States)

    2013-05-30

    UNCLASSIFIED UNCLASSIFIED 10 Optionally Manned Vehicles OMV can be driven by a soldier; OMV can drive a soldier; OMV can be remotely operated; OMV can be...all missions for OMV (i.e. shared driving) (i.e. remotely operated) 2 m od al iti es Mission Payloads UNCLASSIFIED UNCLASSIFIED 11 Ground

  4. Per Object statistical analysis

    DEFF Research Database (Denmark)

    2008-01-01

    Variable. This procedure was developed in order to be able to export objects as ESRI shape data with the 90-percentile of the Hue of each object's pixels as an item in the shape attribute table. This procedure uses a sub-level single pixel chessboard segmentation, loops for each of the objects......This RS code is to do Object-by-Object analysis of each Object's sub-objects, e.g. statistical analysis of an object's individual image data pixels. Statistics, such as percentiles (so-called "quartiles") are derived by the process, but the return of that can only be a Scene Variable, not an Object...... of a specific class in turn, and uses as pair of PPO stages to derive the statistics and then assign them to the objects' Object Variables. It may be that this could all be done in some other, simply way, but several other ways that were tried did not succeed. The procedure ouptut has been tested against...

  5. Words without Objects

    Directory of Open Access Journals (Sweden)

    Henry Laycock

    1998-12-01

    Full Text Available Resolution of the problem of mass nouns depends on an expansion of our semantic/ontological taxonomy. Semantically, mass nouns are neither singular nor plural; they apply to neither just one object, nor to many objects, at a time. But their deepest kinship links them to the plural. A plural phrase — 'the cats in Kingston' — does not denote a single plural thing, but merely many distinct things. Just so, 'the water in the lake' does not denote a single aggregate — it is not ONE, but rather MUCH. The world is not the totality of singular objects, plural objects, and mass objects; for there are no plural or mass objects. It is the totality of single objects and (just stuff.

  6. Science, values, and common ground.

    Science.gov (United States)

    Cuomo, Chris

    2003-11-01

    In this paper, I argue that there may be common ground shared by animal science and its critics insofar as animal scientists seek improvement in their field in four areas: the quality of their products, the quality of life for those who make their livelihood in food production, the fair treatment of human workers, and the humane treatment of animals. I also propose that there are fundamental differences between improvement motivated by profit and improvement motivated by ethical values. Positive moral change is sometimes revolutionary, although it is often a matter of promoting positive incremental changes and keeping one's attention on the effects of actions and attitudes. In conclusion, I suggest that in animal agriculture, positive change can be brought about by "getting closer" to the objects of scientific research, including nonhuman animals, by paying more attention to their welfare.

  7. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    Hynek Hermansky

    2011-10-01

    Information is carried in changes of a signal. The paper starts with revisiting Dudley’s concept of the carrier nature of speech. It points to its close connection to modulation spectra of speech and argues against short-term spectral envelopes as dominant carriers of the linguistic information in speech. The history of spectral representations of speech is briefly discussed. Some of the history of gradual infusion of the modulation spectrum concept into Automatic recognition of speech (ASR) comes next, pointing to the relationship of modulation spectrum processing to wellaccepted ASR techniques such as dynamic speech features or RelAtive SpecTrAl (RASTA) filtering. Next, the frequency domain perceptual linear prediction technique for deriving autoregressive models of temporal trajectories of spectral power in individual frequency bands is reviewed. Finally, posterior-based features, which allow for straightforward application of modulation frequency domain information, are described. The paper is tutorial in nature, aims at a historical global overview of attempts for using spectral dynamics in machine recognition of speech, and does not always provide enough detail of the described techniques. However, extensive references to earlier work are provided to compensate for the lack of detail in the paper.

  8. Sakurai's Object Continues to Brighten and Expand

    Science.gov (United States)

    Hinkle, Kenneth H.; Joyce, Richard R.; Matheson, Thomas

    2017-01-01

    Sakurai's Object (V4334 Sgr), the prototype final flash object discovered in the mid-1990s, was observed to undergo rapid cooling becoming as faint as 25th magnitude at K during the first decade of the 21st century. A review of imaging data suggests the minimum K magnitude occurred about 2006. Sakuarai's Object was re-acquired at K in 2010. Between 2010 Sep and 2013 Apr Sakurai's object brightened more than 2 magnitudes to K=14.2. Here we report on a Gemini-NIRI K band AO image obtained in 2016 July. The Ks magnitude was 13.35. The AO image also records the continuing expansion of the debris cloud. The central star remains obscured. Spectro-spatial NIFS images of the spectral region around He I 1.0830 micron and a GMOS optical spectrum, both observed in 2015, will also be displayed.

  9. The spectral changes of deforestation in the Brazilian tropical savanna.

    Science.gov (United States)

    Trancoso, Ralph; Sano, Edson E; Meneses, Paulo R

    2015-01-01

    The Cerrado is a biome in Brazil that is experiencing the most rapid loss in natural vegetation. The objective of this study was to analyze the changes in the spectral response in the red, near infrared (NIR), middle infrared (MIR), and normalized difference vegetation index (NDVI) when native vegetation in the Cerrado is deforested. The test sites were regions of the Cerrado located in the states of Bahia, Minas Gerais, and Mato Grosso. For each region, a pair of Landsat Thematic Mapper (TM) scenes from 2008 (before deforestation) and 2009 (after deforestation) was compared. A set of 1,380 samples of deforested polygons and an equal number of samples of native vegetation have their spectral properties statistically analyzed. The accuracy of deforestation detections was also evaluated using high spatial resolution imagery. Results showed that the spectral data of deforested areas and their corresponding native vegetation were statistically different. The red band showed the highest difference between the reflectance data from deforested areas and native vegetation, while the NIR band showed the lowest difference. A consistent pattern of spectral change when native vegetation in the Cerrado is deforested was identified regardless of the location in the biome. The overall accuracy of deforestation detections was 97.75%. Considering both the marked pattern of spectral changes and the high deforestation detection accuracy, this study suggests that deforestation in Cerrado can be accurately monitored, but a strong seasonal and spatial variability of spectral changes might be expected.

  10. A tool for manual endmember selection and spectral unmixing

    Science.gov (United States)

    Bateson, C. Ann; Curtiss, Brian

    1993-01-01

    Sampling a continuous radiance spectrum in many narrow contiguous spectral bands results in a high covariance between the bands. Hence, the true dimensionality of imaging spectrometer data is not determined by the number of spectral bands, but by the number of spectrally unique signatures whose mixtures reproduce the spectral variance observed in an image. Methods to unmix high dimensional multispectral data use principal components analysis to reduce the dimensionality. The variance of the spectral data is modeled as a linear combination of a finite set of endmembers in the space of the eigen-vectors that account for most of the variance. The number and characteristics of these endmembers are determined not only by the number and characteristics of the spectrally unique materials on the surface but also by processes (e.g., illumination, atmospheric scattering and absorption) affecting the signal received by the sensor. Selection of endmember spectra has typically been from a library. However, since most libraries are incomplete and do not account for the processes mentioned above, we have devised a computer display that allows researchers to explore interactively the eigenvector space of a representative and mean-corrected subset of the image data in search of extreme spectra to designate as endmembers. This display, which is based on parallel coordinates, is unique in the area of multidimensional visualization in that it includes not only a passive view of higher dimensional data but also the capability to interact and move geometrical objects in higher dimensional spaces.

  11. Biologically-inspired data decorrelation for hyper-spectral imaging

    Directory of Open Access Journals (Sweden)

    Ghita Ovidiu

    2011-01-01

    Full Text Available Abstract Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA, linear discriminant analysis (LDA, wavelet decomposition (WD, or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification

  12. NUMERICAL ANALYSIS OF THE GROUND EFFECT ON INSECT HOVERING

    Institute of Scientific and Technical Information of China (English)

    GAO Tong; LIU Nan-sheng; LU Xi-yun

    2008-01-01

    The ground effect on insect hovering is investigated using an immersed boundary-lattice Boltzmann method to solve the two-dimensional incompressible Navier-Stokes equations. A virtual model of an elliptic foil with oscillating translation and rotation near a ground is used. The objective of this study is to deal with the ground effect on the unsteady forces and vortical structures and to get the physical insights in the relevant mechanisms. Two typical insect hovering modes, I.e., normal and dragonfly hovering mode, are examined. Systematic computations have been carried out for some parameters, and the ground effect on the unsteady forces and vortical structures is analyzed.

  13. Objects, materiality and meaning

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Lindegaard, Hanne

    2008-01-01

    The present research work investigates the relation between physical objects, their materiality, understood as the physical substances they are made from, and the communication from the objects. In product design of physical objects the communicative aspects are just as important as the function ...... be written into the object. The materials are therefore carriers of communication, even though this is dependent of the cultural context and the environment which the object will be part of. However the designer has only minor influence on those.......The present research work investigates the relation between physical objects, their materiality, understood as the physical substances they are made from, and the communication from the objects. In product design of physical objects the communicative aspects are just as important as the function...... of the object, and the designers aim is therefore to tune both in order to achieve a desired goal. To do so the designer basically has 2 options: Alteration of the physical shape of the object and the selection of materials. Through the manipulation of shape and materials can symbolic and sensory information...

  14. A ground-based optical transmission spectrum of WASP-6b

    Energy Technology Data Exchange (ETDEWEB)

    Jordán, Andrés; Espinoza, Néstor; Rabus, Markus [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); Eyheramendy, Susana [Departmento de Estadística, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); Sing, David K. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Désert, Jean-Michel [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Bakos, Gáspár Á. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); López-Morales, Mercedes; Szentgyorgyi, Andrew [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Maxted, Pierre F. L. [Astrophysics Group, Keele University, Staffordshire ST5 5BG (United Kingdom); Triaud, Amaury H. M. J. [Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-12-01

    We present a ground-based optical transmission spectrum of the inflated sub-Jupiter-mass planet WASP-6b. The spectrum was measured in 20 spectral channels from 480 nm to 860 nm using a series of 91 spectra over a complete transit event. The observations were carried out using multi-object differential spectrophotometry with the Inamori-Magellan Areal Camera and Spectrograph on the Baade Telescope at Las Campanas Observatory. We model systematic effects on the observed light curves using principal component analysis on the comparison stars and allow for the presence of short and long memory correlation structure in our Monte Carlo Markov Chain analysis of the transit light curves for WASP-6. The measured transmission spectrum presents a general trend of decreasing apparent planetary size with wavelength and lacks evidence for broad spectral features of Na and K predicted by clear atmosphere models. The spectrum is consistent with that expected for scattering that is more efficient in the blue, as could be caused by hazes or condensates in the atmosphere of WASP-6b. WASP-6b therefore appears to be yet another massive exoplanet with evidence for a mostly featureless transmission spectrum, underscoring the importance that hazes and condensates can have in determining the transmission spectra of exoplanets.

  15. A Ground-based Optical Transmission Spectrum of WASP-6b

    CERN Document Server

    Jordán, Andrés; Rabus, Markus; Eyheramendy, Susana; Sing, David K; Désert, Jean-Michel; Bakos, Gáspár Á; Fortney, Jonathan J; López-Morales, Mercedes; Maxted, Pierre F L; Triaud, Amaury H M J; Szentgyorgyi, Andrew

    2013-01-01

    We present a ground based optical transmission spectrum of the inflated sub-Jupiter mass planet WASP-6b. The spectrum was measured in twenty spectral channels from 480 nm to 860nm using a series of 91 spectra over a complete transit event. The observations were carried out using multi-object differential spectrophotometry with the IMACS spectrograph on the Baade telescope at Las Campanas Observatory. We model systematic effects on the observed light curves using principal component analysis on the comparison stars, and allow for the presence of short and long memory correlation structure in our Monte Carlo Markov Chain analysis of the transit light curves for WASP-6. The measured transmission spectrum presents a general trend of decreasing apparent planetary size with wavelength and lacks evidence for broad spectral features of Na and K predicted by clear atmosphere models. The spectrum is consistent with that expected for scattering that is more efficient in the blue, as could be caused by hazes or condensat...

  16. Gamma-Ray Spectral States of Galactic Black Hole Candidates

    CERN Document Server

    Grove, J E; Kroeger, R A; McNaron-Brown, K; Skibo, J G; Phlips, B F

    1998-01-01

    OSSE has observed seven transient black hole candidates: GRO J0422+32, GX339-4, GRS 1716-249, GRS 1009-45, 4U 1543-47, GRO J1655-40, and GRS 1915+105. Two gamma-ray spectral states are evident and, based on a limited number of contemporaneous X-ray and gamma-ray observations, these states appear to be correlated with X-ray states. The former three objects show hard spectra below 100 keV (photon number indices Gamma < 2) that are exponentially cut off with folding energy ~100 keV, a spectral form that is consistent with thermal Comptonization. This "breaking gamma-ray state" is the high-energy extension of the X-ray low, hard state. In this state, the majority of the luminosity is above the X-ray band, carried by photons of energy ~100 keV. The latter four objects exhibit a "power-law gamma-ray state" with a relatively soft spectral index (Gamma ~ 2.5-3) and no evidence for a spectral break. For GRO J1655-40, the lower limit on the break energy is 690 keV. GRS 1716-249 exhibits both spectral states, with th...

  17. New approach to spectral features modeling

    NARCIS (Netherlands)

    Brug, H. van; Scalia, P.S.

    2012-01-01

    The origin of spectral features, speckle effects, is explained, followed by a discussion on many aspects of spectral features generation. The next part gives an overview of means to limit the amplitude of the spectral features. This paper gives a discussion of all means to reduce the spectral featur

  18. Infrasonic induced ground motions

    Science.gov (United States)

    Lin, Ting-Li

    On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body

  19. How close to detailed spectral calculations is the

    Directory of Open Access Journals (Sweden)

    William Wandji Nyamsi

    2014-12-01

    Full Text Available The k$k$-distribution method and the correlated-k$k$ approximation of Kato et al. (1999 is a smart approach originally designed for broadband calculations of the solar radiation at ground level by dividing the solar spectrum in 32 spectral bands. The approach is a priori not suited for calculation of spectral irradiance. Nevertheless, this paper evaluates its performance when compared to more detailed spectral calculations serving as references for the spectral intervals no. 3 [283, 307] nm to 26 [1613, 1965] nm for clear and cloudy situations. The evaluation is based on numerical simulations. The clearer the sky, the greater the root mean square error (RMSE in all bands. In the spectral intervals no. 3 and 4 [307, 328] nm, the irradiance is underestimated by large – approximately −90 % and −17 % in relative value - because the wavelength interval is large with respect to the absorption by ozone and a single value of ozone cross section is not enough for each interval. For each spectral interval from no. 5 [328, 363] nm to no. 18 [743, 791] nm, and for both global and direct radiation, the bias and the RMSE are less than 1.5 % of the irradiance in the corresponding interval under clear skies and may amount to 3 % in cloudy conditions. For greater wavelength intervals no. 19 to no. 26, the relative bias and RMSE show a tendency to increase with wavelength and may reach 8 % and 7 % for global and direct under clear skies respectively, and 11 % and 15 % under cloudy skies.

  20. Spectral element simulation of ultrafiltration

    DEFF Research Database (Denmark)

    Hansen, M.; Barker, Vincent A.; Hassager, Ole

    1998-01-01

    A spectral element method for simulating stationary 2-D ultrafiltration is presented. The mathematical model is comprised of the Navier-Stokes equations for the velocity field of the fluid and a transport equation for the concentration of the solute. In addition to the presence of the velocity...... vector in the transport equation, the system is coupled by the dependency of the fluid viscosity on the solute concentration and by a concentration-dependent boundary condition for the Navier-Stokes equations at the membrane surface. The spectral element discretization yields a nonlinear algebraic system....... The performance of the spectral element code when applied to several ultrafiltration problems is reported. (C) 1998 Elsevier Science Ltd. All rights reserved....

  1. Spectral Tensor-Train Decomposition

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.

    2016-01-01

    The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT.......e., the “cores”) comprising the functional TT decomposition. This result motivates an approximation scheme employing polynomial approximations of the cores. For functions with appropriate regularity, the resulting spectral tensor-train decomposition combines the favorable dimension-scaling of the TT...... decomposition with the spectral convergence rate of polynomial approximations, yielding efficient and accurate surrogates for high-dimensional functions. To construct these decompositions, we use the sampling algorithm \\tt TT-DMRG-cross to obtain the TT decomposition of tensors resulting from suitable...

  2. Optical Spectral Variability of Blazars

    Indian Academy of Sciences (India)

    Haritma Gaur

    2014-09-01

    It is well established that blazars show flux variations in the complete electromagnetic (EM) spectrum on all possible time scales ranging from a few tens of minutes to several years. Here, we report the review of optical flux and spectral variability properties of different classes of blazars on IDV and STV time-scales. Our analysis show HSPs are less variable in optical bands as compared to LSPs. Also, we investigated the spectral slope variability and found that the average spectral slopes of LSPs showed a good agreement with the synchrotron self-Compton loss-dominated model. However, spectra of the HSPs and FSRQs have significant additional emission components. In general, spectra of BL Lacs get flatter when they become brighter, while for FSRQs the opposite trend appears to hold.

  3. When should conscientious objection be accepted?

    Science.gov (United States)

    Magelssen, Morten

    2012-01-01

    This paper makes two main claims: first, that the need to protect health professionals' moral integrity is what grounds the right to conscientious objection in health care; and second, that for a given claim of conscientious objection to be acceptable to society, a certain set of criteria should be fulfilled. The importance of moral integrity for individuals and society, including its special role in health care, is advocated. Criteria for evaluating the acceptability of claims to conscientious objection are outlined. The precise content of the criteria is dictated by the two main interests that are at stake in the dilemma of conscientious objection: the patient's interests and the health professional's moral integrity. Alternative criteria proposed by other authors are challenged. The bold claim is made that conscientious objection should be recognised by society as acceptable whenever the five main criteria of the proposed set are met.

  4. Scaled-Free Objects

    CERN Document Server

    Grilliette, Will

    2010-01-01

    Several functional analysts and C*-algebraists have been moving toward a categorical means of understanding normed objects. In this work, I address a primary issue with adapting these abstract concepts to functional analytic settings, the lack of free objects. Using a new object, called a "crutched set", and associated categories, I devise generalized construction of normed objects as a left adjoint functor to a natural forgetful functor. Further, the universal property in each case yields a "scaled-free" mapping property, which extends previous notions of `"free" normed objects. In particular, I construct the following types of scaled-free objects: Banach spaces, Banach algebras, C*-algebras, operator spaces, and operator algebras. In subsequent papers, this scaled-free property, coupled with the associated functorial results, will give rise to a new view of presentation theory for C*-algebras, which inherits many properties and constructions from its algebraic counterpart.

  5. Conceivability Theses and Objections

    DEFF Research Database (Denmark)

    the thesis is more fashionable in the current debate than defending conceivability as anything but one psychological heuristic device among others with which we form beliefs about modality. In this paper, I shall offer a way of demarcating conceivability theses in a way that offers a concise overview, and I...... will try to provide an overview also of the different objections that have been and are leveled at the conceivability theses. A number of these are problems for an epistemology of modality generally. I will focus on the objections that are peculiar to conceivability theses: the Standard Objection...... and the Uselessness Objection. The Standard Objection targets the second premise in an argument for possibility from conceivability, that what is conceived is possible, typically by offering counterexamples in the form of conceivable impossibilities. The Uselessness Objection targets the first premise in an argument...

  6. Reasoning about Function Objects

    Science.gov (United States)

    Nordio, Martin; Calcagno, Cristiano; Meyer, Bertrand; Müller, Peter; Tschannen, Julian

    Modern object-oriented languages support higher-order implementations through function objects such as delegates in C#, agents in Eiffel, or closures in Scala. Function objects bring a new level of abstraction to the object-oriented programming model, and require a comparable extension to specification and verification techniques. We introduce a verification methodology that extends function objects with auxiliary side-effect free (pure) methods to model logical artifacts: preconditions, postconditions and modifies clauses. These pure methods can be used to specify client code abstractly, that is, independently from specific instantiations of the function objects. To demonstrate the feasibility of our approach, we have implemented an automatic prover, which verifies several non-trivial examples.

  7. On Coordinating Collaborative Objects

    CERN Document Server

    Imine, Abdessamad

    2010-01-01

    A collaborative object represents a data type (such as a text document) designed to be shared by a group of dispersed users. The Operational Transformation (OT) is a coordination approach used for supporting optimistic replication for these objects. It allows the users to concurrently update the shared data and exchange their updates in any order since the convergence of all replicas, i.e. the fact that all users view the same data, is ensured in all cases. However, designing algorithms for achieving convergence with the OT approach is a critical and challenging issue. In this paper, we propose a formal compositional method for specifying complex collaborative objects. The most important feature of our method is that designing an OT algorithm for the composed collaborative object can be done by reusing the OT algorithms of component collaborative objects. By using our method, we can start from correct small collaborative objects which are relatively easy to handle and incrementally combine them to build more ...

  8. Kuiper Binary Object Formation

    OpenAIRE

    Nazzario, R. C.; Orr, K.; Covington, C.; Kagan, D.; Hyde, T. W.

    2005-01-01

    It has been observed that binary Kuiper Belt Objects (KBOs) exist contrary to theoretical expectations. Their creation presents problems to most current models. However, the inclusion of a third body (for example, one of the outer planets) may provide the conditions necessary for the formation of these objects. The presence of a third massive body not only helps to clear the primordial Kuiper Belt but can also result in long lived binary Kuiper belt objects. The gravitational interaction betw...

  9. Propelling Extended Objects

    Science.gov (United States)

    Humbert, Richard

    2010-01-01

    A force acting on just part of an extended object (either a solid or a volume of a liquid) can cause all of it to move. That motion is due to the transmission of the force through the object by its material. This paper discusses how the force is distributed to all of the object by a gradient of stress or pressure in it, which creates the local…

  10. Spectral analysis by correlation; Analyse spectrale par correlation

    Energy Technology Data Exchange (ETDEWEB)

    Fauque, J.M.; Berthier, D.; Max, J.; Bonnet, G. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    The spectral density of a signal, which represents its power distribution along the frequency axis, is a function which is of great importance, finding many uses in all fields concerned with the processing of the signal (process identification, vibrational analysis, etc...). Amongst all the possible methods for calculating this function, the correlation method (correlation function calculation + Fourier transformation) is the most promising, mainly because of its simplicity and of the results it yields. The study carried out here will lead to the construction of an apparatus which, coupled with a correlator, will constitute a set of equipment for spectral analysis in real time covering the frequency range 0 to 5 MHz. (author) [French] La densite spectrale d'un signal qui represente la repartition de sa puissance sur l'axe des frequences est une fonction de premiere importance, constamment utilisee dans tout ce qui touche le traitement du signal (identification de processus, analyse de vibrations, etc...). Parmi toutes les methodes possibles de calcul de cette fonction, la methode par correlation (calcul de la fonction de correlation + transformation de Fourier) est tres seduisante par sa simplicite et ses performances. L'etude qui est faite ici va deboucher sur la realisation d'un appareil qui, couple a un correlateur, constituera un ensemble d'analyse spectrale en temps reel couvrant la gamme de frequence 0 a 5 MHz. (auteur)

  11. Objective-C

    CERN Document Server

    DeVoe, Jiva

    2011-01-01

    A soup-to-nuts guide on the Objective-C programming language. Objective-C is the language behind Cocoa and Cocoa Touch, which is the Framework of applications written for the Macintosh, iPod touch, iPhone, and iPad platforms. Part of the Developer Reference series covering the hottest Apple topics, this book covers everything from the basics of the C language to advanced aspects of Apple development. You'll examine Objective-C and high-level subjects of frameworks, threading, networking, and much more.: Covers the basics of the C language and then quickly moves onto Objective-C and more advanc

  12. Comprehensive monitoring of gamma-ray bright blazars. I. Statistical study of optical, X-ray, and gamma-ray spectral slopes

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Karen E.; Jorstad, Svetlana G.; Marscher, Alan P.; Agudo, Iván; Joshi, Manasvita; Malmrose, Michael P. [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Larionov, Valeri M.; Blinov, Dmitry A.; Efimova, Natalia V.; Hagen-Thorn, Vladimir A.; Konstantinova, Tatiana S.; Kopatskaya, Evgenia N.; Larionova, Elena G.; Larionova, Liudmilla V. [Astronomical Institute, St. Petersburg State University, Universitetskij Pr. 28, Petrodvorets, 198504 St. Petersburg (Russian Federation); Smith, Paul S. [Steward Observatory, University of Arizona, Tucson, AZ 85721-0065 (United States); Arkharov, Arkady A. [Main (Pulkovo) Astronomical Observatory of RAS, Pulkovskoye shosse 60, 196140 St. Petersburg (Russian Federation); Casadio, Carolina; Gómez, José L.; Molina, Sol N. [Instituto de Astrofísica de Andalucía, CSIC, Apartado 3004, E-18080 Granada (Spain); McHardy, Ian M., E-mail: kwilliam@bu.edu [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); and others

    2014-07-10

    We present γ-ray, X-ray, ultraviolet, optical, and near-infrared light curves of 33 γ-ray bright blazars over 4 years that we have been monitoring since 2008 August with multiple optical, ground-based telescopes and the Swift satellite, and augmented by data from the Fermi Gamma-ray Space Telescope and other publicly available data from Swift. The sample consists of 21 flat-spectrum radio quasars (FSRQs) and 12 BL Lac objects (BL Lacs). We identify quiescent and active states of the sources based on their γ-ray behavior. We derive γ-ray, X-ray, and optical spectral indices, α{sub γ}, α{sub X}, and α{sub o}, respectively (F{sub ν}∝ν{sup α}), and construct spectral energy distributions during quiescent and active states. We analyze the relationships between different spectral indices, blazar classes, and activity states. We find (1) significantly steeper γ-ray spectra of FSRQs than for BL Lacs during quiescent states, but a flattening of the spectra for FSRQs during active states while the BL Lacs show no significant change; (2) a small difference of α{sub X} within each class between states, with BL Lac X-ray spectra significantly steeper than in FSRQs; (3) a highly peaked distribution of X-ray spectral slopes of FSRQs at ∼ –0.60, but a very broad distribution of α{sub X} of BL Lacs during active states; (4) flattening of the optical spectra of FSRQs during quiescent states, but no statistically significant change of α{sub o} of BL Lacs between states; and (5) a positive correlation between optical and γ-ray spectral slopes of BL Lacs, with similar values of the slopes. We discuss the findings with respect to the relative prominence of different components of high-energy and optical emission as the flux state changes.

  13. Multi-spectral camera development

    CSIR Research Space (South Africa)

    Holloway, M

    2012-10-01

    Full Text Available stream_source_info Holloway_2012.pdf.txt stream_content_type text/plain stream_size 6209 Content-Encoding ISO-8859-1 stream_name Holloway_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Multi-Spectral Camera... Development 4th Biennial Conference Presented by Mark Holloway 10 October 2012 Fused image ? Red, Green and Blue Applications of the Multi-Spectral Camera ? CSIR 2012 Slide 2 Green and Blue, Near Infrared (IR) RED Applications of the Multi...

  14. Stingray: Spectral-timing software

    Science.gov (United States)

    Huppenkothen, Daniela; Bachetti, Matteo; Stevens, Abigail L.; Migliari, Simone; Balm, Paul

    2016-08-01

    Stingray is a spectral-timing software package for astrophysical X-ray (and more) data. The package merges existing efforts for a (spectral-)timing package in Python and is composed of a library of time series methods (including power spectra, cross spectra, covariance spectra, and lags); scripts to load FITS data files from different missions; a simulator of light curves and event lists that includes different kinds of variability and more complicated phenomena based on the impulse response of given physical events (e.g. reverberation); and a GUI to ease the learning curve for new users.

  15. In situ spectral measurements improve the efficiency of light use efficiency models to estimate gross primary productivity in Mediterranean cork oak woodland

    Science.gov (United States)

    Cerasoli, S.; Silva, J. M.; Carvalhais, N.; Correia, A.; Costa e Silva, F.; Pereira, J. S.

    2013-12-01

    The Light Use Efficiency (LUE) concept is usually applied to retrieve Gross Primary Productivity (GPP) estimates in models integrating spectral indexes, namely Normalized Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI), considered proxies of biophysical properties of vegetation. The integration of spectral measurements into LUE models can increase the robustness of GPP estimates by optimizing particular parameters of the model. NDVI and PRI are frequently obtained by broad band sensors on remote platforms at low spatial resolution (e.g. MODIS). In highly heterogeneous ecosystems such spectral information may not be representative of the dynamic response of the ecosystem to climate variables. In Mediterranean oak woodlands different plant functional types (PFT): trees canopy, shrubs and herbaceous layer, contribute to the overall Gross Primary Productivity (GPP). In situ spectral measurements can provide useful information on each PFT and its temporal variability. The objectives of this study were: i) to analyze the temporal variability of NDVI, PRI and others spectral indices for the three PFT, their response to climate variables and their relationship with biophysical properties of vegetation; ii) to optimize a LUE model integrating selected spectral indexes in which the contribution of each PFT to the overall GPP is estimated individually; iii) to compare the performance of disaggregated GPP estimates and lumped GPP estimates, evaluated against eddy covariance measurements. Ground measurements of vegetation reflectance were performed in a cork oak woodland located in Coruche, Portugal (39°8'N, 8°19'W) where carbon and water fluxes are continuously measured by eddy covariance. Between April 2011 and June 2013 reflectance measurements of the herbaceous layer, shrubs and trees canopy were acquired with a FieldSpec3 spectroradiometer (ASD Inc.) which provided data in the range of 350-2500nm. Measurements were repeated approximately on

  16. Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: practical development.

    Science.gov (United States)

    Cheng, Zhongtao; Liu, Dong; Zhang, Yupeng; Yang, Yongying; Zhou, Yudi; Luo, Jing; Bai, Jian; Shen, Yibing; Wang, Kaiwei; Liu, Chong; Su, Lin; Yang, Liming

    2016-04-04

    A field-widened Michelson interferometer (FWMI), which is intended as the spectroscopic discriminator in ground-based high-spectral-resolution lidar (HSRL) for atmospheric aerosol detection, is described in this paper. The structure, specifications and design of the developed prototype FWMI are introduced, and an experimental approach is proposed to optimize the FWMI assembly and evaluate its comprehensive characteristic simultaneously. Experimental results show that, after optimization process, the peak-to-valley (PV) value and root-mean-square (RMS) value of measured OPD variation for the FWMI are 0.04λ and 0.008λ respectively among the half divergent angle range of 1.5 degree. Through an active locking technique, the frequency of the FWMI can be locked to the laser transmitter with accuracy of 27 MHz for more than one hour. The practical spectral discrimination ratio (SDR) for the developed FWMI is evaluated to be larger than 86 if the divergent angle of incident beam is smaller than 0.5 degree. All these results demonstrate the great potential of the developed FWMI as the spectroscopic discriminator for HSRLs, as well as the feasibility of the proposed design and optimization process. This paper is expected to provide a good entrance for the lidar community in future HSRL developments using the FWMI technique.

  17. Decentralized Ground Staff Scheduling

    DEFF Research Database (Denmark)

    Sørensen, M. D.; Clausen, Jens

    2002-01-01

    Typically, ground staff scheduling is centrally planned for each terminal in an airport. The advantage of this is that the staff is efficiently utilized, but a disadvantage is that staff spends considerable time walking between stands. In this paper a decentralized approach for ground staff...... scheduling is investigated. The airport terminal is divided into zones, where each zone consists of a set of stands geographically next to each other. Staff is assigned to work in only one zone and the staff scheduling is planned decentralized for each zone. The advantage of this approach is that the staff...... work in a smaller area of the terminal and thus spends less time walking between stands. When planning decentralized the allocation of stands to flights influences the staff scheduling since the workload in a zone depends on which flights are allocated to stands in the zone. Hence solving the problem...

  18. Spectral Analysis of Nonstationary Spacecraft Vibration Data

    Science.gov (United States)

    1965-11-01

    the instantaneous power spectral density function for the process (y(t)). This spectral function can take on negative values for certain cases...power spectral density function is not directly measurable in the frequency domain. An experimental estimate for the function can be obtained only by...called the generalized power spectral density function for the process (y(t)) . This spectral description for nonstationary data is of great value for

  19. Phi meson spectral moments and QCD condensates in nuclear matter

    Science.gov (United States)

    Gubler, Philipp; Weise, Wolfram

    2016-10-01

    A detailed analysis of the lowest two moments of the ϕ meson spectral function in vacuum and nuclear matter is performed. The consistency is examined between the constraints derived from finite energy QCD sum rules and the spectra computed within an improved vector dominance model, incorporating the coupling of kaonic degrees of freedom with the bare ϕ meson. In the vacuum, recent accurate measurements of the e+e- →K+K- cross section allow us to determine the spectral function with high precision. In nuclear matter, the modification of the spectral function can be described by the interactions of the kaons from ϕ → K K ‾ with the surrounding nuclear medium. This leads primarily to a strong broadening and an asymmetric deformation of the ϕ meson peak structure. We confirm that, both in vacuum and nuclear matter, the zeroth and first moments of the corresponding spectral functions satisfy the requirements of the finite energy sum rules to a remarkable degree of accuracy. Limits on the strangeness sigma term of the nucleon are examined in this context. Applying our results to the second moment of the spectrum, we furthermore discuss constraints on four-quark condensates and the validity of the commonly used ground state saturation approximation.

  20. Mechanics of Ship Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    In these notes first a simplified mathematical model is presented for analysis of ship hull loading due to grounding on relatively hard and plane sand, clay or rock sea bottoms. In a second section a more rational calculation model is described for the sea bed soil reaction forces on the sea bottom....... Finally, overall hull failure is considered first applying a quasistatic analysis model and thereafter a full dynamic model....

  1. Spectral Information System for Australian Spectroscopy Data

    Science.gov (United States)

    Chisholm, L. A.; Ong, C.; Hueni, A.; Suarez, L.; Restrepo-Coupe, N.

    2013-12-01

    Inherently field spectroscopy involves the study of the interrelationships between the spectral characteristics of objects and their biophysical attributes in the field environment (Bauer et al., 1986; Milton, 1987). Spectroscopy measurements taken of vegetated surfaces provide spectral characteristics indicative of the status, composition and structure of the components measured. However, additional elements are present that add undesired effects to the overall signal such as the soil background or the viewing and illumination geometry (Suarez etal 2013). Further, the leaf spectrum is affected by several factors including leaf age, phenology, a highly variable range of stressors, any of which may be the actual focus of study, and additionally influenced by a range of environmental conditions. There is a critical need to use acquired spectra to infer vegetation function, understand phenological cycles, characterise biodiversity or as part of the process to assess biogeochemical processes. However the collection of leaf spectra during field campaigns is undertaken on a project basis, where a large number of spectra tend to be collected, yet the value and ability to share and confidently re-use such collections is often restricted. Often this is because the data are stored in disparate silos with little, if any, consistency in formatting and content, and most importantly, lack metadata to aid their discovery and re-use. These datasets have significant potential for vegetation scientists but also benefit the wider earth observation remote sensing and other earth science communities. In Australia this problem has been addressed by the adoption and enhancement of the existing SPECCHIO system (Hueni et al. 2009) as a suitable standard for spectral data exchange. As a spectral database, the system provides storage of spectra and associated metadata, retrieval of spectral data using metadata space queries, information on provenance, all of which facilitate repeatability of

  2. Simulation of non-stationary ground motion processes (I)

    Institute of Scientific and Technical Information of China (English)

    LIANG Jian-wen

    2005-01-01

    This paper presents a spectral representation method for simulation of non-stationary ground motion processes on the basis of Priestley's evolutionary spectral theory. Following this method, sample processes can be generated using a cosine series formula. It is shown that, these sample processes accurately reflect the prescribed characteristics of the evolutionary power spectral density function when the number of the terms in the cosine series is large enough; and the ensemble expected value and the ensemble autocorrelation function approach the corresponding target functions, respectively, as the sample size increases; and these sample processes are asymptotically normal as the number of the terms in the series tends to infinity. Finally, a few special cases of the formula are discussed, one of which is non-stationary white noise process, and other one is reduced to the formula for simulation of stationary stochastic processes.

  3. Outdoor ground impedance models.

    Science.gov (United States)

    Attenborough, Keith; Bashir, Imran; Taherzadeh, Shahram

    2011-05-01

    Many models for the acoustical properties of rigid-porous media require knowledge of parameter values that are not available for outdoor ground surfaces. The relationship used between tortuosity and porosity for stacked spheres results in five characteristic impedance models that require not more than two adjustable parameters. These models and hard-backed-layer versions are considered further through numerical fitting of 42 short range level difference spectra measured over various ground surfaces. For all but eight sites, slit-pore, phenomenological and variable porosity models yield lower fitting errors than those given by the widely used one-parameter semi-empirical model. Data for 12 of 26 grassland sites and for three beech wood sites are fitted better by hard-backed-layer models. Parameter values obtained by fitting slit-pore and phenomenological models to data for relatively low flow resistivity grounds, such as forest floors, porous asphalt, and gravel, are consistent with values that have been obtained non-acoustically. Three impedance models yield reasonable fits to a narrow band excess attenuation spectrum measured at short range over railway ballast but, if extended reaction is taken into account, the hard-backed-layer version of the slit-pore model gives the most reasonable parameter values.

  4. ATHENS SEASONAL VARIATION OF GROUND RESISTANCE PREDICTION USING NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    S. Anbazhagan

    2015-10-01

    Full Text Available The objective in ground resistance is to attain the most minimal ground safety esteem conceivable that bodes well monetarily and physically. An application of artificial neural networks (ANN to presage and relegation has been growing rapidly due to sundry unique characteristics of ANN models. A decent forecast is able to capture the dubiousness associated with those ground resistance. A portion of the key instabilities are soil composition, moisture content, temperature, ground electrodes and spacing of the electrodes. Propelled by this need, this paper endeavors to develop a generalized regression neural network (GRNN to predict the ground resistance. The GRNN has a single design parameter and expeditious learning and efficacious modeling for nonlinear time series. The precision of the forecast is applied to the Athens seasonal variation of ground resistance that shows the efficacy of the proposed approach.

  5. Maximizing the Economic Benefits of a Multi-Spectral Mission

    Science.gov (United States)

    Kamoun, P.; Martimort, Ph.

    Several multi-spectral Space missions have been proposed worldwide to meet the requirements of various applications with hopes of substantial return on investment. However experience has shown that up till today, with very few exceptions, most have not reached expectations and several multi-spectral projects are even staying only at the prospective stage. In this paper the results of a thorough analysis of the requirements of several key thematic domains will be presented ( in particular vegetation monitoring, geology, oceanography, urbanism, ... ). This analysis will be followed by the identification of optimum system specifications to establish a commercially viable system. A description of the technical characteristcs of the optimum system in terms of mission, satellite, platform, instrument and ground segment will then be given. Finally a treatment of the business case will be shown and its economic benefits will be qualitatively and quantitatively indicated. The relationship between such a program and its counterparts worldwide will be explored to identify redundancies or synergies.

  6. Multiwavelength Spectral Studies Of Fermi-LAT Blazars

    CERN Document Server

    Joshi, Manasvita; Jorstad, Svetlana; Boettcher, Markus; Agudo, Ivan; Larionov, Valeri; Aller, Margo; Gurwell, Mark; Lahteenmaki, Anne

    2011-01-01

    We present multiwavelength spectral analyses of two Fermi-LAT blazars, OJ 287 and 3C 279, that are part of the Boston University multiwaveband polarization program. The data have been compiled from observations with Fermi, RXTE, the VLBA, and various ground-based optical and radio telescopes. We simulate the dynamic spectral energy distributions (SEDs) within the framework of a multi-slice, time-dependent leptonic jet model for blazars, with radiation feedback, in the internal shock scenario. We use the physical jet parameters obtained from the VLBA monitoring to guide our modeling efforts. We discuss the role of intrinsic parameters and the interplay between synchrotron and inverse Compton radiation processes responsible for producing the resultant SEDs.

  7. A Spectral Analysis of Laser Induced Fluorescence of Iodine

    CERN Document Server

    Bayram, S B

    2015-01-01

    When optically excited, iodine absorbs in the 490- to 650-nm visible region of the spectrum and, after radiative relaxation, it displays an emission spectrum of discrete vibrational bands at moderate resolution. This makes laser-induced fuorescence spectrum of molecular iodine especially suitable to study the energy structure of homonuclear diatomic molecules at room temperature. In this spirit, we present a rather straightforward and inexpensive experimental setup and the associated spectral analysis which provides an excellent exercise of applied quantum mechanics fit for advanced laboratory courses. The students would be required to assign spectral lines, fill a Deslandres table, process the data to estimate the harmonic and anharmonic characteristics of the ground vibronic state involved in the radiative transitions, and thenceforth calculate a set of molecular constants and discuss a model of molecular vibrator.

  8. Charmonium correlators and spectral functions at finite temperature

    CERN Document Server

    Ding, H -T; Karsch, F; Satz, H; Söldner, W

    2009-01-01

    We study charmonium correlators and spectral functions in quenched QCD, using Clover improved Wilson fermions on very fine (0.015 fm) isotropic lattices at 0.75 Tc and 1.5 Tc. We use a new approach to distinguish the zero mode contribution from the other contributions. Once this is removed, we find that the ratios of correlators to reconstructed correlators remain almost unity at all distances. The ground state peaks of spectral functions obtained at 0.75 Tc are reliable and robust. The present accuracy and limited number of points in the temporal direction at 1.5 Tc do not allow for a reliable conclusion about a possible melting of charmonium states in the QGP.

  9. An object-oriented based daytime over land fog detection approach using EOS/MODIS data

    Science.gov (United States)

    Wen, Xiongfei; Liu, Liangming; Li, Wei; Dong, Pei

    2009-09-01

    A new algorithm is presented for land fog detection from daytime image of Earth Observation System Moderate Resolution Imaging Spectroradiometer (EOS/MODIS) data. Due to its outstanding spatial and spectral resolutions, this image is an ideal data source for fog detection. The algorithm utilizes an object-oriented technique to separate fog from other cloud types. In this paper, MOD35 product is first introduced to exclude cloud-free areas, and high clouds are removed with MODIS 26 band, and then a parameter named Normalized Difference Fog Index (NDFI) is proposed based on Streamer radiative model and MODIS data for fog detection. Through segmenting NDFI image into regions of pixels, and computing attributes (e.g. mean value of brightness temperature) for each region to create objects, each object could be identified based on the attributes selected to determine whether belongs to fog or cloud. Algorithm's performance is evaluated against ground-based measurements over China in winter. The algorithm is proved to be effective in detecting fog accurately based on two different test cases.

  10. A note on spectral properties of some gradient methods

    Science.gov (United States)

    di Serafino, Daniela; Ruggiero, Valeria; Toraldo, Gerardo; Zanni, Luca

    2016-10-01

    Starting from the work by Barzilai and Borwein, gradient methods have gained a great amount of attention, and efficient low-cost schemes are available nowadays. The acceleration strategies used by these methods are based on the definition of effective steplength updating rules, which capture spectral properties of the Hessian of the objective function. The methods arising from this idea represent effective computational tools, extremely appealing for a variety of large-scale optimization problems arising in applications. In this work we discuss the spectral properties of some recently proposed gradient methods with the aim of providing insight into their computational effectiveness. Numerical experiments supporting and illustrating the theoretical analysis are provided.

  11. Spectral-domain interferometry for quantitative DIC microscopy

    Science.gov (United States)

    Li, Chengshuai; Zhu, Yizheng

    2014-03-01

    A spectral-domain differential interference contrast (SD-DIC) microscopy system is presented for quantitative imaging of both reflective and transparent samples. The spectral-domain interferometry, combined with the common-path DIC geometry, provides a shot noise-limited sensitivity of 14.3pm in optical pathlength gradient measurement. The optical resolution of the system was characterized using images of a USAF resolution target. Fused silica microspheres were imaged to demonstrate the reconstruction of two-dimensional optical pathlength topography from measured gradient fields. The exquisite sensitivity of the system showed potential in quantitative imaging of sub-diffraction limit objects such as gold nanoparticles.

  12. Conscience and Conscientious Objections

    NARCIS (Netherlands)

    Schinkel, Anders

    2007-01-01

    In Western countries conscientious objection is usually accommodated in various ways, at least in certain areas (military conscription, medicine) and to some extent. It appears to be regarded as fundamentally different from other kinds of objection. But why? This study argues that conscientious obje

  13. The objective image

    NARCIS (Netherlands)

    Galison, Peter

    2010-01-01

    In his work, Galison approaches the historical development of objectivity as an important factor that affects the way we experience and imagine ourselves in communities of knowledge and in democratic societies. Prof. Peter Galison has demonstrated that scientific objectivity has a history and he

  14. Choosing for learning objects

    NARCIS (Netherlands)

    Schoonenboom, Judith; Emans, Bruno; Meijer, Joost

    2006-01-01

    Choosing for learning objects discusses eight educational ambitions and the possible roles of learning objects in realising these ambitions. The eight educational ambitions are: (1) Creating independent learning pathways, for example for lifelong learners; (2) Making education more flexible; (3) Res

  15. On Objects and Events

    DEFF Research Database (Denmark)

    Eugster, Patrick Thomas; Guerraoui, Rachid; Damm, Christian Heide

    2001-01-01

    This paper presents linguistic primitives for publish/subscribe programming using events and objects. We integrate our primitives into a strongly typed object-oriented language through four mechanisms: (1) serialization, (2) multiple sub typing, (3) closures, and (4) deferred code evaluation. We...

  16. Choosing for learning objects

    NARCIS (Netherlands)

    Schoonenboom, Judith; Emans, Bruno; Meijer, Joost

    2006-01-01

    Choosing for learning objects discusses eight educational ambitions and the possible roles of learning objects in realising these ambitions. The eight educational ambitions are: (1) Creating independent learning pathways, for example for lifelong learners; (2) Making education more flexible; (3) Res

  17. Composing Concurrent Objects

    NARCIS (Netherlands)

    Bergmans, Lodewijk

    1994-01-01

    Adopting the object-oriented paradigm for the development of large and complex software systems offers several advantages, of which increased extensibility and reusability are the most prominent ones. The object-oriented model is also quite suitable for modelling concurrent systems. However, it

  18. Programs as Data Objects

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the Second Symposium on Programs as Data Objects, PADO 2001, held in Aarhus, Denmark, in May 2001. The 14 revised full papers presented were carefully reviewed and selected from 30 submissions. Various aspects of looking at programs as data objects...

  19. Superlensing Microscope Objective Lens

    CERN Document Server

    Yan, Bing; Parker, Alan; Lai, Yukun; Thomas, John; Yue, Liyang; Monks, James

    2016-01-01

    Conventional microscope objective lenses are diffraction limited, which means that they cannot resolve features smaller than half the illumination wavelength. Under white light illumination, such resolution limit is about 250-300 nm for an ordinary microscope. In this paper, we demonstrate a new superlensing objective lens which has a resolution of about 100 nm, offering at least two times resolution improvement over conventional objectives in resolution. This is achieved by integrating a conventional microscope objective lens with a superlensing microsphere lens using a 3D printed lens adaptor. The new objective lens was used for label-free super-resolution imaging of 100 nm-sized engineering and biological samples, including a Blu-ray disc sample, semiconductor chip and adenoviruses. Our work creates a solid base for developing a commercially-viable superlens prototype, which has potential to transform the field of optical microscopy and imaging.

  20. Kuiper Binary Object Formation

    CERN Document Server

    Nazzario, R C; Covington, C; Kagan, D; Hyde, T W

    2005-01-01

    It has been observed that binary Kuiper Belt Objects (KBOs) exist contrary to theoretical expectations. Their creation presents problems to most current models. However, the inclusion of a third body (for example, one of the outer planets) may provide the conditions necessary for the formation of these objects. The presence of a third massive body not only helps to clear the primordial Kuiper Belt but can also result in long lived binary Kuiper belt objects. The gravitational interaction between the KBOs and the third body causes one of four effects; scattering into the Oort cloud, collisions with the growing protoplanets, formation of binary pairs, or creation of a single Kuiper belt object. Additionally, the initial location of the progenitors of the Kuiper belt objects also has a significant effect on binary formation.